
  

1 

 

Recent Progress and Emerging Application Areas for Lithium-Sulfur Battery 

Technology  

 

Susanne Dörfler,*, Sylwia Walus, Jacob Locke*, Abbas Fotouhi, Daniel J. Auger,  

Neda Shateri, Thomas Abendroth, Paul Härtel, Holger Althues, Stefan Kas
kel 
 

Authors:  

Susanne Dörfler*, Thomas Abendroth, Holger Althues,  

Fraunhofer IWS, Dresden, Germany  

 

Sylwia Walus, Jacob Locke*, 

OXIS Energy Ltd., Culham Science Center, Abingdon, UK 

 

Paul Härtel, Stefan Kaskel 

Dresden, University of Technology, TU Dresden, Germany 

 

Abbas Fotouhi, Daniel J. Auger, Neda Shateri 

Advanced Vehicle Engineering Centre, Cranfield University, Bedfordshire MK 43 0AL, UK 

 

E-mail: susanne.doerfler@iws.fraunhofer.de, jacob.locke@oxisenergy.com 

 

Keywords: applications, lithium sulfur batteries, prototype cells, battery management systems  

  

mailto:susanne.doerfler@iws.fraunhofer.de
mailto:sylwia.walus@oxisenergy.com
e805814
Text Box
Energy Technology: Generation, Coversion, Storage, Distribution, Available online 07 October 2020DOI: 10.1002/ente.202000694



  

2 

 

Abstract 

Electrification is progressing significantly within the present and future vehicle sectors such as 

large commercial vehicles (e. g. trucks and busses), high altitude long endurance (HALE), high 

altitude pseudo satellites (HAPS), and electric vertical take-off and landing (eVTOL). The 

battery systems performance requirements differ across these applications in terms of power, 

cycle life, system cost, etc. However, the need for high gravimetric energy density, 400 Wh kg-

1 and beyond, is common across them all, since it will enable vehicles to achieve extended range, 

longer mission duration, lighter weight or increased payload. The system level requirements of 

these emerging applications can be broken down into the component level developments 

required to integrate Li-S technology as the power system of choice. In order to adapt the 

batteries’ properties, such as energy and power density, to the respective application, the 

academic research community has a key role to play in component level development. However, 

materials and component research must be conducted within the context of a viable Li-S cell 

system. Herein, the key performance benefits, limitations, modelling and recent progress of the 

Li-S battery technology and its adaption towards real world application are discussed.  

 

1. Introduction 

 

With the ever-increasing need for electrification across many application sectors, the 

development of new energy storage technologies is of increasing relevance and critical 

importance. Electrification is progressing significantly within the traditional transportation 

sectors such as: electric bikes, cars, buses, and other commercial vehicles, enabled by continued 

cell development and Gigafactory-scale mass production of Li-ion battery technology. 

However, two key factors are starting to drive the need for new solutions to be found: One 

factor is the secure supply of key elements - mainly cobalt and nickel - used in most of the 
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conventional Li-ion cells are becoming increasingly critical. The other being the performance 

requirements of desirable emerging application areas are beyond the capabilities of traditional 

Li-ion battery technology. Examples include large commercial vehicles, [1] high altitude long 

endurance (HALE), high altitude pseudo satellites (HAPS), electric vertical take-off and 

landing (eVTOL) [2] and electric passenger aircraft. The weight of the battery system is an 

especially critical factor for these aviation applications. The battery systems performance 

requirements differ across these applications: power, cycle life, system cost, etc. However, the 

need for high gravimetric energy density, 400 Wh kg-1 and beyond, is common across them all. 

Higher energy battery systems will enable these vehicles to achieve extended range, longer 

mission duration, lighter vehicle weight or increased payload. In the following, key advantages, 

limitations and progress made to extend cycle life, energy, power, and safety of Li-S battery 

systems (BMS) are described. Further, recent advances regarding modelling, battery system 

management and the integration of Li-S batteries into present as well as future real world 

applications are summarized.  

 

2. Lithium-Sulfur Battery Technology 

2.1. Advantages  

Li-ion battery systems are the current technology of choice for many applications, however, the 

achievable specific energy reaches a maximum at around 240-300 Wh kg-1 at the cell level. [3] 

Emerging higher energy battery systems include advanced Li-ion technology (e.g. Silicon-

NMC), [4] Li metal–NMC (especially with high-nickel ternary cathodes), [5] Li-S (Lithium-Sulfur), 

[6,7], and Li-O2 (Lithium-Air).[6] In addition to that, solid-state technology is recently considered 

as a focus topic in the battery research and industry. As far as exciting and promising these 

technologies are, the Technology Readiness Level (TRL) should be strongly taken into account 

when comparing different technologies, as some of them may not be ready for some time yet. 
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According to the EU Integrated Strategic Energy Technology Plan (SET-Plan) Action 7 for 

2030 [8], Li-air or rather Li-O2 batteries have so far the lowest TRL level. Solid-State batteries, 

despite the tremendous attention they have gained, still remain mainly in the laboratory in the 

form of a small pouch cells at best. A full scale solid-state prototype is being envisaged by 

Toyota for 2025 [9], but Panasonic claims that this technology is more likely to be available in 

the next decade. First results on Li metal–NMC are very promising [10], but the issue of the 

availability of the raw materials cobalt and nickel cannot be neglected. Also in terms of safety, 

high-nickel ternary cathodes in combination with lithium still have to be optimized [11].   

