
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Maire, Frederic & Suddrey, Gavin
(2015)
Path algebra for mobile robots. In
Maher, Michael & Thiebaux, Sylvie (Eds.)
28th Australasian Joint Conference on Artificial Intelligence, 30 November
– 4 December 2015, Canberra, ACT.

This file was downloaded from: http://eprints.qut.edu.au/89513/

c© Copyright 2015 [please consult the authors]

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://eprints.qut.edu.au/view/person/Maire,_Frederic.html
http://eprints.qut.edu.au/view/person/Suddrey,_Gavin.html
http://eprints.qut.edu.au/89513/


Path Algebra for Mobile Robots

Frederic Maire and Gavin Suddrey

School of Electrical Engineering and Computer Science,
Science and Engineering Faculty, Queensland University of Technology,

Gardens Point, Brisbane, 4000, Australia
f.maire,g.suddrey@qut.edu.au

http://www.qut.edu.au

Abstract. In this paper, we introduce a path algebra well suited for
navigation in environments that can be abstracted as topological graphs.
From this path algebra, we derive algorithms to reduce routes in such
environments. The routes are reduced in the sense that they are shorter
(contain fewer edges), but still connect the endpoints of the initial routes.
Contrary to planning methods descended from Disjktra’s Shortest Path
Algorithm like D?, the navigation methods derived from our path alge-
bra do not require any graph representation. We prove that the reduced
routes are optimal when the graphs are without cycles. In the case of
graphs with cycles, we prove that whatever the length of the initial
route, the length of the reduced route is bounded by a constant that
only depends on the structure of the environment.

1 Introduction

Most current navigation systems generate global, metric representation of the
environment with either obstacle-based grid maps or feature-based metric maps
[4]. While suitable for small areas, global metric maps have inefficiencies of
scale [10, 8]. Arguably, topological mapping is more efficient as it concisely rep-
resents a partial view of the world as a graph [14]. The vertices of the graph
may correspond to anchored points in the environment with physical meaning
that the robot can precisely navigate to, like a door or a corridor intersection
as illustrated in Figure 1. The vertices can also correspond to the vertices of a
Voronoi diagram [6].

In this paper, we focus on mobile robots equipped with a sensor suite enabling
the robots to

– detect when they reach a topological node.
– determine the degree of a node (number of incident edges).
– select an edge, and drive along this edge.

We show that when the graph is without cycles, a map is superfluous for nav-
igation purpose. More precisely, we define a path algebra that provides a very
compact representation of the route followed by the robot. This path algebra en-
ables the computation of return routes as well as the automatic simplification of



2 F. Maire & G. Suddrey

Fig. 1. A topological map derived from a floor map. The node d represents a room.
The two doorways of this room correspond to the edge bd and the edge df .

long routes containing detours. We also extend this method to graph containing
cycles.

In Section 2, we review previous work on mapping and localisation. In Sec-
tion 3, we introduce a path algebra. In Section 4, we demonstrate how the path
algebra can be used on different types of graphs.

2 Related Work

The major mobile robot navigation schemes can roughly be classified into two
categories: navigation with position information and navigation without position
information [9].

Metric maps belong to the first category. They are popular because they are
suitable for path planning with a high degree of accuracy. Their drawback is that
they are often expensive to calculate, and do not scale well in large, unstructured
and dynamic environments like most outdoor places [1].

The alternative to metric maps are topological maps, which are graphs that
in their pure form do not store metric information. Topology is mainly concerned
with the connectivity properties of a space. In the context of an indoor mobile
robot, the space refers to the expanse containing fixed structural components of
the building like rooms, walls, doors and corridors, as well as the mobile entities
like people, furniture and equipment [15]. Distinct places are represented as
nodes, adjacency between different locations is represented by the graph edges
(see Figure 1). Because of their sparse representation, topological maps can be a
memory efficient representation of the environment and provide good scalability
[5].

Hybrid approaches build topometric maps, allowing the robot to use the
topological information to plan a global path and to exploit metric information
to find shortcuts [3].



