
Formal Specification and Runtime Verification of
Parallel Systems using Interval Temporal Logic

(ITL)

PhD Thesis

Nayef Hmoud Alshammari

This thesis is submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Software Technology Research Laboratory

De Montfort University

Leicester - United Kingdom

2018

Declaration of Authorship

I declare that the work described in this thesis is original work undertaken by me for the degree of

Doctor of Philosophy at the Software Technology Research Laboratory (STRL), at De Montfort

University, United Kingdom.

No part of the material described in this thesis has been submitted for any award of any other

degree or qualification in this or any other university or college of advanced education. This

thesis is written by me and produced using LATEX.

I

To my mother’s soul, Helalah bint Hujailan Alshammari (April 21st, 2016).

May she rest in peace ...

II

Acknowledgement

Firstly, I would like to express my sincere gratitude to my first supervisor Dr. Francois Seiwe and

second supervisor Dr. Antonio Cau for their continuous support of my PhD study and related

research, and for their patience, motivation, and immense knowledge. Their guidance helped me

during the time of my research and writing of this thesis. I could not have had more qualified

supervisors for my PhD study.

Also, I would like to express my great appreciation to Dr. Antonio Cau for the remarkable

theoretical and practical support which he offered during the study of my PhD. I would also like

to thank my former supervisors Dr. Ben Moszkowski and Dr. Jordan Dimitrov for their roles

during my PhD.

Special deep thanks and appreciation to those who have endlessly and continuously believed

in me and supported me especially my great sisters, Loulouah and Khaznah, and my best friend

Dr. Dheidan Alshammari. Big thanks to my family, my friends and all those who have been

relentlessly supportive during my PhD journey.

III

Abstract

Runtime Verification (RV) is the discipline that allows monitoring systems at runtime in order

to check the satisfaction or violation of a given correctness property. Parallel systems are more

complicated than sequential systems. Therefore, systems that run in parallel need a parallel

runtime verification framework to monitor their behaviour and guarantee correctness properties.

Parallel systems have correctness properties different from correctness properties of sequential

systems. For instance, as a correctness property of parallel systems, absence of deadlock has to

be guaranteed and mutual exclusion mechanism has to be applied in case a resource is shared be-

tween more than one system and the parallelism form is true concurrency. Therefore, sequential

runtime verification framework can not handle systems that run in parallel due to the singularity

issue of this kind of framework as they are built to handle a single system at a time, whereas for

parallel systems a framework has to handle many systems at a time. AnaTempura is a runtime

verification tool which can handle single systems at a time. To solve this problem, I evolved

AnaTempura to be able to handle parallel systems. In this thesis, I propose a Parallel Runtime

Verification Framework (PRVF) that can handle systems which use architectures of parallelism

in their design such as multi-core processor architecture. The proposed model can check system

behaviour at runtime in order to either guarantee satisfaction or detect violations of correctness

properties. My technique is based on Interval Temporal Logic (ITL) and its executable subset

Tempura to verify properties at runtime using the AnaTempura tool.

I use, as a demonstration, the case study of private L2 cache memory of multi-core proces-

sor architecture. My objectives are to i) design MSI protocol compliant with cache memory

IV

coherence and ii) fulfil main memory consistency model at runtime. I achieve this via a for-

mal Tempura specification of the cache controller which is then verified at runtime against my

objectives for memory consistency and cache coherence using AnaTempura. The presented spec-

ifications allow to extend it allow to extend it to not only capture correctness but also monitor

the performance of a cache memory controller. The case study is then evaluated via integrating

AnaTempura with MATLAB in order to check correctness properties such as memory consis-

tency and cache coherence.

V

Contents

Declaration of Authorship I

Acknowledgments III

Abstract IV

List of Figures XII

List of Tables XVII

List of Abbreviations XVIII

1 Introduction 1

1.1 Background . 2

1.2 Problem Statement and Research Motivation . 3

1.3 Research Questions . 6

1.4 Research Methodology . 6

1.5 Success Criteria . 8

1.6 Thesis Outline . 9

2 Verification Techniques for Parallel Systems: a Review 11

2.1 Introduction . 12

2.2 Basic Concepts and Related Topics . 12

VI

CONTENTS

2.2.1 Concurrency versus Parallelism . 12

2.2.2 Parallel-Concurrent Programming Models in Java 13

2.2.3 Modern Central Processing Units (CPUs) 15

2.2.4 Petri Net . 16

2.2.5 Global State Construction . 17

2.2.6 Parallel Programming Models . 18

2.2.6.1 Shared Memory . 19

2.2.6.2 Message Passing . 19

2.2.6.3 Shared Memory versus Message Passing 20

2.3 Verification Techniques . 20

2.4 Runtime Verification . 21

2.4.1 Monitors . 23

2.4.2 Taxonomy . 23

2.4.3 Runtime Verification versus Model Checking 26

2.4.4 Runtime Verification versus Testing . 26

2.4.5 The Use of Runtime Verification . 27

2.4.6 Existing Runtime Verification Frameworks 28

2.4.6.1 EAGLE . 28

2.4.6.2 J-LO . 28

2.4.6.3 LARVA . 29

2.4.6.4 LogScope . 29

2.4.6.5 LoLa . 30

2.5 Formal Methods-Based Tools for Parallel Systems 30

2.6 Temporal Logic . 31

2.6.1 Point-Based versus Interval-Based Structure of Temporal Logics 32

2.6.2 Interval Temporal Logic (ITL) . 33

VII

CONTENTS

2.6.2.1 Syntax . 34

2.6.2.2 Informal Semantics . 35

2.6.2.3 Justification for Choosing Interval Temporal Logic (ITL) . . . 36

2.7 Related Work . 37

2.7.1 Memory Models for Interval Temporal Logic (ITL) 37

2.7.1.1 Framing Variables . 37

2.7.1.2 Transactional Memory . 38

2.7.2 Meltdown and Spectre . 40

2.8 Summary . 41

3 Computational Model 42

3.1 Introduction . 43

3.2 Computational Model . 43

3.2.1 Message-Passing based Communication 43

3.2.1.1 Related Work . 44

3.2.1.2 Execution Modes . 45

3.2.1.3 Channel Communication . 45

3.2.1.4 Shunt Communication . 47

3.2.1.5 Delay and Timeout . 48

3.2.1.6 Resource Allocation . 48

3.2.1.7 The Funnel . 48

3.2.2 Shared-Variable based Communication 49

3.2.3 True Concurrency . 50

3.2.4 Interleaving Concurrency . 51

3.3 Architecture Framework . 53

3.3.1 Generation Phase . 53

VIII

CONTENTS

3.3.1.1 Communication Models . 54

3.3.1.2 Concurrency Forms . 54

3.3.1.3 Execution Modes . 54

3.3.2 Locals Verification & Assertion Phase 56

3.3.2.1 Interleaving Concurrency and Shared-Variable 56

3.3.2.2 True Concurrency and Shared-Variable 58

3.3.2.3 Synchronous Execution and Message-Passing (Channels) . . . 60

3.3.2.4 Asynchronous Execution and Message-Passing (Shunts) 62

3.3.3 Global Verification Phase . 65

3.4 Parallel Runtime Verification Framework (PRVF) Model 66

3.5 Summary . 66

4 Design and Implementation of a Parallel Runtime Verification Framework (PRVF) 68

4.1 Introduction . 69

4.2 (Ana)Tempura . 69

4.2.1 Assertion Points . 71

4.2.2 The Monitor . 76

4.2.3 Tempura Interpreter . 77

4.3 Evolutionary Improvements of AnaTempura . 77

4.3.1 Realisation of Assertion Points Techniques 80

4.4 Benchmarking Applications . 90

4.4.1 Producer-Consumer . 90

4.4.2 Dining Philosophers Problem . 92

4.5 Summary . 93

5 Case Study: Cache Controller 94

5.1 Cache Memory Controller: A Case Study . 95

IX

CONTENTS

5.2 The Basics of Cache Memory . 95

5.2.1 Description . 97

5.2.2 MSI Protocol . 101

5.2.3 Formal Description of Cache Controller 102

5.2.4 Compositional Modelling . 103

5.3 Analysis and Discussion . 111

5.3.1 Global Program : Cache Controller . 113

5.3.1.1 Raw Data Description . 113

5.3.1.2 External Programs : Local Processors 118

5.3.1.3 Raw Data Analysis . 120

5.3.1.4 Properties Check of The Cache Controller 127

5.4 Summary . 128

6 Evaluation of Parallel Runtime Verification Framework (PRVF) 129

6.1 Introduction . 130

6.2 MATLAB . 131

6.3 Integrating MATLAB and AnaTempura . 132

6.3.1 Running MATLAB . 132

6.3.2 AnaTempura Runs MATLAB . 135

6.4 Correctness Properties . 140

6.4.1 Revisiting The Case Study of Cache Controller 140

6.4.2 Memory Consistency Property . 144

6.4.3 Cache Coherence Property . 156

6.5 Discussion . 167

6.6 Related Work . 168

6.7 Summary . 172

X

CONTENTS

7 Conclusion 173

7.1 Thesis Summary . 174

7.2 Comparison with Related Work . 176

7.3 Original Contribution . 177

7.4 Success Criteria Revisited . 178

7.5 Limitations . 180

7.6 Future Work . 181

7.7 Future Impact . 183

7.7.1 Academic . 183

7.7.2 Industrial . 183

Bibliography 185

A Appendix A: Simulations & Animation 216

B Appendix B: Tempura Code for Cache Controller 227

C Appendix C: Tcl/tk Code for Cache Controller 282

D Appendix D: Java Remote Method Invocation (RMI) 317

E Appendix E: MATLAB Code for Correctness Properties 326

XI

List of Figures

2.1 Modelling Parallelism using Petri Net [200] . 16

2.2 Verification Techniques . 21

2.3 Taxonomy of Runtime Verification [151] . 24

2.4 Some Sample of ITL Formulae [51] . 35

2.5 Chop . 35

2.6 Chop Star . 36

3.1 Synchronous Execution of Parallel Systems Sys1 and Sys2 45

3.2 Asynchronous Execution of Parallel Systems Sys1 and Sys2 45

3.3 Parallel Composition of Sys1 and Sys2 (True Concurrency) 50

3.4 Global State Construction (True Concurrency) 51

3.5 Parallel Composition of Sys1 and Sys2 (Interleaving Concurrency) 52

3.6 Global State Construction (Interleaving Concurrency) 53

3.7 Parallel Runtime Verification Framework (Shared-Variable Interleaving Concur-

rency) . 57

3.8 Parallel Runtime Verification Framework (Shared-Variable True Concurrency) . . 59

3.9 Parallel Runtime Verification Framework (Synchronous Message-Passing) 61

3.10 Parallel Runtime Verification Framework (Asynchronous Message-Passing) . . . 64

4.1 General System Architecture of AnaTempura [301] 69

4.2 The Analysis Process [301] . 70

XII

LIST OF FIGURES

4.3 Assertion Points and Chunks [301] . 71

4.4 Processing Assertion Points [301] . 73

4.5 COMPILING EXTERNAL JAVA PROGRAM . 74

4.6 RUNNING TEMPURA PROGRAM . 76

4.7 AMDAHL’S LAW [115] . 78

4.8 RUNTIME VERIFICATION . 79

4.9 GENERATING EXTENDED ASSERTION POINTS WITHIN EXTERNAL JAVA PRO-

GRAM . 81

4.10 COLLECTING EXTENDED ASSERTION POINTS TEMPURA PROGRAM 82

4.11 GLOBAL COLLECTS ASSERTION POINTS FROM LOCALS TEMPURA PROGRAM 87

4.12 IMPLEMENTATION JAVA RMI USING ANATEMPURA 89

4.13 Producer-Consumer . 90

4.14 PRODUCER-CONSUMER EXECUTION IN TEMPURA/ANATEMPURA 91

4.15 DEMO OF DINING PHILOSOPHERS PROBLEM 92

5.1 Dual Core Dual Processor System . 98

5.2 CACHE CONTROLLER . 112

5.3 TEMPURA EXECUTION AT STATE 0 . 114

5.4 ANATEMPURA SIMULATION AT STATE 0 . 115

5.5 LOCAL STATES & PROPERTIES OF PROCESSORS 0, 1, 2 AT STATE 0 119

5.6 States & Intervals (σn
m, where m is state number, n is Processor id) of Cache

Controller and Memory values . 126

6.1 Running MATLAB . 133

6.2 MATLAB Script . 133

6.3 MATLAB Arithmetic Script Output . 134

6.4 AnaTempura inputs numbers to file “input.txt” 137

XIII

LIST OF FIGURES

6.5 File Content for “input.txt” . 138

6.6 MATLAB Reads from input file “input.txt” . 139

6.7 AnaTempura Run of L2 Cache Memory of Processors 0, 1 & 2 141

6.8 Tcl Animation of L2 Cache Memory of Processors 0, 1 & 2 142

6.9 External Programs of AnaTempura for Processors 4 & 5 143

6.10 Dual Core Dual Processor System . 143

6.11 Memory Consistency Check at State 0 . 146

6.12 Memory Consistency Check at State 1 . 147

6.13 Memory Consistency Check at State 2 . 148

6.14 Memory Consistency Check at State 3 . 149

6.15 Memory Consistency Check at State 4 . 150

6.16 Memory Consistency Check at State 5 . 151

6.17 Memory Consistency Check at State 6 . 152

6.18 Memory Consistency Check at State 7 . 153

6.19 Memory Consistency Check at State 8 . 154

6.20 Memory Consistency Check at State 9 . 155

6.21 Cache Coherence & MSI Protocol Check at State 0 157

6.22 Cache Coherence & MSI Protocol Check at State 1 158

6.23 Cache Coherence & MSI Protocol Check at State 2 159

6.24 Cache Coherence & MSI Protocol Check at State 3 160

6.25 Cache Coherence & MSI Protocol Check at State 4 161

6.26 Cache Coherence & MSI Protocol Check at State 5 162

6.27 Cache Coherence & MSI Protocol Check at State 6 163

6.28 Cache Coherence & MSI Protocol Check at State 7 164

6.29 Cache Coherence & MSI Protocol Check at State 8 165

6.30 Cache Coherence & MSI Protocol Check at State 9 166

XIV

LIST OF FIGURES

A.1 CACHE CONTROLLER EXECUTION IN TEMPURA AT STATE 0 217

A.2 CACHE CONTROLLER SIMULATION IN ANATEMPURA AT STATE 0 217

A.3 LOCAL STATES & PROPERTIES OF PROCESSORS 0, 1, 2 AT STATE 0 217

A.4 CACHE CONTROLLER EXECUTION IN TEMPURA AT STATE 1 218

A.5 CACHE CONTROLLER SIMULATION IN ANATEMPURA AT STATE 1 218

A.6 LOCAL STATES & PROPERTIES OF PROCESSORS 0, 1, 2 AT STATE 1 218

A.7 CACHE CONTROLLER EXECUTION IN TEMPURA AT STATE 2 219

A.8 CACHE CONTROLLER SIMULATION IN ANATEMPURA AT STATE 2 219

A.9 LOCAL STATES & PROPERTIES OF PROCESSORS 0, 1, 2 AT STATE 2 219

A.10 CACHE CONTROLLER EXECUTION IN TEMPURA AT STATE 3 220

A.11 CACHE CONTROLLER SIMULATION IN ANATEMPURA AT STATE 3 220

A.12 LOCAL STATES & PROPERTIES OF PROCESSORS 0, 1, 2 AT STATE 3 220

A.13 CACHE CONTROLLER EXECUTION IN TEMPURA AT STATE 4 221

A.14 CACHE CONTROLLER SIMULATION IN ANATEMPURA AT STATE 4 221

A.15 LOCAL STATES & PROPERTIES OF PROCESSORS 0, 1, 2 AT STATE 4 221

A.16 CACHE CONTROLLER EXECUTION IN TEMPURA AT STATE 5 222

A.17 CACHE CONTROLLER SIMULATION IN ANATEMPURA AT STATE 5 222

A.18 LOCAL STATES & PROPERTIES OF PROCESSORS 0, 1, 2 AT STATE 5 222

A.19 CACHE CONTROLLER EXECUTION IN TEMPURA AT STATE 6 223

A.20 CACHE CONTROLLER SIMULATION IN ANATEMPURA AT STATE 6 223

A.21 LOCAL STATES & PROPERTIES OF PROCESSORS 0, 1, 2 AT STATE 6 223

A.22 CACHE CONTROLLER EXECUTION IN TEMPURA AT STATE 7 224

A.23 CACHE CONTROLLER SIMULATION IN ANATEMPURA AT STATE 7 224

A.24 LOCAL STATES & PROPERTIES OF PROCESSORS 0, 1, 2 AT STATE 7 224

A.25 CACHE CONTROLLER EXECUTION IN TEMPURA AT STATE 8 225

A.26 CACHE CONTROLLER SIMULATION IN ANATEMPURA AT STATE 8 225

XV

LIST OF FIGURES

A.27 LOCAL STATES & PROPERTIES OF PROCESSORS 0, 1, 2 AT STATE 8 225

A.28 CACHE CONTROLLER EXECUTION IN TEMPURA AT STATE 9 226

A.29 CACHE CONTROLLER SIMULATION IN ANATEMPURA AT STATE 9 226

A.30 LOCAL STATES & PROPERTIES OF PROCESSORS 0, 1, 2 AT STATE 9 226

XVI

List of Tables

2.1 Intel vs AMD Processors . 15

2.2 LTL vs CTL vs ITL . 33

2.3 Syntax of ITL . 34

5.1 9-Memory Refernces to 8-Blocks Cache . 99

5.2 Empty 8-Blocks Cache . 100

5.3 Miss of Address [101102] . 100

5.4 Miss of Address [110102] . 100

5.5 Miss of Address [100002] . 100

5.6 Miss of Address [000112] . 101

5.7 Miss of Address [100102] . 101

5.8 MSI Protocol . 102

5.9 TEMPURA SYNTAX VERSUS ITL SYNTAX . 108

5.10 TEMPURA RUN OF INTERLEAVED PARALLEL LOCAL PROCESSORS 0, 1 & 2 . 117

5.11 REQUESTS OF PID0, PID1, & PID2 RESPECTIVELY. 125

5.12 L2 CACHE MEMORY OF PID0, PID1, & PID2 RESPECTIVELY. 125

5.13 PROPERTIES CHECK OF CACHES OF PROCESSORS 0, 1 & 2 127

6.1 MSI Protocol . 156

6.2 Parallel Computational Models . 171

XVII

List of Abbreviation

ITL Interval Temporal Logic

LTL Linear Temporal Logic

CTL Computational Tree Logic

PTL Projection Temporal Logic

TM Transactional Memory

ACID Atomicity Consistency Isolation Durability

Mutex Mutual Exclusion

PRVF Parallel Runtime Verification Framework

TAM Temporal Agent Model

wtr willing to read

wtw willing to write

Var Variable

Val Value

Addr Address

RW Read Write

Pid Processor identification

XVIII

LIST OF TABLES

RAM Random Access Machine

PRAM Parallel Random Access Machine

EREW Exclusive Read Exclusive Write

CREW Concurrent Read Exclusive Write

CRCW Concurrent Read Concurrent Write

RMI Remote Method Invocation

IEEE Institute of Electrical and Electronics Engineers

L2 Cache Level 2 Cache

MSI Modified Shared Invalid

MESI Modified Exclusive Shared Invalid

MOESI Modified Owned Exclusive Shared Invalid

Sys System

fin final

As/Co Assumption/Commitment

DCS Distributed Control Systems

OREDA Offshore and Onshore Reliability Data

XIX

Chapter 1

Introduction

Objectives:

• To set a background for the conducted research

• To identify the problem statement and research motivation

• To raise the research questions

• To provide the research methodology

• To highlight the success criteria

• To provide the thesis outline

1

CHAPTER 1. INTRODUCTION

1.1 Background

Parallel computing includes computer architecture, operating systems, programming languages,

applications, and algorithms. The design and the implementation of theses instances have to

consider parallelism in order to deliver highly efficient parallel computations. The main goals

of parallel computations are improving the speed needed to accomplish tasks and easing the

functionality of the tasks being computed. These goals are sometimes difficult to achieve due

to hardware or software issues. The key driver of hardware parallelism is the performance of

computer systems, while the key drivers of software parallelism are performance and application

functionality [211].

Parallel programming is an important factor towards effective parallel computing. The ma-

jor purpose of parallel programming is the efficient execution of codes in order to save the time

needed to execute applications. The efficient execution of codes enables parallel programming

to scale well with the problem size, which, consequently, leads to solving larger problems ef-

ficiently. This efficient performance of parallel programming is due to providing concurrency

which allows simultaneous performing of multiple tasks [210].

Parallel programming goes beyond the limits caused by sequential computing such as phys-

ical and practical factors that limit the ability of constructing faster sequential computers [210].

For instance, sequential computers speed is subjected to the speed of data which moves through

the hardware. A bandwidth of such medium restricts the transmission through a physical medium

(e.g. the speed of light or the transmission limit of copper wire). The technology of semicon-

ductors and evolutionary advancement allow a single chip to have a larger number of transistors;

however, reducing the size of such transistors to a molecular or atomic level eventually reaches a

limit. Another physical factor which limits sequential computing from being efficient is the pro-

cessor heat caused by to the amount of the consumed power; thus, dissipating processor heat by

conventional way is hard. The development of a faster processor to solve a single computational

2

CHAPTER 1. INTRODUCTION

problem is increasingly expensive. Therefore, using large number of processors to solve such

computational problem is less expensive. The development of parallel systems architecture such

as multi-core technology overcomes these kind of problems.

Another reason for developing parallel programs is the use of several computer memory re-

sources instead of using only one computer resource which might be scarce or costly to manage

[210]. This advantage of parallel computing, in general, overcomes the limitation of the scarcity

of memory resources. The improvement in parallel systems approaches such as multi-core tech-

nology has been obtaining continuous gains.

These remarkable benefits make parallel computing the base of future computing systems.

As parallel computing systems are becoming ubiquitous in everyday life [142], careful attention

has to be paid to the satisfaction of their correctness property.

Verification techniques have to be taken into account during the development of parallel

computing systems in order to deliver remarkable benefits of parallel computing. Verification

techniques assure a correctness property of parallel computing systems with respect to their

specifications. Correctness property is a milestone in systems design and development process.

Thus, my research considers verification techniques as a mandatory approach to the correctness

of parallel computing systems. Correctness criteria is a preliminary step towards high perfor-

mance and efficient functionality. In other words, to gain performance it has to pain correctness

first.

1.2 Problem Statement and Research Motivation

In this section I will shed light on the research problems. Subsequently, the research gap is

addressed and a solution will be proposed. After that, the research motivation is highlighted.

I believe the following problems are real research problems and they should be addressed in

order to provide suitable solutions which will eventually enhance parallel computing models

algorithms and design. The problems are:

3

CHAPTER 1. INTRODUCTION

• The correctness of parallel programs is harder to determine than for sequential programs

[142]. Fixing parallel programs bugs at the software level such as data race, atomicity

violation, deadlock are much harder than fixing sequential program ones. On the other

hand, at the hardware level a non-determinism execution is a major problem due to the out-

of-sync clocks of large systems which cause slight timing variations of a given program.

Even though the clock is synced, different interactions with operating systems or other

applications could lead to non-deterministic execution of a program each time it runs. The

non-deterministic problem makes capturing errors kind of impossible.

• Some parallel programs use synchronisation points to coordinate the work of the overall

computations and to ensure that all the parallel operations are synchronised and the data

is being used is consistent. Some parallel programs use message-passing approach to

exchange data and ensure synchronisation of data being used within the parallel operations

of such programs. The latter approach is commonly used in distributed memory machines.

However, software developers who use this approach find the correctness of such programs

difficult due to the variety of inputs that might be given to these programs. Also, the

fact that multiple software developers may share work on a given portion of a program is

another difficulty.

• Some parallel programs may use what is so-called critical section (or atomic region) to

prevent any access attempt to a shared resource at a time for more than one processor.

This mechanism is used to ensure a concurrency characteristic called atomicity. Atom-

icity violation is considered a concurrency bug. Lock-based algorithm is used to ensure

the atomic execution of the critical section (or atomic region) for concurrency sake. Un-

desired behaviour might occur due to the use of locks which is deadlock problem where

two processors are waiting for each other permanently which eventually leads to delay the

computation or halt the two processors.

4

CHAPTER 1. INTRODUCTION

A unified generic model that can handle these concurrency issues with the consideration of

different parallel computation model aspects such as concurrency, communication and execution

is needed. Therefore, I present in this PhD thesis a unified generic model for parallel computing

models considering aspects such as concurrency, communication and execution. Such model

will benefit hardware computer systems and software performance and application functionality.

Parallel algorithms and analysis is intended to be delivered for the sake of design enhancements

and correctness verification at the same time. This model is formal method-based approach

which aims to establish an accurate and unambiguous semantics in order to deliver effective

description of every phase of parallel systems behaviour in order to fulfil correctness properties

such as safety and liveness.

Therefore, correctness of parallel computing is a mandatory need towards achieving the best

of parallelism with respect to performance and functionality. Runtime verification plays a major

role within verification techniques due to a number of reasons. Some of the most important

reasons for using runtime verification over other verification techniques are that it is a lightweight

tool, and because it guarantees the absence of states explosion caused by modelling all possible

states of system under scrutiny. My approach, runtime verification of parallel computing systems,

contributes to move forward the parallelism at hardware design level and software performance

and functionality level via the discovery of the behaviour of hardware/software during runtime.

In other words, there are states that can not be discovered but at runtime. The monitoring of

either satisfaction or violation of correctness criteria is the main task of runtime verification and

via this task hardware design and software performance evaluation can be measured accurately.

According to Muller [199] the evaluation of verification techniques focuses on the following

criteria: Soundness, Completeness, Modularity, Automation, and Efficiency. In my approach

I consider these criteria carefully as my aim is to deliver a generic model in order to verify

correctness property for parallel systems at runtime.

5

CHAPTER 1. INTRODUCTION

1.3 Research Questions

The major question of my research is:

• How to infer the correctness of global property from the correctness of a set of local prop-

erties for computer systems using parallel architectures?

Out of the raised major research question, a set of research questions are intended to tackle

different aspects of the encountered issues. These are:

1. How to construct a global state out of local states of parallel systems?

2. How to compose/decompose a global property out of/into a set of local properties?

3. How to handle different forms of concurrency, communication models, and execution

modes of parallel systems?

4. How to verify local/global properties at the local/global level?

1.4 Research Methodology

The research methodology I adopt follows a constructive research approach. My research con-

tributes to knowledge being developed as a new solution for the identified problem. Therefore,

I constructed new algorithms, a computational model, and an architecture framework. The con-

struction of this approach consists of the following phases:

• Background Review and Related Work:

This phase sets a comprehensive background of the involved research topics and reviews

the literature of the field of my research. The justification of my choice of the technique I

adopt to conduct this research is made. The discussion of the related work addresses the

gap and shows how our approach is going to serve the purpose of this study. My motivation

towards the selection of the case study is presented at the end of this phase and linked to

the related work.

6

CHAPTER 1. INTRODUCTION

• Computational Model:

As the proposed approach is formal-method based, this phase provides an abstract formal-

isation for the proposed model. I use Interval Temporal Logic (ITL) and its executable

subset Tempura as a formal framework for specification and verification to model the be-

haviour of parallel systems using the runtime verifier, AnaTempura.

• Architecture Framework:

In this phase I describe the design and the components of the framework. I define each

component and describe their functions to be able to link the whole framework and make

it integrated. I also introduce different concurrency mechanisms, communication models,

and execution modes of parallel computing systems. In addition, this phase presents algo-

rithmic descriptions of all possible approaches that might have been encountered during

my design of the proposed framework.

• Implementation:

This phase implements the proposed framework using the programming temporal language

Tempura to model the framework components and their functions. Assertion points mech-

anism is also implemented and a set of practical improvements has been made to enable

our framework to handle receiving multiple assertion data sent from local programs si-

multaneously to compose a global property out of local properties. Java Remote Method

Invocation (RMI) framework is implemented as a demonstration of the robustness of my

proposed framework and its capability to implement various parallel systems architectures.

• Case Study:

As my approach is formal-methods based, this phase provides an abstract formalisation of

the case study which is cache controller. I use Interval Temporal Logic (ITL) as the formal

framework for the specification and verification to model the behaviour of cache controller.

The cache controller modelled using Tempura and the runtime verifier AnaTempura. A set

7

CHAPTER 1. INTRODUCTION

of formal ITL specifications transformed into an executable code in Tempura to be checked

against a set of temporal properties.

• Evaluation:

The evaluation illustrates the effectiveness of the framework by producing a runtime verifi-

cation of the cache controller. The correctness is the success measurement of my approach.

Correctness of the framework shows consistency of the implemented system.

1.5 Success Criteria

The success criteria of my approach, in addition to answering the research questions, are reflected

in the ability of achieving the following outcomes:

1. Compositional requirements from several sources which handle local and global systems

correctness. The fulfilment of this success criteria is the answer of the question number 1.

2. Compositional collection of assertion data from several sources to handle True/Interleaving

Concurrency associated with Shared-Variable approach. The fulfilment of this success

criteria is the answer of question number 3.

3. Compositional collection of assertion data from several sources to handle Synchronous/Asyn-

chronous Communication links, which are Channels/Shunts, associated with Message-

Passing approach. The fulfilment of this success criteria is the answer of question number

3.

4. The ability to execute agents concurrently and the introduction of resource allocation

agents, and Delay and Timeout agents to model delay and timeout behaviour. The ful-

filment of this success criteria is the answer of question number 3.

5. The use of lock-based technique to enforce Mutual Exclusion to deliver synchronisation.

The fulfilment of this success criteria is the answer of questions number 1 & 3.

8

CHAPTER 1. INTRODUCTION

6. Checking the correctness property of local systems at local/global levels. The fulfilment

of this success criteria is the answer of questions number 2 & 4.

7. The inference of the correctness of global property from the correctness of a set of local

properties of global systems. The fulfilment of this success criteria is the answer of the

raised major question.

1.6 Thesis Outline

This thesis is composed of five chapters which are organized as follows:

• Chapter 2 introduces the basic concepts of the relevant topics of verification techniques,

runtime verification, the monitor, syntax and semantics of Interval Temporal Logic (ITL)

and its executable subset Tempura as a temporal programming language used to model my

framework. Also, the justification of my choice of Interval Temporal Logic (ITL) is to

serve as a formal-method base of the proposed approach.

• Chapter 3 introduces the proposed framework and its components and a comprehensive

description of the components and their functions. Also, it introduces different concur-

rency mechanisms, communication models, and execution modes of parallel computing

systems. This chapter presents algorithmic descriptions of all possible approaches that

were encountered during the design of the proposed framework.

• Chapter 4 introduces the implementation of the proposed framework and explains in de-

tails how to implement the framework components and their communication with each

other. Also this chapter implements other parallel computing architectures.

• Chapter 5 provides the evaluation of the implemented proposed framework. Cache Con-

troller case study is modelled and implemented to evaluate my framework concerning

correctness property of cache controller. In addition to the raw data analysis, a formal

9

CHAPTER 1. INTRODUCTION

specification in Interval Temporal Logic (ITL) of all the components of cache controller

system is given. Demonstration of the implemented case study is given in screen-shots as

the monitoring system of AnaTempura has an animation window to simulate the system

behaviour visually.

• Chapter 6 provides random and independent evaluation techniques using MATLAB. AnaTem-

pura has been linked to MATLAB in order to exchange assertion data. These assertion data

can be used within MATLAB for manipulation, analysis and making unbiased judgement

of the proposed model.

• Chapter 7 summarises the proposed approach and highlights the significance of the de-

livered contributions and draws a comparison with related work. It also discusses the

limitations of my approach, the directions of the future work, and the impact on academic

and industrial perspectives.

10

Chapter 2

Verification Techniques for Parallel Systems: a Re-

view

Objectives:

• To highlight basic Concepts and Related Topics

• To give an overview of Runtime Verification

• To discuss major challenges in Runtime Verification for Parallel Programs

• To investigate relevant Formal Approaches

• To highlight the Related Work, Memory Models, and recent challenges in the field

11

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

2.1 Introduction

In this chapter, I present a comprehensive background of the research topic. I present verification

techniques which are used in this field and a trade-off between these techniques. I focus mainly

on runtime verification to serve the proposed approach due to specific reasons. Interval Temporal

Logic (ITL) serves as a formal-method based framework for my approach due to various reasons.

I shed light on related work concerning memory models in addition to hardware vulnerabilities,

namely, Meltdown and Spectre.

2.2 Basic Concepts and Related Topics

In this section, a brief review of some essential technical aspects are covered such as the differ-

ence between concurrency and parallelism, parallel and concurrent models in Java programming

language, modern Central Processing Units (CPUs) and Petri Net.

2.2.1 Concurrency versus Parallelism

As in this research parallel systems are intended to be studied in order to deliver correctness prop-

erties, I have to clarify the confusion between the terminology of concurrency and parallelism.

These terminologies are often debated among computer science communities. The ambiguity in

the difference between them is confusing which might lead to misconception in views. Navarro

et al. [205] realised this misunderstanding between the two terminologies; hence, they give the

following definitions:

Definition 1 “Concurrency is a property of a program (at design level) where two or more tasks

can be in progress simultaneously.”

Definition 2 “Parallelism is a runtime property where two or more tasks are being executed

simultaneously.”

According to Navarro et al. [205] it is totally different being in progress (concurrency) from

being in execution (parallelism). Let C and P denote concurrency and parallelism respectively,

12

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

the relationship between them can be expressed formally as: P ⊂ C, which means P is a subset

of C and subsequently C is a superset of P . In simple words, parallelism is concurrency’s

dependent while concurrency is independent of parallelism. Now the difference is even more

clearer which invites the definition of a very essential terminology in this research, which is

parallel computing:

Definition 3 “Parallel Computing is the act of solving a problem of size n by dividing its domain

into k ≥ 2 (with k ∈ N) parts and solving them with p physical processors, simultaneously.”

where k represents the least number of processors which is 2. The problem of size n is used to

divide the tasks on the available processors in order to achieve the parallel computing consistently

and quickly.

2.2.2 Parallel-Concurrent Programming Models in Java

Java programming language has considered concurrency since the release of Java 5 by adding

the concurrent utilities or alternatively referred to as the concurrent API, where API stands for

Application Programming Interface. The concurrency utilities provide powerful features in order

to achieve concurrent programs, features and mechanisms such as semaphore, cyclic barriers,

countdown latches, thread pools, execution managers and locks.

Java continues to support concurrent programming models such as the introduction of Fork/Join

framework to Java 7 release. Fork/Join framework is an implementation of the ExecutorService

interface that helps to take advantage of multiple processors. The mechanism followed in this

Fork/Join framework breaks down the task into smaller pieces recursively and then reassembles

them once the task is done. This mechanism enhances the performance of the application via

using all available processors.

According to Schildt [234], there are two ways in which Fork/Join enhances multithreaded

programming. The first one is the creation of multiple threads, which makes it simple, and the

second one is the use of multiple processors, which makes it automatic. However, subdividing or

13

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

partitioning the problems with Fork/Join framework must be done by the programmer. The ap-

plication of operations aggregation by Java runtime performs this task instead of the programmer

and puts together the solutions.

The use of the collections mechanism leads to a situation called non-thread-safe which makes

the implementation of parallelism difficult. Consequently, thread interference or memory con-

sistency errors are encountered as a result of the incapability of threads manipulating a collec-

tion. In order to overcome these errors, synchronisation wrappers provided by the Collection

Framework adds automatic synchronisation to collection and makes it thread-safe. Nevertheless,

synchronisation wrappers cause thread contention which does affect the parallel execution. In or-

der to implement parallelism with non-thread-safe collections, aggregate operations and parallel

streams are used. Executing streams in parallel has been introduced in Java 8. This mechanism

allows streams to be executed in serial or parallel. In case streams are executed in parallel, the

streams are partitioned by the Jave runtime. Aggregate operations iterate over and the results are

combined after processing these substreams in parallel.

The latest Java version is Java 12 which was released on 19 March 2019. Java 12 provides

concurrency and parallelism utilities such as java.util.concurrent, java.util.concurrent.atomic

and java.util.concurrent.locks. The first utility provides concurrent programming. The second

utility is a small toolkit of classes that supports lock-free and thread-safe programming on shared

memory model. Atomic package provides atomic region which prevents interference of a shared

memory being executed within this region in order to guarantee shared memory consistency.

The third utility is a set of interfaces and classes that provides a framework for the application of

locks mechanism. Locks are responsible for keeping the shared variable protected from multi-

ple modifications at a single clock in order to provide consistent parallel computation. No other

processors or threads are permitted to modify the locked shared variable until the lock is released.

14

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

2.2.3 Modern Central Processing Units (CPUs)

According to Oak Ridge National Laboratory at the U.S. Department of Energy, June 8, 2018,

Summit is the world’s most powerful and smartest scientific supercomputer. Summit can per-

form up to 200,000 trillion calculations per second or alternatively 200 petaflops. Up until June

2019, Summit supercomputer kept being the first on the list of supercomputers ever since its

release with a total number of 2,414,592 processors [1]. IBM developed Summit or OLCF-4

supercomputer for use at Oak Ridge National Laboratory for scientific research.

National Supercomputing Center in Wuxi, China has developed a supercomputer called Sun-

way TaihuLight and it is ranked third on the list of supercomputers although it has 10,649,600

processors [1]. More numbers of processors does not always mean better performance. There-

fore, Sunway TaihuLight supercomputer has the maximum number of processors in the 500 list

available in [1].

While the maximum number of parallel processors for modern CPUs at the personal usage

level such as PCs or Laptops is 18 processors as Table 2.1 illustrates:

Table 2.1: Intel vs AMD Processors

No. Processors Release Date Generation

Intel Core i9-9980XE 18 Q4’18 9th

AMD Ryzen 7 3800X 8 Q3’19 7th

Intel Core i9-9980XE processor is a 9th generation processor and has been released in the

forth quarter of 2018 [4]. Ryzan [3] is a 7th generation processor manufactured by Advanced

Micro Devices (AMD). The maximum number of processors of AMD Ryzen 7 3800X is 8.

Ryzen 7 3800X has been released in the third quarter of 2019.

15

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

2.2.4 Petri Net

A Petri Net is a graphical and mathematical modelling tool used to describe and study informa-

tion processing systems of various types [200, 223, 102]. In 1962, Carl Adam Petri presented

this approach as a PhD dissertation entitled ”Communication with Automata“ in the faculty of

Mathematics and Physics at the Technical University of Darmstadt in West Germany. The tool

can be used in mathematical branches such as algebraic equations and state equations. More-

over, computer science and communication systems such as logical systems can be modelled and

analysed using Perti Nets. Parallel computing has been significantly advanced by Petri’s work.

Additionally, modern studies of complex systems have been boosted by Petri Nets approach.

There are a number of different scenarios and applications where Petri Nets are particularly

useful in modelling such as state machine, formal languages, multiprocessor systems, dataflow

computation, communication protocols, synchronisation control and producers-consumers sys-

tem with priority [200]. For instance, parallelism can be modelled using Petri Nets as Figure 2.1

illustrates.

BEGIN
Parallelism

Parallelism
END

Figure 2.1: Modelling Parallelism using Petri Net [200]

16

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

The model considers a parallel system that does a certain computation and at some point

the parallel system divides the computation into two execution paths. Each execution path is

assigned to a single thread and works independently. Once these two executions are done, at

some point they get combined together as one system as they were before the split. This parallel

behaviour model helps to enhance the process of designing algorithms and analysis for parallel

computing systems.

2.2.5 Global State Construction

Parallel and distributed systems concern the consistency of their composed global states out of

local states information as they have multiple subsystems running in parallel. This issue has

been considered in [32, 33, 34, 35, 36, 37, 167, 274]. Automatic collections of the information

is produced from parallel systems in order to construct global state of the whole system.

Borkowski et al. [34, 35, 36, 37] proposed a methodology of organising execution control

in parallel and distributed systems which monitor system global states. Automatic collection

of information from parallel systems about their local states and subsequently global states are

constructed and composed. The global state can then be evaluated and measured in order to fulfil

a desired correctness property of parallel and distributed systems. Borkowski [32, 33] sheds light

on the importance and effectiveness of parallel and distributed systems by underlying Consistent

Global State (CGS) and Strongly Consistent Global State (SCGS) monitoring mechanisms.

Mattern et al. [167] argue that a structure of linear order of time is not always adequate for

a distributed system. Subsequently, a generalised non-standard model of time which consists of

vectors is proposed. Timestamps and simple clock update mechanism are used to represent a

global time consistently. In order to compute a consistent global snapshot of distributed systems,

a new algorithm is proposed in this in their work.

Tudruj et al. [274] propose a control infrastructure which is based on synchronisers organised

at the processors and threads levels in order to collect local states information for evaluation sake

17

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

and produce a consistency model of global state for parallel and distributed systems.

The construction of global state of a system out of local states of subsystems which run

in parallel or in distributed model is significant and it enhances the verification process of such

systems. Correctness properties of subsystems can be fulfilled and generalised using construction

mechanism of global states. The global state’s correctness property of the parallel/distributed

systems Prop can be constructed from the set of the correctness properties of their subsystems

Propi. This assertion can be expressed formally as follows:

∧i=n
i=0 Propi ⊃ Prop

where i represents the identification number id of processors or threads assigned to execute

subsystems run in parallel or in distributed model. The local correctness property of processor

or thread i = 0 is Prop0 and i = n is Propn, while the global correctness property is Prop.

It can been seen theoretically so far that a construction of global state out of local states for

parallel and distributed systems is possible. Therefore, local states correctness properties can

infer the correctness property of global state. A practical demonstration of this assertion will be

presented later in this thesis.

2.2.6 Parallel Programming Models

The difference between parallel computing models and parallel programming models is that the

former concerns designing parallel algorithms and analysing technical aspects, for instance, com-

puting time complexity. Some commonly used parallel computing models for such purposes are

PRAM [94], (U)PMH [9], BSP [277] and LogP [67]. These prior parallel computing models will

be discussed later in this research. While parallel programming models concern the communi-

cation aspects of parallel processors and how they should be programmed. The most important

Parallel programming models are Shared Memory and Message Passing due to their wide use

18

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

and implementation by modern Application Programming Interfaces (APIs).

2.2.6.1 Shared Memory

Reading and writing to a shared memory using this programming model is asynchronous. Shared

memory model is natively useful for multicore systems. Non-deterministic behaviour of parallel

processors have to be managed using parallel algorithms for this sake in order to maintain shared

memory consistency model. Read and write operations on the same shared memory are possible

at any time, and an explicit synchronisation and control mechanisms have to be applied such as

monitors, semaphores, atomic operations and mutual exclusion (mutex). These synchronisation

solutions and shared resources control mechanism enable processors to lock a shared memory

in order to get a consistent copy. Once the shared memory is locked, no other processors are

allowed to interfere. Constraints on shared memory can be applied in order to guarantee shared

memory consistency model [89]:

• All processors/threads must see exactly the same values for a shared memory;

• All processors/threads must see updates to the memory at the same time;

• Only one processor/thread is allowed to write to the shared memory at any given time.

2.2.6.2 Message Passing

Message passing programming model allows processors to communicate asynchronously or syn-

chronously. Processors can send and receive messages containing words of data. Messages might

arrive i) very quickly, ii) within a fixed period of time, iii) at some point of time in the future, or

iv) possibly never in case errors are encountered. There are various forms where processors can

communicate; the most common three mechanisms are:

• Point-to-Point, where the communication occurs only between two processors, the sender

and the receiver;

19

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

• Broadcast, where the sender sends the message without a certain destination;

• Multicast, where messages can get delivered to subsystems with some restrictions.

Message Passing Interface (MPI) is the standard interface for message passing model. MPI

can be used to distribute the work and handle communication in CPU distributed applications.

2.2.6.3 Shared Memory versus Message Passing

It can be seen that the implementation of shared memory is practically less complicated, less

time consuming and can be done automatically. On the other hand, the implementation of mes-

sage passing model is more complicated, time consuming, and has to be done manually by the

programmer. Parallel programming models community believes in the fact that shared memory

model has superiority over message passing model. Therefore, I will omit the implementation of

message passing model in my proposed model for communication aspects. Alternatively, shared

memory model will be implemented only.

2.3 Verification Techniques

Verification is a process of checking whether a system under scrutiny is acting accordingly to the

contract which has been signed between that system and a set of desired properties to guarantee

the correctness criteria. Mainly, the verification process has different techniques such as theorem

proving [30], model checking [63], testing [40, 202], and runtime verification [150, 151] as

Figure 2.2 illustrates.

Theorem proving is a correctness of programs using mathematics proof to deliver correctness

of a theorem, and it is primarily applied manually. Model checking is an automatic verification,

and it checks all the possible states of finite systems which lead to states explosion. Testing can

be classified as incomplete verification techniques for checking correctness. However, runtime

verification complements between some of these verification techniques such as model check-

ing and testing. Runtime verification monitors system behaviour only at runtime which avoids

20

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

having state explosion.

These verification techniques are subject to some factors such as the availability of formal

model for model checking and confidence strength or weakness in favour for theorem proving

over testing. In comparison, runtime verification technique is considered a lightweight verifica-

tion technique. Verification techniques such as model checking and testing can get complemented

by runtime verification. Due to the nature of such verification technique, it occurs at runtime and

only explores states which are being executed. This characteristic merits runtime verification

over model checking and testing throughout the absence of states explosion of model checking

and incompleteness of testing technique.

Verification
Techniques

Model
Checking

Theorem
Proving

Testing

Runtime
Verification

Figure 2.2: Verification Techniques

2.4 Runtime Verification

Static verification techniques assume that designed models are completely explorable in order

to deliver correctness of these models. The assumption of the ability to access and explore such

models is not reasonable. Therefore, verification techniques must offer runtime verification tech-

niques. The states of systems under scrutiny are then generated and collected in order to do the

21

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

analysis of their behaviour and make the judgement accordingly. Runtime verification technique

complements static verification techniques [177]. The term correctness is defined as follows

[29]:

Definition 4 “In computing systems, correctness refers to the assertion that a system satisfies its

specification.”

Runtime verification checks whether the execution of a system complies with the correctness

criteria involved within the process of system design to meet a set of desired properties such as

safety, liveness, and projected time.

Runtime verification has the ability to handle inadequacy of information being executed be-

cause it is intended to observe the executed information only and provides a property check

against the correctness specification that is already prescribed formally and internally within the

runtime verifier. A runtime verifier should not infer the execution of what is being executed so

far; in other words, it should not enforce an execution of a certain instance of a system under

scrutiny if it is not yet reached. Alternatively, it only detects the violation of the correctness crite-

ria and checks whether the prescription of the system is being respected especially for on-the-fly

applications [177].

When a variation between the required behaviour and the observed behaviour of the system

under scrutiny occurs, it is called a system failure. In case the expected behaviour and the current

behaviour of a system under scrutiny are not matched, it is called fault. When a human makes a

mistake, it is called an error. Potentially, a failure can be caused due to a fault; similarly, a fault

can be caused due to a mistake.

According to IEEE [2], verification concerns the techniques which are intended to show a

system satisfaction with its specification. Verification techniques such as theorem proving [30],

model checking [63], and testing [40, 202] are considered traditional verification techniques.

Runtime verification is introduced as a new direction within the field of verification techniques.

22

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

Definition 5 “Runtime Verification is the discipline of computer science that deals with the

study, development, and application of those verification techniques that allow checking whether

a run of a system under scrutiny satisfies or violates a given correctness property [151].”

Runtime verification [65, 216, 103] uses a device called monitor which checks at runtime the

satisfaction or the violation of the execution of system under scrutiny against a correctness tem-

poral property. The traditional verification techniques such as theorem proving, model checking,

and testing are complemented by runtime verification.

Runtime verification does not influence or interfere with the execution of a system under

scrutiny in case a correctness property is violated; instead, it only deals with the detection of

either violation or satisfaction of correctness property.

2.4.1 Monitors

The only concern for runtime verification is whether the run of a system Sys is satisfied against

a correctness property ϕ. A monitor is intended to check whether the execution of a system Sys

satisfies a correctness property ϕ. When a correctness property ϕ is met, a truth value is dis-

patched. Formally, a set of valid executions JϕK is given by property ϕ, and runtime verification

checks whether the execution of Sys belongs to a set of valid executions JϕK [151].

Definition 6 “Monitor is a device that reads a finite trace and yields a certain verdict [151].”

A verdict being yield is a truth value which belongs to a truth domain B = Jtrue, falseK or alter-

natively it might have this form B = J0, 1K. The truth value true or 1 denotes that a correctness

property ϕ is satisfied; otherwise, a correctness property ϕ is violated [151].

2.4.2 Taxonomy

Runtime verification has brought different contributions into the verification techniques field.

Aspects of runtime verification are systematically presented as Figure 2.3 illustrates. The aspects

are Trace, Monitoring, Stage, Integration, Interference, Steering, and Application Area [151].

23

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

Runtime
Verification Trace

finite

finite
expanding

infinite

Integration

inline

outline

Stage

online

offline

Interference

invasive

non-
invasive

Steering

active

passive

Monitoring
event

sequence

state
sequence

input/output
behaviour

Appilcation
Area

safety
checking

security

information
collection

performance
evaluation

Figure 2.3: Taxonomy of Runtime Verification [151]

24

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

TRACE: Runtime verification has the ability to work on i) finite (terminated), ii) finite but

continuously expanding, or iii) on prefixes of infinite traces. In regards to finite but continuously

expanding and infinite traces, impartiality and anticipation should be taken into the monitor’s

account. Impartiality implies that judgement should not be made of a finite trace in case there is

an infinite continuation trace which might lead to a different verdict. Anticipation implies that a

judgement should be made if an infinite continuation of a finite trace has the same verdict value.

MONITORING: Runtime verification has different interests or concerns in terms of what is

being monitored. For instance, a system may get checked in terms of the input or output be-

haviour. Moreover, a system may get checked in terms of sequence of states, or in terms of

sequence of events being executed.

STAGE: Online monitoring occurs when a current execution of a system is being checked by

a monitor. Offline monitoring occurs when the execution of a system being checked is recorded.

INTEGRATION: Inline monitoring occurs when a monitoring code is interwoven with the

code of a program to check. If the monitoring code is used to externally check a program under

inspection, then the monitoring is outlined.

INTERFERENCE: Invasive monitoring interferes with the system being checked, while non-

invasive monitoring does not interfere with the system being checked.

STEERING: When a monitor only observes the program execution and reports program fail-

ures, then it is called passive monitoring. When the monitor is used to steer the program execu-

tion, it is called active monitoring.

APPLICATION AREA: Runtime verification serves different application and purposes. It

might be used to check safety or security conditions. It can also be used to collect information of

the system being executed for performance evaluation purposes.

25

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

2.4.3 Runtime Verification versus Model Checking

Model checking determines whether all computations of a given modelM satisfies a correctness

property ϕ. Model checking can be considered an automatic verification technique which can

handle finite state systems. In automata theoretic approach [279], a transformation of correctness

property ϕ to an automaton M¬ϕ which accepts a violation of a correctness property ϕ. The

automaton M¬ϕ is run in parallel to a model M in order to check whether M is violating a

correctness property ϕ. Similarly, runtime verification has to generate the monitor as the model

checking has to generate an automaton. However, there are differences between them:

• Model checking examines all possible executions of a given model of a systemMwhether

the executions of the modelM satisfies a correctness property ϕ. However, runtime checks

only the execution of a modelM at runtime whether this runtime execution satisfies a cor-

rectness property ϕ.

• Model checking considers infinite traces, while in runtime verification only finite execu-

tions are considered.

• As a consequence of considering infinite traces by model checking, the state explosion

problem is encountered. On the other hand, a single run of a system does not cause this

problem.

2.4.4 Runtime Verification versus Testing

As stated above, runtime verification does not check the whole possible execution of a system

under scrutiny; instead, it just checks the single execution of a system. This characteristic makes

runtime verification and testing both incomplete verification techniques.

Testing receives finite input-output sequences which form what is called test suite [217].

Then the checking process takes place whether the actual output and the expected ones are met

or not. Another form of testing which is relatively closer to runtime verification is called oracle-

26

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

based testing. The difference between this test and the former one is that the test suite is only

formed by input sequences. Then an oracle-based test has to be designed and attached to the

system being tested to make sure that the output is anticipated. Runtime verification can be seen

from this angle; however, there are differences between these verification techniques:

• In testing, more precisely oracle-based test, an oracle is defined directly rather than getting

it from a generation of high-level specification.

• In testing, in order to test a system exhaustively, input sequences have to be provided. In

contrary, this is considered internally within a domain of runtime verification.

Therefore, runtime verification can be considered a passive form of testing in addition to the

fact that runtime verification tests forever which makes it complete.

2.4.5 The Use of Runtime Verification

The model checking and theorem proving reflect the most important aspects of the implemen-

tation via a model check and analysis to make sure the implementation meets the correctness

property. However, the implementation, due to the environment surrounding the system under

scrutiny, might behave differently from what is being predicted by the model. Runtime veri-

fication is then used to overcome this obstacle via a runtime check of the actual execution of a

system under scrutiny and find out whether a correctness property is satisfied. Therefore, runtime

verification in this case can be considered as a partner to model checking and theorem proving

[151].

There are cases where some information of a system under scrutiny can only be available at

runtime and can not be explored using other verification techniques. The information of a system

is not only available at runtime. However, this information is checked out at runtime because it

is more convenient than checking it using different verification techniques, due to the nature of

the system under scrutiny [151].

27

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

The environment influences the behaviour of a system being executing; therefore, the envi-

ronment of a system under scrutiny matters. Model checking and theorem proving make assump-

tions on the the behaviour of a system within a certain environment. However, the assumptions

made by model checking or theorem proving is inadequate. Therefore, runtime verification per-

forms a formal correctness of these assumptions [151].

For critical systems security and safety aspects, it might be beneficial to monitor a system

which has already been checked to make sure it adheres to the correctness property that is already

met. In this case, runtime verification can be considered as a partner to model checking, theorem

proving, and testing [151].

Due to the critical role of runtime verification and its partnership with other verification tech-

niques, runtime verification is worthy to be considered a major verification techniques and be a

fundamental component of the architecture of system designs.

2.4.6 Existing Runtime Verification Frameworks

Martin Leucker visited in [150] the considered existing runtime verification frameworks. Some

of these frameworks are considered major players in the field such as EAGLE, J-LO, Larva,

LogScope and LoLa.

2.4.6.1 EAGLE

EAGLE [23] is a rule-based framework intended to define and implement finite trace monitoring

logics, such as future and past time temporal logic, extended regular expressions, real-time log-

ics, interval logics, and forms of quantified temporal logics. EAGLE’s novel techniques for rule

definition, manipulation and execution are implemented as a Java library. Monitoring mechanism

follows a state-by-state basis, without storing a trace of the execution.

2.4.6.2 J-LO

J-LO [263] is a runtime verification framework for Java programs. The specification of properties

can be formally expressed in Linear-time Temporal Logic (LTL) over AspectJ pointcuts. The

28

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

automaton-based approach where transitions can be triggered via aspects is used to check these

properties expressed in LTL at runtime. As AspectJ is working on the bytecode level, Java source

code is unnecessary.

2.4.6.3 LARVA

LARVA [66] is a runtime verification framework and is considered a lightweight approach to

guarantee properties of Java programs including real-time properties. LARVA enables properties

to be expressed in formal notations such as timed-automated, Lustre and a subset of the dura-

tion calculus. The tool has been used as a case study for industrial systems, and it has been

successfully working. At the analysis level of real-time properties, LARVA performs as well as

calculates memory and temporal overheads caused by monitoring process. The tool is also used

in order to assess the consequences caused by the process of monitoring such as slowing down a

system in order to satisfy the desired properties of a system.

2.4.6.4 LogScope

LogScope [25] is a Python framework that allows to check logs for conformance to a speci-

fication and to learn patterns from logs. LogScope architecture divides its functionality into

LogMaker tool and a core LogScope module. The latter checks logs and learns specifications.

LogScope is developed by and dedicated to NASA’s Mars Science Laboratory Mission (MSL). A

list of events is generated by LogMaker and after a communication channel is opened to MSL’s

SQL-based ground software. LogScope receives two arguments i) a log generated by LogMaker,

and ii) a specification. The specification language offers an expressive rule-based language,

which supports state machine, a higher-level pattern language, which is then translated into a

more expressive rule-based language in order to perform the monitoring process. Logging sys-

tems events can be used as a basis for automated evaluation of log files against requirements.

29

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

2.4.6.5 LoLa

LoLa [69] is a specification language and algorithms for online and offline monitoring of syn-

chronous systems such as circuits and embedded systems. Despite the simplicity of the specifica-

tion language, it is elegantly expressive. It can be used to not only describe correctness property

but also detect failure by using assertions, so a measurement of interesting statistics can be used

for system profiling and coverage analysis. The language has been used for monitoring industrial

systems such as Peripheral Component Interconnect (PCI) bus protocol and memory controller.

The outcomes prove that the specification language is sufficiently expressive in such systems and

applications.

2.5 Formal Methods-Based Tools for Parallel Systems

Verification techniques for parallel systems require formal-methods based tools which use mathe-

matical concepts such as formal semantics, formal specification, and formal verification to check

the desired correctness property of such systems. The most common correctness properties of

the execution of parallel systems is concurrency errors such as data races, deadlocks, livelocks,

atomicity violation. Formal-methods based techniques are applied such as deductive verification

(theorem proving), model checking, static program analysis, and runtime verification. As I dis-

cussed in the previous sections, 2.4.3, 2.4.4, & 2.4.6, that runtime verification complements other

verification techniques such as theorem proving, model checking, and testing; thus, my interest

in this research is a runtime verification due to the discussion above and the reasons listed in the

previous sections.