Among these next-generation battery technologies, Li-S is attracting increasing attention driven 

by the significant advantages the chemistry can offer combined with the demonstrated 

technology performance and promising progress made in terms of its technology readiness level 

(TRL) in the recent years. [12,13,14,15] 

Lithium is the lightest metal and displays a very low standard reduction potential (-3.04 V). 

These attributes produce an ideal negative electrode which possesses a low operating voltage 

and high specific capacity. Sulfur is a solid lightweight stable electronegative element that can 

achieve a high theoretical capacity of 1672 mA h g-1 (S) when fully reduced to Li2S. When 

combined in an electrochemical cell with lithium, the formation of one of the highest energy 

material couples is achieved. Sulfur is also an abundant element which enables the possibility 

for low cost and environmentally compatible battery manufacturing. [16] In addition, Li-S 

technology does not rely on a supply of materials involved in geopolitical or social issues (such 

as cobalt). [17] This factor will become even more important in the nearest future when the 

demand for energy storage will increase exponentially. Li-S technology has also been reported 

to be more environmentally friendly than commercially available NMC-Graphite, if taking into 

account CO2 eq km-1 being generated. [18] Furthermore, sulfur based electrodes can be prepared 

using water-based processes, reducing the need of energy intense toxic solvents commonly used 
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when processing NMC electrodes. In addition, a dry-transfer film process without using any 

solvents has been developed. [19] 

Today, there are still only very few academic institutions or companies which have 

demonstrated Li-S battery technology at a TRL (Technology Readiness Level) greater than 5. 

[20–26] BASF and SION power had worked on Li-S pouch cells [27], but have not published any 

results for several years. LG Chem recently published a press release on a drone powered by 

Li-S pouch cells with  specific energy as high as 410 Wh kg-1, and stated that commercial cell 

production is expected to begin in 2025 [28]. The drone, called EAV-3, was co-developed with 

Korea Aerospace Research Institute (KARI). A pouch cell with a specific energy as high as 470 

Wh kg-1 was reported by Beijing Institute of Technology [20]. Pacific Northwestern National 

Laboratory has published work on Lithium-Sulfur prototype pouch cells in order to bridge the 

gap between academic and industrial research [29]. Dalian University published a Li-S pouch 

cell with  LiNO3 free electrolyte, a specific energy of 350 Wh kg−1 and specific power of 60 W 

kg−1 [24]. Tsinghua University in Beijing [30] and Gebze Technical University [31] have built 

multi-layered pouch cells and investigated the critical parameters for the transfer of research 

findings from coin to pouch cell level. OXIS Energy Ltd are a company dedicated to the 

development of Li-S battery technology and are currently expanding beyond its pilot scale 

production capability at its facilities in Culham, Oxford, UK [32]. At these facilities, high 

capacity (>15 Ah) Li-S pouch cells are routinely produced which exceed 400 Wh kg-1 at a 

TRL/MRL level of 7-8. The Li-S cells are produced in several form factors, with cell design 

and components tailored to meet the demands of customers, enabling evaluation of Li-S 

technology in a wide range of real world application areas (Figure 1a,b). OXIS Energy’ Li-S 

technology is under continuous development enabling the expectation that production of high 

energy Li-S cells of 500 to 600 Wh kg-1 will become possible in the next few years. [33] OXIS 

Energy and CODEMGE recently signed a lease agreement to build the world's first Li-S 
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manufacturing plant. [32] In addition, plans by the company Morrow to build lithium-sulfur 

Gigafactories in Norway are underway. [34] 

 

2.2. Limitations  

The main challenges to resolve are the cycle life and rate capability. The relatively short cycle 

life, compared with conventional Li-ion technology, has its source in use of a lithium metal 

based negative electrode, especially in combination with the highly reactive polysulfides [30]. 

The electrolyte according to the state of the art dissolves a high amount of highly reactive 

polysulfides that indirectly stress the anode. It is known that LiNO3 in combination with the 

lithium polysulfides play an important role to passivate the lithium anode [35,36]. This depends 

on the sulfur loading in the cathode [37].Below a certain threshold of concentration of sulfur 

species, polysulfides can have a beneficial effect. Above a certain sulfur amount, the current 

density is increased [38] causing dendrite formation or mossy lithium growth is accelerated [8,23]. 

The development of a stable and reversible lithium metal electrode is of utmost importance for 

high energy battery research [39,40] and it provides the greatest opportunity to improve the 

performance of Li-S battery technology. It is noteworthy that the generic development of this 

component is also required for other next generation battery systems including Li metal-NMC 

systems and high-energy solid-state battery systems. [26,41] Electrolyte depletion, caused by 

electrolyte consumption at the anode/electrolyte interface, is the major cause of the low cycle 

life of Li-S technology. [42] Improving the cycle life of Li-S battery systems is an important 

metric for all applications. The rate of electrolyte depletion within Li-S systems drives the need 

for excess electrolyte and lithium to be added to cells, [26,43,44] both of which reduce the 

gravimetric and volumetric energy density of the system.  

