
A Policy-Based Management Approach

to Security in Cloud Systems

Nasser Abwnawar

School of Computer Science and Informatics

Faculty of Technology

De Monfort University

Leicester, UK

This thesis is submitted in partial fulfilment of the requirements for the

Doctor of Philosophy

February 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by De Montfort University Open Research Archive

https://core.ac.uk/display/335039994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To my beloved parents

The thesis is dedicated to my loving father, Mr. Abdarrahman Abwnawar, who has been a

great source of motivation, inspiration and endless support throughout my life, and who

sacrificed a lot for me to be what I am now. It is also dedicated to my loving mother, Mrs.

Manoba Ben Yzid who gave her love and support, for everything she sacrificed in her life for

me. Without her loving care, prayers and support, it would have been very difficult for me to

achieve my objectives.

To my beloved family

I would like to dedicate this thesis to my beloved wife Mrs. Magada Abwnawar and to my

children, sisters and brothers. I owe everything I have achieved or will achieve to them. I

hope that by obtaining my PhD I can put smiles on their faces.

Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in part

for consideration for any other degree or qualification in this, or any other university. This

dissertation is my own work and contains nothing which is the outcome of work done in

collaboration with others, except as specified in the text and Acknowledgements.

Nasser Abwnawar

February 2020

Acknowledgements

In the name of Allah, the Most Merciful and the Most Gracious, I give praise and thanks to

Him for supporting me with the strength to complete this research. This thesis could not

have been completed without the recommendations, advice and suggestions of many people.

It may not be possible to mention all of them here, but their contributions, guidance and

support are extremely appreciated.

I should like first to thank my God Allah, without whom I could not even have contem-

plated all that was involved in this course of study.

My heartfelt thanks to my supervisors Prof. Helge Janicke, Dr. Richard Smith and Dr.

Aboubaker Lasebae for their help and support during the period of my study. Their openness

to new ideas, their extensive knowledge and their willingness to help me at every turn made

them the best advisors and guide I could hope for.

And where would I be without my parents? Your loving care and nurture from the day I

was born, as well as your teaching, are responsible for bringing me to this point, as well as

your moral support and duaa during study of my PhD, for which I will be forever grateful.

Heartfelt thanks to my wife Magada, for the moral support and duaa. Heartfelt thanks

to my son Ashraf and my daughter Maria for the moral support and duaa. Heartfelt thanks

to my sons and daughters for the moral support and duaa. Heartfelt thanks to my sisters,

my nieces and my brothers for the support and duaa. My heartfelt thanks to my best friends

Ashraf, Hashem and Dr. Suwan for the moral support and duaa. My heartfelt thanks to my

father-in-law and my mother in-law for the duaa. Thank you to all the staff in the STRL for

viii

your support, and especially to Dr. Antonio Cau and Dr. Francois Siewe for support and

advice during my thesis. My thanks to all of you. To all my friends, my deepest thanks for

your help and support, and especially for your encouragement during my study.

Abstract

In the era of service-oriented computing, ICT systems exponentially grow in their size

and complexity, becoming more and more dynamic and distributed, often spanning across

different geographical locations, as well as multiple ownerships and administrative domains.

At the same time, complex software systems are serving an increasing number of users

accessing digital resources from various locations. In these circumstances, enabling efficient

and reliable access control is becoming an inherently challenging task. A representative

example here is a hybrid cloud environment, where various parts of a distributed software

system may be deployed locally, within a private data centre, or on a remote public cloud.

Accordingly, valuable business information is expected to be transferred across these different

locations, and yet to be protected from unauthorised/malicious access at all times.

Even though existing access control approaches seem to provide a sufficient level of

protection, they are often implemented in a rather coarse-grained and inflexible manner,

such that access control policies are evaluated without taking into consideration the current

locations of requested resources and requesting users. This results in a situation, when in

a relatively ‘safe’ environment (e.g., a private enterprise network) unnecessarily complex

and resource-consuming access control policies are put in place, and vice versa – in external,

potentially ‘hostile’ network locations access control enforcement is not sufficient. In these

circumstances, it becomes desirable for an access control mechanism to distinguish between

various network locations so as to enable differentiated, fine-grained, and flexible approach to

defining and enforcing access control policies for heterogeneous environments. For example,

x

in its simplest form, more stringent and protective policies need to be in place as long as

remote locations are concerned, whereas some constraints may be released as soon as data is

moved back to a local secure network.

Accordingly, this PhD research efforts aims to address the following research question

– How to enable heterogeneous computing systems, spanning across multiple physical and

logical network locations, as well as different administrative domains and ownerships, with

support for location-aware access control policy enforcement, and implement a differenti-

ated fine-grained access control depending on the current location of users and requested

resources?

To address this question, the presented thesis introduces the notions of ‘location’ and

‘location-awareness’ that underpin the design and implementation of a novel access control

framework, which applies and enforces different access control policies, depending on the

current (physical and logical) network locations of policy subjects and objects. To achieve,

this the approach takes the existing access control policy language SANTA, which is based

on the Interval Temporal Logic, and combines it with the Topological Logic, thereby creating

a holistic solution covering both the temporal and the spatial dimensions. As demonstrated

by a hypothetical case study, based on a distributed cloud-based file sharing and storage

system, the proposed approach has the potential to address the outlined research challenges

and advance the state of the art in the field of access control in distributed heterogeneous ICT

environments.

List of Publications

1. Abwnawar, N., Janicke, H. Smith, R., A. Lasebae and Suwan, A. “Access Control in

Cloud Environments: a Survey” In: DMU Doctoral Student Conference, May 2016,

Leicester, UK.

2. Suwan, A., Siewe, F. and Abwnawar, N. “Towards Monitoring Security Aspects in

Mobile Grid Computing Systems: a Survey” In: DMU Doctoral Student Conference,

May 2016, Leicester, UK.

3. Suwan, A., Siewe, F. and Abwnawar, N. “Towards Monitoring Security Policies in Grid

Computing: a Survey” In: IEEE Technically Sponsored SAI Computing Conference,

July 2016, London, UK.

4. Abwnawar, N., Janicke, H. Smith, R. and A. Lasebae “Towards data privacy in hetero-

geneous cloud environments: an extension to the SANTA policy language” In: 2nd

IEEE International Conference on Fog and Edge Mobile Computing (FMEC 2017),

May 2017, Valencia, Spain.

5. Abwnawar, N., Janicke, H. Smith, R “Towards Location-Aware Access Control and

Data Privacy in Inter-Cloud Communications” In: 17th IEEE International Conference

on Smart Technologies (EUROCON 2017), July 2017, Ohrid, Macedonia.

List of Abbreviations

API Application Program Interfaces

API Application Programming Interface

ASL Authorization Specification Language

AWS Amazon Web Services

CPU Central Processing Unit

DAC Discretionary Access Control

EPS Electronic Paper Submission

FAF Flexible Authorisation Framework

FISMA Federal Information Security Management Act

GPS Global Positioning System

HTTP Hyper Text Transfer Protocol

IaaS Infrastructure as a Service

IBM International Business Machines

ICT Information and Communications Technology

IDE Integrated Development Environment

IoS Internet of Services

IoT Internet of Things

IP Internet Protocol

IT Information Technology

xiv

ITL Interval Temporal Logic

LAN Local Area Network

LBAC Lattice Based Access Control

MAC Mandatory Access Control

NIST National Institute of Standards and Technology

OS Operating System

OWL Web Ontology Language

PaaS Platform as a Service

PAP Policy Administration Point

PC Personal Computer

PDP Policy Decision Point

PEP Policy Enforcement Point

PHP Hypertext Preprocessor

PIP Policy information Point

PRP Policy Retrieval Point

QoS Quality of Service

RBAC Role Based Access Control

REST Representational State Transfer

SaaS Software as a Service

SACPL Semantic Access Control Policy Language

SCEL Service Component Ensemble Language

SLA Service Level Agreements

SOA Service Oriented Architecture

SOC Service Oriented Computing

SWRL Semantic Web Rule Language

TCSEC Trusted Computer System Evaluation Criteria

xv

VPN Virtual Private Network

WSDL Web Service Description Language

XACML eXtensible Access Control Markup Language

XML eXtensible Markup Language

Table of contents

List of figures xxiii

List of tables xxv

1 Introduction 1

1.1 Introduction . 1

1.2 Access control in distributed environments 2

1.2.1 Impact of hybrid systems on security 3

1.2.2 Location impact on security . 5

1.3 Research question, hypothesis, and objectives 8

1.3.1 Theoretical objectives . 9

1.3.2 Technical objectives . 9

1.3.3 Experimental objectives . 10

1.4 Thesis contributions . 10

1.5 Outline of the thesis . 12

2 Background Theory: Cloud Computing 15

2.1 Introduction . 15

2.2 From service-oriented computing to cloud computing 16

2.3 Cloud computing: definitions, models, and benefits 19

2.3.1 Cloud service sharacteristics . 21

xviii Table of contents

2.3.2 Cloud deployment models . 23

2.3.3 Cloud delivery models . 24

2.3.4 Cloud computing benefits . 27

2.4 Cloud computing challenges . 31

2.5 Summary . 34

3 Access Control: a Review 35

3.1 Introduction . 35

3.2 Access control: an overview . 36

3.2.1 Access control policies and access control mechanisms 38

3.3 Access control in the cloud . 39

3.4 State of the art in access control policies 40

3.4.1 Existing access control models . 41

3.5 Related works: a survey . 44

3.5.1 Access control policies in cloud environments 48

3.6 Analysis and discussion . 49

3.7 Summary . 51

4 Formal Underpinnings of the SANTA Policy Language 53

4.1 Introduction . 54

4.2 SANTA policy language: an overview . 54

4.3 Underpinning formalism: Interval Temporal Logic 56

4.3.1 Informal semantics of the main ITL constructs 58

4.3.2 Derived constructs . 59

4.3.3 Policy-level information flow analysis 59

4.4 Policy rules . 62

4.5 Expressivity and application scope of SANTA 64

Table of contents xix

4.6 Policies and compositions . 70

4.6.1 Sequential composition . 71

4.6.2 Parallel composition: policy union, intersection and difference . . . 74

4.7 Formalising the notion of location and location transition 79

4.7.1 Theoretical underpinnings of Topological Logic 79

4.7.2 Combining ITL/SANTA with Topological logic 81

4.8 Summary . 83

5 Access Control Policy Framework Design 85

5.1 Introduction . 85

5.2 Sample use case scenario: a file storage service 86

5.3 Architecture of the access control policy framework 90

5.4 Conceptual architecture of the proposed access control policy framework . 91

5.4.1 Policy Administration Point . 92

5.4.2 Policy Enforcement Point . 92

5.4.3 Policy Information Point . 93

5.4.4 Policy Decision Point . 93

5.4.5 Policy Retrieval Point . 94

5.5 Main Benefits and Features . 94

5.6 Sample policy enforcement workflow . 95

5.7 Location and Location-awareness . 96

5.8 Policy Transition . 98

5.9 Summary . 99

6 Proof of Concept Through a Case Study 101

6.1 Introduction . 101

6.2 Use case scenario: a corporate cloud storage service 102

xx Table of contents

6.3 Access control requirements . 104

6.4 Case Study Description . 111

6.5 System Design and Implementation . 116

6.5.1 System Design . 116

6.5.2 System Implementation and Operation 120

6.6 Summary . 127

7 Analysis and Discussion 129

7.1 Introduction . 129

7.2 Evaluating the results: main benefits . 130

7.2.1 Declarative approach to defining policies and the separation of concerns131

7.2.2 Novel way of capturing the spatial dimension in access control, thus

combining the temporal and spatial dimensions 131

7.2.3 Increased level of reliability and automation underpinned by the

underlying logical formalisms . 132

7.2.4 More optimised utilisation of computational resources due to min-

imisation of unnecessary access control checks 132

7.2.5 Potential to complement existing approaches and languages 133

7.3 Evaluating the results: potential shortcomings 133

7.3.1 Lack of large scale real-world implementation/deployment and ex-

periments . 134

7.3.2 Lack of native integration with SANTA 134

7.4 Answering the research question and meeting goals 135

7.4.1 Meeting theoretical objectives . 136

7.4.2 Meeting technical objectives . 136

7.4.3 Meeting experimental objectives 137

7.5 Summarising contributions . 137

Table of contents xxi

7.6 Summary . 139

8 Conclusion and Future Work 141

8.1 Introduction . 141

8.2 Thesis overview . 141

8.3 Future work . 143

References 147

List of figures

4.1 Informal semantics of the operator f1 ; f2. 58

4.2 Informal semantics of the operator f∗. 59

4.3 Direct and indirect information flows: (a) Direct flow from subject to object;

(b) Direct flow from object to subject; (c) Indirect information flow [54]. . . 61

4.4 Computational model of the SANTA rules [54]. 63

4.5 Schematic representation of the sequential composition [54]. 71

5.1 A high-level architecture of the proposed access control policy framework. . 91

5.2 Conceptual architecture of an access control policy, enhanced with the notion

of location. 98

6.1 Proposed algorithm combining location-aware policies with SANTA access

control policies. 112

6.2 Home page. 121

6.3 Sample request from an untrusted location (China). 121

6.4 Sample request from an untrusted location (Russia). 122

6.5 Sample request from a trusted location (Leicester, UK). 122

6.6 Sample request from a trusted location (London, UK). 123

6.7 A transition to an untrusted network is detected. 124

6.8 A transition to a trusted network is detected.. 124

xxiv List of figures

6.9 Testbed hardware setup. 125

6.10 Benchmarking results. 126

List of tables

2.1 Cloud service delivery models. 28

4.1 Basic syntax of the SANTA policy language. 55

4.2 Syntax of Interval Temporal Logic. 57

4.3 Derived constructs. 60

4.4 SANTA expressivity examples. 70

4.5 SANTA policies and compositions. 73

4.6 SANTA policy union, intersection and difference. 77

6.1 Access control actions and requirements. 105

6.2 Access control subjects. 106

6.3 Access control locations. 106

6.4 ReadObject access control matrix and location-aware access control policy

definition. 107

6.5 WriteObject access control matrix and location-aware access control policy

definition. 108

6.6 CreateObject access control matrix and location-aware access control policy

definition. 109

6.7 Location transitions handled by the proposed system. 115

Chapter 1

Introduction

Objectives:

• To briefly introduce the motivation behind the presented research.

• To briefly introduce the proposed approach.

• To formulate the research question, hypothesis, and thesis objectives.

• To provide an outline of the whole document.

1.1 Introduction

The multi-faceted issue of computer security has been seen as one of the top challenges

both for the academia and the industry for several decades [18]. Since the 1970s, when

information systems started exponentially growing in size and complexity, software became

multi-tenant – that is, started simultaneously serving multiple users, which in turn led to

an increased awareness of security-related issues [81]. Computer security is acknowledged

2 Introduction

as a highly complex and multi-faceted research discipline. Each of its sub-fields (e.g.,

user authorisation, user authentication, auditing, administration, data privacy, etc.) can be

seen as an independent and challenging research area in its own right. Nevertheless, these

sub-disciplines are tightly connected with each other, and are expected to be considered

in a cross-cutting and interdependent manner. Security practitioners often metaphorically

compare computer security to a chain – that is, similar to a chain that is as strong as its

weakest link, computer system is as secure as its least secure component. In other words, a

truly holistic solution addressing the security challenge is expected to consider all possible

dimensions of this pressing problem in a cross-cutting manner.

1.2 Access control in distributed environments

Accordingly, one of such cross-cutting facets of the ICT security is access control. As

outlined by computer security pioneers Sandhu and Samarati [82], “access control constrains

what a user can do directly, as well as what programs executing on behalf of the users are

allowed to do. In this way access control seeks to prevent activity that could lead to breach

of security.” From this perspective, access control is tightly coupled with user authentication.

The latter is responsible for correctly identifying a user, whereas access control is typically

based on the assumption that the user has been already identified, and, therefore, its main

responsibility is to decide whether this specific user is actually allowed to access a particular

resource. Thus, the effectiveness of the access control mechanism relies on and depends

on the effectiveness of the underlying authentication mechanism [82]. In other words, if

the user identity and the authentication mechanism are compromised, the access control

component in most cases will consequently fail to prevent the malicious intrusion. In the same

way, an access control mechanism is also supposed to be accompanied by a corresponding

auditing/accounting mechanism. Broadly speaking, an auditing component is responsible for

analysing user access requests and activities that took place within the managed computer

1.2 Access control in distributed environments 3

system, and is typically implemented by logging relevant events for later analysis. These tight

inter-dependencies between access control, user authentication and auditing components one

more time illustrate the fundamental principle of designing and implementing ICT security

solutions in a systematic and holistic manner.

There are two factors that contribute to the challenge of insufficient access control in

modern enterprise ICT systems – namely, i) an increased adoption of cloud architectures,

often spanning across multiple public and private clouds, thereby creating heterogeneous

cloud environments, and ii) an ever-growing trend for hiring remote and/or mobile employers

who often work from home using their own personal devices to access enterprise resources.

These two factor are explained in more details below.

1.2.1 Impact of hybrid systems on security

As ICT systems exponentially grow in their size and complexity, fulfilling the access control

requirements becomes an increasingly challenging task. As more and more users are able

to simultaneously access shared resources from multiple locations, it becomes particularly

important to protect sensitive information from unauthorised access – on the one hand, and

maintain a high quality of service (QoS) and satisfy service level agreements (SLAs) by

provide smooth and uninterrupted system operations – on the other hand. Admittedly, a

representative example of such distributed multi-tenant computer systems are clouds.

Underpinned by advancements in networking and virtualisation technologies, Cloud

Computing is widely recognised as one of the most critical Information Technology (IT)

domains, where security and data privacy concerns play a crucial role in decision-taking

processes [25, 43, 57, 87]. With cloud computing, traditional computer security issues are

taken to the next level, underpinned by the increased system and networking complexity,

multiplied by the extensive use of virtualisation technology. As enterprises’ IT systems often

span across multiple clouds and administrative domains, existing security mechanisms and

4 Introduction

models seem to be no longer suitable for cloud-hosted software and information. Open,

virtualised and multi-tenant in their nature, the cloud computing paradigm has raised a

number of formerly unknown research challenges, which are expected to be addressed by

the academic researchers and industrial practitioners in the nearest future, to enable even

more ubiquitous and pervasive usage of cloud computing. Accordingly, the key aspects that

render existing computer security mechanisms less applicable to cloud-based scenarios are

the following [25]:

• Cloud computing extensively uses the virtualisation technology to enable multiple

tenants to simultaneously share one and the same physical space. This leads to

new security breaches, associated with unauthorised access to private resources and

information.

• The service-oriented nature of cloud computing assumes that different levels of a

cloud solution stack may belong to different service providers. Such situations may

potentially lead to a conflict of interests between various stakeholders, as there is no

unified security framework, which all the interested parties could agree upon.

• Dynamic scalability and elasticity, virtualisation and service abstraction, and geo-

physical location transparency – key characteristics of a cloud offering – result in a

situation, in which hosted software systems have no fixed underlying infrastructure

(due to frequent virtual machine migrations) and, therefore, security boundaries. In this

light, it becomes a challenging task to identify and isolate a specific physical resource,

which has been recognised as the one putting the system security at risk.

• In the age of Big Data, extreme amounts of raw data are being generated, processed,

and stored in virtual clouds, meaning that corresponding security mechanisms have to

be capable enough to cope with these amounts of data (which needs to be monitored

1.2 Access control in distributed environments 5

and analysed for security purposes) and to maintain system security and a stable

operational level.

These challenges become even more pressing, when more than one cloud provider is

involved in the overall cloud-based software system. Multi-cloud deployments are known

to provide more reliable, robust, and efficient ways of building complex software [8, 71].

However, along with these promising opportunities, come emerging challenges so as to how

to maintain an appropriate level of security and data privacy, given the fact that considerable

amounts of potentially sensitive business data is sent over potentially insecure public networks.

Heterogeneous cloud environments typically do not allow implementing a single authorisation

mechanism, a single policy language or a single enforcement mechanisms for customers,

using several cloud providers or switching between private and public clouds. Each cloud

provider typically has its own access control mechanism, which is limited in its flexibility to

support other solutions.

For example, according to McAfee [48], enterprises using a multi-cloud strategy (typi-

cally composed of Amazon, Google and Microsoft clouds) have 14 misconfigurations on

average. Some of these are related to multi-factor authentication not being enabled on

one of the participating cloud platforms, Amazon S3 bucket encryption turned off, unused

security groups, and Amazon Virtual Private Cloud flow logs being disabled. These cloud

misconfigurations amount to about 2269 reported incidents of attempted illegal access per

month for each enterprise.

1.2.2 Location impact on security

As more and more smart devices are used to access corporate services, it is important to

consider where a device connects from, as it impacts upon the security. Within the corporate

network there is an implicit level of trust, and access control mechanisms should allow access

to certain data sources only from limited locations. If devices are transitioning from an

6 Introduction

untrusted to a trusted network then there needs to be additional controls in place to deal with

this situation.

An important aspect contributing to these increased security and access control challenges

is the increasingly popular practice of working from home and/or hiring remote employers,

as well as the ‘bring your own device’ trend that allows employers use their own portable

devices to work both from home and at the office. While all these trends deliver clear benefits

for both a business and its staff, they also poses some challenges. The traditional tools and

approaches designed to securely connect users with their applications and data stores are

ineffective in the cloud and even, in many occasions, they become practically irrelevant.

This challenge can be illustrated by the following simple real-life scenario. Whether the

applications and data are located in the company’s data centre or in the cloud, staff are likely

to gain access by using a virtual private network (VPN). The problem is that VPNs were

never designed to connect users to applications, but rather they were intended to connect

networks to other networks. For this reason, bringing users from a remote network via the

Internet into a trusted or secure private enterprise network so they can access an application

or data is inefficient at best, and risky at worst. In fact, any enterprise offering its users access

to its network through a VPN is significantly broadening its potential attack surface and

elevating the risk of security issues. For example, a staff member whose device has been

compromised can infect the network with malware that then quickly propagates through

the private network as it scans for other resources and vulnerabilities to exploit. In such a

situation, a mobile or remote employee is compromised externally and then connects back

to the internal enterprise network, through which data-sensitive operations (e.g. banking

or financial transactions) are executed. A company can significantly suffer from a security

breach of this type, which will cause both financial and reputation losses. Furthermore, many

companies tend to use a VPN to secure access to applications that are not even in their data

centre, but reside on a cloud platform such as AWS or Azure. To achieve access, traditional

1.2 Access control in distributed environments 7

VPNs require extremely fine-grained traffic routing. This involves transferring data from the

user to the corporate data centre, and then out via another VPN to the cloud provider before

making its return trip back to the user. This results in a high response time and increased

network latency, as well as an overall slow experience for the staff member, a challenge for

IT administrators, and a technology that raises security concerns of its own.

As a result, the traditional VPN-based solutions for mobile and remote employers turn out

to be ineffective and insecure, and require users to take different tedious actions depending on

where they currently are and what applications they are accessing. For example, when a way

from the office a user must connect to a VPN before accessing usual office applications such

as a mailbox or a calendar, but when inside the office (i.e. accessing the same application

from within the internal network) this is not required. The latter also does not guarantee

smooth and seamless experience – for example, a user may use his/her personal tablet to

access an application even from within the private network, but this attempt is denied because

this device is not properly configured. Furthermore, there are also potential situations when

the network that they are using simply does not support the communication requirements

for a corporate VPN, or cannot deliver the bandwidth required for effective access without

delays and interruptions.

Taken together, the increased adoption of hybrid multi-cloud architectures together with

the increasingly popular trend of remote/mobile work introduce a previously-unseen level

of security risks associated with unauthorised access to sensitive resources from various

physical and network locations. In these circumstances, a desirable access control mechanism

for an enterprise cloud system is expected to work with all data (i.e., formats, languages,

representations) regardless of where data is located, while cloud users, both residing within

and outside the private enterprise network, are expected to be able to control their access to

their cloud-hosted data and resources. Indeed, given an increased amount of data transfers

between private and public networks, there is an emerging and pressing concern of how

8 Introduction

sensitive business data is protected against unauthorised access across different computer

systems, networks, physical locations, and administrative domains. In the presence of these

multiple factors, it is important to propose a next-generation access control mechanism

that would distinguish between various network locations to enable differentiated, fine-

grained, flexible approach to defining and enforcing access control policies for heterogeneous

environments. Arguably, in its simplest form, more stringent and protective policies need

to be in place as long as remote locations are concerned, whereas some constraints may be

released as soon as data is moved back to a local secure network. A more advanced solution

also has to distinguish between trusted and untrusted devices, which are used by customers

to access corporate resources from within the private network and from an external public

network location (possibly through a VPN).

1.3 Research question, hypothesis, and objectives

Following the motivation of insufficient support for applying location-aware access control

policies, which would differentiate between different network locations, we formulate the

following research question to be addressed by the presented research effort:

“How to enable heterogeneous computing systems, spanning across multiple physical and

logical locations, as well as different administrative domains and ownerships, with support

for location-aware access control policy enforcement, and implement a differentiated fine-

grained access control depending on the current location of users and requested resources”?

To address this research question, we are also putting forward the following hypothesis

that is intended to be proved in the context of this research:

“The outlined challenges can be potentially addressed by extending the existing func-

tionality of access control tools and languages with native support for detecting the current

location of protected resources, as well as of users trying to access them, and thereby en-

1.3 Research question, hypothesis, and objectives 9

abling these existing tools to apply and enforce differentiated fine-grained access control

policies with respect to the current location”.

To provide a more structured and systematic overview of the presented research work, as

well as to evaluate the final research results, it also makes sense to split the overall work into

several theoretical, technical and experimental objectives, as described below.

1.3.1 Theoretical objectives

• To study the state of the art in the domain of cloud computing and heterogeneous ICT

environments with a specific focus on existing challenges, specifically related to access

control.

• To identify an existing research and technological gap to be addressed by the proposed

research.

• Formulate the main challenges within the identified gap to be addressed by the proposed

research.

• To propose a potential approach to address the identified gap and challenges.

1.3.2 Technical objectives

• To design and implement a software prototype of a location-aware access control

mechanism for heterogeneous ICT environments.

• To design and implement a hypothetical case study to validate the viability of the

proposed approach and the developed software prototype.

10 Introduction

1.3.3 Experimental objectives

• To validate the viability of the proposed approach and the developed prototype through

a case study with respect to several key criteria.

• To measure and evaluate the results of the validation. The outlined research question,

hypothesis and objectives will be re-visited in the concluding chapter of this thesis.

They will serve to evaluate the research results – that is, we will discuss whether (or to

what extent) the presented PhD work has achieved the specified objectives, proved the

hypothesis and answered the main research question.