Path Algebra for Mobile Robots 3

Appearance-based mapping and localisation approaches include appearance-
only systems like FAB-MAP [2] which can be considered as an extreme case
of topological map. Topometric systems using a more primitive data association
than FAB-MAP, like RatSLAM [12] or CAT-Graph [11] require a rough estimate
of the distance travelled. More recently, these approaches have been combined
in [7] to achieve better robustness to variation in the environment appearance
and changes in illumination and structure.

Although the D? algorithm accepts partially known environments, it has to
build a graphical representation of its environment to plan paths [13]. The path
algebra that we introduce does not have this requirement.

Fig. 2. The route from the arc ab to the arc hi can be coded as the tuple (1, 1, 2). The
labels on the edges incident to Node b are the indices with respect to arc ab.

3 Route Representation

When following the instructions of a navigation GPS device, the driver of a car
receives instructions of the form “at the next roundabout, take the third exit”.
This command format is well suited for logging the itinerary followed by a mobile
robot in an environment that has a graphical topology like a road-network or the
corridors of a building. Figure 2 illustrates such an environment. The agent/robot
traverses the graph following its edges and using its vertices as roundabouts. In
order to indicate the direction the robot is facing on an edge, we specify the
location of the robot by an arc. We adhere to the standard terminology of graph
theory, and reserve the term arc for an edge that has been given an orientation.
The blue arrow on the left of arc a→ b represents the position of the robot going
from Node a to Node b.



4 F. Maire & G. Suddrey

The navigational route instructions from the arc a→ b as the starting posi-
tion, to the arc labeled h→ i as the destination, would sound as follows if told
by a GPS device:

1. “drive to the next the intersection”
2. “take the first left”
3. “drive to the next the intersection”
4. “take the first left”
5. “drive to the next the intersection”
6. “take the second left”
7. “drive to the next the intersection”
8. “you have arrived at your destination”

A less verbose representation would code the route into the integer sequence
(1, 1, 2).

3.1 Forward Route

Definition 1 A forward route of length k is a sequence of integers (c1, c2, . . . , ck)
coding for each node the agent traverses, the relative edge, with respect to the

entering edge, at which the agent should leave the node. At the jth node of its

journey, the agent takes the cthj relative edge counting clockwise from the entering
edge.

The integers (c1, c2, . . . , ck) are signed. The command c for a node with n
edges can be reduced modulo n. In the graph shown in Figure 2, if the agent is on
the arc ab, and the driving command c is equal to 6, then the agent will continue
its journey via the arc bd. The commands 6 and 2 have the same effect at this
node because 6 is equivalent to 2 modulo 4. Formally, we write 6 ≡ 2 (mod 4).
More generally,

Proposition 1. When arriving at a node with n edges, the commands c and c′

have the same effect if and only if c ≡ c′ (mod n).

Observing that −c ≡ n− c (mod n), we derive the following special case that
becomes useful when backtracking:

Proposition 2. When arriving at a node with n edges, the commands −c and
n− c have the same effect.

Considering again Figure 2, if the agent is on the arc ab and the driving
command c is equal to 0 or 4, then the agent will perform a U-turn at b, and
ends up on arc ba. More generally,

Proposition 3. When arriving at a node with n edge, the command c will trig-
ger a U-turn if and only if c ≡ 0 (mod n).

When the agent arrives at a leaf, the value of the command c does not matter:

Proposition 4. At a leaf node (node with exactly one incident branch), all com-
mands c have the same effect. Whatever the value c takes, the agent performs a
U-turn.

Proof. It is enough to observe that ∀c ∈ Z, c ≡ 0 (mod 1)



Path Algebra for Mobile Robots 5

3.2 Return Route

While driving, if we take the 2nd leftmost exit at a roundabout during the forward
leg of a trip, we should take the 2nd rightmost exit at the same roundabout
during the return trip. More generally, suppose that an agent on a forward
journey visits the nodes x1, x2, . . . , xk, and that the agent traverses the node xi
with the command ci on its way forward. If the agent wants to backtrack to its
starting position, the agent should traverse the node xi with the command −ci
on its return journey. In this paper, the reverse arc of an arc α will be denoted
by α. That is, if α = x→ y, then α = y → x.