The evaluation of my approach, runtime verification of parallel systems, focuses on the fol-

lowing criteria: [199]

• SOUNDNESS: A verification technique is considered sound when the check results are

valid with respect to the semantics of the programming language, or simply when none of

the errors of an execution of a system is missed.

30

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

• COMPLETENESS: A verification technique is considered complete when it omits the pro-

duction of false positives because each detected error requires an investigation which im-

plies a human intervention.

• MODULARITY: A verification technique is considered modular when it has the ability to

deduce the correctness of the whole system from the correctness of its independent com-

ponents. Modularity allows to analyse and check parallel systems.

• AUTOMATION: A verification technique is considered automatic when it requires no hu-

man intervention. A verification technique might be considered highly automatic if it re-

quires little human intervention. Human intervention includes, for instance, providing sys-

tem specification to be checked.

• EFFICIENCY: A verification technique is considered efficient when it has the ability to

check large systems in short amount of time and space.

2.6 Temporal Logic

According to Konur [139], Temporal logics are formal frameworks which describe statements

whose truth values change over time. In comparison with classical logics, temporal logics char-

acterise the change of states over time where classical logics do not include time constraints. The

introduction of time characteristics in temporal logics makes it richer than classical logics.

Temporal logics have been widely used for more than two decades in the field of various

systems specifications, such as real-time systems and control systems (sequential or parallel

manners). Temporal logics use mathematical notation in order to deliver formal analysis and

model for systems. Temporal logics have been applied in industrial application and academic

disciplines [139].

Temporal logics are introduced in order to solve specific problems that cannot be completely

solved using different logics either due to the expressiveness or complexity issues. Expressive-

31

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

ness and complexity are the main trade-off concerning temporal logics. The use of temporal

logics is subjected to these trade-offs; some applications prefer expressiveness over complexity,

while other applications prefer the complex over expressiveness [28].

The classification of temporal logics can be based on various dimensions such as proposi-

tional versus first-order logic, point-based versus interval-based, linear versus branching, and

discrete versus continues [28, 83, 281]. In the next section, I discuss why interval-based tem-

poral logics is more expressive than point-based temporal logics. I omit the discussion of other

dimensions which temporal logics can be based on due to the fact that I adopt Interval Temporal

Logic (ITL) [51] as a formal methods-based framework for my research; therefore, I discuss

only this dimension to justify my selection of Interval Temporal Logic (ITL) over other temporal

logics.

2.6.1 Point-Based versus Interval-Based Structure of Temporal Logics

Modelling time in temporal logics has two structures, either point-based structure or interval-

based structure. Different modal operators are used to describe different temporal relationships.

Some temporal logics use modal operators to express quantification over time. However, point-

based temporal logics tend to be difficult to express relationships between intervals [86].

Point-based temporal logics such as Linear Temporal Logic (LTL) [214], Computational Tree

Logic (CTL) [62, 84, 145] are used formulas to specify desired properties. These logics are

suitable to model computation states and their relationships. however, they are not suitable to

model a computation stretches such as actions with durations, accomplishment, and temporal

aggregations. Interval-based logics can overcome these limitations of point-based logics via the

consideration of time as intervals not points [178].

Interval Temporal Logics (ITLs) are temporal logics which are intended to reason about pe-

riods of time (intervals). The representation formalisms of time as intervals are more expressive

than formalisms as points. Interval-based logics enrich representation formalisms more than

32

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

point-based logics. This enrichment allows interval-based logics to be used to model real-time

systems behaviour [139].

Expressiveness of interval temporal logics enables them to express a relationship between

events modelled using intervals. The syntax of interval temporal logics [237, 238, 193, 144, 169,

221, 110] is simpler and neater than point-based logics. The syntax of interval temporal logics

enables them to provide high level abstraction in order to model systems. Therefore, interval

temporal logics formulas are more comprehensive than point-based logic formulas.

Table 2.2: LTL vs CTL vs ITL

Logic Logic Order Fund. Entity Temporal Structure
LTL Propositional Point Linear
CTL Propositional Point Branching
ITL First-order Interval Linear

Table 2.2 compares point-based logics such as Linear Temporal Logic (LTL) [214] and Com-

putational Tree Logic (CTL) [62, 84, 145] with interval-based logics such as Interval Temporal

Logic (ITL) [193]. The main criteria of comparison is the representation of time in either points

or intervals form.

2.6.2 Interval Temporal Logic (ITL)

Interval Temporal Logic (ITL) is a flexible notation for both propositional and first-order reason-

ing about periods of time found in descriptions of hardware and software systems [51]. Interval

Temporal Logic (ITL) can handle sequential and parallel compositions, and it has a powerful and

extensible specification and proof techniques in order to reason about properties such as safety,

liveness and projected time [194]. ITL has the ability to express timing constraints and most im-

perative programming constructs as well can be expressed as formulas in an executable modified

version of ITL called Tempura [47]. Tempura is an executable subset of ITL, and it provides

an execution framework for ITL specifications to shift a system from abstract specification to

33

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

concrete implementation. In addition, ITL and its mature executable subset Tempura [182] have

been extensively used to specify and model the properties of real-time systems where the prim-

itive circuits are directly represented by a set of temporal formulae. Tempura has been applied

variously to simulate hardware design and other areas where timing is crucially important.

2.6.2.1 Syntax

The key notion of ITL is an interval. An interval σ is considered to be a (in)finite sequence of

states σ0, σ1 . . ., where a state σi is a mapping from the set of variables V ar to the set of values

V al. The length |σ| of an interval σ0 . . . σn is equal to n (one less than the number of states in the

interval (this has always been a convention in ITL), for instance, a one state interval has length

zero [51]. The syntax of ITL is defined in Table 2.3, where:

z is an integer value,

a is a static integer variable (doesn’t change within an interval),

A is a state integer variable (can change within an interval),

v a static or state integer variable,

g is a integer function symbol,

q is a static Boolean variable (doesn’t change within an interval),

Q is a state Boolean variable (can change within an interval),

h is a predicate symbol.

Table 2.3: Syntax of ITL

Expressions
e ::= z | a | A | g(e1, . . . , en) | ©A | fin A

Formulae
f ::= true | q | Q | h(e1, . . . , en) | ¬f | f1 ∧ f2 | ∀v q f |

skip | f1 ; f2 | f∗

34

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

2.6.2.2 Informal Semantics

The informal semantics of the most interesting constructs are as follows: [51]

• ©A: if interval is non-empty then the value of A in the next state of that interval else an

arbitrary value.

• fin A: if interval is finite, then the value ofA in the last state of that interval else an arbitrary

value.

• skip unit interval (length 1).

Figure 2.4: Some Sample of ITL Formulae [51]

• f1 ; f2 holds if the interval can be decomposed (“chopped”) into a prefix and suffix inter-

val, such that f1 holds over the prefix and f2 over the suffix, or if the interval is infinite and

f1 holds for that interval.

f1
f2

Figure 2.5: Chop

35

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

• f ∗ holds if the interval is decomposable into a finite number of intervals such that for each

of them f holds, or the interval is infinite and can be decomposed into an infinite number

of finite intervals for which f holds.

f f f f

Figure 2.6: Chop Star

2.6.2.3 Justification for Choosing Interval Temporal Logic (ITL)

The characteristics of Interval Temporal Logic (ITL) induced its choice. These characteristics

are presented as follows [299]:

• ITL is a flexible notation for both propositional and first-order reasoning about periods of

time found in descriptions of hardware and software systems.

• Unlike most temporal logics, ITL can handle both sequential and parallel composition

and offer powerful and extensible specification and proof techniques for reasoning about

properties involving safety, liveness and time.

• Tempura, the executable subset of ITL, provides an executable framework for developing,

analysing and experimenting with suitable ITL specifications [182].

• Modular and reusable tempura test suites can be developed.

• Several specifications can be compared over a range of test data.

• The use of specialised theorem provers and model checkers can be postponed until after a

preliminary runtime consistency check of candidate specifications and proofs.

• In contrast to model checking, execution can be used to check theorems that are not decid-

able.

36

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

• ITL and Tempura both improve through the increased feedback between theory and prac-

tice. Particular benefits are:

– The discovery of further executable assumptions and commitments specifications

– The development of more and better compositional proof techniques

• Interval Temporal Logic serves as the single unifying logical and computational formali-

sation at all stages of analysis.

• ITL has a complete axiomatic system [197].

• In addition, Cau and Zedan [47] have provided a refinement calculus for ITL that can

“translate” an ITL formula into an executable code.

2.7 Related Work

A review of the literature has led to a drawback of Interval Temporal Logic (ITL) which is the

lack of memory model. Therefore, related suggested memory models such as Framing Variable

and Transactional Memory (TM) are investigated in this section in order to diagnose the situation

and avoid being trapped by such a limitation.

2.7.1 Memory Models for Interval Temporal Logic (ITL)

One of the most critical issues within the field of parallelism and concurrency of real-time sys-

tems is the access to the common shared resource (memory). Due to the importance of this issue,

I review some of related work approaches which have been done in order to overcome obstacles

which might be encountered in this field. More precisely, approaches such as Framing Variables,

and Transactional Memory.

2.7.1.1 Framing Variables

Framed variables remain unchanged at a state, or over an interval, when no assignment is en-

countered at that state, or over the interval. Framing Variables is defined as follows [295]:

37

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

Definition 7 “Framing a variable x means that the variable x always keeps its old value over

an interval if no assignment to x is encountered.”

In temporal logics, no value inherited from a previous state. Alternatively, if a value is needed to

be inherited, a repeated assignment of the value should take place at every state. To inherit a value

during an interval, I use a formula for each relevant variable such as stable(x). The repeatability

of such assignments affects the efficiency of the program and makes it tedious [190, 295]. The

application of such a mechanism [196] makes the specification implicit and neat.

The study of framing variables in ITL [190] is initiated by Hale [107]. An investigation of

framing variables has also been done by Duan [295]. Projection Temporal Logic (PTL) is an

ITL extension with operators for temporal granularities and framing [78, 295]. Subsequently,

an executable subset of PTL called Framed Tempura is introduced [295]. Framed Tempura has

new operations such as projection operator prj, synchronous communication await, and framing

operator frame [295].

However, there are cases where an explicit statement has to be made upon a variable that

does not change. Whenever a memory cell has to be updated, it will be a very costly operation.

This is called the framing problem. As a solution to this problem is an increase of the speed of

the simulator. Instead of updating m memory cells m times, only one statement is needed [49].

2.7.1.2 Transactional Memory

There four attributes which define the transaction notion are Atomicity, Consistency, Isolation,

Durability or what is known for short as ACID. Transactional Memory (TM) is defined as follows

[82]:

Definition 8 “Transactional Memory (TM) is a promising lock-free technique that enables parts

of a program to execute with atomicity and isolation, without regard to other concurrently ex-

ecuting tasks. TM allows programs to read and modify disparate primary memory locations

atomically as a single operation.”

38

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

Atomicity ensures either a commitment of the operations in a transaction completely or abortion

of all the operations and leaving no evidence behind [82].

Consistency ensures that the data in the memory is consistent with its corresponding state.

Only successful transactions commit their data and permanently store them; otherwise, the old

data is restored. Isolation ensures that an execution of a transaction does not affect other concur-

rent transactions. In other words, the result of these concurrent executions has to be equivalent

like they were executed sequentially. Durability ensures storing the modified data of a successful

transaction on a durable media such as a disk.

Transactional Memory (TM) is relatively easy to use, and it does not need locks, as it is

lock-free which avoids the occurrence of deadlocks scenario. The performance is boosted due to

the increase of parallelism level. However, its application is limited and the debugging is difficult

to place a breakpoint within the transaction.

El-kustaban [82] [80] has formalised Transactional Memory (TM) in Interval Temporal Logic

(ITL) and verified it using Tempura/AnaTempura. There are still aspects such as nested trans-

actions and mechanisms of updating the memory which should be imported to provable abstract

TM.

It is challenging to control parallel systems accessing shared resource in order to guarantee

correctness property such as consistency of shared resource. In order to avoid having access

conflicts, a synchronisation mechanism has to be applied. Techniques have been used to apply

synchronisation mechanism such as lock-based, lock-free and wait-free.

Lock-free and wait-free avoid using locks which could cause deadlock. However, they are

complex to implement. More precisely, as Transactional Memory (TM) is a lock-free tech-

nique, it avoids lock-based problems and offers high-level abstract parallel programming mod-

els. However, even though the claim made by Transactional Memory (TM) research community

that programming with Transactional Memory (TM) is easier than alternatives such as locks, but

evidence is scant [228]. A study was made [228] in which 147 undergraduate students in an op-

39

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

erating systems course implemented the same programs using coarse-grain and fine-grain locks,

monitors, and Transactional Memory. A survey was made on the students after the assignment

and their code was examined to determine the types and frequency of the programming errors for

each synchronisation technique. The evaluation shows that students found Transactional Mem-

ory (TM) harder to use than coarse-grain locks, but slightly easier to use than fine-grained locks.

More reasons why Transactional Memory (TM) is not sufficient enough are space overhead

and latency. Transactional Memory (TM) requires significant amounts of global and per-thread

meta-data. Transactional Memory (TM) has high single-thread latency, usually two times com-

pared to lock-based technique [68]. Generally speaking, Mutual Exclusion (mutex) locks limit

concurrency but offers single-thread latency, whereas, Transactional Memory (TM) has higher

latency but scales well [68].

2.7.2 Meltdown and Spectre

Meltdown [156] and Spectre [138] are hardware vulnerabilities in modern computers leak pass-

words and sensitive data. Meltdown and Spectre take advantage of modern processors critical

vulnerabilities. As a consequent of these hardware vulnerabilities, programs get permissions to

steal data that has been processed on the computer. Although reading data of programs from

other programs is not permitted, a malicious program takes advantage of Meltdown and Spectre

to get hold of sensitive personal information stored in the memory of other running programs.

Stolen information might be passwords, personal photos, emails, bank card details, etc. Melt-

down and Spectre might hit personal computers, mobile devices, and cloud servers. Hitting cloud

providers’ infrastructure might cause a steal of data from other customers.

Meltdown breaks the most fundamental isolation between user applications and the operating

system. Consequently, programs are allowed to access the memory of other programs and the

operating system. Spectre breaks the isolation between different applications. Consequently,

error-free programs get tricked by an attacker to leak their secrets. Spectre is harder to exploit

40

CHAPTER 2. VERIFICATION TECHNIQUES FOR PARALLEL SYSTEMS: A
REVIEW

than Meltdown, but it is also harder to mitigate. For more information about Meltdown and

Spectre, I refer the reader to [156, 138].

These hardware vulnerabilities, Meltdown and Spectre, are my motive of choosing a case

study of cache controller of cache memory and its implication on the main memory with respect

to their correctness. The case study demonstrates a correctness of such critical systems and par-

allel architectures such as multicore architecture to deliver modular, sound, complete, automatic,

and an efficient model of the proposed computational model.

2.8 Summary

In this chapter a comprehensive background about the research topic is given. Verification tech-

niques is presented and a trade-offs between these techniques is discussed. Runtime verification

has been chosen to serve the proposed approach due to specific reasons which have been pre-

sented as well. Interval Temporal Logic (ITL) has been chosen to be a formal methods-based

framework for the approach due to various reasons. Related works concerning memory models

are discussed in addition to hardware vulnerabilities, namely, Meltdown and Spectre.

41

Chapter 3

Computational Model

Objectives:

• To introduce the Parallel Runtime Verification Framework (PRVF) Model

• To highlight the Communication Mechanisms, Concurrency Forms, and Execution Modes

• To produce Novel Algorithms and establish a Theoretical Ground

• To describe the Components of the Model

• To demonstrate the Capabilities of the Model

42

CHAPTER 3. COMPUTATIONAL MODEL

3.1 Introduction

In this chapter, the computational model, namely, Parallel Runtime Verification Framework

(PRVF) is introduced. A comprehensive description of the main components of PRVF and their

functions is given. The framework has two levels which are global level and locals level; and it

has three phases which are Generation Phase, Locals Verification & Assertion Phase, and Global

Verification Phase. I describe the possible communication models and concurrency forms that

the proposed framework is intended to handle. Then a description of these levels and phases of

the proposed framework is given. Novel algorithms are invented, described, validated, and im-

plemented in order to establish a theoretical ground for Parallel Runtime Verification Framework

(PRVF) model.

3.2 Computational Model

Parallel Runtime Verification Framework (PRVF) is a generic model which is intended to handle

several parallel computing characteristics such as concurrency forms, communication models,

and execution modes. Concurrency forms might be true or interleaving. Communication models

might use shared-variable or message-passing based approach. Execution modes might follow

either synchronous or asynchronous mechanism. Therefore, I introduce a framework that can

handle both concurrency forms, true concurrency and interleaving concurrency, associated with

either shared-variable or message-passing based approach for (a)synchronous communication

links. Synchronous communication links are called Channels, while asynchronous communica-

tion links are called Shunts [47]. Later in this chapter, a comprehensive description of Channels

and Shunts constructs is given.

3.2.1 Message-Passing based Communication

Message-passing based is a model of communication between parallel systems via sending and

receiving to/from other systems. Predicates such as send and receive are used to perform com-

43

CHAPTER 3. COMPUTATIONAL MODEL

munication between systems. A message being sent may either arrive or never arrive due to

system failure. In case a system fails, there shall be a timeout option to avoid waiting forever.

There are forms of message-passing communication in terms of the sender and the receiver such

as the following:

• Point-to-Point: It is where a message is sent from one sender to one receiver.

• Broadcast: It is where a sender dispatches the message without knowing information

about the receivers, such as names and addresses of the recipients.

• Multicast: It is where a sender is allowed to broadcast not only to receivers, but also to

subset of all possible receivers without knowing the names or addresses of the receivers

and their subsets.

3.2.1.1 Related Work

Cau and Zedan [47] extended Interval Temporal Logic (ITL) to include modularity, resources,

and explicit communications. This extension [47] allows synchronous, asynchronous and shared-

variable concurrency to be explicitly expressed. The developed model in [47] uses the shared-

variable approach to model message-passing in Interval Temporal Logic (ITL). The constructs

Channels and Shunts are modelled. Channels are synchronous communication links, while

Shunts are asynchronous communication links.

The proposed computational model in [47] is closely related to a wide-spectrum language

called Temporal Agent Model (TAM) [236]. Temporal Agent Model (TAM) can express both

functional and timing properties in either abstract or concrete levels. However, Cau and Zedan

[47] introduced timed-communication, timeout, and resource allocation constructs in Interval

Temporal Logic (ITL) semantics because the original TAM semantics is not accessible enough.

In addition to Channels and Shunts constructs, timing constraints, such as delay and timeout,

resource allocation, and shunts’ multiplexer called Funnel are modelled in Cau and Zedan com-

putational model [47].

44

CHAPTER 3. COMPUTATIONAL MODEL

3.2.1.2 Execution Modes

To discover Channels and Shunts constructs, modes of execution, such as (a)synchronous, have

to be illustrated first. Synchronous execution enforces parallel systems to start and finish their

execution at the same clock as Figure 3.1 illustrates, while asynchronous execution allows sys-

tems run in parallel to start and finish their execution at different clocks as Figure 3.2 illustrates

where Sys1 and Sys2 represent any system running in parallel; σn represents the state number.

σ0 σ1 σ2 σ3 σ4

σ0 σ1 σ2 σ3 σ4

Sys1 Sys1 Sys1 Sys1

Sys2 Sys2 Sys2 Sys2

Figure 3.1: Synchronous Execution of Parallel Systems Sys1 and Sys2

σ0 σ1 σ2 σ3 σ4

σ0 σ1 σ2 σ3 σ4

Sys1 Sys1 Sys1 Sys1

Sys2 Sys2
Sys2 Sys2

Figure 3.2: Asynchronous Execution of Parallel Systems Sys1 and Sys2

3.2.1.3 Channel Communication

The variablesC ∈ Chan are the representation of channels whose values are triples (wtr, wtw, v)

where:

• wtr is a boolean value and its value indicates whether the system is willing to accept(read)

a message from that channel.

45

CHAPTER 3. COMPUTATIONAL MODEL

• wtw is a boolean value and its value indicates whether the system is willing to send(write)

a message to that channel.

• When wtr and wtw are both true, v stands for the value currently in channel C.

To introduce a channel C, channel C ∈ P is used. To send a value of expression e over the

channel C and denotes an output which has been sent we use C!e. To receive a value over the

channel C and store it in x and denotes it as an input we use C?x:

channelC inP =̂ ∃C � P

C? =̂ Π1(C) = true

C! =̂ Π2(C) = true

C.x =̂ Π3(C) = x ∧ C? ∧ C!

C!e =̂ (¬C? ∧ C! ∧ stable(C) ; skip) ∨ empty ; C.e

C?x =̂ (¬C! ∧ C? ∧ stable(C) ; skip) ∨ empty ; C.x

The projection function Π1 gives the ”willing to read” value, while the projection function Π2

gives the ”willing to write” value. The projection function Π3 has the actual value in the channel.

The notations C!de (C?dx) formally describes that an agent is willing to perform the communi-

cation at time d where d ∈ TIME. However, in case the environment fails to react promptly,

the system will be on hold forever:

C!de =̂ C!e ∧ (finite ⊃ len = d)

C?de =̂ C!x ∧ (finite ⊃ len = d)

46

CHAPTER 3. COMPUTATIONAL MODEL

3.2.1.4 Shunt Communication

The tuples (t, v) represent the values of the shunt s variables, where t is a stamp and v is the

written value. To introduce a shunt s, shunt s in P is used. To denote the written value v to

shunt s, I used write(v, s). To read the stored value in shunt s, I used read(s). To give the stamp

of shunt s, I used
√
s:

√
s =̂ Π1(s)

shunt s inP =̂ ∃s �
√
s = 0 ∧ P

write(v, s) =̂ skip ∧ ©s = (
√
s+ 1, v)

read(s) =̂ Π2(s)

The projection function Π1 gives the stamp while the projection function Π2 gives the value

stored in shunt s. The notation writed(v, s) formally describes an agent that writes to shunt s the

value v at time d where d ∈ Time− {0}:

writed(v, s) =̂ len = 1− 1 ; skip ∧ ©s = (
√
s+ 1, v)

In case the agent writed(v, s) is required to stay stable except of the last state of the interval, the

agent pwrited(v, s) takes over as follows:

pwrited(v, s) =̂ writed(v, s) ∧ padded(s)

padded(s) =̂ (stable(s) ; skip) ∨ empty

where padded(s) is a padded expression, and it has been formally defined in Interval Temporal

Logic (ITL) as shown the above formula.

47

CHAPTER 3. COMPUTATIONAL MODEL

3.2.1.5 Delay and Timeout

The notation delayd formally describes an agent that sets on hold at first for d time units, where

d ∈ TIME ∪ {∞}, and then it gets terminated without updating the global variables:

delayd =̂ len = d

The notation P Ed Q formally describes an agent behaviour such as P if P is executed within

d time units, otherwise agent Q takes over the execution:

P Ed Q =̂ if (P ⊃ finite ∧ len 6 d) then P elseQ

3.2.1.6 Resource Allocation

The v units of resource res can be requested via the agent request(v, res). The agent waits for

v units in case they are not available [47]. The agent release(v, res) is used to release v units of

the resource res:

request(v, s) =̂ if res > v then res := res− v else ©(request(v, res))

release(v, s) =̂ ©res = res+ v

3.2.1.7 The Funnel

A restricted form of multiplexing on shunts can be performed using the agent called funnel. The

syntax of the agent funnel is si I sout describes the connection of shunts si, which is indexed

by i, to the shunts sout. When a write operation occurs in shunts sj where j ∈ I then shunts sout

must have a write operation at the same time. Shunts si and sout stay stable if no write operation

48

CHAPTER 3. COMPUTATIONAL MODEL

occurs. The funnel becomes false when two different values are written to shunts si and sj at the

same time:

si I sv =̂ (
∧

i∈I stable(si) ∧ stable(sout))∨

((
∨

i∈I stable(si) ; skip ∧
√
si :=

√
si + 1)∧

∃v, t � len = t∧

((
∧

i∈I stable(si) ; skip ∧
√
si :=

√
si + 1 ⊃ fin(read(si)) = v)∧

pwritet(v, sout))

According to Cau and Zedan [47], the funnel allows to execute agents concurrently to the

same shunt with making the assumption of no conflict is occurring. As an agent may perform

reading and writing to shunts, it requires at least two time units to update the stamp.

3.2.2 Shared-Variable based Communication

Shared-variable is a model of communication between parallel systems that share a variable.

All systems can read and write to the variable whenever they need to. There are constraints on

shared-variable model to ensure consistency of the value of shared variable among all systems

that share it:

• All parallel systems can read the consistent value of the shared variable at the same time

(Concurrent Read CR).

• Only one system can write to the shared variable at a time (Exclusive Write EW). Mutual

Exclusion mechanism is applied to ensure this constraint. For instance, if Sys1 needs

to write to a shared variable Data, a lock-based solution is used to enforce a Mutual

Exclusion synchronisation mechanism on a shared variable as the following:

Lock(Data); Data = x; Unlock(Data);

49

CHAPTER 3. COMPUTATIONAL MODEL

Only one system, for instance Sys1, is allowed to write the value x to a shared variable

Data at a time. The above two constraints use one model of the Parallel Random Access

Machine (PRAM) models, which is a Concurrent Read Exclusive Write (CREW) [275].

3.2.3 True Concurrency

True concurrency form allows the parallel systems to be independently executed at the same time.

If parallel systems share a variable, then a synchronisation mechanism such as mutual exclusion

has to be applied to ensure a consistent value of a shared variable. Figure 3.3 illustrates this form

of concurrency where Sys1 and Sys2 represent any system running in parallel, and σn represents

the state number. A global state construction for parallel systems which run in true concurrency

is defined in Definition 9 and illustrated in Figure 3.4.

σ0 σ1 σ2 σ3 σ4

σ0 σ1 σ2 σ3 σ4

Sys1 Sys1 Sys1 Sys1

Sys2 Sys2 Sys2 Sys2

Figure 3.3: Parallel Composition of Sys1 and Sys2 (True Concurrency)

Definition 9 Global State Construction (True Concurrency): The locals state numbers i and j

of parallel systems, Sys1 and Sys2, which run by the local processors n and m respectively are

equivalent, while the global state number of the composed systems, Sys1 and Sys2, which run

by the global processor g is k; k is the sum of the locals state numbers divided by x, the number

of available processors, as follows:

σn
i ‖T σm

j ≡ σg
k=(i+j)/x

50

CHAPTER 3. COMPUTATIONAL MODEL

where:

‖T is the parallel (true concurrency) operator symbol,

σn
i : state number i of processor n,

σm
j : state number j of processor m,

g: global processor,

k: global state number.

σ1
0 σ1

1 σ1
2 σ1

3 σ1
4

σ2
0 σ2

1 σ2
2 σ2

3 σ2
4

σ1
0 ‖T σ2

0 ≡ σg
0 σ1

1 ‖T σ2
1 ≡ σg

1 σ1
2 ‖T σ2

2 ≡ σg
2 σ1

3 ‖T σ2
3 ≡ σg

3 σ1
4 ‖T σ2

4 ≡ σg
4

Sys1 Sys1 Sys1 Sys1

Sys2 Sys2 Sys2 Sys2

Sys1 ‖T Sys2 Sys1 ‖T Sys2 Sys1 ‖T Sys2 Sys1 ‖T Sys2

Figure 3.4: Global State Construction (True Concurrency)

3.2.4 Interleaving Concurrency

Interleaving concurrency allows only one system to be executed at a time. When one system is

running, the other parallel systems are idle. Synchronisation mechanism is not required in this

form because there is no concurrent writes to a shared variable and any change gets committed

at every state, which allows the other parallel systems to see the updates in the next state. Figure

3.5 illustrates this form of concurrency where Sys1 and Sys2 represent any system running in

parallel, and σn represents the state number.

51

CHAPTER 3. COMPUTATIONAL MODEL

σ0 σ1 σ2 σ3 σ4

σ0 σ1 σ2 σ3 σ4

Sys1 Sys1

Sys2 Sys2

Figure 3.5: Parallel Composition of Sys1 and Sys2 (Interleaving Concurrency)

A global state construction for parallel systems which run in interleaving concurrency is

defined in Definition 10 and illustrated in Figure 3.6.

Definition 10 Global State Construction (Interleaving Concurrency): The locals state num-

bers i and j of parallel systems, Sys1 and Sys2, which run by the local processors n and m

respectively are inequivalent, while the global state number of the composed systems, Sys1 and

Sys2, which run by the global processor g is k; k is the sum of the active processor’s local state

number and the stuttered processors state numbers as follows:

σn
i ‖I σm

j ≡ σg
k=i+j

where:

‖I : parallel (interleaving concurrency) operator symbol,

σn
i : state number i of processor n,

σm
j : state number j of processor m,

g: global processor,

k: global state number.

52

CHAPTER 3. COMPUTATIONAL MODEL

σ1
0 σ1

1 σ1
1 σ1

2 σ1
2

σ2
0 σ2

0 σ2
1 σ2

1 σ2
2

σ1
0 ‖I σ2

0 ≡ σg
0 σ1

1 ‖I σ2
0 ≡ σg

1 σ1
1 ‖I σ2

1 ≡ σg
2 σ1

2 ‖I σ2
1 ≡ σg

3 σ1
2 ‖I σ2

2 ≡ σg
4

Sys1 Sys1

Sys2 Sys2

Sys1 Sys2 Sys1 Sys2

Figure 3.6: Global State Construction (Interleaving Concurrency)

3.3 Architecture Framework

As stated in section 3.1, Parallel Runtime Verification Framework (PRVF) has different levels and

phases. The levels are global and locals, while the phases are generation phase, local verification

& assertion phase, and global verification phase. The global level includes the generation phase

in the beginning and the global verification phase in the end of the architecture of the framework.

The locals level includes the locals verification & assertion phase in the middle of the architecture

of the framework. These levels and phases are illustrated in Figures 3.7 to 3.10.

3.3.1 Generation Phase

This phase lies within the global level of a framework where the global level is intended to

generate processor identification Pid, global data Data, communication model Communication,

concurrency form Concurrency, and execution mode Execution. The generation of Pids occurs

randomly via the modulo operation where a random number gets modulo over the available

number of the processors that run in parallel. Data is generated according to the nature of the

53

CHAPTER 3. COMPUTATIONAL MODEL

system under scrutiny.

3.3.1.1 Communication Models

The value of Communication determines the mechanism of the communication between parallel

systems. When the value is 0, then the mechanism of the communication is shared-variable.

When the value is 1, then the mechanism of the communication is message-passing.

3.3.1.2 Concurrency Forms

The value of Concurrency is assigned to indicate the concurrency form which is either inter-

leaving or true concurrency (0 for interleaving, 1 for true concurrency). The execution value

determines the execution mode of systems running parallel in terms of communication.

3.3.1.3 Execution Modes

The execution mode is either synchronous (the value 0 is set) or asynchronous (the value 1 is

set). For synchronous execution of the communication, I used Channels, while for asynchronous

execution of the communication, I used Shunts.

These generated data then get broadcast to all local parallel systems with Pid = 0 to K – 1,

where K is the number of available processors that are intended to run systems in parallel with

all possible paths which might be encountered.

Algorithm 1 defines the mechanism that is used in PRVF model to generate Pid and Data

randomly, and set values for a communication mechanism, concurrency form, and execution

mode. The communication value determines which mechanism is being used. For instance, the

Communication’s value 0 sets the mechanism to shared-variable, while the Communication’s

value 1 sets the mechanism to message-passing. Within each communication mechanism there

are varieties of concurrency forms. When the value of Concurrency is 0, then concurrency is

interleaving. At every single cycle, one local candidate wins the assignment to be the active pro-

cessor, while the others set to be idle. When the value of Concurrency is 1, then the concurrency

is true concurrency which means that at every single cycle all locals become active. The execu-

54

CHAPTER 3. COMPUTATIONAL MODEL

Algorithm 1: Generation Phase
1 Generate(Pid,Data,Concurrency,Execution);

Input : Communication, Concurrency, Execution
Output: Pid,Data

2 for i← 0 to n do
3 Pid = Random mod K; B K IS THE NUMBER OF PROCESSORS.
4 Data = Random mod N ; B N IS ANY NATURAL NUMBER.
5 Communication = Random mod 2; B COMMUNICATION IS EITHER 0 TO SET

IT TO SHARED-VARIABLE, OR 1 TO

SET IT TO MESSAGE-PASSING.
6 if Communication = 0 then
7 Concurrency = Random mod 2; B CONCURRENCY IS EITHER 0 TO SET

IT TO INTERLEAVING, OR 1 TO

SET IT TO TRUE CONCURRENCY.
8 else
9 Execution = Random mod 2; B EXECUTION IS EITHER 0 TO SET

IT TO SYNCHRONOUS, OR 1 TO SET

IT TO ASYNCHRONOUS.
10 end
11 foreach j ← 0 to K − 1 do
12 if Communication = 0 then
13 Send(j,Pid,Data,Concurrency);
14 else
15 Send(j,Pid,Data,Execution);
16 end
17 end
18 end

tion mode has two values, either 0 or 1. When the value of Execution is 0, then the execution

mode is synchronous; otherwise, it is asynchronous.

Shared-variable based communication is associated with the concurrency forms such as in-

terleaving or true concurrency. However, the association between execution modes and shared-

variable based communication is omitted. On the other hand, message-passing based communi-

cation is associated with the execution modes such as synchronous or asynchronous. However,

the association between concurrency forms and message-passing based communication is also

omitted. The reason for these two omissions is because the proposed model demonstrates all the

55

CHAPTER 3. COMPUTATIONAL MODEL

possibilities of communication versus all the possibilities of concurrency of parallel systems. In

other words, the applicability of these approaches can be tailored accordingly.

3.3.2 Locals Verification & Assertion Phase

Locals Verification & Assertion phase lies within the locals level of the framework. The Locals

level is intended to synchronise the execution of parallel systems according to the data that are

sent from the global level. Shared-variable communication mechanism is determined via the

assignment of communication value. Algorithm 1 describes and models all the possibilities that

the proposed framework might encounter.

3.3.2.1 Interleaving Concurrency and Shared-Variable

I assume that the value of Communication is 0 which means that the communication mechanism

is shared-variable. When the value of Concurrency is 0, all locals receive these data and compare

the received Pid from the global level with their local Pids. If a local matches its Pid with the

received Pid from the global, it precedes; otherwise, a local sets itself to idle. Then, the received

global data gets assigned to local data DataL to be locally checked against a property of interest

Propi.

Algorithm 2: Locals Verification & Assertion Phase of Processor i (Interleaving)
1 Assert(Propi);

Input : Pid,Data, Concurrency
Output: Propi

2 if Communication = 0 ∧ Concurrency = 0 then
3 if Pid = i then
4 DataL = Data;
5 Check(Propi);
6 Assert(i, Propi);
7 else
8 Print ”Local i is Idle”;
9 end

10 else
11 Exit();
12 end

56

CHAPTER 3. COMPUTATIONAL MODEL

Global

Send(Pid,Data)

Locali

Receive(Pid,Data)

Localj

Receive(Pid,Data)

Pid=i? Pid=j?

DataL = Data DataL = Data

Check(Propi) Check(Propj)

Assert(Propi) Assert(Propj)Idle Idle

Received(Prop)? TimeoutCheck(Prop)

no

yes

no

yes

no
yes

SHARED-VARIABLE
INTERLEAVING CONCURRENCY

G
L

O
B

A
L

L
O

C
A

L
S

G
L

O
B

A
L

G
E

N
E

R
A

T
IO

N
A

S
S

E
R

T
IO

N
&

L
O

C
A

L
S

V
E

R
IF

IC
A

T
IO

N
G

L
O

B
A

L
V

E
R

IF
IC

A
T

IO
N

Figure 3.7: Parallel Runtime Verification Framework (Shared-Variable Interleaving Concur-
rency)

57

CHAPTER 3. COMPUTATIONAL MODEL

After that, the local property Propi is asserted to be sent to the global level and the global

verification phase (see Algorithm 2 & Figure 3.7).

3.3.2.2 True Concurrency and Shared-Variable

I assume that the value of Communication is 0 which means that the communication mecha-

nism is shared-variable. When the value of Concurrency is 1, the fastest local system locks the

received data Data to be able to exclusively write to it.

Once the write operation is done, Data gets unlocked and synchronised with all the locals

to enforce data consistency of shared variable Data. Then, a property Propi is checked locally

against a set of specifications within all locals system that are interested in the shared variable

Data. After that, the locals’ properties Propi and Propj are asserted to be sent to the global level

and the global verification phase. Algorithm 3 describes this model.

Algorithm 3: Locals Verification & Assertion Phase of Processor i (True Concurrency)
1 Assert(Propi);

Input : Pid,Data, Concurrency
Output: Propi

2 if Communication = 0 ∧ Concurrency = 1 then
3 Lock(Data);
4 DataL = Data;
5 Unlock(Data);
6 Sync(Data);
7 Check(Propi);
8 Assert(i, Propi);
9 else

10 Exit();
11 end

Figure 3.8 illustrates the components of this model including levels and phases. The Levels

are global and locals, while the phases are generation, assertions and locals verification, and

global verification. The flowchart visually describes the flow of the data within this model.

Flowcharts components such as process and decision are primarily used to describe this version

of the model.

58

CHAPTER 3. COMPUTATIONAL MODEL

Global

Send(Pid,Data)

Locali

Receive(Pid,Data)

Localj

Receive(Pid,Data)

Lock(Data)

DataL = Data

Unlock(Data)

Sync(Data)

Check(Propi) Check(Propj)

Assert(Propi) Assert(Propj)

Received(Prop)? TimeoutCheck(Prop) no
yes

SHARED-VARIABLE TRUE CONCURRENCY

G
L

O
B

A
L

L
O

C
A

L
S

G
L

O
B

A
L

G
E

N
E

R
A

T
IO

N
A

S
S

E
R

T
IO

N
&

L
O

C
A

L
S

V
E

R
IF

IC
A

T
IO

N
G

L
O

B
A

L
V

E
R

IF
IC

A
T

IO
N

Figure 3.8: Parallel Runtime Verification Framework (Shared-Variable True Concurrency)

59

CHAPTER 3. COMPUTATIONAL MODEL

3.3.2.3 Synchronous Execution and Message-Passing (Channels)

The message-passing communication mechanism is encountered when the value of Communi-

cation is 1. When a communication mechanism is shared-variable, only a concurrency form

has to be set and sent to locals level. On the contrary, when a communication mechanism is

message-passing, only an execution mode has to be set and sent to locals level. Being within

message-passing communication mechanism implies that the value of Communication is 1. Fig-

ure 3.9 & Algorithm 4 illustrate this model. The first decision process is encountered within

Algorithm 4: Locals Verification & Assertion Phase of Processor i (Synchronous
Message-Passing (Channels))
1 Assert(Propi);

Input : Pid,Data, Concurrency
Output: Propi

2 if Communication = 1 ∧ Execution = 0 then
3 if wtr = true then
4 readi(C);
5 Check(Propi);
6 Assert(i, Propi);
7 else
8 Print ”Local i is not willing to read through Channel C”;
9 end

10 if wtw = true then
11 writei(C,v);
12 Check(Propi);
13 Assert(i, Propi);
14 else
15 Print ”Local i is not willing to write through Channel C”;
16 end
17 else
18 Exit();
19 end

locals level for the selected path is the execution mode. There are two execution modes which

are either synchronous or asynchronous. Synchronous execution of message-passing communi-

cation mechanism is modelled using a construct called Channel communication.

60

CHAPTER 3. COMPUTATIONAL MODEL

Global

Send(Pid,Data)

Locali

Receive(Pid,Data)

Localj

Receive(Pid,Data)

readi(C)

writei(C, v)

readj(C)

writej(C, v)

Check(Propi) Check(Propj)

Assert(Propi) Assert(Propj)

Received(Prop)? TimeoutCheck(Prop) no
yes

SYNCHRONOUS MESSAGE-PASSING

C
H

A
N

N
E

L
S

G
L

O
B

A
L

L
O

C
A

L
S

G
L

O
B

A
L

G
E

N
E

R
A

T
IO

N
A

S
S

E
R

T
IO

N
&

L
O

C
A

L
S

V
E

R
IF

IC
A

T
IO

N
G

L
O

B
A

L
V

E
R

IF
IC

A
T

IO
N

Figure 3.9: Parallel Runtime Verification Framework (Synchronous Message-Passing)

61

CHAPTER 3. COMPUTATIONAL MODEL

Channel construct has triple of these values wtr, wtw, and v. The first one, wtr, is a boolean

value, and its value indicates whether the system is willing to accept (read) a message from that

channel. The second one, wtw, is a boolean value, and its value indicates whether the system is

willing to send (write) a message to that channel. The third one, v, stands for the value currently

in channel C when wtr and wtw are both true.

When wtr is true, Locali reads what is being passed through the channel C at time d. When

wtw is also true, Locali writes the value v to the channel C at time d. Once the write operation

is done, the written value v is checked to determine whether it is satisfying the desired property

Propi of locali. Then, a local property Propi is asserted to be delivered to the global verification

phase.

3.3.2.4 Asynchronous Execution and Message-Passing (Shunts)

Back to the first decision process encountered within locals level for the selected path which is

an execution mode, the second execution mode is asynchronous execution of message-passing

communication mechanism which is modelled using a construct called Shunt communication.

Algorithm 5 illustrate this model.

Shunt construct has tuple of these values t, and v, where t is a stamp and v is the written

value. The construct shunt si belongs to Locali uses the write agent writed(v, si) to denote that

at time d, shunt si has the value v written to it. The read agent readd(si) denotes the value stored

in shunt si. The stamp agent
√
s denotes the stamp of the shunt si.

The funnel allows agents to write concurrently at the same time to the same shunt s. When

shunt s has different values written to it via different agents e.g. i and j at the same time d, the

funnel becomes false. When the agents i and j write the same value at the same time time d,

the write operation occurs instantly in sout. The written value is then checked against a desired

property. After that, the local Propi gets asserted to be sent to the global verification phase.

62

CHAPTER 3. COMPUTATIONAL MODEL

Algorithm 5: Locals Verification & Assertion Phase of Processor i (Asynchronous

Message-Passing (Shunts))

1 Assert(Propi);

Input : Pid,Data, Concurrency

Output: Propi

2 if Communication = 1 ∧ Execution = 1 then

3 writed(v, si);

4 readd(si);

5 stamp(si);

6 Send(j, si);

7 Receive(j, sj);

8 if si = sj then

9 sout = si;

10 Check(Propi);

11 Assert(i, Propi);

12 else

13 Print ”The Funnel is false because shunts i& j wrote different values at the

same time”;

14 end

15 else

16 Exit();

17 end

Figure 3.10 illustrates the components of this model including levels and phases. The Levels

are global and locals, while the phases are generation, assertions and locals verification, and

global verification.

63

CHAPTER 3. COMPUTATIONAL MODEL

Global

Send(Pid,Data)

Locali

Receive(Pid,Data)

Localj

Receive(Pid,Data)

writed(v, si)

readd(si)

writed(v, sj)

readd(sj)

Check(Propi) Check(Propj)

Assert(Propi) Assert(Propj)

Received(Prop)? TimeoutCheck(Prop) no
yes

ASYNCHRONOUS MESSAGE-PASSING

S
H

U
N

T
S

G
L

O
B

A
L

L
O

C
A

L
S

G
L

O
B

A
L

G
E

N
E

R
A

T
IO

N
A

S
S

E
R

T
IO

N
&

L
O

C
A

L
S

V
E

R
IF

IC
A

T
IO

N
G

L
O

B
A

L
V

E
R

IF
IC

A
T

IO
N

Figure 3.10: Parallel Runtime Verification Framework (Asynchronous Message-Passing)

64

CHAPTER 3. COMPUTATIONAL MODEL

3.3.3 Global Verification Phase

This phase lies within a global level. At this phase locals’ properties are received from the locals

assertion phase. The global verification phase gets locals’ properties in order to compose a global

property out of the received locals’ properties as Algorithm 6 illustrates. When the concurrency

Algorithm 6: Global Verification Phase
1 Check(Pid,DataL);

Input : PropPids

Output: Set of Locals Properties
2 Receive(Propi);
3 if Concurrency = 0 then
4 Get(Propi);
5 else
6 foreach i← 0 to K − 1 do
7 Pid = i;
8 Get(PropPid);
9 end

10 end

form is interleaving concurrency, Concurrency is 0, then only one local property is gotten due to

the concurrency form. The property of the active local is received. When the concurrency form is

true concurrency, Concurrency is 1, then all locals properties are gotten due to the concurrency

form. The properties of interest of all locals are received.

Message-passing communication models can be handled according to the concurrency form

being used. I omit the concurrency forms for message-passing due to fact that my interest is to

show all the possible models without redundancy, for instance, true and interleaving concurrency

are demonstrated in association with shared-variable communication mechanism; therefore, no

need to demonstrate it in association with message-passing communication mechanism. The

same idea applies to (a)synchronous execution modes.

Locali Ed Localj =̂ if (Locali ⊃ finite ∧ len 6 d) then Locali elseLocalj

65

CHAPTER 3. COMPUTATIONAL MODEL

Timeout agent deals with locals which do not behave in a time manner. For instance, Locali is

expected to do its task within d time units. Localj takes over, otherwise.

3.4 Parallel Runtime Verification Framework (PRVF) Model

Parallel Runtime Verification Framework (PRVF) model allows the collection of requirements

from several sources to handle local and global correctness properties. The model also allows

sending and receiving assertion data from several sources to handle true/interleaving concurrency

associated with shared-variable based communication approach. In addition, the model enables

the application of mutual exclusion synchronisation mechanism and the use of lock-based tech-

nique in order to guarantee synchronised and consistent shared variables.

Parallel Runtime Verification Framework (PRVF) model allows handling synchronous/asyn-

chronous communication links such as Shunts/Channels associated with message-passing based

communication approach. The model offers the ability to execute agents concurrently via the

funnel besides the introduction of resource allocation agents request and release.

Parallel Runtime Verification Framework (PRVF) model introduces Delay (Delay) and Time-

out (P Ed Q) agents which play an important role in managing such a behaviour. It also offers

checking the correctness properties of local systems at the locals and global levels. Consequently,

inference of the correctness global property can be derived from the correctness of a set of lo-

cal properties of global systems. These new capabilities are demonstrated in the next chapter,

Chapter 4.

3.5 Summary

In this chapter, the computational model, namely, Parallel Runtime Verification Framework

(PRVF) is introduced. Communication mechanisms such as shared-variable and message-passing

are identified. Concurrency forms such as true concurrency and interleaving concurrency are

identified as they are intended to be used in the proposed model. Additionally, PRVF can han-

dle synchronous execution of message-passing via a construct called channel and asynchronous

66

CHAPTER 3. COMPUTATIONAL MODEL

execution of message-passing via a construct called shunt. A comprehensive description of the

components and capabilities of PRVF is given. In the next chapter, the implementation of PRVF

model is demonstrated.

67

Chapter 4

Design and Implementation of a Parallel Runtime

Verification Framework (PRVF)

Objectives:

• To review the current version of AnaTempura

• To describe the Development of Parallel Runtime Verification Framework (PRVF) model

• To show the Implementation of PRVF model using Java, Tempura, and AnaTempura

• To highlight the Impact of PRVF model on AnaTempura Evolution Aspects

• To demonstrate Benchmarking Applications using PRVF model

68

CHAPTER 4. DESIGN AND IMPLEMENTATION OF A PARALLEL RUNTIME
VERIFICATION FRAMEWORK (PRVF)

4.1 Introduction

In this chapter, the computational model, namely, Parallel Runtime Verification Framework

(PRVF) is designed and implemented. The proposed model is an extension of a runtime verifier

tool called AnaTempura. First, a description of the current model of AnaTempura is reviewed

in order to address the drawbacks of AnaTempura model. After that, the proposed model of

a Parallel AnaTempura is represented and a demonstration is given to show how it bridges the

gaps for parallel systems. Benchmarking applications such as Producer-Consumer and Dining

Philosophers Problem are implemented using the proposed model.

4.2 (Ana)Tempura

AnaTempura is a runtime verifier of systems using Interval Temporal Logic (ITL) and its exe-

cutable subset Tempura. It uses assertion points as a technique at runtime verification to check

system satisfaction or violation of a property of interest such as timing, safety, security which

are formally expressed in Interval Temporal Logic (ITL).

Figure 4.1: General System Architecture of AnaTempura [301]

69

CHAPTER 4. DESIGN AND IMPLEMENTATION OF A PARALLEL RUNTIME
VERIFICATION FRAMEWORK (PRVF)

The assertion points get inserted in the source code of a system under scrutiny and subse-

quently a sequence of information such as variables’ names and their values, timestamps values

are generated. The generated data then get checked against the expected values that match a

property of interest.

A property is an expected behaviour of a system over a sequence of states (interval). The

property gets expressed in Interval Temporal Logic (ITL) and then modelled in Tempura lan-

guage to get it executed and checked against that property. AnaTempura does this membership

test as it has Tempura interpreter and the monitor [52, 54]. The main components of AnaTem-

pura are illustrated in Figure 4.1. A description of AnaTempura’s main components including

Assertion Points, The Monitor, and Tempura Interpreter is given in the next sections.

AnaTempura is a semi-automatic tool which means a human intervention is unavoidable

due to the complexity to understand systems automatically. The integration between Interval

Temporal Logic (ITL) and its executable subset Tempura allows AnaTempura to offer:

• Formal specification

• Validation and verification of a formal specification throughout simulation and runtime

checks

Figure 4.2: The Analysis Process [301]

The analysis process as illustrated in Figure 4.2 checks the system’s source code in addition

to the assertion points within it against the desired properties modelled and written in Tempura

language. The source code of a system could be written in C, C#, Java, Scala, Verilog, or Tem-

pura.

70

CHAPTER 4. DESIGN AND IMPLEMENTATION OF A PARALLEL RUNTIME
VERIFICATION FRAMEWORK (PRVF)

4.2.1 Assertion Points

Assertion points is a mechanism that enables systems engineer/analyst to gather information

within a source code of these systems to analyse their behaviour over time. Assertion points

get asserted after every state which is a mapping between variables and their values. A set of

variables which is used to express the property of interest has to be determined. After that, the

assertion points get inserted directly after the value assignment to these variables. Figure 4.3

illustrates assertion points general mechanism where B1 and B2 are the assertion points to reflect

the change of code chunk of C1.

Figure 4.3: Assertion Points and Chunks [301]

Assertion points generate data which reveal information at runtime about a system under

scrutiny. This information includes States and Time Stamps:

• States information maps between the variables that express a property and their values.

This mapping technique has the format 〈Var, Val〉, for instance:

〈Pid, 1〉〈RW, 0〉〈Addr, 3〉

where three variables 〈Pid, RW, Addr〉 and their values 〈1, 0, 3〉 are inserted respectively.

The inserted variables represent a processor identification Pid, Read or Write operation

RW, Memory Address Addr. These variables are part of the cache controller case study

which is intended to be studied in Chapter 5. The above assertion point reveals that a cache

controller system creates a request to read (RW= 0 read, RW= 1 write) a memory address

71

CHAPTER 4. DESIGN AND IMPLEMENTATION OF A PARALLEL RUNTIME
VERIFICATION FRAMEWORK (PRVF)

Memory[Addr] and this request is assigned to a processor which has a Pids value 1. This

generation of information can then reveal and check whether a system’s behaviour is either

satisfying or violating a certain property which has to be met.

• Time Stamps information maps between different assertion points where variables and

their values within these assertion points are changed and to record at what time a change

has occurred. A system’s clock is used to obtain time stamps. In addition to variable and

values parameters, a time stamp parameter is included to form sets of triples instead of

pairs. The triple format is 〈Var, Val, Time Stamp〉, for instance:

〈Pid, 1, 8〉〈RW, 0, 8〉〈Addr, 3, 8〉

· · · · · · · · ·Code Chunk · · · · · · · · ·

〈Pid, 1, 9〉〈RW, 0, 9〉〈Addr, 3, 9〉

where the assertion points add a time stamp value to show a change of the asserted data

between time unit 8 and 9. Time stamps could be in microseconds, seconds, minutes, hours

etc. When a memory address, Memory[3], has changed its value within these time stamps,

then a judgement in regards of a property of interest can be made.

The determination of a location and number of assertion points within a source code is still

manual and relies on systems engineer/analyst’s understanding of a system under scrutiny [300].

The mechanism of capturing and interpreting assertion points is illustrated in Figure 4.4. There

are two components which are intended to receive assertion data generated by assertion points

within a source code of a system, and then split them accordingly into three groups.

The groups as the figure illustrates are variable name, value, and time stamps. The first

component is Data Capture, and it captures the assertion data as strings and then forwards them

72

CHAPTER 4. DESIGN AND IMPLEMENTATION OF A PARALLEL RUNTIME
VERIFICATION FRAMEWORK (PRVF)

Figure 4.4: Processing Assertion Points [301]

to Data Interpret component. The string has the following format:

!PROG: assert variable name: value: time stamp: !

The above clause has a set of markers. Each marker has a meaning as follows:

“!PROG” This marker indicates that assertion data are generated from a program.

“assert” indicates the data being asserted.

“:” The colon symbol separates the asserted data.

“!” The exclamation symbols terminates the assertion data clause.

Based on these markers, a Data Interpret component divides the strings into three groups

which are variable name, value, and time stamps. Then these assertion data are sent to Tem-

73

CHAPTER 4. DESIGN AND IMPLEMENTATION OF A PARALLEL RUNTIME
VERIFICATION FRAMEWORK (PRVF)

pura interpreter in order to execute them and then send the corresponding output to the monitor.

Listing 4.1 illustrates how assertion points look like within a Java external program.

Listing 4.1: Generating Assertion Points within Java Program

1 class AssertionPoints {

2 public static void main(String[] args) {

3 int Pid,RW,Addr,Timestamp;

4 Pid=1;RW=0;Addr=3;Timestamp=9;

5 System.out.println("!PROG: assert Pid:"+Pid+":"+Timestamp+":!");

6 System.out.println("!PROG: assert RW:"+RW+":"+Timestamp+":!");

7 System.out.println("!PROG: assert Addr:"+Addr+":"+Timestamp+":!"); }

8 }

The assertion points in line 5, 6, and 7 within Listing 4.1 inserts three variables names and

their values in addition to the time stamp’s value. The variable set is 〈Pid, RW, Addr〉, while the

value set of these variables is 〈1, 0, 3〉 respectively to their variables names in addition to the time

stamp value which is 9. The external Java program represents a system to analyse. AnaTempura

allows systems to be plugged-in with Tempura interpreter via a monitor. To associate an external

program with a Tempura file, line 3 within Listing 4.2 has to be placed here. Figure 4.5 illustrates

a successful compilation of an external Jave program via AnaTempura which is plugged in to a

Tempura program. Once a Java external program is executed, a string of assertion data is sent to

Figure 4.5: COMPILING EXTERNAL JAVA PROGRAM

74

CHAPTER 4. DESIGN AND IMPLEMENTATION OF A PARALLEL RUNTIME
VERIFICATION FRAMEWORK (PRVF)

Tempura program after they get captured and interpreted accordingly. Tempura has a mechanism

that allows the assertion data to be assigned to a list of variables within the Tempura program

intended to be checked via specific functions. These functions are listed in lines 4, 5 and 6 within

Listing 4.2. The function in line 4 is intended to pass variable names. The function in line 5 is

intended to pass values of those variables, while the functions in line 6 are intended to pass the

time stamps in seconds. These functions allow us to pass the assertion data through them and

assign the received values to internal variables to be deployed internally.

Listing 4.2: Collecting Assertion Data within Tempura Program

1 load "../library/conversion".

2 load "../library/exprog".

3 /* java AssertionPoints 0 */

4 define avar(X) = {X[0]}.

5 define aval(X) = {X[1]}.

6 define atime(X) = {strint(X[2])}.

7 set print_states = true.

8 define get_var(Variable,Value,Timestamp) = {

9 exists T : {

10 get2(T) and

11 Variable = avar(T) and

12 Value = strint(aval(T)) and

13 Timestamp = atime(T) and

14 format("Assertion data <%s, %d, %d> are received!\n",Variable,Value,Timestamp)

15 }

16 }.

17 /* run */ define Test() = {

18 exists Variable,Value,Timestamp: {

19 {get_var(Variable,Value,Timestamp) and len(0)};skip;

20 {get_var(Variable,Value,Timestamp) and len(0)};skip;

21 {get_var(Variable,Value,Timestamp) and len(0)}

22 }

23 }.

75

CHAPTER 4. DESIGN AND IMPLEMENTATION OF A PARALLEL RUNTIME
VERIFICATION FRAMEWORK (PRVF)

Once Tempura runs a test in line 17 within Listing 4.2, the monitor shows the assertion data

imported to the test. The assertion data, which has been asserted within an external Jave program,

are successfully printed out within the monitor as Figure 4.6 illustrates.

Figure 4.6: RUNNING TEMPURA PROGRAM

4.2.2 The Monitor

The monitor is a user-friendly interface which has been built to be an interactive system by

allowing system engineers/analysts to insert inputs during the runtime in order to be able to

analyse the time-critical systems. The monitor is responsible for capturing and analysing the

assertion data which is generated by assertion points. Based on a set of criteria set by system

engineers/analysts, the monitor can make a judgement on a system behaviour against properties

such as safety, liveness, and projected time. The monitor has a textual interface and graphical

interface. The Tcl/Tk [288] and Expect [155] were initially used to build the tool. Tcl/ Tk

graphical user interface no longer depend on Expect, this has been the case since the release of

version 3.3 of AnaTempura. The latest release of an up-to-date AnaTempura is version 3.4. [54].

