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Abstract— Avian species richness surveys, which measure the 
total number of unique avian species, can be conducted via 
remote acoustic sensors. An immense quantity of data can be 
collected, which, although rich in useful information, places a 
great workload on the scientists who manually inspect the audio. 
To deal with this big data problem, we calculated acoustic indices 
from audio data at a one-minute resolution and used them to 
classify one-minute recordings into five classes. By filtering out 
the non-avian minutes, we can reduce the amount of data by 
about 50% and improve the efficiency of determining avian 
species richness. The experimental results show that, given 60 
one-minute samples, our approach enables to direct ecologists to 
find about 10% more avian species. 

Keywords— classification; avian species richness; acoustic 
sensor data; acoustic indices 

I. INTRODUCTION 
Avian species richness studies the number of unique avian 

species in a particular area given a fixed period of time. The 
study of aves (a Latin word refers to birds) has several 
ecological reasons. First, in terms of monitoring the natural 
environment, avian species are a good indicator of dynamic 
environmental changes [1]. Second, acoustic monitoring has 
the potential to be conducted at large spatial and temporal 
scales, because avian species spread over a wide range of 
landscape and vocalize more often than other species do. Third, 
the knowledge on their behavior is well established [2]. 

Acoustics have long been used to monitor the natural 
environment and its inhabitants [3, 4]. Thanks to advances in 
acoustic sensors, acoustic data now can be collected at a large 
spatiotemporal scale [5]. The advantages of deploying acoustic 
sensors are that they enable to record continuously and the data 
can be stored permanently once collected. However, this 
presents us with an enormous data processing requirement 
which can impede us from gaining the insights that the data 
have to offer. Two major approaches for dealing with this big 
data problem include manual analysis via citizen science and 
automated recognition through machine learning algorithms. 

Currently, manual identification of avian species requires, 
on average, twice as much time as the length of the recording 
[6]. This is due to the fact that the participants repeatedly 
replay the same recording to confirm whether the species have 
been correctly recognized. Citizen science is one of the 
solutions for an efficient analysis of a huge amount of acoustic 
data (24TB, covering 8 years). The basic idea is to mobilize the 

general public to work in collaboration with the professional 
scientists to complete a certain task with massive data. Galaxy 
Zoo [7] and Whale FM [8] are good examples that use citizen 
science to solve their own problems. Similar experiments have 
been conducted in avian species annotation. The participants 
were asked to annotate avian species by listening to an audio 
recording or visual inspection of a corresponding spectrogram 
[9]. However, this method attempts to increase the number of 
participants involved in annotating the acoustic data instead of 
reducing the volumes of data. The accuracy of the annotations 
can be unreliable because domain knowledge varies from 
experts to non-experts [10]. 

An alternative approach to improve the efficiency of 
determining avian species richness in acoustic data is 
automated acoustic event detection. Most of the automated 
approaches focus on the recognition of a single or several 
species with clear vocalizations [11-14]. These techniques 
perform well when the original acoustic data have a high 
signal-to-noise ratio. However, recordings collected from the 
natural environment contain background noise (geophony: 
such as rain and wind; anthropophony: such as mechanical 
noise) and complicated acoustic structures (such as concurrent 
vocalizations). These factors will lower the accuracy of the 
automated recognition approach. Although multi-instance 
multi-label method [15] enables to detect different avian 
species in the recordings, it requires annotated avian species as 
training data. 

To address the aforementioned problem, our major 
contribution is to introduce an assistive approach to improve 
the efficiency for determining different avian species. This 
applies whether it be citizen science, automated detection and 
recognition, or simply a trained ornithologist manually 
inspecting the data. Our method utilizes a decision tree model 
to classify acoustic data into five classes at a one-minute 
resolution. By removing the non-avian acoustic data, we 
successfully reduce the data to about 50% its original size and 
improve the efficiency about 10% for ecologists to search for 
avian species in one-day acoustic data. 

The remainder of this paper is structured as follows. 
Section II overviews the related work. Section III describes the 
materials and method used in this study. The results are 
reported in section IV. Section V and VI are discussion and 
conclusion respectively. 
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II. RELATED WORK 

A. Sampling Protocols for Avian Species Richness Surveys 
Point count survey [16, 17] is one of traditional in-the-field 

sampling protocols to determine avian species richness. It 
requires experts to go into the field in person, writing down 
any species they see or hear. This manual task is time-
consuming, labor-intensive and, most importantly, the result is 
difficult to verify. Acoustic sensors enable the continuous 
collection of environmental data. Now the in-the-field-
observation effort becomes a big data analysis problem. 
Listening to all recorded data is prohibitively expensive. 
Although automated detection method is evolving rapidly, 
building a generic recognizer to detect all avian species is 
impractical because of variation of vocalizations and unknown 
species in the recordings [18]. 