Li-S technology has made significant progress in the area of specific energy together with 

power performance. [7,30,45–47] However, the limited volumetric energy density resulting from 
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the use of low density and highly porous cathode structures combined with the intrinsic low 

density of the active material sulfur is still a road block for the implementation of Li-S 

technology in EV other than trucks and busses. The difference in developing a cell suitable for 

high energy applications compared to a cell designed for high power applications includes 

system design and cell design modification, however, enabling a significant development in 

performance comes down to the design of the cell components, such as the structure of the 

cathode, and fundamental materials properties such as electrolyte system development. [29] 

Within the battery research community, significant efforts have been made to improve the 

performance of the cell components and material used within Li-S batteries. [25,40,48,49,50] The 

list below briefly summarizes selected examples. 

 In regard to cathode adaption, a variety of carbons /sulfur composite materials has been 

synthesized and evaluated over the last decade. The intrinsic carbon porosity has been 

adapted by using various templates and precursors. Also, different carbon morphologies 

(CNT, graphene) have been employed [7,45]. However, the impact of the secondary 

macroporosity created by the interspace between particles and binders has often been 

neglected, but is about to be addressed in more details [23,42,51,52]. 

 In regard to the lithium anode, promising material concepts such as conductive or in-

conductive frameworks, ionically conductive coatings, spacer concepts and in-situ SEIs 

by special electrolyte additives have been developed and analyzed [8,46,53]. In order to 

bring these material concepts into prototype cells, dead volume and additional inactive 

material weight or volume need consideration. Coatings should be ionically conductive 

and maintain a certain mechanical flexibility. Metal-Lithium alloys are also an 

interesting concept but might lower the cell voltage, overall cell energy and should be 

stable versus the highly reactive polysulfides.  
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 In terms of electrolytes, ether based electrolytes are still promising candidates [54]. The 

concept of sparingly polysulfide solvating electrolytes which intrinsically hamper the 

polysulfide dissolution and minimize the shuttle effect is promising and allow 

functioning of the cell without the common LiNO3 additive which has been reported to 

lead to gas formation. However, the mass density and kinetic limitation of these 

electrolyte systems needs to be addressed. Solid electrolytes [55], especially the glass 

ceramic ones, can also inhibit the polysulfide shuttle. However, the cathode tortuosity 

and processing needs to be strongly adapted since intimate contact between solid 

electrolyte and sulfur-carbon composite is crucial. Polymeric electrolytes are easier to 

process, but need to be run at elevated temperature leading to a partial dissolution of 

polysulfides and a charge/discharge behavior which is known from state of the art of 

ether electrolytes [56].  

Further developments are, however, still required to enable Li-S technology to fulfil its potential. 

With respect to the cell level limitations, one important consideration is the geometry of 

commercially available lithium foil (minimum thickness of 50 µm  and maximum width of 

10 cm  [57]) which limits the overall cell geometry and optimization of the ratio between active 

to inactive component mass. Consequently, nickel tabs need to be adapted for these electrode 

geometries and for each application (high power vs. high energy, see section 2.3) as these tabs 

usually play a key role in cell cooling [58] as well as transfer the current.  

Another limitation is the pouch cell as a cell type, as some applications prefer cylindrical cells 

with a stainless steel casing. As Li-S cells are normally subjected to a drastic volume change, 

winding and employing the lithium anode and sulfur cathodes into rigid cylindrical housings 

can be detrimental. In addition, the steel housing limits the overall energy density [59].   

In order to tackle the limitation in terms of volumetric energy, thinner than 50 µm lithium foils 

are required, ideally without current collector such as nickel or copper as these have a 
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detrimental impact on the gravimetric energy density. Lithium as an anode is ductile, hence the 

flexural stiffness is limited as well. Further approach to minimize inactive mass is to employ 

perforated aluminum current collectors on cathode side. This require a free-standing active 

cathode layer, such as dry film coatings or buckypaper. The scale up of these films has definitely 

improved over the last decade, but is still limited when considering Gigafactory scale.  

To facilitate focused and high value materials research it is suggested that the scientific 

community should regard a Li-S cell in its entirety and consider the interplay of components 

and electrolyte on the cell level performance, possible approaches will be detailed below.[15,23,60]  

 

2.3. Approaches to improve the Cycle life, Energy, Power and Safety of Li-S 

technology 

 

Cycle life 

So far, the most promising approaches to improve the anode/electrolyte interface have been the 

development of stable electrolyte systems [25,61] and the use of solid-state electrolyte coatings. 

[46,48,62] The realization of a stable lithium anode is crucial to extend the cycle life but it also 

provides the opportunity for improvements to specific energy, energy density, power 

performance, and safety. OXIS Energy are actively developing scalable lithium metal 

protection concepts to stabilize the lithium metal electrolyte interface within Li-S batteries and 

enable isolation of lithium metal from the electrolyte component in prototype cells. An example 

of a protected lithium electrode produced by OXIS Energy is presented in Figure 2, where the 

SEM image highlights the ability to plate dense lithium metal beneath a protection layer.    Cell 

design is a critical parameter for conducting materials level research into lithium-based anodes, 

the use of small pouch cells has been of significant benefit to enable the use of realistic 

electrolyte volumes and stack pressure. For electrochemical testing, especially of lithium half 

cells, a minimum charge passed per step of 3 mA h cm-2, with a minimum current density of 

0.3 mA cm-2 should be implemented, with current densities >1.5 mA cm-2 targeted. The 
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electrolyte loading (E/S ratio) should also be minimized and kept below 2.0 µL mAh-1 of charge 

passed per step. Under these conditions the true impact of materials level developments can be 

clearly identified.  