Proposition 5. If command c takes an agent positioned on an arc α to an arc
β, then the command −c will take an agent positioned on the arc β to the arc
α.

Proposition 5 can be generalized to longer paths by a simple induction on
the number of nodes in the path.

Proposition 6. If (c1, c2, . . . , ck) is a command sequence that takes an agent
positioned on an arc α to an arc β via the nodes x1, x2, . . . , xk, then the command
sequence (−ck,−ck−1, . . . ,−c1) will take an agent positioned on the arc β to the
arc α via the nodes (xk, xk−1, . . . , x1).

3.3 Route Simplification

Consider Figure 3 where a robot starting at the position of the blue arrow
executes the command sequence c = (1, 5, 2) that takes the robot through Node
a, then to Node b, where a U-turn is made, then back to Node a and onto
Node c. In this example, c2 = 5 is equal to the number of incident edges to the
second node x2 = b of the route. Therefore, we could have used the equivalent
sequence c′ = (1, 0, 2). This sequence can be further reduced to the singleton
c′′ = (1 + 2) = (3).

More generally, we always have

Proposition 7. If (c1, c2, c3) is a command triplet that takes an agent posi-
tioned on an arc α to an arc β via the nodes x1, x2 and x3; and if moreover
c2 ≡ 0 (mod n2) where n2 is the degree of the node x2, then the sequence
(c1, c2, c3) has the same effect as the singleton sequence (c1+c3). In other words,
if an agent starts on the arc α and executes the single command (c1 + c3), it will
ends up positionned on the arc β. These conditions also imply that the nodes x1
and x3 are the same.

Proof. Without loss of generality, we assign the index 0 to the arc α entering x1.
When the U-turn at Node x2 is performed, the robot returns to Node x1 = x3
via the edge of x1 indexed c1. The index of the exit edge is obtained by adding
c3. Therefore the relative index of the arc β with respect to the arc α is c1 + c3
as illustrated in Figure 4.



6 F. Maire & G. Suddrey

Fig. 3. The robot starts at the location of the blue arrow. The integer on the left of
an arc corresponds to the command ci for the ith node. In this, example when arriving
at Node a the robot takes the first exit, then follows the arc a→ b to Node b where it
takes the 5th exit. This U-turn brings back the robot on the arc b→ a. At the second
visit of Node a, the robot takes the 2nd exit with respect to arc b → a. The whole
sequence c = (1, 5, 2) can be contracted into c = (3).

Fig. 4. Sequence reduction; whenever c2 ≡ 0 (mod n2) where n2 is the degree of the
node x2, the sequence (c1, c2, c3) has the same effect as the singleton sequence (c1 +c3).



Path Algebra for Mobile Robots 7

Often, we are mainly concerned with the starting arc α and the destination
arc β of a given route c. This leads us to the following definition;

Definition 2 If two routes c and c′ start with the same arc α and end with the
same destination arc β, then the routes are said to be equivalent. We will write
c ∼ c′ to express this equivalence.

In Figure 5, the robot starts on the arc labeled 1, and executes the command
sequence c = (1, 0, 2, 2, 0, 2, 0, 2, 3, 2, 0, 2, 1, 0, 1) that leads the robot to the arc
labeled 16. Proposition 7 allows us to simplify the route by iteratively reducing
command triplets of the form (ci−1, 0, ci+1). The first occurence of 0 is in the
triplet (1, 0, 2). The triplet reduces to (3). This first reduction shows that the
sequence c is equivalent to the sequence (3, 2, 0, 2, 0, 2, 3, 2, 0, 2, 1, 0, 1). Further
reductions can be performed. The next occurence of 0 is (2, 0, 2) which reduces
to (4). Therefore, we now have c ∼ (3, 4, 0, 2, 3, 2, 0, 2, 1, 0, 1). Continuing the
reduction, (4, 0, 2) is replaced with (6). Therefore, c ∼ (3, 6, 3, 2, 0, 2, 1, 0, 1). The
next reduction replaces (2, 0, 2) with (4), and entails that c ∼ (3, 6, 3, 4, 1, 0, 1).
Finally, (1, 0, 1) is replaced with (2), yielding c ∼ (3, 6, 3, 4, 2). Although, our
automatic substitutions have eleminated all occurences of 0, we have not com-
pletely exploited Proposition 7. Indeed, the degree sequence (4, 3, 4, 3, 3) of the
nodes traversed in the reduced route (3, 6, 3, 4, 2) requires more attention.