When the run of a system initialised within the monitor, the assertion points which are placed

within a source code of a system under scrutiny send their assertion data to the monitor. The

monitor then receives these assertion data accordingly and send them to Tempura interpreter.

The Tempura interpreter then checks the executable specifications written in Tempura file against

the received assertion data and after that a judgement of pass or fail is made accordingly. The

76

CHAPTER 4. DESIGN AND IMPLEMENTATION OF A PARALLEL RUNTIME
VERIFICATION FRAMEWORK (PRVF)

Tempura interpreter indicates to the failure’s location and explains why the failure occurred. This

information is displayed via the monitor.

4.2.3 Tempura Interpreter

Tempura interpreter is an interpreter of executable Interval Temporal Logic formulae. The cur-

rent Tempura interpreter is programmed in C language and denoted as C-Tempura. The C-

Tempura interpreter was originally developed by Roger Hale in 1985 at Cambridge University,

and now it is maintained by Antonio Cau and Ben Moszkowski. However, Ben Moszkowski

developed the first Tempura interpreter, and it was programmed in Prolog in December 1983.

In March 1984, Ben Moszkowski rewrote the interpreter in Lisp [54]. I refer the reader to

Moszkowski’s book [182] for more details.

4.3 Evolutionary Improvements of AnaTempura

A single vending machine can serve one person at a time. When there are ten people queuing

to be served in order to get hot beverages and while each beverage consumes 10 seconds to be

delivered, the total needed time to serve ten people is 100 seconds. But when there is another

vending machine, half of the load on the first machine is transferred to the second machine, which

means five people would be queuing at each vending machine. The existence of the other vending

machine reduces the load to the half and consequently the consumed time is as well reduced to

50 seconds to serve all the ten people. This significant reduction of the consumed time is due

to the speed increment with the assumption of having 100% parallel portion (100% = 1, 50% =

0.50) and two vending machines. Amdhal’s Law [115] is used to perform the calculation of the

speed for parallel computation. Amdhal’s Law is defined as the following:

Speedup(N) = 1
(1−P)+ P

N
(4.1)

77

CHAPTER 4. DESIGN AND IMPLEMENTATION OF A PARALLEL RUNTIME
VERIFICATION FRAMEWORK (PRVF)

where P is a parallel portion of a system in percentage; N is the number any kind of objects that

are intended to perform parallel tasks, for instance vending machines. The application of Amd-

hal’s Law assumes that the speed is exponentially incremented in accordance with the number of

available parallel processes in execution which consequently leads to significant improvement in

performance. Applying Amdhal’s Law on vending machines’ example produces the following

result:

Speedup(2) = 1
(1−1)+ 1

2

= 1
0.50

= 2 times

The speed is doubled which means only half of the time is needed to perform the task. Instead

of consuming 100 seconds at one vending machine, only 50 seconds are needed when there are

two vending machines. Amdhal’s Law defines the incremental relationship between the number

of processors and the performance as illustrated in Figure 4.7.

Figure 4.7: AMDAHL’S LAW [115]

Dividing the ten people into two groups, and with each group consisting of five people to be

served by only one machine in interleaving concurrency form of parallelism does not change the

fact that serving them sequentially as one group of ten leads to the same result of serving them in

78

CHAPTER 4. DESIGN AND IMPLEMENTATION OF A PARALLEL RUNTIME
VERIFICATION FRAMEWORK (PRVF)

interleaving concurrency form of parallelism. Therefore, practically, sequential and interleaving

concurrency mechanisms are alike in terms of performance. Performance increases significantly

by applying true concurrency form of parallelism. True concurrency form needs parallel soft-

ware/hardware components and a channel of communications in case of shared resources.

Figure 4.8: RUNTIME VERIFICATION

The current version of AnaTempura can not handle parallel systems at a time because the

current framework as illustrated in Figures 4.1 and 4.8 has single components such as The Mon-

itor (The Server) and Tempura Interpreter. The single monitor can only monitor one system

at time; also, the single Tempura Interpreter can execute only one Tempura program at a time

and this is the same for the rest of the components. Therefore, multiple components are needed

to handle parallel systems at a time. The proposed model has tackled this issue by deploying

and introducing the principles of parallelism to AnaTempura to enable it to handle all forms of

parallelism at a time and architectures such as Multi-cores/processors, Parallel Random Access

Memory (PRAM), and Remote Method Invocation (RMI).

79

CHAPTER 4. DESIGN AND IMPLEMENTATION OF A PARALLEL RUNTIME
VERIFICATION FRAMEWORK (PRVF)

4.3.1 Realisation of Assertion Points Techniques

In this section, a set of realisation of assertion points techniques of the proposed model, Parallel

Runtime Verification Framework (PRVF), are introduced and explained in details.

• The variety of source of the requirements that handle local and global properties implies

the collection of assertion data from several sources, at a time, to handle concurrency. In

addition to the multiple assertion points within several sources, the assertion points clause

is extended in order to allow more variables and values to be asserted at a time. The

extended format is as follows:

〈Pidvar,Pidval,Varn,Valn, · · · ,Varm,Valm,Timestamp〉

where Pidvar could be program, process, or thread identification number, Pidval is the value

of Pidvar, Varn is the nth variable, Valn is the nth value of nth variable, and Timestamp is

a time stamp of the assertion points where time now can be in microseconds.

Listing 4.3 illustrates the extended assertion points in correspondence to the functions

introduced in Listing 4.4 to allow more variables and values to be asserted at a time and

collected at once.

Listing 4.3: Generating Assertion Points within Java Program

1 class ExtendedAssertionPoints {

2 public static void main(String[] args) {

3 int Pid,RW,Addr,Timestamp;

4 Pid=1;RW=0;Addr=3;Timestamp=9;

5 System.out.println("!PROG: assert ...

Pid:"+Pid+":RW:"+RW+":Addr:"+Addr+":"+Timestamp+":!");

6 }

7 }

80

CHAPTER 4. DESIGN AND IMPLEMENTATION OF A PARALLEL RUNTIME
VERIFICATION FRAMEWORK (PRVF)

Figure 4.9 illustrates the compilation of the external Java program in Listing 4.3. The

compilation occurs within AnaTempura.

Figure 4.9: GENERATING EXTENDED ASSERTION POINTS WITHIN EXTERNAL JAVA PRO-
GRAM

The new functions in lines 4 to 9 Listing 4.4 are extensions of the previous ones in Listing

4.2. The function in line 4 and 5 always reserve the parameters X[0] and X[1] to Pidvar

and Pidval respectively. The rest of the functions in line 6 and 7 have new parameters a and

b to enable their functions to assign corresponding variables to their values dynamically.

The time stamp in microseconds is introduced in line 9.

Listing 4.4: Collecting Assertion Data within Tempura Program

1 load "../library/conversion".

2 load "../library/exprog".

3 /* java ExtendedAssertionPoints 0 */

4 define apidvar(X) = {X[0]}.

5 define apidval(X) = {X[1]}.

6 define avar1(X,a) = {X[a]}.

7 define aval1(X,b) = {X[b]}.

8 define atime1(X,c) = {strint(X[c])}.

9 define atime_micro1(X,d) = {strint(X[d])}.

10 set print_states = true.

11 define get_var(Variable0,Value0,Variable1,Value1,Variable2,Value2,Timestamp) = {

12 exists T : {

13 get2(T) and

14 Variable0 = apidvar(T) and Value0 = strint(apidval(T)) and

81

CHAPTER 4. DESIGN AND IMPLEMENTATION OF A PARALLEL RUNTIME
VERIFICATION FRAMEWORK (PRVF)

15 Variable1 = avar1(T,2) and Value1 = strint(aval1(T,3)) and

16 Variable2 = avar1(T,4) and Value2 = strint(aval1(T,5)) and

17 Timestamp = atime_micro1(T,6) and

18 format("Assertion data <%s, %d, %s, %d, %s, %d, %d> are received\n",

19 Variable0,Value0,Variable1,Value1,Variable2,Value2,Timestamp)

20 }

21 }.

22 /* run */ define Test() = {

23 exists Variable0,Value0,Variable1,Value1,Variable2,Value2,Timestamp: {

24 get_var(Variable0,Value0,Variable1,Value1,Variable2,Value2,Timestamp) and len(0)

25 }

26 }.

Figure 4.10 illustrates the collection process of a generated assertion data sent from the

external Java program. The assertion data get assigned to their functions accordingly as

described earlier in this section.

Figure 4.10: COLLECTING EXTENDED ASSERTION POINTS TEMPURA PROGRAM

• The Tempura Interpreter can now be several instances to handle concurrency. This new ca-

pability allows us to generate as many Tempura Interpreters as needed. To run the Tempura

Interpreter externally, a certain command has to be annotated within the main Tempura file

that is intended to monitor other Tempura programs. For instance, Listing 4.5 is a global

Tempura program which is intended to monitor two local Tempura programs illustrated in

Listings 4.6 and 4.7. The global program in Listing 4.5 starts another AnaTempura system

82

CHAPTER 4. DESIGN AND IMPLEMENTATION OF A PARALLEL RUNTIME
VERIFICATION FRAMEWORK (PRVF)

via these commands in lines 3 and 4:

/ ∗ anatempura 0 ∗ /

/ ∗ anatempura 1 ∗ /

A description of this new capability will be given where relevant in this section. In order

to start several Tempura Interpreters instead, these commands are replaced by the new

commands at the top of the Global Tempura program in line 3 and 4:

/ ∗ prog tempura macosx 0 ∗ /

/ ∗ prog tempura macosx 1 ∗ /

These new commands start C-Tempura Interpreters as external programs within the main

monitoring system, AnaTempura, in order to monitor local programs behaviour via gener-

ating assertion points and sending the assertion data to the global Tempura program.

• The ability of the Monitor to monitor global and local properties via collecting the assertion

data that are sent from local programs. For instance, local programs in Listings 4.6 and

4.7 send their assertion data to global program in Listing 4.5. The output as illustrated

in Figure 4.11 where the monitor at the top of the figure and local0 and local1 are at the

middle and the bottom respectively.

Listing 4.5: Collecting Assertion Data within Tempura Program

1 load "conversion".

2 load "exprog".

3 /* anatempura 0 */

83

CHAPTER 4. DESIGN AND IMPLEMENTATION OF A PARALLEL RUNTIME
VERIFICATION FRAMEWORK (PRVF)

4 /* anatempura 1 */

5 define apidvar(X) = {X[0]}.

6 define apidval(X) = {X[1]}.

7 define avar1(X,a) = {X[a]}.

8 define aval1(X,b) = {X[b]}.

9 define atime1(X,c) = {strint(X[c])}.

10 define atime_micro1(X,d) = {strint(X[d])}.

11 set print_states = true.

12 define get_var() = {

13 exists T : {

14 get2(T) and

15 format("Global is Receiving Assertion Data: %s=%20d from %s %d\n",

16 avar1(T,2),strint(aval1(T,3)),apidvar(T),strint(apidval(T))) and empty

17 }

18 }.

19 /* run */ define test() = {

20 exists v : {

21 {prog_send1(0,"load 'Local0'.") and

22 prog_send1(1,"load 'Local1'.")};skip;

23 {prog_send1(0,"run test_local0().") and

24 prog_send1(1,"run test_local1().")};skip;

25 for v<2 do {

26 {get_var();skip}

27 };

28 {prog_send1(0,"exit.") and prog_send1(1,"exit.")}

29

30 }

31 }.

• The possibility to monitor a Tempura Interpreter (or another AnaTempura system) so a

hierarchy of monitors exist. A description of the process of monitoring another Tempura

Interpreter is given earlier. The process of monitoring another monitoring system AnaTem-

pura can be done via the annotation of a certain command:

/ ∗ anatempura 0 ∗ /

/ ∗ anatempura 1 ∗ /

84

CHAPTER 4. DESIGN AND IMPLEMENTATION OF A PARALLEL RUNTIME
VERIFICATION FRAMEWORK (PRVF)

For instance, the global program run within Listing 4.5 has this command in lines 3 and

4. This command runs AnaTempura and this task is assigned to process 0 such as in line

3, and process 1 in line 4. The global Tempura program runs two local Tempura programs

independently in parallel to monitoring their behaviours in order to make a judgement

according to a set of properties. The functions within a global program which are intended

to load the local programs are:

prog send(Pid, “load ′Program′.”)

for instance,

prog send1(0, “load ′Local0′.”) and prog send1(1, “load ′Local1′.”)

The first parameter is a process Pid which is intended to load local program ‘local0’.

The same steps are applied to the rest of local programs when they ever exist, while the

functions which are intended to run functions within locals programs as follows:

prog send(Pid, “run Function.”)

for instance,

prog send1(0, “run test local0().”) and prog send1(1, “run test local1().”)

To run a certain function externally, the same value for the process Pid which has been

used to load this function. The difference here is the use of “run” keyword instead of

“load”.

85

CHAPTER 4. DESIGN AND IMPLEMENTATION OF A PARALLEL RUNTIME
VERIFICATION FRAMEWORK (PRVF)

The Listing 4.6 illustrates local Tempura program. This program is loaded within the

global Tempura program as explained above, and the function as well is run externally

within the global Tempura program.

Listing 4.6: Generating Assertion Data within local0 Tempura Program

1 load "conversion".

2 load "exprog".

3 set print_states = false.

4 define assert() = {

5 exists Local,Data : {

6 Local=0 and

7 Data=Random and

8 format("\n") and

9 format("Local %d is Sending %d to Global\n",Local,Data) and

10 format("!PROG: assert Local:%d:X:%d:!\n",Local, Data)

11 }

12 }.

13 /* run */ define test_local0() = {

14 skip and assert()

15 }.

The local Tempura programs in Listings 4.6 and 4.7 are alike except in variables Local and

Data. The variable Local’s value is 0 in Listing 4.6 while it is 1 in Listing 4.7. The variable

Data is generated randomly by assigning the random operator, Random, as a value to it.

Listing 4.7: Generating Assertion Data within local1 Tempura Program

1 load "conversion".

2 load "exprog".

3 set print_states = false.

4 define assert() = {

5 exists Local,Data : {

6 Local=1 and

86

CHAPTER 4. DESIGN AND IMPLEMENTATION OF A PARALLEL RUNTIME
VERIFICATION FRAMEWORK (PRVF)

7 Data=Random and

8 format("\n") and

9 format("Local %d is Sending %d to Global\n",Local,Data) and

10 format("!PROG: assert Local:%d:X:%d:!\n",Local, Data)

11 }

12 }.

13 /* run */ define test_local1() = {

14 skip and assert()

15 }.

The monitor then displays the assertion data which are generated by local Tempura pro-

grams and collected via a global Tempura program as illustrated in Figure 4.11

Figure 4.11: GLOBAL COLLECTS ASSERTION POINTS FROM LOCALS TEMPURA PROGRAM

• The integration between AnaTempura and Java Remote Method Invocation (RMI) Frame-

work. AnaTempura allows plug-ins, as external systems, systems which use Java RMI to

87

CHAPTER 4. DESIGN AND IMPLEMENTATION OF A PARALLEL RUNTIME
VERIFICATION FRAMEWORK (PRVF)

start a server implementation in order to serve clients systems run in parallel using multi-

threads programming in Java language. The compilation of Java RMI programs is unlike

other Java programs; it has different steps. The first step is to start a server and then run

the independent clients upon a running server. These steps are now embedded within the

Tempura Interpreter. In Listing 4.8 lines 3-6 are the commands which run Java RMI pro-

grams:

/*RMIREGISTRY 0*/

/*RMISERVER . RMISERVERINTF RMISERVER 1*/

/*RMICLIENT . RMISERVERINTF RMICLIENT1 2*/

/*RMICLIENT . RMISERVERINTF RMICLIENT2 3*/

The creation of RMI registry is assigned to process 0. The compilations of java programs

RmiServer, RmiClient1, RmiClient2 are assigned to processes 1, 2, 3 respectively.

Listing 4.8: Tempura RMI

1 load "conversion".

2 load "exprog".

3 /* rmiregistry 0 */

4 /* rmiserver . RmiServerIntf RmiServer 1 */

5 /* rmiclient . RmiServerIntf RmiClient1 2 */

6 /* rmiclient . RmiServerIntf RmiClient2 3 */

7 define apidvar(X) = {X[0]}.

8 define apidval(X) = {X[1]}.

9 define avar1(X,a) = {X[a]}.

10 define aval1(X,b) = {X[b]}.

11 define atime1(X,c) = {strint(X[c])}.

12 define atime_micro1(X,d) = {X[d]}.

13 set print_states = true.

14 define get_var() = {

15 exists T,Client,Data,Timestamp : {

16 get2(T) and

17 Client=strint(apidval(T)) and

88

CHAPTER 4. DESIGN AND IMPLEMENTATION OF A PARALLEL RUNTIME
VERIFICATION FRAMEWORK (PRVF)

18 Data=strint(aval1(T,3)) and

19 Timestamp =atime_micro1(T,4) and

20 format("Server is Receiving Assertion Data: X=%12d from Client %d at timestamp ...

%s\n",

21 Data,Client,Timestamp) and empty

22 }

23 }.

24 /* run */ define test() = {

25 exists v : {

26 for v<2 do {get_var();skip}

27 }

28 }.

Figure 4.12: IMPLEMENTATION JAVA RMI USING ANATEMPURA

89

CHAPTER 4. DESIGN AND IMPLEMENTATION OF A PARALLEL RUNTIME
VERIFICATION FRAMEWORK (PRVF)

Listing 4.8 runs Jave programs associated with it in lines 4, 5, 6 as seen in Figure 4.12. The

clients Java programs have assertion points and once these programs are run via AnaTem-

pura, they send their assertion data to their corresponding Tempura programs to receive

the assertion data accordingly and then forward these assertion data as assertion points to

Tempura program in Listing 4.8. Then, the assertion data is received and displayed as

seen in Figure 4.12. The clients Java programs assert a random data, time stamp in mi-

croseconds using a format of HH-mm-ss-SSS where HH stands for Hours, mm stands for

minutes, ss stands for seconds, and SSS stands for milliseconds. The source code of these

Java programs and their relevant Tempura programs can be found in Appendix D.

• The capability to implement parallel systems designed using multi-core processor archi-

tectures. The case study, Cache Controller, is a demonstration of this capability in the next

chapter, Chapter 5.

4.4 Benchmarking Applications

In this section, some parallel/concurrent applications which can be applied using the proposed

implemented framework are explored. Producer-Consumer and Dining Philosophers Problem

are two common applications that demonstrate parallel/concurrent executions.

4.4.1 Producer-Consumer

The Producer and Consumer are two separate, concurrent programs which run in parallel and

share the same data. The access to shared data must be synchronised to deliver a consistent

model. A producer puts (produces) a stream of data into a buffer, while a consumer gets (con-

sumes) these produced data within a buffer as Figure 4.13 illustrates.

Figure 4.13: Producer-Consumer

90

CHAPTER 4. DESIGN AND IMPLEMENTATION OF A PARALLEL RUNTIME
VERIFICATION FRAMEWORK (PRVF)

A buffer in this example of Producer-Consumer can hold up to four elements. When the size

of the buffer is full, it can not accept new produced elements by the producer. In such cases,

the producer waits until the buffer empties a space for a new element. The implementation of

Producer-Consumer using the proposed model in the runtime verifier AnaTempura is illustrated

in Figure 4.14.

The implementation shows the assertion data being asserted within Java external programs

that are intended to run a Producer-Consumer system in order to analyse its behaviour in order to

check desired correctness properties of such programs. As seen in Figure 4.14, the assertion data

are displayed in the monitor’s window (left side) and in the simulation window as well (right

side). Based on these data, a complete check of correctness properties can be achieved.

Figure 4.14: PRODUCER-CONSUMER EXECUTION IN TEMPURA/ANATEMPURA

91

CHAPTER 4. DESIGN AND IMPLEMENTATION OF A PARALLEL RUNTIME
VERIFICATION FRAMEWORK (PRVF)

4.4.2 Dining Philosophers Problem

The Dining Philosophers Problem is a classical example of parallel/concurrent programs. Five

philosophers are sitting around a circular table. The five philosophers are either thinking or

eating spaghetti. Eating spaghetti needs two chopsticks, but unfortunately only five chopsticks

are available. Each philosopher has two chopsticks; they are to his/her immediate right and left.

When a philosopher uses two chopsticks, it means his/her immediate neighbours can not eat

because the chopsticks they need to pick up are taken and unavailable. The Dining Philosophers

Problem demonstrates how to provide a synchronisation mechanism that ensures correctness

properties in such cases. Figure 4.15 illustrates an implementation of this problem which runs in

AnaTempura.

Figure 4.15: DEMO OF DINING PHILOSOPHERS PROBLEM

Figure 4.15 illustrates that there are five parallel/concurrent programs running simultane-

ously. Each program represents a philosopher that is assigned to Pid’s (0 to 4). A philosopher’s

92

CHAPTER 4. DESIGN AND IMPLEMENTATION OF A PARALLEL RUNTIME
VERIFICATION FRAMEWORK (PRVF)

actions are thinking (default initial action), eating, picking up a (left/right) chopstick, and putting

down a (left/right) chopstick. Chopsticks are numbered as well to identify them; they are num-

bered from 0 to 4 as Figure 4.15 illustrates..

Five external programs model these five philosophers and their actions. The most critical part

is the use of chopsticks because they are shared. Two neighbour philosophers are not allowed to

use the chopstick they share, e.g. Philosopher 0 and Philosopher 1 share Chopstick 0 and so on.

The proposed model handles this problem perfectly, and it allows the five parallel programs

to run and generate assertion data and displays these data in a table format within the monitor

and in graphics using the simulation window. These features allow modelling such applications

in order to validate their behaviour against correctness properties.

4.5 Summary

In this chapter, Parallel Runtime Verification Framework (PRVF) is designed and implemented.

A review of the current status of the runtime verifier AnaTempura is given, and the drawbacks in

this model with regards to handling parallel systems are addressed. Then, a mechanism of how

to handle parallel systems natively using the proposed model is illustrated. Applications such as

Producer-Consumer and Dining Philosophers Problem are implemented using this model.

93

Chapter 5

Case Study: Cache Controller

Objectives:

• To present a Case Study: the Cache Controller

• To review Cache Coherence and implement MSI Protocol

• To produce a Formal Specification in Interval Temporal Logic (ITL)

• To deliver a Runtime Verification using Tempura/AnaTempura

94

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

5.1 Cache Memory Controller: A Case Study

In this chapter, a case study of Private L2 Cache Memory Controller that will illustrate our

compositional model is introduced. A comprehensive description of the operations and requests

of Private L2 Cache Memory, Processor, Main Memory, and MSI Protocol is given.

5.2 The Basics of Cache Memory

According to Webster’s New World Dictionary of the American Language (Third College Edition

1988) a cache is “a safe place for hiding or storing things.”; to exemplify, consider a university

library as the main memory, and the desk as the cache, the books are the things that must be

found [213]. Ever since the first appearance of the caches in research computers in 1960s and

then in computers production, they have been included in every built computer today [213].

Assigning the cache location based on the address of the word in the main memory is the

simplest method to assign a location in the cache. The process of mapping in a direct way of

each memory location to exactly one location in the cache is called direct-mapped cache. This

mapping can be easily done by applying the modulo mathematical operation which always gives

the remainder of the division operation of two operands. For instance, to find a block in direct-

mapped cache, the following equation is used:

Index = X modulo Y
(5.1)

where X is a decimal address, and Y is the number of blocks or entries in the cache, in the case

it is a power of 2. To compute the length of the index, the low order is used. In Equation 5.2, S

is a cache size in blocks and can be the exponential multiples of the base 2, such as 2, 4, 8, 16,

32, 64, 128 etc.

log2(S)
(5.2)

95

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

Assuming that there are eight bits length for the requested address, the length of bits of

cache’s index can be found by computing the following:

log2(8) = 3 bits

This means that there are eight blocks (23) in the cache which are 000 , 001 , 010 , 011 , 100 , 101 , 110 , 111.

Suppose there are 10 as a decimal address requested by a processor, and the length of the block

address is 8 bits, the requested address has to go through the following:

1. Convert the requested address into binary: 1010 = 010102

2. Determine the length of bits used for cache index: log2(8) = 3 bits

3. Modulo used to determine the cache index that will match this address:

1010 mod 810 = 210 or in binary format 0102

Therefore, the requested address 1010 goes to index 0102 and continues the computation. But,

this index could be shared by other requested addresses such as 1810, 2610, 3410 or any decimal

number having 210, or alternatively 0102, as a resultant of the modulo operation. To solve this

conflict the tag field is introduced. Tags contain the upper portion of the address to distinguish

this requested address from other addresses which have the same index block. For instance,

consider previous example:

address 1010 : 1010 mod 810 = 210 or 0102

address 1810 : 1810 mod 810 = 210 or 0102

Both addresses have the same index. Therefore, if the two upper portions are set of the binary

96

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

address as a tag field, then there will be different tags which are:

address 1010 (010102) has 012 as a Tag field

address 1810 (100102) has 102 as a Tag field

Alternatively, the tag field can be determined using the division operation of the requested ad-

dress over the the length of the cache index as Equation 5.3 illustrates:

Tag = Addr divS
(5.3)

where Addr is the requested address and S is the size of the cache. For instance, in case the

size of the index is 8 and to determine the tag field of addresses 10, 18, Equation 5.3 is used as

follows:

10 div 8 = 110 or 012

18 div 8 = 210 or 102

Therefore, the addresses from 0 to 7 have the tag 0, the addresses from 8 to 15 have the tag 1,

and the addresses from 16 to 23 have the tag 2 and so on.

5.2.1 Description

The multi-core processor architecture has at least two independent cores, each core has its L1

cache, and they share L2 cache as illustrated in figure 5.1. Some architectures have different

designs such as shared L2 cache; the dedicated or private L2 cache design is adopted to demon-

strate the proposed approach. The main memory is connected to the L2 cache memory using

a bus. The bus is a broadcast medium that transients the addresses and data requested by the

processors between the caches or between the cache and main memory.

97

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

Figure 5.1: Dual Core Dual Processor System

A core or a processor requests either a read or a write operation. When a processor requests

to read an address from the cache, the cache checks its index; if it is found, then the cache fetches

the address to the processor. This case is called Read Hit. If the cache does not find the requested

address within its index, the request gets transferred to the main memory and the main memory

fetches the requested address to the processor, and it keeps this address in the cache for further

requests by the processor. This case is called Read Miss.

When the request is write, it becomes more complicated. There are two types of write oper-

ation which are are write-through and write-back. In write-through, the write operation updates

both the cache and the main memory simultaneously, so the cache and the main memory are

always consistent. In write-back when a write occurs, it updates the cache only, then writes the

modified block of the cache to the main memory when the block is replaced [213].

In case of write-through, the processor requests to write data to a block in the cache; if the

block is found, the data is then written to the block in the cache and at the same moment the main

memory gets updated. This case is called Write Hit. If the requested cache block is not found

then the request gets transferred to the main memory and performs the write operation upon the

98

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

requested address. Then the main memory keeps a copy of this updated block in the cache for

further requests. This case is called Write Miss.

In case of write-back, a processor requests to write data to a cache block; if a cache block is

found, then the write operation occurs without updating the main memory, which means that the

cache block and the main memory are inconsistent. This case is called Write Hit. This scheme of

writing improves the performance of the processor as the processor does not need to wait until the

main memory becomes consistent with the cache. Instead, the processor continues performing

other tasks. But whenever that cache block gets replaced by another request, the modified block

gets written to the main memory. If the requested cache block is not found in the cache, then

the main memory fetches the data of the requested address to the correspondent cache block.

This case is called Write Miss[213]. Tables 5.1 to 5.7 illustrate the read-write/miss-hit of the

Table 5.1: 9-Memory Refernces to 8-Blocks Cache

State Decimal Address Binary Address Hit-Miss Assigned Cache Block
0 2210 101102 Miss (101102 mod 8) = 1102

1 2610 110102 Miss (110102 mod 8) = 0102

2 2210 101102 Hit (101102 mod 8) = 1102

3 2610 110102 Hit (110102 mod 8) = 0102

4 1610 100002 Miss (100002 mod 8) = 0002

5 310 000112 Miss (000112 mod 8) = 0112

6 1610 100002 Hit (100002 mod 8) = 0002

7 1810 100102 Miss (100102 mod 8) = 0102

8 1610 100002 Hit (100002 mod 8) = 0002

addresses requested by a processor. Table 5.1 illustrates 9 requests by a processor of addresses

Memory[22], Memory[26], Memory[16], Memory[3], and Memory[18]. Some of these ad-

dresses are requested twice which causes the occurrence of hits within the cache. For instance, at

state 0, a processor requests address Memory[22] and because this address is not present within

the cache, the request is transferred to the main memory to deliver it to the requester. The main

memory of address 22, Memory[22], gets copied into the cache accordingly, and the requested

data of this memory address is provided to the processor to continue the computation. The same

99

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

steps are taken at state 1 of address 26. The interesting part is that when one of the previous

addresses gets requested again by a processor, it means that the requested address is already now

in the cache after the fetch operation is performed by the main memory in the previous state. The

request of the requested address gets hit as illustrated in table 5.1 at state 2 and 3 of addresses

Memory[22] and Memory[26]. The same policy is applied on the remaining requests.

Tables 5.2 to 5.7 show the described policy of read-write/miss-hit step by step. The tables

are designed according to the cache main components. The cache memory has Index, Valid,

Tag, and Data fields. The index is a unique place to store the requested addresses with their data

accordingly as illustrated in Equation 5.1. The tag determination is described in Equation 5.3.

The valid bit is an indication of whether the cache block is empty or not. For instance, it might

have 0 or N to indicate that the cache block is not valid because it is empty, whereas the values 1

or Y indicate that the cache block is valid.

Table 5.2: Empty 8-Blocks Cache

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 N
111 N

Table 5.3: Miss of Address [101102]

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 Y 102 Memory[101102]
111 N

Table 5.4: Miss of Address [110102]

Index V Tag Data
000 N
001 N
010 Y 112 Memory[110102]
011 N
100 N
101 N
110 Y 102 Memory[101102]
111 N

Table 5.5: Miss of Address [100002]

Index V Tag Data
000 Y 102 Memory[100002]
001 N
010 Y 112 Memory[110102]
011 N
100 N
101 N
110 Y 102 Memory[101102]
111 N

100

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

Table 5.6: Miss of Address [000112]

Index V Tag Data
000 Y 102 Memory[100002]
001 N
010 Y 112 Memory[110102]
011 Y 002 Memory[000112]
100 N
101 N
110 Y 102 Memory[101102]
111 N

Table 5.7: Miss of Address [100102]

Index V Tag Data
000 Y 102 Memory[100002)
001 N
010 Y 102 Memory[100102]
011 Y 002 Memory[000112]
100 N
101 N
110 Y 102 Memory[101102]
111 N

5.2.2 MSI Protocol

To maintain cache coherence for multi-core architecture, the cache coherence protocols are im-

plemented. Snooping protocol is the most popular cache coherence protocol. The key to imple-

ment these protocols is the track of the states of the caches’s blocks. A cache block has different

states, when the the block is shared by more than one processor, it is called the Shared state or

is simply represented as S. The Modified state or M state is the state when the block is modified

in the cache, and this block is not consistent with the main memory. When a cache block gets

modified by a processor, any other processors with copies of this cache block has to invalidate

their copies; it is represented as I state. These three states together form a protocol called MSI

Protocol. There are other protocols with extended states such as MESI with the Exclusive state

E, and another protocol is called MOESI with another state called Owned or O [213]. How-

ever, in this research, the simplest protocol which is MSI Protocol is adopted to demonstrate the

proposed approach as these three states perfectly serve the case study.

This protocol is proposed to maintain coherence of the cache memory of one processor with

another cache memory of a different processor. The Modified state occurs when a cache block is

inconsistent with its correspondent in the main memory. The Shared state occurs when a cache

block is consistent with another processor’s same cache block or with its correspondent in the

main memory or both. The Invalid state occurs when a cache block is not present in the cache

101

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

or updated in another cache block of another processor. Any two or more processors which have

their private cache memory must meet the criteria of MSI Protocol in Table 6.1.

Table 5.8: MSI Protocol

Modified Shared Invalid

Modified 7 7 3

Shared 7 3 3

Invalid 3 3 3

The check mark means that any two or more cache blocks of different processors can have

these states at the same time, while the cross mark means the occurrence of these states is not

allowed at the same time.

5.2.3 Formal Description of Cache Controller

The basic operations and properties of Processor, Level 2 of Cache Memory (L2 Cache), Mem-

ory, and MSI Protocol are summarised as follows:

• Operations of the processor:

1. Read from Address A (0 indicates Read operation)

2. Write Data B to Address A (1 indicates Write operation)

• Status of the processor’s request:

1. Hit

2. Miss

• Status of L2 Cache Index:

1. Valid (0 indicates Invalid, 1 indicates Valid), where Valid means that the cache block

is not empty and it has a datum in it.

102

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

2. Dirty (0 indicates Not Dirty, 1 indicates Dirty), where Dirty means that the cache

block is not consistent with the main memory.

• MSI Status of L2 Cache Index:

1. Modified (If the index is inconsistent with its correspondent in the Main Memory.)

2. Shared (If the index is consistent with another processor’s cache block or the main

memory or both.)

3. Invalid (If the index is not present in the cache or updated in another cache.)

5.2.4 Compositional Modelling

In this section, a compositional modelling of the behaviour of the components of Cache Memory

Controller System using Interval Temporal Logic (ITL) is given as follows:

1. Processor[i] (0 6 i < nprocessors), where nprocessors = 3

2. L2CacheTag[i][j] (0 6 i < nprocessors),(0 6 j < ncachelocations), where

ncachelocations = 8

3. L2CacheState[i][j] (0 6 i < nprocessors),(0 6 j < ncachelocations)

4. Valid[i][j] (0 6 i < nprocessors),(0 6 j < ncachelocations)

5. Dirty[i][j] (0 6 i < nprocessors),(0 6 j < ncachelocations)

6. L2CacheMemory[i][j] (0 6 i < nprocessors),(0 6 j < ncachelocations)

7. MainMemory[j] (0 6 j < nmemorylocations), where nmemorylocations = 16

A formal description in Interval Temporal Logic (ITL) [54] of the Cache Controller system is

given. The possible transitions of the system are as follows:

103

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

The Processor X request: Let Processor[X] be a state variable representing the state of

Processor X with all possible values with regards to Read-Write/Hit-Miss. The specification ex-

pressed in Interval Temporal Logic (ITL) is a formal description of Processor X Requests. The

full specification of this behaviour is written in Tempura code in Appendix B. Tempura is an

executable subset of Interval Temporal Logic (ITL). Refer to table 5.9, for more details. I refer

the reader to [182]. The following are variables declarations and their descriptions:

X =Random mod 3 : the case study has three processors

Y =(Random+ 1) mod 3

Z =(Random+ 2) mod 3

RW =Random mod 2 : if RW = 0 it is Read, if RW = 1 it is Write

Addr =Random mod 16 : Random generation of addresses between 0 and 15

Tag =Addr div 8 : Tag used to distinguish the addresses which share the cache’s index

Data =Random mod 30 : Random generation of the data between 0 and 29

Indexc =Addr mod 8 : The size of the cache is 8 blocks

Indexm =Addr mod 16 : The size of the memory is 16 blocks

Indexm′ = Addr mod 16 : where Indexm 6= Indexm′

InitialValuec =− 8 : The initial value for cache blocks is −8

InitialValuem =− 16 : The initial value for memory is −16

tagx =L2CacheTag[X][Indexc] : Tag of cache block indexc of Processor X

tagy =L2CacheTag[Y][Indexc] : Tag of cache block indexc of Processor Y

tagz =L2CacheTag[Z][Indexc] : Tag of cache block indexc of Processor Z

ntagx =© (L2CacheTag[X][Indexc]) : Next state Tag of cache block indexc of Processor X

ntagy =© (L2CacheTag[Y][Indexc]) : Next state Tag of cache block indexc of Processor Y

ntagz =© (L2CacheTag[Z][Indexc]) : Next state Tag of cache block indexc of Processor Z

csx =L2CacheState[X][Indexc] : State of cache block indexc of Processor X

104

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

csy =L2CacheState[Y][Indexc] : State of cache block indexc of Processor Y

csz =L2CacheState[Z][Indexc] : State of cache block indexc of Processor Z

ncsx =© (L2CacheState[X][Indexc]) : Next state of cache block indexc of Processor X

ncsy =© (L2CacheState[Y][Indexc]) : Next state of cache block indexc of Processor Y

ncsz =© (L2CacheState[Z][Indexc]) : Next state of cache block indexc of Processor Z

stringx =Read Hit : The address is found in the cache and read from the cache

stringx =Read Miss : The address is not found in the cache and read from the memory

stringx =Write Hit : The address is found in the cache and the data is written to the cache

stringx =Write Miss : The address is not found in the cache and data is written to the memory

stringy =Read Hit : The address is found in and read from the cache

stringy =Read Miss : The address is not found in the cache and read from the memory

stringy =Write Hit : The address is found in the cache and the data is written to the cache

stringy =Write Miss : The address is not found in the cache and data is written to the memory

stringz =Read Hit : The address is found in the cache and read from the cache

stringz =Read Miss : The address is not found in the cache and read from the memory

stringz =Write Hit : The address is found in the cache and the data is written to the cache

stringz =Write Miss : The address is not found in the cache and data is written to the memory

The main operations in the cache controller system are read and write. A formal expression

of read and write operations in ITL is considered later in this section. The rest of the operations

can be derived and expressed in ITL by referring to Table 5.9. The read operation occurs when

the marker RW’s value is 0. There are three processors which are X, Y and Z, where they

individually check values of the relevant variables in order to deliver coherence cache states and

consistent memory. The following specifications are modelling the read operation in ITL:

105

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

Processor Request(X,RW,Addr,Data) =̂ (1

Skip ∧2

if RW = 0 then (3

if Tag = Tagx ∧4

Statex = shared ∨5

Statex = modified then (6

stringx := Read Hit ∧7

stable(Mem[Indxm]) ∧8

stable(L2Cache[X][Indxc] ∧9

stable(V alid[X][Indxc]) ∧10

if Statex = modified then (11

Dirty[X][Indxc] := 1 ∧12

Statey := invalid ∧13

Statez := invalid14

) else (15

stable(Dirty[X][Indxc]) ∧16

stable(State[Y][Indxc]) ∧17

stable(State[Z][Indxc])18

)))19

if Tag = Tagy ∧20

Statey = shared ∨21

Statey = modified then (· · ·)22

if Tag = Tagz ∧23

Statez = shared ∨24

Statez = modified then (· · ·)25

106

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

The case for the write operation is encountered when the marker RW’s value is 1. The

following specifications are modelling the write operation in ITL:

Processor Request(X,RW,Addr,Data) =̂ (26

Skip ∧27

·28

·29

else if RW = 1 then (30

if Tag = Tagx then (31

stringx := Write Hit ∧32

L2Cache[X][Indxc] := Data ∧33

stable(Mem[Indxm] ∧34

stable(V alid[X][Indxc]) ∧35

if L2Cache[X][Indxc] 6= Mem[Indxm] then (36

Dirty[X][Indxc] := 1 ∧37

Statx := modified ∧ Staty := invalid ∧ Statz := invalid38

) else (39

stable(Dirty[X][Indxc]) ∧ stable(State[X][Indxc]) ∧40

stable(State[Y][Indxc]) ∧ stable(State[Z][Indxc])41

) else (42

stringx := Write Miss ∧43

Mem[Indxm] := Data ∧44

if Dirty[X][Indxc] = 1 then (45

Mem[Indxm
′
] := L2Cache[X][Indxc] ∧46

© (L2Cache[X][Indxc] := Mem[Indxm]) ∧47

© (Dirty[X][Indxc] := 0) ∧ © (Statex := shared) ∧48

© (Statey := invalid) ∧ © (Statez := invalid) ∧49

107

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

© (stable(V alid[X][Indxc]))50

) else (51

L2Cache[X][Indxc] := Mem[Indxm] ∧52

V alid[X][Indxc] := 153

))))54

if Tag = Tagy then (· · ·)55

·56

·57

if Tag = Tagz then (· · ·)58

·59

·60

)61

For a complete ITL modelling for the cache controller case study, the Tempura code is listed

in Appendix B where Table 5.9 can be used as a conversion from Tempura to ITL syntax.

Table 5.9: TEMPURA SYNTAX VERSUS ITL SYNTAX

ITL Tempura

f1 ∧ f2 f1 and f2

A := exp A := exp

3 sometimes

2 always

© next

if b then f1 else f2 if b then f1 else f2

while b do f while b do f

Repeat b Until f Repeat b Until f

procedures define p(e1,. . ., en) = f

functions define g(e1,. . ., en) = e

108

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

Processor X Writes to Cache: When a requested address is found in a cache, then a write

operation occurs in the cache which belongs to Processor X. VBit changes its value to 1 to

indicate that this cache block is valid. The tag of this cache block changes its value to the tag

determined by applying Equation 5.3 on Processor X and the requested address.

write to cache(L2CacheMemory, L2CacheTag, V bit,X,M, V, tag, j) =̂ (62

skip ∧63

(∀ i < nprocessors •64

(∀ j < ncachelocations •65

if i = X ∧ j = M then(66

if V bit[i][j] = 1 then (stable(V bit[i][j])67

) else (V bit[i][j] := 1) ∧68

L2CacheTag[i][j] := tag ∧69

L2CacheMemory[i][j] := V70

) else (71

stable(V bit[i][j]) ∧72

stable(L2CacheTag[i][j]) ∧73

stable(L2CacheMemory[i][j])74

)75

)76

)77

)78

Processor X Writes to Memory: When Processor X requests to write to the cache block

and this cache block is already occupied by another address, the data of this address gets written

to a memory and a new requested address writes its new data to this cache block and sets Dirty

Bit to 1 to indicate that this cache block and its correspondent in the memory are inconsistent.

109

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

write to memory(MainMemory,X,M, V, T ick) =̂ (79

skip ∧80

(∀ j < nmemorylocations • (81

if j = M then (MainMemory[j] := V)82

else (83

stable(MainMemory[j])84

)85

)86

)87

)88

Memory is unchanged: At every state, the memory either gets changed or unchanged. The

cases when a memory is unchanged, is the case where a write-back occurs.

memory unchanged(MainMemory) =̂ (89

skip ∧90

(∀ j < nmemorylocations • (91

stable(MainMemory[j])92

)93

)94

)95

Cache is unchanged: When a read hit occurs, then a cache stays unchanged. Otherwise, a

cache gets changed.

cache unchanged(L2CacheMemory, L2CacheTag, V bit, x) =̂ (96

skip ∧97

(∀ j < ncachelocations • (98

110

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

stable(V bit[x][j]) ∧99

stable(L2CacheTag[x][j]) ∧100

stable(L2CacheMemory[x][j])101

)102

)103

)104

Update MSI States: The states of MSI Protocol has been discussed in section 5.2.2, and the

criteria that manages these states is illustrated in table 6.1.

update msi(i, B, L2CacheState, v) =̂ (105

(∀ j < ncachelocations •106

if j = B then (L2CacheState[i][j] = v)107

else (108

stable(L2CacheState[i][j])109

)110

)111

)112

)113

5.3 Analysis and Discussion

In this section, data analysis of the collected data after the execution of Parallel Runtime Verifi-

cation Framework (PRVF) on the cache controller case study is given. Figure 5.2 demonstrates

the final execution of the cache controller. In this case study, an assumption has been made

in which there are three independent processors running in parallel in order to demonstrate the

cache controller system’s behaviour in order to check global correctness properties of such a

system.

111

C
H

A
PT

E
R

5.
C

A
SE

ST
U

D
Y

:C
A

C
H

E
C

O
N

T
R

O
L

L
E

R

Figure 5.2: CACHE CONTROLLER

112

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

5.3.1 Global Program : Cache Controller

Figures 5.3 and 5.4 illustrate the execution of the first state, state 0, of the cache controller. For

all states execution (state 0 to state 9) of the case study, see appendix A. Figure 5.3 is the output

of the run of a Tempura code of the cache controller at state 0, while Figure 5.4 is a graphical

simulation of the cache controller written in Tcl/Tk language [288, 179, 155] of the same state

number.

The output shows the details of the request which has been made by a random processor. The

request is either a read or write request. Every request has the ID of a requester processor X, the

read-write indicator RW (0 for read, 1 for write), the requested address in the memory Addr,

and the data Data which is written either to a cache memory or a main memory, or both.

In case the read-write indicator is 0, which means read operation, the data field is used to store

the requested value of the requested address either from the cache memory in case the request

gets hit or from the main memory in case the request gets missed.

Therefore, at every state this information has to be shown in details. This information in-

cludes State number, Processor ID, Address in the memory, Read-Write indicator, and Data.

Based on these data, expanded information is given within the table in figure 5.3. This informa-

tion is illustrated in Table 5.10.

5.3.1.1 Raw Data Description

The first column Table 5.10 is the state number, and this column has multi-row because all

the three rows have the same state number. The second column Pid is the requester processor

identification number in addition to the other idle processors IDs. The objective of displaying the

other processors’ information is to show the consistency and readability of information within

the table at every state. The third column is the operation indicator RW. The fourth and forth

columns are the requested address Addr in decimal format and binary format respectively.

113

C
H

A
PT

E
R

5.
C

A
SE

ST
U

D
Y

:C
A

C
H

E
C

O
N

T
R

O
L

L
E

R

Figure 5.3: TEMPURA EXECUTION AT STATE 0

114

C
H

A
PT

E
R

5.
C

A
SE

ST
U

D
Y

:C
A

C
H

E
C

O
N

T
R

O
L

L
E

R

Figure 5.4: ANATEMPURA SIMULATION AT STATE 0

115

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

The length of the binary address is subjected to the space in the implementation within the

runtime verifier AnaTempura. As the addresses’ values are generated randomly by using the

modulo operation over 30, the highest value of the requested addresses is 29, which means that

at least 5-bits length is adequate to represent the decimal addresses between 0 and 29 in binary

format. The sixth column is the index of the cache. As explained earlier in Equation 5.2, the

length of the index can determine the size of this index. For instance, in our case the length of

the index bits is 3 which means 23 = 8 Indexes. The seventh column is the Valid bit field which

is an indicator whether the cache block in a specific index is valid or invalid. If the cache block

has a datum in it, then the value of the valid bit is 1 which means true. Otherwise, it is 0 which

means false. The eighth field is the Dirty bit which is an indicator of the consistency between a

specific cache block and its correspondent in the main memory. If they are consistent, then the

dirty bit value is 1 which means true. Otherwise it is 0 which means false. The ninth column is

the Tag field which is the upper five portions of the requested address as the lower three portions

are used for the index. Alternatively, the Tag value can be determined as a result of the division of

the requested address over the length of the cache index as explained in Equation 5.3. The tenth

column is the Hit-Miss which is the result of the requested address. When the requested address

is found within the cache, it is either Read Hit or Write Hit, depending on the second column

operation RW’s value. The eleventh column is Data where the value of the cache block for all

the processors within the cache show their values. I set all the cache blocks for all the processors

to an initial value −8 to avoid any execution error as I could not leave these cache blocks empty.

They have to have integers number as values, as the language I used, Tempura, does not support

null values. The twelfth column is the Coherence State; in other words it is the MSI Protocol

criteria. For more about the MSI Protocol, refer to section 5.2.2. The thirteenth column is the

value of the requested address within the main memory. Again, I set the integer number −16 for

all the memory addresses as initial values for the same reason I used −8 as initial value for the

cache blocks.

116

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

Table 5.10: TEMPURA RUN OF INTERLEAVED PARALLEL LOCAL PROCESSORS 0, 1 & 2

State Pid Oper. Addr10 Addr2 Cache[Index] VBit DBit Tag Hit-Miss Data MSI Memory[Addr] = Data

0

0(0) 0 14 0001110 Cache[110] 1 0 1 Read Miss −16 Shared[0] Memory[0001110]=−16

0(1) 0 14 0001110 Cache[110] 0 0 −1 Read Miss −8 Invalid[1] Memory[0001110]=−16

0(2) 0 14 0001110 Cache[110] 0 0 −1 Read Miss −8 Invalid[2] Memory[0001110]=−16

1

2(2) 0 10 0001010 Cache[010] 1 0 1 Read Miss −16 Shared[2] Memory[0001010]=−16

2(0) 0 10 0001010 Cache[010] 0 0 −1 Read Miss −8 Invalid[0] Memory[0001010]=−16

2(1) 0 10 0001010 Cache[010] 0 0 −1 Read Miss −8 Invalid[1] Memory[0001010]=−16

2

0(0) 1 6 0000110 Cache[110] 1 1 0 Write Miss 13 Modified[0] Memory[0000110]=−16

0(1) 1 6 0000110 Cache[110] 0 0 −1 Write Miss −8 Invalid[1] Memory[0000110]=−16

0(2) 1 6 0000110 Cache[110] 0 0 −1 Write Miss −8 Invalid[2] Memory[0000110]=−16

3

2(2) 0 4 0000100 Cache[100] 1 0 0 Read Miss −16 Shared[2] Memory[0000100]=−16

2(0) 0 4 0000100 Cache[100] 0 0 −1 Read Miss −8 Invalid[0] Memory[0000100]=−16

2(1) 0 4 0000100 Cache[100] 0 0 −1 Read Miss −8 Invalid[1] Memory[0000100]=−16

4

1(1) 1 1 0000001 Cache[001] 1 1 0 Write Miss 14 Modified[1] Memory[0000001]=−16

1(2) 1 1 0000001 Cache[001] 0 0 −1 Write Miss −8 Invalid[2] Memory[0000001]=−16

1(0) 1 1 0000001 Cache[001] 0 0 −1 Write Miss −8 Invalid[0] Memory[0000001]=−16

5

0(0) 1 15 0001111 Cache[111] 1 1 1 Write Miss 19 Modified[0] Memory[0001111]=−16

0(1) 1 15 0001111 Cache[111] 0 0 −1 Write Miss −8 Invalid[1] Memory[0001111]=−16

0(2) 1 15 0001111 Cache[111] 0 0 −1 Write Miss −8 Invalid[2] Memory[0001111]=−16

6

2(2) 1 3 0000011 Cache[011] 1 1 0 Write Miss 14 Modified[2] Memory[0000011]=−16

2(0) 1 3 0000011 Cache[011] 0 0 −1 Write Miss −8 Invalid[0] Memory[0000011]=−16

2(1) 1 3 0000011 Cache[011] 0 0 −1 Write Miss −8 Invalid[1] Memory[0000011]=−16

7

0(0) 1 9 0001001 Cache[001] 1 1 1 Write Miss 3 Modified[0] Memory[0001001]=−16

0(1) 1 9 0001001 Cache[001] 0 0 0 Write Miss 14 Invalid[1] Memory[0001001]=−16

0(2) 1 9 0001001 Cache[001] 0 0 −1 Write Miss −8 Invalid[2] Memory[0001001]=−16

8

2(2) 0 4 0000100 Cache[100] 1 0 0 Read Hit −16 Shared[2] Memory[0000100]=−16

2(0) 0 4 0000100 Cache[100] 0 0 −1 Read Miss −8 Invalid[0] Memory[0000100]=−16

2(1) 0 4 0000100 Cache[100] 0 0 −1 Read Miss −8 Invalid[1] Memory[0000100]=−16

9

0(0) 0 8 0001000 Cache[000] 1 0 1 Read Miss −16 Shared[0] Memory[0001000]=−16

0(1) 0 8 0001000 Cache[000] 0 0 −1 Read Miss −8 Invalid[1] Memory[0001000]=−16

0(2) 0 8 0001000 Cache[000] 0 0 −1 Read Miss −8 Invalid[2] Memory[0001000]=−16

117

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

5.3.1.2 External Programs : Local Processors

Figure 5.5 shows the external programs’ outputs. These external programs are the processors

which run randomly and independently. Each external program gets A Processor identification

number Pid assigned to it within the cache controller program, for instance:

Listing 5.1: Pids Assignment to Local Programs

1 {{prog_send1(0,"load 'Processor_0_5'.") and

2 prog_send1(1,"load 'Processor_1_5'.") and

3 prog_send1(2,"load 'Processor_2_5'.")};skip;

4

5 {prog_send1(0,"run L2_Processor_0().") and

6 prog_send1(1,"run L2_Processor_1().") and

7 prog_send1(2,"run L2_Processor_2().")};skip;

The lines in listing 5.1 are chunk of the global program written in Tempura language [182].

The global program loads the three local programs which respectively represent processor 0,

1, and 2. A function called Prog send1() is responsible for assigning the Pid to load a local

program as external program. For instance, line 1 assigns Pid0 to load a local program called

Processor 0 5. This local program gets loaded by Pid0 to accomplish its computation. In line

5, as Pid0 was chosen to load Processor 0 5, the same Pid0 requests to run a function within

this local program , Processor 0 5, is called L2 Processor 0(). Within this function, the main

memory address requests are created and then inserted as assertions data to the global program

to fulfil each processor request. Once the assertion data is received by the global program, the

cache controller deals with the data according to the criteria described earlier in the previous

sections to meet a set of properties of interest such as memory consistency and cache coherence.

These properties are discussed in details later in this chapter.

118

C
H

A
PT

E
R

5.
C

A
SE

ST
U

D
Y

:C
A

C
H

E
C

O
N

T
R

O
L

L
E

R

Figure 5.5: LOCAL STATES & PROPERTIES OF PROCESSORS 0, 1, 2 AT STATE 0

119

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

In the first line of each processor’s output window, it is noticeable that the status of the

processor is either active or idle. When it is active, it shows the request information which is

assigned to this processor. Otherwise, it shows that the processor is idle as illustrated In Figure

5.5.

5.3.1.3 Raw Data Analysis

The whole execution of a cache controller case study in Tempura/AnaTempura can be found in

Appendix A. The raw data in Table 5.10 is identically copied from the execution in Appendix A.

The number of columns in Table 5.10 is the same number in the execution plus a new column

within the table. The new column is the state number column which is an indicator of the state

number of the execution of cache controller. As Table 5.10 show,there are ten states, from 0 to

9. In each state, the data is displayed of the correspondent requested address within the cache of

the three processors including the requester processor , or what is called the active processor, and

the other idle processors. The purpose of displaying all information of processors is to increase

the readability of the run and to show the validity of the MSI (or Coherence States) results.

For instance, if the MSI column of processor X is Modified[X], then the the data stored in the

Cache and Memory columns of the requested address has to be inconsistent. The purpose of

this check is to guarantee the memory consistency property. Another purpose is to guarantee the

cache coherence property. The latter property concerns the cache coherence which is a discipline

that maintains multiple cache blocks which share the same resource. For instance, if the cache

block has data which is shared by another cache block of another processor, then the MSI (or

Coherence States) changes the states of these cache blocks to Shared.

The first 3-multiple rows in Table 5.10 is state 0 of the cache controller. In the second

column of the table, Pid, the first three rows represent the three processors identification numbers

Pids. The Pid’s value has two digits, one digit outside the parentheses, and the other inside the

parentheses. The digit outside the parentheses represents the requester Pid, while the digits

120

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

inside the parentheses represent the idle processors. The requester Pid also includes itself as a

Pid inside the parentheses, and it always comes in the first row of each state run. For instance,

in Pid’s column, in the second row at state 0, the value 0(1) represents the requester’s Pid which

is 0 and the idle Pid which is 1 and so on. It is very important to mention that columns 6, 12 and

13 in Table 5.10 use square brackets. They are not numbered referencing styles.

STATE 0: Pid0 creates a read request of address 14 in the memory as shown in table 5.12.

The address 1410, in binary format 00011102, gets assigned to the index 610 or alternatively 1102

in binary format. Binary format is used in the case study. Therefore, Memory address 14 gets

assigned to Cache[110]. The next column, VBit, is Valid Bit, and it is set to 0 as initial values.

As the block cache[110] is empty, the previous value of it was 0. However, after the request

is missed and the data of the correspondent address is fetched from the memory, this Valid Bit

has now changed its value to 1. The initial values in the Dirty Bit column, DBit, are 0 as well,

and as the data has just recently been fetched from the memory to the cache, this DBit stays 0.

This means that the cache and the memory are consistent, while the other processors still hold

their initial values although these values might mislead the reader and give a false impression

about them. It is believed that the initial value of DBit is supposed to be -1 instead of 0 because

0 means that the cache block and the memory are consistent. However, as we can see in their

correspondent Data column, these idle processors still have the initial values of the Data column,

-8, and they obviously seem inconsistent with memory. The next column is the Tag column

where the upper portion of the binary address is assigned to be tag value. The Tag value of

address 00011102 is the four upper portions: 00012 or 110. The tag value can be determined

using Equation 5.3. The tag value is used with the VBit value as a conditional conjunction to

meet any hit requests, otherwise it is a miss regardless of the kind of operation it is. As the initial

value of Tag is -1, the idle Pids holds -1. The Hit-Miss column is a result of a request created

by an active processor of an address in the memory either to read from or write to. In this state,

state 0, the request to read address 14 is missed because the private cache memory of Pid0 has

121

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

not got that address stored in it which leads the memory to fetch the requested data of address

14 to the cache memory as seen in Table 5.12 and to the Pid0 as seen in Table 5.12 to continue

its computation. As a result of this behaviour, the next column, Data column, has -16 after it

has been fetched from the memory. MSI column (or Coherence States) has set the state of Pid0

to Shared[0] as it is consistent with the memory while the idle processors are still invalid. The

Memory[Addr] column shows the data of the requested address created by the active processors.