 

Energy (gravimetric vs. volumetric) 

A careful and holistic cell design is the key to achieve high values of the gravimetric (Wh kg-1) 

and volumetric energy density (Wh L-1). [7,23,43,45] The energy density of Li-S technology is a 

key development metric, especially required for applications in which space is limited such as 

electric vehicles (EV). There are three main approaches to increase the energy density (Figure 

2):  

First (i), increasing the cathode density. Due to the low intrinsic density of both carbon and 

sulfur, the current electrode tap densities range approximately between 0.4 – 0.6 g cm-3. 

Increasing this density values to > 0.7 g cm-3 while maintaining areal capacities higher than 

4 mAh cm-2 enable an increase of energy per volume. Cathode densification will however 

significantly reduce the volume available for the uptake of electrolyte and might kinetically 

hamper the conversion mechanism, especially in electrolyte with high lithium polysulfide 

(LiPS) solubility. [23,63] Hence, the cathode density needs to be tailored in conjunction with the 

electrolyte development. 

Second (ii), the electrolyte volume needs to be decreased for both gravimetric and volumetric 

energy density so that the conversion mechanism can take place while polysulfide shuttle and 

electrolyte depletion is minimized. The total electrolyte volume within a cell must be considered 

and limited. [24,25] Electrolyte densities can range from 1 – 1.5 g cm-3 depending on the 

conductive salt concentration [64] or if fluorinated solvents [25,61] are used. In order to tackle the 

issue of a low volumetric energy density (in Wh L-1), the mass density of the electrolyte is less 

important than for the gravimetric energy density (in Wh kg-1). [49] Reducing the content of 
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electrolyte from 3 to 1.5 l or mg per mg of S active material [24] will decrease the weight of 

electrolyte and the free volume required for its uptake. This is of importance as in all known 

Li-S cell concepts the electrolyte may take a large fraction of the cell (> 40 % of the cell weight 

and volume [23,52]). The strategy on electrolyte development consequently involves:  

(a) Development of an electrolyte with low polysulfides (PS) solubility [25,49,61,65] or redesign of 

the cathode/cell and the accompanied process adaption for the employment of solid electrolytes. 

These concepts have the potential to increase the reversibility of the system and sulfur 

utilization while reducing the required content of electrolyte as sulfur species mainly exist in 

the solid state.  

(b) Development of a new generation electrolyte for Li-S cell enabling increased average 

discharge voltage.  

(c) Thirdly, the reduction of lithium excess to only 20 % and hence, decrease the thickness of 

the lithium anode to app. 25 µm (corresponding to 5.15 mAh cm-2 usable areal capacity) is 

another important approach to reach higher values for both energy per mass as well as energy 

per volume. This can be done by further developing new coating techniques for the application 

of thin lithium metal films, such as melt-processing or physical vapor deposition (PVD).  

Power 

Only a few references investigate power capability from a holistic point of view at pouch cell 

level. It is widely accepted that Li-S technology is not going to compete with the most powerful 

Li-ion cells (with LTO or LFP chemistries, capable of cycling at very high C-rates). 

Nevertheless, the specific power (W kg-1) obtained from a carefully designed OXIS Energy Li-

S pouch cell [66] dedicated for power applications can be as high as 800 W kg-1 (for continuous 

discharge) or reaching up to 1500 W kg-1 at the peak (10 sec discharge at 90% SoC). Specific 

discharge peak power is strongly dependent on the SoC% and that is closely related with 
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internal chemistry/electrochemistry taking place in the cell while cycling, and it will be 

explained in more details further.  

In order to increase the power density of a Li-S pouch cell, several components contribute to 

the internal resistance of a Li-S cell and need to be adapted (Figure 3): thinner electrodes reduce 

the length of lithium ion transport, an important kinetic factor. In addition, similar to Li-ion 

batteries (LIB) [67], micro-scale structuring or porosity in the cathode layer can be beneficial for 

higher power systems. Moreover, carbon additives offering a percolating network of electronic 

pathways increase power capability. [42,68] Importantly, electrolyte viscosity and Li+ transfer 

numbers [69] are crucial parameters that need further development.  

In contrast to LIBs, at medium state of charge (SoC), the ether-based standard electrolyte for 

Li-S batteries changes to a highly viscous gel-like state - caused by a) the increase of the Li-

polysulfide (LiPS) concentration Li2S8 to 2 Li2S4 and b) the aggregation of lithium polysulfides 

of stoichiometry Li2S4 to form dimers and clusters. [70] As a result, the electrolyte resistance 

increases, and thus, the power density decreases. If the electrolyte content is very low, the 

formation of sparingly soluble LiPS solvate complexes also sets in. These clog the porosity of 

the cathode and thus strongly impair the ion transport as well as the power density. Furthermore, 

the deposition or conversion of the charge or discharge products (S8 or Li2S) is kinetically 

inhibited.[71] It is known that a certain amount of polysulfides is necessary to chemically 