To improve the efficiency of determining avian species 
richness in massive acoustic data, The paper [6] suggested a 
semi-automated method to determine avian species richness. 
They compared random sampling protocols over several 
different segments of time in a day and suggested that 
sampling three hours after dawn successfully improves the 
efficiency of determining avian species richness over five 
days’ acoustic data. However, the use of this sampling protocol 
will miss out avian species that only vocalized outside of those 
three hours and it is subject to weather conditions. 

B. Acoustic Indices 
Recently, various acoustic indices have been proposed to 

scale up the analysis of massive acoustic sensor data [19]. An 
acoustic index summarizes the acoustic information in any 
arbitrary length of an audio recording. The first introduced 
acoustic indices include acoustic entropy index and acoustic 
dissimilarity index (based on Shannon theory), which aim to 
assess biodiversity at large temporal and spatial scales [20]. 
Acoustic complexity is another index that is widely used to 
monitor the activity of avian species and long-term ecosystem 
change [21]. 

A single index is hardly able to summarize all facets of the 
acoustic data. Based on the idea that combinations of acoustic 
indices may complement for each other in summarizing 
acoustic information, a weighted linear combination of 
acoustic indices was used to determine avian species richness 
of a one-day recording [22]. The combinations of five indices 
leaded to more efficient results than those of traditional point-
count survey or random sampling of a whole day’s data. 

Acoustic indices have also shown promising applications 
for characterizing long-duration acoustic patterns [23], such as 
avian vocalizations and rain. In this research, we used acoustic 
indices to describe five common acoustic patterns in a one-day 
recording. Twelve acoustic indices were calculated at a one-
minute resolution and used to build a decision tree model. By 
classifying acoustic data, we were able to exclude the non-
avian minutes and search for avian species more efficiently. 

In this paper, we proposed a classification approach to help 
ecologists for more efficient determination of avian species 
richness in one-day acoustic data. Acoustic indices will be used 
as features to build a decision tree model. 1440 minutes (One-

day) acoustic data will be classified into five classes: ‘Aves’, 
‘Insects’, ‘Low activity’, ‘Rain’ and ‘Wind’. With the avian 
species annotated prior to this research, we can simulate the 
situations that whether ecologists will have higher efficiency in 
determining avian species richness when present with 
classified ‘Aves’ minutes. 

III. METHOD 

A. Study Sites and Data Collection 
The acoustic data were collected from the Samford 

Ecological Research Facility (SERF) located in the northwest 
of Brisbane, Australia (27.39˚S, 152.88˚E). The vegetation 
where the recordings were taken consists of inland open-forest 
and woodland, more details can be found in the paper [6]. The 
acoustic data were collected from two sites in the SERF over 
six days. One recording was recorded in stereo WAV format 
on 13th April, 2013 and the others were recorded in stereo MP3 
format (128 Kbit/s, 22.05 kHz) from 13th to 17th October 2010 
[24]. All the recordings were cut into one-minute audio clips. 
The 1440 minutes on 15th are left out as a test dataset. There 
are 150 minutes selected as training data from the other five 
days. Three experienced experts have worked collaboratively 
to annotate all avian species at a one-minute resolution from 
13th to 17th October 2010. These annotations are used to verify 
the efficiency of determining avian species richness. 

B. Calculation of Acoustic Indices 
In this research, 12 acoustic indices were calculated for 

each one-minute audio clip, either from waveform or 
spectrogram data. Among them, average signal amplitude, 
background noise features, signal-to-noise ratio, and entropy of 
signal envelope are generic indices for describing temporal 
acoustic information; while the remaining indices are able to 
characterize spectral information. This section briefly describes 
the calculation of 12 acoustic indices. 