1.4 Thesis contributions

Achieving the goals of the proposed approach primarily contributes to the research areas of

computer security and access control – in general, and access control for heterogeneous/hy-

brid environments – in particular. The approach puts forward the novel concepts of access

control object/subject location as well as location-awareness as a key characteristic of a

policy enforcement mechanism responsible for evaluating policies and taking access control

decisions. Neither of these features have been previously proposed, discussed or imple-

mented, which makes the proposed approach a potentially valuable contribution to a wide

range of academic researchers and industrial practitioners. Moreover, the contribution of

the thesis also spans across several adjacent research fields, such as Cloud Computing (and

especially – Hybrid Cloud Computing), as well as provides a new application domain for the

existing logical formalisms, including the Interval Temporal Logic and the Topological Logic.

More specifically, the main contributions of the described research effort can be summarised

as follows:

I. Literature survey of the state of the art in access control in (hybrid) cloud computing –

as part of fulfilling the theoretical objectives, a literature survey has been conducted,

1.4 Thesis contributions 11

identifying existing limitations and gaps in the considered research field. As it became

clear, the challenging topic of insufficient support for taking into consideration subject

and object location when enforcing access control policies is yet to be explored. The

conducted survey, as well as the whole presented research work in general, is intended to

raise the overall awareness within the research community and attract further attention

to this motivating and challenging problem.

II. Definition of functional requirements for a location-aware access control system –

based on a thorough investigation of the existing access control systems, approaches,

and techniques, some existing limitations have been identified. These limitations, in

turn, led to devising a list of functional properties for an envisaged solution. Briefly,

these include support for modelling and extraction location-related information, as well

as an ability to enforce access control policies with respect to physical and logical

locations of both subjects and objects. This functional specification serves as the key

reference underpinning the design and implementation of the future system. Moreover,

it also contributes to the state of the art in enabling location-aware access control policy

enforcement, as it is expected to be re-used by the wider research community, willing

to engineer their own solutions based on the proposed approach (i.e., and thus not

‘re-inventing the wheel’).

III. Novel concepts of location, location-awareness and policy transition – these novel

concepts have been proposed to address the requirement of enabling differentiated

treatment of resources and users depending on their contexts. More specifically, it was

important to introduce and clearly define the main concepts, so as to be able to further

build the whole approach based on them. These concepts are seen as contributions,

because previously there has been little evidence of integrating the spatial dimension

into the context of access control policy enforcement. Discussing these concepts in

12 Introduction

this thesis will hopefully contribute to creating next-generation logically-underpinned

access control systems in the future.

IV. Design and prototype implementation of the location-aware access control system –

using the proposed system, one is expected to benefit from the possibility to enable

location-aware access control policy enforcement. Moreover, the outlined functional

specifications underpinned the conceptual design of the proposed system. In the future,

it has the potential to act as a reference model for the wider research community, who

are willing to implement their location-aware access control policy enforcement. As far

as the prototype implementation is concerned, we have developed a prototype version of

the proposed system, which serves to demonstrate the viability of the whole presented

approach. Using this system, users are expected to benefit from the possibility to enable

location-aware access control policies in heterogeneous computer environments. More-

over, since the current implementation follows an open-source approach to software

development and distribution, users are also encouraged to further extend the existing

functionality to implement required emerging features, and thereby act as contributors

to our system.

1.5 Outline of the thesis

Chapter 2 serves to provide a brief overview of Cloud Computing. Starting from Service-

Oriented Computing, it explains the existing models and definitions, as well as sum-

marises advantages. It also looks into existing challenges, among which access control

remains one of the most pressing issues.

Chapter 3 first provides the reader with theoretical foundations of Access Control in com-

puter systems. It then proceeds with a literature survey of relevant research works

1.5 Outline of the thesis 13

in the field of access control for cloud environments. The chapter concludes with a

discussion, identifying an existing research gap to be addressed by the present research.

Chapter 4 presents some further background information by briefing the reader on the

theoretical underpinnings of the SANTA policy language – a baseline on top of which

the proposed access control functionality will be built. The chapter also highlights the

existing limitation of SANTA, i.e., lack of support for capturing the spatial dimension,

and introduces Topological Logic as a way of addressing this limitation.

Chapter 5 presents the architecture of the proposed access control framework, enhanced

with support for location-awareness and policy transition. Based on the existing

XACML reference architecture, the chapter describes the conceptual design of the

access control framework.

Chapter 6 goes into implementation details of the proposed Location-Aware Access Control

framework and presents a sample case study to prove the proposed concepts and

demonstrate the viability of the developed prototype framework. More specifically,

the case study is based on a scenario, where enterprise resources are accessed from

various, not necessarily trusted locations. Accordingly, the developed prototype is

able to detect location and, based on policies in places, decide if the access should be

granted.

Chapter 7 evaluates and discusses the results of the conducted case study. It also revisits

the main research question, hypothesis and thesis objectives in order to evaluate the

overall achievements of the presented research effort.

Chapter 8 summarises the whole documented by presenting some final remarks and outlin-

ing several directions for future work.

Chapter 2

Background Theory: Cloud Computing

Objectives:

• To review the evolution from Service-Oriented Computing to Cloud Computing.

• To review existing definitions, models and advantages of Cloud Computing.

• To review existing challenges of Cloud Computing.

2.1 Introduction

The aim of this chapter is to familiarise the reader with the notion of cloud computing – the

main context of the presented research effort. The chapter first briefs the reader on the origins

and history of cloud computing by describing its relation to Service-Oriented Computing

(SOC) and grid computing. Then, the chapter proceeds with an actual overview of the cloud

model; it defines the concept and presents classification taxonomy of clouds with respect to

the delivery model and the deployment model. It also outlines a list of main characteristics

of cloud computing, followed by a (non-exhaustive) list of potential benefits it can offer its

16 Background Theory: Cloud Computing

customers. The last part of the chapter is dedicated to raising and discussing main challenges

and gaps currently existing in the domain of cloud computing, among which data privacy

and security is seen among the most pressing. By thoroughly looking at the issues of data

privacy and security, we aim at explaining the motivation behind the presented research work

and provide the reader with understanding of how important the existing problems are. This

last part of the chapter is also acting as an introduction to the next chapter, in which we will

survey the state of the art in relevant research field, identify existing gaps and limitations,

and position our own work respectively.

2.2 From service-oriented computing to cloud computing

The areas of software development and delivery of IT services have experienced several

paradigms shifts in the last three decades. After the introduction of Object-Oriented Comput-

ing in the 1980s [77] and component-based software engineering [26], modern IT systems

are now being transformed into Service-Oriented Architectures (SOAs). The SOA employs

an evolutionary approach to engineering complex and distributed software systems in a

technology-agnostic and loosely-coupled fashion. Service-orientation inspires from and

further develops the main principles underpinning the success and wide adoption of object-

oriented and component-based software development. Among other things, these principles

primarily include self-description, run-time functionality loading, and explicit encapsulation.

The SOA paradigm relies on using services as atomic building blocks. In a broad sense,

a service in the SOA can be defined as a reusable software component, remotely accessible

in a loosely-coupled and technology-agnostic way using standardised and well-defined

interfaces and protocols [41]. To fulfil these requirements, services constituting a service-

based application system are typically designed to perform granular individual functions

with limited awareness of how other components (i.e., services) of the entire system are

actually implemented, functioning and interact between themselves. From this perspective,

2.2 From service-oriented computing to cloud computing 17

the SOA can be considered as a design pattern for engineering distributed and complex

computer systems, which relies on an efficient, yet simple principle – distinct reusable

pieces of software functionality are provided via established and standardised channels (i.e.,

protocols and interfaces) over the network. Thanks to this principle, the main advantages

of the SOA are becoming obvious – distributed software systems can be constructed from

already existing, functioning and reliable pieces in a loosely-coupled manner so as to be

easily modified when/if required. By abstracting the underlying implementation and only

exposing their Application Program Interfaces (APIs), multiple heterogeneous services can

be seamlessly assembled into a single service-based application system, which typically does

not depend on the implementation specifics of individual services [32, 34]. In other words, to

be widely re-usable services are expected to be technology-, product-, and vendor-agnostic.

It is important to bring to the reader’s attention the fact that the notion of services

implies that they are typically designed and implemented to remain relatively static and

stable, whereas the configuration of a service-based composition – that is, the way services

are interconnected and interact between themselves – is expected to be dynamic and can

freely change and evolve with the time. In other words, situations, where emerging business

processes introduce new requirements for the supporting software system, are not expected to

trigger serious and potentially effort-intensive manual changes to the software source code.

In this context, services can be seen as ‘black boxes’, which expose their interfaces and

descriptions so as to enable applications and users, which are not necessarily aware of the

actual implementation details, to discover and access their provided functionality over the

network. Services are rather stable and static components, relying on standardised, well-

defined and technology-independent interfaces and self-description notations for discovery

and remote access. A standardised and widely adopted format for describing Web services,

for example, is Web Service Description Language (WSDL) – an XML-based and completely

platform-agnostic language. The Representational State Transfer (REST) architecture is

18 Background Theory: Cloud Computing

another way of implementing Web services. It is also completely technology independent, as

it relies on the standard commands of the HTTP protocol (e.g., GET, POST, DELETE, etc.).

The described SOA principles, if correctly implemented, lead to a whole new paradigm

in modern computing – namely, Service-Oriented Computing (SOC). In SOC, enterprise

software is organised and implemented in such a manner that distinct pieces of the overall

distributed service-based application system maybe managed and controlled by different

ownership domains and companies [61]. One of the main advantages of organising IT

systems in the service-oriented manner is the business agility – that is, business processes

implemented as service-based and loosely-coupled software are typically expected to be

modified and evolve in a much easier and effortless manner. As opposed to traditional

‘monolithic’ approaches to designing and implementing IT systems, SOC is not constrained

with the underlying technologies, which typically requires much more time to be adjusted

when/if required.

SOC and its promising business opportunities attracted even more attention in the last

decade, as many companies, including large enterprises and small businesses, have been

trying to handle rapidly changing requirements of the market, such as, for example, evolving

customer needs or minimum up-front investments to implement new business processes [97].

The competitive market often requires from organisations to modify their IT systems by

retiring outdated components and integrating new functionality in a continuous and rapid

manner to minimise ‘time to market’. As it soon became evident, SOC provided promising

opportunities to address these requirements by enabling easily modifiable and loosely coupled

business processes. SOC allowed companies to rapidly develop or modify their software

systems each time an emerging business requirement arises by re-using existing building

blocks – i.e., services – to build low-cost, yet reliable software [97].

The wide adoption of the service-oriented model for building IT systems from re-usable

services, the recent advances in the mobile and networking technologies making the Internet

2.3 Cloud computing: definitions, models, and benefits 19

more and more accessible and ubiquitous [13], and the development of Web 2.0 [83] – a trend

in designing and implementing Web sites enhanced with rich support for social networking,

eventually led to the emergence of the so-called Internet of Services (IoS) [21]. The IoS

aims at creating a global connected infrastructure, where every IT resource is available as a

discoverable and easily accessible Internet service. The notion of IT resources in this context

is quite broad and goes beyond the traditional software; it also includes various development

tools and the underlying hardware infrastructure required to deploy and run the software (i.e.,

servers, storage and network). Taken together, all these software and hardware resources,

offered as services remotely to the end user, are nowadays known as cloud computing.

2.3 Cloud computing: definitions, models, and benefits

More and more organisations have been attracted by the described advantages of SOC and

started engineering their IT systems based on the SOA principles. Thus, they were enabled

to minimise human and time effort required to implement specific software components from

scratch by re-using already existing, functioning, and optimised service solutions, accessible

over the network. The next step in this evolution from the traditional in-premises way of

running enterprise IT systems was the move to cloud computing, which offered its consumers

even more possibilities to remotely access processing, storage and network resources. With

its emergence and further development, conventional computing has finally evolved into a

model, where IT resources are commoditised and delivered over the network in a manner,

similar to traditional utilities, such as electricity and water [22].

The concept of ‘computing as a utility’, however, is not completely novel and was first

introduced more than 50 years ago by John McCarthy [46, 39]. Admittedly, back then in the

1960s the technologies were not advanced enough to implement this visionary idea, and it

took almost another 30 years to make first steps towards the actual implementation of the

cloud computing concept [10]. The things first started changing rapidly in the 1980s with

20 Background Theory: Cloud Computing

the mass production of affordable personal computers by IBM. Using computers at home

for personal use also required using appropriate operating systems, which were released

by Microsoft and made desktop PCs even more ubiquitous and widely used by ordinary

users both at work and at home. The next step were the advances in networking technology,

which enabled connecting individual computers into networks and eventually led to the

creation of the Internet [64]. Supported by various interoperability standards and advances

in software development, the Internet created a convenient environment for running on-line

businesses and other types of commercial activities, such as offering remote IT services

over the Internet. For example, Salesforce.com1 in 1999 was the first company to deliver

sales automation software to end users through a Web site on a pay-per-use basis. In 2002,

Amazon launched its Amazon Web Services2 (AWS) – a multi-layered platform for accessing

Web-based storage and processing services. Similarly, during the next several years other

major IT providers started including cloud solutions as part of their commercial offering.

Finally, by 2009-2010 the cloud computing market had finally shaped with the main players

getting on-board. Companies like Google, Microsoft, IBM, Oracle, Salesforce.com, etc.

started offering a broad range of cloud solutions suitable for various needs of individual

users, small organisations and large enterprises. The term ‘cloud computing’ was becoming

more and more familiar not only to IT professionals and computer scientists, but to a much

wider audience of ordinary users.

Despite its high popularity and rapid development, there seems to be a lack of a common

agreed definition of cloud computing. To date, there can be found several definitions of

the term in the literature, which seem to highlight various important aspects of this concept

[10, 95]. For example, National Institute of Standards and Technology (NIST), US, proposed

one of the most widely used and extensive definitions [62]:

1http://www.salesforce.com/
2https://aws.amazon.com

http://www.salesforce.com/
https://aws.amazon.com

2.3 Cloud computing: definitions, models, and benefits 21

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction.”

A slightly different definition is offered by Gartner [72], who define Cloud Computing as

follows:

“A style of computing where massively scalable IT-enabled capabilities is delivered ‘as a

service’ to external customers using Internet technologies.”

Similarly, Cisco also proposed its own definition of clouds with an emphasis put on the

aspects of virtualisation and multi-tenancy [11]:

“IT resources and services that are abstracted from the underlying infrastructure and

provided ‘on-demand’ and ‘at scale’ in a multi-tenant environment.”

2.3.1 Cloud service sharacteristics

All these definitions above, albeit different from each other, can be uniformly summarised

with outlining the following five key characteristics of a cloud service [62]:

• Resource pooling refers to the internal organisation of the cloud environment, in which

(virtualised) resources are ‘pooled’ together so as to be simultaneously provisioned to

multiple consumers by means of the multi-tenant sharing model. Resource pooling

enables dynamic assignment and re-assignment of physical and virtual resources to

support continuously changing demands of the consumer. This important feature of

cloud computing is supported by the recent advances in the virtualisation discipline,

which enables abstraction from underlying physical resources. Also, resource pooling

and virtualisation bring the concept of location-independence, which means that cloud

consumers are typically unaware of the exact geographical location of where their

22 Background Theory: Cloud Computing

applications and data run and are stored respectively – this is achieved by pooling

together resources belonging to different physical data centres or servers.

• Rapid elasticity describes the ability of cloud services to be (automatically) reserved

and released so as to support scaling in and out of the deployed software, whose

resource demands may dynamically change. Admittedly, the overall amount of virtual

resources offered by a cloud platform is always limited by the underlying physical

resources. However, using virtualisation techniques to enable cloud elasticity, together

with resource pooling and multi-tenancy, creates an impression of seemingly infinite

computing utility from the consumer’s perspective.

• On-demand self-service suggests that the cloud client expects that cloud-hosted soft-

ware is served with sufficient cloud resources (e.g., computation, storage, network,

etc.) whenever it is required – that is, on demand – in a completely automatic way,

without human interaction.

• Broad universal network access refers to the capabilities of a cloud service to be

accessed remotely over the network (i.e., the Internet) by means of standard interfaces

and protocols. This feature also refers to the cross-platform access to the cloud – that

is, from a wide range of client devices and platforms (e.g., desktop computers on

Windows and Linux, tablets and mobile phones on Android, IoS and Windows, etc.)

• Measured service is the last but not the least key feature of cloud computing, which

means that consumers are expected to pay only for the actual consumption the cloud ser-

vice. Calculation and billing of the actual consumption has to be done in a transparent

and fair manner. To achieve this, cloud platforms are typically equipped with automatic

tools for consumption monitoring and reporting, which enable prompt metering and,

eventually, billing.

2.3 Cloud computing: definitions, models, and benefits 23

2.3.2 Cloud deployment models

Traditionally, there are four different deployment models of cloud computing, identified in

the literature [10]:

• The traditional understanding of cloud computing, where clients can access and use

remotely located virtualised services, is usually referred to as the public deployment

model. With this model, the cloud services are publicly available to virtually anyone

(i.e., an individual user, a small company, a large-scale enterprise, a governmental

organisation, etc.), who intends to acquire remote computational/storage resources via

the Internet.3

• For large-scale multi-departmental enterprises, it is often more economically attractive

to build up and manage their own cloud data centre within their premises. Accordingly,

this deployment model has become known as the private cloud, meaning that cloud

services are only expected to serve the needs of a specific organisation and are not

typically available to the public. The rationale behind running a private cloud data

centre is two-fold. First, if individual departments of a large enterprise (multi-national)

company demand for elastic computational and storage resources, which are expected

to be fully utilised, this can bring certain economic benefits when compared to expenses

for third-party commercial cloud services (in these circumstances, however, thorough

calculations are needed so as to make sure that private deployment is indeed a better

option allowing to save money). Second, there are often cases when enterprises do

not want to release sensitive business data beyond their private network perimeter,

which will most probably happen with the public cloud deployment. Accordingly, in

circumstances, when a move to a public cloud is hindered with privacy and security

3This is how the term ‘cloud’ appeared – a cloud-like shape was frequently used to denote the Internet in
various network diagrams, where specific details of the internal organisation of the Internet were not particularly
essential.

24 Background Theory: Cloud Computing

concerns, it might make more for an enterprise to run a local private cloud under its

control, thus making sure that no sensitive data is released to the outer world.

• A hybrid cloud, where the IT system of an enterprise partially runs on public and

private clouds, also exists. With this hybrid model, enterprises can find a right balance

between their security and financial concerns. For example, it is possible to run the

most critical and sensitive tasks in the local cloud (e.g., financial software), whereas

less critical ones can be sent to the public cloud to save on expenses required to invest

in a more powerful private data centre.

• Another deployment model is known as the community cloud, which represents the

case, where a cloud infrastructure is set up to serve the requirements of a specific

community or a group of organisations with shared interests and requirements (e.g.,

in terms of privacy, organisational policies, functionalities, standards, etc.). With this

deployment model, a public cloud platform can only be accessed by a limited number

of parties. Examples of such community clouds include various governmental clouds

(i.e., cloud resources are only accessible by governmental and state organisations) or

research clouds (i.e., cloud resources are only accessible by participating universities

and research centres).

2.3.3 Cloud delivery models

When considering to move an IT system to the cloud, enterprises should clearly understand

and distinguish between several cloud service models, which primarily determine the type of

resources to be provisioned to the consumer. Historically, the following three service models

are identified [62]:

• Infrastructure as a Service (IaaS) is usually seen as the bottom layer of cloud comput-

ing service model. It refers to enabling cloud consumers with on-demand access to

2.3 Cloud computing: definitions, models, and benefits 25

low-level infrastructure resources, such as processing power, storage, network band-

width, etc. These resources are typically offered to the consumer as a bare virtual

machine running on top of a physical server. IaaS subscribers are then expected to

install an appropriate OS, middleware to run their software, and the actual software to

be executed in the cloud and accessed remotely over the network. Accordingly, IaaS

users have access to and can control these deployed components (i.e., OS, middleware,

deployed software and business data), whereas management of the physical hardware

components is typically beyond their control. Typical consumers of an IaaS cloud

offering are companies attracted by the promising opportunities to save on acquiring

and maintaining potentially expensive hardware by using cloud-based hardware re-

sources only when they are actually needed and without major up-front investments.

Accordingly, they are charged and billed based on monitoring of low-level metrics

such as the number of virtual machines, CPU and memory consumption, storage

consumption, network bandwidth, etc.

In this setup, assignment of necessary network configurations, storage space and

processing capacities is done in the cloud and these are provided as cloud services in a

standard manner. The cloud resources such as storage space, equipment for networking

and servers are provisioned from a pool of shared resources. Typically, users are

expected to configure and manage applications on their own, rather than rely on the

service provider in this setup. GoGrid and Amazon EC2 are some of the representative

IaaS service providers.

• Platform as a Service (PaaS) is typically seen as the middle layer of cloud comput-

ing. This delivery model enables provisioning of a computational platform (i.e., an

operating system equipped with pre-deployed middleware and a technological stack

required to install and run arbitrary software), thus enabling its subscribers to avoid

the cost and complexity of buying, configuring and managing underlying hardware

26 Background Theory: Cloud Computing

infrastructure and the computational platform itself. These benefits make PaaS an

attractive option for software vendors, enterprises’ IT departments, and individual

software developers – all these PaaS clients are willing to avoid the routine of managing

the infrastructure and the platform (thus also saving on their expenses) and concentrate

on their immediate software development tasks. In these circumstances, the PaaS

provider is responsible for monitoring deployed applications and allocating infras-

tructure and platform resources as required by the software. To charge its customers,

PaaS providers typically rely on collecting data, about CPU and memory consumption.

With the emergence of add-on marketplaces, PaaS providers might also charge for

using such add-on services as messaging queues or databases. These services provide

not only application runtime environments, but also an IDE (Integrated Development

Environment) to their users, giving them the flexibility to develop applications to meet

their requirements and related configurations. Therefore, PaaS serves its customers

with multiple application development services. In this arrangement of serving, the

application development framework is provided as an abstract service so that users can

build services based on that platform. Users have the capability to develop applications

based on their requirements and run them in the environment provided by the service

provider. A common set of OSs and software stacks, such as Ruby, LAMP (bundled

Apache, MySQL, PHP for Linux), J2EE components, etc. comes bundled together in

PaaS.

• Software as a Service (SaaS) is seen as the top level of cloud computing, which enables

its customers to access and use cloud-based software, usually in a cross-platform (e.g.,

from PCs, laptops, smartphones, etc.) and on-demand fashion. This delivery model can

be seen as a transition from the traditional and established way of delivering software

available as a product (i.e., distributed physically in boxes), which requires installation,

configuration and continuous maintenance from the client. On contrary, in SaaS a

2.3 Cloud computing: definitions, models, and benefits 27

single software code base is ‘shared’ among multiple users, who can simultaneously

access individual instances of that particular software remotely over the network. In

SaaS, clients are almost completely exempted from the system management routine –

they are only responsible for configuring their respective instances of the software and

personal business data. All the management tasks concerning underlying resources,

the platform and the software are typically beyond their control, and remain the

responsibility of the SaaS provider. The applications based on cloud come as an

integrated solution to reduce the time and money cost involved in the installation of a

separate hardware systems, licensing and updating of software when providing various

IT products and services for the users. SaaS serves the customers as needed, providing

a comprehensive set of applications to work on. For a given application, many users

can share only one instance running on the server. It is a ‘win-win’ situation for both

consumers and service providers such as Salesforce.com, Google and Microsoft since

the former need not to worry about the cost of installation and licensing, while the

latter needs to have capabilities of running only one instance, serving many users in

parallel. Table 2.1 presents a summary of these service models.

2.3.4 Cloud computing benefits

Let us now consider in more details the main benefits cloud computing may offer to its

customers. These benefits of using cloud computing are manifold, and we can distil the

following (non-exhaustive) list of main advantages associated with switching from the

traditional in-premises model for accessing computational resources to a cloud-based solution

[86]:

• Resource elasticity: elasticity is seen as one of the key advantages of cloud computing.

It refers to the ability of a cloud platform to expand and contract automatically – that

28 Background Theory: Cloud Computing

Table 2.1 Cloud service delivery models.

Cloud Service Functionality Example Service
Providers

SaaS Applications, which can be ex-
tended as needed, are hosted in the
cloud and made available for con-
sumers through the Internet, as ser-
vices.

Salesforce.com,
Google Drive

PaaS Consumers are provided with a com-
prehensive environment for design-
ing, developing, testing and deploy-
ing applications in the cloud.

Google App
Engine, Heroku,
Amazon Elastic
Beanstalk

IaaS On-demand serving of file space,
computing power and database man-
agement, etc. in a pay-as-you-go
manner.

Amazon Elastic
Compute Cloud
(EC2), GoGrid

is, to reserve and release computational resources, such as CPU, memory or network

resources – upon capacity demands. To support elasticity and ensure that appropriate

service levels are maintained, cloud platforms continuously monitor the usage of

deployed applications and available resources. In response to reaching a critical level

of CPU/memory utilisation, additional computational instances can be launched and

incoming user requests can be spread across instances evenly. An important point here

is that there is no need to over-provision resources for the peaks. In some cases, the

process of adding/removing computational instances is managed by the cloud platform

in a completely automated way, whereas in other cases, application developers are

expected to build such capability by themselves or integrate it into their applications’

source code using appropriate cloud platform APIs. Resource elasticity is of particular

importance to small business who cannot yet afford acquiring and maintaining a whole

data centre, but whose IT demands are constantly growing and, therefore, have to be

properly addressed. The cloud organisations could cushion cyclical or seasonal effects

2.3 Cloud computing: definitions, models, and benefits 29

or fluctuations in IT demands during specific peak periods by provisioning scalable

resources. Mainly for small business for which the in-house IT is running on tight

budgets, cloud computing services could enhance the competitiveness in their business.

• Cost saving: a consequent advantage of provisioning computing resources only when

they are really needed is cost saving. As opposed to the traditional way of running a data

centre within a company, which requires major up-front investments into hardware and

software, the cloud model allows for an immediate gain. In other words, by adopting the

cloud computing model, companies move from a capital investment to an operational

expense. It is worth noting that cost savings also include potential savings on technical

personnel required for managing the IT data centre, utility bills and expenses for

electricity and cooling, licensing, etc. Taken together, these factors are most likely

to become the key factor for company decision takers when considering migration

to clouds. There are many reasons for attributing low-cost cloud technology. The

model of billing is pay-per-use; infrastructure is never bought and thus maintenance is

lower. Recurring and initial expenses are considerably lower compared with traditional

computing models.