STATE 1: Pid2 is a requester processor in this state. It requests to read the memory address

10, binary 10102. This address is assigned to the cache block Cache[010]. The VBit was 0,

and this request changed it to 1. The DBit stays 0 as the cache[010] and Memory[0001010] are

consistent after the requested data of address 10 is fetched from the memory. The tag field of

the Cache[010] of address 10 is 1. As the private cache block of Pid2 has not got the requested

address stored in it, the request then is Read Miss and the data of that address gets fetched from

the memory as it is unavailable in other Pid’s cache blocks. Therefore, the coherence state of

Cache[010] of Pid2 is set to shared as it is consistent with the memory. The idle processors

stay in invalid state as they still have initial values in their cache blocks, which means they are

inconsistent with the memory.

STATE 2: Pid0 requests to write data 13 to address 6. The cache block Cache[110] stores

this data instead of the memory. The point of creating a cache memory reveals in this case

where a write operation does not need to be done to the memory as writing to the cache is

faster than writing to the memory. VBit and DBit have changed their values to 1. The most

interesting change in this case is the DBit, where the new value 1 indicates that the cache block

is dirty bit because the write operation occurs locally which means the memory has not been

involved in this operation yet. Cache[110] and Memory[0000110] are inconsistent and this is

why the Coherence State of Cache[110] is set to Modified[0]. Once this cache block Cache[110],

the dirty case only, gets a future write to it by another address which shares the same cache

index 110, the old data gets replaced and moved to its correspondent memory address, while

122

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

the new data takes over index 110. For instance, address 6 shares index 110 with addresses

14, 22, 30 or any address that has 6 as a result of modulo operation of that address over the

length of the index which is in this case eight indexes. If address 22 writes a new value to

Cache[110] of Pid0, then the old data which is 13 gets replaced and moved to Memory[0000110],

and the new data gets written to Cache[110] and sets DBit to 1 to indicate that Cache[110] and

Memory[0010110] are inconsistent. This mechanism is called Write-back. At state 0, address 14

was read and moved to Cache[110]; its value in the memory is -16 and has set DBit to 0 because

it was consistent with the memory. However, at this state, state 2, address 6 has written data

13 to Cache[110] after the replacement of the old data which is -16. The write-back operation

is not witnessed because DBit of Cache[110] was 0 before the replacement which means that

cache[110] and Memory[0001110] were consistent. Now we go back to the case study where the

value of Cache[110] is 13, while the value of its correspondent main memory Memory[0000110]

is -16, which is the initial value. The cache blocks of Pid1 and Pid2 stay invalid.

STATE 3 Pid2 requests to read address 4. The cache block, Cache[100], has not got the re-

quested address stored in it and, therefore, VBit is set to 1 after the request gets Read Missed.

The data of the correspondent address gets fetched from the memory to Cache[100] and, con-

sequently, DBit has been set to 0 due to the consistency between the cache and the memory of

the correspondent address. The Coherence State has changed the state of Pid2’s cache block

Cache[100] to Shared[2]. Address 4 has 0 as the tag value.

STATE 4: Pid1 requests to write data 14 to address 1. VBit and DBit change their values to

1 after the request gets Write Missed. Write-back operation is interesting mechanism, no write

operation occurs to the memory and, due to this, DBit’s value of cache block Cache[001] is

1. Consequently, the Coherence State changes the state of Cache[001] of Pid1 to Modified[1].

Memory[0000001] is inconsistent with Cache[001] of Pid1.

STATE 5: Pid0 requests to write data 19 to address 15. Cache block Cache[111] stores the

new data and sets VBit and DBit to 1 to indicate that the cache block is valid and dirty at the

123

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

same time which eventually implies a write-back to the memory. As the requested address is 15,

the tag value is 1. The request gets Write missed. The Coherence State is Modified[0]. The data

of the correspondent cache block is 19, while in the memory still holds the initial value -16.

STATE 6: Pid2 requests to write data 14 to address 3. Cache block Cache[011] stores the

data of address 3 and sets VBit to 1. DBit changes its value to 1 to indicate that it is a dirty cache

block and a write-back is eventually needed. The Tag value is 0. The request gets write missed

as the cache block was invalid. The Coherence State is Modified[2] due to the inconsistency

between the cache and the memory.

STATE 7: Pid0 requests to write data 3 to address 9. Address 9 shares the same cache block

Cache[001] with address 1. As the cache block Cache[001] has been written data 14 to it via

Pid1 at state 4, Pid0 writes to its private cache block Cache[001] new data which is 3. Now there

are two caches holding different data but sharing the same cache block. The most recent request

by Pid0, at this state, sets its DBit to 1 to indicate that it contains dirty data and at the same time,

Pid0 sets DBit of the cache block cache[001], which belongs to Pid1, to 0 after the old data, data

14, gets written back to the memory. VBit is set to 1 as this cache block of the Pid0 was invalid.

As the address is 9, the tag value is 1. The request is a write miss because the VBit was invalid.

The data in the cache block Cache[001] which belonging to Pid0 is 3, while the one belongs to

Pid1 is 14. The Coherence State of Cache[001] that belongs to Pid0 is Modified[0] because it is

inconsistent with memory address 9. The Coherence State of Cache[001] that belongs to Pid1 is

set to Invalid[1].

STATE 8: Pid2 requests to read address 4 again after it requested reading the same address at

state 3. A read hit is encountered. The data is already fetched from the last read miss at state 3 to

cache block Cache[100] which is -16. VBit and DBit stabilise their values, 1 for the former and

0 for the latter. The Coherence State stays Shared[2] as the cache block Cache[100] is consistent

with the memory address Memory[0000100].

124

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

STATE 9: Pid0 requests to read memory address 8 Memory[0001000]. The private cache

of Pid0 has not got this address stored in it, therefore, VBit sets its value to 1 and DBit sets its

value to 0 after the data of address 8 is fetched from the memory which is -16. Tag value is

1. The Coherence State changes to Shared[0] because the cache block Cache[000] of Pid0 and

Memory[0001000] are consistent; they both hold the same data. The same cache blocks of idle

processors’ caches, Pid1 and Pid2, invalidate their cache blocks Cache[000] to Invalid[1] and

Invalid[2].

To check all the above analysis, I refer the reader to Tables 5.12 and 5.12, and Figure 5.6. In

addition to these tables and this figure, Appendix A has screen-shots of the implementation of

the case study.

Table 5.11: REQUESTS OF PID0, PID1, & PID2 RESPECTIVELY.

State Oper. Addr Data
0 0 00000000000000000000000000001110 −16
1
2 1 00000000000000000000000000000110 13
3
4
5 1 00000000000000000000000000001111 19
6
7 1 00000000000000000000000000001001 3
8
9 0 00000000000000000000000000001000 −16

State Oper. Addr Data
0
1
2
3
4 1 00000000000000000000000000000001 14
5
6
7
8
9

State Oper. Addr Data
0
1 0 00000000000000000000000000001010 −16
2
3 0 00000000000000000000000000000100 −16
4
5
6 1 00000000000000000000000000000011 14
7
8 0 00000000000000000000000000000100 −16
9

Table 5.12: L2 CACHE MEMORY OF PID0, PID1, & PID2 RESPECTIVELY.

Index V D Tag Data
000 1 0 00000000000000000000000000001 −16
001 1 1 00000000000000000000000000001 3
010 0 −8
011 0 −8
100 0 −8
101 −8
110 1 1 00000000000000000000000000000 13
111 1 1 00000000000000000000000000001 19

Index V D Tag Data
000 0 −8
001 1 0 00000000000000000000000000000 14
010 0 −8
011 0 −8
100 0 −8
101 −8
110 0 −8
111 0 −8

Index V D Tag Data
000 0 −8
001 0 −8
010 1 0 00000000000000000000000000001 −16
011 1 1 00000000000000000000000000000 14
100 1 0 00000000000000000000000000000 −16
101 −8
110 0 −8
111 0 −8

125

C
H

A
PT

E
R

5.
C

A
SE

ST
U

D
Y

:C
A

C
H

E
C

O
N

T
R

O
L

L
E

R

Index[6]=−16

σ0
0

CacheP0

σ0
1

Index[6]=13

σ0
2 σ0

3 σ0
4

Index[7]=19

σ0
5 σ0

6

Index[1]=3

σ0
7 σ0

8

Index[0]=−16

σ0
9

σ1
0

CacheP1

σ1
1 σ1

2 σ1
3 σ1

4

Index[1]=14

σ1
5 σ1

6 σ1
7 σ1

8 σ1
9

σ2
0

CacheP2

σ2
1

Index[2]=−16

σ2
2 σ2

3

Index[4]=−16

σ2
4 σ2

5 σ2
6

Index[3]=14

σ2
7 σ2

8

Index[4]=−16

σ2
9

σG
0

Mem[14]=−16

Memory
σG
1

Mem[10]=−16

σG
2

Mem[6]=−16

σG
3

Mem[4]=−16

σG
4

Mem[1]=−16

σG
5

Mem[15]=−16

σG
6

Mem[3]=−16

σG
7

Mem[9]=−16

σG
8

Mem[4]=−16

σG
9

Mem[8]=−16

Addr Data

00000000000000000000000000001 −16

00000000000000000000000000010 14

00000000000000000000000000011 −16

00000000000000000000000000100 −16

00000000000000000000000000101 −16

00000000000000000000000000110 −16

00000000000000000000000000111 −16

00000000000000000000000001000 −16

00000000000000000000000001001 −16

00000000000000000000000001010 −16

00000000000000000000000001011 −16

00000000000000000000000001100 −16

00000000000000000000000001101 −16

00000000000000000000000001110 −16

00000000000000000000000001111 −16

Figure 5.6: States & Intervals (σn
m, where m is state number, n is Processor id) of Cache Controller and Memory values

126

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

5.3.1.4 Properties Check of The Cache Controller

In this section, set of properties of interest are checked against the behaviour of the Cache Con-

troller such as memory consistency and cache coherence. Memory consistency property guar-

antees that the data of a cache block and its correspondent copy within a memory address are

consistent. While the cache coherence property guarantees that the cache blocks within multi-

core processor are subjected to MSI protocol to ensure the validity of these caches and their data.

Table 5.13 illustrates the check of the correctness properties over all the states and for all cache

memories and the main memory.

Table 5.13: PROPERTIES CHECK OF CACHES OF PROCESSORS 0, 1 & 2

State Pid Invalid State Prop. Shared State Prop. Consistency Prop. MSI Protocol Global State
Expected Actual Expected Actual Expected Actual Expected Actual Expected Actual

0
0 NA NA Pass Pass Pass Pass

Pass Pass
Pass Pass

1 Pass Pass NA NA NA NA Pass Pass
2 Pass Pass NA NA NA NA Pass Pass

1
2 NA NA Pass Pass Pass Pass

Pass Pass
Pass Pass

0 Pass Pass NA NA NA NA Pass Pass
1 Pass Pass NA NA NA NA Pass Pass

2
0 NA NA NA NA Fail NA

Pass Pass
Pass Pass

1 Pass Pass NA NA NA NA Pass Pass
2 Pass Pass NA NA NA NA Pass Pass

3
2 NA NA Pass Pass Pass Pass

Pass Pass
Pass Pass

0 Pass Pass NA NA NA NA Pass Pass
1 Pass Pass NA NA NA NA Pass Pass

4
1 NA NA NA NA Fail NA

Pass Pass
Pass Pass

2 Pass Pass NA NA NA NA Pass Pass
0 Pass Pass NA NA NA NA Pass Pass

5
0 NA NA NA NA Fail NA

Pass Pass
Pass Pass

1 Pass Pass NA NA NA NA Pass Pass
2 Pass Pass NA NA NA NA Pass Pass

6
2 NA NA NA NA Fail NA

Pass Pass
Pass Pass

0 Pass Pass NA NA NA NA Pass Pass
1 Pass Pass NA NA NA NA Pass Pass

7
0 NA NA NA NA Fail NA

Pass Pass
Pass Pass

1 Pass Fail NA NA NA NA Pass Pass
2 Pass Pass NA NA NA NA Pass Pass

8
2 NA NA Pass Pass Pass Pass

Pass Pass
Pass Pass

0 Pass Pass NA NA NA NA Pass Pass
1 Pass Pass NA NA NA NA Pass Pass

9
0 NA NA Pass Pass Pass Pass

Pass Pass
Pass Pass

1 Pass Pass NA NA NA NA Pass Pass
2 Pass Pass NA NA NA NA Pass Pass

127

CHAPTER 5. CASE STUDY: CACHE CONTROLLER

5.4 Summary

In this chapter, a benchmark case study, Cache Controller, has been run. The results demonstrated

that the proposed model can handle parallel/distributed systems significantly. The specification

of a cache controller system is given in Interval Temporal Logic (ITL), while the runtime verifi-

cation is given in Tempura language and implemented using AnaTempura. The set of properties

of interest such as memory consistency and cache coherence are met, proved, and satisfied.

128

Chapter 6

Evaluation of Parallel Runtime Verification Frame-

work (PRVF)

Objectives:

• To introduce MATLAB

• To link AnaTempura to MATLAB

• To produce Correctness Properties of the Cache Controller System

• To evaluate Parallel Runtime Verification Framework (PRVF)

• To present Discussion and Related Work

129

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

6.1 Introduction

In the previous chapter, Chapter 5, the case study of private L2 Cache Memory was designed,

modelled, and implemented using the runtime verifier AnaTempura. The implementation has

successfully met the expected behaviour of the system and fulfilled correctness properties set

earlier. However, in this chapter I will run random and independent evaluation techniques using

MATLAB as external tools in order to exclude any bias judgement upon the proposed model,

Parallel Runtime Verification Framework (PRVF), with regards to its reliability, efficiency, per-

formance, robustness etc..

In order to be able to use MATLAB for this purpose, a set of practical steps have to be applied

to integrate AnaTempura, which is the primary tool for the implementation of the case study, with

MATLAB. The integration step plays a primary role in order to completely allow AnaTempura

to communicate natively with MATLAB. This communication between these two powerful tools

will complement the process towards comprehensive evaluation techniques.

In this chapter, MATLABI and a brief description are given. Afterwords, I will explain in

details how to integrate AnaTempura with MATLAB. An illustration of such integration using

simple Tempura, Tcl, and shell scripts will serve as a basic understanding of the whole process

of the evaluation techniques.

Once AnaTempura and MATLAB are integrated, I will import assertion data from AnaTem-

pura during the runtime verification and pass these data to MATLAB in order to conduct eval-

uation techniques. After that, MATLAB produces a comprehensive evaluation based on the

received data via the assertion data which were generated within AnaTempura. Then the evalu-

ation outcomes and judgements of both tools, AnaTempura against MATLAB, are compared. If

both evaluation outcomes and judgements are identical, the proposed model is reliable, efficient,

performing and robust. If otherwise, vice versa, and a reconsideration of the proposed model is

essential.

130

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

6.2 MATLAB

MATLAB is the acronym for MATrix LABoratory which was developed by MathWorks to serve

as a multi-paradigm numerical computing environment and proprietary programming language.

MATLAB supports the data to be represented as matrix in order to allow matrix manipulations,

representing function and data in plots, algorithms implementation, interface creation, interacting

and interfacing with other programming languages such as Java, C, C++, C#, Fortran and Python

[164]. The advantage of supporting these common programming languages allows the users of

other programming languages via shell scripts written in C, for instance, to integrate models built

in programming languages not supported by MATLAB directly.

MATLAB has a package called Simulink which plays a primary role in graphical multi-

domain simulation and model-based design for dynamic and embedded systems. In 2018, the

number of users MATLAB exceeded three million worldwide from multiple disciplines [165].

Besides being a high-performance language, MATLAB has powerful features including mod-

elling, analysing, and prototyping technical computation. MATLAB enables the computation to

be natively expressed in mathematical notation which enhances the delivered solutions. Mainly,

MATLAB is used for the following purposes: [7]

• Mathematics and Computation

• Algorithm Development

• Modelling, Simulation, and Prototyping

• Data Analysis, Exploration, and Visualization

• Scientific and Engineering Graphics

• Application Development, including Graphical User Interface building

131

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

6.3 Integrating MATLAB and AnaTempura

AnaTempura is a runtime verifier of systems using Interval Temporal Logic (ITL) and its exe-

cutable subset Tempura. For more information about AnaTempura refer to Section 4.2, Chapter

4 as it is completely covered in this chapter. Tempura interpreter is programmed in C language.

This makes it advantageous so an integration of MATLAB and AnaTempura can be done via

Bourne shell scripts [39]. I prefix the shell by the author’s name Stephen Bourne, in order to dis-

tinguish it from other shell languages. However, in the next sections, I use only “shell” instead of

“Bourne shell” . Shell scripts have the file extension “ .sh” in which they are computer programs

designed to be run by the Unix shell, a command-line interpreter. The various dialects of shell

scripts are considered to be scripting languages. Typical operations performed by shell scripts

include file manipulation, program execution, and printing text[135].

6.3.1 Running MATLAB

MATLAB can be run using Microsoft Disk Operating System MS-DOS or Linux/macOS Termi-

nals by typing the short command:

1 matlab

This simple command runs MATLAB in the machine either as a desktop version or internally

within the DOS or Terminal. The desktop version is the default option, alternatively, simply just

add the flag “-desktop” to the previous command as follows:

1 matlab -desktop

Otherwise, “-nodisplay -nodesktop” flags force MATLAB to run without the desktop GUI and

run it internally whether within the MS-DOS, Terminal, or within other tools such as AnaTem-

pura:

1 matlab -nodisplay -nodesktop

132

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

Once MATLAB is run within external systems as Figure 6.1 illustrates, it offers all of its powerful

features via loading MATLAB scripts, and executing MATLAB commands natively as they were

being executed in MATLAB environment.

Figure 6.1: Running MATLAB

A matrix C of 1 row, 3 columns (1 × 3 matrix), which has these values C = [1, 2, 3] can be

created and retrieved by typing the following script:

Listing 6.1: Creating & Retrieving Matrix in MATLAB

1 M=[1,2,3];

2 M % Display M

3 A=M(:,:); % Colon mark displays all rows, columns.

4 A

5 B=M(1,2); % Display the cell at row 1, column 2.

6 B

Figure 6.2: MATLAB Script

133

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

The percentage mark “%” is used to comment. Figure 6.2 illustrates the outputs after the execu-

tion of this short script using macOS Terminal.

MATLAB can be run as well via a shell script. For instance, the shell script in Listing 6.2

runs MATLAB first then runs a MATLAB script as Listing 6.3 illustrates:

Listing 6.2: Shell Runs MATLAB & “Arithmetic.m”

7 #!/bin/sh

8 matlab -nosplash -nodesktop -r "run('Arithmetic.m');"

The above shell script first runs MATLAB in non-desktop GUI mode, while MATLAB script

“Arithmetic.m” presents how arithmetic operations can be done in MATLAB language as fol-

lows:

Listing 6.3: MATLAB Code “Arithmetic.m”

1 X=10;Y = 2;

2 fprintf('%d * %d = %d\n',X,Y,X*Y);

3 fprintf('%d / %d = %d\n',X,Y,X/Y);

4 fprintf('%d + %d = %d\n',X,Y,X+Y);

5 fprintf('%d - %d = %d\n',X,Y,X-Y);

6 fprintf('%d mod %d = %d\n',X,Y,mod(X,Y));

Figure 6.3 illustrates the output for the execution of MATLAB script in Listing 6.3 after being

called via the shell script in Listing 6.2:

Figure 6.3: MATLAB Arithmetic Script Output

134

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

This short tutorial of how MATLAB is run and how to run scripts written in MATLAB is for

demonstration sake. For more information and tutorials visit MATLAB website [164].

6.3.2 AnaTempura Runs MATLAB

AnaTempura can run external programs or systems by annotating the name of these programs or

systems written in different languages. This annotation then executes whatever is written inside

these programs or shell scripts. Every annotation is assigned to a unique process identification

Pid, so they do not clash or delay the execution time. For instance, the annotation within a

Tempura program in Listing 6.4, run by AnaTempura, calls Tcl, Java, C programs and shell

script as external programs:

Listing 6.4: Annotation within Tempura Program

1 Tempura code . . .

2 /* tcl Cache 0 */

3 /* java Hello 1 */

4 /* prog Fac 2 */

5 /* prog Script.sh 3 */

6 Tempura code . . .

These markers “/*” and “*/” are used respectively to open and close comments . However,

the texts between these markers are sometimes executable in case they are prefixed by keywords

such as tcl, java, prog; in these cases, they call external programs independently. Processes Pid0,

Pid1, Pid2 and Pid3 are assigned to Tcl, Java, C programs and Shell script respectively. Process

Pid3 calls the shell script to be executed. The shell script runs MATLAB as explained above,

and it also runs the MATLAB script which is already created to do some specific computations.

The execution of these various programming languages and shell scripts enriches AnaTempura

and empowers it to be used widely.

The integration procedures are going to be thoroughly explained and demonstrated in this

section. First of all, a Tempura program has to be created as Listing 6.5 illustrates:

135

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

Listing 6.5: Tempura Program “Hello.t”

1 load "../../../library/conversion".

2 load "../../../library/exprog".

3 load "../../../library/tcl".

4 /* tcl Hello 0 */

5 /* prog Hello.sh 1 */

6 set print_states = false.

7 define Send_To_MATLAB(C) = {

8 tcl("init",[C]) and

9 always tclbreak()

10 }.

11 /* run */ define Test() = exists C: {

12 input C and output C and len(0) and Send_To_MATLAB(C)

13 }.

Annotations are made in line 4 and 5. Annotation in line 4 calls a Tcl program “Hello.tcl” as

Listing 6.6 illustrates, and the process assigned to executed it is Pid0, while the annotation in

line 5 calls the shell script “Hello.sh”, as Listing 6.7 illustrates, and the execution of the shell

script is assigned to process Pid1. The Tempura program in Listing 6.5 initialises a state variable

called “C”. The value of this state variable is entered via AnaTempura monitor at runtime, and it

has to be suffixed by a dot mark “.” in order to carry on the execution and receive the input of

“C”. Without the dot mark, AnaTempura monitor waits until doing so.

Line 12 in Listing 6.5 prompts the input to be entered and assigned to “C”, then outputs the

entered values. Afterwards, it passes the entered values to function Send To MATLAB(C).

This function is declared in line 7 of the same Listing. The function carries the input values of

“C” and a connection with an external program written in Tcl is initialised as line 8 illustrates.

The command tcl(“init”,[C]) passes the input values received via AnaTempura monitor to a

procedure init within a Tcl external program, in Listing 6.6, which has been already called via

annotation command in line 4 of the same Listing. The inputs that were entered as Figure 6.4

illustrates are “36.”, “37.” and “38.”.

136

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

Figure 6.4: AnaTempura inputs numbers to file “input.txt”

The following Listing 6.6 is a Tcl program “Hello.tcl”; it receives the input values entered

within AnaTempura monitor. The procedure proc init {nl} in line 2 is the mediator as it was

called within the previous Listing 6.5. The command in line 3 sets a list of index 0 in order to

assign the received inputs to “C”. Lines 4 to 6 create a text file “input.txt” then write to and read

from this file.

Listing 6.6: Tcl Program “Hello.tcl”

1 namespace eval ::out {;

2 proc init {nl} {

3 set C [lindex $nl 0]

4 set fp [open "input.txt" a+]

5 puts $fp "$C"

6 close $fp

7 }

137

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

Once the writing process is done, the text file stores the input values entered to it via the AnaTem-

pura monitor as Figure 6.5 illustrates:

Figure 6.5: File Content for “input.txt”

At this point, the integration step is reached. The annotation in Listing 6.5, line 5 is entitled

to execute the shell script in Listing 6.7. The script runs MATLAB in a non-desktop GUI mode,

which means MATLAB will be loaded into AnaTempura monitor windows as external program

of Pid1 because this process has been assigned within the annotation in line 5. The flag “-r” in

Listing 6.7, line 2 indicates that the following text enclosed in double quotations is a MATLAB

code and has to be executed. Alternatively, a MATLAB script with the same code could be

loaded instead of writing a MATLAB code within the shell script, but this short MATLAB code

is meant to load the input text file “input.txt” which is already created by AnaTempura external

program; it then retrieves that inputs entered in the text file. Listing 6.7 illustrates shell script

“Hello.sh”:

Listing 6.7: Shell Runs MATLAB & Load Data from “input.txt”

1 #!/bin/sh

2 matlab -nosplash -nodesktop -r "load('input.txt'); C=input(:,1)"

Figure 6.6 illustrates that MATLAB has been run externally within AnaTempura, and the

inputs values entered into AnaTempura are delivered successfully to MATLAB, and they can be

manipulated, analysed, simulated, etc.

138

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

Figure 6.6: MATLAB Reads from input file “input.txt”

The work of integrating AnaTempura with MATLAB is crucially important and original.

Such an integration bridges the gap between runtime verification tools and MATLAB which

offers a variety of toolboxes such as Model-Based Design Simulink, Fuzzy Logic, Robotics Sys-

tem, Aircraft Intuitive Design (AID), Statistics and Machine Learning and much more. MAT-

LAB is trusted by millions of engineers, scientists, companies, industrials, institutions, universi-

ties, etc.. This diversity of applications is promising in the way that AnaTempura and MATLAB

can play a great role together. The benefits are mutual for either systems, and they push each

other’s limitations.

By now, AnaTempura and MATLAB are integrated and can communicate natively. The next

section sheds light on correctness properties of interest such as Memory Consistency and Cache

Coherence State of MSI protocol. At runtime, these correctness properties have to be verified

that they are met, proved, and satisfied. In order to perform this task the integration between

AnaTempura and MATLAB have to be done to be able to compare the outcomes of AnaTempura

and MATLAB.

139

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

6.4 Correctness Properties

According to Berkovich et al. [29], in computing systems, Correctness refers to the assertion

that a system satisfies its specification. The system I used for the case study in Chapter 5 is a

Private L2 Cache Memory of multi-core processor architecture. The proposed model, Parallel

Runtime Verification Framework (PRVF), has implemented the case study successfully. How-

ever, random and independent evaluation techniques are intended to be applied using MATLAB

in order to exclude any bias judgement upon the proposed model using only AnaTempura. MAT-

LAB is going to be used to produce another version of the judgement, and if both judgements

are identical, the proposed model is then reliable, efficient, performing and robust.

Memory Consistency and Cache Coherence State of MSI Protocol properties are the correct-

ness properties I intended to investigate. Each correctness property will be defined at first and

then expressed formally in formal-based framework, Interval Temporal Logic (ITL). After that,

AnaTempura will run the case study using the proposed model, PRVF, in order to monitor the be-

haviour of the system under scrutiny. Once AnaTempura runs the check of the system, MATLAB

will be run by AnaTempura, and they will communicate with each other and exchange assertion

data. AnaTempura makes its judgement, and simultaneously MATLAB makes its judgement too.

The judgements checks are then compared and analysed using MATLAB toolboxes.

6.4.1 Revisiting The Case Study of Cache Controller

The case study was described and implemented thoroughly in the previous chapter, Chapter 5.

In this section I will only run the case study using AnaTempura following the same steps applied

earlier in the previous chapter; however, this time MATLAB is fully integrated with AnaTempura

and will produce plotted charts representing the assertion data exchanged between AnaTempura

and MATLAB. Screen shots of the case study being run are illustrated in Figures 6.7 & 6.8.

Figure 6.7 displays the outcomes of the implementation of the case study using AnaTempura.

The outcomes are formatted in a table where they are explained and analysed in Chapter 5.

140

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

Figure 6.7: AnaTempura Run of L2 Cache Memory of Processors 0, 1 & 2

Figures 6.8 demonstrates the outcomes generated in the table of Figure 6.7 in order to visu-

alise the outcomes and increase the understanding of the case study in addition to monitoring

purposes.

141

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

Figure 6.8: Tcl Animation of L2 Cache Memory of Processors 0, 1 & 2

AnaTempura can now run MATLAB natively as an external programs as Figure 6.9 illus-

trates. These external windows of external programs of processors 4 & 5 are responsible for

running two shell scripts annotated within Tempura program which is written to run the case

study. The figure shows that MATLAB has been run successfully by AnaTempura in order to

monitor and analyse the behaviour of the cache memory.

142

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

Figure 6.9: External Programs of AnaTempura for Processors 4 & 5

Figure 6.10 represents the assertion data file produced at runtime by the cache implementa-

tion and at the same time MATLAB loads this file and reads the data inside the file in order to do

the analysis step.

Figure 6.10: Dual Core Dual Processor System

All the source codes of the implementation of this case study are written in Tempura, Tcl,

shell and MATLAB languages can be found in Appendix E. With regards to the produced out-

143

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

comes of the MATLAB scripts executed during runtime of AnaTempura, they are displayed in

the next sections, Section 6.4.2 & 6.4.3.

6.4.2 Memory Consistency Property

A memory of a particular address is consistent if it holds the same value of at least one cache

memory of the correspondent index. Otherwise, a memory is inconsistent. In the later case,

a verdict of either true or false of a marker called dirty bit within cache memory architecture

is switched accordingly. The dirty bit of the cache memory is true when cache memory and

main memory of a correspondent address are inconsistent, otherwise, it is false. The correctness

property of Memory Consistency can be formalised in Interval Temporal Logic (ITL) as follows:

`Memory[Addr] = Cache[X][Index] ∨ Cache[Y][Index] ∨ Cache[Z][Index]

A memory of address Addr has to be equivalent with at least one of cache memory indexes,

Index of processor X, Y or Z. If the above formula is met, then a memory is consistent.

Now I will show the outcomes of the execution of MATLAB scripts that have been run within

AnaTempura. A shell script has been annotated within a Tempura program; this shell script

“CheckProperty1.sh” is responsible for running the MATLAB and then executing MATLAB

script “Property1.m”. The MATLAB script gathers and assigns the assertion data being created

during the runtime of AnaTempura, and then plots these data in graphs for each state of the

execution of the case study.

The number of states is 10, from state 0 until 9. Each single state is individually captured by

this MATLAB script and representing data of every single state of the related rows and columns

of the assertion data is in the text file as Figure 6.10 illustrates. For referencing the addresses of

144

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

main memory and the indexes of the cache memory, I use this format:

Memory[Addr] = Data

Cache[Pid][Index] = Data

Where,

Addr: indicates the requested address

Pid: indicates the processor identification

Index: indicates the entry within the cache of Pid

Value: indicates the data integer values

Noticed that, all the cache indexes is -8, while the main memory addresses data values is -16.

Holding data -8 for the cache indexes means that cache indexes are empty and have no data yet.

In contrast, a main memory holding data -16, means that the main memory is occupied and has

data.

STATE 0: By referring to Figures 6.7 & 6.8, it can be found that the active processor is Pid1

and always comes as the first graph of the plot, at top-left corner, while Pid2, P id0 are considered

idles. In this state, the Pid1 is the processor which requests to access address 14, Addr : 14. The

requested address fetches its data to the correspondent cache index of Pid1 in case the access is

for reading RW = 0 (refer to Figure 6.7).

When the access is for writing, RW = 1, then the processor writes directly to the correspon-

dent cache index, Index[6], without updating the main memory. As the data of the main memory

of the requested address is not updated yet and is different from the data of the correspondent

cache index, the memory at state 0 is inconsistent. Once another processor requests the same ad-

dress, this particular cache of Pid1 fetches data 25 to that processor. When this particular cache

index of Pid1 is replaced by another request, the old data gets copied into the correspondent

main memory and becomes consistent. See Figure 6.11.

145

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

Figure 6.11: Memory Consistency Check at State 0

146

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

STATE 1: Processor Pid1 writes to index 6 the data 0, Cache[1][6] = 0. The correspondent

address of this cache index, Memory[6], is inconsistent as it has the data -16. Interestingly, at

the previous state the old data of Cache[1][6] was 25 and because it is replaced by a new data

0 in this state, the old data gets moved to its correspondent memory address Memory[14]. The

main memory of address 6 Memory[6] is inconsistent. See Figure 6.12.

Figure 6.12: Memory Consistency Check at State 1

147

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

STATE 2: Process Pid2 requests to read address 2 and because address 2 is not available

in the cache index of all the three processors, the main memory fetches the data of address 2

to the requester processor. The main memory of address 2, Memory[2], and the cache index

of processor Pid2, index 2, Cache[2][2], have the same data, therefore, the main memory is

consistent. See Figure 6.13.

Figure 6.13: Memory Consistency Check at State 2

148

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

STATE 3: Processor Pid2 writes a new data 0 to index 0 which is the correspondent entry of

the requested address 0. The cache index of Pid2 is index 0, Cache[2][0] = 0, while the main

memory of address 0 has different data Memory[0] = −16. Therefore, the main memory is

inconsistent because it has not been updated yet. See Figure 6.14.

Figure 6.14: Memory Consistency Check at State 3

149

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

STATE 4: Address 15 is requested to be read by processor Pid0. Because the cache index

of the correspondent address is empty, the main memory of the requested address 15 fetches its

data, Memory[15] = −16, to cache index 7 of Pid0 as follows Cache[0][7] = −16. The main

memory of address 15 is consistent because it has at least one cache holding the same data. See

Figure 6.15.

Figure 6.15: Memory Consistency Check at State 4

150

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

STATE 5: Processor Pid2 requests to read address 0 which is recently modified and written

to at state 3 by the same processor, Pid2. The data written to this cache index 0 is 0, therefore,

cache index 0 of Pid2 is Cache[2][0] = 0. The main memory of the requested address 0 is still

not updated Memory[0] = −16, therefore, the main memory is inconsistent. See Figure 6.16.

Figure 6.16: Memory Consistency Check at State 5

151

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

STATE 6: The read request is initialised by processor Pid1 to read address 4. As cache

index 4 is empty, the main memory fetches data -16 to this cache index. Cache index 4 of

processor Pid1 is Cache[1][4] = −16, and the main memory of address 4 isMemory[4] = −16.

Consequently, the main memory is consistent. See Figure 6.17.

Figure 6.17: Memory Consistency Check at State 6

152

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

STATE 7: Processor Pid2 requests to write to address 4 a new data 23. Index 4 of Pid1 from

the previous state has got data -16 fetched by the main memory. At this state, index 4 writes

new data by Pid2. Now there are two different data Cache[1][4] = −16 and Cache[2][4] = 23.

Processor Pid2 is the most updated, while Pid1 is outdated at this state. Therefore, the main

memory of address 4 Memory[4] = −16, is outdated, and it is inconsistent. See Figure 6.18.

Figure 6.18: Memory Consistency Check at State 7

153

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

STATE 8: Processor Pid2 requests to read address 5. Because cache index 5 of processor 2

Cache[2][5] is empty, the main memory of address 5, Memory[5] = −16, fetches its data to the

cache index, so it becomes Cache[2][5] = −16. As the cache memory of processor Pid2 and the

main memory have the same data, the main memory is consistent. See Figure 6.19.

Figure 6.19: Memory Consistency Check at State 8

154

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

STATE 9: Processor Pid1 requests to read address 9. Cache index 1, Cache[1][1], of this cor-

respondent address is empty, therefore, the main memory of address 9 fetches it dataMemory[9] =

−16 to this cache index, so it becomes Cache[1][1] = −16 which means that the main memory

is consistent. See Figure 6.20.

Figure 6.20: Memory Consistency Check at State 9

155

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

6.4.3 Cache Coherence Property

The cache memory is coherent if it maintains one of the cache coherence protocols such as MSI,

MESI, MOESI and many others [213]. The MSI Protocol is chosen because it is simple, and it

serves the purpose. In section 5.2.2 I have covered the protocol and explained the meaning of the

states the protocol indicates such as Modified, Shared and Invalid. Each state is shortened to one

capital letter “M” for Modified, “S” for Shared, and “I” for Invalid. The following table, Table

??, describes the allowed and forbidden occurrences of these MSI states of the cache memory in

multi-core architecture:

Table 6.1: MSI Protocol

Modified Shared Invalid

Modified 7 7 3

Shared 7 3 3

Invalid 3 3 3

This criteria is applicable on at least two entities or more. The Modified state “M” is highly

restricted, and it does not accept any other states but Invalid “I”. The Shared state “S” is less

restricted; it accepts another cache block to be either Shared “S” or Invalid “I”. The Invalid state

“I” is tolerating, and it accepts all three states Modified “M”, Shared “S” or Invalid “I”.

Cache coherence can be achieved by maintaining MSI Protocol. This correctness property

can be expressed formally in Interval Temporal Logic (ITL) as follows:

`MSI Protocol[X,Y] = (State[X][Index] = Modified ∧ State[Y][Index] = Invalid)∨

(State[X][Index] = Shared ∧ (State[Y][Index] = Shared ∨ State[Y][Index] = Invalid))∨

(State[X][Index] = Invalid ∧ (State[Y][Index] = Modified ∨ State[Y][Index] = Shared∨

State[Y][Index] = Invalid))

156

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

The formula expresses the allowed the MSI Protocol of two cache blocks for processors X

and Y . When the MSI Protocol states meet this formula, then the correctness property of the

cache coherence is satisfied.

The acronym of MSI Protocol states “M”, “S” and “I” are replaced by “1”, “2” and “3”

respectively in MATLAB graphs in order to be able to plot them as integer values of y-axis,

while x-axis represents the processors identification Pid0,1,2.

STATE 0: By referring to Figures 6.7 & 6.8, it can be seen that processor Pid1 modifies

cache block 6 by writing data 25 to it, so it becomes Modified Cache[1][6] = 25 because the

main memory is not updated yet and no other cache blocks share this new data. The same cache

blocks of processors Pid0 & Pid2 are still empty, and are, therefore, Invalid. See Figure 6.21

Figure 6.21: Cache Coherence & MSI Protocol Check at State 0

157

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

STATE 1: Processor Pid1 writes a new data to the same cache index 6 which is written to

in the previous state. The data is 0, Cache[1][6] = 0, MSI state of this cache index is Modified

as neither the main memory nor the other cache blocks hold the new written data. The other

processors Pid0 & Pid2 are still Invalid. See Figure 6.22

Figure 6.22: Cache Coherence & MSI Protocol Check at State 1

158

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

STATE 2: Processor Pid2 requests to read the main memory address 2. Cache index 2 of

processor 2 Cache[2][2] = −16 and the main memory of address 2 Memory[2] = −16 share

the same data. Therefore, the MSI protocol of Cache[2][2] is Shared, while the other processors

are still empty, which means that their MSI states are Invalid. See Figure 6.23

Figure 6.23: Cache Coherence & MSI Protocol Check at State 2

159

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

STATE 3: Cache index 0 of processor 2 Cache[2][0] is Modified because a write request is

made. The data in main memory of the correspondent address is different from this cache index.

The other processors Pid0 & Pid1 are empty, therefore, their MSI state are Invalid. See Figure

6.24

Figure 6.24: Cache Coherence & MSI Protocol Check at State 3

160

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

STATE 4: Processor Pid0 requests to read a correspondent cache index 7 of the requested

address 15, Cache[0][7]. The main memory Memory = −16 fetches its data to this cache

index. Therefore, the MSI state of this cache block is Shared as it is consistent with the main

memory data. The other processors are empty, and their MSI states are Invalid. See Figure 6.25

Figure 6.25: Cache Coherence & MSI Protocol Check at State 4

161

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

STATE 5: Processor Pid2 requests to read address 0, because this address has recently been

in state 3 and received a write request of data 0 to it. Therefore, at this state the requested read

address returns 0, Cache[2][0] = 0. The MSI state is still Modified because the correspondent

address in the main memory holds different data. The other processors, Pid0 & Pid1, are Invalid.

Figure 6.26: Cache Coherence & MSI Protocol Check at State 5

162

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

STATE 6: Cache block 4 of processor 1 holds data -16 after it is fetched by the main memory

of address 4 as a consequent of the read request initialised by Pid1. Therefore, Cache[1][4] =

−16 which means that the MSI state of this cache block is Shared. Because the other processors

Pid2 & Pid0 are still empty, their MSI states are Invalid. See Figure 6.27

Figure 6.27: Cache Coherence & MSI Protocol Check at State 6

163

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

STATE 7: Processor Pid2 requests to write data 23 to cache index 4, so it becomesCache[2][4] =

23. This cache block of Pid2 was Invalid in the previous state because it was empty. At this state,

it becomes Modified as it has just received a new data while the main memory of the correspon-

dent address is still not updated. Processor Pid1 changes its cache block from being Shared at

the previous state to Invalid at this state. Processor Pid0 is still empty, therefore, it is Invalid too.

Figure 6.28: Cache Coherence & MSI Protocol Check at State 7

164

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

STATE 8: Processor Pid2 requests to read cache index 5 and because this cache block is

empty, the main memory of address 5 fetches its data, Memory[5] = −16 to it. The cache

memory of processor 2 becomes Cache[2][5] = −16, which means it is in the Shared MSI state.

Processors Pid0 & Pid1 are still empty, which means that their MSI states are Invalid.

Figure 6.29: Cache Coherence & MSI Protocol Check at State 8

165

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

STATE 9: Processor Pid1 requests to read cache index 1, and because this cache block is

empty, the main memory of address 9 fetches its data, Memory[9] = −16 to this cache block,

so it becomes Cache[1][1] = −16. Therefore, this cache block has Shared MSI state while the

other processors, Pid0 & Pid2, have Invalid MSI states. See Figure 6.30

Figure 6.30: Cache Coherence & MSI Protocol Check at State 9

166

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

6.5 Discussion

The implementation of the case study of Cache Controller is deployed in order to measure

the suitability and generality of the proposed model, Parallel Runtime Verification Framework

(PRVF). As the proposed model is built and modelled using Tempura language, the subset ex-

ecution version of Interval Temporal Logic (ITL) specification notation language, AnaTempura

is used to run the case study in order to judge the model. I have illustrated the implementation

of the case study and consequently the judgement of the used model in the previous chapter,

Chapter 5.

In this chapter, I have deployed MATLAB to measure and judge the proposed model using

AnaTempura. The integration steps have been covered thoroughly and illustrated visually in

multiple figures. MATLAB gives the same judgement as the AnaTempura tool has gives of the

implementation of the case study using the proposed model PRVF.

The data analysis of ten states of two correctness properties is given in addition to twenty

figures, Figures 6.11 to 6.30. These data analysis and illustrations figures produced by MATLAB

prove that the proposed model is reliable, efficient, performing and robust.

The proposed model, PRVF, offers four mechanisms of implementation based on commu-

nication, concurrency and execution preferences. These four different mechanisms were intro-

duced in Chapter 3. Although two of these mechanisms are implemented in this PhD thesis,

which are Shared-Varibale Interleaving Concurrency and Shared-Varibale True Concurrency, the

implementation of the other mechanisms will lead to success and the same judgement of this

mechanism.

The other mechanisms are Shared-Variable True Concurrency, Message-Passing Synchronous

Execution and Message-Passing Asynchronous Execution. These mechanisms are formally ex-

pressed in algorithms and are also modelled in flowchart figures. For algorithms refer to Al-

gorithms 3, 4, 5 respectively and for the flowcharts refer to Figures 3.8, 3.9, 3.10 respectively.

167

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

For instance, Shared-Variable True Concurrency mechanism varies from the one implemented

in this PhD thesis. It runs multiple systems simultaneously, and it has to maintain the shared

variable value and apply an explicit synchronisation and control mechanisms such as monitors

[120], semaphores [79], atomic operations and mutual exclusion (mutex) in order to provide a

consistent shared variable value. Message-Passing (A)synchronous Execution are uses Message-

Passing for communication. The only difference between these two latter mechanisms is the

execution preferences. Asynchronous Execution allows parallel systems to have different tim-

ing clocks; for instance, one system could start and finish its execution differently compared to

another parallel system running at the same time. Synchronous Execution restricts the timing

clocks for systems run in parallel and force these systems to start and finish their executions at

the same moment. In other words, Asynchronous Execution has different timing clocks, while

Synchronous Execution has identical timing clocks.

6.6 Related Work

Although the proposed model, Parallel Runtime Verification Framework (PRVF), is dedicated to

handle parallel computing systems at runtime, it is suitable to be a generic model for parallel

computing regardless of being deployed at runtime. This is due to the fact that it considers the

fundamental aspects of parallelism at software and hardware levels.

There are several models for parallel computing such as Parallel Random Access Machine

(PRAM), Parallel Memory Hierarchy (PMH), Bulk Synchronous Parallel (BSP) and LogP. Each

of these models has pros and cons, and then an explanation of the reason I favour in the proposed

model, PRVF, over the other parallel computing models follows.

In 1978, Fortune and Wyllie [94] proposed the Parallel Random Access Machine (PRAM)

as a natural evolution of the classic Random Access Machine (RAM) model. Ever since, PRAM

model is considered to be one of the most used models for parallel computing in general and for

parallel algorithms and analysis specifically.

168

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

In the 1990s, the PRAM model was considered an unrealistic model for parallel algorithm de-

sign and analysis due to the fact that at time that simultaneous operations could not offer constant

memory access times by computers. The implementation of PRAM model was not complex as

its design algorithms were suggesting. However, the General Purpose Graphics Processing Unit

(GPGPU) computing Application Programming Interfaces (APIs) was introduced in 2006 and

consequently the model, PRAM, became relevant.

PRAM model has different four variations in order to make modelling parallel algorithms

more realistic. These variations are a 2 × 2 matrix of two sets: {Exclusive,Concurrent} and

{Read,Write}. These variations, therefore, are Exclusive Read Exclusive Write (EREW), Con-

current Read Exclusive Write (CREW), Exclusive Read Concurrent Write (ERCW) and Con-

current Read Concurrent Write (CRCW). These four variants are thoroughly explained in [205].

Concurrent writes have to meet one of the following protocols: i) Common, where all processors

write the same value, ii) Arbitrary, where only one write is successful, the others are not applied,

iii) Priority, where priority values are given to each processor (e.g., rank value), and the proces-

sor with the highest priority will be the one to write, iv) Reduction, where all writes are reduced

by an operator (add, multiply, OR, AND, XOR). PRAM uses the shared memory model.

Alpern et al. [9] proposed Parallel Memory Hierarchy (PMH) model in 1993. The model

was proposed to overcome the drawback of the PRAM model with regards to the constant time

memory operations. Central Processing Units (CPUs) have memory hierarchies of registers, L1,

L2 and L3 caches such as Intel Xeon E5 series and AMDs Opteron 6000 series. GPUs as well

have registers, L1, L2 caches and global memory as a memory hierarchy such as Nvidia GTX

680 or AMDs Radeon HD 7850. Such memory hierarchies should be considered in the process

of designing parallel algorithms.

A hierarchical tree of memory modules is used to define the PMH model. The processors are

represented using the leaves while memory modules are represented using internal nodes. The

more memory modules get closer to the processors, the faster, yet smaller, they become. On the

169

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

other hand, the more memory modules get far from the processors, the slower, yet larger, they

become.

Uniform Parallel Memory Hierarchy (UPMH) is a simplified version of PMH model, and it

is easier to model an algorithm than use PMH itself. UPMH model complements other models

such as PRAM and Bulk Synchronous Parallel (BSP). (U)PMH uses the shared memory model.

Leslie Valiant [277] introduced in 1990 a parallel computing model, the Bulk Synchronisa-

tion Parallel (BSP), with primary consideration of communication aspects. The model highly

considers synchronisation and communication where a number of processors with fast local

memory are connected via a network. The processors can communicate easily and send or re-

ceive messages between each other. The algorithm which is used to build BSP model is called

super-step, where it consists of three steps as a parallel block of computation: i) local computa-

tion, where p is processors perform up to L local computations, ii) global communication, where

processors can send and receive data among them, iii) barrier synchronization waits for all other

processors to reach the barrier. BSP uses the message passing model.

Culler et al [67] proposed the LogP model in 1993. LogP and BSP both consider the com-

munication aspects by focusing on modelling the cost of communication a set of distributed

processors. The cost of local operations in LogP is one unit of time, while the network con-

siders latency (L), overhead (o), gap (g), and processors (P). The latency for communicating

a message contains a word from the source to the target processor. Overhead can be measured

by the amount of time a processor needs to send or receive. Gap can be measured by the min-

imum amount of time between successive messages in a given processor, while processors are

the number of processors.

Latency, overhead and gap are measured in cycles. LogP is synchronised by pairs of proces-

sors, while BSP uses global barriers of synchronisation. LogP considers a message overhead,

while BSP does not. Therefore, the determination of which model to use depends on the need

for local or global synchronisation and whether the communication is overhead. LogP uses the

170

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

message passing model.

Comparing these parallel computing models to the proposed model in this PhD thesis, Par-

allel Runtime Verification Framework (PRVF), shows that PRVF considers both communication

aspects such as the shared memory and message passing models unlike PRAM and PMH where

they only use shared memory model. On the other hand, BSP and LogP use the message pass-

ing model in their algorithm designing and analysis. All models take into account two forms

of concurrency, true and interleaving concurrency. In regards to (a)synchronous execution man-

ners, PRAM and (U)PMH use asynchronous execution manner, while BSP and LogP both use

(a)synchronous execution manner.

Table 6.2: Parallel Computational Models

PRAM (U)PMH BSP LogP PRVF

True Concurrency 3 3 3 3 3

Interleaving Concurrency 3 3 3 3 3

Shared Memory 3 3 7 7 3

Message Passing 7 7 3 3 3

Synchronous Execution 7 7 3 3 3

Asynchronous Execution 3 3 3 3 3

Table 6.2 illustrates a comparison between parallel computing models and the proposed

model which is Parallel Runtime Verification Framework (PRVF). The comparison shows that

PRVF fulfils all the aspects in the above table, while PRAM and (U)PMH models do not fulfil

message passing communication programming model and synchronous execution manner. On

the other hand, BSP and LogP models fulfil all aspects except the communication programming

model of the shared memory. The comparison in this table shows the comprehensiveness of Par-

allel Runtime Verification Framework (PRVF) compared to the other parallel computing models.

171

CHAPTER 6. EVALUATION OF PARALLEL RUNTIME VERIFICATION
FRAMEWORK (PRVF)

6.7 Summary

MATLAB has been introduced in order to be used for evaluation purposes. MATLAB and

AnaTempura have been linked and successfully communicated via exchanging assertion data.

A demonstration has been given of how AnaTempura can run MATLAB natively. Correctness

properties have been modelled formally and described in order to fulfil them. The behaviour of

the cache controller case study has been detected and checked at runtime. MATLAB has cap-

tured the behaviour of cache controller by collecting the assertion data being generated by the

model. The judgement upon the proposed model is made and a discussion and related work have

been done as well. A comparison between parallel computing models and the proposed model is

presented.

172

Chapter 7

Conclusion

Objectives:

• To present Thesis Summary

• To provide Comparison with Related Work

• To demonstrate Original Contribution

• To revisit Success Criteria

• To determine Limitations

• To predict Future Work

• To foresee Future Academic & Industrial Impact

173

CHAPTER 7. CONCLUSION

7.1 Thesis Summary

In this PhD thesis, a formal and compositional framework for the development of monitoring

system for parallel computer systems is introduced. The proposed approach uses a single formal-

ism, namely, Interval Temporal Logic (ITL), for specifications of and reasoning about correctness

properties. This approach uses an executable subset of ITL, namely, Tempura, to monitor system

behaviour at runtime and build correctness properties in order to deliver a property check against

system behaviour via the runtime verifier AnaTempura.

The proposed approach, Parallel Runtime Verification Framework (PRVF), is intended to

monitor parallel system architectures to ensure correctness properties. I consider in this ap-

proach concurrency forms, communication models, and execution modes of parallel systems

under scrutiny. Additionally, this approach considers models for the management of resource

allocation, delay and timeout agents to increase the robustness and reliability of the proposed

framework in such cases.

The implementation of the proposed framework shows its comprehensibility and ability to

model generic parallel systems architectures. The models of concurrency, communication, exe-

cution models enable it to deal realistically with varieties of parallel system architectures such

as multi-core processor architecture, and Java Remote Method Invocation (RMI). The proposed

framework allows systems to run either true concurrency or interleaving concurrency forms.

Also, it allows systems to communicate via either shared-variable or message-passing models.

The framework takes into consideration different execution modes such as Synchronous and

Asynchronous. Assertion points mechanism allows systems to run globally or locally to ex-

change assertion data in order to check the desired properties at runtime to satisfy correctness

criteria of the whole system. It also models resource allocation to manage the process of acqui-

sition of shared resources and make them accessible systematically. Delay in the execution of a

certain global resource within a given time causes a termination of the system holding the global

174

CHAPTER 7. CONCLUSION

resource without updating it in order to deliver consistent resources.

A benchmark case study of cache controller was implemented to demonstrate robustness of

the proposed framework. The cache controller is composed of three cores (processors), each core

is intended to execute read/write operations to/from memory addresses which are requested to be

made upon private L2 cache memory. The design of the cache controller system considers a re-

alistic hardware design as modelled in hardware description language SystemVerilog [213]. The

coherence protocol, namely, MSI is modelled and implemented to deliver consistency property

of the cache memory and main memory. For simplification sake, I did not use a bus in the cache

controller system. Alternatively, the snoopy cache coherence protocol is implemented to ensure

that two processors that attempt to write to the same block at the same time are strictly ordered

serially and atomically. This situation is called data race where only one processor wins the

write operation. The concurrency form used for the cache controller case study is true concur-

rency which implies the application of mutual exclusion and subsequently lock-based solution

to enforce the synchronisation property of the cache memory. However, the lock-based solution

was not used because the coherence protocol MSI was used instead. In other words, such a

protocol avoids the use of locks, which leads to delay and sometimes concurrency bugs such as

deadlock and then termination of the execution. The MSI protocol has a mechanism to mark the

modified shared resource, for instance, the cache block, as dirty cache block in case it has been

modified and is inconsistent with other cache blocks or the corresponding main memory address.

This mechanism allows the processor to continue its computation and avoid waiting until the

shared resource gets unlocked which saves time and delivers consistency property.

The proposed model was randomly and independently evaluated using an external tool for

this purpose in order to make the judgement upon the model unbiased. The external tool is MAT-

LAB and for this sake, AnaTempura has been fully integrated with MATLAB. AnaTempura and

MATLAB make a strongly homogeneous pair because they complements each other. Discussion,

related work, and comparative analysis were presented in this PhD thesis.

175

CHAPTER 7. CONCLUSION

7.2 Comparison with Related Work

A memory model of the proposed approach using a well-defined formalism Interval Temporal

Logic (ITL) plays a major role in runtime verification of parallel programs because parallel pro-

grams need to systematically manage their access and use of shared resources in order to deliver

consistent memory model and consequently global correctness properties satisfaction. In the

related work in Chapter 2, Framing Variable and Transactional Memory (TM) approaches have

been discussed. These approaches tackle a drawback of the formalism framework of Interval

Temporal Logic (ITL) which is the absence of memory model. Interval Temporal Logic (ITL)

has two kinds of variables which are static variable and state variable. The static variable does

not change over time, whereas the state variable gets changed over time. The state variable has

the flexibility to get updated in different states or over intervals, but the problem is that the state

variable’s value does not get inherited to the next states or over intervals; it becomes undefined.

Framing Variable is initiated by Hale [107] to overcome this shortcoming of the design of

Interval Temporal Logic (ITL) formalism framework [190]. Also, Duan [295, 78] investigated

Framing Variable and subsequently Projection Temporal Logic (PTL) is introduced as an ITL

extension. Moreover, Duan introduced a new executable subset of PTL, namely, Framed Tem-

pura. Framed Tempura has new operators such as projection prj, synchronous communication

await, and framing operator frame. However, framing variable has what is called framing prob-

lem where an explicit statement has to be made if a variable does not change, bearing in mind

that the memory cell update is a very costly operation.

Alternatively, a stable operator is used to model a memory which is intended to stabilise a

list at different states or over intervals. A list construction is more powerful than a state variable

construction intended to be framed to model benchmarks memory model such as the case study,

cache controller.

On the other hand, El-kustaban [82, 80] formalised Transactional Memory (TM) in Interval

176

CHAPTER 7. CONCLUSION

Temporal Logic (ITL). However, there are still aspects that need to be imported to the provable

abstract TM such as nested transactions and mechanisms of updating memory. The application

of TM is limited and the debugging is difficult to place a breakpoint within the transaction.

Transactional Memory (TM) has two major drawbacks which are space overhead and latency

[68]. TM requires significant amounts of global and per-thread meta-data. Also, TM has high

single-thread latency, usually two times compared to the lock-based technique.

The proposed approach adopts the lock-based technique although it is not been demonstrated

in the case study of cache controller due to the involvement of cache coherence MSI Protocol.

MSI protocol leaves a marker on modified shared cache block to indicate its state of coherence,

to show whether it is consistent or inconsistent. Mutual Exclusion (Mutex) uses the lock-based

technique; although it limits concurrency, it offers single-thread latency. Whereas, Transactional

Memory (TM) has higher latency, it scales well [68].

7.3 Original Contribution

This PhD thesis develops a unified formal framework for the specification, verification, and

implementation of Parallel Runtime Verification Framework (PRVF) using a single well-defined

formalism, namely, Interval Temporal Logic (ITL). The proposed framework achieves:

• A general computational model for parallel computing architectures such as Multi-core,

Java RMI. The framework fits any parallel computing architectures due to its comprehen-

sibility and flexibility. It can be tailored according to the architecture design patterns.

• An executable version of the abstraction level of systems being implemented using Parallel

Runtime Verification Framework (PRVF). A high-level (abstract) specification of a case

study of cache controller is implemented using the framework PRVF in ITL. A low-level

(concrete) design and implementation of the cache controller in Tempura/AnaTempura are

delivered.

177

CHAPTER 7. CONCLUSION

• A formal executable specification of the cache controller system associated with the cache

coherence protocol (MSI) is delivered in addition to snoopy protocol. A formal specifi-

cation and verification of complete realistic behaviour of processor, cache memory, main

memory. A formal modelling and concrete implementation of correctness properties for

the cache controller system.