"activate" the discharge product Li2S. However, the high solubility of polysulfides in the 

electrolyte also produces the so-called polysulfide shuttle leading to reduced charging 

efficiency. [72,73] First promising approaches describe the suppression of polysulfide solubility 

in the electrolyte by the so-called "solvent-in-salt" concept. [74] In order to improve the 

insufficient ion transport capacity of the ether/Li-salt complexes, low-viscosity 

hydrofluoroethers (HFE) were investigated as co-solvents or diluents, since they interact very 

little with the Li ions.[75] The low solubility and mobility of LiPS in such systems poses new 



  

13 

 

challenges, since the conversion of the sulfur species is now bound to the surface of the porous 

cathode structure and does not occur rapidly in the liquid phase. Therefore, the kinetics of the 

reactions taking place at the phase boundary carbon - sulfur/Li2S - electrolyte have to be 

understood and specifically optimized for the application as high performance battery. For 

example, it has been shown that the saturation of Li2S6 in the electrolyte can be drastically 

reduced compared to the reference system (DME/DOL) by using a sulfolane/fluoroether based 

solvent system and low conducting salt concentrations of 1.5 M. The electrolyte system has 

been successfully transferred from coin cells to prototype cells and demonstrated over 200 

stable cycles at only 3.5 µL electrolyte per mg sulfur. [25] 

It should be mentioned that higher areal currents generally lead to higher dendrite formation for 

unprotected lithium.[26,76] Consequently, a protected lithium electrode that can operate under 

high power conditions can significantly alter the cell design. From a prototype pouch cell point 

of view, tab geometry may also play an important role. In addition, packaging and sealing needs 

special consideration in regard of their employment in space and maritime environments.  

Safety 

OXIS Energy Li-S cell technology has been demonstrated to display superior performance to 

that of traditional of lithium ion technology under a number of safety tests, including nail 

penetration. [77] However, prototype cells recently produced by Fraunhofer IWS evaluating the 

stability of new electrolyte systems have found that specific electrolyte formulations designed 

to reduce the polysulfide solubility can significantly influence the safety characteristics. Safety 

tests of 5 Ah pouch cells have revealed that thermal stability is deteriorated by the use of the 

low polysulfide solubility sulfolane/hydrofluorether-based electrolyte [25] when compared  with 

a traditional DME/DOL based electrolyte. Thermal runaway of the cells containing this 

electrolyte are thought to occur due to the direct and highly-exothermal reaction between 

elemental sulfur and lithium, the difference in safety of the cell type is due to the fact that less 
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polysulfides emerge from the cathode, and these are the polysulfide species that are crucial to 

passivate metallic lithium and prevent direct contact between sulfur and lithium. [37] Above a 

critical temperature of 125 °C, continuous self-heating may occur in cells containing this low 

polysulfide solubility electrolyte system. However, the development of a Nafion coated 

separator concept [78] has been identified as a solution approach and as an additional safety 

component. In this way, a closed Nafion layer applied on an Al2O3/polyolefin hybrid separator 

can prevent contact between the molten sulfur and the metallic lithium, and thereby increase 

the safety of emerging Li-S cell concepts employing low polysulfide solubility electrolytes 

(Figure 2).[79] 

 

 

 

3. Integration of Li-S cell technology  

In general, the integration of new battery technology to real world applications requires 

significant development from cell level up to module, pack and control systems according to 

the so-called validation and verification model (V&V model).[80] It means that the requirements 

at e. g. aircraft level translate into the system definitions at (sub-)component and prototype 

level. In addition, a strategy and concept for the integration of the cells or rather cell-packs need 

to be developed. The integrated cells/cell-packs are then evaluated in functional tests, and 

certification plus safety assessment are carried out to validate the developed concept and 

strategy.  

Significant progress has been made in this direction for Li-S cell technology, and OXIS Energy 

has integrated its pouch cells into modules and demonstrator battery packs for evaluation in 

real-world application scenarios (Figure 1c-e). Development of Li-S modules and battery packs, 

designed to meet the power requirement profile of a specific application, so-called mission 
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profile, occurs through a series of stages from cell and system modelling up to bench testing 

under simulated conditions. OXIS Energy and its partners have developed advanced battery 

management systems (BMS) incorporating the most advanced State of Health (SoH) and State 

of Charge (SoC) estimators [73,81] for Li-S battery systems, a critical requirement for integration 

of Li-S battery technology into applications. [82]  

Generally, Li-S technology is receiving increasing levels of research and development with 

efforts focused on performance aspects including cycle life, power performance, volumetric 

energy density and safety. [25,36,42,49,51,61–65,83] To meet the varying performance requirements of 

emerging applications, OXIS Energy has developed two cell product streams, each with 

optimised performance characteristics (Figure 1a,b). Application requirements can generally be 

divided into two sectors: 1) high energy focused with low power requirements (High Energy), 

and 2) moderate energy with the capability for sustained high power (High Power).  