• Business agility: in a situation, where companies are not constrained with the capacities

of their in-house data centre, it is becoming easier to make changes to the IT system of

organisation so as to meet emerging business requirements. It means that whenever a

company realises that increasing computational demands have to be properly handled,

it can simply request more cloud capacities, which will be elastically provisioned in a

seamless, transparent and automatic manner. On contrary, consider a situation where

the very same company would have to go through the tedious process of acquiring and

configuring additional servers and equipment and integrating them into the existing

data centre. Besides the agility at the infrastructure level (i.e., processing, storage,

and network resources), companies can also benefit from agility at the platform and

30 Background Theory: Cloud Computing

software levels – for example, they are enabled to switch between various programming

languages, run-time environments, databases, etc. – all these changes are done rapidly

and often simultaneously. All these factors allow organisations of any size to react to

dynamic market changes and, therefore, fully utilise emerging business opportunities.

• Increased reliability, built-in disaster recovery and back-ups: with cloud computing,

the task of managing technology is placed on the technology provider. It is their

responsibility to provide such features as built-in data protection and replication, fault

tolerance, self-healing and disaster recovery as part of the Service Level Agreement

(SLA) with the customers. As a result, cloud consumers are exempted from these

routine (yet costly and time-consuming) tasks and can concentrate on their immediate

business goals.

• Remote access from any location and any device: one of the key advantages of

cloud computing is that it is enabling greater opportunities for device independence,

portability, interconnection and collaboration. With applications and data hosted in

the cloud, as well as recent development of the Internet of things and ubiquitous

connectivity, it becomes much easier to enable users to access systems regardless

of their location or devices they are using [30]. With the growing popularity of

smartphones, tablets and other hand-held devices, there is also an increasing need for

data access on the go. Employers are no longer required to be physically present at

the company office to do their job – their everyday tasks can be done remotely from

home, in an airport, on the train, etc. With cloud computing, virtual offices can be

quickly set up; employees can easily work from home; travelling salespeople can have

all their data available in any location without being physically present at the office. As

a result, companies can save costs on the office space and also hire remotely-located

professionals in ‘less expensive’ regions of the world.

2.4 Cloud computing challenges 31

• ‘Green’ factor: the last but not the least factor making companies migrate their IT

systems to cloud environments is the ever-pressing ecological concern. In a cloud

computing environment resources are shared between multiple customers, which

results in a more optimised consumption of the available resources for a similar energy

cost. Moreover, for multi-national corporations spanning across the globe and different

time zones, the computing power staying idle at one geographic location during off-

work hours (i.e., at night) could be seamlessly harnessed by the branches located on

the other side of the globe, which are currently operating. This reduces not only the

power consumption, but also the amount of physical hardware required, and, therefore,

can reduce the overall footprint on the global ecology.

2.4 Cloud computing challenges

A holistic overview of cloud computing would not be completed without listing and discussing

its potential shortcomings and disadvantages of migrating IT systems to cloud environments.

Accordingly, these potential disadvantages include [86, 38, 99]:

• Dependency on the network connection concerns the inevitable requirement for com-

panies to have an established and reliable broadband Internet connection. Despite the

considerable advances in the networking and mobile technologies, this requirement is

becoming less and less strict, unstable and low-speed network connections are seen

among the key factors preventing the adoption of the cloud paradigm. Additionally,

adopting the cloud-based model inevitable results in modifying the architecture of the

enterprise software to minimise the dependency of the software performance on the

network latency, which in turn leads to certain financial expenditures.

32 Background Theory: Cloud Computing

• Service availability is another concern for enterprises considering moving to the

cloud. As reported by independent monitoring web sites,4 cloud providers still cannot

guarantee 100% up-time and un-interrupted performance of the hosted applications as

part of the offered SLAs. In the situation when a one-minute down-time may result in

critical losses both in terms of financial revenue and business reputation, companies

may decide to run the own data centres in order not to be dependent on unreliable

cloud provider and avoid such critical situations.

• Complicated migration process is another factor slowing down the adoption of the

cloud model. Moving an existing software system to a cloud environment is not as

easy and straight-forward as it might first appear. Cloud providers impose different

standards and policies, which make existing application not immediately transferable

to the cloud. In other words, cloud consumers are typically expected to make some

changes to their software before deploying to the cloud. Moreover, in some cases

migration of a legacy system might even turn out to be impossible due to underlying

dependencies and architectures.

• Data location and privacy are the two critical concerns when it comes to sensitive

information (e.g., governmental, business, health, etc.). The cloud model suggests

that data has to be transferred and stored on physical servers somewhere in the world,

where different privacy and data management laws might apply – simply put, customers

cannot be 100% sure that local authorities will not have physical access to a server

with their data stored on it. This is especially important for companies that do business

across national boundaries. For example, the European Union places strict constraints

on what personal data can be stored in the cloud, and for how long it can be stored

there. Many banks and financial organisations also require customers’ financial data

4These web sites aim to collect data on all reported incidents of cloud service outages and rank cloud
providers accordingly. A representative example here is CloudHarmony – https://cloudharmony.com/
status-1year-of-compute-group-by-regions-and-provider.

https://cloudharmony.com/status-1year-of-compute-group-by-regions-and-provider
https://cloudharmony.com/status-1year-of-compute-group-by-regions-and-provider

2.4 Cloud computing challenges 33

to remain within the borders of the home county. Obviously, in these circumstances

many organisations would never be willing to release their sensitive data outside their

corporate network, and, therefore, will not move the IT systems to the cloud.

• Security is the last, but admittedly the most crucial factor hindering the adoption of the

cloud model. It is nowadays seen as the top factor preventing a company from migrating

to the cloud, as indicated by various surveys [88, 90].IT security requirements need to

be compliant with national and international IT processing standard agencies, taking

into consideration various dimensions, including the following [58]:

– Statutory compliance for regulations, laws and agency needs.

– Characteristics of data for accessing those basic preservations needed by data set

of an application.

– Confidentiality and privacy for protecting against criminal and accidental access

for information.

– Integrity for ensuring that the data is complete, authorised, and accurate.

– Data access and control policies for determining the location of data storage and

users who have privilege for accessing data.

– Governance for ensuring that the cloud service providers are necessarily transpar-

ent, supply requested information for agencies for independent and appropriate

access, possess required monitoring, management and security controls.

The remote cloud-based model implies that customers inevitably have to send and store

some of their data over the network to the cloud environment, which is not guaranteed

to be protected against various kinds of threats and attacks. Customers need to be

aware that there is always a possibility that data stored and processed remotely in the

cloud can be compromised. Security is admitted by both industry and academia as

the key challenge for the development of cloud computing, and a lot of efforts are

34 Background Theory: Cloud Computing

currently being put into addressing these challenges.5 Arguably, cloud computing will

never become a truly ubiquitous model for delivering IT services until the issue of

security is properly and successfully addressed. With the presented research work, we

are also aiming at contributing to advancing the state of the art in this research area, as

it will be further explained in the upcoming chapters of this document.

2.5 Summary

The goal of this chapter was to familiarise the reader with the main context of the presented

research work – namely, Cloud Computing and an existing challenge of insufficient level of

data privacy and security. The chapter presented an overview of cloud computing develop-

ment and evolution. It also presented several existing definitions of cloud computing and

outlined a list of main benefits associated with this emerging model of delivering IT services

remotely over the network. Besides the main advantages, the chapter also listed potential

shortcoming of migrating to the cloud environment, among which data privacy and security

are seen as the main challenges. Accordingly, the material explained in this chapter will

be further used throughout the rest of this document to explain the details of the proposed

approach.

5Cloud Security Alliance, for example, is an organisation consisting of both industrial and academic partners,
which collaborate to define and develop best practices to help ensure secure cloud computing environments.

Chapter 3

Access Control: a Review

Objectives:

• To provide an overview of general concepts and terminology of access control.

• To review access control in cloud computing and existing challenges.

• To conduct a literature survey on access control mechanisms in cloud computing.

3.1 Introduction

In the previous chapter, we familiarised the reader with the notion of cloud computing and

main benefits making this novel model for delivering IT services attractive to the end user.

Together with the potential benefits, we also summarised its potential shortcomings, among

which security and data privacy are nowadays seen as the key factors preventing cloud

computing from the ubiquitous adoption by enterprises and individual users.

As a possible way of addressing these challenges, we are developing a policy-based

access control mechanism for cloud environments, which will be further explained and

36 Access Control: a Review

discussed in this thesis. To help the reader understand the contribution of our proposed

approach and position it with respect to the overall body of existing work in the relevant

research field, in this chapter we provide an overview of the state of the art in access control

in cloud environments. We first brief the reader on the general concept of access control and

then proceed with a literature survey aiming to provide a holistic and through review of the

current state of the art and identify existing research gaps.

3.2 Access control: an overview

To date, the topic of security in computer systems has been attracting attention for several

decades, and is still seen as one of the top challenges both for the academia and the industry

[18]. Since the 1970s, when information systems started exponentially growing in size and

complexity, an increasing number of applications served multiple users, which in turn led to

an increased awareness of data security issues [81].

Computer systems security is typically considered as a highly complex and multi-faceted

research discipline. Each of the sub-fields constituting the security research discipline (e.g.,

user authorisation, user authentication, auditing, administration, data privacy, etc.) is seen

as independent and challenging research area in their own right. Another fundamental area

underpinning the whole discipline of computer security is access control, which is the focus

of the research work presented in this thesis. It is worth noting that these sub-disciplines

(albeit they are demanding and pressing in their own right) are expected to be considered in a

cross-cutting and interdependent manner. Security practitioners often see computer security

is a chain. Accordingly, just as a chain is only as strong as its weakest link, computer security

system is only as secure as its weakest component. In other words, a truly holistic solution

addressing the security challenge is expected to consider all possible dimensions of this

pressing problem. Accordingly, albeit access control and its associated challenges in relation

3.2 Access control: an overview 37

to cloud computing will remain the main context of this presented research effort, we are

inevitably seeing our proposed contribution as part of larger picture of computer security.

As outlined by Sandhu and Samarati [82], who were among the pioneers in the field of

computer security, “access control constrains what a user can do directly, as well as what

programs executing on behalf of the users are allowed to do. In this way access control

seeks to prevent activity that could lead to breach of security”. It is worth explaining the

relation between access control and user authentication. The latter is responsible for correctly

identifying the user, whereas access control is typically based on the assumption that the user

has been already identified, and, therefore, its main responsibility is to decide whether this

specific user is permitted to access particular resources. Thus, the effectiveness of the access

control mechanism relies on and tightly coupled with the effectiveness of the authentication

mechanisms [82]. In other words, if an identity of the user and the authentication mechanism

are compromised, the access control component will in most cases consequently fail to

prevent a potentially malicious intrusion.

Similarly, an access control mechanisms is also expected to be coupled with an appropriate

auditing mechanism (also known as an accounting mechanism). In a broad sense, an auditing

component is responsible for the ‘post-mortem’ analysis of all the user requests and activities

taking place within the managed computer system. Auditing is typically achieved by logging

all relevant events for the later analysis, and serves multiple purposes [82]:

• Potentially malicious users may be discouraged from attempting violations if they are

aware of their requests being recorded and inspected.

• Auditing can analyse and detect violations (or patterns leading to violations) in users’

behaviour.

• Auditing can analyse and detect potential flaws in the security system of the managed

IT environment.

38 Access Control: a Review

• Auditing is needed to ensure that authorised users act within their privileges and do

not attempt to misuse their access rights.

These dependencies of the access control component on the authentication and auditing

once again are intended to demonstrate the pressing requirement to design and implement

security mechanisms in a systematic and holistic manner.

3.2.1 Access control policies and access control mechanisms

When implementing access control in IT systems, it is important to understand the two

fundamental concepts – namely, policies and mechanisms. The former are usually seen as

high-level guidelines, which serves to determine how user access is controlled and access

granting decisions are taken [82].

On the other hand, access control mechanisms are typically implemented as low-level

configurable software and hardware components, responsible for the enforcement of respec-

tive access control policies. Such mechanisms are expected to be policy neutral [70] – that

is, to be independent of the various types of access control policies, for which they could

be potentially used. Ideally, a truly policy neutral access control mechanism is able to be

applied to a wide range of diverse and heterogeneous policies (i.e., defined using various

formalisms and languages) in a transparent and seamless manner. Such a policy-agnostic

behaviour can be achieved via a standardised and established approach to access control

policies definition [44, 79].

In practice, however, it is more common to implement access control mechanisms which

are re-usable across a limited set of security-related scenarios and respective access control

policies. Since not all computer systems are characterised with the same level of the desired

protection level, different policies may be suitable for different scenarios. For example,

some systems dealing with sensitive data (e.g., applications processing banking, health,

governmental data, etc.), are expected to follow most stringent access control policies,

3.3 Access control in the cloud 39

whereas in other systems such a high level is not required (or even not desired at all). These

considerations suggest that the choice of appropriate access control policy depends on the

particular characteristics of the IT environment to be protected, and in the next section

we will examine the topic of access control in the context of cloud computing platforms –

highly-distributed, remote and virtualised environments.

3.3 Access control in the cloud

The increasing popularity and adoption of cloud computing is still hindered with the ever-

growing and pressing security challenges such as user management, access control, and

data privacy [12, 15, 74, 91]. As opposed to traditional, in-premises IT systems, cloud

environments rely on the virtualisation technology to support multi-tenancy and resource

sharing. These aspects of cloud computing are seen as the key factors putting the security and

data privacy in clouds at risk [89, 7].These features pose unique security and access control

requirements due to sharing of underlying physical resources in a cloud environment among

a large number of potentially untrusted tenants, which may in turn lead to an increased risk

of side-channel attacks [76]. Moreover, cloud computations in the presence of multi-tenancy

may result in interferences and, as a consequence, unauthorised information flows [7].

Furthermore, in the cloud, which is a networked and distributed environment, authentica-

tion and access control are taken to a different level of complexity due several reasons. First,

of malicious users can observe network traffic they can potentially replay authentication

protocols, pretending to be legitimate users [82]. Second, in the cloud environment it is

often required that not only users, but computers on the network acting on their behalf

need to mutually authenticate each other, which opens additional opportunities for various

compromises and attacks.

It is also important to take into consideration the heterogeneity of services in cloud

environments, which requires a differentiated approach – that is, supports varying degrees

40 Access Control: a Review

of granularity – when implementing an access control mechanism. Apart from preventing

various risks associated with unauthorised use of cloud resources and services, such a

mechanism would also serve as a basis for implementing standard security measures in the

context of contemporary enterprise-level cloud ecosystems.

Heterogeneous cloud environments typically do not allow implementing a single au-

thorisation mechanism, a single policy language or a single enforcement mechanism for

customers, using several cloud providers or switching between private and public clouds

[90]. Each cloud provider typically has its own access control mechanism, which is limited

in its flexibility to support other mechanisms. In these circumstances, a desirable access

control mechanism for the cloud is expected to work with all data (i.e., formats, languages,

representations) regardless of where they are stored, and cloud users are expected to be

able to manage their access policies to manage access to their respective data and resources,

deployed in the cloud.

Taken together, the presented considerations suggest that cloud security in general, and

user management and access control in particular, are non-trivial, complex, and challenging

tasks, which require novel approaches to address them.

3.4 State of the art in access control policies

There are several models for implementing access control in computer systems, proposed in

the literature. In this section, we will first brief the reader on these existing models providing

some examples relevant to the context of the presented research. Then, we will specifically

focus on the topic of access control in cloud environment and present several research works,

which we find most relevant to our own work.

3.4 State of the art in access control policies 41

3.4.1 Existing access control models

Historically, the classification of access control models started with the first two, proposed

by the Trusted Computer System Evaluation Criteria (TCSEC) published by the US Depart-

ment of Defence [59] – namely discretionary access control and mandatory access control.

However, since 1985, when these criteria were first published, the scientific community has

developed a more fine-grained taxonomy of access control models, which we further discuss

below. It is worth mentioning that the presented list s non-exhaustive and only includes

models, which we find most prominent and relevant to our own work.

Discretionary access control

TCSEC [59] defines discretionary access control (DAC) in a high-level manner as “a means

of restricting access to objects based on the identity of subjects and/or groups to which

they belong. The controls are discretionary in the sense that a subject with a certain access

permission is capable of passing that permission (perhaps indirectly) on to any other subject

(unless restrained by mandatory access control)”. Simply put, DAC uses access control

policies determined by the owner of the managed object, who is responsible to decide which

users with which privileges are allowed to access that object [3].

There are two important concepts to be considered in the context of DAC:

• Resource ownership refers to the fact that every object (i.e., resource), such as files

and data, has an owner. Typically, the initial owner of an object is actually a subject,

which caused it to be created. Accordingly, it is the owner’s responsibility to define an

access control policy for its object.

• Access rights and permissions are transferrable privileges for accessing specific re-

sources, which can be assigned to third parties (i.e., other subjects), which can be

assigned by the owner of those resources.

42 Access Control: a Review

Mandatory access control

TCSEC [59] provides the following high-level definition of mandatory access control (MAC)

– “A means of restricting access to objects based on the sensitivity (as represented by a label)

of the information contained in the objects and the formal authorisation (i.e., clearance) of

subjects to access information of such sensitivity”. In other words, MAC serves to allow

access to a managed object only in the presence of pre-defined rules, which contain required

information whether a particular user is allowed to access the resources [69].

As opposed to DAC, with a MAC-enabled security system, access control policies

are centrally controlled by the security policy administrator, who are responsible for the

implementation of organisation-wide security policies. In these circumstances, system

ordinary users are not enabled to modify/over-ride the policy definition, whereas in DAC

users may be in a position to introduce changes to the policy the ability to make policy and

assign security attributes.

Rule-based access control

Rule-based (also known as label-based) access control [23, 99] can be seen as a sub-type of

MAC, which serves to define specific conditions for accessing a specific resource in even

more details. In its simplest form, a rule-based access control system can determine whether

access to a particular object should be granted or not by matching sensitivity labels of the

requesting subject and the requested object. If they match, the access is granted, otherwise it

is denied.

Lattice-based access control

Lattice-based access control (LBAC) [80] is also seen as an instantiation of rule-based access

control; it is a more complex model, which uses interactions between any combination of

managed objects (e.g., files, computers, applications) and subjects (e.g., individual users,

3.4 State of the art in access control policies 43

groups of users, organisations, etc.). In this case, the relationships between objects’ levels

of security and subjects’ level of access can be mathematically expressed with partial order

sets called as lattices. Simply put, a subject is only allowed to access an object if only if the

security level of the subject is greater than or equal to that of the object.

Role-based access control

Role-based access control (RBAC) [81, 44, 79, 69] is nowadays seen as one of the most

prominent and widely adopted models for implementing access control in a wide range of

enterprise software systems. The basic principle in RBAC is that access control policies are

defined by the managed system, not by the owner. In this sense, it is different from both DAC

and MAC. On the one hand, as opposed to DAC, where users are typically allowed to control

their resources, in RBAC this access is managed at the system level, which is beyond the

user’s control. On the other hand, albeit BAC is non-discretionary, it cannot be classified as

MAC mainly due to the way permissions are handled and granted. More specifically, MAC

controls individual access (i.e., read and write) permissions mainly based on the user’s access

rights and some additional labels, whereas in RBAC permission collections are involved,

which may include more complex operations (e.g., a database transaction, which typically

goes beyond the notion of a simple read/write access operation). Accordingly, such sets of

permissions in RBAC can be seen as roles. There are three main principles underpinning the

RBAC model:

• Role assignment refers to the fact that a subject can access or execute a transaction on

an object only if it has been assigned a corresponding role.

• Role authorisation refers to the fact that a subject’s active role must be appropriately

authorised prior to accessing an object.

44 Access Control: a Review

• Transaction authorisation refers to the fact that a subject can execute a transaction

on an object, only if this type of transactions has been previously authorised for the

subject’s active role.

Besides these three principles, RBAC often also allows putting additional constraints and

conditions. Moreover, roles in RBAC can be combined, thus forming role hierarchies, where

higher-level roles subsume permissions owned by lower-level sub-roles.

Attribute-based access control

Attribute-based access control (ABAC) [50, 56] uses the concept of attributes of the user

(rather than of the subject representing the user) to determine access rights. Accordingly,

the user has to prove certain claims about his attributes so as to be granted access to a

resource by the access control engine. The set of attribute claims to be proved is defined by

attribute-based access control policies. A traditional example of an attribute-based access to

some Web resources is to prove that the user is at least 18 years old.

Among other types of access control models it is worth mentioning some novel, non-

traditional approaches such as intent-based access control [6], emotion-based access control

[5], responsibility-based access control [42], and break-glass access control methods [20, 45].

3.5 Related works: a survey

As we have seen it in the previous section, there have been various access control models

proposed in the literature over the years [81, 1, 14, 19, 78], which provided general theoretical

foundations for the further development of the access control research. In the rest of this

3.5 Related works: a survey 45

section we will brief the reader on research works in the field of access control policies,

which we find relevant to our own work.

One of the early general formalisms for expressing authorisation and access control rules

were proposed by Woo and Lam [98]. The proposed framework is based on the capabilities of

default logic to support non-monotonicity during the formal reasoning process. Using default

logic, it is possible to define the “default” behaviour of the access control system, without

specifying additional exceptions. In situations when a new policy is added to an existing set

of policies, it will be immediately picked up by the reasoner, and formerly-accessible subject

may become inaccessible due to the newly-added rules. One of the potential shortcomings of

the proposed approach (and default logic in general) is that reasoning over the set of policies

might not eventually lead to a conclusion, thus resulting in situations when an authorisation

request might not have an answer.

Jajodia et al. [52] in their work proposed a logical language for expressing authorisations

called Authorisation Specification Language (ASL). The proposed ASL serves to specify

access control policies and corresponding enforcement logic. It follows a fine-grained

approach and allows specifying different policies on different objects, based on the specific

requirements. ASL can be classified as a role-based access control language, as it enables

users to specify different policies for different user roles and groups. The authors demonstrate

with the expressivity of the proposed language (e.g., putting constraints on consistency and

completeness) with a number of use cases. The authors claim that one of the main benefits of

ASL is that it supports specification of multiple co-existing access control policies within

the same managed system in the presence a dedicated component responsible for potential

conflict resolution.

Jajodia et al. [51] moved on with their research and investigated potential ways of

resolving inconsistencies and conflicts among authorisations. The proposed approach is

based on rules, and the authors see flexibility as one of the main advantages of the approach.

46 Access Control: a Review

This functionality is achieved by using the Flexible Authorisation Framework (FAF). One

of the key components of the framework is a repository of policies, from where policies

(and policy compositions) can be fetched and enforced in a concurrent manner. Among the

potential shortcomings of the proposed approach is that the framework does not seem to

support expressing such policy compositions natively and requires an additional language to

perform this task. Also, the authors do not consider temporal constraints and dependencies

as part of the functionality of the proposed framework.

This lack of the temporal dimension in specifying and enforcing access control policies

was addressed by Bertino et al. [17, 16]. The authors developed a temporal model for

access control, which is based on time intervals associated with authorisations to define

their respective validity periods. Accordingly, rules in the proposed approach are defined

by establishing temporal relationships between authorisations. On the other hand, however,

the authors do not provide any evidence of support for policy compositions and handling

multiple policies at a time in their approach.

The challenging topic of access control in distributed systems was addressed by Damianou

et al. [28, 27, 29] and their proposed policy specification language Ponder. Ponder is a high-

level, declarative, object-oriented language for managing access control policies in distributed

systems. Its expressivity allows definition of a wide range of access control management

actions, including authorisation, filtering, refraining, and delegation. Ponder supports policy

compositions (including groups, roles, relationships and management structures). The

object-oriented approach enables creation of user-defined types of policies and consequent

instantiation of these policies with different parameters. Among the potential shortcomings

of Ponder, the authors mention the insufficient support for concurrency constraints and the

lack of formal semantics, which limits the possibilities of applying formal reasoning to

policies defined with Ponder.

3.5 Related works: a survey 47

The Ponder approach was extended by Twidle et al. [92], who implemented a software

framework for enforcing policies based on the specification of the original language Ponder.

The current implementation of the framework mainly supports obligation and authorisation

policies, as demonstrated by the authors. However, the proposed system still does not support

formal semantics of the underlying language, and the reasoning processes are mainly handled

by the general-purpose programming language in a hard-coded manner.

The eXtensible Access Control Markup Language (XACML) [9, 47, 60] was proposed by

OASIS – a global consortium that works on the development, convergence, and adoption of

standards for security and other challenging areas of IT. The proposed language is useful in

the context of specifying access control policies of arbitrary complexity in various distributed

systems. It is an open-source project based on XML, and therefore, can be easily extended to

meet new emerging user requirements. As a uniform, standard and interoperable format, it

also proves to be useful in bringing together multiple heterogeneous (legacy) systems. Being

highly expressive, XACML, however, suffers from its complexity and verbosity. It seems to

be difficult to implement software tools, which would fully support the expressivity and the

semantic of the language. In other words, currently there seems to be no automated reasoner,

which would be fully responsible for enforcing XACML-based policies.

Pugliese and Tezzi [73] were challenged by creating a simple, yet expressive alternative

to XACML proposed by OASIS. In their work, the authors propose Simple Access Control

Policy Language (SACPL) – an expressive language for defining access control policies in

various contexts. It follows the attribute-based access control model, and its main advantage,

as indicated by the authors, is its relative simplicity and the seamless integration with Service

Component Ensemble Language (SCEL) [36, 37], which is a language, designed to program

autonomic components and their respective interactions, while supporting formal reasoning

activities over their behaviour.

48 Access Control: a Review

Siewe et al. [85] developed a compositional framework for the specification of access

control policies, based on Interval Temporal Logic (ITL). Using ITL formulas it is possible to

define authorisation and delegation rules, both positive and negative. The authors distinguish

between signed rules, which are used for actual definition of access rights, and enforcement

rules, which define underlying policy enforcement logic. The proposed approach is also

equipped with conflict resolution capabilities – and contradictions and conflicts can be

handled appropriately by the corresponding enforcement rules. One of the main benefits of

the proposed approach, is the use of ITL as the underlying formalism and its support for

specifying both functional and temporal properties of the managed resources. In conjunction

with the SANTA framework, the authors also demonstrate the viability of the proposed

approach.

3.5.1 Access control policies in cloud environments

Takabi et al. [90, 89] in their work address the challenge of access control in cloud en-

vironments and propose a semantic-based approach to policy management. The authors

propose using Semantic Web languages (i.e., Web Ontology Language – OWL, Semantic

Web Rule Language – SWRL) to define and reason over security policies. Among the main

benefits of this approach authors list the reasoning power of OWL and SWRL, which are

based on Description Logics. As a positive side effect of using Description Logics, the

authors claim that OWL-defined access control policies can be seamlessly translated to other

policy languages and formalisms. Another important benefit of applying the Semantic Web

languages in the context of cloud-based access control is interoperability and possibilities

to apply same policies across a multiple cloud platforms. Human-readability, re-usability,

extensibility is also among the potential advantages of the proposed approach.