1. Average Signal Amplitude 
2. Background Noise Features 
3. Signal-to-noise Ratio (SNR) 
4. Entropy of Signal Envelope 
5. Acoustic Complexity Index (ACI) 
6. LowFreqCover 
7. MidFreqCover 
8. HighFreqCover 
9. Entropy of Average Spectrum 
10. Entropy of Peaks 
11. Horizontal Ridge 
12. Vertical Ridge 

The first four indices are calculated from time-domain 
audio signals. Here, an envelope refers to the maximum 
amplitude of a 512-point non-overlapping window over a 
waveform signal. 

1. AveSignalAmplitude: It is the average amplitude of the 
waveform envelope. A logarithmic unit (decibel) is used in 
this experiment. 

2. BackgroundNoise: It measures constant acoustic 
energy estimated from the waveform. It is also converted to 
the decibel. 



3. Signal-to-noise ratio: It is the decibel differences 
between maximum amplitudes of the waveform envelope and 
the corresponding background noise features. 

4. Entropy of signal envelope: It is an entropy index 
calculated from energy (squared amplitude) of waveform 
envelope. 

The spectral acoustic indices are calculated from a 
spectrogram, where a spectrogram is the short-time Fourier 
transform of a waveform signal. Spectral acoustic indices 
include: 

5. AcousticComplexity: It is the average absolute 
amplitude differences between adjacent time frames. 

6-8. FrequencyCover: It refers to the count of values that 
are greater than a threshold divided by the total time frames of 
a spectrogram. This threshold is 3dB in this paper chosen by 
trial and error. Frequency cover has been divided into three 
frequency components (0-482 Hz, 482-3500 Hz, and 3500-
8820 Hz), which are called low, mid, and high -frequency 
cover respectively. 

9. AveEntropySpectrum: It is an entropy index of 
average amplitude calculated in each frequency bin from 482 
Hz to 8820 Hz. 

10. EntropyPeaks: It is also an entropy index of 
amplitude that has maximum counts in each frequency bin 
from 482 Hz to 8820 Hz. 

11-12. Ridge indices (verRidge and horRidge): If a 
spectrogram is considered as an image comprised of pixels, 
ridges are local maxima in at least one dimension of a 
spectrogram. Reference [25] introduced ridge features for bird 
vocalization retrieval in massive acoustic data. Based on their 
ridge features, the ridge indices used in this research are the 
average count of vertical and horizontal ridges in a 
spectrogram. 

C. Classification of One-day Acoustic Data 
Fig. 1 is a false-color spectrogram of a 24-hour recording 

on 13th October 2010. It illustrates the distribution of different 
acoustic patterns at a one-minute resolution. Each pixel stands 
for a single frequency bin of a particular minute. Normalized 
acoustic indices such as acoustic complexity index, temporal 
entropy and frequency cover were assigned to RGB values to 
construct this figure. We can see that the majority of aves 
vocalized from around 5:00 to 18:00 during the day. 
According to the acoustic adaptation hypothesis [26], rain and 
wind are causes of the absence of avian vocalizations. The 
purpose of classification is to find the avian-active minutes. In 
this paper, we proposed to use a decision tree to classify 
minutes of a one-day recording into five classes: ‘Aves’, 
‘Insects’, ‘Low activity’, ‘Rain’ and ‘Wind’. These classes 
reveal the distribution of fundamental acoustic patterns in 
long-duration recordings. 

The decision tree is trained by a ten-fold stratified cross 
validation method. This algorithm has been implemented in 
Weka 3.7 [27]. Fig. 2 demonstrates the five classes: ‘Wind’, 
‘Insects’, ‘Aves’, ‘Low activity’ and ‘Rain’. The training data 
consist of thirty one-minute samples for each class recorded 

from the SERF (on 13th, 14th, 16th, 17th October 2010 and 13th 
April 2013), resulting in a total of 150 minutes. The model was 
tested on a 1440-minute recording on 15th October 2010. 
Minutes classified as ‘Aves’ were reserved for further species 
richness surveys. 

D. Evaluation 
To evaluate the approach, a plot of accumulative avian species 
against the number of minute samples is drawn. Two 
benchmarks have been established for a one-day recording. 
One is the theoretical best curve derived from annotations of 
avian species; the other one is the baseline that sampling1000 
trials at random on 1440 minutes (one-day) recording. The 
improved sampling result is supposed to reside between these 
two benchmarks. The result is considered to be better if an 
accumulation curve approaches the first benchmark. The 60th 
one-minute sample is also chosen in order to compare with the 
results obtained from other methods. 