 

4. State-of-the-Art and Recent advances of Li-S Cell Modelling for State Estimation 

Modelling for the purpose of battery management and state estimation has particular 

requirements in terms of execution speed and computational complexity.[84] The modelling 

techniques which have been developed for Lithium-ion batteries are not applicable for 

explanation of discharge phenomenon in Li-S cells. The flat open-circuit voltage curve of Li-S 

battery (illustrated in Figure 4) is a unique characteristic that demonstrates there is a problem 

in observing the SoC from voltage calculations alone.[85,86] The complex electrochemical 

pathways which exist in Li-S cell mean that short-term capacity can vary so ‘Coulomb 

counting’ is also ineffective for this particular cell chemistry. In response to the aforementioned 

problem, two families of estimation technique have been proposed for Li-S cell in the literature: 

(1) techniques derived from control and estimation theory, based on nonlinear variants of the 

Kalman filter,[81,85] and (2) techniques that come from computer science such as Adaptive 
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Neuro-Fuzzy Inference Systems (ANFIS) [86] and Long Short-Term Memory Recurrent Neural 

Networks (LSTM RNN). [87] 

Although most of the research published in the literature are focused on Li-S SoC estimation, 

Li-S cell SoH estimation techniques are also under development from both control theory and 

computer science. Examples are the general framework describing Li-S cell SoH in terms of 

capacity fade and resistance growth which has been presented in [7], and the SoH estimation 

technique presented in. [88] Looking at the literature, Li-S cell degradation mechanism has been 

investigated by electrochemists in a number of studies; however, the literature suffers from lack 

of studies where Li-S cell SoH estimation is investigated for BMS application. Although an 

insight into understanding of the degradation mechanism in Li-S cells by using electrochemical 

models is quite helpful, but those models are hardly useable in real-time applications mainly 

due to their complexity. In online applications, quick models/estimators are required to generate 

‘good enough’ results by providing a proper trade-off between accuracy and speed [89]. In fact, 

many details related to the electrochemical reactions taking place inside a cell, are not required 

to be analyzed in a real-time application. A couple of studies in the literature where Li-S cell 

degradation has been investigated by considering the practical application limitations are 

presented in [90] and [91]. 

All the aforementioned online state estimation techniques (both SoC and SoH) rely on 

equivalent circuit network (ECN) models. ECN model parameterization for a Li-S cell was 

performed in [82] and [92] for the first time. Since the aim of modeling in those studies was to 

implement the model in a real-time BMS, quick identification techniques were applied to 

extract the ECN model parameters. The identification results are then used for Li-S cell state 

estimation. For example in [86], the simplest form of an electric circuit battery model (i.e. 

internal resistance model) is parameterized and its parameters are used for SoC estimation. In 

that study, three inputs including open-circuit voltage (VOC), ohmic resistance (RO), and the 



  

17 

 

derivative of resistance with respect to SoC (dRO/dSOC) are used for SoC estimation using 

ANFIS method. As another example in [85], the Thevenin ECN model is parameterized and used 

in Kalman-variant estimators for Li-S cell SoC estimation.   

 

5. Current and Future Applications for Li-S Battery technology 

 

Among the future applications requiring high specific energy battery systems, a few examples 

are presented in Figure 5 and Table 1, where Li-S technology has the potential to play a 

significant role in enabling these applications to be successful.[14] Principally, the applications 

can be divided into few segments strongly depending on the technology adaption timing and 

power requirements. 

 

5.1. Current and Future Application Demands    

The current performance of Li-S cell technology is already sufficient for a number of emerging 

applications which require relatively low power and limited cycle life. There are a number of 

applications which, apart from demanding high specific energy, also have an increased demand 

for power. The power requirement is specific to the application and can depend on many factors 

such as system level requirements, battery configuration, energy of the battery pack, usage of 

the vehicle etc. A number of key applications areas for future battery technology are discussed 

in further subsections, starting with applications whose requirements are close to be fulfilled by 

the current Li-S technology and its TRL/MRL levels, and moving further, describing the 

applications which require further development of Li-S technology (in terms of power, safety, 

etc.) are stated. The latter are expected to incorporate Li-S batteries in the further future. 

Generally, for the implementation of batteries in drones or aircrafts, the design of the drone, the 

space for take-off and landing, and the respective flight modes need to be addressed. As for 

fixed-wing aircrafts/drones, more space for take-off and landing is required and the power 
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requirements are lower compared to rotor blade-based drones. The latter require higher power, 

but need less space for take-off/landing or rather hovering. So-called tilt-rotor blade allow both 

flight modes in one drone.[93] 

 

5.1.1. Aerospace 

A growing number of organizations around the world are developing HAPS/HALE aircraft, 

with a number of systems having already completed successful test flights. This emerging 

application requires high specific energy batteries to enable maintenance of high altitude flight 

at mid-high latitudes. HAPS aircraft are designed to circles in the stratosphere, approx. 20 km 

above the ground, in contrast to satellites, i.e. GEO (geostationary earth orbit) satellites which 

are in orbit about 36000 km away from earth and LEO (low earth orbit) satellites which are 

about 1200 km away [94] Thanks to that the launch and maintenance costs are much lower. 

Stratosphere offers mild weather conditions with little change in windspeed, which result in a 

stable flight. In addition, due to closer proximity to earth (compared to satellites) and greater 

compatibility with drones and other aircrafts in the stratosphere, it can be greatly beneficial for 

the next generation telecom system. [95]  

For this application it has been suggested by HAPS vehicle designers that a high specific energy 

(> 400 Wh kg-1), low to moderate charge & discharge rates (<C/5), and low to moderate cycle 

life (60-400) are required. The pack also requires low pressure tolerance (approximately 50 

mbar) given its high altitude environment. [7] Significant progress has been made in the 

development of Li-S battery systems for HAPS/HALE applications, the Airbus Zephyr 7 

aircraft utilized Li-S batteries produced by Sion power. Recently Airbus has announced that it 

is utilizing Amprius’ silicon nanowire anode lithium ion battery technology for its Zephyr S 

and T models. [96] OXIS Energy is currently integrating its Li-S technology into HAPS vehicles. 