A similar semantic approach is presented by Moreau et al. [65], who introduced an

extension to the KAoS ontology [94, 93] to capture the domain of access control in cloud

3.6 Analysis and discussion 49

and grid environments. The KAoS approach is based on an OWL ontology (and, therefore,

on Description Logics), and thus can benefit from high expressivity and formal reasoning.

Using an ontology as an existing established vocabulary of terms is another benefit of the

KAoS-based approach. The main contribution of the authors is their extension of the core

ontology and policies to manage the behavioural specification of grid registries.

Hu et al. [49] in their work also follow the trend of using Semantic Web languages to

create an access control approach for cloud environments. As highlighted by the authors,

main benefits of doing so are clear semantics and established vocabulary, support for formal

reasoning and semantic interoperability. The proposed distributed role-based access control

approach uses an ontology-based Semantic Access Control Policy Language (SACPL). The

approach is inspired by XACML – it uses its basic concepts (i.e., subject, object, action and

attribute variables) and also introduces some new concepts (i.e., priority and confidentiality).

The authors claim that semantic interoperability of the proposed approach is the key advantage

of the approach, which is a key requirement in highly heterogeneous cloud environments.

On the other hand, as a potential shortcoming of the approach we can identify the lack of a

policy conflict resolution mechanism.

3.6 Analysis and discussion

In the previous section, we surveyed the relevant literature with a goal to identify existing

limitations and gaps, which would be address by our own proposed approach. To this end,

we can draw several conclusions:

I. Cloud computing, as a relatively new research discipline, poses new emerging require-

ments for the security researchers to be addressed. Among the most pressing concerns

are access control and user management. As indicated by our survey, most of the

surveyed authors do not explicitly consider cloud platforms as a potential application

50 Access Control: a Review

scope for their respective approaches, simply because cloud were not there yet, when

the papers were published. Despite this lack of explicit ‘cloud-orientation’, most of

the surveyed approaches still seem to be unsuitable due to the fact that they were not

designed and implemented to be applied in a distributed environment. They seem to

be succeeding in managing access rights locally in relatively small-scale, localised

environments, but there is little evidence that they also handle access control in the

presence of multi-tenancy and resource sharing, increased concurrency, virtualisation,

etc. – the key features of cloud computing.

II. The dynamic nature of the cloud, its increased multi-tenancy and ever-growing number

of users, simultaneously accessing cloud resources, require that the access control

component is capable of handling the historical and temporal aspects of the user access.

As the majority of surveyed approaches tend to neglect the temporal dimension, for a

cloud-based access control system it is essential to be able to put time constraints when

defining and enforcing access control policies. Moreover, it is also important to keep

track of the whole history of access in the cloud, including such information as access

attempts, modification of user access rights, transactions on resources, etc. To a certain

extent, this can be seen as a ‘stateful’ approach, which also takes into consideration not

just the current state (i.e., a ‘stateless’ approach), but also all the information concerning

what has actually led to this state over some period of time.

III. The third observation is the trend of utilising Semantic Web technologies in the context

of access control in the cloud. This can be explained by several reasons [33, 32].

First, due to the high heterogeneity of (multi-) cloud environments, it is important to

use a standardised vocabulary of terms (i.e., OWL ontologies). Second, due to the

formal semantics of OWL and SWRL, access control administrators can benefit from

software reasoners – already-existing, optimised and reliable enforcement mechanisms.

Third, OWL ontologies, once implemented and published, facilitate re-usability and

3.7 Summary 51

interoperability, as the same access control policies defined with OWL and SWRL can

be applied across several cloud platforms. Fourth, the Semantic Web languages support

object-orientation, thus it is possible to create hierarchies of roles, rules, attributes,

resources, etc. The last but not the least, the Semantic Web languages are human-

readable, which makes them easier to work with even for non-professional programmers

or computer scientists.

Taken together, these observations outline the main functional requirements for our own

proposed approach, which can be summarised as follows:

I. Support for the spatial dimension and cloud-orientation: the envisaged access control

approach has to be designed and implemented with support for several cloud-intrinsic

features in mind, such as distributed architecture, multitude of network locations,

virtualisation, multi-tenancy, shared resources, increased number of users accessing

resources, etc.

II. Support for the temporal dimension: the envisaged approach has to be capable of

capturing the history of access, as well as putting and enforcing temporal constraints in

access control policies.

III. Formal semantics and interoperability: these are the two keys aspects of the Semantic

Web-based approaches for access control. Accordingly, our envisaged approach has to

inspire from the Semantic Web techniques to demonstrate these key features, as well as

some other of its minor positive aspects.

3.7 Summary

In this chapter, we familiarised the reader with the existing research efforts in the field of

access control – one of the most challenging tasks in engineering secure computer systems.

52 Access Control: a Review

First, we introduced the general concepts of access control, such as polices and enforcement

mechanisms. Then the chapter proceeded with outlining main challenges for access control

in cloud environments – namely, these are resource sharing, multi-tenancy, increased number

of users, distributed architecture, etc. Then we presented a brief literature survey of the

existing relevant research work on access control (including access control in the cloud).

Finally, we provided an analysis of the surveyed approaches, which helped us to identify

existing gaps and outline requirements for our own research work.

Chapter 4

Formal Underpinnings of the SANTA

Policy Language

Objectives:

• To introduce the SANTA policy languages, which serves as a baseline for our research

and contributions.

• To explain the application scope of the SANTA policy language: what this language is

and what it is used for.

• To introduce and explain Interval Temporal Logic, which acts as a formal underpinning

of the SANTA language.

• To outline an existing gap of insufficient support for location-aware data privacy in the

SANTA language.

• To introduce Topological Logic and explain its application to SANTA to enable

location-aware access control and data privacy.

54 Formal Underpinnings of the SANTA Policy Language

4.1 Introduction

The main goal of this chapter is to familiarise the reader with the SANTA policy language –

i.e., its theoretical underpinnings, formal semantics, application scenarios, and limitations.

Explaining these notions is important, as the SANTA language is taken as the main baseline

in the context of the presented PhD research – that is, by introducing the current state of the

SANTA language, we aim to outline an existing gap to be addressed by the present work.

Accordingly, the material explained in this chapter is three-fold. First, it introduces the

SANTA language at its current state and briefs the reader on the expressivity of the language

– that is, in what kind of use case scenarios using the SANTA language is convenient and

efficient. Second, the chapter outlines an existing limitation of the language – namely,

insufficient support for handling location-aware data privacy. Third, it introduces Topological

Logic as a way of adding location-aware features to the core design of the SANTA language

(which are yet to be explained in the next chapters of this thesis).

4.2 SANTA policy language: an overview

SANTA is a formal language for expressing access policies in complex computer systems

[85, 55, 53, 54]. It follows a rule-based approach (as explained in the classification in the

previous chapter) to specify (sets of) access control rights in terms of policy rules and their

compositions. A simple access control policy, defined by SANTA, typically consists of three

types of rules:

1. Positive authorisation rules – these are rules, which define if a subject is allowed to

access an object;

2. Negative authorisation rules – these are rules, which define if a subject is restricted

from accessing an object;

4.2 SANTA policy language: an overview 55

Table 4.1 Basic syntax of the SANTA policy language.

Subject:
su ::= Si | cs

Object:
ob ::= Oi | co

Action:
ac ::= Ai | ca(e1, ...,en)

Premise of a rule:
pr ::= pr1 ; pr2 | pr1 and pr2 | pr1 or pr2 |
always pr | sometime pr | not pr | if be then pr1 else pr2 |
exists x in se : pr | forall x in se : pr | last(e) : pr | e : pr | be

Rule:
ru ::= [rn ::] allow (su,ob,ac) when pr |
[rn ::] deny (su,ob,ac) when pr |
[rn ::] decide (su,ob,ac) when pr

Rule:
po ::= ru1 ... ru2 | policy pn :: po end |
po1 ; po2 | aslongas be : po | unless be : po |
e : po | if be then po1 else po2 | repeat po

3. Decision rules – these rules serve to resolve possible conflicts, resulting from specifi-

cation of the previous two types of rules.

These simple rules serve as atomic ‘building blocks’ for defining access control policies.

They can then be combined into composite policies. In the following, we provide the syntax

of access control policies and examples of their usage.

Table 4.1 contains the basic syntax of the SANTA policy language, where:

e is an expression;

be is a Boolean expression;

se is a set expression with usual support for operators and semantics;

Si is a subject variable, where i is an arbitrary name;

56 Formal Underpinnings of the SANTA Policy Language

Oi is an object variable, where i is an arbitrary name;

Ai is an action variable, where i is an arbitrary name;

pn is a name for a policy;

rn is an (optional) name for a rule.

This brief introduction to the SANTA policy language is further widened in the next

section, which introduces and explains SANTA’s main underpinning logical formalism known

as Interval Temporal Logic. Even more further details on the specifics of ITL can be found

in [54, 24].

4.3 Underpinning formalism: Interval Temporal Logic

Interval temporal logic (ITL) (sometimes also referred to as interval logic) is a flexible

notation for representing both propositional and first-order logical reasoning about periods of

time in the context of hardware and software systems [4, 67]. First-order interval temporal

logic was initially formulated in the 1980s for the specification and verification of hardware

protocols. It is a subset of a more general subset of temporal logics, which was originally

developed by Moszkowski [66]. It is useful in the formal description of hardware and

software for computer-based systems whenever there is a requirement to capture the temporal

dimension – for example, keep historical track of events, which took place within the system.

One of the main features of ITL is its compositionality, which is seen as a considerable

benefit and an issue at the same time. This feature allows ITL to handle both sequential and

parallel composition of atomic rules (unlike the other types of temporal logic). Moreover, in-

stead of dealing with infinite sequences of system states, ITL deals with finite sequences. ITL

offers powerful and extensible specification and proof techniques for reasoning about system

properties involving safety, liveness and projected duration [68]. These rich expressivity and

4.3 Underpinning formalism: Interval Temporal Logic 57

Table 4.2 Syntax of Interval Temporal Logic.

Expressions:
e ::= z | a | A | g(e1, ...,en) | ◦ν | finν

Formulae:
f ::= true | q | Q | h(e1, ...,en) | ¬ f | f1 ∧ f2 |
∀ ν • f | skip | f1 ; f2 | f∗

flexibility, however, come at a cost – there is a pressing requirement of handling and resolving

potential conflicts when two or more simple rules are combined into a compositional policy.

The fundamental concept of ITL is an interval. An interval σ is considered to be an

(in)finite sequence of states σ1, σ2, σ3, ..., where a state σi is a mapping from the set of

variables Var to the set of values Val. The length |σ | of an interval σ1, σ2, σ3, ... is equal to

n – that is, one less than the number of states in the interval. This latter feature means that

the length of a single-state interval is equal to 0.

The basic syntax of ITL is represented in Table 4.2, where:

z is a constant integer value,

a is a static integer variable (non-changeable within an interval),

A is a state integer variable (changeable within an interval),

ν is a static or state integer variable,

g is an integer function symbol,

q is a static Boolean variable (non-changeable within an interval),

Q is a state Boolean variable (changeable within an interval),

h is a predicate symbol.

58 Formal Underpinnings of the SANTA Policy Language

4.3.1 Informal semantics of the main ITL constructs

We now consider in more details the informal semantics of the key ITL constructs, presented

in the previous section.

• skip: The skip operator always succeeds and consumes (defines) exactly one cycle

– that is, it is a unit interval with the length equal to 1 (i.e., an interval between two

states).

• f1 ; f2: this operator holds if an interval can be decomposed into a prefix and a suffix

intervals, such that f1 holds over the prefix and f2 holds over the suffix, or, alternatively,

if the interval is infinite and f1 holds for the whole interval. Note the last state of the

interval σk, over which f1 holds is shared with the interval over which f2 holds, as

depicted in Figure 4.1.

Fig. 4.1 Informal semantics of the operator f1 ; f2.

• f∗: this operator holds if the interval is decomposable into a finite number of intervals,

so that for each of them f holds, or the interval is infinite and can be decomposed into

an infinite number of finite intervals, so that for each of them f holds as well. This

operator is illustrated in Figure 4.2.

• ν: this represents the value of ν in the next state, when it is evaluated on an interval

with a length equal to or greater than 1 (i.e., at least one). Otherwise, it takes an

arbitrary value.

• finν: this represents the values of ν in the final state, when it is evaluated on a finite

interval. Otherwise, it takes an arbitrary value.

4.3 Underpinning formalism: Interval Temporal Logic 59

Fig. 4.2 Informal semantics of the operator f∗.

4.3.2 Derived constructs

Apart from the core elements of the ITL syntax we can also derive several additional

constructs, which serve to make the writing of ITL expressions more natural and simpler. In

particular, a (non-exhaustive) list of the most important derived constructs is presented and

explained below.1 These will be further used in the upcoming chapters of this thesis. Table

4.3 lists some of the derived constructs used in the remainder of this research.

4.3.3 Policy-level information flow analysis

As explained above, in the context of access control a subject requests to perform an action

upon an object. Subjects, objects, and actions are the key concepts of access control in

general, and the SANTA language in particular. Accordingly, an access control policy

governs the process of accessing objects by subjects.

In this respect, we can distinguish between two main categories of actions, which can be

allowed or denied by the policy enforcement engine:

• Read actions (see Figure 4.3b), which transfer information from the requested objects

to the requesting subject. For example, checking the current available balance on a

bank account or reading file contents on disk transfers information from the requested

bank account or file to the subject that executes the read action.

1Please note that the basic Boolean operators ∧ (logical adjunction), ∨ (logical disjunction), ¬ (logical
negation) and ⊃ (logical implication) are derived as usual.

60 Formal Underpinnings of the SANTA Policy Language

Table 4.3 Derived constructs.

Derived construct Explanation

◦ f =̂ skip ; f Next f : f holds from the next state. Example:
◦(X = 1) – any interval such that the value of
X in the second state is 1 and the length of that
interval is at least 1.

more =̂ ◦ true Non-empty interval: any interval with the
length equal to at least 1.

empty =̂ ¬more Interval: any interval with the length equal to 0
(i.e., only one state).

inf =̂ true ; false Infinite interval: any interval with an infinite
length.

finite =̂ ¬inf Finite interval: any interval with a finite length.

⋄ f =̂ finite ; f Sometimes f : any interval such that f holds
over a suffix of that interval. Example: ⋄X ̸= 1
– any interval such that there exists a state, in
which X is not equal to 1.

□ f =̂ ¬⋄¬ f Always f : any interval such that f holds for all
suffixes of that interval. Example: □(X = 1) –
any interval such that the value of X is equal to
1 in all states of that interval.

i f =̂ ¬(¬ f ; true) Box-i: any interval such that f holds over all
prefix sub-intervals.

a f =̂ ¬(finite ; ¬ f ; true) Box-a: any interval such that f holds over all
sub-intervals.

fin f =̂ □(empty ⊃ f) Final state: any interval such that f holds in the
final state of that interval.

∃ν · f =̂ ¬∀ν · ¬ f Existential quantification.

f n=̂


f alse if n < 0
empty if n = 0
f ; f n−1 if n > 0

f repeats n times.

len(e) =̂ skipe The statement holds if the length of the interval
is e.

4.3 Underpinning formalism: Interval Temporal Logic 61

• Write actions (see Figure 4.3a), which transfer information in the opposite direction –

that is, from the requesting subject to the requested object. For example, depositing a

bank account or appending records to a file.

• There are also actions, which do not belong to these two types. This typically means

that there is no direct interaction between the subject and the object, and information

flows indirectly via, for example, a shared file (see 4.3c). Moreover, there are also

actions, which can be classified as both read and write actions – that is, information

flow is bi-directional.

Fig. 4.3 Direct and indirect information flows: (a) Direct flow from subject to object; (b)
Direct flow from object to subject; (c) Indirect information flow [54].

Accordingly, we employ the following definitions for direct information flows, allowed

by the SANTA enforcing engine (Actionsr and Actionsw are subsets of the overall set of

Actions, which represent all read actions and all write actions respectively.):

• An allowed direct information flow from a subject s to an object o takes place if the

subject s is allowed to perform a write action on the object o [54]. This is illustrated

below:

s⇝ o =̂ V
∀α∈Actionsw

Aut(s,o,a)

62 Formal Underpinnings of the SANTA Policy Language

• An allowed direct information flow from an object o to a subject s, if the subject s is

allowed to perform a read action on the object o [54]. This situation is illustrated as

follows:

o⇝ s =̂ V
∀α∈Actionsr

Aut(s,o,a)

4.4 Policy rules

A SANTA rule typically expresses a single security requirement and acts as a basic ‘building

block’ for constructing a more complex security policy. Every rule includes two parts –

namely, the body (i.e., the premise) and the head (i.e., the consequence). The premise of

a rule describes a set of system behaviours, which lead to the consequence that represents

an assertion on the current system state, such as allowing or denying a particular access

[54]. The consequence of a rule defines the decision taken by the reference monitor – a

software component responsible for evaluating and enforcing access control policies within

the managed computer system. The set of system behaviours in the premise is matched

against the history of the system execution. It follows that it is possible to refer to sequences

of previously observed system execution states, which underpins the possibility of the SANTA

language to express history-based policies [2], and dynamic separation of duty constraints

[78]. As far as events are concerned, we can distinguish between two types of events that

can be referred to in the premise of rules – they are either those defined in the computational

model, or external events that are observable by the reference monitor (as depicted in Figure

4.4).

Another important notion in the context of access control is authorisation. Authorisation

is responsible for granting access to resources in the system. It defines whether execution

4.4 Policy rules 63

Fig. 4.4 Computational model of the SANTA rules [54].

64 Formal Underpinnings of the SANTA Policy Language

of an action can be permitted with respect to the computational model. An authorisation

rule defines possible conditions, under which a subject is allowed to perform an action on an

object.

4.5 Expressivity and application scope of SANTA

In this section, we explain the most common scenarios, in which using SANTA for enabling

access control is expected to prove to be useful. We demonstrate and explain simple examples

[54], which are intended to i) showcase the capabilities and the application scope of the

SANTA language, and ii) identify an existing gap – that is, an evidence, demonstrating that

SANTA at its current state is not particularly suitable to address a particular situation. This

latter shortcoming of SANTA in its turn will be addressed by our own research, as explained

in the next chapters of the thesis.

The presented examples are based on several use cases, in which the issue of access

control has been regarded as a pressing concern. These use cases, for example, include

an electronic paper submission (EPS) system – a commonly used system, employed by

universities and other academic institutions, to handle paper assignments submitted by

students. To avoid any kinds of cheating and unauthorised access to the submitted materials

it is important that the EPS system is equipped with a sufficient access control mechanism.

Another use case is an e-banking system, where users are not allowed to perform unauthorised

operations. A use case, which is based on a procurement system, involves a requirement of

not releasing too much information to competing contractors so as not to create an advantage

for any of them and facilitate fairness. The examples in Table 4.4 demonstrate how the

SANTA policy engine can address these challenges.

4.5 Expressivity and application scope of SANTA 65

Example 1: Unconditional authorisation (positive and negative). The example represents a situation

when everyone can register a submission with the EPS system. In the example, S is a subject

variable, which represents any subject (i.e., everyone submitting a paper). The object of the

access control rule in this case is the EPS system itself (eps), which is referred to by its name

(eps ∈ Ob jects). The action register has a parameter O, which is a known object in the system,

expressed by an object variable. The first part of the example represents a positive authorisation

rule. Negative authorisation rules (i.e., denial of access) are expressed in a similar way with the

only difference that the rule consequence contains the keyword deny, as illustrated by the second

part of the example.

r1 :: allow(S,eps,register(O)) when true

r2 :: deny(S,eps,register(O)) when true

Example 2: Putting a condition on the current state of the system. This represents a situation when

only the owner of a specific bank account can withdraw money from it. The condition is checked in

the current state of the system. This is forced by the e : construct – it forces the rule premise to be

evaluated over the e long suffix of the execution history (i.e., over the history of states preceding

the current state of the system). In case e equals to 0, the evaluation is performed only against the

current state of the system.

r1 :: allow(S,O,withdraw())when 0 : owner(S,O) and account(O)

66 Formal Underpinnings of the SANTA Policy Language

Example 3: Putting a condition on the history of system states. This example states that the subject

must not perform an action on one and the same object more than once. Once an action has been

performed on the subject, all further attempts will be denied. The condition is evaluated over the

whole execution history. The construct sometime checks whether in any suffix of the history of the

system states, the requested action has already be executed. Accordingly, done(S,O,A) represents

an event generated by the system, when an action has been successfully authorised and performed.

Please note that the same variable names S, O, and A in the rule consequence and the premise are

explicitly used to denote that the very same subject, object, and action are concerned.

r1 :: deny(S,O,A)when sometime done(S,O,A)

Example 4: Putting a condition on the history of system states. This example elaborates on the

previous one. It represents a situation, when a subject S1 is denied to perform an action if this

action has already been performed by another subject S2.

r1 :: deny(S1,O,A) when sometime done(S2,O,A) and S1 <> S2

Example 5: An invariant. This example further explain the previous one, and represents a

situation when a person is only allowed to take a loan at a bank, if he/she has never been bankrupt.

r1 :: allow(S,Oloan, take) when always not bankrupt(S)

4.5 Expressivity and application scope of SANTA 67

Example 6: Making choice. This example illustrates a situation when a child younger than 10

years old has to be given consent by both parents. If the child is older, consent given by only one

parent may also suffice. Two distinct subjects S1 and S2 represent parents of the child S. The rule

itself consists of two branches – if the child is younger than 10 years old, then the first branch is

evaluated, which checks whether both parents have given consent before. The else branch uses the

or statement to express that only prior consent of one parent is enough.

r1 :: allow(S,O,A) when S1 <> S2 and parent(S1,S) and parent(S2,S) and if age(S)< 10

then sometime done(S1,O,consent(A)) and sometime done(S2,O,consent(A))

else sometime done(S1,O,consent(A)) or sometime done(S2,O,consent(A))

Example 7: Collaboration. This example represents a situation when a door can be opened only

if there have been at least two distinct subjects in the last five time units (i.e., system states), which

requested the door to be opened. In these circumstances, two subjects need to collaborate in order

to open the door within a limited time frame (5 last system states). It is worth noting that the

outcome of these requests is not taken into consideration when deciding whether the door has to be

opened or not – that is, the request event itself is important, and even if the two requests have been

denied, the condition is still satisfied. The order of the requests also does not matter – moreover,

the requests might have been made simultaneously.

r1 :: allow(S,door,open) when 5: sometime req(S1,door,open) and

sometime req(S2,door,open) and S1 <> S2

68 Formal Underpinnings of the SANTA Policy Language

Example 8: Time. This example represents a situation when a subject is not allowed to access the

same resource within the last 10 time units. The example assumes that the current system time is T,

time is treated as a set TIME, and existential quantification is used to bind the moment of the last

access last(1) : done(S,O,A1) has taken place to tlast. The comparison between this last access

time and the current system time is performed with this statement 0 : tlast +10 < T. Please note

that the last access action may differ from the current request – i.e., A1 is not necessarily the same

with A.

r1 :: deny(S,O,A) when exists tlast in T IME :

(sometime last(1) : done(S,O,A1) and tlast = T) and 0 : tlast +10 < T

Example 9: Cardinality. The example represents a situation when a resource should not be

accessed by the same subject for more than seven times.

r1 :: deny(S,O,A)whensometimelast(7) : done(S,O,A1)

Example 10: Cardinality and time. These examples combine the two previous examples. It

represents a situation when a subject should not be allowed to make more than consecutive 100

requests to access an object within the last 24 time units.

r1 :: deny(S,O,A) when exists t0 in T IME :

(sometime last(100) : done(S,O,A1) and t0 = T) and 0 : t0 + 24 < T

Example 11: Sequential access. This example represents a situation when an invoice Oinv has

to be received and authorised first, before it can be paid. This example entails a sequence of two

distinct actions.

4.5 Expressivity and application scope of SANTA 69

r1 :: deny(S,bank, pay(Oinv)) when not (sometime done(S,Oinv,receive) ; sometime

done(SA,Oinv,authorise)) and 0 : role(SA,accountant) and SA <> S

Example 12: Decision rule. This example represents a situation when the decision whether to

grant access to a resource has to be taken after the decision whether it has to be denied. The example

illustrates how potential conflicts, resulting from applying positive and negative authorisation rules

in parallel, can be resolved.

r1 :: decide(S,O,A) when 0: allow(S,O,A) and not deny(S,O,A)

Example 13: Closed decision rule. This example represents the same situation with a closed

decision approach applied. The rules states that an action is denied unless explicitly allowed.

r1 :: decide(S,O,A) when 0: allow(S,O,A)

Example 14: Open decision rule. Similarly, this example represents the same situation with an

open decision approach applied. The rules states that an action is allowed unless explicitly denied.

r1 :: decide(S,O,A) when 0: not deny(S,O,A)

Example 15: A history-based decision rule. This examples represents the same situation with a

history-based decision taking applied. The example demonstrates that a decision can only be taken,

provided there have been no access denials within the last 10 time units. In other words, an action

is allowed if there have been no negative authorisations within the last 10 time units.

r1 :: decide(S,O,A) when 10: always not deny(S,O,A)

70 Formal Underpinnings of the SANTA Policy Language

Table 4.4 SANTA expressivity examples.

The presented examples demonstrated definition of history-based policy rules using the

SANTA language. In the next section, we will further explain SANTA’s capabilities by

illustrating how these ‘building blocks’ can be composed into policies in two ways – i.e.,

sequentially and in parallel.

4.6 Policies and compositions

Using SANTA, atomic rules can be combined to produce simple policies as follows:

policy p ::

allow(S,Oloan, take) when always not bankrupt(S)

deny(S,O,A) when sometime last(7) : done(S,O,A1)

decide(S,O,A) when

0 : allow(S,O,A) and not deny(S,O,A)

end

As it follows from this example, a simple policy p is composed of atomic rules. In

SANTA, all rules constituting a simple policy apply simultaneously. The policy p, in its turn,

can be further used to combine more complex policy compositions. A simple policy typically

serves to capture certain security aspects of a specific situation – that is, it is not generic and

flexible enough to apply across a wide range of scenarios, which might emerge in the context

of access control in dynamic and complex computer systems. Accordingly, to address more

complex scenarios, simply policies are expected to be combined into policy compositions.

As a result, the hierarchy of the SANTA policy compositions is the following – atomic rules

are used to define simple policies, and simple policies are used to construct complex policy

compositions.

4.6 Policies and compositions 71

4.6.1 Sequential composition

Fig. 4.5 Schematic representation of the sequential composition [54].