• A general computational model for handling different concurrency forms, communication

models, and execution modes of parallel computing systems. In addition to a formal model

of resource allocation, delay and timeout agents.

• A general algorithmic description of (PRVF) in terms of handling all perspectives of par-

allelism mentioned above in addition to the delivery of local/global properties verification

at local/global levels of the framework.

7.4 Success Criteria Revisited

In the introduction chapter, number of success criteria is set as a measurement for this research.

These success criteria are revised at this stage of this research to make a judgement according to

what has been met of these success criteria which are:

1. Compositional requirements from several sources to handle local and global systems

correctness:

This criterion allows to specify and reason about global systems correctness of several par-

allel programs. The development of our framework considers the composition of high-level

abstract specifications of parallel programs in order to deliver the correctness properties of

global systems. This new feature is the basis of performing further verification of low-level

concrete design and implementation of such programs (see Chapters 4, 5, 6).

2. Compositional collection of assertion data from several sources to handle True/Inter-

leaving Concurrency associated with Shared-Variable approach:

178

CHAPTER 7. CONCLUSION

Parallel programs run in either True/Interleaving concurrency associated with Shared-

Variable communication model which have the ability to send and receive assertion data

from several sources to verify local/global correctness properties (see Chapters 3, 4, 5, 6).

3. Compositional collection of assertion data from several sources to handle Synchronous/Asyn-

chronous Communication links Channels/Shunts associated with Message-Passing

approach:

Parallel programs running in either Synchronous/Asynchronous execution modes asso-

ciated with Message-Passing communication model have the ability to send and receive

assertion data from several sources to verify local/global correctness properties. Syn-

chronous communication links use a construct, namely, Channels, while Asynchronous

communication links use the construct, namely, Shunts (see Chapter 3).

4. The ability to execute agents concurrently and the introduction of resource allocation

agents, and Delay and Timeout agents to model delay and timeout behaviour:

The management of resource allocation, delay and timeout agents play a major role in

increasing the robustness and reliability of the framework in such cases. Agents running

in parallel need to be coordinated when they access shared resources. Moreover, timing

is modelled to increase performance of such monitoring systems and to avoid deadlock

situation in case agents do not respond timely (see Chapter 3).

5. The use of lock-based technique to enforce Mutual Exclusion to deliver synchronisa-

tion:

The Shared-Variable based approach needs the synchronisation mechanism to deliver con-

sistent and reliable resources which are shared by many parallel programs. Mutual Exclu-

sion is applied via the use of lock-based solution upon such cases. The lock-based solution

affects the performance of such programs but endorses the correctness of global properties

179

CHAPTER 7. CONCLUSION

of parallel programs (see Chapters 3, 4).

6. Checking correctness property of local systems at local/global levels. The inference

of the correctness of global property from the correctness of a set of local properties

of global systems:

Local systems can check their correctness properties locally at the local level (local veri-

fication & assertion phase) concurrently. The Framework allows such systems to perform

this kind of correctness properties locally. Once local verification are made, the global ver-

ification phase at the global level collects all local correctness properties to form a global

correctness property out of the local ones (see Chapters 3, 5, 6).

7.5 Limitations

The proposed computational model, Parallel Runtime Verification Framework (PRVF), has the

following limitations:

• The decomposition paradigm allows breaking down the complex large systems into small

groups accordingly in order to manage and coordinate their computation. The application

of decomposition paradigm in this approach helps to model the correctness property of

global properties. Guidelines for the mechanism of the decomposition of global properties

would be helpful to a systematic understanding of the construction of such correctness

properties.

• The proposed framework can not deal with the verification of parallel programs that run

on several hosts. Multiple hosts have different environments which might infer the cor-

rectness of such programs and consequently harden the verification task. Programs being

run in different hosts are subjected to different assumptions and commitments about the

environments of those hosts.

180

CHAPTER 7. CONCLUSION

• As a consequent of the previous limitation, the proposed model of the monitoring system in

this research can only deal with programs that run on the same host. The assumptions and

commitments about the environment of that host are identical; therefore, the verification

task of the delivery of correctness properties is conveniently performed.

7.6 Future Work

Bob Floyd [93] and Tony Hoare [118] introduced pre- and post-conditions, what is so called

Hoare triple or logic, to verify systems at this level of abstraction. System S satisfies a specifi-

cation formulated as predicate pair of precondition P and postcondition R. Precondition P states

the assumptions made of system S before the system gets executed, whereas, Postcondition R

states the commitment which should be met after the execution of the system.

{ P } S { R }

As a consequence of Hoare’s Logic [118], the Assumption/Commitment style is developed

to verify a set of properties of interest such as Cau and Collette in [45] , Moszkowski in [195],

and Zedan et al in [297]. Moszkowski [195] is the first to introduce Hoare’s logic to Interval

Temporal Logic (ITL). Hoare’s logic’s clause can be expressed in ITL as follows:

` ω ∧ Sys ⊃ fin ω
′

where ω and ω′ are state formulas have no temporal operators, Sys is some arbitrary temporal

formula, and fin ω′ is true on an interval iff ω′ is true in the interval’s final state. Moszkowski

[195] addressed a drawback of pre- and post-condition approach which is the unsuitability for

the specification and verification of continuous and parallel systems. Moszkowski claims the

remedy of pre- and post-condition approach via the introduction of the Assumption/Commit-

ment approach. According to Moszkowski [195], the first consideration of the latter approach

is credited to Francez and Pnueli [95]. The expression of Assumption/Commitment in ITL is as

follows:

181

CHAPTER 7. CONCLUSION

` ω ∧ As ∧ Sys ⊃ Co ∧ fin ω
′

where:

ω: state formula about initial state,

As: assumption about overall interval,

Sys: the system under consideration,

Co: commitment about overall interval,

ω‘: state formula about final state.

According to Zhou [299], when compositional reasoning about systems run in parallel Sys1

and Sys2, the composition can be modelled in Assumption/Commitment style as follows:

` ω1 ∧ As1 ∧ Sys1 ⊃ Co1 ∧ fin ω‘
1

` ω2 ∧ As2 ∧ Sys2 ⊃ Co2 ∧ fin ω‘
2

` ω ∧ As ∧ (Sys1 ‖ Sys2) ⊃ Co ∧ fin ω‘

where:

` ω ⊂ ω1 ∧ ω2

` As ∨ Co1 ⊂ As2

` As ∨ Co2 ⊂ As1

` Co1 ∨ Co2 ⊂ Co

` fin ω‘
1 ∧ fin ω‘

2 ⊂ fin ω‘

This kind of compositional reasoning about correctness properties enables monitoring system

at a high-level (abstraction), such as PRVF, to deal with parallel programs running on several

hosts. To transform these specifications expressed in Assumption/Commitment style into a low-

level (implementation), an executable version is needed. Transforming these specifications into

an executable version is intended in the future.

182

CHAPTER 7. CONCLUSION

The transformation of Assumption/Commitment from a high-level into a low-level shifts

the proposed framework towards monitoring programs running in different hosts because the

availability of modelling and execution of different environments might exist.

7.7 Future Impact

7.7.1 Academic

The development of runtime verification benchmarks that include parallel systems is a promising

research topic due to the evolutionary shift in manufacturing multi-core architectures and the

wide adoption of such architectures. Modern computers use multi-core processor architectures

at the hardware/software levels in their design. Therefore, the performance and correctness of

such applications are vital for daily life. The continuity of such research topic is commercially

profitable and academically promising.

7.7.2 Industrial

The emergence of simulation based verification and validation techniques such as virtual com-

missioning is a sudden shift solution for testing automation systems even in the absence of the

process that is subjected to control. The Distributed Control Systems (DCS) which are intended

to control industrial processes might involve thousands of instruments, actuators and controllers

running in parallel to boost performance and save time. These giant control systems are com-

plex and rely on actuators and sensors. The probability of failures is high in harsh industrial

environments due to the possibility of malfunctions and defects in actuators, sensors, or pro-

cess equipment. According to OREDA, 92% of automated control and safety malfunctions of

10 international petroleum groups encountered are due to sensor or actuator malfunctions. This

kind of defects of sensors and actuators implies the introduction of a failure-tolerant design to

overcome this vulnerability of control systems. The shut down of any process in the field due

to sensors or actuators failures might cause significant waste of materials and work hours which

183

CHAPTER 7. CONCLUSION

lead to profitability reduction. The lost in annual revenue in the United States caused by sensors

and actuators malfunctions alone is tens of billion dollars [230].

The development of runtime verification benchmarks that include parallel control systems

consider failure-tolerant design to avoid shutting down processes in the field due to sensors or

actuators failures which cause catastrophic loses in annual revenues of industrials. Savolainen et

al. [230] propose a runtime verification framework using plant simulation models created dur-

ing the plant design process. The verification technique used in [230] is able to cover control

software errors, sensors and actuators errors. However, I believe the development of parallel

runtime verification framework is vital due to concurrency forms, communication models , and

execution modes perspectives. Their importance to deliver correctness properties for such con-

trol systems which involve thousands of instruments, sensors, actuators which eventually run in

parallel, access shared resources, and executes differently.

Another industrial impact of the development of parallel runtime verification is the correct-

ness property of hardware and software writing of parallel processing programs. As the number

of cores is doubled every two years, programmers who are interested in increasing performance

have to be parallel programmers. Manufacturing hardware and software for multi-core processor

architectures that make the writing of correct parallel processing programs leads to efficiency in

performance and power as the number of cores per chip scales geometrically. The development

of parallel runtime verification framework for such industrial fields of multi-core systems is a

sudden shift towards correctness and performance [213].

184

Bibliography

[1] Top500 supercomputer sites. URL https://www.top500.org/lists/2019/

06/.

[2] IEEE Standard for Software Verification and Validation. IEEE Std 1012-1998, pages 1–80,

July 1998. doi: 10.1109/IEEESTD.1998.87820.

[3] Amd ryzen 7 3800x ryzan desktop processors amd, 2019. URL https://www.amd.

com/en/products/cpu/amd-ryzen-7-3800x.

[4] Intel core i9-7980xe extreme edition processor, 2019. URL https://www.intel.

com/content/www/us/en/products/processors/core/x-series/

i9-7980xe.html.

[5] M. Abadi and Z. Manna. Temporal logic programming. Journal of Symbolic Computation,

8(3):277–295, 1989.

[6] J.-R. Abrial. Modeling in Event-B: system and software engineering. Cambridge Univer-

sity Press, 2010.

[7] S. Ackerman. What is matlab? online.[Online]. Available: Cimss.ssec.wisc.edu, 2019.

[8] S. G. Akl and N. Salay. On computable numbers, nonuniversality, and the genuine power

of parallelism. In Emergent Computation, pages 57–69. Springer, 2017.

185

https://www.top500.org/lists/2019/06/
https://www.top500.org/lists/2019/06/
https://www.amd.com/en/products/cpu/amd-ryzen-7-3800x
https://www.amd.com/en/products/cpu/amd-ryzen-7-3800x
https://www.intel.com/content/www/us/en/products/processors/core/x-series/i9-7980xe.html
https://www.intel.com/content/www/us/en/products/processors/core/x-series/i9-7980xe.html
https://www.intel.com/content/www/us/en/products/processors/core/x-series/i9-7980xe.html

BIBLIOGRAPHY

[9] B. Alpern, L. Carter, and J. Ferrante. Modeling parallel computers as memory hierarchies.

In Proceedings of Workshop on Programming Models for Massively Parallel Computers,

pages 116–123. IEEE, 1993.

[10] R. Alur, T. A. Henzinger, and P.-H. Ho. Automatic symbolic verification of embedded

systems. Software Engineering, IEEE Transactions on, 22(3):181–201, 1996.

[11] J. Anderson, R. N. Watson, D. Chisnall, K. Gudka, I. Marinos, and B. Davis. Tesla: tempo-

rally enhanced system logic assertions. In Proceedings of the Ninth European Conference

on Computer Systems, page 19. ACM, 2014.

[12] T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie. Zing: Exploiting pro-

gram structure for model checking concurrent software. In International Conference on

Concurrency Theory, pages 1–15. Springer, 2004.

[13] K. Apt, F. S. De Boer, and E.-R. Olderog. Verification of sequential and concurrent pro-

grams. Springer Science & Business Media, 2010.

[14] L. Aronovich, Y. Toaff, G. Paz, and R. Asher. Managing global cache coherency in a

distributed shared caching for clustered file systems, Jan. 3 2017. US Patent 9,536,104.

[15] P. Avgustinov, J. Tibble, E. Bodden, L. Hendren, O. Lhoták, O. De Moor, N. Ongkingco,

and G. Sittampalam. Efficient trace monitoring. In OOPSLA Companion, pages 685–686,

2006.

[16] S. R. Azzam and S. Zhou. Applying rely/guarantee in compositional ontology alignment.

GSTF Journal on Computing (JoC), 2(3), 2014.

[17] C. Bacherler, B. Moszkowski, C. Facchi, and A. Huebner. Automated test code generation

based on formalized natural language business rules. International Academy, Research

and Industry Association (IARIA), 2012.

186

BIBLIOGRAPHY

[18] R. Backasch, C. Hochberger, A. Weiss, M. Leucker, and R. Lasslop. Runtime verification

for multicore soc with high-quality trace data. ACM Transactions on Design Automation

of Electronic Systems (TODAES), 18(2):18, 2013.

[19] C. Baier, J.-P. Katoen, and K. G. Larsen. Principles of model checking. MIT press, 2008.

[20] M. Balser, C. Duelli, W. Reif, and G. Schellhorn. Verifying concurrent systems with

symbolic execution. In Journal of Logic and Computation (Special Issue. Citeseer, 2005.

[21] H. Barringer and K. Havelund. Tracecontract: A scala dsl for trace analysis. In Interna-

tional Symposium on Formal Methods, pages 57–72. Springer, 2011.

[22] H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. Metatem: A framework for

programming in temporal logic. In Stepwise Refinement of Distributed Systems Models,

Formalisms, Correctness, pages 94–129. Springer, 1990.

[23] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verification.

In International Workshop on Verification, Model Checking, and Abstract Interpretation,

pages 44–57. Springer, 2004.

[24] H. Barringer, D. Rydeheard, and K. Havelund. Rule systems for run-time monitoring:

from eagle to ruler. Journal of Logic and Computation, 20(3):675–706, 2008.

[25] H. Barringer, A. Groce, K. Havelund, and M. Smith. An entry point for formal methods:

Specification and analysis of event logs. arXiv preprint arXiv:1003.1682, 2010.

[26] S. Bäumler, M. Balser, F. Nafz, W. Reif, and G. Schellhorn. Interactive verification of con-

current systems using symbolic execution. Ai Communications, 23(2-3):285–307, 2010.

[27] S. Bäumler, G. Schellhorn, B. Tofan, and W. Reif. Proving linearizability with temporal

logic. Formal aspects of computing, 23(1):91–112, 2011.

187

BIBLIOGRAPHY

[28] P. Bellini, R. Mattolini, and P. Nesi. Temporal logics for real-time system specification.

ACM Computing Surveys (CSUR), 32(1):12–42, 2000.

[29] S. Berkovich, B. Bonakdarpour, and S. Fischmeister. Gpu-based runtime verification. In

Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on,

pages 1025–1036. IEEE, 2013.

[30] Y. Bertot and P. Casteran. An eatcs series, 2004.

[31] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Advances in computers, 2003.

[32] J. Borkowski. Hierarchical detection of strongly consistent global states. In Parallel

and Distributed Computing, 2004. Third International Symposium on/Algorithms, Models

and Tools for Parallel Computing on Heterogeneous Networks, 2004. Third International

Workshop on, pages 256–261. IEEE, 2004.

[33] J. Borkowski. Measuring and improving quality of parallel application monitoring based

on global states. In Parallel and Distributed Computing, 2005. ISPDC 2005. The 4th

International Symposium on, pages 113–120. IEEE, 2005.

[34] J. Borkowski and M. Tudruj. Global states monitoring in execution control of parallel

programs. In Parallel and Distributed Computing, 2008. ISPDC’08. International Sym-

posium on, pages 419–423. IEEE, 2008.

[35] J. Borkowski and M. Tudruj. Dynamic distributed programs control based on global pro-

gram states monitoring. Scalable Computing: Practice and Experience, 13(2):173–186,

2012.

[36] J. Borkowski and M. Tudruj. Global control in distributed programs with dynamic process

membership. In Parallel, Distributed and Network-Based Processing (PDP), 2012 20th

Euromicro International Conference on, pages 525–529. IEEE, 2012.

188

BIBLIOGRAPHY

[37] J. Borkowski, D. Kopanski, and M. Tudruj. Usage of global states-based application

control. In Parallel and Distributed Computing, 2006. ISPDC’06. The Fifth International

Symposium on, pages 309–316. IEEE, 2006.

[38] J.-L. Boulanger. Formal methods: industrial use from model to the code. John Wiley &

Sons, 2013.

[39] S. R. Bourne. The UNIX system, volume 247. Addison-Wesley Reading, Massachusetts,

1983.

[40] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner. Model-based testing of

reactive systems: advanced lectures, volume 3472. Springer, 2005.

[41] R. E. Bryant and J. H. Kukula. Formal methods for functional verification. In The best of

ICCAD, pages 3–15. Springer, 2003.

[42] A. Burns and A. J. Wellings. Real-time systems and programming languages, volume

2097. Addison-Wesley, 2010.

[43] C. Calcagno, M. Parkinson, and V. Vafeiadis. Modular safety checking for fine-grained

concurrency. In International Static Analysis Symposium, pages 233–248. Springer, 2007.

[44] S. Campos and O. Grumberg. Selective quantitative analysis and interval model checking:

Verifying different facets of a system. In Computer Aided Verification, pages 257–268.

Springer, 1996.

[45] A. Cau and P. Collette. Parallel composition of assumption-commitment specifications.

Acta Informatica, 33(2):153–176, 1996.

[46] A. Cau and B. Moszkowski. Using pvs for interval temporal logic proofs, part 1: The

syntactic and semantic encoding. Technical report, 2005.

189

BIBLIOGRAPHY

[47] A. Cau and H. Zedan. Refining interval temporal logic specifications. In Transformation-

Based Reactive Systems Development, pages 79–94. Springer, 1997.

[48] A. Cau and H. Zedan. The systematic construction of information systems. In Systems

Engineering for Business Process Change, pages 264–278. Springer, 2000.

[49] A. Cau, H. Zedan, N. Coleman, and B. Moszkowski. Using itl and tempura for large-

scale specification and simulation. In 16th Euromicro Conference on Parallel, Distributed

and Network-Based Processing (PDP 2008), pages 0493–0493. IEEE Computer Society,

1996.

[50] A. Cau, C. Czarnecki, and H. Zedan. Designing a provably correct robt control system us-

ing a leanformal method. In Formal Techniques in Real-Time and Fault-Tolerant Systems,

pages 123–132. Springer, 1998.

[51] A. Cau, B. Moszkowski, and H. Zedan. Interval temporal logic. URL: http://www. cms.

dmu. ac. uk/˜ cau/itlhomepage/itlhomepage. html, 2006.

[52] A. Cau, B. Moszkowski, and H. Zedan. Interval temporal logic. URL: http://www. cms.

dmu. ac. uk/˜ cau/itlhomepage/itlhomepage. html, 2011.

[53] A. Cau, H. Janicke, and B. Moszkowski. Verification and enforcement of access control

policies. Formal Methods in System Design, 43(3):450–492, 2013.

[54] A. Cau, B. Moszkowski, and H. Zedan. The itl homepage. online.[Online]. Available:

http://www. antonio-cau. co. uk/ITL/index.html, 2015.

[55] L. M. Censier and P. Feautrier. A new solution to coherence problems in multicache

systems. IEEE Transactions on Computers, 100(12):1112–1118, 1978.

[56] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of software

components in c. IEEE Transactions on Software Engineering, 30(6):388–402, 2004.

190

BIBLIOGRAPHY

[57] F. Chen and G. Roşu. Mop: an efficient and generic runtime verification framework. In

Acm Sigplan Notices, volume 42, pages 569–588. ACM, 2007.

[58] T. Chiba, M. Yoo, and T. Yokoyama. A distributed real-time operating system with dis-

tributed shared memory for embedded control systems. In Dependable, Autonomic and

Secure Computing (DASC), 2013 IEEE 11th International Conference on, pages 248–255.

IEEE, 2013.

[59] C. M. Chow. Broadcasting with selective reduction: An alternative implementation and

new algorithrns. 1997.

[60] T. S. Chow. Testing software design modeled by finite-state machines. IEEE transactions

on software engineering, (3):178–187, 1978.

[61] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction

refinement for symbolic model checking. Journal of the ACM (JACM), 50(5):752–794,

2003.

[62] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using

branching time temporal logic. In Workshop on Logic of Programs, pages 52–71. Springer,

1981.

[63] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT press, 1999.

[64] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen, W. Schulte,

and S. Tobies. Vcc: A practical system for verifying concurrent c. In International

Conference on Theorem Proving in Higher Order Logics, pages 23–42. Springer, 2009.

[65] S. Colin and L. Mariani. Run-time verification. In Model-Based Testing of Reactive

Systems, chapter 18, pages 525–555. Springer, 2005.

191

BIBLIOGRAPHY

[66] C. Colombo, G. J. Pace, and G. Schneider. Larva—safer monitoring of real-time java

programs (tool paper). In 2009 Seventh IEEE International Conference on Software En-

gineering and Formal Methods, pages 33–37. IEEE, 2009.

[67] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian,

and T. Von Eicken. Logp: Towards a realistic model of parallel computation. In ACM

Sigplan Notices, volume 28, pages 1–12. ACM, 1993.

[68] L. Dalessandro, D. Dice, M. Scott, N. Shavit, and M. Spear. Transactional mutex locks.

In Euro-Par 2010-Parallel Processing, pages 2–13. Springer, 2010.

[69] B. d’Angelo, S. Sankaranarayanan, C. Sánchez, W. Robinson, B. Finkbeiner, H. B. Sipma,

S. Mehrotra, and Z. Manna. Lola: Runtime monitoring of synchronous systems. In 12th

International Symposium on Temporal Representation and Reasoning (TIME’05), pages

166–174. IEEE, 2005.

[70] D. Dangi, S. Bhandari, and A. Bhagat. Analysis of shared memory in distributed and

non distributed environment. In Eco-friendly Computing and Communication Systems

(ICECCS), 2016 Fifth International Conference on, pages 114–118. IEEE, 2016.

[71] A. Dasdan and R. K. Gupta. Timing issues in system-level design. In VLSI’98. System

Level Design. Proceedings. IEEE Computer Society Workshop on, pages 124–129. IEEE,

1998.

[72] W.-P. de Roever. The need for compositional proof systems: A survey. In Compositional-

ity: the significant difference, pages 1–22. Springer, 1998.

[73] S. Demri and M. Deters. Two-variable separation logic and its inner circle. ACM Trans-

actions on Computational Logic (TOCL), 16(2):15, 2015.

192

BIBLIOGRAPHY

[74] J. Derrick, G. Schellhorn, and H. Wehrheim. Proving linearizability via non-atomic re-

finement. In International Conference on Integrated Formal Methods, pages 195–214.

Springer, 2007.

[75] S. Dey and M. S. Nair. Design and implementation of a simple cache simulator in java

to investigate mesi and moesi coherency protocols. International Journal of Computer

Applications, 87(11), 2014.

[76] A. B. Downey. The little book of semaphores. 2016.

[77] D. Drusinsky. The temporal rover and the atg rover. In SPIN Model Checking and Software

Verification, pages 323–330. Springer, 2000.

[78] Z. Duan. An extended interval temporal logic and a framing technique for temporal logic

programming. 1996.

[79] N. Dunstan. Semaphores for fair scheduling monitor conditions. ACM SIGOPS Operating

Systems Review, 25(3):27–31, 1991.

[80] A. El-kustaban, B. Moszkowski, and A. Cau. Formalising of transactional memory us-

ing interval temporal logic (itl). In Engineering and Technology (S-CET), 2012 Spring

Congress on, pages 1–6. IEEE, 2012.

[81] A. El-kustaban, B. Moszkowski, and A. Cau. Specification analysis of transactional mem-

ory using itl and anatempura. In Proceedings of International MultiConference of Engi-

neers and Computer Scientists, volume 2012, 2012.

[82] A. M. A. El-kustaban. Studying and analysing transactional memory using interval tem-

poral logic and anatempura. 2012.

[83] E. A. Emerson. Temporal and modal logic. In Formal Models and Semantics, pages

995–1072. Elsevier, 1990.

193

BIBLIOGRAPHY

[84] E. A. Emerson and J. Y. Halpern. sometimes and not never revisited: on branching versus

linear time temporal logic. Journal of the ACM (JACM), 33(1):151–178, 1986.

[85] D. Engler and K. Ashcraft. Racerx: effective, static detection of race conditions and dead-

locks. In ACM SIGOPS Operating Systems Review, volume 37, pages 237–252. ACM,

2003.

[86] J. L. Fiadeiro and T. Maibaum. Sometimes tomorrow is sometime. In Temporal Logic,

pages 48–66. Springer, 1994.

[87] C. J. Fidge. Partial orders for parallel debugging. ACM Sigplan Notices, 24(1):183–194,

1989.

[88] M. Fisher. An introduction to executable temporal logics. The Knowledge Engineering

Review, 11(01):43–56, 1996.

[89] M. Fisher. An introduction to practical formal methods using temporal logic. John Wiley

& Sons, 2011.

[90] M. Fisher and R. Owens. Executable Modal and Temporal Logics: IJCAI’93 Workshop,

Chambery, France, August 28, 1993: Proceedings. Springer, 1995.

[91] C. Flanagan and S. N. Freund. Type-based race detection for java. In ACM SIGPLAN

Notices, volume 35, pages 219–232. ACM, 2000.

[92] C. Flanagan, S. N. Freund, M. Lifshin, and S. Qadeer. Types for atomicity: Static check-

ing and inference for java. ACM Transactions on Programming Languages and Systems

(TOPLAS), 30(4):20, 2008.

[93] R. W. Floyd. Assigning meanings to programs. Mathematical aspects of computer science,

19(19-32):1, 1967.

194

BIBLIOGRAPHY

[94] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceedings of the

tenth annual ACM symposium on Theory of computing, pages 114–118. ACM, 1978.

[95] N. Francez and A. Pnueli. A proof method for cyclic programs. Acta Informatica, 9(2):

133–157, 1978.

[96] M. D. Fraser, K. Kumar, and V. K. Vaishnavi. Informal and formal requirements specifi-

cation languages: bridging the gap. Software Engineering, IEEE Transactions on, 17(5):

454–466, 1991.

[97] M. Fu, Y. Li, X. Feng, Z. Shao, and Y. Zhang. Reasoning about optimistic concurrency

using a program logic for history. In International Conference on Concurrency Theory,

pages 388–402. Springer, 2010.

[98] M. Fujita, S. Kono, H. Tanaka, and T. Moto-Oka. Tokio: Logic programming language

based on temporal logic and its compilation to prolog. In Third International Conference

on Logic Programming, pages 695–709. Springer, 1986.

[99] C. A. Furia. A compositional world a survey of recent works on compositionality in formal

methods. 2005.

[100] D. Gabbay. Modal and temporal logic programming. In Temporal logics and their appli-

cations, pages 197–237. Academic Press Professional, Inc., 1987.

[101] F. Gao, W. Luo, and C. Li. Overview of io queuing algorithm in distributed memory.

DEStech Transactions on Computer Science and Engineering, (iccae), 2016.

[102] H. J. Genrich and K. Lautenbach. System modelling with high-level petri nets. Theoretical

computer science, 13(1):109–135, 1981.

195

BIBLIOGRAPHY

[103] D. Giannakopoulou and K. Havelund. Automata-based verification of temporal properties

on running programs. In Automated Software Engineering, 2001.(ASE 2001). Proceed-

ings. 16th Annual International Conference on, pages 412–416. IEEE, 2001.

[104] R. Goldblatt. Logics of time and computation. 1987.

[105] A. Gotsman, B. Cook, M. Parkinson, and V. Vafeiadis. Proving that non-blocking algo-

rithms don’t block. In ACM SIGPLAN Notices, volume 44, pages 16–28. ACM, 2009.

[106] J. E. Gottschlich, G. A. Pokam, C. L. Pereira, and Y. Wu. Concurrent predicates: A debug-

ging technique for every parallel programmer. In Proceedings of the 22nd international

conference on Parallel architectures and compilation techniques, pages 331–340. IEEE

Press, 2013.

[107] R. Hale. Temporal logic programming. In Temporal Logics and their applications, pages

91–119. Academic Press Professional, Inc., 1987.

[108] R. Hale and B. Moszkowski. Parallel programming in temporal logic. In PARLE Parallel

Architectures and Languages Europe, pages 277–296. Springer, 1987.

[109] R. W. S. Hale. Programming in temporal logic. PhD thesis, University of Cambridge,

1988.

[110] J. Y. Halpern and Y. Shoham. A propositional modal logic of time intervals. Journal of

the ACM (JACM), 38(4):935–962, 1991.

[111] D. Harel. Statecharts: A visual formalism for complex systems. Science of computer

programming, 8(3):231–274, 1987.

[112] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid sys-

tems. In Computer aided verification, pages 460–463. Springer, 1997.

196

BIBLIOGRAPHY

[113] T. A. Henzinger, R. Jhala, and R. Majumdar. Race checking by context inference. ACM

SIGPLAN Notices, 39(6):1–13, 2004.

[114] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent

objects. ACM Transactions on Programming Languages and Systems (TOPLAS), 12(3):

463–492, 1990.

[115] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era. Computer, 41(7), 2008.

[116] M. G. Hinchey and R. Sterritt. Self-managing software. Computer, 39(2):107–109, 2006.

[117] C. Hoare. Proof of a structured program:the sieve of eratosthenes. The Computer Journal,

15(4):321–325, 1972.

[118] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the

ACM, 12(10):576–580, 1969.

[119] C. A. R. Hoare. Chapter II: Notes on data structuring. Academic Press Ltd., 1972.

[120] C. A. R. Hoare. Monitors: An operating system structuring concept. In The origin of

concurrent programming, pages 272–294. Springer, 1974.

[121] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM, 21

(8):666–677, 1978.

[122] M. Huth and M. Ryan. Logic in Computer Science: Modelling and reasoning about

systems. Cambridge university press, 2004.

[123] H. Hwang and H.-J. Suh. A new cache contention management scheme for multicore

systems. 2015.

[124] B. Jacobs and F. Piessens. The verifast program verifier. 2008.

197

BIBLIOGRAPHY

[125] B. Jacobs, F. Piessens, J. Smans, K. R. M. Leino, and W. Schulte. A programming model

for concurrent object-oriented programs. ACM Transactions on Programming Languages

and Systems (TOPLAS), 31(1):1, 2008.

[126] F. Jahanian and A. Goyal. A formalism for monitoring real-time constraints at run-time.

In Fault-Tolerant Computing, 1990. FTCS-20. Digest of Papers., 20th International Sym-

posium, pages 148–155. IEEE, 1990.

[127] F. Jahanian and A. K. Mok. Safety analysis of timing properties in real-time systems.

Software Engineering, IEEE Transactions on, (9):890–904, 1986.

[128] J. JáJá. An Introduction to Parallel Algorithms. Addison Wesley Longman Publishing

Co., Inc., Redwood City, CA, USA, 1992. ISBN 0-201-54856-9.

[129] H. Janicke, F. Siewe, K. Jones, A. Cau, and H. Zedan. Analysis and run-time verification

of dynamic security policies. In Defence Applications of Multi-Agent Systems, pages 92–

103. Springer, 2006.

[130] H. Janicke, A. Cau, F. Siewe, and H. Zedan. Dynamic access control policies: Specifica-

tion and verification. The Computer Journal, page bxs102, 2012.

[131] H. Janicke, A. Nicholson, S. Webber, and A. Cau. Runtime-monitoring for industrial

control systems. Electronics, 4(4):995–1017, 2015.

[132] C. B. Jones. Development methods for computer programs including a notion of interfer-

ence. Oxford University Computing Laboratory, 1981.

[133] C. B. Jones. Specification and design of (parallel) programs. In IFIP congress, volume 83,

pages 321–332, 1983.

[134] C. B. Jones. Tentative steps toward a development method for interfering programs. ACM

Transactions on Programming Languages and Systems (TOPLAS), 5(4):596–619, 1983.

198

BIBLIOGRAPHY

[135] B. W. Kernighan and R. Pike. The Unix programming environment, volume 270. Prentice-

Hall Englewood Cliffs, NJ, 1984.

[136] C. Kessler and J. Keller. Models for parallel computing: Review and perspectives. PARS

Mitteilungen, 24(0177-0454):13–29, 2007.

[137] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky. Java-mac: A run-time

assurance approach for java programs. Formal methods in system design, 24(2):129–155,

2004.

[138] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,

M. Schwarz, and Y. Yarom. Spectre attacks: Exploiting speculative execution. ArXiv

e-prints, Jan. 2018.

[139] S. Konur. A survey on temporal logics for specifying and verifying real-time systems.

Frontiers of Computer Science, 7(3):370–403, 2013.

[140] G. Kotonya and I. Sommerville. Requirements engineering: processes and techniques.

Wiley Publishing, 1998.

[141] J. Kovacs, G. Kusper, R. Lovas, and W. Schreiner. Integrating temporal assertions into

a parallel debugger. In European Conference on Parallel Processing, pages 113–120.

Springer, 2002.

[142] D. J. Kuck. Parallel computing. In Encyclopedia of Parallel Computing, pages 1409–

1416. Springer, 2011.

[143] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to parallel computing:

design and analysis of algorithms. Benjamin/Cummings Publishing Company Redwood

City, CA, 1994.

[144] P. Ladkin. Logical time pieces. AI Expert, 2(8):58–68, 1987.

199

BIBLIOGRAPHY

[145] F. Laroussinie and P. Schnoebelen. A hierarchy of temporal logics with past. Theoretical

Computer Science, 148(2):303–324, 1995.

[146] J. Larus and C. Kozyrakis. Is tm the answer for improving parallel programming? Com-

munication of the ACM, 51(7):80–88, 2008.

[147] J. Lee, Y. Jun, and E. Seo. An enhanced dsm model for computation offloading. In Per-

vasive Computing and Communications (PerCom), 2017 IEEE International Conference

on, pages 69–78. IEEE, 2017.

[148] K. R. M. Leino, P. Müller, and J. Smans. Verification of concurrent programs with chalice.

In Foundations of Security Analysis and Design V, pages 195–222. Springer, 2009.

[149] C. Lengauer. Owicki-gries method of axiomatic verification. In Encyclopedia of Parallel

Computing, pages 1401–1406. Springer, 2011.

[150] M. Leucker. Teaching runtime verification. In International Conference on Runtime Veri-

fication, pages 34–48. Springer, 2011.

[151] M. Leucker and C. Schallhart. A brief account of runtime verification. The Journal of

Logic and Algebraic Programming, 78(5):293–303, 2009.

[152] K. Li and P. Hudak. Memory coherence in shared virtual memory systems. ACM Trans-

actions on Computer Systems (TOCS), 7(4):321–359, 1989.

[153] X. Li, A. Cau, B. Moszkowski, N. Coleman, and H. Zedan. Proving the correctness

of the interlock mechanism in processor design. In Advances in Hardware Design and

Verification, pages 5–22. Springer, 1997.

[154] Z. Li-yan, M. Long-hua, and Q. Ji-xin. Building hybrid real-time model in water industry

systems. In TENCON’02. Proceedings. 2002 IEEE Region 10 Conference on Computers,

200

BIBLIOGRAPHY

Communications, Control and Power Engineering, volume 3, pages 1439–1442. IEEE,

2002.

[155] D. Libes. Exploring Expect: a Tcl-based toolkit for automating interactive programs. ”

O’Reilly Media, Inc.”, 1995.

[156] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher, D. Genkin,

Y. Yarom, and M. Hamburg. Meltdown. ArXiv e-prints, Jan. 2018.

[157] R. J. Lipton. Reduction: A method of proving properties of parallel programs. Communi-

cations of the ACM, 18(12):717–721, 1975.

[158] X. Liu, Z. Chen, H. Yang, H. Zedan, and W. C. Chu. A design framework for system re-

engineering. In Software Engineering Conference, 1997. Asia Pacific... and International

Computer Science Conference 1997. APSEC’97 and ICSC’97. Proceedings, pages 342–

352. IEEE, 1997.

[159] L. Logrippo, T. Melanchuk, and R. J. Du Wors. The algebraic specification language lotos:

An industrial experience. In ACM SIGSOFT Software Engineering Notes, volume 15,

pages 59–66. ACM, 1990.

[160] J. Magee and J. Kramer. State models and java programs. wiley, 1999.

[161] A. Mahdi, B. Westphal, and M. Fränzle. Transformations for Compositional Verification of

Assumption-Commitment Properties, pages 216–229. Springer International Publishing,

Cham, 2014. ISBN 978-3-319-11439-2. doi: 10.1007/978-3-319-11439-2 17. URL

http://dx.doi.org/10.1007/978-3-319-11439-2_17.

[162] I. Marshall. Specification and synthesis in interval temporal logic. In Structured Methods

for Hardware Systems Design, IEE Colloquium on, pages 4–1. IET, 1994.

[163] M. R. Marty. Cache coherence techniques for multicore processors. ProQuest, 2008.

201

http://dx.doi.org/10.1007/978-3-319-11439-2_17

BIBLIOGRAPHY

[164] MathWorks. Matlab - mathworks. online.[Online]. Available: mathworks.com, 2019.

[165] T. MathWorks. Company overview. online.[Online]. Available:

https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/c/company-

fact-sheet-8282v18.pdf, April 2018.

[166] J. Mattai and M. Joseph. Real-Time Systems: specification, verification, and analysis.

Prentice Hall PTR, 1995.

[167] F. Mattern et al. Virtual time and global states of distributed systems. Parallel and Dis-

tributed Algorithms, 1(23):215–226, 1989.

[168] J. A. McDermid and L. Barroca. Formal methods: Use and relevance for the development

of safety critical systems. Safety Aspects of Computer Control. Butterworth-Heinemann,

Oxford, UK, 9(6):1024–1032, 1993.

[169] P. Melliar-Smith. Extending interval logic to real time systems. In Temporal Logic in

Specification, pages 224–242. Springer, 1989.

[170] R. Milner, R. Milner, R. Milner, and R. Milner. A calculus of communicating systems,

volume 92. springer-Verlag Berlin, 1980.

[171] J. Misra and K. M. Chandy. Proofs of networks of processes. Software Engineering, IEEE

Transactions on, (4):417–426, 1981.

[172] S. Mittal et al. Memory map: a multiprocessor cache simulator. Journal of Electrical and

Computer Engineering, 2012, 2012.

[173] S. Mohalik and R. Ramanujam. Assumption-commitment in automata. In International

Conference on Foundations of Software Technology and Theoretical Computer Science,

pages 153–168. Springer, 1997.

202

BIBLIOGRAPHY

[174] S. Mohalik and R. Ramanujam. A presentation of regular languages in the assumption-

commitment framework. In Application of Concurrency to System Design, 1998. Pro-

ceedings., 1998 International Conference on, pages 250–260. IEEE, 1998.

[175] S. Mohalik and R. Ramanujam. Distributed automata in an assumption-commitment

framework. Sadhana, 27(2):209–250, 2002.

[176] A. K. Mok. Sartor-a design environment for real-time systems. In Proc. 9th IEEE COMP-

SAC, pages 174–181, 1985.

[177] M. Montali. Run-time verification. In Specification and Verification of Declarative Open

Interaction Models, pages 289–304. Springer, 2010.

[178] A. Montanari. Interval temporal logics model checking. In 2016 23rd International Sym-

posium on Temporal Representation and Reasoning (TIME), pages 2–2, Oct 2016. doi:

10.1109/TIME.2016.32.

[179] S. A. Moody, S. Kwok, and D. Karr. Simplegraphics: Tcl/tk visualization of real-time

multi-threaded and distributed applications. In ACM SIGAda Ada Letters, volume 19,

pages 60–66. ACM, 1999.

[180] B. Moszkowski. A temporal analysis of some concurrent systems. In The Analysis of

Concurrent Systems, pages 359–364. Springer, 1985.

[181] B. Moszkowski. A temporal logic for multilevel reasoning about hardware. Computer, 18

(2):10–19, 1985.

[182] B. Moszkowski. Executing temporal logic programs. 1986.

[183] B. Moszkowski. Compositional reasoning about projected and infinite time. In Engineer-

ing of Complex Computer Systems, 1995. Held jointly with 5th CSESAW, 3rd IEEE RTAW

203

BIBLIOGRAPHY

and 20th IFAC/IFIP WRTP, Proceedings., First IEEE International Conference on, pages

238–245. IEEE, 1995.

[184] B. Moszkowski. Using temporal fixpoints to compositionally reason about liveness. In

BCS-FACS 7th Refinement Workshop, electronic Workshops in Computing, London, pages

1996–4, 1996.

[185] B. Moszkowski. A hierarchical analysis of propositional temporal logic based on intervals.

arXiv preprint cs/0601008, 2006.

[186] B. Moszkowski. Using temporal logic to analyse temporal logic: A hierarchical approach

based on intervals. Journal of Logic and Computation, 17(2):333–409, 2007.

[187] B. Moszkowski. Compositional reasoning using intervals and time reversal. In Tempo-

ral Representation and Reasoning (TIME), 2011 Eighteenth International Symposium on,

pages 107–114. IEEE, 2011.

[188] B. Moszkowski. A complete axiom system for propositional interval temporal logic with

infinite time. arXiv preprint arXiv:1207.3816, 2012.

[189] B. Moszkowski. Interconnections between classes of sequentially compositional temporal

formulas. Information Processing Letters, 113(9):350–353, 2013.

[190] B. Moszkowski. Compositional reasoning using intervals and time reversal. Annals of

Mathematics and Artificial Intelligence, 71(1-3):175–250, 2014.

[191] B. Moszkowski and D. P. Guelev. An application of temporal projection to interleaving

concurrency. In International Symposium on Dependable Software Engineering: Theo-

ries, Tools, and Applications, pages 153–167. Springer, 2015.

[192] B. Moszkowski and Z. Manna. Reasoning in interval temporal logic. Springer, 1984.

204

BIBLIOGRAPHY

[193] B. C. Moszkowski. Reasoning about digital circuits. Technical report, DTIC Document,

1983.

[194] B. C. Moszkowski. Some very compositional temporal properties. In Proceedings of

the IFIP TC2/WG2.1/WG2.2/WG2.3 Working Conference on Programming Concepts,

Methods and Calculi, PROCOMET ’94, pages 307–326, Amsterdam, The Netherlands,

The Netherlands, 1994. North-Holland Publishing Co. ISBN 0-444-82020-5. URL

http://dl.acm.org/citation.cfm?id=647320.721175.

[195] B. C. Moszkowski. Compositional reasoning using interval temporal logic and tempura.

In Compositionality: The Significant Difference, pages 439–464. Springer, 1998.

[196] B. C. Moszkowski. An automata-theoretic completeness proof for interval temporal logic.

In International Colloquium on Automata, Languages, and Programming, pages 223–234.

Springer, 2000.

[197] B. C. Moszkowski. A complete axiomatization of interval temporal logic with infinite

time. In Logic in Computer Science, 2000. Proceedings. 15th Annual IEEE Symposium

on, pages 241–252. IEEE, 2000.

[198] B. C. Moszkowski, D. P. Guelev, and M. Leucker. Guest editors’ preface to special issue

on interval temporal logics. Ann. Math. Artif. Intell., 71(1-3):1–9, 2014.

[199] P. Müller. Formal methods–based tools for race, deadlock, and other errors. In Encyclo-

pedia of Parallel Computing, pages 704–710. Springer, 2011.

[200] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77

(4):541–580, 1989.

[201] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu. Finding and

205

http://dl.acm.org/citation.cfm?id=647320.721175

BIBLIOGRAPHY

reproducing heisenbugs in concurrent programs. In OSDI, volume 8, pages 267–280,

2008.

[202] G. J. Myers, T. Badgett, T. M. Thomas, and C. Sandler. The art of software testing, 2004.

[203] F. Nafz, H. Seebach, J.-P. Steghöfer, S. Bäumler, and W. Reif. A formal framework for

compositional verification of organic computing systems. In International Conference on

Autonomic and Trusted Computing, pages 17–31. Springer, 2010.

[204] M. Naik, A. Aiken, and J. Whaley. Effective static race detection for Java, volume 41.

ACM, 2006.

[205] C. A. Navarro, N. Hitschfeld-Kahler, and L. Mateu. A survey on parallel computing and

its applications in data-parallel problems using gpu architectures. Communications in

Computational Physics, 15(2):285–329, 2014.

[206] P. W. O’Hearn, N. Rinetzky, M. T. Vechev, E. Yahav, and G. Yorsh. Verifying lineariz-

ability with hindsight. In Proceedings of the 29th ACM SIGACT-SIGOPS symposium on

Principles of distributed computing, pages 85–94. ACM, 2010.

[207] M. A. Orgun. Temporal and modal logic programming: an annotated bibliography. ACM

SIGART Bulletin, 5(3):52–59, 1994.

[208] M. A. Orgun and W. Ma. An overview of temporal and modal logic programming. In

Temporal logic, pages 445–479. Springer, 1994.

[209] M. A. Orgun and W. W. Wadge. Theory and practice of temporal logic programming.

University of Victoria, Department of Computer Science, 1990.

[210] J. L. Ortega-Arjona. Patterns for parallel software design, volume 21. John Wiley &

Sons, 2010.

206

BIBLIOGRAPHY

[211] D. Padua. Encyclopedia of parallel computing. Springer Science & Business Media,

2011.

[212] C.-S. Park and K. Sen. Concurrent breakpoints. In ACM SIGPLAN Notices, volume 47,

pages 331–332. ACM, 2012.

[213] D. A. Patterson and J. L. Hennessy. Computer organization and design: the hardware/-

software interface. Newnes, 2013.

[214] A. Pnueli. The temporal logic of programs. In Foundations of Computer Science, 1977.,

18th Annual Symposium on, pages 46–57. IEEE, 1977.

[215] A. Pnueli. In transition from global to modular temporal reasoning about programs.

Springer, 1985.

[216] A. Pnueli and A. Zaks. Psl model checking and run-time verification via testers. FM 2006:

Formal Methods, pages 573–586, 2006.

[217] A. Pretschner and M. Leucker. Model-based testing–a glossary. In Model-based testing

of reactive systems, pages 607–609. Springer, 2005.

[218] X. Qiwen and H. Jifeng. A theory of state-based parallel programming: Part 1. In 4th

Refinement Workshop, pages 326–359. Springer, 1991.

[219] A. C. Rao, A. Cau, and H. Zedan. Visualization of interval temporal logic. In Proc. 5th

Joint Conference on Information Sciences, pages 687–690, 2000.

[220] D. Ravishanicar and J. R. Goodman. Cache implementation for multiple microprocessors.

1983.

[221] R. Razouk and M. Gorlick. Real-time interval logic for reasoning about executions of

real-time programs. In ACM SIGSOFT Software Engineering Notes, volume 14, pages

10–19. ACM, 1989.

207

BIBLIOGRAPHY

[222] T. Reinbacher, J. Geist, P. Moosbrugger, M. Horauer, and A. Steininger. Parallel runtime

verification of temporal properties for embedded software. In Mechatronics and Embed-

ded Systems and Applications (MESA), 2012 IEEE/ASME International Conference on,

pages 224–231. IEEE, 2012.

[223] W. Reisig. Petri nets: an introduction, volume 4 of eatcs monographs on theoretical

computer science, 1985.

[224] N. Rescher and A. Urquhart. Temporal logic, volume 220. Springer-Verlag New York,

1971.

[225] W. P. D. Roever, Jr., and W. P. D. Roever. The quest for compositionality, 1985.

[226] H. Roger. Using temporal logic for prototyping: the design of a lift controller. University

of Cambridge. England, 1991.

[227] B. Roscoe. The theory and practice of concurrency. 1998.

[228] C. J. Rossbach, O. S. Hofmann, and E. Witchel. Is transactional programming actually

easier? ACM Sigplan Notices, 45(5):47–56, 2010.

[229] S. Sankar, D. Rosenblum, and R. Neff. An implementation of anna. In ACM SIGAda Ada

Letters, number 2, pages 285–296. Cambridge University Press, 1985.

[230] R. Savolainen, S. Sierla, T. Karhela, T. Miettinen, and V. Vyatkin. A framework for

runtime verification of industrial process control systems. In 2017 IEEE 15th International

Conference on Industrial Informatics (INDIN), pages 687–694, July 2017. doi: 10.1109/

INDIN.2017.8104856.

[231] G. Schellhorn and S. Baumler. Formal verification of lock-free algorithms. In Application

of Concurrency to System Design, 2009. ACSD’09. Ninth International Conference on,

pages 13–18. IEEE, 2009.

208

BIBLIOGRAPHY

[232] G. Schellhorn, B. Tofan, G. Ernst, and W. Reif. Interleaved programs and rely-guarantee

reasoning with itl. In Temporal Representation and Reasoning (TIME), 2011 Eighteenth

International Symposium on, pages 99–106. IEEE, 2011.

[233] G. Schellhorn, B. Tofan, G. Ernst, J. Pfähler, and W. Reif. Rgitl: A temporal logic frame-

work for compositional reasoning about interleaved programs. Annals of Mathematics

and Artificial Intelligence, 71(1-3):131–174, 2014.

[234] H. Schildt. Java: the complete reference. McGraw-Hill Education Group, 2014.

[235] P. Schnoebelen. The complexity of temporal logic model checking. Advances in modal

logic, 4(393-436):35, 2002.

[236] D. Scholefield, H. Zedan, and H. Jifeng. A specification-oriented semantics for the refine-

ment of real-time systems. Theoretical Computer Science, 131(1):219–241, 1994.

[237] R. L. Schwartz and P. M. Melliar-Smith. From state machines to temporal logic: Spec-

ification methods for protocol standards. In The Analysis of Concurrent Systems, pages

55–65. Springer, 1985.

[238] R. L. Schwartz, P. M. Melliar-Smith, and F. H. Vogt. An interval logic for higher-level

temporal reasoning. In Proceedings of the second annual ACM symposium on Principles

of distributed computing, pages 173–186. ACM, 1983.

[239] D. Schwartz-Narbonne. Assertions for debugging parallel programs. PhD thesis, Prince-

ton University, 2013.

[240] D. Schwartz-Narbonne, F. Liu, D. August, and S. Malik. Parallel assertions for debugging

parallel programs. In Formal Methods and Models for Codesign (MEMOCODE), 2011

9th IEEE/ACM International Conference on, pages 181–190. IEEE, 2011.

209

BIBLIOGRAPHY

[241] D. Schwartz-Narbonne, F. Liu, D. August, and S. Malik. Passert: a tool for debugging

parallel programs. In International Conference on Computer Aided Verification, pages

751–757. Springer, 2012.

[242] D. Schwartz-Narbonne, G. Weissenbacher, and S. Malik. Parallel assertions for architec-

tures with weak memory models. In International Symposium on Automated Technology

for Verification and Analysis, pages 254–268. Springer, 2012.

[243] K. Sen, G. Rosu, and G. Agha. Runtime safety analysis of multithreaded programs. In

ACM SIGSOFT Software Engineering Notes, volume 28, pages 337–346. ACM, 2003.

[244] D. S. Serra. A proof system for lock-free concurrency. PhD thesis, Faculdade de Ciências

e Tecnologia, 2012.

[245] J. H. Siddiqui, M. F. Iqbal, and D. Chiou. Parallel assertion processing using memory

snapshots. In Workshop on Unique Chips and Systems, 2009.

[246] S. F. Siegel. Model checking nonblocking mpi programs. In International Workshop on

Verification, Model Checking, and Abstract Interpretation, pages 44–58. Springer, 2007.

[247] F. Siewe. A compositional framework for the development of secure access control sys-

tems. De Montfort University, 2005.

[248] F. Siewe, A. Cau, and H. Zedan. A compositional framework for access control policies

enforcement. In Proceedings of the 2003 ACM workshop on Formal methods in security

engineering, pages 32–42. ACM, 2003.

[249] A. J. Smith. Cache memories. ACM Computing Surveys (CSUR), 14(3):473–530, 1982.

[250] M. Solanki. Tesco-s: A framework for defining temporal semantics in owl enabled ser-

vices. In W3C Workshop on Frameworks for Semantics in Web Services, 2005.

210

BIBLIOGRAPHY

[251] M. Solanki, A. Cau, and H. Zedan. Augmenting semantic web service descriptions with

compositional specification. In Proceedings of the 13th international conference on World

Wide Web, pages 544–552. ACM, 2004.

[252] M. Solanki, A. Cau, and H. Zedan. Introducing compositionality in web service descrip-

tions. In Distributed Computing Systems, 2004. FTDCS 2004. Proceedings. 10th IEEE

International Workshop on Future Trends of, pages 14–20. IEEE, 2004.

[253] J. M. Spivey. Understanding Z: a specification language and its formal semantics. Num-

ber 3. Cambridge University Press, 1988.

[254] W. Stallings. Computer organization and architecture: designing for performance. Pear-

son Education India, 2000.

[255] W. Stallings. Operating Systems: Internals and Design Principles— Edition: 8. Pearson,

2014.

[256] P. Stenstrom. A survey of cache coherence schemes for multiprocessors. Computer, 23

(6):12–24, 1990.

[257] N. Sterling. Warlock-a static data race analysis tool. In USENIx Winter, pages 97–106,

1993.

[258] C. Stirling. A generalization of owicki-gries’s hoare logic for a concurrent while language.

Theoretical Computer Science, 58(1):347–359, 1988.

[259] K. Stølen. Development of parallel programs on shared data-structures. University of

Manchester, Department of Computer Science, 1990.

[260] K. Stølen. An attempt to reason about shared-state concurrency in the style of vdm. In

VDM’91 Formal Software Development Methods, pages 324–342. Springer, 1991.

211

BIBLIOGRAPHY

[261] K. Stølen. A method for the development of totally correct shared-state parallel programs.

In CONCUR’91, pages 510–525. Springer, 1991.

[262] K. Stølen. Assumption/commitment rules for dataflow networkswith an emphasis on com-

pleteness. In European Symposium on Programming, pages 356–372. Springer, 1996.

[263] V. Stolz and E. Bodden. Temporal assertions using aspectj. Electronic Notes in Theoretical

Computer Science, 144(4):109–124, 2006.

[264] T. Takaoka. A systematic approach to parallel program verification. 1995.

[265] D. Tam, R. Azimi, L. Soares, and M. Stumm. Managing shared l2 caches on multicore

systems in software. In Workshop on the Interaction between Operating Systems and

Computer Architecture, pages 26–33. Citeseer, 2007.

[266] C.-s. Tang. Toward a unified logical basis for programming languages. Technical report,

DTIC Document, 1981.

[267] R. B. Terwilliger. Please: a language combining imperative and logic programming. ACM

SIGPLAN Notices, 23(4):103–110, 1988.

[268] M. E. Thomadakis. The architecture of the nehalem processor and nehalem-ep smp plat-

forms. Resource, 3:2, 2011.

[269] B. Tofan. Compositional concurrent program verification with rgitl. 2014.

[270] B. Tofan, S. Bäumler, G. Schellhorn, and W. Reif. Verifying linearizability and lock-

freedom with temporal logic. Technical report, Technical report, Fakultät für Angewandte

Informatik der Universität Augsburg, 2009.

[271] B. Tofan, G. Schellhorn, and W. Reif. Formal verification of a lock-free stack with hazard

pointers. In International Colloquium on Theoretical Aspects of Computing, pages 239–

255. Springer, 2011.

212

BIBLIOGRAPHY

[272] B. Tofan, G. Schellhorn, and W. Reif. Local rely-guarantee conditions for linearizability

and lock-freedom. Reports in Informatics, 26, 2011.

[273] B. Tofan, G. Schellhorn, G. Ernst, J. Pfähler, and W. Reif. Automated verification of

critical systems (avocs 2013). Electronic Communications of the EASST, 66, 2013.

[274] M. Tudruj, J. Borkowski, L. Masko, A. Smyk, D. Kopanski, and E. Laskowski. Program

design environment for multicore processor systems with program execution controlled

by global states monitoring. In Parallel and Distributed Computing (ISPDC), 2011 10th

International Symposium on, pages 102–109. IEEE, 2011.

[275] P. Tvrdik. Pram models, Jan. 2016. URL http://pages.cs.wisc.edu/

˜tvrdik/2/html/Section2.html#content.

[276] R. Ulfsnes. Design of a snoop filter for snoop based cache coherency protocols. 2013.

[277] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,

33(8):103–111, 1990.

[278] W. M. van der Aalst, A. Hirnschall, and H. Verbeek. An alternative way to analyze work-

flow graphs. In International Conference on Advanced Information Systems Engineering,

pages 535–552. Springer, 2002.

[279] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program ver-

ification. In Proceedings of the First Symposium on Logic in Computer Science, pages

322–331. IEEE Computer Society, 1986.

[280] M. Vasilevskii. Failure diagnosis of automata. Cybernetics and Systems Analysis, 9(4):

653–665, 1973.

[281] Y. Venema. Temporal logic. Citeseer, 1998.

213

http://pages.cs.wisc.edu/~tvrdik/2/html/Section2.html#content
http://pages.cs.wisc.edu/~tvrdik/2/html/Section2.html#content

BIBLIOGRAPHY

[282] J. Villard, É. Lozes, and C. Calcagno. Tracking heaps that hop with heap-hop. In Interna-

tional Conference on Tools and Algorithms for the Construction and Analysis of Systems,

pages 275–279. Springer, 2010.

[283] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs. Auto-

mated Software Engineering, 10(2):203–232, 2003.