To maximize the benefit of high specific energy cells, the design of performant but lightweight 
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pack enclosures and control systems must also be considered. OXIS Energy has recently 

developed a high energy HAPS module at 380 Wh kg-1, which achieves a 95% specific energy 

retention when moving from cell to module level.  

 

5.1.2. Maritime 

Autonomous underwater vehicles (AUVs) are a growing market and application area for high 

energy battery systems. AUVs are self-propelled, unmanned, underwater vehicles can be used 

for different purposes, such as survey platform to map the seafloor, to observe oceanographic 

fields, to name few. [97] The key requirements of this application are well aligned with Li-S 

technology today; high specific energy (> 400 Wh kg-1) combined with low to moderate power 

requirements. The battery system must also operate at low temperatures (4 °C) and needs to be 

adapted to withstand high pressures (45 MPa eq. to 6000 m depth). AUVs usually aim to 

achieve neutral buoyancy, a recent study has identified that significant benefits to the overall 

system level performance can be achieved via the use of Li-S battery technology.[98] 

 

5.1.3. Aviation 

Depending on the drone, during take-off and hovering, high-power density is required. 

However, relatively low or moderate power is needed during cruise. The mission profile and 

system level requirements for flying applications vary significantly depending on the mission 

distance and altitude. Hence, mission profile specific testing of cells and battery systems must 

be carried out to gain valuable insight into system level performance. Generally, high specific 

energies (> 300 Wh kg-1) and moderate power requirements (peak discharge at 1-2 C) are 

needed. Hybrid battery concepts comprising both a high power and high energy battery are 

possible as well. [99] Li-S technology may be incorporated into concepts in which a Lithium-
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Polymer batteries are used for take-off & hover-mode and a Li-S battery operates as a range 

extender. [100] 

 

5.1.4. Heavy Electric Vehicles 

The major benefit of the use of Li-S technology for future eTrucks and eBuses applications is 

the ability for much lighter battery packs. Reduced battery weight can enable both extended 

range and increase payload, enabling greater distances between charging, especially important 

for locations where installation of significant charging infrastructure may not be viable. Future 

long range/high payload eBuses and eTrucks will have similar performance demands; a high 

specific energy (> 400 Wh kg-1) at moderate continuous discharge C-rates 0.5-0.2 C and pulses 

of power in the range of 1-2 C. Energy density (Wh L-1) is less important for this type of EV 

when compared to common passenger cars [101–104]. OXIS Energy has conducted mission profile 

specific testing of its cells and battery systems to gain valuable insight into system level 

performance of Li-S batteries for eBuses, with more details presented in section 5.2.  

 

5.1.5. Future Urban Air Transport 

At the extreme end of energy and power requirements lies the eVTOL (electric powered vertical 

take-off and landing) aircraft application, an application which demands >400 Wh kg-1 at 

sustained discharge rates of around 1-2 C along with peak power requirements of up to 4-5 C.[2] 

With the development of high energy and high power battery systems for this urban, manned 

application, safety is of critical importance. The development of Li-S cell technology to meet 

the demands of this future application sector is a key area of development for OXIS Energy.  

 

5.2. Application case-study: Li-S battery for an electric city bus 
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Various works [105] have been carried out regarding the modelling of the Li-S cell chemistry 

within the past years. Continuous shuttle current measurement method for Lithium Sulfur Cells 

was developed by TU Munich in collaboration with Daimler AG in 2020 [106]. A simple 

analytical model of capacity fading for Lithium-Sulfur cells was published by Brno University 

of Technology in collaboration with OXIS Energy [107]. Three-dimensional image based 

modelling of transport parameters in lithium-sulfur batteries was carried out by UCL [108]. 

Electrochemical Impedance spectroscopy-based electric circuit modelling of Lithium-Sulfur 

Batteries during discharging was evaluated by Aalbourg University [109].   

In a recently reported case-study [110], the application of a 19 Ah prototype Li-S pouch cell in 

an electric city bus was investigated. In that study, a Li-S battery pack was designed as an 

alternative for the existing Li-ion battery pack in a London city bus. Maximum power demand, 

required energy on board, weight and other required features of the Li-S battery pack were 

extracted from the existing electric bus. [101] Two existing Li-ion battery technologies were 

considered to be compared with Li-S: (i) LiFePO4, and (ii) LixNiyMnzCoO2.
[102] Based on the 

Irizar electric city bus battery pack’s specifications [103], there is 282 kWh energy on board when 

the battery is fully charged. The sizing of the Li-S battery pack was then performed in a way to 

have same amount of energy. Consequently, the number of Li-S cells in series and parallel were 

calculated and after that, the pack was simulated to investigate its performance in such an 

application. Millbrook London Transport Bus (MLTB) cycle [104] was used in the simulations 

as a standard test procedure. Figure 6 shows a case-study where the proposed Li-S battery pack 

was simulated in an electric bus. In that figure, battery SoC, current and terminal voltage are 

shown during MLTB simulation. [110] 

Figure 7 shows the range of an electric city bus over the MLTB cycle [104] using different battery 

technologies. In that figure, all battery packs had same amount of energy (kWh) but they were 

different in weight depending on the cell’s energy density. As shown in Figure 7, the EVs range 
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will increase remarkably when Li-S battery technology will be used instead of the existing Li-

ion battery technologies just because of battery light-weighting. [110] This result can become 

even better because the Li-S prototype cell that was used herein had only a moderate energy 

density of 290 Wh kg-1 whereas this number is expected to increase to 400-600 Wh kg-1 in the 

next generations of Li-S cell.  