One type of policy compositions supported by SANTA is the sequential composition (see

Figure 4.5). With this type, it is possible to define how policies evolve over the time and

react in response to an occurrence of external events. In various access control scenarios

there are frequent situations when security requirements are situation-specific and only apply

when certain criteria are met. SANTA provides policy designers to incorporate such situation

in their policies in a flexible manner – it is possible to compose policies from individual rules

to reflect specific contexts and circumstances, as shown in Table 4.5.

Example 16: Intrusion detection. This example represents a typical situation in the context of

an intrusion detection system, which is expected to trigger an intrusion alert and automatically

block certain functions of the managed system in response to a detected intrusion. To achieve such

functionality, two policies are defined – pnorm captures the protection requirements for a normal

operational mode, and palert defines a policy to be enforced in case of detected intrusions (details of

these policies are omitted). Accordingly, the policy composition states that the normal operational

mode has to turn into the alert mode as soon as an intrusion alert event event_alert() is detected.

The policy palert is then applied until the alert is reset (event_reset()). The composition then returns

to the normal operational mode with the policy pnorm.

policy pnorm :: /∗ · · · ∗/ end

72 Formal Underpinnings of the SANTA Policy Language

policy palert :: /∗ · · · ∗/ end

policy pcomposed ::

repeat ((unless event_alert() : pnorm) ; (unless event_reset() : palert))

end

Example 17: Intrusion detection with an attribute. As opposed to the previous example, where

an external event was required to trigger an alert and reset the system operational mode, this

example demonstrates how the same behaviour can be achieved using a status attribute alert_status.

This attribute can be modelled as part of the managed system, where the true value corresponds

to an alert, and the false value represents no alert. Now, the policy mechanism does not need to

observe external events, but rather react to changes of the alert_status attribute.

policy pcomposed ::

repeat ((unless alert_status : pnorm) ; (aslongas alert_status : palert))

end

4.6 Policies and compositions 73

Example 18: Procurement. This example considers a development company, who wants to

outsource certain parts of their product development chain. The procurement process includes

four phases – namely, tender, contract, development, and acceptance. In the context of a highly

competitive business, it is important to ensure fairness among all stake-holders, such that none of

them gets an advantage over the others. In particular, it is important that only high-level information

about the product is available to potential contractors under the policy p− tender during the initial

tender process. Then, at the contracting stage more details are released to the selected contractor

under the policy p− contract. There are also circumstances, when subsidiaries are allowed to sub-

contract and involve third parties in the procurement process – therefore, it is also important to

differentiate between immediate subsidiaries and external sub-contractors based on their status.

This can be expressed using policies p− sub and p− ext, respectively. Eventually, one and the

same policy p−acc applies to all contractors at the end of the procurement process.

policy pcomposed ::

(unless contractorSelected() : p− tender);

(unless contractSigned() : p− contract);

(unless developmentComplete() :

if isSubsidiary(Contractor)

then p− sub

else p− ext);

p−acc

end

Table 4.5 SANTA policies and compositions.

74 Formal Underpinnings of the SANTA Policy Language

4.6.2 Parallel composition: policy union, intersection and difference

The second type of policy compositions supported by SANTA is the parallel composition.

With this type, multiple policies can be enforced simultaneously, in parallel to each other. In

its simplest form, policies can be combined by merging their rules, as shown in Table 4.6.

Example 19: Merging simple policies (union). This set of examples demonstrates how

policies can be composed in a parallel manner. The policy popen is an an open policy,

which only defines denials and allows anybody (S) to perform the action a on the object o,

by default. Similarly, the policy pclosed is a closed policy, which only states permissions

and allows the action a on the object o explicitly. Finally, it is possible to merge the two

policies to produce a parallel composition. The lengthy notation can also be shortened, as

it contains redundant statements.

policy popen ::

decide(S,O,A) when 0 : not deny(S,O,A)

end

policy pclosed ::

allow(S,o,a) when true

decide(S,O,A) when 0 : allow(S,O,A)

end

policy pcomposed ::

allow(S,o,a) when true

decide(S,O,A) when 0 : allow(S,O,A)

decide(S,O,A) when 0 : not deny(S,O,A)

end

policy pcomposed ::

allow(S,o,a) when true

4.6 Policies and compositions 75

decide(S,O,A) when 0 : allow(S,O,A) or not deny(S,O,A)

end

Example 20: Rule syntax vs semantics. As it follows from the examples above, the

intersection of the two simple policies is empty according to their syntax. Nevertheless,

the semantic of the two policies are essentially the same – that is, the intersection of the

policies is expected to be p1, which is equivalent to p2. Therefore, there is a requirement

to introduce an operator for policy compositions, which would also capture the semantics

of the policies. A potential way of achieving this functionality is to evaluate individual

policies constituting the policy composition independently from each other – that is, as

a self-contained entity. As a result, the policy composition (i.e., union, intersection, or

difference) is defined using a decision rule, which considers outcomes of the both policies

(please refer to Example 21).

policy p1 :: allow(S,O,A)when true end

policy p2 :: allow(S,O,A)when 0 : true end

76 Formal Underpinnings of the SANTA Policy Language

Example 21: Policy composition (intersection). This example represents an intersection

of two policies p1 and p2. To express this kind of composition, we use the ternary operator

par. The policy p3 in this example is defined by the outcomes of policies p1 and p2. It

defines the intersection of the two policies as an authorisation decision, which is made

only if both policies p1 and p2 agree on the outcome. The advantage of this approach

is that the meaning of the component policies as a hybrid combination of a positive, a

negative and a decision rule is preserved. The par operator is able to capture the semantics

of the compositional policy, which can then be referred to in the de-confliction policy that

defines whether decisions have to be made by the policy composition. The composition

preserves the semantics of the component policies. To remove the need to explicitly specify

a de-confliction, it is possible to omit the deconflict part of the par construct. In this case,

the example can be shortened to the one presented in Example 22.

policy p1 :: allow(S,O,A)when true end

policy p2 :: allow(S,O,A)when 0 : true end

policy p3 :: p1 parp2 deconflict { decide(S,O,A) when

p1.decide(S,O,A) and p2.decide(S,O,A) }

Example 22: Policy composition. This example illustrates a situation when the policy p1

will become effective after 10 time units, if the policy p2 also becomes effective. In this

example, the policy p3 is defined by the outcomes of the policies p1 and p2. The policy p3

defines the intersection of the two policies – an authorisation decision is only made if and

only if both policies p1 and p2 agree on the outcome.

4.6 Policies and compositions 77

policy p1 :: allow(S,O,A)when true end

policy p2 :: allow(S,O,A)when 0 : true end

policy p3 :: end

p2 par (10 : p3; p1)

Table 4.6 SANTA policy union, intersection and difference.

Existing limitation: insufficient support for data privacy In the previous section, we

demonstrated the capabilities of the SANTA language to handle various security- and access

control-related use case scenarios. As we have seen, using SANTA it is possible to define

and enforce policies governing access to bank accounts, electronic submission systems,

procurement systems, etc.

Moreover, as we have seen, the application scope of SANTA is not limited by specific

platforms – it can apply to relatively small-scale systems and large enterprise concurrent

systems with multiple users trying to access resources. Therefore, it is also expected to be

applied in the cloud context ‘out of the box’. As demonstrated by the use case examples, all of

them can be executed in a wide range of distributed systems, including cloud environments.

Cloud environments are complex virtualised environments, which are characterised with

large amounts of data being dynamically transferred in and out. Every single moment, cloud

users upload and download gigabytes of their personal data, and cloud-hosted software

handles terabytes of potentially sensitive business data. In these circumstances, it is essential

to ensure that these amounts of data remain secure and private. Data privacy and protection

have been seen among the key challenges for the comprehensive adoption of cloud services.

Admittedly, various techniques, such as data encryption, data replication and recovery,

have proven to be useful when data was lost or stolen by an unauthorised/malicious user.

However, what if would not escape from the owner’s control in the first place? In other

78 Formal Underpinnings of the SANTA Policy Language

words, it might make more sense to implement an efficient access control mechanism, which

would enable data privacy throughout the whole lifecycle of users’ data sets within cloud

environments. The life cycle of cloud-hosted data typically includes the following phases:

• Data is uploaded by the user over the network

• Data is stored on a cloud server

• Data is moved from one cloud server to another transparently to the user

• Data is downloaded by the user

Arguably, all of these phases are associated with a potential threat of an unauthorised

access to data. Accordingly, as far as cloud environments are concerned, it is essential

to ensure that data remains private at all times – one of the fundamental requirements for

creating a trusted cloud service and attracting customers.

However, as we have demonstrated with the list of use case examples, the SANTA

language at its current stage is incapable of addressing the pressing challenge of enabling

data privacy across multiple network locations, such as the cloud and the private network.

ITL is considerably good at handling the history of data access over a period of time, but

currently is not expressive enough to capture the location dimension, but location-aware data

privacy is currently beyond existing capabilities of the SANTA language due to the lack of

corresponding expressivity power and underpinning logical formalism.

In this light, it becomes important to employ an approach to effectively and efficiently

differentiate between various network locations, and – at the same time – combine it with the

existing access control policies. Such an approach, as described in the next sections, is based

on the logical notion of location that lies at the core of topological logic.

4.7 Formalising the notion of location and location transition 79

4.7 Formalising the notion of location and location transi-

tion

In their relevant work [75], Rescher and Garson investigated the notion of place, position, and

topology, and possible ways of capturing these concepts with a logical formalism. As a result,

the proposed a family of logical systems of so-called positional or topological logic, which

extend the traditional temporal logical systems with locative or place logic [96, 84]. In simple

words, the proposed topological logic enables differentiation between various positions, be it

a physical location (e.g., defined by Cartesian coordinates), or a virtual/network (e.g., defined

by its network IP address). When combined to the existing SANTA language and its ability

to express access control policies, this key feature of the topological logic has the potential

to facilitate the desired functionality of location-awareness and policy transition.

4.7.1 Theoretical underpinnings of Topological Logic

We start explaining the topological logic from an existing system of standard propositional

logic (such as, for example, ITL), which is underpinned spatially indefinite propositions –

that is, logical propositions are evaluated, regardless of any location or position. The goal is

to extend this system with support for the logical notion of location. To do so, we introduce

the parameterised operator Pα , where Pα(p) is to be interpreted as ‘the proposition p is

realised in the location α’, where α may be any element of a range of locations. The range of

locations, in these circumstances, is a very broad concept, which include any spatial positions

defined by any positional scheme (e.g., Cartesian coordinates, geographical coordinates, or

network IP addresses). For example, speaking in terms of the previously presented use case

scenario, the set of locations may consist of three different types, as summarised in Table 6.3.

Having defined the parameter α as a place, location, position, and other similar concepts,

the considered proposition Pα should be interpreted as a propositional function of this param-

80 Formal Underpinnings of the SANTA Policy Language

eter type. In other words, if α represents a location, then p is a spatially indefinite proposition

that can be broadly read as “something is happening in the location α”. Accordingly, the

following three fundamental axioms of the topological logic can be stated [75]:

Pα(∼ p)≡∼ Pα(p) (4.1)

Pα(p & q)≡ [Pα(p) & Pα(q)] (4.2)

(∀α)(Pβ [Pα(p)])≡ P□[(∀α)Pα(p)] (4.3)

Let us consider these two axioms one by one. Axiom 4.1 states that if not-p is true in

some location α , then it is not possible for p to be true in that location, and vice versa. In

simpler terms, the axiom suggests that a logical proposition p can only be either true or false

in the location α , whereas any other values, such as ‘undefined’, ‘infinite’, ‘inapplicable’,

etc. are not allowed. From this perspective, it is similar to the binary Boolean logic.2 From

an access control point of view, such a location-aware access control policy is dependent on

a location, and, when evaluated, is expected to return either true or false.

Axiom 4.2 asserts that if a conjunction of two different propositions p and q is true in

some location α , then each of the conjuncts is also true at that specific location, and vice

versa. In access control terms, the axiom implies that if two policies hold in a specific

location, then each of them independently also holds in that location.

Next, it is also necessary to enable quantification of the parameter α in Pα , so as to enable

the sufficient power of the described topological logic. So far, for Axioms 4.1 and axiom2,

we supposed an initial universal quantifier with respect to α . In a similar manner, we suppose

that every asserted proposition is to be asserted universally with respect to its (otherwise

2It is worth noting that if the latter condition was dropped and a third truth-value would be allowed, the
equivalence connective of Axiom 4.1 would need to be replaced with an implication.

4.7 Formalising the notion of location and location transition 81

unqualified) parameters. Consequently, given the usual machinery of quantificational logic,

the Axiom 4.3 can be derived.

Given that parameter values are natural numbers, Axiom 4.3 can be further extended for

universal quantification as a potentially infinite conjunction of individual propositions, the

left-hand side of Axiom 4.3 can be expressed as:

Pβ (P0(p)) & Pβ (P1(p)) & Pβ (P2(p)) & ...

Similarly, its right-hand can be represented as:

Pβ [P0(p) & P1(p) & P2(p) & ...]

According to Axiom 4.2, these two extended parts are essentially equivalent.

Taken together, the presented three main Axioms 4.1, 4.2, and 4.3 underpin the topological

logic and will be the main reference point for implementing the location-aware functionality

in the context of the proposed approach.

4.7.2 Combining ITL/SANTA with Topological logic

By offering the notion of location α , the topological logic provides a way of combining

multiple propositions p (e.g., expressed in ITL) into a compositional set of policies, where

some propositions hold in one location, whereas some other propositions hold in another

location. In this context, a proposition p is represented by a SANTA access control policy,

whereas the set of possible locations α’s may represent network locations.

More specifically, by defining the exhaustive list of network locations as α’s it becomes

possible to differentiate between various locations (i.e., personal computer, enterprise domain,

or public network), and apply corresponding access control policies depending on a specific

location. This combination of ITL with Topological Logic can be generally represented

82 Formal Underpinnings of the SANTA Policy Language

as PA(p), where the p is a proposition in ITL representing a SANTA policy (such as the

access control policy examples in Section 4.6), and PA is a proposition in Topological Logic

representing physical and logical locations, in which these policies will apply. The three

fundamental Axioms 4.1, 4.2, and 4.3 of Topological Logic will also apply. For example,

taking Example 19 as an illustrative case, we show below how it can be enhanced with

support for location-awareness.

Example 19 (Re-visited): Simple access control policies with location-awareness.

The original set of examples demonstrated how two simple policies popen and pclosed can be

composed in a parallel manner. The enhanced policies PA(popen) and PB(pclosed) also include

topological propositions, which state that the policies should be evaluated positively and

actions A on the object O are allowed, only if subject S is in locations A and B, respectively.

Similar to the original example, the two policies can be merged into PA,B(pcomposed), which

combines the two location-aware policies together.

policy PA(popen) ::

decide(S,O,A) where S in A and when 0 : not deny(S,O,A)

end

policy PB(pclosed) ::

allow(S,O,A) when true

decide(S,O,A) where S in B and when 0 : allow(S,O,A)

end

policy PA,B(pcomposed) ::

allow(S,O,A) when true

decide(S,O,A) where S in A and when 0 : allow(S,O,A)

decide(S,O,A) where S in B and when 0 : not deny(S,O,A)

end

4.8 Summary 83

4.8 Summary

In this chapter, we familiarised the reader with the SANTA policy language and potential

application scenarios, in which it can be used. One of the main advantages of the language is

its support for the temporal and sequential constraints – that is, it is possible to define how

various subjects request access to objects one after another, or when the history of previous

access actions is taken into consideration. These application scenarios, however, mainly

concern the ‘traditional’ notion of access control and do not consider the dynamic nature

of cloud environments, where data and users might migrate from one security domain to

another, and, therefore, access control requirements might change accordingly with respect to

the changing physical or logical locations. As a way of supporting such scenarios, the chapter

introduced Topological Logic and demonstrated how it can be integrated with SANTA. In the

next two chapters, we explain how this issue can be potentially addressed by our proposed

approach by first presenting a high-level design of the framework and then proceeding with

implementation details.

Chapter 5

Access Control Policy Framework Design

Objectives:

• To provide a general overview of the proposed policy framework.

• To describe the architecture of the policy framework.

• To explain how the policy framework components interact.

• To describe the concepts of location, location-awareness, and policy transition.

5.1 Introduction

A security policy is the basis of an organisation’s information security. Many organisations

have information security and access control policies in place to ensure that their information

is always secure and remains protected. However, having a security policy document in itself

is not enough. It is very important to ensure that the contents are actually implemented and

enforced to achieve truly effective access control and security. Given the rapidly increasing

86 Access Control Policy Framework Design

amounts of data to be analysed and policies to be evaluated, this process needs to be automated

as much as possible. This means that there has to be a dedicated software, which would

handle the access control tasks in a timely, reliable and efficient manner.

A common and established practice to implement such an access control software is to rely

on a modular architecture and implement several loosely-coupled components. Accordingly,

control architectures often distinguish policy enforcement points and policy decision points.

Policy enforcement points intercept access to protected application resources and request

authorisation decisions from a policy decision point. A policy decision point evaluates

authorisation decision requests relative to a security context and returns the evaluation

result to the policy enforcement point. If the evaluation result indicates sufficient privileges

the policy enforcement point allows the initial requester to access the protected resource,

otherwise access is blocked.

This section will further extend this preliminary glimpse on the proposed access control

framework. The section is dedicated to the description of the high-level architecture, which

is designed in a modular manner, and each element’s role and functionality are explained in

details with respect to a sample use case scenario, thus demonstrating the existing challenges

and how they can be addressed by the proposed solution.

5.2 Sample use case scenario: a file storage service

Before proceeding with an actual explanation and discussion of the proposed architecture, it

is worth presenting a sample use case scenario, which will serve to explain the architecture.

Please note that the scenario is intended to better reflect and highlight some features of the

proposed solution, and therefore is correspondingly simplified.

The use case scenario focuses on heterogeneous (hybrid) clouds – complex environments,

where data may be transferred between various administrative domains and network locations.

Therefore, they require advanced access control mechanisms to be put in place. Main aspects

5.2 Sample use case scenario: a file storage service 87

making traditional security mechanisms less applicable to such cloud scenarios are the

following [25]:

• Nature of the cloud: because of the cloud’s intrinsic characteristics, such as dynamic

scalability, virtualisation and service abstraction, and geophysical location transparency,

hosted software systems have no fixed underlying infrastructure (due to frequent virtual

machine migrations) and security boundaries. In these circumstances, it becomes

difficult to identify and isolate a single physical resource, which was compromised or

put the system at risk in any other way. In the case of hybrid clouds, these issues are

taken to the next level of complexity, as there are more than one cloud party involved

in such a scenario.

• Multiple parties with no agreed security policy: as suggested by the service-oriented

nature of cloud computing, various levels of a cloud offering may belong to different

service providers (e.g., many PaaS providers use Amazon Web Services’ infrastructure

as a service). In these circumstances, there might be a conflict of interests between var-

ious stakeholders, as there is no unified security framework applicable to all interested

parties.

• Mutliple users and a single physical host: the (hybrid) cloud relies on the virtualisation

technology, enabling multiple tenants to share one and the same physical space. This

opens new opportunities for unauthorised access to private resources.

• The scale and complexity of cloud-based systems: in the age of Big Data, avalanches

of data are being generated, processed, and stored in the cloud [35, 31], which also

means that corresponding security mechanisms need to cope with similar amounts of

data to maintain a stable level of security.

88 Access Control Policy Framework Design

A representative example, illustrating the listed challenges, are common file sharing

cloud services, such as Dropbox.1 Dropbox is a file hosting service that offers cloud storage,

file synchronization, personal cloud, and client software.

Dropbox creates a special folder on the user’s computer, the contents of which are then

synchronised to Dropbox’s servers and to other computers and devices that the user has

installed Dropbox on, keeping the same files up-to-date on all devices. Dropbox uses a

freemium business model, where users are offered a free account with a set storage size,

with paid subscriptions available that offer more capacity and additional features. Dropbox

offers computer apps for Microsoft Windows, Apple MacOS, and Linux computers, as well

as mobile apps for iOS, Android, and Windows Phone smartphones and tablets.

The Dropbox software enables users to drop any file into a designated folder. The file is

then automatically uploaded to Dropbox’s cloud-based service and made available to any

other of the user’s computers and devices that also have the Dropbox software installed,

keeping the file up-to-date on all systems. When a file in a user’s Dropbox folder is changed,

Dropbox only uploads the pieces of the file that have been changed, whenever possible.

When a file or folder is deleted, users can recover it within 30 days. Dropbox also offers

synchronisation support over a LAN, where, instead of receiving information and data from

the Dropbox cloud servers, computers on the local network can exchange files directly

between each other, potentially significantly improving synchronisation speeds. Dropbox

originally used Amazon’s S3 storage system to store user files, but between 2014 and

2016 they gradually moved away from Amazon to use their own hardware, referred to

as ‘Magic Pocket’.2 Dropbox uses SSL transfers for synchronisation and stores the data

via AES-256 encryption. The functionality of Dropbox can be integrated into third-party

applications through an application programming interface (API). Dropbox prevents sharing

of copyrighted data, by checking the hash of files shared in public folders or between users

1https://www.dropbox.com/
2https://blogs.dropbox.com/tech/2016/05/inside-the-magic-pocket/

https://www.dropbox.com/
https://blogs.dropbox.com/tech/2016/05/inside-the-magic-pocket/

5.2 Sample use case scenario: a file storage service 89

against a blacklist of copyrighted material. This only applies to files or folders shared with

other users or publicly, and not to files kept in an individual’s Dropbox folder that are not

shared.

It is worth noting that Dropbox has already been criticised for its insufficient security and

data privacy facilities. For example, in June 2011, an authentication problem let accounts be

accessed for several hours without passwords. In June 2013, there was a leak of multiple

government documents with information that Dropbox was being considered for inclusion

in the National Security Agency’s PRISM surveillance program. Next, 68 million Dropbox

account passwords leaked on the Internet in August 2016. These are just a few examples

of the issues Dropbox have been facing recently, and the actual list of incidents might be

somewhat longer.

As it follows from this description, the Dropbox service is designed to operate in a mixed

environment, which includes a public cloud (for global access and file sharing), private local

network (for enterprise access and file sharing), and local folder on an end device (for local

storage and access). Accordingly, a resource can possibly be located in any of the three

locations (or replicated across all of them), each of which is characterised with a different set

of access control requirements. This way, whenever a user requests an access to a Dropbox

file, there has to be an evaluation procedure, which will take into account such metadata as

the user’s attributes (e.g., location and access rights), the resource’s attributes (e.g., location

and sharing permissions), and access control policies currently in place.

Taken together, this consideration outlines the envisioned access control mechanism,

which is supposed to intercept incoming access requests and be able to differentiate between

various physical and logical locations so as to apply different policies based on that. Accord-

ingly, in the next sections of this chapter we first explain the general conceptual architecture

of the proposed solution, and then extend it with the notions of location and policy transitions

– key concepts, underpinning the whole proposed research.

90 Access Control Policy Framework Design

5.3 Architecture of the access control policy framework

As was previously discussed, the topic of access control is not novel and has been attracting

researchers’ attention for several decades. Accordingly, in our work we aimed to build upon

this existing work so as not to ‘re-invent the wheel’ wherever possible. Accordingly, the main

point of reference in the context of this research was the widely adopted Attribute-Based

Access Control, and – more specifically – the software reference model, suggested by the

National Institute of Standards and Technology (USA) [50].

As we have already discussed throughout this document, a security (i.e., access control)

policy is the fundamental building block of an organisation’s IT security. Many companies

have information security policies in place to ensure that their sensitive business information

remains secure and protected at all times. Admittedly, simply defining security policies and

storing them as a set of plain documents, however, is not enough to maintain a stable and

high level of information protection and security. It is very important to ensure that the

contents of this document are actually implemented to be effective. In other words, there

has to be a mechanism, which would – on one hand – enforce these security (i.e., evaluate

incoming data against this predefined set of policies), and – on the other – monitor the system

context to ensure that policies to be enforced are indeed valid and match the current situation.

From this perspective, this organisation is akin to the three branches of government, as

adopted in many countries. More specifically, the legislative power is represented by the

set of security/access control policies, whereas the executive and the judicial powers are

represented by a corresponding enforcement mechanism, responsible for putting the policies

in action and evaluating them as required.

Accordingly, the proposed approach to implementing access control in hybrid cloud

environments is also based on a modular architecture. Firstly, it is composed of a declaratively-

defined access-control policy base. It also includes an enforcement mechanism – a software

component responsible for evaluating the policy base against the current situation. The

5.4 Conceptual architecture of the proposed access control policy framework 91

enforcement mechanism, in its turn, is itself a modular component, which is composed of

several other conceptual elements, as it will be further explained below.

5.4 Conceptual architecture of the proposed access control

policy framework

Having introduced the target use case scenario, we now proceed with an explanation of

the conceptual architecture of the policy framework. For demonstration purposes, this

explanation will specifically focus on the use case scenario at hand – in practice, the range

of application scenarios is expected to be much wider. Schematically, the architecture is

depicted in the diagram in Figure 5.1.

Fig. 5.1 A high-level architecture of the proposed access control policy framework.

92 Access Control Policy Framework Design

The proposed access control framework (depicted as the central element in Figure 5.1)

consists of several main elements. These elements are explained in more details below.

5.4.1 Policy Administration Point

Policy Administration Point is a software component that is responsible for managing policies.

Typically, it is represented by a user interface for creating, managing, testing, and debugging

access control policies, and storing them in the appropriate repository – i.e., a Policy Retrieval

Point. The main task of a PAP is to provide support for editing, testing and evaluating policies

to ensure they meet the intended requirements.

5.4.2 Policy Enforcement Point

A Policy Enforcement Point (PEP) enforces policy decisions in response to a request from a

subject requesting access to a protected object. It is responsible for intercepting incoming

access requests to a specific cloud-based resource (e.g., a document, a file, a database, etc.),

as well as gathering information about the current context, such as the resource location, the

location from where the request was generated, user credentials, current time, etc. The PEP

is expected to be deployed on a network device (e.g., a gateway, a router), on which policy

decisions are carried out or enforced. From this perspective, it can be seen as a component

that serves as the gatekeeper and the ‘front door’ to a digital cloud-based resource. When a

user tries to access a file or other resource on a computer network or server, the PEP will

describe the user’s attributes to the Policy Information Point (explained below), and transfer

the request to a Policy Decision Point (explained below), which is actually responsible for

taking an access control decision. The PEP is usually specific to an application and cannot

be re-used for different applications. Briefly, the functionality of the PEP can be summarised

as follows:

1. The PEP receives the incoming access request.

5.4 Conceptual architecture of the proposed access control policy framework 93

2. The PEP extracts subject and object attributes.

3. The PEP uploads these attributes to a Policy Information Point.

4. The PEP passes the request to a Policy Decision Point.

5. The PEP receives a decision response from the Policy Decision Point.

6. The PEP enforces the decision by either permitting access or denying access to the

request.