 
Fig. 1. Avian-active minutes of a 24-hour recording, 13th October, 2010 

 
Fig. 2. Examples of five classes at a one-minute resolution (left: 

waveforms; right: spectrograms) 
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IV. RESULTS 

A. Classification Accuracy 
The decision tree model trained by 12 acoustic indices is 

shown in Fig. 3. The Gini impurity has been used as the 
splitting rule. A forward feature selection has been used to 
select the best feature set. Three acoustic indices – horRidge, 
AcousticComplexity and BackgroundNoise – were 
determined by the algorithm as the most important features for 
classifying one-minute audio-clips. The horRidge is capable of 
capturing lasting acoustic energy in a spectrogram, which is 
commonly found in sounds of ‘Insects’ and some avian 
vocalizations. The AcousticComplexity describes the relative 
intensity differences between adjacent time frames of a 
spectrogram. ‘Rain’ and some avian vocalizations have similar 
acoustic features. By contrast, ‘Wind’ and ‘Low activity’ do 
not have the acoustic features described above. ‘Wind’ is a 
sporadic energy burst and ‘Low activity’ has low acoustic 
energy in a one-minute audio clip, which explains why 
BackgroundNoise was chosen to discriminate these two 
classes.  

TABLE I is the confusion matrix for the 150 training one-
minute samples. The diagonal values (in bold) represent the 
correctly classified instances of the training data. The overall 
classification accuracy is 89.3%. Particularly, the class ‘In-
sects’ has the highest classification accuracy (100%) and the 
classification accuracy for ‘Aves’ is 92.9%. Notice that ‘Low 
activity’ and ‘Wind’ have the most misclassified instances; this 
is due to the fact that ‘Wind’ is sporadic acoustic energy, 
acoustic indices averaged across one-minute audio are not able 
to summarize enough acoustic information to discriminate 
them.  

The results for the test dataset on 15th October 2010 are 
shown in TABLE II. The overall classification accuracy is 
82.6% with a total of 1440 minutes. The classification 
precision for the class ‘Aves’ is 87.7%. According to the avian 

 
Fig. 3.  The decision tree model. The oval nodes represent the features 

(acoustic indices) to split the training instances. Rectangular boxes represent 
the five classes. The left number is the total instances in that class and the 
right number is the misclassified instances. A single number means that they 
are all correctly classified. 

annotations, 93.6% (58/62) of the total avian species remain 
within 44.0% (634/1440) of a one-day recording. Note that the 
majority of misclassifications for the test dataset occurred 
between the ‘Aves’ and ‘Rain’. This is mainly because some 
avian vocalizations have similar features as rain and, the 
acoustic indices used in this study fail to distinguish them. 
With the annotations of avian species, we know that more than 
half of the total amount of acoustic data can be removed 
without losing many species (TABLE III). The huge data 
reduction on 16th October is because of strong wind gusts in 
that day. 

B. Determination of Avian Species Richness 
Fig. 4 shows the accumulative curves of avian species 

found per minute over two days. We compared the 
classification approach with two benchmarks. The triangles are 
the theoretical best results that we can achieve with the avian 
annotations. The baseline method is sample 1440 minutes at 
random. Apparently, random sampling on minutes classified as 
‘Aves’ obtains a better result than the baseline method.  

On 16th October 2010, our method has found an average of 
20% more avian species after the 10th minute sample (Fig. 4). 
Strong wind gusted throughout the day and the avian species 

TABLE I.  CONFUSION MATRIX OF TRAINING DATA 

Classified 
as → Wind Insects Aves Low 

activity Rain 

Wind 27 0 0 2 1 
Insects 0 30 0 0 0 
Aves 0 0 28 2 0 
Low 

activity 7 0 1 21 1 

Rain 1 0 1 0 28 

TABLE II.  CONFUSION MATRIX OF TEST DATA 

Classified 
as → Wind Insects Aves Low 

activity Rain 

Wind 28 0 13 17 4 
Insects 0 0 0 0 0 
Aves 4 6 556 31 53 
Low 

activity 13 0 18 359 17 

Rain 10 0 47 16 243 

TABLE III. THE NUMBER OF AVIAN SPECIES 
BEFORE AND AFTER CLASSIFICATION 

 
October 2010 

13th 14th 15th 16th 17th 
Before 62 58 62 45 62 

After 60 57 59 39 58 
Data 

reduction 51.5% 44.6% 56.0% 87.3% 49.0% 

 



were less active. Our classification approach successfully 
removed windy minutes which did not include aves but 
occupied much of the day, so there is a huge gap between our 
method and the method of random sampling on 1440 minutes. 

