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The  industrial-scale  production  and  commercialisation  of  graphene  and  related  2D  materials 

introduces  the  need  for  rapid,  reliable  and  cost-effective  quality  control  procedures.  Currently, 

microscopy-based techniques are used to measure the lateral size and thickness of particles but 

while powerful, these techniques suffer from limitations such as lengthy analysis time, high costs 

and  limited  sampling.  In  the  case  of  carbon-based  2D  materials,  as  the  stacking  of  multiple 

graphene  sheets  causes  a  reduction  in  the  surface  to  mass  ratio,  the  number  of  layers  can 

hypothetically  be  calculated  by  comparing  the  theoretical  surface  area  of  monolayer  graphene 

(2630 m2/g)  to  the  calculated  specific  surface  area  (SSA)  measured  by  gas  physisorption 

measurements.  However,  despite  the  potential  of  this  method  of  analysis,  there  is  limited 

understanding regarding the characterisation of commercial graphene/graphite powders produced 
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via bottom-up and top-down methods. Herein, the SSAs of a variety of commercially-available 

graphitic powders were measured using nitrogen physisorption isotherms at 77 K and applying 

Brunauer-Emmett-Teller theory. The as-obtained SSAs were then correlated to the structural and 

chemical properties of the materials (obtained using conventional techniques) to demonstrate the 

suitability of this measurement technique for quality control of graphitic powders. 

1. Introduction Graphene, a two-dimensional (2D) material composed of a single layer of carbon 

atoms with an sp2 hybridisation,[1] was initially predicted to be thermodynamically unstable [2,3] 

until its existence was demonstrated by Geim and Novoselov using the “scotch-tape” method.[4] 

Since its discovery, interest in graphene has grown exponentially due to its unique theoretical 

properties [5] and potential applications.[6,7] As a result, research efforts into the development of 

industrial-scale techniques for the production of graphene are ongoing [8–12] and the number of 

companies seeking to produce commercial graphene materials is increasing, with a reported total 

annual production of 400 tonnes in China alone.[10,13] However, properties of commercial 

“graphene” often differ greatly from high-quality graphene sheets produced via chemical vapour 

deposition or mechanical cleavage of graphite.[3, 5,14,15] In fact, Kauling et al. [16] recently 

concluded that many products sold as “graphene” are actually highly priced graphite powders. The 

features of these commercially produced graphitic materials, such as the number of layers, lateral 

flake size and level of disorder, are known to vary significantly. Therefore, there is a clear need 

for the development of international measurement standards and quality control 

procedures.[1,17,18] (see also ISO TS 80004-13:2017) 

Currently, no standalone technique can be used to characterise the number of layers in bulk 

materials (e.g. powders) in a fast and reliable manner. Electron microscopy techniques, such as 

scanning electron microscopy (SEM), are often used in combination with scanning probe 
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microscopy techniques, e.g. atomic force microscopy (AFM), to characterise the lateral flake size 

and flake thickness of graphitic materials.[19] However, these techniques only characterise 

individual particles which makes them extremely time consuming and expensive, therefore, they 

cannot be implemented as fast quality control procedures available to the industry on the factory 

floor. Raman spectroscopy is often employed for the characterisation of not only the level of 

disorder in carbon-based materials, but also the number of layers, lateral flake size, and number of 

edge and basal plane defects. [19–21] However, data interpretation for poly-dispersed graphitic 

materials is often only qualitative and complicated to perform. 