The results presented in [110], is not just about simulation; a 19Ah Li-S cell was actually tested 

under MLTB driving cycle condition. Although the whole Li-S battery pack was not 

built/tested, scaled-down tests were conducted on single cells under conditions representing the 

real-word driving cycles. Figure 8 illustrates current profile and cell’s terminal voltage 

measurement during MLTB test, performed on a 19Ah Li-S cell. Regenerative braking was also 

considered in the real tests by applying both charge-discharge current values (the negative 

current demand in Figure 8 represents regenerative charging).   

 

 

6. Outlook and Conclusion 

Looking forward to the evolution of electric powertrains, new generations of battery technology 

are currently being developed to meet the requirements of emerging applications in terms of 

cycle life, safety, power, and scalability. Further material level developments are required to 

realize the full potential of Li-S technology and the academic research community has a key 

role to play in achieving this. However, materials level research must be conducted within the 

context of a viable Li-S cell system. Li-S technology has the potential to offer cell level specific 

energy of up to 600 Wh kg-1 and thereby enable key performance benefits such as extended 

range and payload for emerging applications.[1] When these key performance benefits are 

considered together with the low cost, availability of materials, stability of supply chains and 

demonstrated high TRL/MRL, it is unsurprising that Li-S battery systems have been identified 
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both by academics and industry leaders as a key enabling technology for future electric vehicle 

applications. [12,15,23,33] 
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Figures 

 

Figure 1. Picture of OXIS Energy Li-S Pouch cells available in different form factors (a) and 

more detailed characteristics of High Energy and High Power prototypes (b). Pictures of 

representative modules assembled from High Energy (c) and High Power cells (d) along with 

an example of a prototype battery pack (e).    
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Figure 2. Key factors affecting the main performance characteristics of Li-S pouch cell 

technology, from materials to system level. 

 

 

Figure 3: Illustration of which Li-S cell components the internal resistance should be reduced 

in order to achieve higher power densities 
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Figure 4. Flat voltage encountered in discharge. This is an example of one of the key 

differences between many present-day technologies and Li-S. It is hard to determine state of 

charge from voltage alone because this curve is relatively flat.  

 

  

Figure 5. Illustrative schematic demonstrating main markets suitable for Li-S technology now 

and in the future.  
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Figure 6. Li-S battery pack SoC, current and terminal voltage during MLTB simulation case-

study [110]  

 
Figure 7. Range of an electric city bus over repeating MLTB cycle using different battery 

technologies – all battery packs have same amount of energy (kWh) but they are different in 

weight depending on the cell’s energy density [110]  



  

34 

 

 
Figure 8. Current profile and cell’s terminal voltage measurement during MLTB test, 
performed on a 19Ah Li-S cell [110] 
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Table 1. Illustrative schematic demonstrating main markets suitable for Li-S technology now 

and in the future with the required values for specific energy, C-rate, cycle life, environment, 

and remaining challenges  
[21](Future) 
commercial 
vehicle 

Aerospace Maritime Aviation Heavy Electric 
vehicles 

Future Urban Air 
Transport 

Examples High altitude 
pseudo satellites 
(HAPS) 

Autonomous 
underwater 
vehicles (AUV) 2 

Electric aircrafts 
(fixed wing) 
drones 

eBuses 
eTrucks 4 

Electric vertical 
Take Off and 
Landing (eVTOL) 

Required Egrav  > 400 Wh kg-1 > 400 Wh kg-1 > 300 Wh kg-1 > 400 Wh kg-1 > 400 Wh kg-1 

Required 
continuous 
discharge  
rate 

<C/5 ~ C/10 – 1 C Peak discharge at 
~ 1 – 2 C 

Peak discharge at 
~ 1 – 2 C 

4 – 5 C for take-off 
/ landing 
~ 1 – 2 C during 
cruise 

Cycle life   60-200 cycles 60-200 cycles 200-500 cycles 1000 cycles 500 cycles 

Environmental 
requirements 

10-40 °C 
Low pressure 
(50 mbar) 

Low temperature 
(4 °C)  
High pressure 
(45 MPa) 

-10 – 60 °C -10 – 60 °C -10 – 60 °C 

Main 
remaining 
challenges 

- - Cycle life ( > 500) 
Safety regulations 

Cycle life ( > 1000) 
Safety regulations 

Fast discharge (4-
5 C) whilst 
retaining 400 
Wh kg-1 

Fast charge (1-2 C) 
Cycle life ( > 500) 
Safety regulations 
Enhanced thermal 
management 
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Herein, the advantages, limitations and progress of Li-S batteries are described. Approaches 

to extend cycle life, energy, power, and safety are further discussed. In addition, recent 

advances regarding modelling and battery management of Li-S batteries are summarized, and 

the requirements for as well as the integration of Li-S batteries in present and future real 

world applications is elaborated.  
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