5.4.3 Policy Information Point

To compute access decisions, the Policy Decision Point must have information about the

attributes of both subject and object. Simply put, the system needs to know who exactly is

trying to access a resource, and what kind of resource it is. This information is provided by a

Policy Information Point (PIP), which is a software component that serves to store attributes

received from the PEP and to retrieve these attributes when required by the Policy Decision

Point. This information is required during the policy evaluation process to make a policy

evaluation decision.

5.4.4 Policy Decision Point

A Policy Decision Point (PDP) is a software component, responsible for the actual evaluation

of policies, it makes authorisation decisions for itself or for other system entities that request

such decisions. It computes access decisions by evaluating the applicable access control

policies with respect to the subject and object attributes, which are retrieved from the Policy

Information Point. In other words, the PDP makes the determination of whether or not to

authorise an incoming request, based on available information (i.e., attributes) and applicable

security policies.

94 Access Control Policy Framework Design

5.4.5 Policy Retrieval Point

This is the actual location, where access control policies are stored. It is important to make

this location both easily-accessibly and well-protected, as it contains the crucial knowledge,

underpinning the security of the whole system. Typically, access authorisation policies are

stored as records in a relational database, or semi-structured documents in the file system.

5.5 Main Benefits and Features

It is worth noting that the PAP, PEP, PIP, PDP, and PRP functionality can be either distributed

or centralised, and may be physically and logically separated from each other. For example,

an enterprise company could establish a centrally-controlled enterprise decision service that

evaluates attributes and policy, and issues decisions that are then passed to the PEP. This

way, all the points are deployed on a single machine. This allows for central management

and control of subject attributes and policies. Alternatively, local organisations within the

enterprise may implement separate physical or logical locations, which are used to deploy

individual elements of the access control system.

The following potential benefits of the proposed architecture can be identified:

• A Policy Enforcement Point is a single point of access: this means that all incoming

requests will pass through this component, and not a single request will pass unnoticed.

This way, an increased level of system security and access control is achieved. Since

any request is intercepted by the PEP, an unauthorised request is never expected to

get to an application, service or data. Therefore, it is much harder to compromise the

application. The same is not true if the PEP and PDP are essentially implemented in

the application’s security model.

• Policies are decoupled from applications and services: defined in a declarative manner,

policies are stored in the PRP and can be managed independently of applications and

5.6 Sample policy enforcement workflow 95

services, which can therefore concentrate on providing business value. Moreover,

adding new, modifying existing, or deleting old policies is simplified: these activities

can be done, so that changes are written to the corresponding component (i.e., the PRP)

in a seamless and transparent manner via the PAP.

• The standardised modular architecture also assumes that some of the elements can

be re-used: this means that already-existing, optimised and reliable solutions can

be applied to implement particular functions. For example, a common approach

to implement the PRP is to employ a relational database. Since there are no strict

requirements, a MySQL database, for example, can be replaced by an Oracle database.

Moreover, having this kind of strict separation of concerns between individual elements

improves the overall structure of the target system. Auditing, logging or debugging of

individual elements is expected to be much simpler than performing these activities

across many disparate applications and services. In other words, by being aware of

what functionality is implemented by a specific point, it is much easier to track down

potential issues and exceptions.

5.6 Sample policy enforcement workflow

Having explained the proposed architecture, we now proceed with an explanation of how the

Dropbox use case scenario is expected to be handled by the presented solution.

1. The security administrators, by interacting with the PAP, are able to define (create/-

modify/delete) access control policies applicable to Dropbox documents when they

are stored on a local machine, on the enterprise network, or on the public cloud server.

The policies are then stored in the PRP for later use.

2. The client sends a request to access a protected application resource (i.e., a Dropbox-

hosted file).

96 Access Control Policy Framework Design

3. The PEP intercepts the request to the resource.

4. The PEP extracts relevant attributes from the request (the user’s IP address, location,

user credentials, etc.) and writes them to the PIP.

5. The PEP retrieves relevant attributes of the requested resource (the resource’s IP

address, location, access rights and sharing permissions, etc.) and writes them to the

PIP. The location can be either the local enterprise network or the public cloud.

6. The PEP routes the incoming request to the PDP for evaluation.

7. The PDP receives the incoming request, retrieves relevant attributes for the corre-

sponding user and resource, as well as the access control policies associated with the

resources from the PRP.

8. Taking into account the user and resource attributes (which represent the security

context in this case), the PDP evaluates the policies and generates an authorisation

decision, which is either positive or negative.

9. The PDP sends the authorisation decision to the PEP.

Based on the authorisation decision, the PEP decides whether to grant the incoming

request with access to the resource or not. By default, if the response is positive, the PEP

filters passes, and the original client request for the resource is authorised, and the policy

flow continues on the success path.

5.7 Location and Location-awareness

The core element of the proposed access control framework is the set of access control

policies, which are defined by security administrators and stored in the PRP. The policies

are expected to be defined using the SANTA policy language – a declarative language, such

5.7 Location and Location-awareness 97

that potential modifications of the policy base would take place in a transparent and seamless

manner.

However, as it was previously demonstrated by the use case scenario, heterogeneous

cloud systems are complex virtualised environments, characterised by large amounts of data

being dynamically transferred in and out. Every single moment, cloud users upload and

download gigabytes of their personal data, and cloud-hosted software handles terabytes of

potentially sensitive business data. In these circumstances, it is essential to ensure that these

amounts of data remain secure and private in all locations and at all times. This means that

the SANTA language needs to be extended with the notion of location, as explained in the

previous Chapter and further detailed below.

“Location-awareness, the ability to determine geographical position, is an emerging

technology with both significant benefits and important privacy implications for users of

mobile devices such as cell phones and PDAs” [63]. Location can be determined either

i) internally by devices, or ii) externally by systems and networks with which devices

interact. The former case is underpinned by the advances in the embedded technologies

and microelectronics, which enabled equipping portable mobile devices with the Global

Positioning System (GPS). This way, portable devices are aware of their precise geo-physical

location, and, as a result, the current country and region. The latter case is realised through

the WHOIS protocol and querying a corresponding online service [40]. Each of the two ways

(or a combination of both) provides relatively precise information on the current location –

both physical (i.e., country and region) and logical (i.e., networks and subnets) – of a device,

thus paving the way for using this information in a wide range of applications and services.

Examples of such applications and services include navigation systems, social networks, file

hosting systems, online games, etc.

The proposed notion of ‘location’ is illustrated by Figure 5.2, which extends the traditional

established concepts of the access control model (i.e., subject, object, action, and purpose).

98 Access Control Policy Framework Design

According to this view, the policy enforcement mechanism, when evaluating a policy, needs

to take into consideration not only who requests access to data, but also where he/she and the

requested data are currently located.

Fig. 5.2 Conceptual architecture of an access control policy, enhanced with the notion of
location.

5.8 Policy Transition

Understanding the concept of location is not yet enough to fully enable the differentiated

(i.e., location-aware) access control. The access control mechanism also needs to detect

situations, when policy subjects or objects change their locations, thus requiring the evaluation

mechanism to act accordingly. This presented concept of ‘policy transition’ (i.e., change of

access control policies from one to another, based on the current location of the subject or

the object) is a key concept of the proposed solution.

One potential method of implementing the location-based policy transition is through

compositional policies [55, 68]. A compositional policy is a policy, which allows to handle

sequential and parallel composition of atomic rules. These rich expressivity and flexibility,

5.9 Summary 99

however, come at a cost – there is a pressing requirement of handling and resolving potential

conflicts when two or more simple rules are combined into a compositional policy. In any

case, a compositional policy can include several ‘atomic’ rules, each of which concerns only

a single aspect (i.e., data location) – for example, a policy may contain several rules, which

specify how to handle data access when information is i) in the private network, ii) transferred

over the public network, iii) is in the public cloud. From the policy enforcement point of view,

however, the challenge is to decide when to change from one individual policy to another

so as to meet the current location’s requirements. To achieve this goal, it is expected that

the proposed system is able to continuously monitor network locations of all the involved

parties, and apply corresponding access control policies for different network locations, as

well as to be able to switch from one policy to another following a change in the monitored

network locations.

5.9 Summary

Access control policies are essential plans of action, which enable security administrators to

control and evaluate who can access information, how long to retain information and how

effectively individuals are complying with the policies themselves. In complex heterogeneous

environments, it is often required to enable access control based and enforce corresponding

policies based on the current location (both physical and logical) of the user and the requested

resource. Accordingly, in this chapter we provided an overview of the conceptual architecture

of the future access control software framework. The proposed design is based on the

NIST’s model of attribute-based access control and partially re-uses its reference architecture

for implementing automated access control in distributed network environments. Among

the main benefits of the proposed architecture we can distinguish its modularity, increased

security due to a single-point access, and a declarative approach to defining the policies. The

100 Access Control Policy Framework Design

latter is achieved by means of an existing policy language SANTA, which is further extended

with the notions of location, location-awareness, and policy transition.

Chapter 6

Proof of Concept Through a Case Study

Objectives:

• To prove the viability of the chosen approach.

• To present a relevant case study focusing on access control requirements and highlight-

ing the need for location-aware policy enforcement.

• To demonstrate how the proposed approach can address the outlined use case scenario

requirements.

• To present the design and implementation details of the proposed system.

6.1 Introduction

This chapter is intended to provide the reader with a more in-depth understanding of the

proposed approach through a case study. The case study is based on a real-world use case

scenario, which – on the one hand – fully demonstrates the potential of the presented approach,

102 Proof of Concept Through a Case Study

and – on the other – is tailored for clarity, making it easy to understand. Accordingly, the

chapter first introduces the reader to the use case scenario, highlighting the main relevant

aspects of it. Next, it summarises access control requirements, associated with the use case

scenario focusing on location transition, and outlines – in a high-level manner – desired

features for an access control policy enforcement. Finally, these requirements and features

are captured in a more formal manner using a logical formalism to enable location-aware

policy enforcement.

6.2 Use case scenario: a corporate cloud storage service

Taking the Dropbox scenario presented in the previous chapter as a starting point, we now

present and explain a case study that will serve to prove the viability of the overall approach

through multiple access control requirements to be addressed. Please note that the scenario is

intended to better reflect and highlight some features of the proposed solution, and therefore

is correspondingly streamlined.

The target scenario focuses on a corporate file sharing system adopted by a large enterprise

company. Employees of the company are expected to use the file sharing system to store and

share work-related resources through a corporate network. Accordingly, there are three main

file storage locations involved:

• Local storage: files are stored locally on an employee’s personal computer or a personal

virtual drive. In both cases, only the creator/owner of a file is expected to manipulate

and manage this file. Typically, files remain in a local storage upon creation, and are

supposed to be shared to the public storage at some point (provided they are work-

related and are not intended for personal use only). Running a local storage on an end

device, such as a personal computer, a tablet, or a smartphone, requires installing a

client application that takes care of the network communication, user authentication,

6.2 Use case scenario: a corporate cloud storage service 103

sharing, etc. in a manner similar to the existing file sharing systems, such as Dropbox,

Google Drive, or Microsoft One Drive. From a software version control perspective,

the local storage can be thought of as a local repository, where software developers can

freely experiment with various code modifications before merging the tested updates

to the public repository.

• Internal corporate storage: at some point, system users may decide to share their files

with the rest of their colleagues by uploading files to a private network-accessible

location within the enterprise network domain. Such a common location is expected

to be deployed on a considerably powerful server machine, equipped with sufficient

storage and networking capabilities so as to handle large amounts of information being

accessed simultaneously from various locations. Similar to local machines, the server

machine is also running the file sharing software responsible for file synchronisation,

user authentication, networking, etc. Further drawing parallels with software version

control system, the central server machine can be seen as a central repository, where

source code updates are committed for sharing with the rest of collaborating peer

developers.

• External corporate storage: whenever the capacities of the internal storage server are

exhausted, the file sharing system may extend its space by pushing information to an

external public cloud, following the principles of the so-called ‘cloud bursting’, thereby

creating a common virtual space, transparent to the user. The deployed file sharing

system also allows accessing the internal repository and personal machines from

outside the network enterprise, e.g., for employers working from home or travelling on

business trips. Using personal credentials, users can remotely access either the central

repository or their personal machines.

104 Proof of Concept Through a Case Study

The use case scenario deals with a heterogeneous (hybrid) environment, where personal

information and files may be transferred between various administrative domains and network

locations. Therefore, they require advanced access control mechanisms to be put in place.

The system, however, is equipped with a rather simplistic role-based access control

functionality, which only takes into consideration the credentials of a user and corresponding

access rights to determine if he/she is able to access and manipulate a file. That is, the existing

access control does not consider the actual location of the requested resources (i.e., objects)

and the users requesting access to those resources (i.e., subjects). Therefore, this approach is

not flexible enough to apply differentiated, location-specific access control policies, which

would enable a higher level of protection whenever a ‘riskier’ and more sensitive location

is involved – on the one hand, and better resource utilisation by not applying unnecessarily

complex policies when the risk is minimal – on the other.

Accordingly, to further explain and demonstrate how this kind of location-aware access

control functionality can be implemented to complement the existing system, the presented

scenario is segmented into atomic access control requirements.

6.3 Access control requirements

As it follows from the description of the use case scenario, the enterprise file sharing service

is designed to operate in a mixed environment, which includes:

• A public cloud (for global access and file sharing).

• A private local network (for enterprise access and file sharing).

• A local folder on an end device (for local storage and access).

Accordingly, a resource can possibly be located in any of the three locations (or replicated

across all of them), each of which is characterised with a different set of access control

6.3 Access control requirements 105

Table 6.1 Access control actions and requirements.

Action Description

ReadObject An access control subject is allowed to
access a remote resource in a read-only
mode, with possibility of modifying it.

WriteObject An access control subject is allowed not
only to read a resource, but additionally
modify it (e.g., edit, delete, rename, etc.).

CreateObject An access control subject is allowed to
create and upload new resources.

requirements. This way, whenever a user requests an access to a Dropbox file, there has

to be an evaluation procedure, which will take into account such metadata as the user’s

attributes (e.g., location and access rights), the resource’s attributes (e.g., location and sharing

permissions), and access control policies currently in place.

Taken together, these considerations outline the envisioned access control mechanism,

which is supposed to intercept incoming access requests and be able to differentiate between

various physical and logical locations so as to apply different policies based on that. Accord-

ingly, in the next sections of this chapter we first explain the general conceptual architecture

of the proposed solution, and then extend it with the notions of location and policy transitions

– key concepts, underpinning the whole proposed research.

More formally, these main system requirements in the context of the presented use case

outline the main principles for a corresponding access control policy to be put in place, as

summarised in Table 6.1.

Next, it is also important to differentiate between various types of subjects accessing

remote resources, as summarised in Table tab:subjects

Most importantly, it is crucial to differentiate between three types of network location,

involved in the current scenario, as summarise din Table 6.3.

106 Proof of Concept Through a Case Study

Table 6.2 Access control subjects.

Subject Description

Resource Owner (RO) This is a user who owns a specific resource
and originally creates it in his/her own per-
sonal working space, after which the re-
source is uploaded to the private corporate
network and a public cloud.

Internal User (IU) This is a user possessing necessary creden-
tials to access common shared resources
both from within and outside the organisa-
tion and its network.

External User (EU) This is a user who does not belong to the
organisation (i.e., does not have official
credentials, such as email and password)
and is trying to access the resource from
outside the organisation and its network
domain.

Table 6.3 Access control locations.

Location Description

Local Machine (LM) This is the local machine of the resource
owner, where files are initially created to
be further uploaded to the private corpo-
rate network and a public cloud.

Internal Network (IN) This is the trusted private network domain,
where company employees can share their
resources.

External Network (EN) This is any other network location – i.e.,
external to the enterprise network – from
where users can access shared resources.

6.3 Access control requirements 107

Table 6.4 ReadObject access control matrix and location-aware access control policy defini-
tion.

Local Machine
(LM)

Internal Network
(IN)

External Network
(EN)

Resource Owner (RO) Allow Allow Allow

policy PLM,IN,EN(pReadOb ject) ::

decide(RO,O,A) where RO in LM or RO in IN or RO in EN : allow(RO,O,A)

end

Internal User (IU) Deny Allow Allow

policy PLM,IN,EN(pReadOb ject) ::

decide(IU,O,A) where IU in IN or IU in EN : allow(IU,O,A)

decide(IU,O,A) where IU in LM : deny(IU,O,A)

end

External User (EU) Deny Deny Deny

policy PLM,IN,EN(pReadOb ject) ::

decide(EU,O,A) where EU in LM or EU in IN or EU in EN : deny(EU,O,A)

end

These three types of parameters constitute a matrix of corresponding access rights that

define whether a specific user can perform a specific operation on a specific resource from a

specific network location, as summarised in Tables 6.4, 6.5 and 6.6.

Using these matrices, it is becoming possible to distil the following main access control

principles that will be addressed in the presented use case:

• Principle 1: when a resource is still located on the owner’s personal machine, no one

but the owner himself can only access it for read, write and create operations.

• Principle 2: the resource owner has all rights to read and write a resource from any

network location.

108 Proof of Concept Through a Case Study

Table 6.5 WriteObject access control matrix and location-aware access control policy defini-
tion.

Local Machine
(LM)

Internal Network
(IN)

External Network
(EN)

Resource Owner (RO) Allow Allow Allow

policy PLM,IN,EN(pWriteOb ject) ::

decide(RO,O,A) where RO in LM or RO in IN or RO in EN : allow(RO,O,A)

end

Internal User (IU) Deny Allow Deny

policy PLM,IN,EN(pWriteOb ject) ::

decide(IU,O,A) where IU in IN : allow(IU,O,A)

decide(IU,O,A) where IU in LM or IU in EN : deny(IU,O,A)

end

External User (EU) Deny Deny Deny

policy PLM,IN,EN(pWriteOb ject) ::

decide(EU,O,A) where EU in LM or EU in IN or EU in EN : deny(EU,O,A)

end

6.3 Access control requirements 109

Table 6.6 CreateObject access control matrix and location-aware access control policy
definition.

Local Machine
(LM)

Internal Network
(IN)

External Network
(EN)

Resource Owner (RO) Allow Allow Allow

policy PLM,IN,EN(pCreateOb ject) ::

decide(RO,O,A) where RO in LM or RO in IN or RO in EN : allow(RO,O,A)

end

Internal User (IU) Deny Allow Deny

policy PLM,IN,EN(pCreateOb ject) ::

decide(IU,O,A) where IU in IN : allow(IU,O,A)

decide(IU,O,A) where IU in LM or IU in EN : deny(IU,O,A)

end

External User (EU) Deny Deny Deny

policy PLM,IN,EN(pCreateOb ject) ::

decide(EU,O,A) where EU in LM or EU in IN or EU in EN : deny(EU,O,A)

end

110 Proof of Concept Through a Case Study

• Principle 3: an internal user can create, read and write to a resource from within the

enterprise network, and only read from an external public network.

• Principle 4: an external user is always restricted from creating, reading, and writing

operations on a resource.

As it follows from these requirements, it becomes important to employ an approach to

effectively and efficiently differentiate between various network locations, and – at the same

time – combine it with the existing access control policies. Such an approach is expected:

• To be able to detect the current physical/logical location, thus implementing the

location-awareness.

• To be able to retrieve and apply corresponding access control policies according to the

current physical/network location.

• If the location changes, then apply different policy, thus implementing policy transition.

Such an approach, as described in the previous Chapter, is based on the logical notion of

location that lies at the core of topological logic.

A simplified illustration of this proposed approach is depicted by the flow chart diagram

in Figure 6.1. First, an external access request is generated and intercepted by the proposed

system. Next, the system extracts subject and object attributes, including their network

locations. It then checks with its internal storage if there are location-aware policies – i.e.,

policies that hold for specific locations – in its internal repository. If no such policies

are found – i.e., an external network location has not been previously registered with the

system – an additional user identity check may be invoked (e.g., a two-factor authentication

using emails or SMS).1 Same applies to cases when a new employer’s laptop has not been

registered in the network yet and is therefore not recognised as a trusted location. This
1A potential use of the two-factor authentication goes beyond the scope of the proposed research effort, and

we rely on the existing technologies to implement these features if required.

6.4 Case Study Description 111

additional check is done to ensure that a legitimate user, albeit attempting to access the

access from an unknown remote location/device, will not be rejected and will be able to

perform his/her regular working duties. If matching location-aware policies exist, the system

checks if the current location of the subject satisfies any of them. If yes, the system then

retrieves the referenced SANTA access control policies and evaluates them using the existing

SANTA enforcement mechanism, which results in either access being granted or refused. If

the location does not match any of the location-aware policies, the access request is rejected

for security reasons.

6.4 Case Study Description

This section presents a simple running use case scenario based on the previously described

corporate file sharing system and the classification of network locations, users, and their

access rights summarised in Tables 6.4,6.5, and 6.6.

Accordingly, the suggested scenario assumes that a user – an employer of the company

owning the file sharing system – first creates a file on its local laptop while working on the

private corporate network, thereby becoming the ResourceOwner. After editing the file, the

user uploads it to an internal corporate server located on the same private network for sharing

with the rest of users. After some time, the same user attempts to access the shared file for

some further modifications. He first does so while still at work in the office (i.e., from within

the private network using a trusted device), and then from home (i.e., from outside the private

network, yet a trusted network location, using a trusted device). Also, we assume that at

some point the employer travels on a foreign business trip; he first attempts to access the

same shared file using his own laptop (i.e., from an untrusted location outside the corporate

private network using a trusted device) and then using a public PC located in the hotel the

user is currently staying in (i.e., from an untrusted location outside the corporate private

network using an untrusted/not registered device).

112 Proof of Concept Through a Case Study

Fig. 6.1 Proposed algorithm combining location-aware policies with SANTA access control
policies.

6.4 Case Study Description 113

Similar to the ResourceOwner, another employer of the company – i.e., the InternalUser

– also attempts to access the shared file first from the private corporate network, then from

home, and finally from abroad while on a business trip. Potentially, there could have also

been a third type of user involved – i.e., the ExternalUser – but we omit this trivial case, since

an external user is always restricted to access internal corporate files.

To handle this manifold scenario, the proposed system has to correctly identify different

network locations and apply different access control policies accordingly. The internal

operation of the proposed system in each case is summarised in Table 6.7

Use Case System Behaviour Expected System Output for Different

Types of Users

1. Accessing the file

located on a private

corporate server

from the same

private network

using a trusted

device

The system is able to see

that the source IP address

belongs to the internal net-

work, as well as the MAC

address of the user’s lap-

top has been previously

registered and is consid-

ered as trusted.

Since the file is shared on the corporate

network, it is expected to be shared and

accessed by all the other users having ac-

cess to the corporate network. To avoid

redundant checks, the access control sys-

tem immediately grants read and write ac-

cess for both the ResourceOwner and the

InternalUser, skipping the check of user

credentials (e.g., an authentication token) –

this step is deemed unnecessary due to the

completely trusted internal network.

114 Proof of Concept Through a Case Study

2. Accessing the file

located on a private

corporate server

from a public, yet

trusted network

location using a

trusted device.

The system intercepts an

incoming access control

request is able to see that

it is coming from an exter-

nal, yet trusted IP address

(i.e., the employer’s home)

using a registered trusted

device.

Due to the fact that the incoming request

comes from outside the private corporate

network (albeit the IP address is trusted).

Having checked with the PIP, the system

now knows that the IP address is trusted,

and a corresponding relatively ‘loose’ ac-

cess control policy is applied. In this case,

the system checks the authentication token

to validate the credentials of the user. Upon

this check, the ResourceOwner is granted

read and write access, whereas the Inter-

nalUser only gets the read access.

3. Accessing the file

located on a private

corporate server

from a public and

untrusted network

location using a

trusted device

The system intercepts the

incoming request and is

able to see that it is com-

ing from an IP address

that does not belong to the

corporate network. Fur-

thermore, it can see that

the IP address actually be-

longs to a foreign country,

and, therefore, more strin-

gent access control poli-

cies have to be put in

place.

Due to the fact that the request originated

from a foreign country, albeit using a

trusted device, the system needs to first

validate the credentials of the user, and

then to enforce a two-factor authentica-

tion procedure (e.g., using an email or a

text message). Upon the completion of the

second authentication step, the Resource-

Owner is granted read and write access to

the requested file, whereas the InternalUser

is only allowed to read the file. In case

the two-factor authentication fails, the re-

quest is rejected, and the incident might be

recorded.

6.4 Case Study Description 115

4. Accessing the file

located on a private

corporate server

from a public and

untrusted network

location using

an untrusted/not

registered device.

The system intercepts the

incoming request and is

able to see that it is com-

ing from an IP address

originates from a foreign

country. Furthermore, the

client device does not be-

long to the list of previ-

ously seen and registered

devices maintained by the

PIP. Taken together, these

considerations make the

system apply and enforce

the most stringent policies

and/or even deny the re-

quest.

Due to the fact that the incoming request

originates both from an untrusted IP ad-

dress and unknown client device, the sys-

tem needs to thoroughly validate the user.

More specifically, the system requires the

user to go through a three-factor authenti-

cation that involves both e-mail and SMS

authentication. In case this step is com-

pleted successfully by the ResourceOwner,

he is granted access to the owned resource.

Otherwise, the request is denied, and the in-

cident is reported. The InternalUser is not

allowed to do so and is essentially deemed

as the ExternalUser in these circumstances;

his incoming request may be rejected im-

mediately, even without the additional au-

thentication steps, due to the untrusted na-

ture of both the network location and the

device.

Table 6.7 Location transitions handled by the proposed system.

As it follows from these four different use cases, the proposed access control is able

to differentiate between different network locations and apply corresponding policies for

each situation. It is worth noting that as the level of insecurity increases (i.e., the user leaves

the corporate network and access the resource first from home, and then from abroad), the

corresponding access control policies get more and more stringent. More specifically, in

the described scenario, in the most trusted use case there is no user authentication at all,

116 Proof of Concept Through a Case Study

whereas in the most untrusted use case it includes a three-factor authentication. This way,

the system is able to minimise the amount of unnecessary checks when/if possible within

the trusted corporate network, and – on the contrary – maximise the security for untrusted

network locations. Please note the user authentication in this use case scenario is an example

intended to demonstrate the viability of the proposed system, and in practice different access

control policies can be put in place.

6.5 System Design and Implementation

A proof of concept implementation has been designed and developed to validate the proposed

approach and it is implementation as a software tool. The prototype is based upon the

reference architecture, described in the previous chapter, and implements the 5 key concep-

tual components – namely, Policy Administration Point, Policy Enforcement Point, Policy

Information Point, Policy Decision Point, and Policy Retrieval Point. The system prototype

has been implemented in Java using the established Eclipse IDE.2

6.5.1 System Design

Policy Administration Point

PAP is a component through which policies can be managed – i.e., created, tested, debugged,

and modified. For these purposes, it is supposed to have a user interface (e.g., a graphical

one or a command line) enable users to interact with the system when managing policies.