An indirect approach to estimate the number of graphitic layers is via the measurement of the 

specific surface area (SSA). A single atom-thick graphene sheet has a theoretical surface area of 

2630 m2/g, nearly independent of the lateral size of the graphene flakes.[22] As layers are stacked 

to form non-porous graphitic materials, the specific surface area (S) is expected to decrease 

proportionately with increasing number of layers (N) such that S = (2630/N) m2/g. Ohba et al. 

demonstrated via simulation that this equation applies to graphitic materials down to 2 layers, 

however, the authors suggested that in real graphitic materials it may not always be applicable due 

to the presence of amorphous carbon and additional impurities. [22] The SSA is typically measured 

by applying Braunauer-Emmett-Teller (BET) theory [23] to gas physisorption isotherms. Gas 

physisorption offers several advantages over microscopy techniques, such as: faster analysis times, 

a larger sample population and good repeatability. Additionally, the measurement of SSA using 

the BET method satisfies the requirement for 2020 REACH registration of “nanoforms” 

substances and thus for the use of “graphene” materials throughout the entire European Economic 

Area. [24]  
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However, analysis requires dry samples, which may cause aggregation, especially for graphene 

dispersions produced via LPE. Contrasting reports can be found in the literature regarding the 

reliability of BET analysis for estimating the average number of graphitic layers. For example, 

Guo et al. hypothesised that graphitic materials can maintain their BET SSA due to irregular 

agglomeration of  platelets, leading to regular mesopores with dimensions that were equivalent to 

multiples of the average platelet thickness.[25] Li et al, on the other hand, showed that the SSA of 

graphitic materials could not be directly correlated to the number of 2D layers present, due to re-

aggregation of the samples produced by LPE methods.[26] Additional research showed that re-

aggregation could be reduced by adding an intercalating agent, keeping graphene sheets apart. 

Intercalating agents include polyvinylpyrrolidone powder (SSA=760 m2/g)[27], iron chloride 

(SSA=217 m2/g) [28],platinum nanoparticles (SSA=862 m2/g) compared to an SSA of 44 m2/g 

without additive [29] or pillaring with carbon black for graphene oxide (GO) materials 

(SSA=1006 m2/g) compared to an SSA of 38 m2/g without additive. [25] Attempts have also been 

made to measure the surface area of graphitic materials in dispersions through the adsorption of 

methylene blue, which could prevent potential aggregation upon drying. [30–32] Surface areas 

calculated from methylene blue adsorption were generally reported to be higher than the standard 

BET SSA, suggesting re-aggregation of the materials in dry form. However, the use of methylene 

blue for estimating the surface area is unreliable, as the adsorption capacity does not solely depend 

upon the surface area, but also the chemistry of the material. [33,34] 

The presence of defects and by-products (such as amorphous carbon) in graphitic materials 

represents another issue in the application of BET SSA for the determination of the average 

number of layers. These features may introduce micropores within the material and, therefore, 
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increase the surface area independent of the average number of layers. For example, activated 

carbons and reduced GO (rGO) can exhibit surface areas in excess of 3000 m2/g.[35–37] 

Thermally or chemically reduced GO materials, are well known to contain many nanoscale defects 

(vacancy defects and sp3-hybridised carbon), deriving from the large amount of oxygen impurities 

introduced during oxidation, disrupting the carbon lattice. The BET SSA of rGO is generally 

reported to be high (usually in large excess of 200 m2/g) [31,38–43] and can be further increased 

by varying the parameters employed during reduction.[44–46] Interestingly, however, GO usually 

exhibits a relatively low SSA (roughly around 30-50 m2/g) compared to rGO, with the results of 

the former attributed to ordered re-stacking when dry, despite containing a large amount of defects. 

[25, 44,47] Guo et al. hypothesised that GO materials exhibit lower plate rigidity compared to few-

layer graphene, leading to ordered re-stacking. [25]  

Graphene produced via ball-milling also commonly exhibits many defects due to the impact forces 

of steel grinding balls onto the graphite sheets.[47] Chen et al. [48] showed that graphene produced 

by dry ball-milling has higher surface area (> 500 m2/g) compared to wet ball-milling (100 m2/g), 

in which impact forces are reduced due to the presence of a fluid.  

 A recent paper published by Kovtun et al. [49] benchmarked commercial graphitic materials 

characterised with nitrogen physisorption and traditional techniques (static light scattering, Raman 

and X-ray photoelectron spectroscopy (XPS), and Scott volumeter for bulk density measurement). 