As 6 ≡ 0 (mod 3), we have (3, 6, 3, 4, 2) ∼ (3, 0, 3, 4, 2) ∼ (6, 4, 2). As the
degree sequence of the nodes traversed for the command sequence (6, 4, 2) is
(4, 3, 3), c can be put in the more canonical form (2, 1, 2). To sum up, by iterating
the reduction described in Proposition 7, we have shown that the command
sequence c = (1, 0, 2, 2, 0, 2, 0, 2, 3, 2, 0, 2, 1, 0, 1) is equivalent to the command
sequence (2, 1, 2).

From this toy example, we can generalize our approach to a generic algorithm
for the minimization of any route (pseudo-code listed in Algorithm 1).

4 Navigation Applications

In this section, we consider in turn the navigation task on graphs without cycles,
then on graphs with cycles.

4.1 Navigation on Trees

Given a route R = (c1, c2, . . . , cn), we write R = (−cn,−cn−1, . . . ,−c1) to de-
note the reverse of route R.

Proposition 8. If a route R1 takes a robot from a place α0 to a place α1, and
the route R2 takes the robot from the same α0 to a second place α2, then the
route R1R2 will take the robot from the α1 to α2.

The place α0 could be the base of the robot (charging station), with α1 and
α2 being places of interest for which the robot has stored the respective routes
R1 and R2. By applying Algorithm 1 on R1R2 we derive a direct route from α1

to α2.



8 F. Maire & G. Suddrey

Fig. 5. A route traversing 15 nodes taking the robot from the arc labeled 1 to the arc
labeled 16. The command sequence is c = (1, 0, 2, 2, 0, 2, 0, 2, 3, 2, 0, 2, 1, 0, 1). Thanks
to Proposition 7, we can reduce the long route (1, 0, 2, 2, 0, 2, 0, 2, 3, 2, 0, 2, 1, 0, 1) to the
direct route (2, 1, 2).

4.2 Navigation on Graphs with Cycles

In Section 3, we introduced a route reduction algorithm that is applicable to any
graph. However, it is only for trees (connected graphs without cycles) that we can
guarantee that the returned contracted route corresponds to the shortest path
between the starting arc α and the destination arc β. Without extra information,
it is impossible to detect a loop closure.

Fig. 6. Starting on the blue arrow, the route c = (1, 2, 1, 2, 1) brings the robot to the
arc c → e. Unfortunately, Algorithm 1 cannot simplify c into the equivalent route
c′ = (1, 1). Moreover, from a topological point of view, the robot cannot distinguish
the journey on this graph from the journey experienced on the graph of Figure 7.

The route c = (1, 2, 1, 2, 1) executed on the graphs of Figure 6 and Figure 7
provides the same topological experience to the robot, in the sense that the robot
visits two sequences of nodes with identical degree sequences, and selects edges
with the same relative indices in the two cases.



Path Algebra for Mobile Robots 9

input :
a route with the degrees of the traversed nodes
C : a command sequence (c1, c2, . . . , cn) where the ci’s are integer values
(possibly negative)
D : a degree sequence (d1, d2, . . . , dn) where di is the number of edges incident
to the ith traversed node
output:
the shortest route C′ equivalent to C