An ANOVA was tested to see whether our classification 
approach is effective in improving the efficiency of 
determining avian species richness. Since the distribution of 

 

 

 
Fig. 4. Accumulative curves of avian species found per minute. The 

triangles and circles are the best and worst situations in determining avian 
species richness. Squares symbolize the results of random sampling on ‘Aves’ 
minutes. Error bars are one-standard deviations at each one-minute sample. 

percent of avian species found at each minute sample is not 
normal (tested by Shapiro-Wilk’s test, p < 0.001), the paired t 
test is not suitable for our experiment. Instead, a two-sample 
paired Wilcoxon (also known as Mann-Whitney) tests was 
used. From the results (p < 0.001), we can reject the hypothesis 
that the percent of avian species found per minute are the same 
by random sampling on ‘Aves’ minutes and a one-day 
recording. It also confirms that our classification approach has 
successfully improving the efficiency of determining avian 
species richness by reducing the non-avian minutes. 

V. DISCUSSION 
We compared the 60th one-minute samples calculated from 

four different sampling methods for each of five days’ acoustic 
data (TABLE IV). The average values showed that random 
sampling on ‘Aves’ minutes provides a 10% higher efficiency 
of determining avian species richness than that on a one day’s 
recording. This is due to the fact that our classification 
approach reduces the volumes of the dataset while reserving 
the majority of unique avian species. 

Our classification approach provides a result as good as the 
previous research but is robust under different conditions. One 
of the previous methods is called dawn sampling [6]. However, 
if rain or wind dominates that period of time, dawn sampling 
will hardly capture any avian species. Our method explained 
how the acoustic indices can be used to improve the efficiency 
of determining avian species richness by discriminating five 
fundamental patterns in acoustic data. 

The missing avian species were also investigated. They 
were classified in non-avian minutes because the acoustic 
energy of their vocalizations was low and the acoustic indices 
were not able to capture relevant information after taking an 
average value of a one-minute audio clip. Take 15th October 
2010 for example. Red junglefowl (Gallus.gallus) and Willie 
wagtail (Rhipidura.leucophrys) vocalized before dawn and 
their vocalizations were too faint for acoustic indices to 
summarize ample acoustic information, so these minutes were 
misclassified as ‘Low activity’. Rainbow bee-eater 
(Merops.ornatus) was present at the 977th minute, but the 
vocalizations were masked by rain. Acoustic event detection 
can be used to deal with this single case. 

VI. CONCLUSION 
Acoustic sensors have enabled the continuous collection of 
acoustic data for monitoring the natural environment. 
However, manual analysis of such a big dataset is expensive 
and time-consuming. To scale up the analysis of massive 
acoustic data, acoustic indices and computer-assisted 
techniques have been introduced. This research was motivated 
by the use of acoustic indices in characterizing long-duration 
audio recordings. Using acoustic indices as features, we built a 
simple and robust decision tree model to classify one-minute 
acoustic data into five classes. After removing the non-avian 
minutes, we approximately reduced 50% of one-day’s acoustic 
data, thereby improved the efficiency of determining avian 
species richness by 10%. This approach has the potential to 
reduce months’ or years’ acoustic data for avian species 
surveys. 

 



  
TABLE IV.  PERCENT OF AVIAN SPECIES FOUND AT THE 60TH ONE-MINUTE SAMPLE USING DIFFERENT 

SAMPLING PROTOCOLS 

Sampling protocols October 2010 Average 13th 14th 15th 16th 17th 
Random sampling on a one-

day recording [6] 64% ± 5% 54% ± 5% 59% ± 6% 41% ± 8% 56% ± 10% 54% ± 14% 

Dawn sampling [6] 70% ± 3% 65% ± 4% 73% ± 3% 65% ± 4% 61% ± 3% 67% ± 3% 
Our classification approach 71% ± 4% 65% ± 5% 69% ± 4% 69% ± 4% 61% ± 4% 67% ± 4% 

 

This paper reports a simple but efficient classification 
model to reduce acoustic data for determining avian species 
richness. Since new acoustic indices are emerging and show a 
promising application in characterizing long-duration audio 
data, we can use them as additional information to direct the 
selection of Aves minutes after classification. The future work 
will also test the classification approach with audio collected 
from different locations and over a wider range of days. 
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