It was shown that samples with lower sp3 carbon content (measured by peak fitting the C 1s XPS 

spectra), generally exhibited low BET SSA. However, the number of layers of graphitic materials 

was solely deduced from the BET SSA measured and was not confirmed using other techniques. 

Guo et al. also employed BET analysis to estimate the average number of layers in graphitic 
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materials and compared them to those reported by the manufacturer, however, no independent 

technique was employed to verify the number of layers. [25] 

Clearly, despite physisorption analysis providing some useful information regarding the BET SSA 

and pore structure of samples, more research is needed in order to determine its reliability in 

estimating the average number of layers and level of disorder of graphitic powders. 

In this study, several commercially-available powders advertised as ‘graphene’ in their description, 

were characterised as received through nitrogen physisorption (BET SSA measured) and compared 

to the results obtained from microscopy (AFM and SEM), and spectroscopic (Raman 

spectroscopy, XPS) techniques. Samples were chosen to include commercially available materials 

produced through common production techniques such as LPE, ball-milling and bottom-up 

methods. A correlation is shown between the ratio of non-graphitic/graphitic carbon in the 

materials and the BET SSA, as well as the size of the particles, highlighting the potential of this 

technique as a quality control tool for the characterisation of graphitic powders. The importance 

of understanding the type of graphitic material under investigation and therefore the accuracy in 

the BET SSA measurement is also discussed and demonstrated. 

2. Materials and Methods 

2.1. Materials 

Commercial graphitic powder materials were sourced from a range of suppliers (Table 1). 

Definitions employed here (according to ISO/TS 80004-2:2015(en)): 

- Particle: “minute piece of matter with defined physical boundaries”; 

- Primary particle: “original source particle of agglomerates or aggregates or mixtures of the 

two”; 
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- Agglomerate: “collection of weakly or medium strongly bound particles where the resulting 

external surface area is similar to the sum of the surface areas of the individual components”; 

- Aggregate: “particle comprising strongly bonded or fused particles where the resulting 

external surface area is significantly smaller than the sum of surface areas of the individual 

components”. 

Table 1 List of graphitic powders, producers and production methods 

 Product, Producer  Production methods 

G1* Elicarb, Thomas Swan Liquid-phase exfoliation 

G2* Elicarb, Thomas Swan Liquid-phase exfoliation 

G3 Haydale Ltd Advanced milling technology  

G4 Haydale Ltd Mechanical exfoliation (ball-milling) 

G5 G1, Cambridge Nanosystems 

G3, Cambridge Nanosystems 
Microwave plasma bottom-up method 

G6 

*These materials were produced using one of the two exfoliation methods employed by Thomas Swan and one of the several 

grades commercially-available 

 

Pellets of graphitic powders were produced for XPS and Raman spectroscopy measurements by 

mechanically pressing the powders in a small hydraulic handheld press (Specac, Orpington, UK) 

by applying a force of 1-2 tons onto a 7 mm diameter, round, pellet die. These pellets were then 

mounted on an aluminium sample holder using conductive carbon and copper tape, which could 

then be mounted directly on the XPS or Raman spectrometer sample stages. 

Graphitic dispersions were prepared gravimetrically with a concentration of roughly 0.1 mg/g in 

dimethyl sulfoxide (DMSO, Reagent Grade 99.5 %, Fisher Scientific, UK) and were sonicated for 

5 minutes in an ultrasonic bath at a frequency of 37 kHz and 80 W ultrasonic power (CamSonix 

C275T, Camlab, Cambridge, UK) to try to separate any aggregates/agglomerates and obtain the 

primary particles. The sonication time is kept short to minimise any structural changes to the as-

received materials.[50] The dispersions (10 μL) were then drop-cast on silicon wafers with a native 
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oxide layer at the boiling point of the solvent (roughly 189 °C) for SEM analyses. AFM samples 

were prepared on a silica/silicon substrate with a 300 nm thick oxide layer. 