[284] A. Vo, S. Vakkalanka, M. DeLisi, G. Gopalakrishnan, R. M. Kirby, and R. Thakur. Formal

verification of practical mpi programs. ACM Sigplan Notices, 44(4):261–270, 2009.

[285] J. W. Voung, R. Jhala, and S. Lerner. Relay: static race detection on millions of lines of

code. In Proceedings of the the 6th joint meeting of the European software engineering

conference and the ACM SIGSOFT symposium on The foundations of software engineer-

ing, pages 205–214. ACM, 2007.

[286] W. W. Wadge. Tense logic programming: a respectable alternative. In Proc. of the 1988

International Symposium on Lucid and Intensional Programming, pages 26–32, 1988.

[287] F. Wagner, R. Schmuki, T. Wagner, and P. Wolstenholme. Modeling software with finite

state machines: a practical approach. CRC Press, 2006.

[288] B. B. Welch, K. Jones, and J. Hobbs. Practical programming in Tcl and Tk, volume 1.

Prentice Hall Professional, 2003.

[289] J. C. Woodcock and B. Dickinson. Using vdm with rely and guarantee-conditions. In

VDM’88 VDMThe Way Ahead, pages 434–458. Springer, 1988.

[290] J. C. Wyllie. The complexity of parallel computations. Technical report, Cornell Univer-

sity, 1979.

[291] Q. Xu. A theory of state-based parallel programming. PhD thesis, PhD thesis, Oxford

University, 1992.

214

BIBLIOGRAPHY

[292] Q. Xu and M. Swarup. Compositional reasoning using the assumption-commitment

paradigm. In Compositionality: The Significant Difference, pages 565–583. Springer,

1998.

[293] Q. Xu, A. Cau, and P. Collette. On Unifying AssumptionCommitment Style Proof Rules

for Concurrency. Springer, 1994.

[294] H. Yang and M. Ward. Successful evolution of software systems. Artech House, 2003.

[295] X. Yang and Z. Duan. Operational semantics of framed tempura. The Journal of Logic

and Algebraic Programming, 78(1):22–51, 2008.

[296] H. Zedan, A. Cau, and S. Zhou. A calculus for evolution. In Proc. of The Fifth Interna-

tional Conference on Computer Science and Informatics (CS&I2000), volume 2, 2000.

[297] H. Zedan, A. Cau, and B. Moszkowski. Compositional modelling: The formal perspective.

2005.

[298] K. Zhang and M. A. Orgun. Parallel execution of temporal logic programs using dataflow

computation. In Proceedings of ICCI, volume 94, pages 26–28. Citeseer, 1994.

[299] S. Zhou. Compositional framework for the guided evolution of time-critical systems.

2002.

[300] S. Zhou, H. Zedan, and A. Cau. A framework for analysing the effect of change’in legacy

code. In Software Maintenance, 1999.(ICSM’99) Proceedings. IEEE International Con-

ference on, pages 411–420. IEEE, 1999.

[301] S. Zhou, H. Zedan, and A. Cau. Run-time analysis of time-critical systems. Journal of

Systems Architecture, 51(5):331–345, 2005.

215

Appendix A

Appendix A: Simulations & Animation

216

APPENDIX A. APPENDIX A: SIMULATIONS & ANIMATION

Figure A.1: CACHE CONTROLLER EXECU-
TION

IN TEMPURA AT STATE 0

Figure A.2: CACHE CONTROLLER SIMULA-
TION

IN ANATEMPURA AT STATE 0

Figure A.3: LOCAL STATES & PROPERTIES OF PROCESSORS 0, 1, 2 AT STATE 0

217

APPENDIX A. APPENDIX A: SIMULATIONS & ANIMATION

Figure A.4: CACHE CONTROLLER EXECU-
TION

IN TEMPURA AT STATE 1

Figure A.5: CACHE CONTROLLER SIMULA-
TION

IN ANATEMPURA AT STATE 1

Figure A.6: LOCAL STATES & PROPERTIES OF PROCESSORS 0, 1, 2 AT STATE 1

218

APPENDIX A. APPENDIX A: SIMULATIONS & ANIMATION

Figure A.7: CACHE CONTROLLER EXECU-
TION

IN TEMPURA AT STATE 2

Figure A.8: CACHE CONTROLLER SIMULA-
TION

IN ANATEMPURA AT STATE 2

Figure A.9: LOCAL STATES & PROPERTIES OF PROCESSORS 0, 1, 2 AT STATE 2

219

APPENDIX A. APPENDIX A: SIMULATIONS & ANIMATION

Figure A.10: CACHE CONTROLLER EXECU-
TION

IN TEMPURA AT STATE 3

Figure A.11: CACHE CONTROLLER SIMULA-
TION

IN ANATEMPURA AT STATE 3

Figure A.12: LOCAL STATES & PROPERTIES OF PROCESSORS 0, 1, 2 AT STATE 3

220

APPENDIX A. APPENDIX A: SIMULATIONS & ANIMATION

Figure A.13: CACHE CONTROLLER EXECU-
TION

IN TEMPURA AT STATE 4

Figure A.14: CACHE CONTROLLER SIMULA-
TION

IN ANATEMPURA AT STATE 4

Figure A.15: LOCAL STATES & PROPERTIES OF PROCESSORS 0, 1, 2 AT STATE 4

221

APPENDIX A. APPENDIX A: SIMULATIONS & ANIMATION

Figure A.16: CACHE CONTROLLER EXECU-
TION

IN TEMPURA AT STATE 5

Figure A.17: CACHE CONTROLLER SIMULA-
TION

IN ANATEMPURA AT STATE 5

Figure A.18: LOCAL STATES & PROPERTIES OF PROCESSORS 0, 1, 2 AT STATE 5

222

APPENDIX A. APPENDIX A: SIMULATIONS & ANIMATION

Figure A.19: CACHE CONTROLLER EXECU-
TION

IN TEMPURA AT STATE 6

Figure A.20: CACHE CONTROLLER SIMULA-
TION

IN ANATEMPURA AT STATE 6

Figure A.21: LOCAL STATES & PROPERTIES OF PROCESSORS 0, 1, 2 AT STATE 6

223

APPENDIX A. APPENDIX A: SIMULATIONS & ANIMATION

Figure A.22: CACHE CONTROLLER EXECU-
TION

IN TEMPURA AT STATE 7

Figure A.23: CACHE CONTROLLER SIMULA-
TION

IN ANATEMPURA AT STATE 7

Figure A.24: LOCAL STATES & PROPERTIES OF PROCESSORS 0, 1, 2 AT STATE 7

224

APPENDIX A. APPENDIX A: SIMULATIONS & ANIMATION

Figure A.25: CACHE CONTROLLER EXECU-
TION

IN TEMPURA AT STATE 8

Figure A.26: CACHE CONTROLLER SIMULA-
TION

IN ANATEMPURA AT STATE 8

Figure A.27: LOCAL STATES & PROPERTIES OF PROCESSORS 0, 1, 2 AT STATE 8

225

APPENDIX A. APPENDIX A: SIMULATIONS & ANIMATION

Figure A.28: CACHE CONTROLLER EXECU-
TION

IN TEMPURA AT STATE 9

Figure A.29: CACHE CONTROLLER SIMULA-
TION

IN ANATEMPURA AT STATE 9

Figure A.30: LOCAL STATES & PROPERTIES OF PROCESSORS 0, 1, 2 AT STATE 9

226

Appendix B

Appendix B: Tempura Code for Cache Controller

227

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

Listing B.1: Tempura Code of Cache Controller

1 /* -*- Mode: C -*-

2 *

3 * L2_Cache_MSI_V1_5.t

4 *

5 * This file is part Tempura: Interval Temporal Logic interpreter.

6 *

7 * Copyright (C) 1998-2017 Nayef H. Alshammari, Antonio Cau

8 *

9 * Tempura is free software: you can redistribute it and/or modify

10 * it under the terms of the GNU General Public License as published by

11 * the Free Software Foundation, either version 3 of the License, or

12 * (at your option) any later version.

13 *

14 * Tempura is distributed in the hope that it will be useful,

15 * but WITHOUT ANY WARRANTY; without even the implied warranty of

16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

17 * GNU General Public License for more details.

18 *

19 * You should have received a copy of the GNU General Public License

20 * along with Tempura. If not, see <http://www.gnu.org/licenses/>.

21 *

22 */

23

24 define nprocessors = 3.

25 define nmemorylocations = 16.

26 define ncachelocations = 8.

27 define nlocations = 8. /* for Tag and Index */

28 define initial_value = -8.

29 define initial_value2 = -16.

30 define modified = 0.

31 define shared = 1.

32 define invalid = 2.

33

34

35

36 load "../library/conversion".

37 load "../library/exprog".

228

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

38 load "../library/tcl".

39

40 /* anatempura 0 */

41 /* anatempura 1 */

42 /* anatempura 2 */

43

44 /* tcl L2_Cache_MSI_v3 3*/

45

46

47

48 set print_states=true.

49 set break_is_abort=false.

50

51 define avar1(X,a) = {

52 X[a]

53 }.

54

55 define aval1(X,b) = {

56 X[b]

57 }.

58

59 define atime1(X,c) = {

60 strint(X[c])

61 }.

62

63 define atime_micro1(X,d) = {

64 strint(X[d])

65 }.

66

67 define prog_send2(A,X) = {

68 format("!E: prog%s %s\n",ctype(A),parstr([X]))

69 }.

70

71 define prog_send_ne1(A,X) = {

72 empty and format("!E: prog%s %s\n",ctype(A),parstr([X]))

73 }.

74

75 /* 2ˆ0 to 2ˆ127 */

76 define bits=[1,2,4,8,16,32,64,128,256,512,1024,2048,

229

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

77 4096,8192,16384,32768,65536,131072,262144,

78 524288,1048576,2097152,4194304,8388608,

79 16777216,33554432,67108864,134217728,

80 268435456,536870912,1073741824,2147483648].

81

82 define bit (Bitno, Number)= {((Number div bits[Bitno]) mod 2 = 1)}.

83

84

85

86 define inttobitslist_msb(X) = {

87 [bit(31,X),bit(30,X),bit(29,X),bit(28,X),

88 bit(27,X),bit(26,X),bit(25,X),bit(24,X),

89 bit(23,X),bit(22,X),bit(21,X),bit(20,X),

90 bit(19,X),bit(18,X),bit(17,X),bit(16,X),

91 bit(15,X),bit(14,X),bit(13,X),bit(12,X),

92 bit(11,X),bit(10,X),bit(9,X),bit(8,X),

93 bit(7,X),bit(6,X),bit(5,X),bit(4,X),

94 bit(3,X),bit(2,X),bit(1,X),bit(0,X)]

95 }.

96 define single_bit(X) = {

97 exists i: {

98 skip and for (i<32) do {

99 (if bit(i,X) then "1" else "0")

100 }

101 }

102 }.

103

104 define msb32_2(Y,X) = {

105 (if bit(Y,X) then "1" else "0")

106 }.

107

108 define msb_16_index(X) ={

109 (if bit(3,X) then "1" else "0") +

110 (if bit(2,X) then "1" else "0") +

111 (if bit(1,X) then "1" else "0") +

112 (if bit(0,X) then "1" else "0")

113 }.

114

115 define msb_8_index(X) = {

230

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

116 (if bit(2,X) then "1" else "0") +

117 (if bit(1,X) then "1" else "0") +

118 (if bit(0,X) then "1" else "0")

119 }.

120 define msb_14_index(X) = {

121 (if bit(13,X) then "1" else "0") +

122 (if bit(12,X) then "1" else "0") +

123 (if bit(11,X) then "1" else "0") +

124 (if bit(10,X) then "1" else "0") +

125 (if bit(9,X) then "1" else "0") +

126 (if bit(8,X) then "1" else "0") +

127 (if bit(7,X) then "1" else "0") +

128 (if bit(6,X) then "1" else "0") +

129 (if bit(5,X) then "1" else "0") +

130 (if bit(4,X) then "1" else "0") +

131 (if bit(3,X) then "1" else "0") +

132 (if bit(2,X) then "1" else "0") +

133 (if bit(1,X) then "1" else "0") +

134 (if bit(0,X) then "1" else "0")

135 }.

136 define msb_7bits_addr(X) = {

137 (if bit(6,X) then "1" else "0") +

138 (if bit(5,X) then "1" else "0") +

139 (if bit(4,X) then "1" else "0") +

140 (if bit(3,X) then "1" else "0") +

141 (if bit(2,X) then "1" else "0") +

142 (if bit(1,X) then "1" else "0") +

143 (if bit(0,X) then "1" else "0")

144 }.

145 define msb(X) = {

146 (if bit(31,X) then "1" else "0") +

147 (if bit(30,X) then "1" else "0") +

148 (if bit(29,X) then "1" else "0") +

149 (if bit(28,X) then "1" else "0") +

150 (if bit(27,X) then "1" else "0") +

151 (if bit(26,X) then "1" else "0") +

152 (if bit(25,X) then "1" else "0") +

153 (if bit(24,X) then "1" else "0") +

154 (if bit(23,X) then "1" else "0") +

231

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

155 (if bit(22,X) then "1" else "0") +

156 (if bit(21,X) then "1" else "0") +

157 (if bit(20,X) then "1" else "0") +

158 (if bit(19,X) then "1" else "0") +

159 (if bit(18,X) then "1" else "0") +

160 (if bit(17,X) then "1" else "0") +

161 (if bit(16,X) then "1" else "0") +

162 (if bit(15,X) then "1" else "0") +

163 (if bit(14,X) then "1" else "0") +

164 (if bit(13,X) then "1" else "0") +

165 (if bit(12,X) then "1" else "0") +

166 (if bit(11,X) then "1" else "0") +

167 (if bit(10,X) then "1" else "0") +

168 (if bit(9,X) then "1" else "0") +

169 (if bit(8,X) then "1" else "0") +

170 (if bit(7,X) then "1" else "0") +

171 (if bit(6,X) then "1" else "0") +

172 (if bit(5,X) then "1" else "0") +

173 (if bit(4,X) then "1" else "0") +

174 (if bit(3,X) then "1" else "0") +

175 (if bit(2,X) then "1" else "0") +

176 (if bit(1,X) then "1" else "0") +

177 (if bit(0,X) then "1" else "0")

178 }.

179

180 define tag_field_cache(X) = {

181 (if bit(31,X) then "1" else "0") +

182 (if bit(30,X) then "1" else "0") +

183 (if bit(29,X) then "1" else "0") +

184 (if bit(28,X) then "1" else "0") +

185 (if bit(27,X) then "1" else "0") +

186 (if bit(26,X) then "1" else "0") +

187 (if bit(25,X) then "1" else "0") +

188 (if bit(24,X) then "1" else "0") +

189 (if bit(23,X) then "1" else "0") +

190 (if bit(22,X) then "1" else "0") +

191 (if bit(21,X) then "1" else "0") +

192 (if bit(20,X) then "1" else "0") +

193 (if bit(19,X) then "1" else "0") +

232

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

194 (if bit(18,X) then "1" else "0") +

195 (if bit(17,X) then "1" else "0") +

196 (if bit(16,X) then "1" else "0") +

197 (if bit(15,X) then "1" else "0") +

198 (if bit(14,X) then "1" else "0") +

199 (if bit(13,X) then "1" else "0") +

200 (if bit(12,X) then "1" else "0") +

201 (if bit(11,X) then "1" else "0") +

202 (if bit(10,X) then "1" else "0") +

203 (if bit(9,X) then "1" else "0") +

204 (if bit(8,X) then "1" else "0") +

205 (if bit(7,X) then "1" else "0") +

206 (if bit(6,X) then "1" else "0") +

207 (if bit(5,X) then "1" else "0") +

208 (if bit(4,X) then "1" else "0") +

209 (if bit(3,X) then "1" else "0")

210 }.

211

212 define index_field_cache_8(X) = {

213 (if bit(2,X) then "1" else "0") +

214 (if bit(1,X) then "1" else "0") +

215 (if bit(0,X) then "1" else "0")

216 }.

217

218 define index_field_cache(X) = {

219 (if bit(9,X) then "1" else "0") +

220 (if bit(8,X) then "1" else "0") +

221 (if bit(7,X) then "1" else "0") +

222 (if bit(6,X) then "1" else "0") +

223 (if bit(5,X) then "1" else "0") +

224 (if bit(4,X) then "1" else "0") +

225 (if bit(3,X) then "1" else "0") +

226 (if bit(2,X) then "1" else "0") +

227 (if bit(1,X) then "1" else "0") +

228 (if bit(0,X) then "1" else "0")

229 }.

230

231 define tag_field_memory(X) = {

232 (if bit(31,X) then "1" else "0") +

233

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

233 (if bit(30,X) then "1" else "0") +

234 (if bit(29,X) then "1" else "0") +

235 (if bit(28,X) then "1" else "0") +

236 (if bit(27,X) then "1" else "0") +

237 (if bit(26,X) then "1" else "0") +

238 (if bit(25,X) then "1" else "0") +

239 (if bit(24,X) then "1" else "0") +

240 (if bit(23,X) then "1" else "0") +

241 (if bit(22,X) then "1" else "0") +

242 (if bit(21,X) then "1" else "0") +

243 (if bit(20,X) then "1" else "0") +

244 (if bit(19,X) then "1" else "0") +

245 (if bit(18,X) then "1" else "0") +

246 (if bit(17,X) then "1" else "0") +

247 (if bit(16,X) then "1" else "0") +

248 (if bit(15,X) then "1" else "0") +

249 (if bit(14,X) then "1" else "0") +

250 (if bit(13,X) then "1" else "0") +

251 (if bit(12,X) then "1" else "0") +

252 (if bit(11,X) then "1" else "0")

253

254 }.

255

256 define index_field_memory_16(X) = {

257 (if bit(3,X) then "1" else "0") +

258 (if bit(2,X) then "1" else "0") +

259 (if bit(1,X) then "1" else "0") +

260 (if bit(0,X) then "1" else "0")

261 }.

262

263 define index_field_memory(X) = {

264 (if bit(10,X) then "1" else "0") +

265 (if bit(9,X) then "1" else "0") +

266 (if bit(8,X) then "1" else "0") +

267 (if bit(7,X) then "1" else "0") +

268 (if bit(6,X) then "1" else "0") +

269 (if bit(5,X) then "1" else "0") +

270 (if bit(4,X) then "1" else "0") +

271 (if bit(3,X) then "1" else "0") +

234

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

272 (if bit(2,X) then "1" else "0") +

273 (if bit(1,X) then "1" else "0") +

274 (if bit(0,X) then "1" else "0")

275 }.

276

277 define data_field(X) = {

278 (if bit(31,X) then "1" else "0") +

279 (if bit(30,X) then "1" else "0") +

280 (if bit(29,X) then "1" else "0") +

281 (if bit(28,X) then "1" else "0") +

282 (if bit(27,X) then "1" else "0") +

283 (if bit(26,X) then "1" else "0") +

284 (if bit(25,X) then "1" else "0") +

285 (if bit(24,X) then "1" else "0") +

286 (if bit(23,X) then "1" else "0") +

287 (if bit(22,X) then "1" else "0") +

288 (if bit(21,X) then "1" else "0") +

289 (if bit(20,X) then "1" else "0") +

290 (if bit(19,X) then "1" else "0") +

291 (if bit(18,X) then "1" else "0") +

292 (if bit(17,X) then "1" else "0") +

293 (if bit(16,X) then "1" else "0") +

294 (if bit(15,X) then "1" else "0") +

295 (if bit(14,X) then "1" else "0") +

296 (if bit(13,X) then "1" else "0") +

297 (if bit(12,X) then "1" else "0") +

298 (if bit(11,X) then "1" else "0") +

299 (if bit(10,X) then "1" else "0") +

300 (if bit(9,X) then "1" else "0") +

301 (if bit(8,X) then "1" else "0") +

302 (if bit(7,X) then "1" else "0") +

303 (if bit(6,X) then "1" else "0") +

304 (if bit(5,X) then "1" else "0") +

305 (if bit(4,X) then "1" else "0") +

306 (if bit(3,X) then "1" else "0") +

307 (if bit(2,X) then "1" else "0") +

308 (if bit(1,X) then "1" else "0") +

309 (if bit(0,X) then "1" else "0")

310 }.

235

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

311

312 define update_msi(i,B,L2CacheState,v) =

313 {

314 (forall j<ncachelocations :

315 if j=B then { L2CacheState[i][j]:=v }

316 else { stable(L2CacheState[i][j]) }

317)

318 }.

319

320 define cs_text(V) = {

321 if V=modified then "Modified"

322 else if V=shared then "Shared"

323 else if V=invalid then "Invalid"

324 else "Error"

325 }.

326

327 define cpu_request(MainMemory,L2CacheMemory,L2CacheTag,L2CacheState,

328 Vbit,Dbit,x,RW,ADDR,DATA,j,Tick) = {

329 exists y,z,indexc, indexm, tag, datam, csx, csy, csz, tagx, tagy, tagz, datax, datay, dataz,

330 stringx, stringy, stringz,tmpwb, vbitx,vbity,vbitz, nvbitx,nvbity,nvbitz, ncsx, ncsy, ncsz,

331 dbitx,dbity,dbitz,ndbitx,ndbity,ndbitz,ntagx,ntagy,ntagz,Sx,Sy,Sz,S,

332 cmx, cmy, cmz, ncmx, ncmy, ncmz, mm, nmm : {

333 y = (x+1) mod nprocessors and

334 z = (x+2) mod nprocessors and

335 indexc = ADDR mod ncachelocations and

336 indexm = ADDR mod nmemorylocations and

337 tag = ADDR div ncachelocations and

338 csx = L2CacheState[x][indexc] and

339 csy = L2CacheState[y][indexc] and

340 csz = L2CacheState[z][indexc] and

341 ncsx = next(L2CacheState[x][indexc]) and

342 ncsy = next(L2CacheState[y][indexc]) and

343 ncsz = next(L2CacheState[z][indexc]) and

344 tagx = L2CacheTag[x][indexc] and

345 tagy = L2CacheTag[y][indexc] and

346 tagz = L2CacheTag[z][indexc] and

347 ntagx = next(L2CacheTag[x][indexc]) and

348 ntagy = next(L2CacheTag[y][indexc]) and

349 ntagz = next(L2CacheTag[z][indexc]) and

236

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

350

351

352 skip and

353

354 /*stringy = " " and

355 stringz = " " and*/

356 /*format("Processor %t, Cache is %t \n",x,cs_text(csx)) and

357 format("Processor %t, Cache is %t \n",z,cs_text(csz)) and

358 format("Processor %t, Cache is %t \n",y,cs_text(csy)) and*/

359 vbitx = {if csx = shared or csx = modified then 1 else 0} and

360 vbity = {if csy = shared or csy = modified then 1 else 0} and

361 vbitz = {if csz = shared or csz = modified then 1 else 0} and

362 nvbitx = {if ncsx = shared or ncsx = modified then 1 else 0} and

363 nvbity = {if ncsy = shared or ncsy = modified then 1 else 0} and

364 nvbitz = {if ncsz = shared or ncsz = modified then 1 else 0} and

365

366 dbitx = {if csx = modified then 1 else 0} and

367 dbity = {if csy = modified then 1 else 0} and

368 dbitz = {if csz = modified then 1 else 0} and

369 ndbitx = {if ncsx = modified then 1 else 0} and

370 ndbity = {if ncsy = modified then 1 else 0} and

371 ndbitz = {if ncsz = modified then 1 else 0} and

372

373

374 if RW = 0 then { /* read */

375 stringx = {if tag = tagx and (csx = shared or csx = modified) then "Read Hit" else "Read ...

Miss"} and

376 stringy = {if tag = tagy and (csy = shared or csy = modified) then "Read Hit" else "Read ...

Miss"} and

377 stringz = {if tag = tagz and (csz = shared or csz = modified) then "Read Hit" else "Read ...

Miss"} and

378 if tag = tagx then {

379 /* read hit cache x */

380 if csx = shared or csx = modified then {

381 /* normal hit */

382 /*stringx = "Read hit" and*/

383 format("State %d: Processor %t getting data from Cache[%t]\n", j, x, indexc) and

384 memory_unchanged(MainMemory) and

385 DATA = L2CacheMemory[x][indexc] and

237

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

386 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,x) and

387 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

388 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

389 /*stringy = " " and*/

390 /*stringz = " " and*/

391 update_msi(x,indexc,L2CacheState,csx) and

392 update_msi(y,indexc,L2CacheState,csy) and

393 update_msi(z,indexc,L2CacheState,csz)

394 } else { /* cache line x invalid */

395 /*stringx = "Read miss" and*/

396 if csy = invalid and csz = invalid then {

397 format("State %d: Getting data from global memory\n", j) and

398 DATA = MainMemory[indexm] and

399 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

400 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

401 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

402 /*stringy = "Read miss" and*/

403 /*stringz = "Read miss" and*/

404 memory_unchanged(MainMemory) and

405 update_msi(x,indexc,L2CacheState,shared) and

406 update_msi(y,indexc,L2CacheState,invalid) and

407 update_msi(z,indexc,L2CacheState,invalid)

408 } else if csy = invalid and csz = modified then {

409 if tag = tagz then { /* read hit in cache z */

410 /*stringz = "Read hit" and*/

411 /*stringy = "Read miss" and*/

412 format("State %d: Getting data from Cache of processor %t \n", j, z) and

413 DATA = L2CacheMemory[z][indexc] and

414 write_to_memory(MainMemory,x,indexm,DATA,Tick) and

415 format("State %d: Coherence step for processor %t\n", j, z) and

416 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

417 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

418 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

419 update_msi(x,indexc,L2CacheState,shared) and

420 update_msi(y,indexc,L2CacheState,invalid) and

421 update_msi(z,indexc,L2CacheState,shared)

422 } else { /* read miss in cache z */

423 /*stringz = "Read miss" and*/

424 /*stringy = "Read miss" and*/

238

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

425 format("State %d: Getting data from global memory\n", j) and

426 tmpwb = 8*tagz+indexc and

427 dataz = L2CacheMemory[z][indexc] and

428 format("State %d: Processor %t, write-back cache[%t] with tag %t and

429 data %t to memory[%t] \n", j, z, indexc, tagz, dataz, tmpwb) and

430 DATA = MainMemory[indexm] and

431 write_to_memory(MainMemory,z, tmpwb, dataz,Tick) and

432 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

433 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

434 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

435 update_msi(x,indexc,L2CacheState,shared) and

436 update_msi(y,indexc,L2CacheState,invalid) and

437 update_msi(z,indexc,L2CacheState,invalid)

438 }

439 } else if csy = modified and csz = invalid then {

440 if tag = tagy then { /* read hit in cache y */

441 /*stringy = "Read hit" and*/

442 /*stringz = "Read miss" and*/

443 format("State %d: Getting data from Cache of processor %t \n", j, y) and

444 DATA = L2CacheMemory[y][indexc] and

445 write_to_memory(MainMemory,x,indexm,DATA,Tick) and

446 format("State %d: Coherence step for processor %t\n", j, y) and

447 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

448 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

449 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

450 update_msi(x,indexc,L2CacheState,shared) and

451 update_msi(z,indexc,L2CacheState,invalid) and

452 update_msi(y,indexc,L2CacheState,shared)

453 } else { /* read miss in cache y */

454 /*stringy = "Read miss" and*/

455 /*stringz = "Read miss" and*/

456 format("State %d: Getting data from global memory\n", j) and

457 tmpwb = 8*tagy+indexc and

458 datay = L2CacheMemory[y][indexc] and

459 format("State %d: Processor %t, write-back cache[%t] with tag %t and data %t

460 to memory[%t] \n", j, y, indexc, tagy, datay, tmpwb) and

461 DATA = MainMemory[indexm] and

462 write_to_memory(MainMemory,y, tmpwb, datay,Tick) and

463 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

239

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

464 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

465 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

466 update_msi(x,indexc,L2CacheState,shared) and

467 update_msi(y,indexc,L2CacheState,invalid) and

468 update_msi(z,indexc,L2CacheState,invalid)

469 }

470 } else if csy = shared then {

471 if tag = tagy then { /* read hit in cache y */

472 /*stringy = "Read hit" and*/

473 /*stringz = " " and*/

474 format("State %d: Getting data from Cache of processor %t \n", j, y) and

475 DATA = L2CacheMemory[y][indexc] and

476 memory_unchanged(MainMemory) and

477 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

478 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

479 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

480 update_msi(x,indexc,L2CacheState,shared) and

481 update_msi(z,indexc,L2CacheState,csz) and

482 update_msi(y,indexc,L2CacheState,shared)

483 } else { /* read miss in cache y */

484 /*stringy = "Read miss" and*/

485 if csz = shared then {

486 if tag = tagz then { /* read hit in cache z */

487 /*stringz = "Read hit " and*/

488 format("State %d: Getting data from Cache of processor %t \n", j, z) and

489 DATA = L2CacheMemory[z][indexc] and

490 memory_unchanged(MainMemory) and

491 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

492 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

493 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

494 update_msi(x,indexc,L2CacheState,shared) and

495 update_msi(y,indexc,L2CacheState,invalid) and

496 update_msi(z,indexc,L2CacheState,shared)

497 } else { /* read miss in cache z */

498 /*stringz = "Read miss" and*/

499 format("State %d: Getting data from global memory\n", j) and

500 DATA = MainMemory[indexm] and

501 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

502 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

240

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

503 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

504 memory_unchanged(MainMemory) and

505 update_msi(x,indexc,L2CacheState,shared) and

506 update_msi(y,indexc,L2CacheState,invalid) and

507 update_msi(z,indexc,L2CacheState,invalid)

508 }

509 } else {

510 /*stringz = "Read miss" and*/

511 format("State %d: Getting data from global memory\n", j) and

512 DATA = MainMemory[indexm] and

513 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

514 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

515 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

516 memory_unchanged(MainMemory) and

517 update_msi(x,indexc,L2CacheState,shared) and

518 update_msi(y,indexc,L2CacheState,invalid) and

519 update_msi(z,indexc,L2CacheState,invalid)

520 }

521 }

522 } else {

523 if csz = shared then {

524 if tag = tagz then { /* read hit in cache z */

525 /*stringz = "Read hit" and*/

526 /*stringy = " " and*/

527 format("State %d: Getting data from Cache of processor %t \n", j, z) and

528 DATA = L2CacheMemory[z][indexc] and

529 memory_unchanged(MainMemory) and

530 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

531 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

532 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

533 update_msi(x,indexc,L2CacheState,shared) and

534 update_msi(y,indexc,L2CacheState,invalid) and

535 update_msi(z,indexc,L2CacheState,shared)

536 } else { /* read miss in cache z */

537 /*stringz = "Read miss" and*/

538 /*stringy = "Read miss" and*/

539 format("State %d: Getting data from global memory\n", j) and

540 DATA = MainMemory[indexm] and

541 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

241

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

542 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

543 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

544 memory_unchanged(MainMemory) and

545 update_msi(x,indexc,L2CacheState,shared) and

546 update_msi(y,indexc,L2CacheState,invalid) and

547 update_msi(z,indexc,L2CacheState,invalid)

548 }

549 } else {

550 /*stringz = "Read miss" and*/

551 /*stringy = "Read miss" and*/

552 format("State %d: Getting data from global memory\n", j) and

553 DATA = MainMemory[indexm] and

554 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

555 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

556 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

557 memory_unchanged(MainMemory) and

558 update_msi(x,indexc,L2CacheState,shared) and

559 update_msi(y,indexc,L2CacheState,invalid) and

560 update_msi(z,indexc,L2CacheState,invalid)

561 }

562 }

563 }

564 } else { /* read miss tag 6= tagx */

565 /*stringx = "Read miss" and*/

566 if csx = invalid then { /* cache line x is invalid */

567 if csy = invalid and csz = invalid then {

568 /*stringz = "Read miss" and*/

569 /*stringy = "Read miss" and*/

570 format("State %d: Getting data from global memory\n", j) and

571 DATA = MainMemory[indexm] and

572 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

573 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

574 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

575 memory_unchanged(MainMemory) and

576 update_msi(x,indexc,L2CacheState,shared) and

577 update_msi(y,indexc,L2CacheState,invalid) and

578 update_msi(z,indexc,L2CacheState,invalid)

579 } else if csy = invalid and csz = modified then {

580 if tag = tagz then { /* read Hit in cache z */

242

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

581 /*stringz = "Read hit" and*/

582 /*stringy = " " and*/

583 format("State %d: Getting data from Cache of processor %t \n", j, z) and

584 DATA = L2CacheMemory[z][indexc] and

585 write_to_memory(MainMemory,x,indexm,DATA,Tick) and

586 format("State %d: Coherence step for processor %t\n", j, z) and

587 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

588 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

589 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

590 update_msi(x,indexc,L2CacheState,shared) and

591 update_msi(y,indexc,L2CacheState,invalid) and

592 update_msi(z,indexc,L2CacheState,shared)

593 } else { /* read miss in cache z */

594 /*stringz = "Read miss" and*/

595 /*stringy = "Read miss" and*/

596 format("State %d: Getting data from global memory\n", j) and

597 tmpwb = 8*tagz+indexc and

598 dataz = L2CacheMemory[z][indexc] and

599 format("State %d: Processor %t, write-back cache[%t] with tag %t and

600 data %t to memory[%t] \n", j, z, indexc, tagz, dataz, tmpwb) and

601 DATA = MainMemory[indexm] and

602 write_to_memory(MainMemory,z, tmpwb, dataz,Tick) and

603 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

604 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

605 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

606 update_msi(x,indexc,L2CacheState,shared) and

607 update_msi(y,indexc,L2CacheState,invalid) and

608 update_msi(z,indexc,L2CacheState,invalid)

609 }

610 } else if csy = modified and csz = invalid then {

611 if tag = tagy then { /* read Hit in cache y */

612 /*stringy = "Read hit" and*/

613 /*stringz = "Read miss" and*/

614 format("State %d: Getting data from Cache of processor %t \n", j, y) and

615 DATA = L2CacheMemory[y][indexc] and

616 format("State %d: Coherence step for processor %t\n", j, y) and

617 write_to_memory(MainMemory,x,indexm,DATA,Tick) and

618 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

619 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

243

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

620 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

621 update_msi(x,indexc,L2CacheState,shared) and

622 update_msi(z,indexc,L2CacheState,invalid) and

623 update_msi(y,indexc,L2CacheState,shared)

624 } else { /* read Miss in cache y */

625 /*stringy = "Read miss" and*/

626 /*stringz = "Read miss" and*/

627 format("State %d: Getting data from global memory\n", j) and

628 tmpwb = 8*tagy+indexc and

629 datay = L2CacheMemory[y][indexc] and

630 format("State %d: Processor %t, write-back cache[%t] with tag %t and

631 data %t to memory[%t] \n", j, y, indexc, tagy, datay, tmpwb) and

632 DATA = MainMemory[indexm] and

633 write_to_memory(MainMemory,y, tmpwb, datay,Tick) and

634 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

635 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

636 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

637 update_msi(x,indexc,L2CacheState,shared) and

638 update_msi(y,indexc,L2CacheState,invalid) and

639 update_msi(z,indexc,L2CacheState,invalid)

640 }

641 } else if csy = shared then {

642 if tag = tagy then { /* read hit in cache y */

643 /*stringy = " Read hit" and*/

644 /*stringz = " " and*/

645 format("State %d: Getting data from Cache of processor %t \n", j, y) and

646 DATA = L2CacheMemory[y][indexc] and

647 memory_unchanged(MainMemory) and

648 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

649 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

650 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

651 update_msi(x,indexc,L2CacheState,shared) and

652 update_msi(z,indexc,L2CacheState,csz) and

653 update_msi(y,indexc,L2CacheState,shared)

654 } else { /* read miss in cache y */

655 /*stringy = "Read miss" and*/

656 if csz = shared then {

657 if tag = tagz then { /* read hit in cache z */

658 /*stringz = "Read hit" and*/

244

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

659 format("State %d: Getting data from Cache of processor %t \n", j, y) and

660 DATA = L2CacheMemory[z][indexc] and

661 memory_unchanged(MainMemory) and

662 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

663 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

664 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

665 update_msi(x,indexc,L2CacheState,shared) and

666 update_msi(y,indexc,L2CacheState,invalid) and

667 update_msi(z,indexc,L2CacheState,shared)

668 } else { /* read miss in cache z */

669 /*stringz = "Read miss" and*/

670 format("State %d: Getting data from global memory\n", j) and

671 DATA = MainMemory[indexm] and

672 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

673 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

674 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

675 memory_unchanged(MainMemory) and

676 update_msi(x,indexc,L2CacheState,shared) and

677 update_msi(y,indexc,L2CacheState,invalid) and

678 update_msi(z,indexc,L2CacheState,invalid)

679 }

680 } else {

681 /*stringz = "Read miss" and*/

682 format("State %d: Getting data from global memory\n", j) and

683 DATA = MainMemory[indexm] and

684 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

685 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

686 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

687 memory_unchanged(MainMemory) and

688 update_msi(x,indexc,L2CacheState,shared) and

689 update_msi(y,indexc,L2CacheState,invalid) and

690 update_msi(z,indexc,L2CacheState,invalid)

691 }

692 }

693 } else {

694 if csz = shared then {

695 if tag = tagz then { /* read hit in cache z */

696 /*stringz = "Read hit" and*/

697 /*stringy = " " and*/

245

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

698 format("State %d: Getting data from Cache of processor %t \n", j, z) and

699 DATA = L2CacheMemory[z][indexc] and

700 memory_unchanged(MainMemory) and

701 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

702 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

703 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

704 update_msi(x,indexc,L2CacheState,shared) and

705 update_msi(y,indexc,L2CacheState,invalid) and

706 update_msi(z,indexc,L2CacheState,shared)

707 } else { /* read miss in cache z */

708 /*stringz = "Read miss" and*/

709 /*stringy = "Read miss" and*/

710 format("State %d: Getting data from global memory\n", j) and

711 DATA = MainMemory[indexm] and

712 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

713 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

714 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

715 memory_unchanged(MainMemory) and

716 update_msi(x,indexc,L2CacheState,shared) and

717 update_msi(y,indexc,L2CacheState,invalid) and

718 update_msi(z,indexc,L2CacheState,invalid)

719 }

720 } else {

721 /*stringy = "Read miss" and*/

722 /*stringz = "Read miss" and*/

723 format("State %d: Getting data from global memory\n", j) and

724 DATA = MainMemory[indexm] and

725 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

726 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

727 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

728 memory_unchanged(MainMemory) and

729 update_msi(x,indexc,L2CacheState,shared) and

730 update_msi(y,indexc,L2CacheState,invalid) and

731 update_msi(z,indexc,L2CacheState,invalid)

732 }

733 }

734 } else if csx = shared then { /* cache line x is shared */

735 if csz = shared and tagz = tag then { /* cache line z is shared and

736 a read hit on cache line z */

246

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

737 /*stringz = "Read hit" and*/

738 /*stringy = " " and*/

739 format("State %d: Getting data from Cache of processor %t \n", j, z) and

740 DATA = L2CacheMemory[z][indexc] and

741 memory_unchanged(MainMemory) and

742 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

743 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

744 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

745 update_msi(x,indexc,L2CacheState,shared) and

746 update_msi(y,indexc,L2CacheState,csy) and

747 update_msi(z,indexc,L2CacheState,shared)

748 } else { /* cache line z is not shared or a read miss on cache line z */

749 /*if tagz 6= tag then { stringz = "Read miss" } else { stringz = " " } and*/

750 if csy = shared and tagy = tag then { /* cache line y is shared and

751 a read hit on cache line y */

752 /*stringy = "Read hit" and*/

753 format("State %d: Getting data from Cache of processor %t \n", j, y) and

754 DATA = L2CacheMemory[y][indexc] and

755 memory_unchanged(MainMemory) and

756 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

757 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

758 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

759 update_msi(x,indexc,L2CacheState,shared) and

760 update_msi(z,indexc,L2CacheState,csz) and

761 update_msi(y,indexc,L2CacheState,shared)

762 } else { /* cache line y is not shared or a read miss on cache line y */

763 /*if tagy 6= tag then { stringy = "Read miss" } else { stringy = " " } and*/

764 format("State %d: Getting data from global memory\n", j) and

765 DATA = MainMemory[indexm] and

766 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

767 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

768 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

769 memory_unchanged(MainMemory) and

770 update_msi(x,indexc,L2CacheState,shared) and

771 update_msi(y,indexc,L2CacheState,csy) and

772 update_msi(z,indexc,L2CacheState,csz)

773 }

774 }

775 } else { /* cache line x is modified, write-back */

247

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

776 /*stringy = " " and*/

777 /*stringz = " " and*/

778 format("State %d: Getting data from global memory\n", j) and

779 DATA = MainMemory[indexm] and

780 tmpwb = 8*tagx+indexc and

781 datax = L2CacheMemory[x][indexc] and

782 format("State %d: Processor %t, write-back cache[%t] with tag %t

783 and data %t to memory[%t] \n", j, x, indexc, tagx, datax, tmpwb) and

784 write_to_memory(MainMemory,x, tmpwb, datax,Tick) and

785 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

786 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

787 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

788 update_msi(x,indexc,L2CacheState,shared) and

789 update_msi(y,indexc,L2CacheState,csy) and

790 update_msi(z,indexc,L2CacheState,csz)

791 }

792 }

793 } else { /* write */

794 stringx = {if tag = tagx then "Write Hit" else "Write Miss"} and

795 stringy = {if tag = tagy then "Write Hit" else "Write Miss"} and

796 stringz = {if tag = tagz then "Write Hit" else "Write Miss"} and

797 if tag = tagx then { /* write hit cache x */

798 /*stringx = "Write hit" and */

799 if csx = modified then {

800 /*stringy = " " and*/

801 /*stringz = " " and*/

802 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

803 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

804 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

805 memory_unchanged(MainMemory) and

806 update_msi(y,indexc,L2CacheState,csy) and

807 update_msi(z,indexc,L2CacheState,csz) and

808 update_msi(x,indexc,L2CacheState,modified)

809 } else if csx = invalid then {

810 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

811 update_msi(x,indexc,L2CacheState,modified) and

812 if csy = modified and tagy 6= tag then {

813 /*stringy = "Write miss" and*/

814 /*stringz = " " and*/

248

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

815 datay = L2CacheMemory[y][indexc] and

816 tmpwb = 8*tagy+indexc and

817 format("State %d: Processor %t, write-back cache[%t] with tag %t and

818 data %t to memory[%t] \n", j, y, indexc, tagy, datay, tmpwb) and

819 write_to_memory(MainMemory,y, tmpwb, datay,Tick)

820 } else {

821 stringy = " " and

822 if csz = modified and tagz 6= tag then {

823 /*stringz = "Write miss" and*/

824 dataz = L2CacheMemory[z][indexc] and

825 tmpwb = 8*tagz+indexc and

826 format("State %d: Processor %t, write-back cache[%t] with tag %t and

827 data %t to memory[%t] \n", j, z, indexc, tagz, dataz, tmpwb) and

828 write_to_memory(MainMemory,z, tmpwb, dataz,Tick)

829 } else {

830 /*stringz = " " and*/

831 memory_unchanged(MainMemory)

832 }

833 } and

834 update_msi(y,indexc,L2CacheState,invalid) and

835 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

836 update_msi(z,indexc,L2CacheState,invalid) and

837 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z)

838 } else {

839 /*stringy = " " and*/

840 /*stringz = " " and*/

841 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

842 update_msi(x,indexc,L2CacheState,modified) and

843 memory_unchanged(MainMemory) and

844 update_msi(y,indexc,L2CacheState,invalid) and

845 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

846 update_msi(z,indexc,L2CacheState,invalid) and

847 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z)

848 }

849 } else { /* write miss cache x */

850 /*stringx = "write miss" and*/

851 if csx = modified then {

852 /*stringy = " " and*/

853 /*stringz = " " and*/

249

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

854 datax = L2CacheMemory[x][indexc] and

855 tmpwb = 8*tagx+indexc and

856 format("State %d: Processor %t, write-back cache[%t] with tag %t and

857 data %t to memory[%t] \n", j, x, indexc, tagx, datax, tmpwb) and

858 write_to_memory(MainMemory,x, tmpwb, datax,Tick) and

859 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

860 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

861 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z) and

862 update_msi(y,indexc,L2CacheState,csy) and

863 update_msi(z,indexc,L2CacheState,csz) and

864 update_msi(x,indexc,L2CacheState,modified)

865 } else if csx = invalid then {

866 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

867 update_msi(x,indexc,L2CacheState,modified) and

868 if csy = modified and tagy 6= tag then {

869 /*stringy = "Write miss" and*/

870 /*stringz = " " and*/

871 datay = L2CacheMemory[y][indexc] and

872 tmpwb = 8*tagy+indexc and

873 format("State %d: Processor %t, write-back cache[%t] with tag %t and

874 data %t to memory[%t] \n", j, y, indexc, tagy, datay, tmpwb) and

875 write_to_memory(MainMemory,y, tmpwb, datay,Tick)

876

877 } else {

878 /*stringy = " " and*/

879 if csz = modified and tagz 6= tag then {

880 /*stringz = "Write miss" and*/

881 dataz = L2CacheMemory[z][indexc] and

882 tmpwb = 8*tagz+indexc and

883 format("State %d: Processor %t, write-back cache[%t] with tag %t and

884 data %t to memory[%t] \n", j, z, indexc, tagz, dataz, tmpwb) and

885 write_to_memory(MainMemory,z, tmpwb, dataz,Tick)

886

887 } else {

888 /*stringz = " " and*/

889 memory_unchanged(MainMemory)

890 }

891 } and

892 update_msi(y,indexc,L2CacheState,invalid) and

250

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

893 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

894 update_msi(z,indexc,L2CacheState,invalid) and

895 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z)

896 } else {

897 /*stringy = " " and*/

898 /*stringz = " " and*/

899 write_to_cache(L2CacheMemory,L2CacheTag,Vbit,x,indexc,DATA,tag,j) and

900 update_msi(x,indexc,L2CacheState,modified) and

901 memory_unchanged(MainMemory) and

902 update_msi(y,indexc,L2CacheState,invalid) and

903 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,y) and

904 update_msi(z,indexc,L2CacheState,invalid) and

905 cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,z)

906 }

907 }

908 }

909 and

910 if RW = 0 then {

911 format("State %d: Global is receiving from Processor %d: a read request for Address: %d with

912 Data %d, Global State: %d\n",j,x,ADDR,DATA,Tick)

913 } else {

914 format("State %d: Global is receiving from Processor %d: a write request for Address: %d with

915 Data: %d, Global State: %d\n",j,x,ADDR,DATA,Tick)

916 }

917

918 and cmx = L2CacheMemory[x][indexc]

919 and cmy = L2CacheMemory[y][indexc]

920 and cmz = L2CacheMemory[z][indexc]

921 and ncmx = next(L2CacheMemory[x][indexc])

922 and ncmy = next(L2CacheMemory[y][indexc])

923 and ncmz = next(L2CacheMemory[z][indexc])

924 and mm = MainMemory[indexm]

925 and nmm = next(MainMemory[indexm])

926 and header_out() and

927

928 format("| %2d(%1d) | %d | %4t| %7s | Cache[%3s] | %t | %t | %2t | %10s | %3t | %10s[%1d] |

929 Memory[%7s] --->%4t |\n",x,x,RW,ADDR,msb_7bits_addr(ADDR),index_field_cache_8(indexc),

930 vbitx,dbitx,tagx,stringx,cmx,cs_text(csx),x,msb_7bits_addr(indexm),mm) and

931 format("| %2d(%1d) | %d | %4t| %7s | Cache[%3s] | %t | %t | %2t | %10s | %3t | %10s[%1d] |

251

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

932 Memory[%7s] --->%4t |\n",x,y,RW,ADDR,msb_7bits_addr(ADDR),index_field_cache_8(indexc),

933 vbity,dbity,tagy,stringy,cmy,cs_text(csy),y,msb_7bits_addr(indexm),mm) and

934 format("| %2d(%1d) | %d | %4t| %7s | Cache[%3s] | %t | %t | %2t | %10s | %3t | %10s[%1d] |

935 Memory[%7s] --->%4t |\n",x,z,RW,ADDR,msb_7bits_addr(ADDR),index_field_cache_8(indexc),

936 vbitz,dbitz,tagz,stringz,cmz,cs_text(csz),

937 z,msb_7bits_addr(indexm),mm) and

938

939 format("| %2d(%1d) | %d | %4t| %7s | Cache[%3s] | %t | %t | %2t | | %3t | %10s[%1d] |

940 Memory[%7s] ---> %4t |\n",x,x,RW,ADDR,msb_7bits_addr(ADDR),index_field_cache_8(indexc),

941 nvbitx,ndbitx,ntagx,ncmx,cs_text(ncsx),x,msb_7bits_addr(indexm),nmm) and

942 format("| %2d(%1d) | %d | %4t| %7s | Cache[%3s] | %t | %t | %2t | | %3t | %10s[%1d] |

943 Memory[%7s] ---> %4t |\n",x,y,RW,ADDR,msb_7bits_addr(ADDR),index_field_cache_8(indexc),

944 nvbity,ndbity,ntagy,ncmy,cs_text(ncsy),y,msb_7bits_addr(indexm),nmm) and

945 format("| %2d(%1d) | %d | %4t| %7s | Cache[%3s] | %t | %t | %2t | | %3t | %10s[%1d] |

946 Memory[%7s] ---> %4t |\n",x,z,RW,ADDR,msb_7bits_addr(ADDR),index_field_cache_8(indexc),

947 nvbitz,ndbitz,ntagz,ncmz,cs_text(ncsz),z,msb_7bits_addr(indexm),nmm) and

948

949 tcl("HM",[x,y,z,stringx,stringy,stringz,indexc,j,nvbitx,ndbitx,ndbity,ndbitz,

950 DATA,Tick,nmm,ADDR,ADDR mod 16])

951 and Sx = "["+str(x)+","+str(RW)+","+str(ADDR)+","+

952 "\""+msb_7bits_addr(ADDR)+"\""+","+"\""+

953 index_field_cache_8(indexc)+"\""+","+str(vbitx)+","+str(nvbitx)+","+str(dbitx)+

954 ","+str(ndbitx)+","+str(tag)+","+str(tagx)+","+str(ntagx)+

955 ","+"\""+stringx+"\""+","+str(cmx)+","+str(ncmx)+","+"\""+

956 cs_text(csx)+"\""+","+"\""+cs_text(ncsx)+"\""+","+"\""+

957 msb_7bits_addr(indexm)+"\""+","+str(mm)+","+str(nmm)+"]" and /*output(Sx) and*/

958

959 Sy = "["+str(y)+","+str(RW)+","+str(ADDR)+","+

960 "\""+msb_7bits_addr(ADDR)+"\""+","+"\""+

961 index_field_cache_8(indexc)+"\""+","+str(vbity)+","+str(nvbity)+","+str(dbity)+

962 ","+str(ndbity)+","+str(tag)+","+str(tagy)+","+str(ntagy)+

963 ","+"\""+stringy+"\""+","+str(cmy)+","+str(ncmy)+","+"\""+

964 cs_text(csy)+"\""+","+"\""+cs_text(ncsy)+"\""+","+"\""+

965 msb_7bits_addr(indexm)+"\""+","+str(mm)+","+str(nmm)+"]" and /*output(Sy) and*/

966

967 Sz = "["+str(z)+","+str(RW)+","+str(ADDR)+","+

968 "\""+msb_7bits_addr(ADDR)+"\""+","+"\""+

969 index_field_cache_8(indexc)+"\""+","+str(vbitz)+","+str(nvbitz)+","+str(dbitz)+

970 ","+str(ndbitz)+","+str(tag)+","+str(tagz)+","+str(ntagz)+

252

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

971 ","+"\""+stringz+"\""+","+str(cmz)+","+str(ncmz)+","+"\""+

972 cs_text(csz)+"\""+","+"\""+cs_text(ncsz)+"\""+","+"\""+

973 msb_7bits_addr(indexm)+"\""+","+str(mm)+","+str(nmm)+"]" and /*output(Sz) and*/

974

975 prog_send2(x,Sx+".") and prog_send2(y,Sy+".") and prog_send2(z,Sz+".") and

976 footer_out(ncsx) and if j<9 then {next(always break)} else skip and

977

978 header_property(ncsx) and

979 Invalid_State(cmx,ncmx,cmy,ncmy,cmz,ncmz,mm,nmm,x,y,z,ncsx,ncsy,ncsz) and

980 Shared_State(cmx,ncmx,cmy,ncmy,cmz,ncmz,mm,nmm,x,y,z,ncsx,ncsy,ncsz) and

981 Consistency_Property(ncmx,ncmy,ncmz,nmm,x,y,z,ncsx,ncsy,ncsz) and

982 MSI_Protocol(ncsx,ncsy,ncsz,x,y,z) and

983 Global_State_Consistency(x,y,z,j,Tick,ncsx,ncsy,ncsz) and

984 Check_Read_Write_Miss_Hit(RW,x,y,z,ADDR,tag,tagx,tagy,tagz,csx,csy,csz,stringx,stringy,stringz,ncsx)

985

986 }

987 }.

988 define Global_State_Consistency(x,y,z,j,Tick,ncsx,ncsy,ncsz) ={

989 skip and

990 if ncsx=shared or ncsx=modified or ncsx=invalid then {

991 if j=Tick then {

992 /*PID=strint(aval1(T,0)) and

993 RW = strint(aval1(T,1)) and

994 addr=strint(aval1(T,2)) and

995 datato = strint(aval1(T,3)) and

996 Tick=strint(aval1(T,4)) and */

997 footer_property_1(ncsx) and

998 format("| Global State Check | Global = %2d | Pass |\n",j) and

999 format("| Local State Check | Active[%d] = %2d | Pass |\n",x,Tick) and

1000 format("| Local State Check | Idle[%d] = %2d | Pass |\n",y,Tick) and

1001 format("| Local State Check | Idle[%d] = %2d | Pass |\n",z,Tick)

1002 } else {

1003 footer_property_1(ncsx) and

1004 format("| Global State Check | Global = %2d | Fail |\n",j) and

1005 format("| Local State Check | Active[%d] = %2d | Fail |\n",x,Tick) and

1006 format("| Local State Check | Idle[%d] = %2d | Fail |\n",y,Tick) and

1007 format("| Local State Check | Idle[%d] = %2d | Fail |\n",z,Tick)

1008 }

1009 }

253

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

1010 }.

1011 define Invalid_State(cmx,ncmx,cmy,ncmy,cmz,ncmz,mm,nmm,x,y,z,ncsx,ncsy,ncsz) = {

1012 skip and

1013 if ncsx=invalid then {

1014 if ncmx = -8 or (ncmx = nmm and ncsx 6= shared and (ncmx 6= ncmy or ncmx 6= ncmz)) then {

1015 format("| Invalid State Check | %10s[%1d] | Pass |\n",cs_text(ncsx),x)

1016 } else {

1017 format("| Invalid State Check | %10s[%1d] | Fail |\n",cs_text(ncsx),x)

1018 }

1019 } else {

1020 format("| Invalid State Check | %10s[%1d] | NA |\n",cs_text(ncsx),x)

1021 } and

1022 if ncsy=invalid then {

1023 if ncmy = -8 or (ncmy = nmm and ncsy 6= shared and (ncmy 6= ncmx or ncmy 6= ncmz)) then {

1024 format("| Invalid State Check | %10s[%1d] | Pass |\n",cs_text(ncsy),y)

1025 } else {

1026 format("| Invalid State Check | %10s[%1d] | Fail |\n",cs_text(ncsy),y)

1027 }

1028 } else {

1029 format("| Invalid State Check | %10s[%1d] | NA |\n", cs_text(ncsy),y)

1030 } and

1031 if ncsz=invalid then {

1032 if ncmz = -8 or (ncmz = nmm and ncsz 6= shared and (ncmz 6= ncmy or ncmz 6= ncmx)) then {

1033 format("| Invalid State Check | %10s[%1d] | Pass |\n",cs_text(ncsz),z)

1034 } else {

1035 format("| Invalid State Check | %10s[%1d] | Fail |\n",cs_text(ncsz),z)

1036 }

1037 } else {

1038 format("| Invalid State Check | %10s[%1d] | NA |\n", cs_text(ncsz),z)

1039 }

1040 }.

1041

1042 define Shared_State(cmx,ncmx,cmy,ncmy,cmz,ncmz,mm,nmm,x,y,z,ncsx,ncsy,ncsz) = {

1043 skip and

1044

1045 if ncsx=shared then {

1046 if ncmx = nmm or ncmx = ncmy and ncmx = ncmz and ncmx 6= -8 then {

1047 format("| Shared State Check | %10s[%1d] | Pass |\n",cs_text(ncsx),x)

1048 } else {

254

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

1049 format("| Shared State Check | %10s[%1d] | Fail |\n",cs_text(ncsx),x)

1050 }

1051 } else {

1052 format("| Shared State Check | %10s[%1d] | NA |\n", cs_text(ncsx),x)

1053 } and

1054 if ncsy=shared then {

1055 if ncmy = nmm or ncmy = ncmx and ncmy = ncmz and ncmy 6= -8 then {

1056 format("| Shared State Check | %10s[%1d] | Pass |\n",cs_text(ncsy),y)

1057 } else {

1058 format("| Shared State Check | %10s[%1d] | Fail |\n",cs_text(ncsy),y)

1059 }

1060 } else {

1061 format("| Shared State Check | %10s[%1d] | NA |\n", cs_text(ncsy),y)

1062 } and

1063 if ncsz=shared then {

1064 if ncmz = nmm or ncmz = ncmx and ncmz = ncmy and ncmz 6= -8 then {

1065 format("| Shared State Check | %10s[%1d] | Pass |\n",cs_text(ncsz),z)

1066 } else {

1067 format("| Shared State Check | %10s[%1d] | Fail |\n",cs_text(ncsz),z)

1068 }

1069 } else {

1070 format("| Shared State Check | %10s[%1d] | NA |\n", cs_text(ncsz),z)

1071 }

1072 }.