1 begin
2 C′ = C /* initialize the reduced route */

3 D′ = D /* initialize the associated degree sequence */

4 repeat
5 k = length(C′) /* recompute the length of the reduced route */

6 for i ∈ [2, k − 1] do
7 if ci ≡ 0 (mod di) then

/* apply Proposition 7 to contract (ci−1, ci, ci+1) into

(ci−1 + ci+1) in C′ */

8 C′ ←− (c1, c2, . . . , ci−2, ci−1 + ci+1, ci+2, . . . , ck)

/* remove the degrees of the ith and (i+ 1)th nodes from

D′ */

9 D′ ←− (d1, d2, . . . , di−2, di−1, di+2, . . . , dk)
10 break

11 end

12 end

13 until no index i ∈ [2, k − 1] such that ci ≡ 0 (mod di) can be found

14 end
Algorithm 1: Route Minimization

To deal with cycles, it is sufficient to mark enough arcs with unique identifiers
so that all cycles of the graph have at least one marked arc. In the example of
Figure 6, imagine that the arc b→ c is marked with γ. The robot can then anno-
tate the sequence c = (1, 2, 1, 2, 1) with the marker γ to indicate the traversing of
a distinguished arc. The annotated version of the sequence c is (1, γ, 2, 1, 2, γ, 1).
The annotated sequence (γ, 2, 1, 2, γ) can be reduced to (γ). Therefore the se-
quence (1, γ, 2, 1, 2, γ, 1) can be replaced with the sequence (1, γ, 1) In practice,
either the path between Place b and Place c corresponding to the arc b → c is
uniquely identifiable thanks to natural features, or we have to install a uniquely
identifiable landmark on this path.

Algorithm 2 extends Algorithm 1 to graphs with cycles. We need first to
create a set M of uniquely marked arcs such that M intersects every cycle of
the graph. To reduce an annotated route C on the graph, we first replace any
subsequence of the form (γ,P, γ) of C with (γ), where P is a route and γ ∈M.
Finally, when no further substitutions are applicable, we run Algorithm 1.

Theorem 1. Algorithm 2 reduces any route C (possibly long random walks) to
an equivalent route C′ whose length is bounded by q + m × (q + 1), where m is
the number of edges of the graph, and q is the number of marked arcs.



10 F. Maire & G. Suddrey

Fig. 7. Starting on the blue arrow, the route c = (1, 2, 1, 2, 1) brings the robot to the
arc f → g. From a topological point of view, the robot cannot distinguish the journey
on this graph from the journey experienced on the graph of Figure 6.

Proof. Consider C′ the reduced route returned by Algorithm 2. The route C′ is
the concatenation of runs of non-marked arcs and marked arcs. Each marked
arc appears at most once in C′. This accounts for the the term q in the upper
bound formula. Recall that the graph induced by the non-marked arcs is a tree,
as it contains no cycles by construction ofM. Therefore each run of non-marked
arcs is of length at most m as Algorithm 1 has eliminated all U-turns in C′. We
have at most q+ 1 runs of non-marked arcs in C′. This accounts for second term
m× (q + 1) in the upper bound formula.

5 Experiments

We validated the algorithms of Section 4 in simulation as well as with real
robots. We programmed Lego Mindstorms robots to navigate in networks drawn
on laminated posters (see Figure 8). The robot performed a random walk with
route logging. Upon an external trigger (detecting a grey patch on the floor, or
sound clap), the robot had to return to some specific location (either the starting
position or the place where another grey patch was found).

6 Conclusion

In this paper, we have introduced a path algebra that is well suited for navigation
in environments whose topology is a graph. We showed that when the graph
contains no cycles, our route minimization algorithm returns the optimal route.



Path Algebra for Mobile Robots 11

input :
M : a set of marked arcs such that M intersects every cycle of the graph
C : an annotated route with marked arcs from M
output:
a reduced route C′ equivalent to C

1 begin
2 C′ = C /* initialize the reduced route */

3 repeat
4 scan C′ for multiple occurences of any marked arc γ
5 let (γ,P, γ) be the longest subsequence containing the same marked arc

γ
6 replace (γ,P, γ) in C′ with (γ)

7 until no γ ∈M appears more than once in C′
8 run Algorithm 1 on C′

9 end
Algorithm 2: Route Reduction on Graphs with Cycles

Fig. 8. Testing Algorithm 1 on a Lego-Mindstorms robot. The robot wanders on the
network while logging its route. Upon detecting the second grey patch or hearing a
clap, it returns to the first grey patch using the reduced route.