At the current stage, the system is only implemented as a proof of concept prototype, and

does not have a dedicated user interface. Instead, the aforementioned policy management

activities can be performed using the default Eclipse IDE functionalities, such as debugging,

code assistance, graphical user interface, etc.

2https://www.eclipse.org/ide/

https://www.eclipse.org/ide/

6.5 System Design and Implementation 117

Policy Enforcement Point

PEP is the central component of the whole system, as it is responsible for intercepting

incoming access requests, passing them further to the PDP for evaluation, and – if access is

granted – let the request go through. The main responsibilities, briefly summarised in Chapter

5, are implemented by the PEP as follows. The PEP intercepts incoming network access

requests and starts inspecting the packet headers. More specifically, it primarily looks at the

IP headers of the source (i.e., the subject attempting to access a resource on the network)

and destination (i.e., the object being requested by the subject). For the private corporate

network, the PEP also extracts the source MAC address of the original device (which is not

possible for a request coming from the public Internet, since the original MAC addresses get

overwritten while being transferred from one broadcast domain to another). Having obtained

these subject and object attributes, the PEP forwards this information to the PIP that will

check if there are corresponding policies associated with the provided addresses, and together

with the PDP will evaluate these policies with respect to the extracted addresses. Once the

evaluation is complete, the PEP will receive the policy evaluation decision and apply (i.e.,

enforce) this decision via the PEP. That is, it will either let the incoming request go through –

in case the decision is positive, or will reject it – in case the decision is negative. As it was

also mentioned, a two-factor authentication may be potentially applied here as well in order

to avoid situations when a legitimate user cannot be granted access due to a not yet registered

laptop or a network location. Otherwise, the PEP will reject the request and notify the subject

with a corresponding error message. From this perspective, it can be seen as the coordinator

of the whole access control procedure, as it manages the triggers the enforcement process

and manages interaction with other components of the system.

118 Proof of Concept Through a Case Study

Policy Information Point

PIP is responsible for implementing the functionality related to location-awareness. To

achieve this, the PIP is able to receive the incoming access request from the PEP and

extract location-related information. This is implemented using the standard WHOIS client

library from Apache and the third-party GeoIP Legacy Java API.3 Essentially the GeoIP

library provides a collection of methods for querying a constantly updated database, in

which network IP addresses are mapped to their geolocations. A code snippet of the PIP

functionality, retrieving locations is included in Listing 6.1. The function getLocation

takes as input an IP address and a file with records containing the geolocation information

(provided by the GeoIP API developers). As an output, the function returns an object of the

class ResourceLocation that contains all the geolocation-related information (i.e., country

code, country name, region, city, postal code, as well as altitude and longitude), required for

taking a policy enforcement decision.

Listing 6.1 Obtaining location from an IP address.

public ResourceLocation getLocation(String ipAddress , File dbase) {

ResourceLocation resourceLocation = null;

try {

ResourceLocation = new ResourceLocation ();

LookupService lookup = new LookupService(dbase ,

LookupService.GEOIP_MEMORY_CACHE);

Location locationServices = lookup.getLocation(ipAddress);

resourceLocation.setCountryCode(locationServices.countryCode);

resourceLocation.setCountryName(locationServices.countryName);

resourceLocation.setRegion(locationServices.region);

resourceLocation.setRegionName(regionName.regionNameByCode(

locationServices.countryCode ,

locationServices.region));

3https://github.com/maxmind/geoip-api-java/

https://github.com/maxmind/geoip-api-java/

6.5 System Design and Implementation 119

resourceLocation.setCity(locationServices.city);

resourceLocation.setPostalCode(locationServices.postalCode);

resourceLocation.setLatitude(String.valueOf(

locationServices.latitude));

resourceLocation.setLongitude(String.valueOf(

locationServices.longitude));

} catch (IOException e) {

System.err.println(e.getMessage ());

}

return resourceLocation;

}

Having identified the location of the object/subject, the PIP is now able to evaluate the

access control policies concerning the requested object. More specifically, it first checks for

location-aware policies that hold, given the current locations of the subject and the object. If

there are such policies present, the PIP proceeds with the actual evaluation of the SANTA

policies that are referenced by the location-aware policies.

Policy Decision Point

PDP is responsible for the actual decision taking based on combining SANTA access control

policies – on one hand, and network locations – on the other. This component actively

interacts with the PRP and PIP, since whenever there is an incoming access control request,

it requires fetching i) SANTA policies associated with the requested object (from the PRP),

ii) location-aware policies associated with the retrieved SANTA policies (from the PRP), and

iii) network locations of the object and the subject, involved in the current scenario (from the

PIP). As a result, based on the object/subject current network locations, the PDP is able to

decide whether the access has to be granted or not.

120 Proof of Concept Through a Case Study

Policy Retrieval Point

PRP is the central repository for storing and retrieving policies, as well as previously recorded

network locations. In the current prototype implementation, a simple MySQL database has

been used to enable the required functionality. In the future, however, a more advanced and

sophisticated solution (e.g., a NoSQL database) might be considered.

6.5.2 System Implementation and Operation

The above described design has been implemented as a Web application (i.e. Java servlet

application), deployed and running on the Google App Engine cloud.4 It has a REST API

which can be accessed remotely by users from different geographical locations. The system

then parses incoming requests, extracts IP addresses, and determines precise geophysical

location of clients. This way, it is possible to grant or deny access to resources based on the

current location of users. The application uses GeoIP5 – an existing library for discovering

information about a specific IP address. The library provides a database of IP addresses

mapped to precise geophysical locations. Based on the identified location, the system then

decides whether access should be granted. Figure 6.2 demonstrates the index page of the

developed system, whereas Figures 6.3, 6.4, 6.5, and 6.6 illustrate how the system is able

to extract geophysical location of incoming requests, and decide whether access should be

granted. For In the screenshots below, client requests from China and Russia are considered

untrusted, whereas requests from the UK (Leicester and London) are trusted.

It is also important to detect situations when a user transits from one location to another,

which possibly has different access control policies. In such situations, to identify user

devices across different incoming requests (and thus be able to apply different access control

policies), the system keeps track of devices’ MAC addresses. This way, it is possible to

4https://github.com/nasserabwnawar/laac
5https://dev.maxmind.com/geoip/

https://github.com/nasserabwnawar/laac
https://dev.maxmind.com/geoip/

6.5 System Design and Implementation 121

Fig. 6.2 Home page.

Fig. 6.3 Sample request from an untrusted location (China).

122 Proof of Concept Through a Case Study

Fig. 6.4 Sample request from an untrusted location (Russia).

Fig. 6.5 Sample request from a trusted location (Leicester, UK).

6.5 System Design and Implementation 123

Fig. 6.6 Sample request from a trusted location (London, UK).

check situations when a device transitions from one network to another, and therefore access

control policies should be re-evaluated. Similarly, if there is an incoming request with a

different MAC address, it is treated as a new device and requires access policy re-evaluation.

In Figures 6.7 and 6.8, for simplicity, network transitions and MAC address changes are

triggered by clicking the corresponding button. For experimental purposes, it is also possible

to revert to the original network location and MAC address. The screenshots demonstrate

how after a network transition, access policies are re-evaluated to continue permitting or

denying access to a resource.

Experiment setup and benchmarking

The main goal of the presented experiments is to demonstrate the performance “footprint” of

the developed prototype. That is, the experiments show how much overhead is caused by

preforming this additional location-aware check when evaluating access control policies. As

previously discussed, unnecessarily strict access control policies required relatively expensive

computation may be reduced when an access request is originating from a trusted location.

124 Proof of Concept Through a Case Study

Fig. 6.7 A transition to an untrusted network is detected.

Fig. 6.8 A transition to a trusted network is detected..

6.5 System Design and Implementation 125

From this perspective, performing the location-aware check, albeit introducing an additional

delay, may improve the overall performance of a location-aware access control system.

To evaluate the performance of the implemented network location detection solution, we

used and existing IP address dataset provided by the GeoIP library. The dataset contains over

150,000 records, which were used to test the performance of the proposed implementation.

The hardware setup of a machine on which the experiments were executed are summarised

in Figure 6.9.

Fig. 6.9 Testbed hardware setup.

Therefore, the main benchmarking metric was time delay – a time difference between

the moment when a user request is received by the server and the moment when an access

control decision, based on policies, it is eventually generated. The obtained results are

depicted as a chart in Figure 6.10. The chart contains two bars, each representing a separate

set of experiments. The light blue bar depicts experiments, where no proposed location-

aware functionality was used (i.e. upon receiving a user request, the system start evaluating

access control policies in place), whereas the dark blue bar corresponds to the use of the

proposed functionality. In this case, the delay also includes time required to parse the request,

extract location-specific information, convert into a precise geophysical location, and select a

corresponding policy to be applied. Only after that the policy is evaluated and access control

decision is generated.

As it follows from the chart, the performance overhead of the implemented system using

the current data set is less than a second (i.e. 797 milliseconds). In relative terms, this 66%

increase seems to be quite a considerable difference. However, in practice, given the critical

importance of the access control domain, this additional overhead comes at a cost of more

precise access control decisions.

126 Proof of Concept Through a Case Study

Fig. 6.10 Benchmarking results.

Besides, as was previously discussed, the overall time delay may further go down, because

less computationally-intensive access control policies are evaluated for trusted locations. For

example, by applying a simple, yet efficient approach and blacklisting certain locations (i.e.

countries), which are traditionally considered to be untrusted, it is possible to considerably

reduce the system time required to perform access control evaluation. More specifically,

in the experimental data set consisting of 150,000 records with IP addresses mapped to

geophysical locations, 6,845 records referred to Russia and 3,721 records referred to China.

As a result, by blacklisting the two countries, the system was able to reduce the number of

access control invocations by 7%. Applying a more fine-grained and differentiated approach

and evaluating the system on a set of policies, which vary in their complexity, depending on

the user location, is planned as another direction for future work.

Finally, the presented benchmarks only represent the current implementation, which

primarily remains a research proof-of-concept prototype, which is yet to be optimised. In

6.6 Summary 127

future, it is expected that the system will follow best software engineering practices, and

deployed on more powerful hardware to demonstrate the full potential of the proposed

approach.

6.6 Summary

Based upon the materials presented in the previous chapter, this chapter described the actual

implementation details and the underpinning logical foundations of the proposed approach.

More specifically, to implement the described location-aware functionality, the presented

work adopted the principles of Topological Logic presented in Chapter 4, which enables to

differentiate between various different logical and physical locations, and, thereby, check if

specific propositions hold for specific locations. Speaking in simpler words, by applying the

Topological Logic principles, it is possible to use the information about the original location

of an access request in order to apply corresponding SANTA access control policies.

As a result, it is possible to achieve a flexible and fine-grained control over access control

with respect to different network location, without duplicating policies. This has also been

demonstrated through an implemented prototype system and a running case study, focusing

on a corporate file sharing system. A more detailed analysis and discussion of the main

benefits of the presented approach, as well as its potential shortcomings will be provided in

the next chapter, which will also re-visit the introduction of this thesis to see whether the

presented research has addressed all of its initial research goals and objectives.

Chapter 7

Analysis and Discussion

Objectives:

• To evaluate whether outlined research question and research goals have been addressed.

• To summarise main benefits of the proposed approach, as well as its potential short-

comings.

• To summarise main contributions of the thesis.

7.1 Introduction

The final chapter of this thesis summarises all the materials, which have been described so far.

It lists and explains potential benefits associated with the approach, as well as its potential

limitations, in a more structured manner. So far, the potential benefits and shortcomings of

the proposed approach have been spread across several chapters and sections. In this chapter,

our goal is to explicitly bring together and evaluate the main potential benefits and limitations

of our proposed approach. In summary, the potential benefits include:

130 Analysis and Discussion

• Declarative approach to defining policies and the separation of concerns.

• Novel way of capturing the spatial dimension in access control, thus combining the

temporal and spatial dimensions.

• Increased level of reliability and automation underpinned by the underlying logical

formalisms (i.e., Interval Temporal Logic and Topological Logic).

• More optimised utilisation of computational resources due to minimisation of unneces-

sary access control checks.

• Potential to complement existing approaches.

The description of our approach would not be completing without discussing potential

limitations, which include:

• Lack of real-world implementation/deployment and experiments.

• Lack of deeper integration with SANTA – i.e., the proposed location-aware concepts are

not part of the SANTA language suite yet, but rather complement it as an independent

component.

The chapter also concludes the whole thesis with an overall summary of the presented

ideas. It evaluates the accomplishment of the goals and tasks, outlined in the introductory

chapter of the thesis, and once again summarises its main contributions.

7.2 Evaluating the results: main benefits

We now summarise what has been already explained so far, in a more structured manner.

First, we list potential benefits of the proposed approach so as to explain why each particular

feature of the approach is of benefit – that is, how and what problem it solves.

7.2 Evaluating the results: main benefits 131

7.2.1 Declarative approach to defining policies and the separation of

concerns

One of the main motivating factors and goals of the research work described in this thesis

was the creation of a mechanism, which would:

• Separate the definition of location-aware policies from the actual enforcement of these

policies.

• Allow the definition of the policies in a declarative, loosely-coupled manner.

The first requirement on its own can be simply addressed with traditional, component-

based programming techniques. That is, one can capture knowledge at the level of the

programming source code in a separate component (e.g., a class, library, etc.). The second

requirement, however, calls for applying more sophisticated techniques for policy definition.

Using the Topological Logic as an underlying logical formalism can successfully address

this requirement, by providing us with the possibility to declaratively define location-related

aspects in access control policies. This way, it will become possible to modify them at dynam-

ically run-time if/when required, without recompiling and restarting the whole application

system. In other words, with policies separated from the platform/application programming

code, it is easier to make changes ‘on the fly’ and to maintain the whole system in a stable,

operational state.

7.2.2 Novel way of capturing the spatial dimension in access control,

thus combining the temporal and spatial dimensions

One of the main contributions of the presented research work is the concept of location-

awareness in the context of access control policy enforcement, which complements the

existing temporal dimension of access control implemented by the SANTA language and the

132 Analysis and Discussion

Interval Temporal Logic. So far, there has been little evidence in the literature of combining

the temporal and spatial dimensions at the level of logical formalisms in the context of

access control policies. In these circumstances, the proposed approach may potentially

open new opportunities for creating a next generation access control system, where the two

dimensions are equally important. For example, it may become possible to create multi-factor

authentication to enable access to requested resources, using not only users’ credentials, but

also their current location and time – a mechanism, which is currently beyond the default

functionality of the traditional access control systems.

7.2.3 Increased level of reliability and automation underpinned by the

underlying logical formalisms

By using the existing reliable logical formalisms, such as Interval the Temporal Logic and

the Topological Logic, the proposed approach is expected to benefit from increased reliability

and automation. That is, instead of ‘re-inventing’ the wheel and developing the underlying

access control policy enforcement with numerous ‘if-then’ operators in a hard-wired manner,

the security/access control engineers can rely on the existing functionality and powerful

logical reasoning.

7.2.4 More optimised utilisation of computational resources due to min-

imisation of unnecessary access control checks

The proposed approach enables differentiating between various physical and logical locations,

and thereby treat them differently in terms of access control. That is, it is create some kind

of location profile by mapping locations to different level of threat and risk. This way,

depending on the location profile, the access control enforcement mechanism can apply a

corresponding set of policies. For example, if there is a previously unseen incoming request

7.3 Evaluating the results: potential shortcomings 133

from a country/region associated with an increased rate of cyber-crime, a right decision

will be to apply more stringent access control policies. Similarly, if the location, where an

access request is coming from, is well known and trusted, access control policies can be

released to some extent or disabled completely (e.g., for the internal corporate network). As

a result, such a fine-grained application of policies leads better utilisation of computational

resources. By minimising the amount of unnecessary security and access control checks in

situations, when they are not really required, it is possible to save a considerable amount of

computational resources, which will only be used when truly needed.

7.2.5 Potential to complement existing approaches and languages

As it was described, the presented location-aware approach to enforcing access control

policies was combined with the existing policy language SANTA, which is not the only

language to define access control policies. Implemented in a loosely-coupled manner, the

proposed system can be potentially combined with other existing access control approaches

and languages in a similar way. That is, in situations, when it is required to gather location-

specific information and then react with respect to this information, it is possible to integrate

the presented location-aware functionality. From this perspective, the presented approach is

seen as complementary to the existing works.

7.3 Evaluating the results: potential shortcomings

Next, we continue with potential limitations of the approach, which are listed and summarised

in a similar manner. When talking about limitations, we are mainly discussing shortcomings,

i.e., features which are currently beyond our capabilities to be addressed. In contrast,

improvements, which can be done but due to certain reasons (e.g., time constraints or being

134 Analysis and Discussion

not directly relevant to the described PhD research topic) have not been addressed yet, are

included in the concluding chapter as directions for future work.

7.3.1 Lack of large scale real-world implementation/deployment and

experiments

In the previous section, we described a case study, aiming to demonstrate how the proposed

approach can be potentially applied and used. The case study, however, albeit based on

an existing cloud-based file sharing application, is primarily hypothetical. In these circum-

stances, the evaluation of the results is somewhat constrained with the assumptions of the

described use case scenario. There may well exist circumstances that the modelled use case

environment is unable to reflect in existing systems. However, as a proof-of-concept the

prototype has demonstrated that the approach presented in this thesis is viable and scaling

up to a full system should not present an issue. To further address this limitation, a more

in-depth and realistic experimentation is included as part of the future work.

7.3.2 Lack of native integration with SANTA

As it was explained, at the moment the presented location-aware functionality relies on

manual extraction of subject physical and logical locations from IP addresses to be further

used during the policy evaluation and enforcement procedure. That is, the actual access

control policies are defined using the plain SANTA language, whereas the system takes

location into consideration only at the level of programming code. That is, at the moment,

SANTA is not yet equipped with location-specific constructs and operators, which would

enable access control engineers to capture this logic straight inside access control policies.

From this perspective, it can be said that SANTA has not yet been extended so as to offer

native support for location-awareness in the context of access control.

7.4 Answering the research question and meeting goals 135

7.4 Answering the research question and meeting goals

Following the motivation of insufficient support for applying location-aware access control

policies, which would differentiate between different location where access control policy

objects and subjects are currently located, in the introduction to this document we have raised

and formulated the main research question to be addressed and answered by the presented

PhD work:

“How to enable heterogeneous computing systems, spanning across multiple physical

and logical locations, as well as different administrative domains and ownerships, with

support for location-aware access control policy enforcement, and implement a differentiated

fine-grained access control depending on the current location of subjects and objects?”

To address this research question, we have put forward a hypothesis that the outlined

challenges can be potentially addressed by extending the existing functionality of access

control tools and languages, such as SANTA, with native support for detecting the current

location of protected resources, as well as of users trying to access them, and thereby enabling

these existing tools to apply and enforce differentiated fine-grained access control policies

with respect to the current locations. Accordingly, we have proved the outlined hypothesis

and answered the main research question by proposing the concepts of location, location

awareness, and location transition, and devising a location-aware access control mechanism,

underpinned by these novel concepts.

To provide a more structured overview of the presented research, we have also broken

down the main research goal into several theoretical, technical and experimental objectives,

which have been successfully fulfilled, and are now discussed in more details below.

136 Analysis and Discussion

7.4.1 Meeting theoretical objectives

• We have studied the state of the art in the domain of cloud computing with a specific fo-

cus on existing challenges, especially in the context of access control in heterogeneous

hybrid cloud environments (see Chapter 3).

• We have identified an existing research and technological gap to be addressed by the

proposed research – namely, a lack of support for location-aware access control policy

enforcement, which results in an inflexible and coarse-grained architectures.

• We have proposed a potential approach to address the identified challenges – as

described in the corresponding chapters (see Chapters 5 and 6), we have tackled

these challenges by introducing the concepts of location and location-awareness that

underpinned the access control policy transition and enable location-specific policy

enforcement.

7.4.2 Meeting technical objectives

• We have designed and implemented a software prototype of a location-aware access

control mechanism that is able to extract information related to users’ and resources’

locations based on IP addresses, and thereby enable policy transition and differentiated

policy enforcement (see Chapter 5). The core access control policies were implemented

using SANTA – an existing access control policy language, whereas the novel location-

aware functionality was implemented from scratch.

• In Chapter 6, we have designed and implemented a hypothetical case study that high-

lights existing challenges and gaps in the domain of access control in heterogeneous

(cloud) environments, aiming to prove the presented concepts and demonstrate the

viability of the whole proposed approach.

7.5 Summarising contributions 137

7.4.3 Meeting experimental objectives

• We have designed and developed a prototype access control system that combines the

existing SANTA functionality and the novel location-aware features (see Chapter 5).

The latter are formally underpinned by the topological logic.

• We have designed and conducted a hypothetical case study that served to validate the

proposed approach and to test the implemented prototype (as described in Chapter 6).

The case study is based on a corporate cloud-based file sharing system that involves

multiple network locations for storing and accessing files. As demonstrated by the

case study, the approach can detect users’ current locations and apply corresponding

access control policies respectively.

7.5 Summarising contributions

This section revisits the main contributions of the proposed approach to provide the reader

with a better understanding of the author’s achievements in the context of the presented PhD

research. Achieving the goals of the proposed approach primarily contributes to the research

areas of computer security and access control – in general, and access control for heteroge-

neous/hybrid environments – in particular. The approach puts forward the novel concepts of

access control object/subject location as well as location-awareness as a key characteristic

of a policy enforcement mechanism responsible for evaluating policies and taking access

control decisions. Neither of these features have been previously proposed, discussed or

implemented, which makes the proposed approach a potentially valuable contribution to a

wide range of academic researchers and industrial practitioners. Moreover, the contribution

of the thesis also spans across several adjacent research fields, such as Cloud Computing (and

especially – Hybrid Cloud Computing), as well as provides a new application domain for the

existing logical formalisms, including Interval the Temporal Logic and Topological Logic.

138 Analysis and Discussion

More specifically, the main contributions of the described research effort can be sum-

marised as follows:

• Literature survey of the state of the art in access control in (hybrid) cloud computing –

as part of fulfilling the theoretical objectives, a literature survey has been conducted,

identifying existing limitations and gaps in the considered research field. As it became

clear, the challenging topic of insufficient support for taking into consideration subject

and object location when enforcing access control policies is yet to be explored.

The conducted survey, as well as the whole presented research work in general, is

intended to raise the overall awareness within the research community and attract

further attention to this motivating and challenging problem.

• Definition of functional requirements for a location-aware access control system –

based on a thorough investigation of the existing access control systems, approaches,

and techniques, some existing limitations have been identified. These limitations, in

turn, led to devising a list of functional properties for an envisaged solution. Briefly,

these include support for modelling and extraction location-related information, as

well as an ability to enforce access control policies with respect to physical and logical

locations of both subjects and objects. This functional specification serves as the key

reference underpinning the design and implementation of the future system. Moreover,

it also contributes to the state of the art in enabling location-aware access control policy

enforcement, as it is expected to be re-used by the wider research community, willing

to engineer their own solutions based on the proposed approach (i.e., and thus not

‘re-inventing the wheel’).

• Novel concepts of location, location-awareness and policy transition – these novel

concepts have been proposed to address the requirement of enabling differentiated

treatment of resources and users depending on their contexts. More specifically, it was

7.6 Summary 139

important to introduce and clearly define the main concepts, so as to be able to further

build the whole approach based on them. These concepts are seen as contributions,

because previously there has been little evidence of integrating the spatial dimension

into the context of access control policy enforcement. Discussing these concepts in

this thesis will hopefully contribute to creating next-generation logically-underpinned

access control systems in the future.

• Design and prototype implementation of the location-aware access control system –

using the proposed system, one is expected to benefit from the possibility to enable

location-aware access control policy enforcement. Moreover, the outlined functional

specifications underpinned the conceptual design of the proposed system. In the future,

it has the potential to act as a reference model for the wider research community, who

are willing to implement their location-aware access control policy enforcement. As

far as the prototype implementation is concerned, we have developed a prototype

version of the proposed system, which serves to demonstrate the viability of the

whole presented approach. Using this system, users are expected to benefit from the

possibility to enable location-aware access control policies in heterogeneous computer

environments. Moreover, since the current implementation follows an open-source

approach to software development and distribution, users are also encouraged to further

extend the existing functionality to implement required emerging features, and thereby

act as contributors to our system.

7.6 Summary

This chapter served to summarise the main results of the presented research effort. It first

summarised and discussed the main benefits of the presented research and the developed

location-aware access control system. Among these benefits are the declarative approach

140 Analysis and Discussion

to defining policies and the separation of concerns, the novel way of capturing the spatial

dimension in the context of access control, the increased level of reliability and automation,

more optimised utilisation of computational resources, and the potential to complement

existing approaches. The chapter also summarised the potential shortcomings of the approach,

among which the lack of real-world deployment and validation, as well as insufficient

integration with the SANTA language, are primarily highlighted. Next, the chapter evaluated

the conducted work with respect to the initially outlined thesis goals and objectives, as well

as the main research question, and concluded that all the goals have been met, the main

research question has been answered, and the hypothesis has been proved.

The list of potential shortcomings of the presented approach only includes the aspects,

which cannot be easily addressed at the moment. Those shortcomings or potential directions

for improvements, which can be addressed and implemented, are summarised in the next

chapter as part of future work. The next chapter concludes the overall thesis with some final

remarks and discussions.

Chapter 8

Conclusion and Future Work

Objectives:

• To summarise and conclude the thesis.

• To discuss potential directions for future work.

8.1 Introduction

This very last chapter of the thesis serves to conclude the whole thesis by highlighting the

motivation behind the presented research effort and summarising the key research findings

and contributions. The chapter briefs the reader on the several potential directions for future

work, which can potentially further extend the existing system.

8.2 Thesis overview

The presented research work looked into the pressing challenge of insufficient support for

location-aware access control. As distributed software systems exponentially grow in size and

142 Conclusion and Future Work

complexity, they start spanning across multiple geographical locations (e.g., cities, regions,

and even countries), as well as several ownerships and administrative domains. Furthermore,

modern software, following the service-oriented principles, is designed and implemented to

simultaneously serve multiple users in a multi-tenant manner. The increasingly challenging

issue of access control becomes particularly apparent in the case of hybrid cloud environ-

ments, which assume that different components of complex software systems are spread

across different network locations, including private enterprise networks and public cloud

platforms. The dynamic nature of such hybrid scenarios requires that sensitive information,

being transferred across different network locations, is protected from unauthorised/malicious

access by a corresponding access control mechanism at all times. As it was revealed, existing

approach typically do not take into consideration the spatial dimension when evaluating and

enforcing policies, resulting in non-optimised and inefficient utilisation of resources. That is,

unnecessary access control check is performed in relatively safe contexts, whereas in truly

risky location they are insufficient.