1073

1074 define Consistency_Property(ncmx,ncmy,ncmz,nmm,x,y,z,ncsx,ncsy,ncsz) = {

1075 skip and

1076 /* If the cache consistent with the main memory */

1077 if ncsx=shared then {

1078 if ncmx = nmm then {

1079 format("| Consistency Property Check | %10s[%1d] | Pass |\n",cs_text(ncsx),x)

1080 } else {

1081 format("| Consistency Property Check | %10s[%1d] | Fail |\n",cs_text(ncsx),x)

1082 }

1083 } else {

1084 format("| Consistency Property Check | %10s[%1d] | NA |\n",cs_text(ncsx),x)

1085 }

1086 and

1087 if ncsy= shared then {

255

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

1088 if ncmy = nmm then {

1089 format("| Consistency Property Check | %10s[%1d] | Pass |\n",cs_text(ncsy),y)

1090 } else {

1091 format("| Consistency Property Check | %10s[%1d] | Fail |\n",cs_text(ncsy),y)

1092 }

1093 } else {

1094 format("| Consistency Property Check | %10s[%1d] | NA |\n",cs_text(ncsy),y)

1095 }

1096 and

1097 if ncsz=shared then {

1098 if ncmz = nmm then {

1099 format("| Consistency Property Check | %10s[%1d] | Pass |\n",cs_text(ncsz),z)

1100 } else {

1101 format("| Consistency Property Check | %10s[%1d] | Fail |\n",cs_text(ncsz),z)

1102 }

1103 } else {

1104 format("| Consistency Property Check | %10s[%1d] | NA |\n", cs_text(ncsz),z)

1105 }

1106 }.

1107

1108 define header_property(ncsx) = {

1109 if ncsx = shared or ncsx = modified or ncsx = invalid then {

1110 format("---\n") and

1111 format("| Property | PID | Result |\n") and

1112 format("---\n")

1113 }

1114 }.

1115

1116 define footer_property_1(ncsx) = {

1117 if ncsx = shared or ncsx = modified or ncsx = invalid then {

1118 format("---\n")

1119 }

1120 }.

1121

1122 define footer_property() = {

1123 format("---\n")

1124 }.

1125

1126 define MSI_Protocol(ncsx,ncsy,ncsz,x,y,z) = {

256

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

1127 skip and

1128 /* Allowed MSI States */

1129 if (ncsx = invalid and ncsy = invalid and ncsz = invalid) or

1130 (ncsx = invalid and ncsy = invalid and ncsz = modified) or

1131 (ncsx = invalid and ncsy = invalid and ncsz = shared) or

1132 (ncsx = invalid and ncsy = modified and ncsz = invalid) or

1133 (ncsx = invalid and ncsy = shared and ncsz = invalid) or

1134 (ncsx = invalid and ncsy = shared and ncsz = shared) or

1135 (ncsx = modified and ncsy = invalid and ncsz = invalid) or

1136 (ncsx = shared and ncsy = invalid and ncsz = invalid) or

1137 (ncsx = shared and ncsy = invalid and ncsz = shared) or

1138 (ncsx = shared and ncsy = shared and ncsz = invalid) or

1139 (ncsx = shared and ncsy = shared and ncsz = shared) then {

1140 footer_property() and

1141 format("| | %10s[%1d] | |\n",cs_text(ncsx),x) and

1142 format("| MSI Protocol Check | %10s[%1d] | Pass |\n",cs_text(ncsy),y) and

1143 format("| | %10s[%1d] | |\n",cs_text(ncsz),z) /*and

1144 footer_property()*/

1145 } else {

1146 footer_property() and

1147 format("| | %10s[%1d] | |\n",cs_text(ncsx),x) and

1148 format("| MSI Protocol Check | %10s[%1d] | Fail |\n",cs_text(ncsy),y) and

1149 format("| | %10s[%1d] | |\n",cs_text(ncsz),z) /*and

1150 footer_property()*/

1151 }

1152 }.

1153 define Check_Read_Write_Miss_Hit(RW,x,y,z,ADDR,tag,tagx,tagy,tagz,

1154 csx,csy,csz,stringx,stringy,stringz,ncsx) =

1155 { exists Estring00,Estring01,Estring10,Estring11 : {

1156 skip and

1157 Estring00="Read Miss" and Estring01="Read Hit" and

1158 Estring10="Write Miss" and Estring11="Write Hit" and

1159 if ncsx=shared or ncsx=modified or ncsx=invalid then {

1160 if RW=0 then { /* RW=0 Read Check */

1161

1162 if tag 6= tagx and (csx 6= shared or csx 6= modified) and

1163 tag 6= tagy and (csy 6= shared or csy 6= modified) and

1164 tag 6= tagz and (csz 6= shared or csz 6= modified) then {

1165 if stringx=Estring00 and stringy=Estring00 and stringz=Estring00 then {

257

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

1166 footer_property() and

1167 format("| | %12t[%d] | |\n",stringx,x) and

1168 format("| Read Miss Check | %12t[%d] | Pass |\n",stringy,y) and

1169 format("| | %12t[%d] | |\n",stringz,z) and

1170 footer_property()

1171 } else {

1172 footer_property() and

1173 format("| | %12t[%d] | |\n",stringx,x) and

1174 format("| Read Miss Check | %12t[%d] | Fail |\n",stringy,y) and

1175 format("| | %12t[%d] | |\n",stringz,z) and

1176 footer_property()

1177 }

1178 } else {

1179 if stringx=Estring01 or stringy=Estring01 or stringz=Estring01 then {

1180 footer_property() and

1181 format("| | %12t[%d] | |\n",stringx,x) and

1182 format("| Read Hit Check | %12t[%d] | Pass |\n",stringy,y) and

1183 format("| | %12t[%d] | |\n",stringz,z) and

1184 footer_property()

1185 } else {

1186 footer_property() and

1187 format("| | %12t[%d] | |\n",stringx,x) and

1188 format("| Read Hit Check | %12t[%d] | Fail |\n",stringy,y) and

1189 format("| | %12t[%d] | |\n",stringz,z) and

1190 footer_property()

1191 }

1192 }

1193 } else { /* RW=1 Write Check */

1194 if tag 6= tagx and tag 6= tagy and tag 6= tagz then {

1195 if stringx=Estring10 and stringy=Estring10 and stringz=Estring10 then {

1196 footer_property() and

1197 format("| | %12t[%d] | |\n",stringx,x) and

1198 format("| Write Miss Check | %12t[%d] | Pass |\n",stringy,y) and

1199 format("| | %12t[%d] | |\n",stringz,y) and

1200 footer_property()

1201 } else {

1202 footer_property() and

1203 format("| | %12t[%d] | |\n",stringx,x) and

1204 format("| Write Miss Check | %12t[%d] | Fail |\n",stringy,y) and

258

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

1205 format("| | %12t[%d] | |\n",stringz,z) and

1206 footer_property()

1207 }

1208 } else {

1209 if stringx=Estring11 or stringy=Estring11 or stringz=Estring11 then {

1210 footer_property() and

1211 format("| | %12t[%d] | |\n",stringx,x) and

1212 format("| Write Hit Check | %12t[%d] | Pass |\n",stringy,y) and

1213 format("| | %12t[%d] | |\n",stringz,z) and

1214 footer_property()

1215 } else {

1216 footer_property() and

1217 format("| | %12t[%d] | |\n",stringx,x) and

1218 format("| Write Hit Check | %12t[%d] | Fail |\n",stringy,y) and

1219 format("| | %12t[%d] | |\n",stringz,z) and

1220 footer_property()

1221 }

1222 }

1223 }

1224 }

1225 }

1226 }.

1227

1228 define write_to_cache(L2CacheMemory,L2CacheTag,Vbit,X,M,V,tag,j) = {

1229 skip and

1230 format("State %d: Processor %t writing to Cache[%t] value %t and tag %t\n",j,X,M,V,tag) and

1231 (forall i<nprocessors :

1232 (forall j<ncachelocations:

1233 if i=X and j=M then {

1234 if Vbit[i][j] = 1 then {stable(Vbit[i][j])}

1235 else {Vbit[i][j] := 1} and

1236 L2CacheTag[i][j] := tag and

1237 L2CacheMemory[i][j]:=V

1238 } else {

1239 stable(Vbit[i][j]) and

1240 stable(L2CacheTag[i][j]) and

1241 stable(L2CacheMemory[i][j])

1242 }

1243)

259

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

1244)

1245 }.

1246

1247 define write_to_memory(MainMemory,X,M,V,Tick) = {

1248 skip and tcl("MM",[V,msb(M),M,M mod 8,Tick]) and

1249 format("State %d: Processor %t writing to global memory[%t] value %t\n",Tick,X,M,V) and

1250 (forall j<nmemorylocations: {

1251 if j=M then {MainMemory[j]:=V}

1252 else { stable(MainMemory[j]) }

1253 }

1254)

1255 }.

1256

1257 define memory_unchanged(MainMemory) = {

1258 skip and

1259 (forall j<nmemorylocations: {

1260 stable(MainMemory[j])

1261 }

1262)

1263 }.

1264

1265 define cache_unchanged(L2CacheMemory,L2CacheTag,Vbit,x) = {

1266 skip and

1267 (forall j<ncachelocations: {

1268 stable(Vbit[x][j]) and

1269 stable(L2CacheTag[x][j]) and

1270 stable(L2CacheMemory[x][j])

1271 }

1272)

1273 }.

1274

1275 define header_out() = {

1276

1277 format("--

1278 --\n") and

1279 format("| Pid | Operation | Addr | Binary Addr | Cache[Index] | Valid Bit | Dirty Bit | ...

Tag | Hit-Miss |

1280 Data | Coherence State | Memory[..Addr..] ---> Data |\n") and

1281 format("--

260

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

1282 --\n")

1283 }.

1284

1285 define footer_out(ncsx) = {

1286 if ncsx=shared or ncsx=modified or ncsx=invalid then {

1287 format("--

1288 --\n")

1289 }

1290 }.

1291

1292 define get_var3(MainMemory,L2CacheMemory,L2CacheTag,L2CacheState,Vbit,Dbit,j) = {

1293 exists T,PID,addr,tag,index8,B,v,z,Tick,RW,datato,datafrom : {

1294

1295 get2(T) and

1296 PID=strint(aval1(T,0)) and

1297 RW = strint(aval1(T,1)) and

1298 addr=strint(aval1(T,2)) and

1299 datato = strint(aval1(T,3)) and

1300 Tick=strint(aval1(T,4)) and

1301 format("\n\n") and

1302 if RW = 0 then {

1303 cpu_request(MainMemory,L2CacheMemory,L2CacheTag,L2CacheState,Vbit,Dbit,PID,RW,addr,datafrom,j,Tick)

1304

1305 } else {

1306 cpu_request(MainMemory,L2CacheMemory,L2CacheTag,L2CacheState,Vbit,Dbit,PID,RW,addr,datato,j,Tick)

1307 } and

1308

1309 tcl("tmr",[Tick]) and

1310 tcl("CPUREQ",[PID,Tick,msb(addr),RW,datato,j]) and

1311 forall i<32 :{tcl("ABCD",[i,msb32_2(i,addr)])} and

1312

1313

1314 if PID=0 then {

1315 tcl("CM",[0,Tick,datato,tag_field_cache(addr),index_field_cache_8(addr mod 8),

1316 addr mod 8,msb_14_index(addr mod 16),addr mod 16,RW])

1317 } else if PID=1 then {

1318 tcl("CM",[1,Tick,datato,tag_field_cache(addr),index_field_cache_8(addr mod 8),

1319 addr mod 8,msb_14_index(addr mod 16),addr mod 16,RW])

1320 } else if PID=2 then {

261

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

1321 tcl("CM",[2,Tick,datato,tag_field_cache(addr),index_field_cache_8(addr mod 8),

1322 addr mod 8,msb_14_index(addr mod 16),addr mod 16,RW])

1323 }

1324

1325 }

1326 }.

1327

1328 set print_states=false.

1329 /* run */ define L2_Cache_P0_P1_v0() = {

1330 exists PID,B,addr,tag,index8,j,i,MainMemory, CacheMemory, L2CacheTag,

1331 L2CacheMemory, Core, Tag, Index, Timer, L2CacheState, Vbit, Dbit,Select : {

1332 list(MainMemory, nmemorylocations) and stable(struct(MainMemory)) and

1333 list(CacheMemory, ncachelocations) and stable(struct(CacheMemory)) and

1334 list(Core, nprocessors) and stable(struct(Core)) and

1335 list(L2CacheMemory,nprocessors) and stable(struct(L2CacheMemory)) and

1336 list(L2CacheTag,nprocessors) and stable(struct(L2CacheTag)) and

1337 list(L2CacheState,nprocessors) and stable(struct(L2CacheState)) and

1338 list(Vbit,nprocessors) and stable(struct(Vbit)) and

1339 list(Dbit,nprocessors) and stable(struct(Dbit)) and

1340 (forall i<nprocessors: (

1341 list(L2CacheMemory[i], ncachelocations) and stable(struct(L2CacheMemory[i])) and

1342 list(L2CacheTag[i], ncachelocations) and stable(struct(L2CacheTag[i])) and

1343 list(L2CacheState[i], ncachelocations) and stable(struct(L2CacheState[i])) and

1344 list(Vbit[i], ncachelocations) and stable(struct(Vbit[i])) and

1345 list(Dbit[i], ncachelocations) and stable(struct(Dbit[i]))

1346)

1347) and

1348 list(Tag, nlocations) and stable(struct(Tag)) and

1349 list(Index, nlocations) and stable(struct(Index)) and

1350

1351

1352 {{prog_send1(0,"load 'Processor_0_5'.") and

1353 prog_send1(1,"load 'Processor_1_5'.") and

1354 prog_send1(2,"load 'Processor_2_5'.")};skip;

1355

1356 {prog_send1(0,"run L2_Processor_0().") and

1357 prog_send1(1,"run L2_Processor_1().") and

1358 prog_send1(2,"run L2_Processor_2().")};skip;

1359

262

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

1360 { tcl("init",[2,8]) and always tclbreak() and

1361 (forall j<nmemorylocations : MainMemory[j] = initial_value2) and

1362 (forall j<ncachelocations : CacheMemory[j] = initial_value) and

1363 (forall j<nprocessors : Core[j] = initial_value) and

1364 (forall i<nprocessors :

1365 (forall j<ncachelocations : (

1366 L2CacheMemory[i][j] = initial_value and

1367 L2CacheTag[i][j] = -1 and

1368 L2CacheState[i][j] = invalid and

1369 Vbit[i][j] = 0 and

1370 Dbit[i][j] = 0

1371)

1372)

1373) and

1374 (forall j<nlocations : Tag[j] = initial_value) and

1375 (forall j<nlocations : Index[j] = initial_value) and

1376

1377 Timer = 0 and

1378

1379 (forall j<ncachelocations : tcl("INDEX",[j,index_field_cache_8(j)])) and

1380

1381 for j<10 do {

1382 (forall i<nmemorylocations : tcl("IM",[MainMemory[i],msb(i),i mod 16])) and

1383

1384 {Select = Random mod 3 and

1385 prog_send_ne1(0,"["+str(Select)+","+str(j)+"]"+".") and

1386 prog_send_ne1(1,"["+str(Select)+","+str(j)+"]"+".") and

1387 prog_send_ne1(2,"["+str(Select)+","+str(j)+"]"+".")

1388 };

1389 {skip and get_var3(MainMemory,L2CacheMemory,L2CacheTag,L2CacheState,Vbit,Dbit,j)}

1390 }

1391 };

1392 {prog_send1(0,"exit.") and

1393 prog_send1(1,"exit.") and

1394 prog_send1(2,"exit.")}

1395 }

1396 }

1397 }.

263

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

Listing B.2: Tempura Code for Processor 0

1 /* -*- Mode: C -*-

2 *

3 * Processor_0_5.t

4 *

5 * This file is part Tempura: Interval Temporal Logic interpreter.

6 *

7 * Copyright (C) 1998-2017 Nayef Alshammari, Antonio Cau

8 *

9 * Tempura is free software: you can redistribute it and/or modify

10 * it under the terms of the GNU General Public License as published by

11 * the Free Software Foundation, either version 3 of the License, or

12 * (at your option) any later version.

13 *

14 * Tempura is distributed in the hope that it will be useful,

15 * but WITHOUT ANY WARRANTY; without even the implied warranty of

16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

17 * GNU General Public License for more details.

18 *

19 * You should have received a copy of the GNU General Public License

20 * along with Tempura. If not, see <http://www.gnu.org/licenses/>.

21 *

22 */

23

24

25 load "../library/conversion".

26 load "../library/tcl".

27 load "../library/exprog".

28

29 define avar1(X,a) =

30 {

31 X[a]

32 }.

33

34 define aval1(X,b) =

35 {

36 X[b]

37 }.

264

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

38

39 define atime1(X,c) =

40 {

41 strint(X[c])

42 }.

43

44 define atime_micro1(X,d) =

45 {

46 strint(X[d])

47 }.

48

49 define get_var(PID,RW,DADDR,BADDR,INDEXC,VBITX,DBITX,TAG,TAGX,NVBITX,

50 NDBITX,NTAGX,STRINGX,CMX,NCMX,CSX,NCSX,INDEXM,MM,NMM,State) = {

51

52 header_out() and

53 format("| %2d | %d | %4t| %7s | Cache[%3s] | %t | %t | %2t | %10s | %3t | %10s[%1d] | ...

Memory[%7s] ---> %4t ...

|\n",PID,RW,DADDR,BADDR,INDEXC,VBITX,DBITX,TAGX,STRINGX,CMX,CSX,PID,INDEXM,MM) and

54 format("| %2d | %d | %4t| %7s | Cache[%3s] | %t | %t | %2t | %10s | %3t | %10s[%1d] | ...

Memory[%7s] ---> %4t ...

|\n",PID,RW,DADDR,BADDR,INDEXC,NVBITX,NDBITX,NTAGX,STRINGX,NCMX,NCSX,PID,INDEXM,NMM) and

55 footer_out() and

56

57 header_property() and

58 Consistency_Property(PID,NCMX,NCSX,NMM) and

59 Invalid_State(PID,NCMX,NCSX,NMM) and

60 Shared_State(PID,NCMX,NCSX,NMM) and

61 /*Local_State_Consistency(PID,State) and*/

62 Check_Read_Write_Miss_Hit(RW,PID,TAG,TAGX,CSX,STRINGX) and

63 footer_property()

64 }.

65

66 define Local_State_Consistency(PID,State) ={

67 if State = 0 then {

68

69 format("| Local State Check | Active[%d] = %2d | Pass |\n",PID,State)

70

71 } else{

72 if prev(State) = State-1 then {

265

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

73

74 format("| Local State Check | Active[%d] = %2d | Pass |\n",PID,State)

75

76 } else {

77

78 format("| Local State Check | Active[%d] = %2d | Fail |\n",PID,State)

79 }

80 }

81 }.

82

83

84

85 define Consistency_Property(PID,NCMX,NCSX,NMM) = {

86 /* If the cache consistent with the main memory */

87 if NCSX="Shared" then {

88 if NCMX = NMM then {

89 format("| Consistency Property Check | %10s[%1d] | Pass |\n",NCSX,PID)

90 } else {format("| Consistency Property Check | %10s[%1d] | Fail |\n",NCSX,PID)

91 }

92 } else {

93 format("| Consistency Property Check | %10s[%1d] | NA |\n",NCSX,PID)

94 }

95

96 }.

97

98 define Invalid_State(PID,NCMX,NCSX,NMM) = {

99 if NCSX="Invalid" then {

100 if NCMX = -8 or

101 NCMX = NMM and NCSX 6= "Shared" then {

102 format("| Invalid State Check | %10s[%1d] | Pass |\n",NCSX,PID)

103 } else {format("| Invalid State Check | %10s[%1d] | Fail |\n",NCSX,PID)}

104 } else {

105 format("| Invalid State Check | %10s[%1d] | NA |\n",NCSX,PID)

106 }

107 }.

108

109 define Shared_State(PID,NCMX,NCSX,NMM) = {

110 if NCSX="Shared" then {

111 if NCMX = NMM or NCMX 6= -8 then {

266

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

112 format("| Shared State Check | %10s[%1d] | Pass |\n",NCSX,PID)

113 } else {format("| Shared State Check | %10s[%1d] | Fail |\n",NCSX,PID)}

114 } else {

115 format("| Shared State Check | %10s[%1d] | NA |\n",NCSX,PID)

116 }

117

118 }.

119

120 define Check_Read_Write_Miss_Hit(RW,PID,TAG,TAGX,CSX,STRINGX) = {

121 exists Estring00,Estring01,Estring10,Estring11 : {

122 Estring00="Read Miss" and Estring01="Read Hit" and

123 Estring10="Write Miss" and Estring11="Write Hit" and

124

125 if RW=0 then { /* RW=0 Read Check */

126

127 if TAG 6= TAGX and (CSX 6= "Shared" or CSX 6= "Modified") then {

128 if STRINGX=Estring00 then {

129 format("| Read Miss Check | %10t[%d] | Pass |\n",STRINGX,PID)

130 } else {

131 format("| Read Miss Check | %10t[%d] | Fail |\n",STRINGX,PID)

132 }

133 } else {

134 if STRINGX=Estring01 then {

135 format("| Read Hit Check | %10t[%d] | Pass |\n",STRINGX,PID)

136 } else {

137 format("| Read Hit Check | %10t[%d] | Fail |\n",STRINGX,PID)

138 }

139 }

140

141 } else { /* RW=1 Write Check */

142

143 if TAG 6= TAGX then {

144 if STRINGX=Estring10 then {

145 format("| Write Miss Check | %10t[%d] | Pass |\n",STRINGX,PID)

146 } else {

147 format("| Write Miss Check | %10t[%d] | Fail |\n",STRINGX,PID)

148 }

149 } else {

150 if STRINGX=Estring11 then {

267

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

151 format("| Write Hit Check | %10t[%d] | Pass |\n",STRINGX,PID)

152 } else {

153 format("| Write Hit Check | %10t[%d] | Fail |\n",STRINGX,PID)

154 }

155 }

156 }

157 }

158 }.

159

160

161 define header_out() = {

162 format("---

163 ---\n") ...

and

164 format("| Pid | Operation | Addr | Binary Addr | Cache[Index] | Valid Bit | Dirty Bit |

165 Tag | Hit-Miss | Data | Coherence State | Memory[..Addr..] ---> Data |\n") and

166 format("---

167 ---\n")

168 }.

169

170 define footer_out() = {

171 format("---

172 ---\n")

173 }.

174

175 define header_property() = {

176 format("---\n") and

177 format("| Property | PID | Result |\n") and

178 format("---\n")

179 }.

180

181 define footer_property() = {

182 format("---\n")

183 }.

184

185 define assert(Pid,j,RW,addr,data,Tick) = {

186 exists Operation : {

187 if RW=0 then {Operation="Read" and

188 format("State %d: Processor %d is sending %6s request from Address: %d, and Data: %d, and ...

268

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

Global State: %d\n",Tick,Pid,Operation,addr,data,Tick)

189 } else {Operation="Write" and

190 format("State %d: Processor %d is sending %6s request to Address: %d, and Data: %d, and ...

Global State: %d\n",Tick,Pid,Operation,addr,data,Tick)

191 } and

192 format("!PROG: assert %d:%d:%d:%d:%d:!\n",Pid,RW,addr,data,Tick)

193 }

194 }.

195

196 set print_states=false.

197 /* run */ define L2_Processor_0() = {

198 exists j,Tick,PID,RW,DADDR,BADDR,INDEXC,VBITX,DBITX,TAG,TAGX,NVBITX,

199 NDBITX,NTAGX,STRINGX,CMX,NCMX,CSX,NCSX,INDEXM,MM,NMM,Tock,State : {

200

201 for j<10 do {

202 {input Tick and skip and State=Tick[1] and

203 if Tick[0]=0 then {

204 assert(Tick[0],j,Random mod 2,Random mod 16,Random mod 30, Tick[1])

205 } else

206 format("State %d: Processor 0 is idle\n",Tick[1])

207 };

208

209 { empty and

210 input Tock and output(Tock) and

211 PID=Tock[0] and RW=Tock[1] and DADDR=Tock[2] and BADDR=Tock[3] and INDEXC=Tock[4] and

212 VBITX=Tock[5] and

213 NVBITX=Tock[6] and DBITX=Tock[7] and NDBITX=Tock[8] and TAG=Tock[9] and TAGX=Tock[10] and

214 NTAGX=Tock[11] and

215 STRINGX=Tock[12] and CMX=Tock[13] and NCMX=Tock[14] and CSX=Tock[15] and NCSX=Tock[16] and

216 INDEXM=Tock[17] and

217 MM=Tock[18] and NMM=Tock[19] and

218

219 get_var(PID,RW,DADDR,BADDR,INDEXC,VBITX,DBITX,TAG,TAGX,NVBITX,

220 NDBITX,NTAGX,STRINGX,CMX,NCMX,CSX,NCSX,INDEXM,MM,NMM,State)

221

222 }

223 }

224 }

225 }.

269

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

Listing B.3: Tempura Code for Processor 1

1 /* -*- Mode: C -*-

2 *

3 * Processor_1_5.t

4 *

5 * This file is part Tempura: Interval Temporal Logic interpreter.

6 *

7 * Copyright (C) 1998-2017 Nayef Alshammari, Antonio Cau

8 *

9 * Tempura is free software: you can redistribute it and/or modify

10 * it under the terms of the GNU General Public License as published by

11 * the Free Software Foundation, either version 3 of the License, or

12 * (at your option) any later version.

13 *

14 * Tempura is distributed in the hope that it will be useful,

15 * but WITHOUT ANY WARRANTY; without even the implied warranty of

16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

17 * GNU General Public License for more details.

18 *

19 * You should have received a copy of the GNU General Public License

20 * along with Tempura. If not, see <http://www.gnu.org/licenses/>.

21 *

22 */

23

24

25 load "../library/conversion".

26 load "../library/tcl".

27 load "../library/exprog".

28

29 define avar1(X,a) =

30 {

31 X[a]

32 }.

33

34 define aval1(X,b) =

35 {

36 X[b]

37 }.

270

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

38

39 define atime1(X,c) =

40 {

41 strint(X[c])

42 }.

43

44 define atime_micro1(X,d) =

45 {

46 strint(X[d])

47 }.

48

49 define get_var(PID,RW,DADDR,BADDR,INDEXC,VBITX,DBITX,TAG,TAGX,NVBITX,

50 NDBITX,NTAGX,STRINGX,CMX,NCMX,CSX,NCSX,INDEXM,MM,NMM,State) = {

51

52 header_out() and

53 format("| %2d | %d | %4t| %7s | Cache[%3s] | %t | %t | %2t | %10s | %3t | %10s[%1d] | ...

Memory[%7s] ---> %4t ...

|\n",PID,RW,DADDR,BADDR,INDEXC,VBITX,DBITX,TAGX,STRINGX,CMX,CSX,PID,INDEXM,MM) and

54 format("| %2d | %d | %4t| %7s | Cache[%3s] | %t | %t | %2t | %10s | %3t | %10s[%1d] | ...

Memory[%7s] ---> %4t ...

|\n",PID,RW,DADDR,BADDR,INDEXC,NVBITX,NDBITX,NTAGX,STRINGX,NCMX,NCSX,PID,INDEXM,NMM) and

55 footer_out() and

56

57 header_property() and

58 Consistency_Property(PID,NCMX,NCSX,NMM) and

59 Invalid_State(PID,NCMX,NCSX,NMM) and

60 Shared_State(PID,NCMX,NCSX,NMM) and

61 /*Local_State_Consistency(PID,State) and*/

62 Check_Read_Write_Miss_Hit(RW,PID,TAG,TAGX,CSX,STRINGX) and

63 footer_property()

64 }.

65

66 define Local_State_Consistency(PID,State) ={

67 if State = 0 then {

68

69 format("| Local State Check | Active[%d] = %2d | Pass |\n",PID,State)

70

71 } else{

72 if prev(State) = State-1 then {

271

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

73

74 format("| Local State Check | Active[%d] = %2d | Pass |\n",PID,State)

75

76 } else {

77

78 format("| Local State Check | Active[%d] = %2d | Fail |\n",PID,State)

79 }

80 }

81 }.

82

83 define Consistency_Property(PID,NCMX,NCSX,NMM) = {

84 /* If the cache consistent with the main memory */

85 if NCSX="Shared" then {

86 if NCMX = NMM then {

87 format("| Consistency Property Check | %10s[%1d] | Pass |\n",NCSX,PID)

88 } else {format("| Consistency Property Check | %10s[%1d] | Fail |\n",NCSX,PID)

89 }

90 } else {

91 format("| Consistency Property Check | %10s[%1d] | NA |\n",NCSX,PID)

92 }

93

94 }.

95

96 define Invalid_State(PID,NCMX,NCSX,NMM) = {

97 if NCSX="Invalid" then {

98 if NCMX = -8 or

99 NCMX = NMM and NCSX 6= "Shared" then {

100 format("| Invalid State Check | %10s[%1d] | Pass |\n",NCSX,PID)

101 } else {format("| Invalid State Check | %10s[%1d] | Fail |\n",NCSX,PID)}

102 } else {

103 format("| Invalid State Check | %10s[%1d] | NA |\n",NCSX,PID)

104 }

105 }.

106

107 define Shared_State(PID,NCMX,NCSX,NMM) = {

108 if NCSX="Shared" then {

109 if NCMX = NMM or NCMX 6= -8 then {

110 format("| Shared State Check | %10s[%1d] | Pass |\n",NCSX,PID)

111 } else {format("| Shared State Check | %10s[%1d] | Fail |\n",NCSX,PID)}

272

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

112 } else {

113 format("| Shared State Check | %10s[%1d] | NA |\n",NCSX,PID)

114 }

115

116 }.

117

118 define Check_Read_Write_Miss_Hit(RW,PID,TAG,TAGX,CSX,STRINGX) = {

119 exists Estring00,Estring01,Estring10,Estring11 : {

120 Estring00="Read Miss" and Estring01="Read Hit" and

121 Estring10="Write Miss" and Estring11="Write Hit" and

122

123 if RW=0 then { /* RW=0 Read Check */

124

125 if TAG 6= TAGX and (CSX 6= "Shared" or CSX 6= "Modified") then {

126 if STRINGX=Estring00 then {

127 format("| Read Miss Check | %10t[%d] | Pass |\n",STRINGX,PID)

128 } else {

129 format("| Read Miss Check | %10t[%d] | Fail |\n",STRINGX,PID)

130 }

131 } else {

132 if STRINGX=Estring01 then {

133 format("| Read Hit Check | %10t[%d] | Pass |\n",STRINGX,PID)

134 } else {

135 format("| Read Hit Check | %10t[%d] | Fail |\n",STRINGX,PID)

136 }

137 }

138

139 } else { /* RW=1 Write Check */

140

141 if TAG 6= TAGX then {

142 if STRINGX=Estring10 then {

143 format("| Write Miss Check | %10t[%d] | Pass |\n",STRINGX,PID)

144 } else {

145 format("| Write Miss Check | %10t[%d] | Fail |\n",STRINGX,PID)

146 }

147 } else {

148 if STRINGX=Estring11 then {

149 format("| Write Hit Check | %10t[%d] | Pass |\n",STRINGX,PID)

150 } else {

273

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

151 format("| Write Hit Check | %10t[%d] | Fail |\n",STRINGX,PID)

152 }

153 }

154 }

155 }

156 }.

157

158

159 define header_out() = {

160 format("---

161 ---\n") ...

and

162 format("| Pid | Operation | Addr | Binary Addr | Cache[Index] | Valid Bit | Dirty Bit |

163 Tag | Hit-Miss | Data | Coherence State | Memory[..Addr..] ---> Data |\n") and

164 format("---

165 ---\n")

166 }.

167

168 define footer_out() = {

169 format("---

170 ---\n")

171 }.

172

173 define header_property() = {

174 format("---\n") and

175 format("| Property | PID | Result |\n") and

176 format("---\n")

177 }.

178

179 define footer_property() = {

180 format("---\n")

181 }.

182

183 define assert(Pid,j,RW,addr,data,Tick) = {

184 exists Operation : {

185 if RW=0 then {Operation="Read" and

186 format("State %d: Processor %d is sending %6s request from Address: %d, and Data: %d, and ...

Global State: %d\n",Tick,Pid,Operation,addr,data,Tick)

187 } else {Operation="Write" and

274

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

188 format("State %d: Processor %d is sending %6s request to Address: %d, and Data: %d, and ...

Global State: %d\n",Tick,Pid,Operation,addr,data,Tick)

189 } and

190 format("!PROG: assert %d:%d:%d:%d:%d:!\n",Pid,RW,addr,data,Tick)

191 }

192 }.

193

194 set print_states=false.

195 /* run */ define L2_Processor_1() = {

196 exists j,Tick,PID,RW,DADDR,BADDR,INDEXC,VBITX,DBITX,TAG,TAGX,NVBITX,

197 NDBITX,NTAGX,STRINGX,CMX,NCMX,CSX,NCSX,INDEXM,MM,NMM,Tock,State : {

198

199 for j<10 do {

200 {input Tick and skip and State=Tick[1] and

201 if Tick[0]=1 then {

202 assert(Tick[0],j,Random mod 2,Random mod 16,Random mod 30, Tick[1])

203 } else

204 format("State %d: Processor 1 is idle\n",Tick[1])

205 };

206

207 { empty and

208 input Tock and output(Tock) and

209 PID=Tock[0] and RW=Tock[1] and DADDR=Tock[2] and BADDR=Tock[3] and INDEXC=Tock[4] and

210 VBITX=Tock[5] and

211 NVBITX=Tock[6] and DBITX=Tock[7] and NDBITX=Tock[8] and TAG=Tock[9] and TAGX=Tock[10] and

212 NTAGX=Tock[11] and

213 STRINGX=Tock[12] and CMX=Tock[13] and NCMX=Tock[14] and CSX=Tock[15] and NCSX=Tock[16] and

214 INDEXM=Tock[17] and

215 MM=Tock[18] and NMM=Tock[19] and

216

217 get_var(PID,RW,DADDR,BADDR,INDEXC,VBITX,DBITX,TAG,TAGX,NVBITX,

218 NDBITX,NTAGX,STRINGX,CMX,NCMX,CSX,NCSX,INDEXM,MM,NMM,State)

219

220 }

221 }

222 }

223 }.

275

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

Listing B.4: Tempura Code for Processor 2

1 /* -*- Mode: C -*-

2 *

3 * Processor_2_5.t

4 *

5 * This file is part Tempura: Interval Temporal Logic interpreter.

6 *

7 * Copyright (C) 1998-2017 Nayef Alshammari, Antonio Cau

8 *

9 * Tempura is free software: you can redistribute it and/or modify

10 * it under the terms of the GNU General Public License as published by

11 * the Free Software Foundation, either version 3 of the License, or

12 * (at your option) any later version.

13 *

14 * Tempura is distributed in the hope that it will be useful,

15 * but WITHOUT ANY WARRANTY; without even the implied warranty of

16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

17 * GNU General Public License for more details.

18 *

19 * You should have received a copy of the GNU General Public License

20 * along with Tempura. If not, see <http://www.gnu.org/licenses/>.

21 *

22 */

23

24

25 load "../library/conversion".

26 load "../library/tcl".

27 load "../library/exprog".

28

29 define avar1(X,a) =

30 {

31 X[a]

32 }.

33

34 define aval1(X,b) =

35 {

36 X[b]

37 }.

276

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

38

39 define atime1(X,c) =

40 {

41 strint(X[c])

42 }.

43

44 define atime_micro1(X,d) =

45 {

46 strint(X[d])

47 }.

48

49 define get_var(PID,RW,DADDR,BADDR,INDEXC,VBITX,DBITX,TAG,TAGX,NVBITX,

50 NDBITX,NTAGX,STRINGX,CMX,NCMX,CSX,NCSX,INDEXM,MM,NMM,State) = {

51

52 header_out() and

53 format("| %2d | %d | %4t| %7s | Cache[%3s] | %t | %t | %2t | %10s | %3t | %10s[%1d] | ...

Memory[%7s] ---> %4t ...

|\n",PID,RW,DADDR,BADDR,INDEXC,VBITX,DBITX,TAGX,STRINGX,CMX,CSX,PID,INDEXM,MM) and

54 format("| %2d | %d | %4t| %7s | Cache[%3s] | %t | %t | %2t | %10s | %3t | %10s[%1d] | ...

Memory[%7s] ---> %4t ...

|\n",PID,RW,DADDR,BADDR,INDEXC,NVBITX,NDBITX,NTAGX,STRINGX,NCMX,NCSX,PID,INDEXM,NMM) and

55 footer_out() and

56

57 header_property() and

58 Consistency_Property(PID,NCMX,NCSX,NMM) and

59 Invalid_State(PID,NCMX,NCSX,NMM) and

60 Shared_State(PID,NCMX,NCSX,NMM) and

61 /*Local_State_Consistency(PID,State) and*/

62 Check_Read_Write_Miss_Hit(RW,PID,TAG,TAGX,CSX,STRINGX) and

63 footer_property()

64 }.

65

66 define Local_State_Consistency(PID,State) ={

67 if State = 0 then {

68

69 format("| Local State Check | Active[%d] = %2d | Pass |\n",PID,State)

70

71 } else {

72 if prev(State) = State-1 then {

277

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

73

74 format("| Local State Check | Active[%d] = %2d | Pass |\n",PID,State)

75

76 } else {

77

78 format("| Local State Check | Active[%d] = %2d | Fail |\n",PID,State)

79 }

80 }

81 }.

82

83

84 define Consistency_Property(PID,NCMX,NCSX,NMM) = {

85 /* If the cache consistent with the main memory */

86 if NCSX="Shared" then {

87 if NCMX = NMM then {

88 format("| Consistency Property Check | %10s[%1d] | Pass |\n",NCSX,PID)

89 } else {format("| Consistency Property Check | %10s[%1d] | Fail |\n",NCSX,PID)

90 }

91 } else {

92 format("| Consistency Property Check | %10s[%1d] | NA |\n",NCSX,PID)

93 }

94

95 }.

96

97 define Invalid_State(PID,NCMX,NCSX,NMM) = {

98 if NCSX="Invalid" then {

99 if NCMX = -8 or

100 NCMX = NMM and NCSX 6= "Shared" then {

101 format("| Invalid State Check | %10s[%1d] | Pass |\n",NCSX,PID)

102 } else {format("| Invalid State Check | %10s[%1d] | Fail |\n",NCSX,PID)}

103 } else {

104 format("| Invalid State Check | %10s[%1d] | NA |\n",NCSX,PID)

105 }

106 }.

107

108 define Shared_State(PID,NCMX,NCSX,NMM) = {

109 if NCSX="Shared" then {

110 if NCMX = NMM or NCMX 6= -8 then {

111 format("| Shared State Check | %10s[%1d] | Pass |\n",NCSX,PID)

278

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

112 } else {format("| Shared State Check | %10s[%1d] | Fail |\n",NCSX,PID)}

113 } else {

114 format("| Shared State Check | %10s[%1d] | NA |\n",NCSX,PID)

115 }

116

117 }.

118

119 define Check_Read_Write_Miss_Hit(RW,PID,TAG,TAGX,CSX,STRINGX) = {

120 exists Estring00,Estring01,Estring10,Estring11 : {

121 Estring00="Read Miss" and Estring01="Read Hit" and

122 Estring10="Write Miss" and Estring11="Write Hit" and

123

124 if RW=0 then { /* RW=0 Read Check */

125

126 if TAG 6= TAGX and (CSX 6= "Shared" or CSX 6= "Modified") then {

127 if STRINGX=Estring00 then {

128 format("| Read Miss Check | %10t[%d] | Pass |\n",STRINGX,PID)

129 } else {

130 format("| Read Miss Check | %10t[%d] | Fail |\n",STRINGX,PID)

131 }

132 } else {

133 if STRINGX=Estring01 then {

134 format("| Read Hit Check | %10t[%d] | Pass |\n",STRINGX,PID)

135 } else {

136 format("| Read Hit Check | %10t[%d] | Fail |\n",STRINGX,PID)

137 }

138 }

139

140 } else { /* RW=1 Write Check */

141

142 if TAG 6= TAGX then {

143 if STRINGX=Estring10 then {

144 format("| Write Miss Check | %10t[%d] | Pass |\n",STRINGX,PID)

145 } else {

146 format("| Write Miss Check | %10t[%d] | Fail |\n",STRINGX,PID)

147 }

148 } else {

149 if STRINGX=Estring11 then {

150 format("| Write Hit Check | %10t[%d] | Pass |\n",STRINGX,PID)

279

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

151 } else {

152 format("| Write Hit Check | %10t[%d] | Fail |\n",STRINGX,PID)

153 }

154 }

155 }

156 }

157 }.

158

159

160 define header_out() = {

161 format("---

162 ---\n") ...

and

163 format("| Pid | Operation | Addr | Binary Addr | Cache[Index] | Valid Bit | Dirty Bit |

164 Tag | Hit-Miss | Data | Coherence State | Memory[..Addr..] ---> Data |\n") and

165 format("--

166 --\n")

167 }.

168

169 define footer_out() = {

170 format("---

171 ---\n")

172 }.

173

174 define header_property() = {

175 format("---\n") and

176 format("| Property | PID | Result |\n") and

177 format("---\n")

178 }.

179

180 define footer_property() = {

181 format("---\n")

182 }.

183

184 define assert(Pid,j,RW,addr,data,Tick) = {

185 exists Operation : {

186 if RW=0 then {Operation="Read" and

187 format("State %d: Processor %d is sending %6s request from Address: %d, and Data: %d, and ...

Global State: %d\n",Tick,Pid,Operation,addr,data,Tick)

280

APPENDIX B. APPENDIX B: TEMPURA CODE FOR CACHE CONTROLLER

188 } else {Operation="Write" and

189 format("State %d: Processor %d is sending %6s request to Address: %d, and Data: %d, and ...

Global State: %d\n",Tick,Pid,Operation,addr,data,Tick)

190 } and

191 format("!PROG: assert %d:%d:%d:%d:%d:!\n",Pid,RW,addr,data,Tick)

192 }

193 }.

194

195 set print_states=false.

196 /* run */ define L2_Processor_2() = {

197 exists j,Tick,PID,RW,DADDR,BADDR,INDEXC,VBITX,DBITX,TAG,TAGX,NVBITX,

198 NDBITX,NTAGX,STRINGX,CMX,NCMX,CSX,NCSX,INDEXM,MM,NMM,Tock,State : {

199

200 for j<10 do {

201 {input Tick and skip and State=Tick[1] and

202 if Tick[0]=2 then {

203 assert(Tick[0],j,Random mod 2,Random mod 16,Random mod 30, Tick[1])

204 } else

205 format("State %d: Processor 2 is idle\n",Tick[1])

206 };

207

208 { empty and

209 input Tock and output(Tock) and

210 PID=Tock[0] and RW=Tock[1] and DADDR=Tock[2] and BADDR=Tock[3] and INDEXC=Tock[4] and

211 VBITX=Tock[5] and

212 NVBITX=Tock[6] and DBITX=Tock[7] and NDBITX=Tock[8] and TAG=Tock[9] and TAGX=Tock[10] and

213 NTAGX=Tock[11] and

214 STRINGX=Tock[12] and CMX=Tock[13] and NCMX=Tock[14] and CSX=Tock[15] and NCSX=Tock[16] and

215 INDEXM=Tock[17] and

216 MM=Tock[18] and NMM=Tock[19] and

217

218 get_var(PID,RW,DADDR,BADDR,INDEXC,VBITX,DBITX,TAG,TAGX,NVBITX,

219 NDBITX,NTAGX,STRINGX,CMX,NCMX,CSX,NCSX,INDEXM,MM,NMM,State)

220

221 }

222 }

223 }

224 }.

281

Appendix C

Appendix C: Tcl/tk Code for Cache Controller

282

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

1 # L2_Cache_MSI_v3.tcl --

2 #

3 #

4 # Copyright (C) 1998-2017 Nayef H. Alshammari, Antonio Cau

5 #

6 # This program is free software: you can redistribute it and/or modify

7 # it under the terms of the GNU General Public License as published by

8 # the Free Software Foundation, either version 3 of the License, or

9 # (at your option) any later version.

10 #

11 # This program is distributed in the hope that it will be useful,

12 # but WITHOUT ANY WARRANTY; without even the implied warranty of

13 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

14 # GNU General Public License for more details.

15 #

16 # You should have received a copy of the GNU General Public License

17 # along with this program. If not, see <http://www.gnu.org/licenses/>.

18 #

19 #

20

21 package provide L2CacheContollerMSI 1.0

22

23 namespace eval ::out {;

24 #namespace export -clear *

25 variable canv;

26

27

28 proc init {nl} {

29 variable canv;

30

31

32 wm geometry .top23 1700x800+1+20

33 $canv delete all

34 $canv config -scrollregion "10 10 1700 1000"

35 $canv configure -background black

36

37

38 #CPU 0

39 $canv create rect \

283

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

40 10 10 \

41 425 455 \

42 -fill black -outline black -width 2 -tags rect0

43

44 #State

45 $canv create text 30 20\

46 -anchor c -fill red -text State

47

48 $canv create text 72 20\

49 -anchor c -fill red -text Oper.

50

51 $canv create text 240 20\

52 -anchor c -fill red -text Address

53

54 $canv create text 405 20\

55 -anchor c -fill red -text Data

56

57 #State

58 for {set i 0} {$i<10} {incr i} {

59 $canv create rect \

60 10 [expr 30+15*$i]\

61 50 [expr 45+15*$i]\

62 -width 1 -fill black -outline #00FF00

63 $canv create text 30 [expr 37+15*$i]\

64 -anchor c -fill #00FF00 -text "" -tags StateP0($i)

65 }

66 #READ

67 for {set i 0} {$i<10} {incr i} {

68 $canv create rect \

69 50 [expr 30+15*$i]\

70 95 [expr 45+15*$i]\

71 -width 1 -fill black -outline #00FF00

72 $canv create text 72 [expr 37+15*$i]\

73 -anchor c -fill #00FF00 -text "" -tags operationP0($i)

74 }

75

76 #ADDRESS

77 for {set i 0} {$i<10} {incr i} {

78 $canv create rect \

284

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

79 95 [expr 30+15*$i]\

80 385 [expr 45+15*$i]\

81 -width 1 -fill black -outline #00FF00

82 $canv create text 240 [expr 37+15*$i]\

83 -anchor c -text "" -tags cpuaddrtextP0($i)

84 }

85

86 #Data

87 for {set i 0} {$i<10} {incr i} {

88 $canv create rect \

89 385 [expr 30+15*$i]\

90 425 [expr 45+15*$i]\

91 -width 1 -fill black -outline #00FF00

92 $canv create text 405 [expr 37+15*$i]\

93 -anchor c -fill #00FF00 -text "" -tags DataCPU0($i)

94 }

95

96 #CPU 1

97 $canv create rect \

98 430 10 \

99 845 455 \

100 -fill black -outline black -width 2 -tags rect1

101

102 #State

103 $canv create text 452 20\

104 -anchor c -fill red -text State

105

106 $canv create text 495 20\

107 -anchor c -fill red -text Oper.

108

109 $canv create text 655 20\

110 -anchor c -fill red -text Address

111

112 $canv create text 820 20\

113 -anchor c -fill red -text Data

114

115 #State

116 for {set i 0} {$i<10} {incr i} {

117 $canv create rect \

285

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

118 430 [expr 30+15*$i]\

119 470 [expr 45+15*$i]\

120 -width 1 -fill black -outline #00FF00

121 $canv create text 447 [expr 37+15*$i]\

122 -anchor c -fill #00FF00 -text "" -tags StateP1($i)

123 }

124 #READ

125 for {set i 0} {$i<10} {incr i} {

126 $canv create rect \

127 470 [expr 30+15*$i]\

128 515 [expr 45+15*$i]\

129 -width 1 -fill black -outline #00FF00

130 $canv create text 495 [expr 37+15*$i]\

131 -anchor c -fill #00FF00 -text "" -tags operationP1($i)

132 }

133

134 #ADDRESS

135 for {set i 0} {$i<10} {incr i} {

136 $canv create rect \

137 515 [expr 30+15*$i]\

138 805 [expr 45+15*$i]\

139 -width 1 -fill black -outline #00FF00

140 $canv create text 660 [expr 37+15*$i]\

141 -anchor c -text "" -tags cpuaddrtextP1($i)

142 }

143

144 #Data

145 for {set i 0} {$i<10} {incr i} {

146 $canv create rect \

147 805 [expr 30+15*$i]\

148 845 [expr 45+15*$i]\

149 -width 1 -fill black -outline #00FF00

150 $canv create text 825 [expr 37+15*$i]\

151 -anchor c -fill #00FF00 -text "" -tags DataCPU1($i)

152 }

153

154 #CPU 2

155 $canv create rect \

156 850 10 \

286

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

157 1270 455 \

158 -fill black -outline black -width 2 -tags rect2

159

160 #State

161 $canv create text 870 20\

162 -anchor c -fill red -text State

163

164 $canv create text 912 20\

165 -anchor c -fill red -text Oper.