The path algebra is not restricted to planar environments. For example, using
a lift in a building can be abstracted as traversing a node with each destination
floor corresponding to an edge of the node.

If cycles are present in the graph, distinguishing some places becomes neces-
sary for localisation. We showed that in order to navigate, it is sufficient to be
able to recognize a set of places on the ground that corresponds to a set of arcs
that intersects every cycle of the topological graph representing the environment.
In future work, we plan to test our approach in a building environment with a
mobile robot capable of detecting doors and reading signs on doors.

References

1. Marcus Augustine, Frank Ortmeier, Elmar Mair, Darius Burschka, Annett Stelzer,
and Michael Suppa. Landmark-tree map: a biologically inspired topological map



12 F. Maire & G. Suddrey

for long-distance robot navigation. In Robotics and Biomimetics (ROBIO), 2012
IEEE International Conference on, pages 128–135. IEEE, 2012.

2. Mark Cummins and Paul Newman. Appearance-only slam at large scale with
fab-map 2.0. The International Journal of Robotics Research, 30(9):1100–1123,
2011.

3. Feras Dayoub, Timothy Morris, Ben Upcroft, and Peter Corke. Vision-only au-
tonomous navigation using topometric maps. In Intelligent Robots and Systems
(IROS), 2013 IEEE/RSJ International Conference on, pages 1923–1929. IEEE,
2013.

4. David Filliat and Jean-Arcady Meyer. Map-based navigation in mobile robots::
I. A review of localization strategies. Cognitive Systems Research, 4(4):243–282,
2003.

5. David Filliat and Jean-Arcady Meyer. Map-based navigation in mobile robots::
I. a review of localization strategies. Cognitive Systems Research, 4(4):243–282,
2003.

6. Santiago Garrido, Luis Moreno, Dolores Blanco, and Piotr Jurewicz. Path planning
for mobile robot navigation using voronoi diagram and fast marching. Int. J. Robot.
Autom, 2(1):42–64, 2011.

7. Arren J Glover, William P Maddern, Michael J Milford, and Gordon Fraser Wyeth.
Fab-map+ ratslam: appearance-based slam for multiple times of day. In Robotics
and Automation (ICRA), 2010 IEEE International Conference on, pages 3507–
3512. IEEE, 2010.

8. J. Hartmann, J.H. Klussendorff, and E. Maehle. A unified visual graph-based ap-
proach to navigation for wheeled mobile robots. In Intelligent Robots and Systems
(IROS), 2013 IEEE/RSJ International Conference on, pages 1915–1922, Nov 2013.

9. Jiang Jehn-Ruey, Lai Yung-Liang, and Deng Fu-Cheng. Mobile Robot Coordi-
nation and navigation with directional antennas in positionless Wireless Sensor
Networks. International Journal of Ad Hoc and Ubiquitous Computing, 7(4):272–
280, jan 2011.

10. K. Konolige, E. Marder-Eppstein, and B. Marthi. Navigation in hybrid metric-
topological maps. In Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pages 3041–3047, May 2011.

11. W. Maddern, M. Milford, and G. Wyeth. Towards persistent indoor appearance-
based localization, mapping and navigation using cat-graph. In Intelligent Robots
and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages 4224–
4230, Oct 2012.

12. Michael Milford, Adam Jacobson, Zetao Chen, and Gordon Wyeth. Ratslam: using
models of rodent hippocampus for robot navigation and beyond. 2013.

13. Anthony Stentz and Is Carnegle Mellon. Optimal and efficient path planning
for unknown and dynamic environments. International Journal of Robotics and
Automation, 10:89–100, 1993.

14. Stephen Tully, George Kantor, and Howie Choset. A unified bayesian framework for
global localization and slam in hybrid metric/topological maps. The International
Journal of Robotics Research, page 0278364911433617, 2012.

15. Michael Worboys. Modeling indoor space. In Proceedings of the 3rd ACM SIGSPA-
TIAL International Workshop on Indoor Spatial Awareness, pages 1–6. ACM, 2011.