To address this limitation, in this thesis we presented a location-aware approach to

access control, which enables flexible, fine-grained policy enforcement with respect to the

current locations of requested resources and users, requesting them. To achieve, this the

approach takes the existing access control policy language SANTA, which is based on the

Interval Temporal Logic, and combines it with the Topological Logic, thereby creating a two-

dimensional solution covering both the temporal and the spatial dimensions. As demonstrated

by a hypothetical case study, based on a distributed cloud-based file sharing and storage

system, deployed and used within an enterprise, the proposed approach has the potential to

address the outlined research challenges and advance the state of the art in the field of access

control in distributed heterogeneous digital environments, such as hybrid clouds.

8.3 Future work 143

8.3 Future work

In this section, we explain possible directions for further research and explain what else can

be explored and implemented in order to make the presented approach even more efficient

and effective. Some of these directions go beyond the scope of this presented research effort,

and are worth a PhD research in their own right.

• Evaluation and experimentation on a real-life hybrid cloud use case: the described

case study, albeit demonstrated the general viability of the proposed approach, is

based on multiple assumptions, which limit the wider applicability of the developed

framework. It is, therefore, desirable to further develop the prototype and to deploy it

in real-life ICT settings within an enterprise. As a potential extension to the existing

case study, we might consider an assignment submission system of a university. Such

a system is characterised by multiple network locations (potentially including remote

cloud-based ones), where ‘sensitive’ information (i.e., student assignments, marks,

personal information, etc.) is stored, and which differ in terms of their access control

‘sensitivity’. Similarly, multiple users can access the submitted resources either from

their personal devices or university-owned stations from within the internal university

network, or from outside using personal devices. Taken together, these factors might

constitute a valid case study to further evaluate the presented approach.

• Extending the SANTA vocabulary with location-aware operators: as highlighted in the

list of potential shortcomings, at the moment the presented location-related information

is extracted from the user requests and resources network addresses, and then used

by the policy enforcement component when evaluating policies. In the future, we are

planning to extend the existing SANTA vocabulary to equip it with location-aware

operators. That is, it will be possible to specify location-specific constraints within

access control policies themselves, rather than specifying this location-aware logic in

144 Conclusion and Future Work

the source code of the policy enforcement mechanism. This will be possible thanks

to the combination of the two types of logics – namely, the Interval Temporal Logic,

currently underpinning the SANTA language, and Topological Logic that allows

formally define network locations. As a result, a declaratively-defined and loosely-

coupled architecture will be achieved, such that the actual access control logic will be

solely defined using the policy language, whereas the enforcement of the policies will

be implemented in the source code. This way, it will be possible to modify policies in

a transparent and non-intrusive manner, without massive source code modifications

and system reboot.

• Implementing other ways of extracting location-related information: in the current

version of the prototype implementation, for demonstration purposes, we employed

a rather simplistic and naïve approach to extract and collect information about user

and resource location, based on extracting network IP addresses and mapping them

to actual geographical locations. In practice, however, there are plenty of masking

techniques to replace real IP addresses, such as, for example, various VPN and proxy

services. In these circumstances, it becomes important to enable more sophisticated

functionality of extracting network information, possibly taking into account multiple

factors. As a starting point, we can consider extracting information about the mobile

network operator (provided that the user is on a mobile connection). This is quite

similar to how Google differentiates Google Play users according to the country/region,

and provides a country-specific version of the app marketplace, such that some apps

are restricted to be downloaded and installed in some specific countries (e.g., mobile

banking apps are typically limited to their specific countries, and are not expected to

be used by foreigners from abroad).

• Potential Integration with Other Existing Access Control Policy Languages: as it was

described, the current implementation is based on SANTA – an Interval Temporal

8.3 Future work 145

Logic-based policy language. In the future, however, we might consider integration the

proposed approach with other existing languages and frameworks. Since the concepts

of access control location and location-awareness a quite generic, it is expected to

be applicable to a wide range of existing access control solutions. Experimenting

with other languages will potentially prove the generic applicability of the proposed

approach, or, otherwise, provide some insights on how it should be improved in this

respect.

References

[1] Abadi, M., Burrows, M., Lampson, B., and Plotkin, G. (1993). A calculus for access

control in distributed systems. ACM Transactions on Programming Languages and

Systems (TOPLAS), 15(4):706–734.

[2] Abadi, M. and Fournet, C. (2003). Access control based on execution history. In

Proceedings of the Network and Distributed System Security Symposium (NDSS 2003),

volume 3, pages 107–121.

[3] Ahn, G.-J. (2009). Discretionary access control. In Encyclopedia of Database Systems,

pages 864–866. Springer.

[4] Allen, J. F. and Ferguson, G. (1994). Actions and events in interval temporal logic.

Journal of logic and computation, 4(5):531–579.

[5] Almehmadi, A. and El-Khatib, K. (2013). Authorized! access denied, unauthorized!

access granted. In Proceedings of the 6th International Conference on Security of Infor-

mation and Networks, pages 363–367. ACM.

[6] Almehmadi, A. and El-Khatib, K. (2017). On the possibility of insider threat prevention

using intent-based access control (ibac). IEEE Systems Journal, 11(2):373–384.

[7] Almutairi, A., Sarfraz, M., Basalamah, S., Aref, W., and Ghafoor, A. (2012). A dis-

tributed access control architecture for cloud computing. IEEE Software, 29(2):36–44.

148 References

[8] AlZain, M. A., Pardede, E., Soh, B., and Thom, J. A. (2012). Cloud computing security:

from single to multi-clouds. In 2012 45th Hawaii International Conference on System

Science (HICSS), pages 5490–5499. IEEE.

[9] Anderson, A. (2005). A Comparison of Two Privacy Policy Languages: EPAL and

XACML. Technical Report SMLI TR-2005-147, Sun Microsystems, Inc., Mountain View,

CA, USA.

[10] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski, A., Lee, G.,

Patterson, D. A., Rabkin, A., Stoica, I., et al. (2009). Above the clouds: A Berkeley view

of cloud computing. Technical Report UCB/EECS-2009-28, University of California,

Berkeley.

[11] Bakshi, K. (2009). Cisco cloud computing-data center strategy, architecture, and

solutions. Technical report, Cisco Systems, Inc.

[12] Barhamgi, M., Bandara, A. K., Yu, Y., Belhajjame, K., and Nuseibeh, B. (2016).

Protecting privacy in the cloud: Current practices, future directions. Computer, 49(2):68–

72.

[13] Bechmann, A. and Lomborg, S. (2014). The Ubiquitous Internet: User and Industry

Perspectives, volume 25. Routledge.

[14] Bell, D. E. and La Padula, L. J. (1976). Secure computer system: Unified exposition

and multics interpretation. Technical Report ESD-TR-75-306, The Mitre Corporation.

[15] Bender, D. (2012). Privacy and security issues in cloud computing. The Computer &

Internet Lawyer, 29(10):1–15.

[16] Bertino, E., Bettini, C., Ferrari, E., and Samarati, P. (1996). A temporal access control

mechanism for database systems. IEEE Transactions on knowledge and data engineering,

8(1):67–80.

References 149

[17] Bertino, E., Bettini, C., Ferrari, E., and Samarati, P. (1998). An access control model

supporting periodicity constraints and temporal reasoning. ACM Transactions on Database

Systems (TODS), 23(3):231–285.

[18] Bishop, M. (2003). What is computer security? IEEE Security & Privacy, 99(1):67–69.

[19] Bonatti, P., De Capitani di Vimercati, S., and Samarati, P. (2002). An algebra for

composing access control policies. ACM Transactions on Information and System Security

(TISSEC), 5(1):1–35.

[20] Brucker, A. D. and Petritsch, H. (2009). Extending access control models with break-

glass. In Proceedings of the 14th ACM symposium on Access control models and tech-

nologies, pages 197–206. ACM.

[21] Buxmann, P., Hess, T., and Ruggaber, R. (2009). Internet of services. Business &

Information Systems Engineering, 1(5):341–342.

[22] Buyya, R., Vecchiola, C., and Selvi, S. T. (2013). Mastering cloud computing: founda-

tions and applications programming. Newnes.

[23] Carminati, B., Ferrari, E., and Perego, A. (2006). Rule-based access control for social

networks. In OTM Confederated International Conferences ‘On the Move to Meaningful

Internet Systems’, pages 1734–1744. Springer.

[24] Cau, A. and Moszkowski, B. (2018). Interval Temporal Logic. http://www.antonio-

cau.co.uk/ITL/index.html.

[25] Chen, D. and Zhao, H. (2012). Data security and privacy protection issues in cloud

computing. In 2012 International Conference on Computer Science and Electronics

Engineering (ICCSEE), volume 1, pages 647–651. IEEE.

[26] Council, W. and Heineman, G. (2001). Component-based software engineering putting

the pieces together. Addison Weysley.

150 References

[27] Damianou, N., Dulay, N., Lupu, E., and Sloman, M. (2001). The ponder policy

specification language. In Policies for Distributed Systems and Networks, pages 18–38.

Springer.

[28] Damianou, N., Dulay, N., Lupu, E. C., and Sloman, M. (2000). Ponder: A language for

specifying security and management policies for distributed systems. Technical Report

DoC 2000/1, Imperial College, Department of Computing.

[29] Damianou, N. C. et al. (2002). A policy framework for management of distributed

systems. PhD thesis, Imperial College London (University of London).

[30] Dautov, R., Distefano, S., Bruneo, D., Longo, F., Merlino, G., and Puliafito, A. (2017).

Pushing intelligence to the edge with a stream processing architecture. In 2017 IEEE

International Conference on Internet of Things (iThings) and IEEE Green Computing

and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing

(CPSCom) and IEEE Smart Data (SmartData), pages 792–799. IEEE.

[31] Dautov, R., Distefano, S., and Buyya, R. (2019). Hierarchical data fusion for Smart

Healthcare. Journal of Big Data, 6(1):19.

[32] Dautov, R., Kourtesis, D., Paraskakis, I., and Stannett, M. (2013). Addressing self-

management in cloud platforms: a semantic sensor web approach. In Proceedings of the

2013 international workshop on Hot topics in cloud services, pages 11–18. ACM.

[33] Dautov, R., Paraskakis, I., and Kourtesis, D. (2012). An ontology-driven approach to

self-management in cloud application platforms. In Proceedings of the 7th South East

European Doctoral Student Conference (DSC 2012), pages 539–550.

[34] Dautov, R., Paraskakis, I., and Stannett, M. (2014a). Towards a framework for monitor-

ing cloud application platforms as sensor networks. Cluster computing, 17(4):1203–1213.

[35] Dautov, R., Paraskakis, I., and Stannett, M. (2014b). Utilising stream reasoning

techniques to underpin an autonomous framework for cloud application platforms. Journal

of Cloud Computing, 3(1):13.

References 151

[36] De Nicola, R., Ferrari, G., Loreti, M., and Pugliese, R. (2013a). A language-based

approach to autonomic computing. In Formal Methods for Components and Objects,

pages 25–48. Springer.

[37] De Nicola, R., Loreti, M., Pugliese, R., and Tiezzi, F. (2013b). Scel: a language for

autonomic computing. Technical report, IMT, Institute for Advanced Studies Lucca, Italy.

[38] Dillon, T., Wu, C., and Chang, E. (2010). Cloud computing: issues and challenges.

In 2010 24th IEEE International Conference on Advanced Information Networking and

Applications (AINA), pages 27–33. IEEE.

[39] Douglas, P. F. (1966). The challenge of the computer utility.

[40] Endo, P. T. and Sadok, D. F. H. (2010). Whois based geolocation: A strategy to

geolocate internet hosts. In 2010 24th IEEE International Conference on Advanced

Information Networking and Applications (AINA), pages 408–413. IEEE.

[41] Erl, T. (2005). Service-oriented architecture: concepts, technology, and design. Pearson

Education India.

[42] Feltus, C. (2014). Aligning access rights to governance needs with the responsibility

metamodel (ReMMo) in the frame of enterprise architecture. PhD thesis, Faculty of

Computer Science, University of Namur, Belgium, University of Namur.

[43] Feng, D.-G., Zhang, M., Zhang, Y., and Xu, Z. (2011). Study on cloud computing

security. Journal of Software, 22(1):71–83.

[44] Ferraiolo, D. F., Sandhu, R., Gavrila, S., Kuhn, D. R., and Chandramouli, R. (2001).

Proposed nist standard for role-based access control. ACM Transactions on Information

and System Security (TISSEC), 4(3):224–274.

[45] Ferreira, A., Chadwick, D., Farinha, P., Correia, R., Zao, G., Chilro, R., and Antunes,

L. (2009). How to securely break into rbac: the btg-rbac model. In Annual Computer

Security Applications Conference (ACSAC’09), pages 23–31. IEEE.

152 References

[46] Garfinkel, S. (1999). Architects of the information society: 35 years of the Laboratory

for Computer Science at MIT. MIT press.

[47] Godik, S. and Moses, T. (2002). Oasis extensible access control markup language

(xacml). Technical report, OASIS Committee Secification.

[48] Holden, T. (2018). New McAfee Report Reveals Data in the Cloud More

Exposed Than Organizations Think. https://www.mcafee.com/content/enterprise/en-

in/about/newsroom/press-releases/press-release.html?news_id=20181029005552.

[49] Hu, L., Ying, S., Jia, X., and Zhao, K. (2009). Towards an approach of semantic access

control for cloud computing. In IEEE International Conference on Cloud Computing,

pages 145–156. Springer.

[50] Hu, V. C., Ferraiolo, D., Kuhn, R., Friedman, A. R., Lang, A. J., Cogdell, M. M.,

Schnitzer, A., Sandlin, K., Miller, R., and Scarfone, K. (2013). Guide to attribute based

access control (abac) definition and considerations. Technical Report 162, NIST special

publication.

[51] Jajodia, S., Samarati, P., Sapino, M. L., and Subrahmanian, V. (2001). Flexible support

for multiple access control policies. ACM Transactions on Database Systems (TODS),

26(2):214–260.

[52] Jajodia, S., Samarati, P., and Subrahmanian, V. (1997). A logical language for express-

ing authorizations. In Proceedings of 1997 IEEE Symposium on Security and Privacy,

pages 31–42. IEEE.

[53] Janicke, H., Cau, A., Siewe, F., and Zedan, H. (2007). Deriving enforcement mech-

anisms from policies. In 2007 Eighth IEEE International Workshop on Policies for

Distributed Systems and Networks (POLICY’07), pages 161–172. IEEE.

[54] Janicke, H., Cau, A., Siewe, F., and Zedan, H. (2012). Dynamic access control policies:

Specification and verification. The Computer Journal, 56(4):440–463.

References 153

[55] Janicke, H., Cau, A., Siewe, F., Zedan, H., and Jones, K. (2006). A compositional event

& time-based policy model. In 2006 Seventh IEEE International Workshop on Policies

for Distributed Systems and Networks (POLICY’06), pages 173–182. IEEE.

[56] Jin, X., Krishnan, R., and Sandhu, R. (2012). A unified attribute-based access control

model covering dac, mac and rbac. In IFIP Annual Conference on Data and Applications

Security and Privacy, pages 41–55. Springer.

[57] Khan, M. A. (2016). A survey of security issues for cloud computing. Journal of

network and computer applications, 71:11–29.

[58] Kundra, V. (2011). Federal cloud computing strategy. Technical report, White House

[Chief Information Officers Council].

[59] Latham, D. C. (1986). Department of defense trusted computer system evaluation

criteria. Department of Defense.

[60] Lorch, M., Proctor, S., Lepro, R., Kafura, D., and Shah, S. (2003). First experiences

using xacml for access control in distributed systems. In Proceedings of the 2003 ACM

workshop on XML security, pages 25–37. ACM.

[61] MacKenzie, C. M., Laskey, K., McCabe, F., Brown, P. F., Metz, R., and Hamilton, B. A.

(2006). Reference model for service oriented architecture 1.0. OASIS standard, 12:18.

[62] Mell, P. and Grance, T. (2011). The NIST definition of cloud computing. Technical

Report SP 800-145, National Institute of Standards and Technology.

[63] Minch, R. P. (2004). Privacy issues in location-aware mobile devices. In Proceedings of

the 2004 37th Annual Hawaii International Conference on System Sciences, pages 10–18.

IEEE.

[64] Mohamed, A. (2009). A history of cloud computing. Computer Weekly, 27.

[65] Moreau, L., Bradshaw, J., Breedy, M., Bunch, L., Hayes, P., Johnson, M., Kulkarni, S.,

Lott, J., Suri, N., and Uszok, A. (2005). Behavioural specification of grid services with

154 References

the kaos policy language. In 2005 IEEE International Symposium on Cluster Computing

and the Grid (CCGrid 2005), volume 2, pages 816–823. IEEE.

[66] Moszkowski, B. (1985). A Temporal Logic for Multilevel Reasoning about Hardware.

Computer, 18(2):10–19.

[67] Moszkowski, B. and Manna, Z. (1983). Reasoning in interval temporal logic. In

Workshop on Logic of Programs, pages 371–382. Springer.

[68] Moszkowski, B. C. (1994). Some very compositional temporal properties. In Pro-

ceedings of the IFIP TC2/WG2.1/WG2.2/WG2.3 Working Conference on Programming

Concepts, Methods and Calculi (PROCOMET ’94), pages 307–326. North-Holland Pub-

lishing Co.

[69] Osborn, S. (1997). Mandatory access control and role-based access control revisited.

In Proceedings of the second ACM workshop on Role-based access control, pages 31–40.

ACM.

[70] Osborn, S., Sandhu, R., and Munawer, Q. (2000). Configuring role-based access control

to enforce mandatory and discretionary access control policies. ACM Transactions on

Information and System Security (TISSEC), 3(2):85–106.

[71] Petcu, D. (2013). Multi-cloud: expectations and current approaches. In Proceedings of

the 2013 international workshop on Multi-cloud applications and federated clouds, pages

1–6. ACM.

[72] Pettey, C. (2009). Preparing for the Digital Transformation Economy: The Tools Needed

to Build a Digitally Native Enterprise. https://www.gartner.com/newsroom/id/1035013.

[73] Pugliese, R. and Tiezzi, F. (2012). Sacpl: a simple access control policy language.

Technical report, University of Florence, Italy.

[74] Rasmusson, L. and Aslam, M. (2012). Protecting private data in the cloud. In The 2nd

International Conference on Cloud Computing and Services Science (CLOSER 2012).

References 155

[75] Rescher, N. and Garson, J. (1969). Topological logic. The Journal of Symbolic Logic,

33(4):537–548.

[76] Ristenpart, T., Tromer, E., Shacham, H., and Savage, S. (2009). Hey, you, get off of my

cloud: exploring information leakage in third-party compute clouds. In Proceedings of the

16th ACM conference on Computer and communications security, pages 199–212. ACM.

[77] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. E. (1991).

Object-oriented modeling and design, volume 199. Prentice-Hall Englewood Cliffs, NJ.

[78] Sandhu, R. (1988). Transaction control expressions for separation of duties. In 1988

Fourth Aerospace Computer Security Applications Conference, pages 282–286. IEEE.

[79] Sandhu, R., Ferraiolo, D., Kuhn, R., et al. (2000). The nist model for role-based access

control: towards a unified standard. In ACM workshop on Role-based access control,

volume 2000, pages 1–11.

[80] Sandhu, R. S. (1993). Lattice-based access control models. Computer, 26(11):9–19.

[81] Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman, C. E. (1996). Role-based

access control models. Computer, 29(2):38–47.

[82] Sandhu, R. S. and Samarati, P. (1994). Access control: principle and practice. IEEE

Communications Magazine, 32(9):40–48.

[83] Schroth, C. and Janner, T. (2007). Web 2.0 and soa: Converging concepts enabling the

internet of services. IT Professional, 9(3).

[84] Segerberg, K. (1980). A note on the logic of elsewhere. Theoria, 46(2-3):183–187.

[85] Siewe, F., Cau, A., and Zedan, H. (2003). A compositional framework for access

control policies enforcement. In Proceedings of the 2003 ACM workshop on Formal

methods in security engineering, pages 32–42. ACM.

[86] Smyth, P. (2009). Cloud computing a strategy guide for board level executives. Techni-

cal report, Kynetix Technology Group.

156 References

[87] So, K. (2011). Cloud computing security issues and challenges. International Journal

of Computer Networks, 3(5):247–55.

[88] Sundararajan, S. and Kavitha, V. (2011). A survey on security issues in service delivery

models of cloud computing. Journal of network and computer applications, 34(1):1–11.

[89] Takabi, H. and Joshi, J. B. (2012). Semantic-based policy management for cloud

computing environments. International Journal of Cloud Computing, 1(2-3):119–144.

[90] Takabi, H., Joshi, J. B., and Ahn, G.-J. (2010). Security and privacy challenges in cloud

computing environments. IEEE Security & Privacy, 8(6):24–31.

[91] Theoharidou, M., Papanikolaou, N., Pearson, S., and Gritzalis, D. (2013). Privacy risk,

security, accountability in the cloud. In 2013 IEEE 5th International Conference on Cloud

Computing Technology and Science (CloudCom), volume 1, pages 177–184. IEEE.

[92] Twidle, K., Dulay, N., Lupu, E., and Sloman, M. (2009). Ponder2: A policy system for

autonomous pervasive environments. In Fifth International Conference on Autonomic and

Autonomous Systems (ICAS’09), pages 330–335. IEEE.

[93] Uszok, A., Bradshaw, J., Jeffers, R., Suri, N., Hayes, P., Breedy, M., Bunch, L.,

Johnson, M., Kulkarni, S., and Lott, J. (2003). Kaos policy and domain services: Toward

a description-logic approach to policy representation, deconfliction, and enforcement. In

Proceedings of 2003 IEEE 4th International Workshop on Policies for Distributed Systems

and Networks (POLICY’03), pages 93–96. IEEE.

[94] Uszok, A., Bradshaw, J. M., Johnson, M., Jeffers, R., Tate, A., Dalton, J., and Aitken, S.

(2004). Kaos policy management for semantic web services. IEEE Intelligent Systems,

19(4):32–41.

[95] Vaquero, L. M., Rodero-Merino, L., Caceres, J., and Lindner, M. (2008). A break in the

clouds: towards a cloud definition. ACM SIGCOMM Computer Communication Review,

39(1):50–55.

References 157

[96] Von Wright, G. H. (1979). A modal logic of place. In The Philosophy of Nicholas

Rescher, pages 65–73. Springer.

[97] Wei, Y. and Blake, M. B. (2010). Service-oriented computing and cloud computing:

Challenges and opportunities. IEEE Internet Computing, 14(6):72–75.

[98] Woo, T. Y. and Lam, S. S. (1993). Authorization in distributed systems: A new approach.

Journal of Computer Security, 2(2-3):107–136.

[99] Zhang, Q., Cheng, L., and Boutaba, R. (2010). Cloud computing: state-of-the-art and

research challenges. Journal of internet services and applications, 1(1):7–18.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Introduction
	1.2 Access control in distributed environments
	1.2.1 Impact of hybrid systems on security
	1.2.2 Location impact on security

	1.3 Research question, hypothesis, and objectives
	1.3.1 Theoretical objectives
	1.3.2 Technical objectives
	1.3.3 Experimental objectives

	1.4 Thesis contributions
	1.5 Outline of the thesis

	2 Background Theory: Cloud Computing
	2.1 Introduction
	2.2 From service-oriented computing to cloud computing
	2.3 Cloud computing: definitions, models, and benefits
	2.3.1 Cloud service sharacteristics
	2.3.2 Cloud deployment models
	2.3.3 Cloud delivery models
	2.3.4 Cloud computing benefits

	2.4 Cloud computing challenges
	2.5 Summary

	3 Access Control: a Review
	3.1 Introduction
	3.2 Access control: an overview
	3.2.1 Access control policies and access control mechanisms

	3.3 Access control in the cloud
	3.4 State of the art in access control policies
	3.4.1 Existing access control models

	3.5 Related works: a survey
	3.5.1 Access control policies in cloud environments

	3.6 Analysis and discussion
	3.7 Summary

	4 Formal Underpinnings of the SANTA Policy Language
	4.1 Introduction
	4.2 SANTA policy language: an overview
	4.3 Underpinning formalism: Interval Temporal Logic
	4.3.1 Informal semantics of the main ITL constructs
	4.3.2 Derived constructs
	4.3.3 Policy-level information flow analysis

	4.4 Policy rules
	4.5 Expressivity and application scope of SANTA
	4.6 Policies and compositions
	4.6.1 Sequential composition
	4.6.2 Parallel composition: policy union, intersection and difference

	4.7 Formalising the notion of location and location transition
	4.7.1 Theoretical underpinnings of Topological Logic
	4.7.2 Combining ITL/SANTA with Topological logic

	4.8 Summary

	5 Access Control Policy Framework Design
	5.1 Introduction
	5.2 Sample use case scenario: a file storage service
	5.3 Architecture of the access control policy framework
	5.4 Conceptual architecture of the proposed access control policy framework
	5.4.1 Policy Administration Point
	5.4.2 Policy Enforcement Point
	5.4.3 Policy Information Point
	5.4.4 Policy Decision Point
	5.4.5 Policy Retrieval Point

	5.5 Main Benefits and Features
	5.6 Sample policy enforcement workflow
	5.7 Location and Location-awareness
	5.8 Policy Transition
	5.9 Summary

	6 Proof of Concept Through a Case Study
	6.1 Introduction
	6.2 Use case scenario: a corporate cloud storage service
	6.3 Access control requirements
	6.4 Case Study Description
	6.5 System Design and Implementation
	6.5.1 System Design
	6.5.2 System Implementation and Operation

	6.6 Summary

	7 Analysis and Discussion
	7.1 Introduction
	7.2 Evaluating the results: main benefits
	7.2.1 Declarative approach to defining policies and the separation of concerns
	7.2.2 Novel way of capturing the spatial dimension in access control, thus combining the temporal and spatial dimensions
	7.2.3 Increased level of reliability and automation underpinned by the underlying logical formalisms
	7.2.4 More optimised utilisation of computational resources due to minimisation of unnecessary access control checks
	7.2.5 Potential to complement existing approaches and languages

	7.3 Evaluating the results: potential shortcomings
	7.3.1 Lack of large scale real-world implementation/deployment and experiments
	7.3.2 Lack of native integration with SANTA

	7.4 Answering the research question and meeting goals
	7.4.1 Meeting theoretical objectives
	7.4.2 Meeting technical objectives
	7.4.3 Meeting experimental objectives

	7.5 Summarising contributions
	7.6 Summary

	8 Conclusion and Future Work
	8.1 Introduction
	8.2 Thesis overview
	8.3 Future work

	References