166

167 $canv create text 1080 20\

168 -anchor c -fill red -text Address

169

170 $canv create text 1247 20\

171 -anchor c -fill red -text Data

172

173 #State P2

174 for {set i 0} {$i<10} {incr i} {

175 $canv create rect \

176 850 [expr 30+15*$i]\

177 890 [expr 45+15*$i]\

178 -width 1 -fill black -outline #00FF00

179 $canv create text 870 [expr 37+15*$i]\

180 -anchor c -fill #00FF00 -text "" -tags StateP2($i)

181 }

182 #OPERATION P2

183 for {set i 0} {$i<10} {incr i} {

184 $canv create rect \

185 890 [expr 30+15*$i]\

186 935 [expr 45+15*$i]\

187 -width 1 -fill black -outline #00FF00

188 $canv create text 912 [expr 37+15*$i]\

189 -anchor c -fill #00FF00 -text "" -tags operationP2($i)

190 }

191

192 #ADDRESS P2

193 for {set i 0} {$i<10} {incr i} {

194 $canv create rect \

195 935 [expr 30+15*$i]\

287

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

196 1225 [expr 45+15*$i]\

197 -width 1 -fill black -outline #00FF00

198 $canv create text 1080 [expr 37+15*$i]\

199 -anchor c -text "" -tags cpuaddrtextP2($i)

200 }

201

202 #Data P2

203 for {set i 0} {$i<10} {incr i} {

204 $canv create rect \

205 1225 [expr 30+15*$i]\

206 1270 [expr 45+15*$i]\

207 -width 1 -fill black -outline #00FF00

208 $canv create text 1247 [expr 37+15*$i]\

209 -anchor c -fill #00FF00 -text "" -tags DataCPU2($i)

210 }

211

212

213

214

215

216 #Horizontal CPU_REQ_ADDRESS

217 for {set i 0} {$i<32} {incr i} {

218 $canv create text [expr 373+20*$i] 200\

219 -anchor c -fill #00FF00 -text [expr 31-$i] -tags cpuaddrtext($i)

220

221 if {$i<29} {$canv create text [expr 363+20*$i] 200\

222 -anchor c -fill red -text "|" -tags cpuaddrtext1($i)

223 } else {$canv create text [expr 363+20*$i] 200\

224 -anchor c -fill blue -text "|" -tags cpuaddrtext1($i)}

225 }

226 $canv create text 1003 200\

227 -anchor c -fill blue -text "|"

228

229 for {set i 0} {$i<32} {incr i} {

230 $canv create rect \

231 [expr 363+20*$i] 210\

232 [expr 383+20*$i] 230\

233 -width 1 -fill black

234 $canv create text [expr 373+20*$i] 220\

288

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

235 -anchor c -fill #00FF00 -text "" -tags cpuaddrtext2($i)

236 }

237 for {set i 0} {$i<32} {incr i} {

238 $canv create text [expr 363+20*$i] 220\

239 -anchor c -fill #00FF00 -text "|"

240 }

241

242 #Tag Bits

243 $canv create rect \

244 363 210 \

245 942 230 \

246 -outline red -width 2

247 #Index Bits

248 $canv create rect \

249 944 210 \

250 1003 230 \

251 -outline blue -width 2

252

253

254 #Tag line & Arrows P0

255 $canv create line \

256 370 230 \

257 370 250 \

258 -fill black -width 2 -tags lineP000

259 $canv create line \

260 260 250 \

261 370 250 \

262 -fill black -width 2 -tags lineP001

263

264 $canv create line 260 250 260 290 -arrow last -fill black -width 2 -tags ar(P000)

265

266 #Index line & Arrows P0

267 $canv create line \

268 964 230 \

269 964 240 \

270 -fill black -width 2 -tags lineP010

271 $canv create line \

272 30 240 \

273 964 240 \

289

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

274 -fill black -width 2 -tags lineP011

275

276 $canv create line 30 240 30 290 -arrow last -fill black -width 2 -tags ar(P001)

277

278

279

280

281

282 # Cache P0

283 $canv create text 30 300\

284 -anchor c -fill #00FF00 -text Index

285

286 $canv create text 70 300\

287 -anchor c -fill #00FF00 -text Valid

288

289 $canv create text 110 300\

290 -anchor c -fill #00FF00 -text Dirty

291

292 $canv create text 260 300\

293 -anchor c -fill #00FF00 -text Tag

294

295 $canv create text 405 300\

296 -anchor c -fill #00FF00 -text Data

297

298

299

300

301

302 #Index

303 for {set i 0} {$i<8} {incr i} {

304 $canv create rect \

305 10 [expr 310+15*$i]\

306 50 [expr 325+15*$i]\

307 -width 1 -fill black -outline #00FF00

308 $canv create text 30 [expr 318+15*$i]\

309 -anchor c -text "" -tags Index0($i)

310 }

311

312 #Valid bit

290

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

313 for {set i 0} {$i<8} {incr i} {

314 $canv create rect \

315 50 [expr 310+15*$i]\

316 90 [expr 325+15*$i]\

317 -width 1 -fill black -outline #00FF00

318 $canv create text 70 [expr 318+15*$i]\

319 -anchor c -fill #00FF00 -text "" -tags VBIT0($i)

320 }

321

322 #Dirty bit

323 for {set i 0} {$i<8} {incr i} {

324 $canv create rect \

325 90 [expr 310+15*$i]\

326 130 [expr 325+15*$i]\

327 -width 1 -fill black -outline #00FF00

328 $canv create text 110 [expr 318+15*$i]\

329 -anchor c -fill #00FF00 -text "" -tags DBIT0($i)

330 }

331

332 #Tag 1 18 bits

333 for {set i 0} {$i<8} {incr i} {

334 $canv create rect \

335 130 [expr 310+15*$i]\

336 390 [expr 325+15*$i]\

337 -width 1 -fill black -outline #00FF00

338 $canv create text 260 [expr 318+15*$i]\

339 -anchor c -text "" -tags Tag18bitstext0($i)

340 }

341 #Data 1 32 bits

342 for {set i 0} {$i<8} {incr i} {

343 $canv create rect \

344 390 [expr 310+15*$i]\

345 425 [expr 325+15*$i]\

346 -width 1 -fill black -outline #00FF00

347 $canv create text 405 [expr 317+15*$i]\

348 -anchor c -fill #00FF00 -text "-8" -tags DataCM0($i)

349 }

350

351

291

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

352 #L2 Cache text

353 $canv create text 240 440\

354 -anchor c -fill #00FF00 -text Private_L2_Cache_Memory_(Processor(0))

355

356 #Tag line & Arrows P1

357 #$canv create line \

358 560 280 \

359 560 305 \

360 -fill blue -width 2 -tags lineP100

361 #$canv create line \

362 560 305 \

363 685 305 \

364 -fill blue -width 2 -tags lineP101

365

366 $canv create line 685 230 685 290 -arrow last -fill black -width 2 -tags ar(P100)

367

368 #Index line & Arrows P1

369 $canv create line \

370 974 230 \

371 974 245 \

372 -fill black -width 2 -tags lineP110

373 $canv create line \

374 455 245 \

375 974 245 \

376 -fill black -width 2 -tags lineP111

377

378 $canv create line 455 245 455 290 -arrow last -fill black -width 2 -tags ar(P101)

379

380 # Cache P1

381 $canv create text 455 300\

382 -anchor c -fill #00FF00 -text Index

383

384 $canv create text 495 300\

385 -anchor c -fill #00FF00 -text Valid

386

387 $canv create text 535 300\

388 -anchor c -fill #00FF00 -text Dirty

389

390 $canv create text 685 300\

292

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

391 -anchor c -fill #00FF00 -text Tag

392

393 $canv create text 825 300\

394 -anchor c -fill #00FF00 -text Data

395

396

397

398

399

400 #Index

401 for {set i 0} {$i<8} {incr i} {

402 $canv create rect \

403 430 [expr 310+15*$i]\

404 480 [expr 325+15*$i]\

405 -width 1 -fill black -outline #00FF00

406 $canv create text 455 [expr 318+15*$i]\

407 -anchor c -text "" -tags Index1($i)

408 }

409

410 #Valid bit

411 for {set i 0} {$i<8} {incr i} {

412 $canv create rect \

413 480 [expr 310+15*$i]\

414 510 [expr 325+15*$i]\

415 -width 1 -fill black -outline #00FF00

416 $canv create text 495 [expr 318+15*$i]\

417 -anchor c -fill #00FF00 -text "" -tags VBIT1($i)

418 }

419

420 #Dirty bit

421 for {set i 0} {$i<8} {incr i} {

422 $canv create rect \

423 510 [expr 310+15*$i]\

424 550 [expr 325+15*$i]\

425 -width 1 -fill black -outline #00FF00

426 $canv create text 530 [expr 318+15*$i]\

427 -anchor c -fill #00FF00 -text "" -tags DBIT1($i)

428 }

429

293

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

430 #Tag 1 18 bits

431 for {set i 0} {$i<8} {incr i} {

432 $canv create rect \

433 550 [expr 310+15*$i]\

434 810 [expr 325+15*$i]\

435 -width 1 -fill black -outline #00FF00

436 $canv create text 680 [expr 318+15*$i]\

437 -anchor c -text "" -tags Tag18bitstext1($i)

438 }

439 #Data 1 32 bits

440 for {set i 0} {$i<8} {incr i} {

441 $canv create rect \

442 810 [expr 310+15*$i]\

443 845 [expr 325+15*$i]\

444 -width 1 -fill black -outline #00FF00

445 $canv create text 825 [expr 317+15*$i]\

446 -anchor c -fill #00FF00 -text "-8" -tags DataCM1($i)

447 }

448

449

450 #L2 Cache text

451 $canv create text 665 440\

452 -anchor c -fill #00FF00 -text Private_L2_Cache_Memory_(Processor(1))

453

454 #Tag line & Arrows P2

455 $canv create line \

456 780 230 \

457 780 255 \

458 -fill black -width 2 -tags lineP200

459 $canv create line \

460 780 255 \

461 1105 255 \

462 -fill black -width 2 -tags lineP201

463

464 $canv create line 1105 255 1105 290 -arrow last -fill black -width 2 -tags ar(P200)

465

466 #Index line & Arrows P2

467 $canv create line \

468 984 230 \

294

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

469 984 265 \

470 -fill black -width 2 -tags lineP210

471 $canv create line \

472 875 265 \

473 984 265 \

474 -fill black -width 2 -tags lineP211

475

476 $canv create line 875 265 875 290 -arrow last -fill black -width 2 -tags ar(P201)

477

478 # Cache P2

479 $canv create text 875 300\

480 -anchor c -fill #00FF00 -text Index

481

482 $canv create text 915 300\

483 -anchor c -fill #00FF00 -text Valid

484

485 $canv create text 955 300\

486 -anchor c -fill #00FF00 -text Dirty

487

488 $canv create text 1105 300\

489 -anchor c -fill #00FF00 -text Tag

490

491 $canv create text 1250 300\

492 -anchor c -fill #00FF00 -text Data

493

494

495

496

497

498 #Index

499 for {set i 0} {$i<8} {incr i} {

500 $canv create rect \

501 850 [expr 310+15*$i]\

502 900 [expr 325+15*$i]\

503 -width 1 -fill black -outline #00FF00

504 $canv create text 875 [expr 318+15*$i]\

505 -anchor c -text "" -tags Index2($i)

506 }

507

295

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

508 #Valid bit

509 for {set i 0} {$i<8} {incr i} {

510 $canv create rect \

511 900 [expr 310+15*$i]\

512 930 [expr 325+15*$i]\

513 -width 1 -fill black -outline #00FF00

514 $canv create text 915 [expr 318+15*$i]\

515 -anchor c -fill #00FF00 -text "" -tags VBIT2($i)

516 }

517

518 #Dirty bit

519 for {set i 0} {$i<8} {incr i} {

520 $canv create rect \

521 930 [expr 310+15*$i]\

522 970 [expr 325+15*$i]\

523 -width 1 -fill black -outline #00FF00

524 $canv create text 950 [expr 318+15*$i]\

525 -anchor c -fill #00FF00 -text "" -tags DBIT2($i)

526 }

527

528 #Tag 1 18 bits

529 for {set i 0} {$i<8} {incr i} {

530 $canv create rect \

531 970 [expr 310+15*$i]\

532 1235 [expr 325+15*$i]\

533 -width 1 -fill black -outline #00FF00

534 $canv create text 1103 [expr 318+15*$i]\

535 -anchor c -text "" -tags Tag18bitstext2($i)

536 }

537 #Data 1 32 bits

538 for {set i 0} {$i<8} {incr i} {

539 $canv create rect \

540 1235 [expr 310+15*$i]\

541 1270 [expr 325+15*$i]\

542 -width 1 -fill black -outline #00FF00

543 $canv create text 1250 [expr 317+15*$i]\

544 -anchor c -fill #00FF00 -text "-8" -tags DataCM2($i)

545 }

546

296

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

547

548 #L2 Cache text

549 $canv create text 1085 440\

550 -anchor c -fill #00FF00 -text Private_L2_Cache_Memory_(Processor(2))

551

552

553 #Main Memory

554 $canv create text 900 470\

555 -anchor c -fill #00FF00 -text Address

556 $canv create text 1075 470\

557 -anchor c -fill #00FF00 -text Data

558

559 #Index

560 for {set i 0} {$i<16} {incr i} {

561 $canv create rect \

562 750 [expr 480+15*$i]\

563 1050 [expr 495+15*$i]\

564 -width 1 -fill black -outline #00FF00

565 $canv create text 900 [expr 488+15*$i]\

566 -anchor c -fill red -text "" -tags IndexMM($i)

567 }

568

569 #Data

570 for {set i 0} {$i<16} {incr i} {

571 $canv create rect \

572 1050 [expr 480+15*$i]\

573 1100 [expr 495+15*$i]\

574 -width 1 -fill black -outline #00FF00

575 $canv create text 1075 [expr 488+15*$i]\

576 -anchor c -fill red -text "" -tags DataMM($i)

577 $canv create text 1125 [expr 488+15*$i]\

578 -anchor c -fill red -text "" -tags DataMM2($i)

579 }

580

581 #Text Main Memory

582 $canv create text 950 730\

583 -anchor c -fill #00FF00 -text Main_Memory

584

585

297

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

586 #Timer

587 #$canv create text 80 30\

588 -anchor c -fill #00FF00 -text Global_State -tags tmr

589

590 #Bullets Timeline

591 $canv create text 30 480 -text {State} -anchor c -fill #00FF00

592 $canv create text 40 520 -text {Address} -anchor c -fill #00FF00

593 $canv create text 30 565 -text {P0} -anchor c -fill #00FF00

594 $canv create text 30 605 -text {P1} -anchor c -fill #00FF00

595 $canv create text 30 645 -text {P2} -anchor c -fill #00FF00

596 $canv create text 40 685 -text {Memory} -anchor c -fill #00FF00

597

598 ##Arc

599

600

601 #$canv create oval 80 80 87 87 -fill white

602

603 #$canv create arc 70 64 180 182 -outline #00FF00 -width 2 -style arc -start 45

604

605 #$canv create oval 160 80 167 87 -fill white

606

607 #$canv create arc 150 64 260 182 -outline #00FF00 -width 2 -style arc -start 45

608

609 #$canv create oval 240 80 247 87 -fill white

610

611

612

613 #$canv create arc 80 80 160 160 -outline white -width 2 -extent 180 -style arc

614

615 #P0

616 #$canv create oval 80 565 87 572 -fill white

617

618 #$canv create arc 70 549 163 667 -outline #00FF00 -width 2 -style arc -start 45

619

620 #$canv create oval 145 565 152 572 -fill white

621

622 #$canv create arc 135 549 228 667 -outline #00FF00 -width 2 -style arc -start 45

623

624 #$canv create oval 210 565 217 572 -fill white

298

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

625

626 #P1

627 #$canv create oval 80 605 87 612 -fill white

628

629 #$canv create arc 70 589 163 707 -outline #00FF00 -width 2 -style arc -start 45

630

631 #$canv create oval 145 605 152 612 -fill white

632

633 #$canv create arc 135 589 228 707 -outline #00FF00 -width 2 -style arc -start 45

634

635 #$canv create oval 210 605 217 612 -fill white

636

637

638 #P2

639 #$canv create oval 80 640 87 647 -fill white

640

641 #$canv create arc 70 624 163 742 -outline #00FF00 -width 2 -style arc -start 45

642

643 #$canv create oval 145 640 152 647 -fill white

644

645 #$canv create arc 135 624 228 742 -outline #00FF00 -width 2 -style arc -start 45

646

647 #$canv create oval 210 640 217 647 -fill white

648

649

650 #Memory

651 #$canv create oval 80 680 87 687 -fill white

652

653 #$canv create arc 70 664 163 782 -outline #00FF00 -width 2 -style arc -start 45

654

655 #$canv create oval 145 680 152 687 -fill white

656

657 #$canv create arc 135 664 228 782 -outline #00FF00 -width 2 -style arc -start 45

658

659 #$canv create oval 210 680 217 687 -fill white

660

661 }

662

663 proc tmr {nl} {

299

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

664 variable canv;

665

666

667 set State [lindex $nl 0]

668

669 #$canv itemconfigure tmr -fill #00FF00 -text Global_State:$State

670

671 if {$State<9} {

672 $canv create text\

673 [expr 83+65*$State] 480\

674 -fill #00FF00 -text $State

675 $canv create text\

676 [expr 83+65*[expr $State+1]] 480\

677 -fill #00FF00 -text [expr $State+1]

678 } else {

679 $canv create text\

680 [expr 83+65*$State] 480\

681 -fill #00FF00 -text $State

682 }

683 }

684 proc INDEX {nl} {

685 variable canv;

686

687 set IndexDecimal [lindex $nl 0]

688 set IndexBinary [lindex $nl 1]

689

690

691 $canv itemconfigure Index0($IndexDecimal) -fill #00FF00 -text $IndexBinary

692 $canv itemconfigure Index1($IndexDecimal) -fill #00FF00 -text $IndexBinary

693 $canv itemconfigure Index2($IndexDecimal) -fill #00FF00 -text $IndexBinary

694

695 }

696 proc CM {nl} {

697 variable canv;

698

699

700 set Pid [lindex $nl 0]

701 set Index [lindex $nl 1]

702 set Data [lindex $nl 2]

300

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

703 set Tag [lindex $nl 3]

704 set Index3 [lindex $nl 4]

705 set Index4 [lindex $nl 5]

706 set Index5 [lindex $nl 6]

707 set Index6 [lindex $nl 7]

708 set RW [lindex $nl 8]

709

710

711 if {$Pid==0} {

712

713 $canv itemconfigure lineP100 -fill black

714 $canv itemconfigure lineP101 -fill black

715 $canv itemconfigure ar(P100) -fill black

716 $canv itemconfigure lineP110 -fill black

717 $canv itemconfigure lineP111 -fill black

718 $canv itemconfigure ar(P101) -fill black

719

720 $canv itemconfigure lineP200 -fill black

721 $canv itemconfigure lineP201 -fill black

722 $canv itemconfigure ar(P200) -fill black

723 $canv itemconfigure lineP210 -fill black

724 $canv itemconfigure lineP211 -fill black

725 $canv itemconfigure ar(P201) -fill black

726

727 $canv itemconfigure lineP000 -fill red

728 $canv itemconfigure lineP001 -fill red

729 $canv itemconfigure ar(P000) -fill red

730 $canv itemconfigure lineP010 -fill blue

731 $canv itemconfigure lineP011 -fill blue

732 $canv itemconfigure ar(P001) -fill blue

733

734 $canv itemconfigure Index0($Index4) -fill white -text $Index3

735 if {$RW == 1} {

736 $canv itemconfigure DataCM0($Index4) -fill white -text $Data

737 }

738 $canv itemconfigure Tag18bitstext0($Index4) -fill white -text $Tag

739

740 } elseif {$Pid==1} {

741

301

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

742 $canv itemconfigure lineP000 -fill black

743 $canv itemconfigure lineP001 -fill black

744 $canv itemconfigure ar(P000) -fill black

745 $canv itemconfigure lineP010 -fill black

746 $canv itemconfigure lineP011 -fill black

747 $canv itemconfigure ar(P001) -fill black

748

749 $canv itemconfigure lineP200 -fill black

750 $canv itemconfigure lineP201 -fill black

751 $canv itemconfigure ar(P200) -fill black

752 $canv itemconfigure lineP210 -fill black

753 $canv itemconfigure lineP211 -fill black

754 $canv itemconfigure ar(P201) -fill black

755

756 $canv itemconfigure lineP100 -fill red

757 $canv itemconfigure lineP101 -fill red

758 $canv itemconfigure ar(P100) -fill red

759 $canv itemconfigure lineP110 -fill blue

760 $canv itemconfigure lineP111 -fill blue

761 $canv itemconfigure ar(P101) -fill blue

762

763 $canv itemconfigure Index1($Index4) -fill white -text $Index3

764 if {$RW == 1} {

765 $canv itemconfigure DataCM1($Index4) -fill white -text $Data

766 }

767 $canv itemconfigure Tag18bitstext1($Index4) -fill white -text $Tag

768

769 } elseif {$Pid==2} {

770

771 $canv itemconfigure lineP000 -fill black

772 $canv itemconfigure lineP001 -fill black

773 $canv itemconfigure ar(P000) -fill black

774 $canv itemconfigure lineP010 -fill black

775 $canv itemconfigure lineP011 -fill black

776 $canv itemconfigure ar(P001) -fill black

777

778 $canv itemconfigure lineP100 -fill black

779 $canv itemconfigure lineP101 -fill black

780 $canv itemconfigure ar(P100) -fill black

302

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

781 $canv itemconfigure lineP110 -fill black

782 $canv itemconfigure lineP111 -fill black

783 $canv itemconfigure ar(P101) -fill black

784

785 $canv itemconfigure lineP200 -fill red

786 $canv itemconfigure lineP201 -fill red

787 $canv itemconfigure ar(P200) -fill red

788 $canv itemconfigure lineP210 -fill blue

789 $canv itemconfigure lineP211 -fill blue

790 $canv itemconfigure ar(P201) -fill blue

791

792 $canv itemconfigure Index2($Index4) -fill white -text $Index3

793 if {$RW == 1} {

794 $canv itemconfigure DataCM2($Index4) -fill white -text $Data

795 }

796 $canv itemconfigure Tag18bitstext2($Index4) -fill white -text $Tag

797 }

798

799

800

801 }

802 proc IM {nl} {

803 variable canv;

804

805

806 set Data [lindex $nl 0]

807 set Addr [lindex $nl 1]

808 set IndexM [lindex $nl 2]

809

810

811

812

813 $canv itemconfigure DataMM($IndexM) -fill #00FF00 -text $Data

814 $canv itemconfigure IndexMM($IndexM) -fill #00FF00 -text $Addr

815 #$canv itemconfigure DataCM($IndexM) -fill red -text $Data

816 #$canv itemconfigure data0($Tick) -fill red -text $Data

817

818 }

819

303

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

820 proc MM {nl} {

821 variable canv;

822

823

824

825 set Data [lindex $nl 0]

826 set Addr [lindex $nl 1]

827 set IndexM [lindex $nl 2]

828 set IndexC [lindex $nl 3]

829 set Tick [lindex $nl 4]

830

831

832

833 $canv itemconfigure DataMM2($IndexM) -fill white -text ""

834 $canv itemconfigure DataMM2($IndexM) -fill white -text $Data

835 $canv itemconfigure IndexMM($IndexM) -fill white -text $Addr

836 #$canv itemconfigure DataCM($IndexM) -fill red -text $Data

837 #$canv itemconfigure data0($Tick) -fill red -text $Data

838

839 #$canv create oval\

840 [expr 80+65*$Tick] 680\

841 [expr 87+65*$Tick] 687\

842 -fill #00FF00

843 $canv create text\

844 [expr 83+65*$IndexC] 717\

845 -fill red -text $Data

846

847 }

848

849 proc ABCD {nl} {

850 variable canv;

851

852

853 set Loc [lindex $nl 0]

854 set Bits [lindex $nl 1]

855

856

857 $canv itemconfigure cpuaddrtext2([expr (($Loc*31+31)/($Loc+1))-$Loc]) -fill white -text $Bits

858

304

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

859 }

860 proc CPUREQ {nl} {

861 variable canv;

862

863

864 set Pid [lindex $nl 0]

865 set Index [lindex $nl 1]

866 set Addr [lindex $nl 2]

867 set RW [lindex $nl 3]

868 set Data [lindex $nl 4]

869 set State [lindex $nl 5]

870

871 if {$Pid == 0} {

872 #$canv itemconfigure rect1 -outline black

873 #$canv itemconfigure rect2 -outline black

874 #$canv itemconfigure rect0 -outline white

875 $canv itemconfigure StateP0($State) -fill #00FF00 -text $State

876 $canv itemconfigure StateP0($State) -fill #00FF00 -text $State

877

878 $canv itemconfigure StateP0($State) -fill #00FF00 -text $State

879

880 if {$RW==0} {

881 $canv itemconfigure operationP0($Index) -fill #00FF00 -text $RW

882 } elseif {$RW==1} {

883 $canv itemconfigure operationP0($Index) -fill #00FF00 -text $RW

884 $canv itemconfigure DataCPU0($Index) -fill white -text $Data

885 }

886

887 $canv itemconfigure cpuaddrtextP0($Index) -fill white -text $Addr

888

889

890

891 } elseif {$Pid == 1} {

892 #$canv itemconfigure rect0 -outline black

893 #$canv itemconfigure rect2 -outline black

894 #$canv itemconfigure rect1 -outline white

895 $canv itemconfigure StateP1($State) -fill #00FF00 -text $State

896

897 if {$RW==0} {

305

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

898 $canv itemconfigure operationP1($Index) -fill #00FF00 -text $RW

899 } elseif {$RW==1} {

900 $canv itemconfigure operationP1($Index) -fill #00FF00 -text $RW

901 $canv itemconfigure DataCPU1($Index) -fill white -text $Data

902 }

903

904 $canv itemconfigure cpuaddrtextP1($Index) -fill white -text $Addr

905

906 } elseif {$Pid == 2} {

907 #$canv itemconfigure rect0 -outline black

908 #$canv itemconfigure rect1 -outline black

909 #$canv itemconfigure rect2 -outline white

910 $canv itemconfigure StateP2($State) -fill #00FF00 -text $State

911

912 if {$RW==0} {

913 $canv itemconfigure operationP2($Index) -fill #00FF00 -text $RW

914 } elseif {$RW==1} {

915 $canv itemconfigure operationP2($Index) -fill #00FF00 -text $RW

916 $canv itemconfigure DataCPU2($Index) -fill white -text $Data

917 }

918

919 $canv itemconfigure cpuaddrtextP2($Index) -fill white -text $Addr

920

921 }

922

923 }

924 proc HM {nl} {

925 variable canv;

926

927 set PIDx [lindex $nl 0]

928 set PIDy [lindex $nl 1]

929 set PIDz [lindex $nl 2]

930 set stringx [lindex $nl 3]

931 set stringy [lindex $nl 4]

932 set stringz [lindex $nl 5]

933 set Index [lindex $nl 6]

934 set State [lindex $nl 7]

935 set VBITx [lindex $nl 8]

936 #set VBITy [lindex $nl 9]

306

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

937 #set VBITz [lindex $nl 10]

938 set DBITx [lindex $nl 9]

939 set DBITy [lindex $nl 10]

940 set DBITz [lindex $nl 11]

941 set Data [lindex $nl 12]

942 set Tick [lindex $nl 13]

943 set Memory [lindex $nl 14]

944 set Addr [lindex $nl 15]

945 set IndexM [lindex $nl 16]

946

947

948 #$canv itemconfigure VBIT($Index) -fill #00FF00 -text $VBIT

949 #$canv itemconfigure DBIT($Index) -fill #00FF00 -text $DBIT

950

951 #$canv itemconfigure DataMM($IndexM) -fill white -text $Memory

952 #$canv itemconfigure IndexMM($IndexM) -fill white -text $Addr

953

954 if {$PIDx==0} {

955 $canv itemconfigure VBIT0($Index) -fill white -text $VBITx

956 $canv itemconfigure DBIT0($Index) -fill white -text $DBITx

957 if {$PIDy==1 && $PIDz==2} {

958 #$canv itemconfigure VBIT1($Index) -fill white -text $VBITy

959 $canv itemconfigure DBIT1($Index) -fill white -text $DBITy

960 #$canv itemconfigure VBIT2($Index) -fill white -text $VBITz

961 $canv itemconfigure DBIT2($Index) -fill white -text $DBITz

962 } elseif {$PIDy==2 && $PIDz==1} {

963 #$canv itemconfigure VBIT2($Index) -fill white -text $VBITy

964 $canv itemconfigure DBIT2($Index) -fill white -text $DBITy

965 #$canv itemconfigure VBIT1($Index) -fill white -text $VBITz

966 $canv itemconfigure DBIT1($Index) -fill white -text $DBITz

967 }

968 if {$stringx=="Write Miss"} {

969 $canv itemconfigure DataCM0($Index) -fill white -text $Data

970 } elseif {$stringx=="Write Hit"} {

971 $canv itemconfigure DataCM0($Index) -fill white -text $Data

972 } elseif {$stringx=="Read Miss"} {

973 $canv itemconfigure DataCM0($Index) -fill white -text $Data

974 $canv itemconfigure DataCPU0($Tick) -fill white -text $Data

975 } elseif {$stringx=="Read Hit"} {

307

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

976 $canv itemconfigure DataCM0($Index) -fill white -text $Data

977 $canv itemconfigure DataCPU0($Tick) -fill white -text $Data

978 }

979 } elseif {$PIDx==1} {

980 $canv itemconfigure VBIT1($Index) -fill white -text $VBITx

981 $canv itemconfigure DBIT1($Index) -fill white -text $DBITx

982 if {$PIDy==0 && $PIDz==2} {

983 #$canv itemconfigure VBIT0($Index) -fill white -text $VBITy

984 $canv itemconfigure DBIT0($Index) -fill white -text $DBITy

985 #$canv itemconfigure VBIT2($Index) -fill white -text $VBITz

986 $canv itemconfigure DBIT2($Index) -fill white -text $DBITz

987 } elseif {$PIDy==2 && $PIDz==0} {

988 #$canv itemconfigure VBIT2($Index) -fill white -text $VBITy

989 $canv itemconfigure DBIT2($Index) -fill white -text $DBITy

990 #$canv itemconfigure VBIT0($Index) -fill white -text $VBITz

991 $canv itemconfigure DBIT0($Index) -fill white -text $DBITz

992 }

993 if {$stringx=="Write Miss"} {

994 $canv itemconfigure DataCM1($Index) -fill white -text $Data

995 } elseif {$stringx=="Write Hit"} {

996 $canv itemconfigure DataCM1($Index) -fill white -text $Data

997 } elseif {$stringx=="Read Miss"} {

998 $canv itemconfigure DataCM1($Index) -fill white -text $Data

999 $canv itemconfigure DataCPU1($Tick) -fill white -text $Data

1000 } elseif {$stringx=="Read Hit"} {

1001 $canv itemconfigure DataCM1($Index) -fill white -text $Data

1002 $canv itemconfigure DataCPU1($Tick) -fill white -text $Data

1003 }

1004 } elseif {$PIDx==2} {

1005 $canv itemconfigure VBIT2($Index) -fill white -text $VBITx

1006 $canv itemconfigure DBIT2($Index) -fill white -text $DBITx

1007 if {$PIDy==0 && $PIDz==1} {

1008 #$canv itemconfigure VBIT0($Index) -fill white -text $VBITy

1009 $canv itemconfigure DBIT0($Index) -fill white -text $DBITy

1010 #$canv itemconfigure VBIT1($Index) -fill white -text $VBITz

1011 $canv itemconfigure DBIT1($Index) -fill white -text $DBITz

1012 } elseif {$PIDy==1 && $PIDz==0} {

1013 #$canv itemconfigure VBIT1($Index) -fill white -text $VBITy

1014 $canv itemconfigure DBIT1($Index) -fill white -text $DBITy

308

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

1015 #$canv itemconfigure VBIT0($Index) -fill white -text $VBITz

1016 $canv itemconfigure DBIT0($Index) -fill white -text $DBITz

1017 }

1018 if {$stringx=="Write Miss"} {

1019 $canv itemconfigure DataCM2($Index) -fill white -text $Data

1020 } elseif {$stringx=="Write Hit"} {

1021 $canv itemconfigure DataCM2($Index) -fill white -text $Data

1022 } elseif {$stringx=="Read Miss"} {

1023 $canv itemconfigure DataCM2($Index) -fill white -text $Data

1024 $canv itemconfigure DataCPU2($Tick) -fill white -text $Data

1025 } elseif {$stringx=="Read Hit"} {

1026 $canv itemconfigure DataCM2($Index) -fill white -text $Data

1027 $canv itemconfigure DataCPU2($Tick) -fill white -text $Data

1028 }

1029 }

1030

1031 #Processors' addresses values bullets

1032 if {$State==0} {

1033 if {$PIDx==0} {

1034 $canv create oval\

1035 [expr 80+65*$State] 565\

1036 [expr 87+65*$State] 572\

1037 -fill white

1038 $canv create oval\

1039 [expr 80+65*[expr $State+1]] 565\

1040 [expr 87+65*[expr $State+1]] 572\

1041 -fill white

1042 $canv create text\

1043 [expr 83+65*$State] 582\

1044 -fill white -text $Data

1045 $canv create arc [expr 80+65*$State-10] [expr 565-16]\

1046 [expr 87+65*$State+76] [expr 572+95]\

1047 -outline white -width 2 -style arc -start 45

1048

1049 $canv create oval\

1050 [expr 80+65*$State] 605\

1051 [expr 87+65*$State] 612\

1052 -fill #00FF00

1053 $canv create oval\

309

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

1054 [expr 80+65*[expr $State+1]] 605\

1055 [expr 87+65*[expr $State+1]] 612\

1056 -fill #00FF00

1057 $canv create text\

1058 [expr 83+65*$State] 622\

1059 -fill #00FF00 -text ""

1060 $canv create oval\

1061 [expr 80+65*$State] 640\

1062 [expr 87+65*$State] 647\

1063 -fill #00FF00

1064 $canv create oval\

1065 [expr 80+65*[expr $State+1]] 640\

1066 [expr 87+65*[expr $State+1]] 647\

1067 -fill #00FF00

1068 $canv create text\

1069 [expr 83+65*$State] 657\

1070 -fill #00FF00 -text ""

1071 } elseif {$PIDx==1} {

1072 $canv create oval\

1073 [expr 80+65*$State] 565\

1074 [expr 87+65*$State] 572\

1075 -fill #00FF00

1076 $canv create oval\

1077 [expr 80+65*[expr $State+1]] 565\

1078 [expr 87+65*[expr $State+1]] 572\

1079 -fill #00FF00

1080 $canv create text\

1081 [expr 83+65*$State] 582\

1082 -fill #00FF00 -text ""

1083 $canv create oval\

1084 [expr 80+65*$State] 605\

1085 [expr 87+65*$State] 612\

1086 -fill white

1087

1088 $canv create oval\

1089 [expr 80+65*[expr $State+1]] 605\

1090 [expr 87+65*[expr $State+1]] 612\

1091 -fill white

1092 $canv create text\

310

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

1093 [expr 83+65*$State] 622\

1094 -fill white -text $Data

1095 $canv create arc [expr 80+65*$State-10] [expr 605-16]\

1096 [expr 87+65*$State+76] [expr 612+95]\

1097 -outline white -width 2 -style arc -start 45

1098 $canv create oval\

1099 [expr 80+65*$State] 640\

1100 [expr 87+65*$State] 647\

1101 -fill #00FF00

1102 $canv create oval\

1103 [expr 80+65*[expr $State+1]] 640\

1104 [expr 87+65*[expr $State+1]] 647\

1105 -fill #00FF00

1106 $canv create text\

1107 [expr 83+65*$State] 657\

1108 -fill #00FF00 -text ""

1109

1110 } elseif {$PIDx==2} {

1111 $canv create oval\

1112 [expr 80+65*$State] 565\

1113 [expr 87+65*$State] 572\

1114 -fill #00FF00

1115 $canv create oval\

1116 [expr 80+65*[expr $State+1]] 565\

1117 [expr 87+65*[expr $State+1]] 572\

1118 -fill #00FF00

1119 $canv create text\

1120 [expr 83+65*$State] 582\

1121 -fill #00FF00 -text ""

1122 $canv create oval\

1123 [expr 80+65*$State] 605\

1124 [expr 87+65*$State] 612\

1125 -fill #00FF00

1126 $canv create oval\

1127 [expr 80+65*[expr $State+1]] 605\

1128 [expr 87+65*[expr $State+1]] 612\

1129 -fill #00FF00

1130 $canv create text\

1131 [expr 83+65*$State] 622\

311

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

1132 -fill #00FF00 -text ""

1133 $canv create oval\

1134 [expr 80+65*$State] 640\

1135 [expr 87+65*$State] 647\

1136 -fill white

1137 $canv create oval\

1138 [expr 80+65*[expr $State+1]] 640\

1139 [expr 87+65*[expr $State+1]] 647\

1140 -fill white

1141 $canv create text\

1142 [expr 83+65*$State] 657\

1143 -fill white -text $Data

1144 $canv create arc [expr 80+65*$State-10] [expr 640-16]\

1145 [expr 87+65*$State+76] [expr 647+95]\

1146 -outline white -width 2 -style arc -start 45

1147 }

1148

1149 } elseif {$State==9} {

1150 if {$PIDx==0} {

1151 $canv create oval\

1152 [expr 80+65*$State] 565\

1153 [expr 87+65*$State] 572\

1154 -fill white

1155 $canv create text\

1156 [expr 83+65*$State] 582\

1157 -fill white -text $Data

1158

1159 } elseif {$PIDx==1} {

1160 $canv create oval\

1161 [expr 80+65*$State] 605\

1162 [expr 87+65*$State] 612\

1163 -fill white

1164 $canv create text\

1165 [expr 83+65*$State] 622\

1166 -fill white -text $Data

1167

1168

1169 } elseif {$PIDx==2} {

1170 $canv create oval\

312

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

1171 [expr 80+65*$State] 640\

1172 [expr 87+65*$State] 647\

1173 -fill white

1174 $canv create text\

1175 [expr 83+65*$State] 657\

1176 -fill white -text $Data

1177 }

1178 } else {

1179 if {$PIDx==0} {

1180 $canv create oval\

1181 [expr 80+65*$State] 565\

1182 [expr 87+65*$State] 572\

1183 -fill white

1184 $canv create oval\

1185 [expr 80+65*[expr $State+1]] 565\

1186 [expr 87+65*[expr $State+1]] 572\

1187 -fill white

1188 $canv create text\

1189 [expr 83+65*$State] 582\

1190 -fill white -text $Data

1191 $canv create arc [expr 80+65*$State-10] [expr 565-16]\

1192 [expr 87+65*$State+76] [expr 572+95]\

1193 -outline white -width 2 -style arc -start 45

1194 $canv create oval\

1195 [expr 80+65*[expr $State+1]] 605\

1196 [expr 87+65*[expr $State+1]] 612\

1197 -fill #00FF00

1198 $canv create text\

1199 [expr 83+65*$State] 622\

1200 -fill #00FF00 -text ""

1201 $canv create oval\

1202 [expr 80+65*[expr $State+1]] 640\

1203 [expr 87+65*[expr $State+1]] 647\

1204 -fill #00FF00

1205 $canv create text\

1206 [expr 83+65*$State] 657\

1207 -fill #00FF00 -text ""

1208 } elseif {$PIDx==1} {

1209 $canv create oval\

313

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

1210 [expr 80+65*[expr $State+1]] 565\

1211 [expr 87+65*[expr $State+1]] 572\

1212 -fill #00FF00

1213 $canv create text\

1214 [expr 83+65*$State] 582\

1215 -fill #00FF00 -text ""

1216 $canv create oval\

1217 [expr 80+65*$State] 605\

1218 [expr 87+65*$State] 612\

1219 -fill white

1220

1221 $canv create oval\

1222 [expr 80+65*[expr $State+1]] 605\

1223 [expr 87+65*[expr $State+1]] 612\

1224 -fill white

1225 $canv create text\

1226 [expr 83+65*$State] 622\

1227 -fill white -text $Data

1228 $canv create arc [expr 80+65*$State-10] [expr 605-16]\

1229 [expr 87+65*$State+76] [expr 612+95]\

1230 -outline white -width 2 -style arc -start 45

1231 $canv create oval\

1232 [expr 80+65*[expr $State+1]] 640\

1233 [expr 87+65*[expr $State+1]] 647\

1234 -fill #00FF00

1235 $canv create text\

1236 [expr 83+65*$State] 657\

1237 -fill #00FF00 -text ""

1238

1239 } elseif {$PIDx==2} {

1240 $canv create oval\

1241 [expr 80+65*[expr $State+1]] 565\

1242 [expr 87+65*[expr $State+1]] 572\

1243 -fill #00FF00

1244 $canv create text\

1245 [expr 83+65*$State] 582\

1246 -fill #00FF00 -text ""

1247 $canv create oval\

1248 [expr 80+65*[expr $State+1]] 605\

314

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

1249 [expr 87+65*[expr $State+1]] 612\

1250 -fill #00FF00

1251 $canv create text\

1252 [expr 83+65*$State] 622\

1253 -fill #00FF00 -text ""

1254 $canv create oval\

1255 [expr 80+65*$State] 640\

1256 [expr 87+65*$State] 647\

1257 -fill white

1258 $canv create oval\

1259 [expr 80+65*[expr $State+1]] 640\

1260 [expr 87+65*[expr $State+1]] 647\

1261 -fill white

1262 $canv create text\

1263 [expr 83+65*$State] 657\

1264 -fill white -text $Data

1265 $canv create arc [expr 80+65*$State-10] [expr 640-16]\

1266 [expr 87+65*$State+76] [expr 647+95]\

1267 -outline white -width 2 -style arc -start 45

1268 }

1269 }

1270

1271 #Memory's address values bullets

1272 if {$State<9} {

1273 $canv create oval\

1274 [expr 80+65*$State] 680\

1275 [expr 87+65*$State] 687\

1276 -fill white

1277

1278 $canv create oval\

1279 [expr 80+65*[expr $State+1]] 680\

1280 [expr 87+65*[expr $State+1]] 687\

1281 -fill white

1282

1283 $canv create text\

1284 [expr 83+65*$State] 697\

1285 -fill white -text $Memory

1286

1287 $canv create arc [expr 80+65*$State-10] [expr 680-16]\

315

APPENDIX C. APPENDIX C: TCL/TK CODE FOR CACHE CONTROLLER

1288 [expr 87+65*$State+76] [expr 687+95]\

1289 -outline white -width 2 -style arc -start 45

1290

1291 } else {

1292 $canv create oval\

1293 [expr 80+65*$State] 680\

1294 [expr 87+65*$State] 687\

1295 -fill white

1296

1297

1298 $canv create text\

1299 [expr 83+65*$State] 697\

1300 -fill white -text $Memory

1301

1302 }

1303

1304 #Addresses bullets

1305 $canv create text\

1306 [expr 83+65*$State] 520\

1307 -fill white -text $Addr

1308

1309 }

1310

1311 };

316

Appendix D

Appendix D: Java Remote Method Invocation (RMI)

317

APPENDIX D. APPENDIX D: JAVA REMOTE METHOD INVOCATION (RMI)

Listing D.1: RMI Tempura Program

1 /* -*- Mode: C -*-

2 * This file is part Tempura: Interval Temporal Logic interpreter.

3 *

4 * Copyright (C) 1998-2016 Nayef H.Alshammari, Antonio Cau

5 *

6 * Tempura is free software: you can redistribute it and/or modify

7 * it under the terms of the GNU General Public License as published by

8 * the Free Software Foundation, either version 3 of the License, or

9 * (at your option) any later version.

10 *

11 * Tempura is distributed in the hope that it will be useful,

12 * but WITHOUT ANY WARRANTY; without even the implied warranty of

13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

14 * GNU General Public License for more details.

15 *

16 * You should have received a copy of the GNU General Public License

17 * along with Tempura. If not, see <http://www.gnu.org/licenses/>.

18 *

19 */

20 load "conversion".

21 load "exprog".

22 /* rmiregistry 0 */

23 /* rmiserver . RmiServerIntf RmiServer 1 */

24 /* rmiclient . RmiServerIntf RmiClient1 2 */

25 /* rmiclient . RmiServerIntf RmiClient2 3 */

26 define apidvar(X) = {X[0]}.

27 define apidval(X) = {X[1]}.

28 define avar1(X,a) = {X[a]}.

29 define aval1(X,b) = {X[b]}.

30 define atime1(X,c) = {strint(X[c])}.

31 define atime_micro1(X,d) = {X[d]}.

32 set print_states = true.

33 define get_var() = {

34 exists T,Client,Data,Timestamp : {

35 get2(T) and

36 Client=strint(apidval(T)) and

37 Data=strint(aval1(T,3)) and

318

APPENDIX D. APPENDIX D: JAVA REMOTE METHOD INVOCATION (RMI)

38 Timestamp =atime_micro1(T,4) and

39 format("Server is Receiving Assertion Data: X=%12d from Client %d at timestamp %s\n",

40 Data,Client,Timestamp) and empty

41 }

42 }.

43 /* run */ define test() = {

44 exists v : {

45 for v<2 do {get_var();skip}

46 }

47 }.

Listing D.2: Client 1 Tempura Program

1 /* -*- Mode: C -*-

2 * This file is part Tempura: Interval Temporal Logic interpreter.

3 *

4 * Copyright (C) 1998-2016 Nayef H.Alshammari, Antonio Cau

5 *

6 * Tempura is free software: you can redistribute it and/or modify

7 * it under the terms of the GNU General Public License as published by

8 * the Free Software Foundation, either version 3 of the License, or

9 * (at your option) any later version.

10 *

11 * Tempura is distributed in the hope that it will be useful,

12 * but WITHOUT ANY WARRANTY; without even the implied warranty of

13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

14 * GNU General Public License for more details.

15 *

16 * You should have received a copy of the GNU General Public License

17 * along with Tempura. If not, see <http://www.gnu.org/licenses/>.

18 *

19 */

20 load "conversion".

21 load "exprog".

22 /* rmiclient . RmiServerIntf RmiClient1 2 */

23 define apidvar(X) = {X[0]}.

24 define apidval(X) = {X[1]}.

319

APPENDIX D. APPENDIX D: JAVA REMOTE METHOD INVOCATION (RMI)

25 define avar1(X,a) = {X[a]}.

26 define aval1(X,b) = {X[b]}.

27 define atime1(X,c) = {strint(X[c])}.

28 define atime_micro1(X,d) = {strint(X[d])}.

29 set print_states = false.

30 define assert(Client,Data,Timestamp) = {

31 exists Client,Data,Timestamp : {

32 format("\n") and

33 format("Client %d is Sending %d to Interface\n",Client) and

34 format("!PROG: assert Client:%d:X:%d:%s:!\n",Client,Data,Timestamp)

35 }

36 }.

37 define get_var() = {

38 exists T : {

39 get2(T) and

40 Client =strint(apidval(T)) and

41 Data =strint(aval1(T,3)) and

42 Timestamp =atime_micro1(T,4) and

43 format("Client %d is Receiving Assertion Data: Client=%d from %d from External Java ...

Program at

44 Timestamp=%s\n",Client,Client,Data,Timestamp) and assert(Client,Data,Timestamp) and empty

45 }

46 }.

47 /* run */ define test_client1() = {skip and get_var()}.

Listing D.3: Client 2 Tempura Program

1 /* -*- Mode: C -*-

2 * This file is part Tempura: Interval Temporal Logic interpreter.

3 *

4 * Copyright (C) 1998-2016 Nayef H.Alshammari, Antonio Cau

5 *

6 * Tempura is free software: you can redistribute it and/or modify

7 * it under the terms of the GNU General Public License as published by

8 * the Free Software Foundation, either version 3 of the License, or

9 * (at your option) any later version.

10 *

320

APPENDIX D. APPENDIX D: JAVA REMOTE METHOD INVOCATION (RMI)

11 * Tempura is distributed in the hope that it will be useful,

12 * but WITHOUT ANY WARRANTY; without even the implied warranty of

13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

14 * GNU General Public License for more details.

15 *

16 * You should have received a copy of the GNU General Public License

17 * along with Tempura. If not, see <http://www.gnu.org/licenses/>.

18 *

19 */

20 load "conversion".

21 load "exprog".

22 /* rmiclient . RmiServerIntf RmiClient2 3 */

23 define apidvar(X) = {X[0]}.

24 define apidval(X) = {X[1]}.

25 define avar1(X,a) = {X[a]}.

26 define aval1(X,b) = {X[b]}.

27 define atime1(X,c) = {strint(X[c])}.

28 define atime_micro1(X,d) = {strint(X[d])}.

29 set print_states = false.

30 define assert(Client,Data,Timestamp) = {

31 exists Client,Data,Timestamp : {

32 format("\n") and

33 format("Client %d is Sending %d to Interface\n",Client) and

34 format("!PROG: assert Client:%d:X:%d:%s:!\n",Client,Data,Timestamp)

35 }

36 }.

37 define get_var() = {

38 exists T : {

39 get2(T) and

40 Client =strint(apidval(T)) and

41 Data =strint(aval1(T,3)) and

42 Timestamp =atime_micro1(T,4) and

43 format("Client %d is Receiving Assertion Data: Client=%d from %d from External Java ...

Program at

44 Timestamp=%s\n",Client,Client,Data,Timestamp) and assert(Client,Data,Timestamp) and empty

45 }

46 }.

47 /* run */ define test_client2() = {skip and get_var()}.

321

APPENDIX D. APPENDIX D: JAVA REMOTE METHOD INVOCATION (RMI)

Listing D.4: Client 1 Java Program

1 import java.rmi.registry.LocateRegistry;

2 import java.rmi.registry.Registry;

3 import java.text.SimpleDateFormat;

4 import java.text.DateFormat;

5 import java.util.Date;

6 import java.util.Random;

7 public class RmiClient1 {

8 private RmiClient1() {}

9 public static void main(String args[]) {

10 String host = (args.length < 1) ? null : args[0];

11 try {

12 Registry registry = LocateRegistry.getRegistry(host);

13 RmiServerIntf stub = (RmiServerIntf) registry.lookup("RmiServerIntf");

14 for(int i = 0; i < 1; i++){

15 Thread.sleep (1000);

16 String Time = MicroTimestamp.INSTANCE.get();

17 int id=1;

18 Random rand = new Random();

19 int X = rand.nextInt();

20 System.out.println("!PROG: assert Client:"+id+":Data:"+X+":"+Time+":!");

21 System.out.println("External Java Program is sending Assertion Data to

22 Tempura Client="+id+" Data="+X+" Timestamp="+Time);

23 }

24 } catch(Exception e) {

25 System.err.println("Client exception: " + e.toString());

26 e.printStackTrace();

27 }

28 }

29 public enum MicroTimestamp {

30 INSTANCE ;

31 private long startDate ;

32 private long startNanoseconds ;

33 private SimpleDateFormat dateFormat ;

34 private MicroTimestamp() {

35 this.startDate = System.currentTimeMillis() ;

36 this.startNanoseconds = System.nanoTime() ;

37 this.dateFormat = new SimpleDateFormat("HH-mm-ss-SSS") ;

322

APPENDIX D. APPENDIX D: JAVA REMOTE METHOD INVOCATION (RMI)

38 }

39 public String get() {

40 long microSeconds = (System.nanoTime() - this.startNanoseconds) / 1000 ;

41 long date = this.startDate + (microSeconds/1000) ;

42 return this.dateFormat.format(date) + String.format("%03d", microSeconds ...

% 1000) ;

43 }

44 }

45 }

Listing D.5: Client 2 Java Program

1 import java.rmi.registry.LocateRegistry;

2 import java.rmi.registry.Registry;

3 import java.text.SimpleDateFormat;

4 import java.text.DateFormat;

5 import java.util.Date;

6 import java.util.Random;

7 public class RmiClient2 {

8 private RmiClient2() {}

9 public static void main(String args[]) {

10 String host = (args.length < 1) ? null : args[0];

11 try {

12 Registry registry = LocateRegistry.getRegistry(host);

13 RmiServerIntf stub = (RmiServerIntf) registry.lookup("RmiServerIntf");

14 for(int i = 0; i < 1; i++){

15 Thread.sleep (1000);

16 String Time = MicroTimestamp.INSTANCE.get();

17 int id=2;

18 Random rand = new Random();

19 int X = rand.nextInt();

20 System.out.println("!PROG: assert Client:"+id+":Data:"+X+":"+Time+":!");

21 System.out.println("External Java Program is sending Assertion Data to

22 Tempura Client="+id+" Data="+X+" Timestamp="+Time);

23 }

24 } catch(Exception e) {

25 System.err.println("Client exception: " + e.toString());

323

APPENDIX D. APPENDIX D: JAVA REMOTE METHOD INVOCATION (RMI)

26 e.printStackTrace();

27 }

28 }

29 public enum MicroTimestamp {

30 INSTANCE ;

31 private long startDate ;

32 private long startNanoseconds ;

33 private SimpleDateFormat dateFormat ;

34 private MicroTimestamp() {

35 this.startDate = System.currentTimeMillis() ;

36 this.startNanoseconds = System.nanoTime() ;

37 this.dateFormat = new SimpleDateFormat("HH-mm-ss-SSS") ;

38 }

39 public String get() {

40 long microSeconds = (System.nanoTime() - this.startNanoseconds) / 1000 ;

41 long date = this.startDate + (microSeconds/1000) ;

42 return this.dateFormat.format(date) + String.format("%03d", microSeconds ...

% 1000) ;

43 }

44 }

45 }

Listing D.6: Server Java Program

1 import java.rmi.registry.Registry;

2 import java.rmi.registry.LocateRegistry;

3 import java.rmi.RemoteException;

4 import java.rmi.server.UnicastRemoteObject;

5 import java.text.SimpleDateFormat;

6 import java.text.DateFormat;

7 import java.util.Date;

8 public class RmiServer implements RmiServerIntf {

9 static Integer x = 0;

10 public RmiServer() {}

11 public Integer getMessage() {

12 return x++;

13 }

324

APPENDIX D. APPENDIX D: JAVA REMOTE METHOD INVOCATION (RMI)

14 public static void main(String args[]) {

15 try {

16 RmiServer obj = new RmiServer();

17 RmiServerIntf stub = (RmiServerIntf) UnicastRemoteObject.exportObject(obj, 0);

18 Registry registry = LocateRegistry.getRegistry();

19 registry.rebind("RmiServerIntf",stub);

20 System.err.println("Server ready");

21 } catch (Exception e) {

22 System.err.println("Server exception: " + e.toString());

23 e.printStackTrace();

24 }

25 }

26 }

Listing D.7: Server Interface Java Program

1 import java.rmi.Remote;

2 import java.rmi.RemoteException;

3 public interface RmiServerIntf extends Remote {

4 public Integer getMessage() throws RemoteException;

5 }

325

Appendix E

Appendix E: MATLAB Code for Correctness Prop-

erties

326

APPENDIX E. APPENDIX E: MATLAB CODE FOR CORRECTNESS PROPERTIES

Listing E.1: MATLAB Code for Memory Consistency Property

9 for c = [1 4 7 10 13 16 19 22 25 28]

10 load AssertionData.txt

11

12 State=AssertionData(c,1);

13

14 Pid0=AssertionData(c,2);

15 Pid1=AssertionData(c+1,2);

16 Pid2=AssertionData(c+2,2);

17

18 CacheP0=AssertionData(c,12);

19 CacheP1=AssertionData(c+1,12);

20 CacheP2=AssertionData(c+2,12);

21

22 IndexP0=AssertionData(c,10);

23 IndexP1=AssertionData(c+1,10);

24 IndexP2=AssertionData(c+2,10);

25

26 AddrMem=AssertionData(c,5);

27

28 MemoryP0=AssertionData(c,13);

29 MemoryP1=AssertionData(c+1,13);

30 MemoryP2=AssertionData(c+2,13);

31

32 switch c

33 case 1

34 f = 1;

35 case 4

36 f = 2;

37 case 7

38 f = 3;

39 case 10

40 f = 4;

41 case 13

42 f = 5;

43 case 16

44 f = 6;

45 case 19

327

APPENDIX E. APPENDIX E: MATLAB CODE FOR CORRECTNESS PROPERTIES

46 f = 7;

47 case 22

48 f = 8;

49 case 25

50 f = 9;

51 case 28

52 f = 10;

53 end

54

55 figure(f);

56 set(gcf, 'Position', [100, 100, 900, 700])

57 subplot(2,3,1);

58 plot(IndexP0,CacheP0,'b.','MarkerSize',20);

59 grid on

60 set(gca, 'XTick', 0:7)

61 xlim([-1 7])

62 ylim([-16 33])

63 xlabel('Index')

64 ylabel('Data')

65 legend(['Cache[',num2str(IndexP0) ']=',num2str(CacheP0)])

66 title("Cache of Pid "+Pid0+" at State "+State)

67

68 subplot(2,3,2);

69 plot(IndexP1,CacheP1,'g.','MarkerSize',20);

70 grid on

71 set(gca, 'XTick', 0:7)

72 xlim([-1 7])

73 ylim([-16 33])

74 xlabel('Index')

75 ylabel('Data')

76 legend(['Cache[',num2str(IndexP1) ']=',num2str(CacheP1)])

77 title("Cache of Pid "+Pid1+" at State "+State)

78

79 subplot(2,3,3);

80 plot(IndexP2,CacheP2,'r.','MarkerSize',20);

81 grid on

82 set(gca, 'XTick', 0:7)

83 xlim([-1 7])

84 ylim([-16 33])

328

APPENDIX E. APPENDIX E: MATLAB CODE FOR CORRECTNESS PROPERTIES

85 xlabel('Index')

86 ylabel('Data')

87 legend(['Cache[',num2str(IndexP2) ']=',num2str(CacheP2)])

88 title("Cache of Pid "+Pid2+" at State "+State)

89

90 subplot(2,3,[4,6]);

91 plot(AddrMem,MemoryP0,'m.','MarkerSize',20);

92 grid on

93 set(gca, 'XTick', 0:15)

94 xlim([-0.5 15])

95 ylim([-16 33])

96 xlabel('Address')

97 ylabel('Data')

98 legend(['Memory[',num2str(AddrMem) ']=',num2str(MemoryP0)])

99 title("Main Memory at State "+State)

100

101

102 end

103 disp('Correctness Property 1: Memory Consistency is Done!')

Listing E.2: MATLAB Code for Cache Coherence Property

104 for c = [1 4 7 10 13 16 19 22 25 28]

105 load AssertionData.txt

106

107 State=AssertionData(c,1);

108

109 Pid0=AssertionData(c,2);

110 Pid1=AssertionData(c+1,2);

111 Pid2=AssertionData(c+2,2);

112

113 IndexP0=AssertionData(c,10);

114 IndexP1=AssertionData(c+1,10);

115 IndexP2=AssertionData(c+2,10);

116

117 MSIP0=AssertionData(c,14);

118 MSIP1=AssertionData(c+1,14);

329

APPENDIX E. APPENDIX E: MATLAB CODE FOR CORRECTNESS PROPERTIES

119 MSIP2=AssertionData(c+2,14);

120

121 switch c

122 case 1

123 f = 1;

124 case 4

125 f = 2;

126 case 7

127 f = 3;

128 case 10

129 f = 4;

130 case 13

131 f = 5;

132 case 16

133 f = 6;

134 case 19

135 f = 7;

136 case 22

137 f = 8;

138 case 25

139 f = 9;

140 case 28

141 f = 10;

142 end

143

144 figure(f);

145 set(gcf, 'Position', [100, 100, 900, 700])

146 subplot(3,1,1);

147 C = [0 0 0];

148 if MSIP0 == 1

149 C = [1 0 0];

150 elseif MSIP0 == 2

151 C = [0 0 1];

152 else

153 C = [0 1 0];

154 end

155

156 plot(IndexP0,MSIP0,'color',C,'marker','.','MarkerSize',20);

157 grid on

330

APPENDIX E. APPENDIX E: MATLAB CODE FOR CORRECTNESS PROPERTIES

158 set(gca, 'XTick', 0:7)

159 set(gca, 'YTick', 0:4)

160 xlim([-1 7])

161 ylim([0 3.5])

162 xlabel('Index')

163 ylabel('MSI')

164 if MSIP0 == 1

165 legend('Modified');

166 elseif MSIP0 == 2

167 legend('Shared');

168 else

169 legend('Invalid');

170 end

171 title("Coherence State of Cache Blocks of Processor "+Pid0+" at State "+State)

172

173 subplot(3,1,2);

174 C = [0 0 0];

175 if MSIP1 == 1

176 C = [1 0 0];

177 elseif MSIP1 == 2

178 C = [0 0 1];

179 else

180 C = [0 1 0];

181 end

182

183 plot(IndexP1,MSIP1,'color',C,'marker','.','MarkerSize',20);

184 grid on

185 set(gca, 'XTick', 0:7)

186 set(gca, 'YTick', 0:4)

187 xlim([-1 7])

188 ylim([0 3.5])

189 xlabel('Index')

190 ylabel('MSI')

191 if MSIP1 == 1

192 legend('Modified');

193 elseif MSIP1 == 2

194 legend('Shared');

195 else

196 legend('Invalid');

331

APPENDIX E. APPENDIX E: MATLAB CODE FOR CORRECTNESS PROPERTIES

197 end

198 title("Coherence State of Cache Blocks of Processor "+Pid1+" at State "+State)

199

200 subplot(3,1,3);

201 C = [0 0 0];

202 if MSIP2 == 1

203 C = [1 0 0];

204 elseif MSIP2 == 2

205 C = [0 0 1];

206 else

207 C = [0 1 0];

208 end

209

210 plot(IndexP2,MSIP2,'color',C,'marker','.','MarkerSize',20);

211 grid on

212 set(gca, 'XTick', 0:7)

213 set(gca, 'YTick', 0:4)

214 xlim([-1 7])

215 ylim([0 3.5])

216 xlabel('Index')

217 ylabel('MSI')

218 if MSIP2 == 1

219 legend('Modified');

220 elseif MSIP2 == 2

221 legend('Shared');

222 else

223 legend('Invalid');

224 end

225 title("Coherence State of Cache Blocks of Processor "+Pid2+" at State "+State)

226

227

228 end

229 disp('Correctness Property 2: Cache Coherence is Done!')

332

	Declaration of Authorship
	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Problem Statement and Research Motivation
	Research Questions
	Research Methodology
	Success Criteria
	Thesis Outline

	Verification Techniques for Parallel Systems: a Review
	Introduction
	Basic Concepts and Related Topics
	Concurrency versus Parallelism
	Parallel-Concurrent Programming Models in Java
	Modern Central Processing Units (CPUs)
	Petri Net
	Global State Construction
	Parallel Programming Models
	Shared Memory
	Message Passing
	Shared Memory versus Message Passing

	Verification Techniques
	Runtime Verification
	Monitors
	Taxonomy
	Runtime Verification versus Model Checking
	Runtime Verification versus Testing
	The Use of Runtime Verification
	Existing Runtime Verification Frameworks
	EAGLE
	J-LO
	LARVA
	LogScope
	LoLa

	Formal Methods-Based Tools for Parallel Systems
	Temporal Logic
	Point-Based versus Interval-Based Structure of Temporal Logics
	Interval Temporal Logic (ITL)
	Syntax
	Informal Semantics
	Justification for Choosing Interval Temporal Logic (ITL)

	Related Work
	Memory Models for Interval Temporal Logic (ITL)
	Framing Variables
	Transactional Memory

	Meltdown and Spectre

	Summary

	Computational Model
	Introduction
	Computational Model
	Message-Passing based Communication
	Related Work
	Execution Modes
	Channel Communication
	Shunt Communication
	Delay and Timeout
	Resource Allocation
	The Funnel

	Shared-Variable based Communication
	True Concurrency
	Interleaving Concurrency

	Architecture Framework
	Generation Phase
	Communication Models
	Concurrency Forms
	Execution Modes

	Locals Verification & Assertion Phase
	Interleaving Concurrency and Shared-Variable
	True Concurrency and Shared-Variable
	Synchronous Execution and Message-Passing (Channels)
	Asynchronous Execution and Message-Passing (Shunts)

	Global Verification Phase

	Parallel Runtime Verification Framework (PRVF) Model
	Summary

	Design and Implementation of a Parallel Runtime Verification Framework (PRVF)
	Introduction
	(Ana)Tempura
	Assertion Points
	The Monitor
	Tempura Interpreter

	Evolutionary Improvements of AnaTempura
	Realisation of Assertion Points Techniques

	Benchmarking Applications
	Producer-Consumer
	Dining Philosophers Problem

	Summary

	Case Study: Cache Controller
	Cache Memory Controller: A Case Study
	The Basics of Cache Memory
	Description
	MSI Protocol
	Formal Description of Cache Controller
	Compositional Modelling

	Analysis and Discussion
	Global Program : Cache Controller
	Raw Data Description
	External Programs : Local Processors
	Raw Data Analysis
	Properties Check of The Cache Controller

	Summary

	Evaluation of Parallel Runtime Verification Framework (PRVF)
	Introduction
	MATLAB
	Integrating MATLAB and AnaTempura
	Running MATLAB
	AnaTempura Runs MATLAB

	Correctness Properties
	Revisiting The Case Study of Cache Controller
	Memory Consistency Property
	Cache Coherence Property

	Discussion
	Related Work
	Summary

	Conclusion
	Thesis Summary
	Comparison with Related Work
	Original Contribution
	Success Criteria Revisited
	Limitations
	Future Work
	Future Impact
	Academic
	Industrial

	Bibliography
	Appendix A: Simulations & Animation
	Appendix B: Tempura Code for Cache Controller
	Appendix C: Tcl/tk Code for Cache Controller
	Appendix D: Java Remote Method Invocation (RMI)
	Appendix E: MATLAB Code for Correctness Properties