2.2. Methods 

2.2.1. Structural characterisation 

SEM – Powder samples were dispersed in a solvent and deposited onto a silica/silicon substrate as 

described in the materials section. Images were then collected using a Zeiss (Oberkochen, 

Germany) Supra Microscope by measuring secondary electrons (In lens detector, 30 μm aperture, 

5 kV accelerating voltage). Images were then analysed using SPIP (Version 6.7.5, Image 

Metrology A/S, Denmark). The length and width of a minimum of 200 particles were measured 

and the lateral sizes were calculated as the mean of length and width. Origin (Origin(Pro), Version 

2019b, OriginLab Corporation, Northampton, MA, USA) was then used to fit a lognormal 

distribution of lateral size for each sample, and the lognormal median was calculated for each 

sample and standard deviations for the mean were calculated from the spread of the data. 

AFM – AFM measurements were performed using an Asylum Research MFP-3D in a 21°C 

temperature-controlled laboratory. The graphene samples were dispersed at a concentration of 

0.1 mg/ml in DMSO and sonicated for 5 minutes in a sonic bath prior to deposition. 5 μl of the 

dispersion was drop-cast on to 10 mm × 10 mm silicon/silica wafers with a 300 nm wet thermal 

oxide that were pre-heated to 150 °C. The thickness of the graphitic particles was determined by 

analysing the apparent height of each feature from three horizontal profiles (along the scanning 

axis), and the uncertainty was recorded as the standard deviation in three values of thickness 

(unless this was less than the RMS roughness of the substrate, in which case the uncertainty is the 

RMS roughness). The uncertainty in the length and width of each particle was calculated from the 

size of the slope measured at the edges of each particle; due to the convolution of the sample and 
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the AFM probe-apex, there is not a sharply defined step between the substrate and the particle 

height. To obtain representative AFM thickness measurements, at least 20 isolated features were 

characterised across the lateral size distribution previously measured using SEM. Heights and 

lateral sizes derived from AFM were then plotted and fitted with a linear fit using Origin. The 

fitting parameters were selected without a fixed intercept, with a weighted fitting called 

‘instrumental’ which employs a weighting formula of (=1 /ei
2), where ei are the error bar sizes. 

The 95 % confidence interval for the fitting was also calculated employing OriginLab. AFM 

heights were then calculated by converting the SEM lognormal distributions into height 

distributions by employing the linear correlation found between lateral size and AFM height.  

Nitrogen physisorption – Graphitic powder samples were employed as provided. A minimum of 

100 mg of powder sample was loaded inside a long glass analysis tube (tubes were weighed empty 

and then filled with sample and weighed again) for each sample. Samples were degassed overnight 

(minimum of 12 hours) in an external degas unit FlowPrep (Micromeritics, UK) by flowing 

nitrogen gas (nitrogen (oxygen free), BOC, Surrey, UK) over the samples either at 130 °C or at 

300 °C. A low nitrogen flow rate was employed to avoid aerosolisation of the powder samples. 

After the degas step was completed, samples were allowed to cool under flowing nitrogen gas. 

Samples were then re-weighed immediately after degassing and placed onto the sorption analyser 

(ASAP 2460, Micromeritics, UK) for gas sorption analysis. The samples were degassed in-situ 

down to at least 0.7 Pa with a low evacuation rate (roughly 0.1-0.2 kPa/s) at ambient temperature. 

Helium (helium (A grade), BOC, Surrey, UK) was employed to measure the free-space volume at 

the start of the analysis. All samples were re-degassed in the analyser at ambient temperature for 

30 minutes after helium analysis. The analysis was then performed by employing nitrogen probing 

gas at liquid nitrogen temperature. The saturation pressure of nitrogen was measured at each 



 

 10 

isothermal point. A minimum of 6 points were collected in the relative pressure range of 0.01-

0.30 p/p0. The BET equation was then employed to measure the surface area from nitrogen 

sorption isotherms.[23] A molecular cross-sectional area of 0.1620 nm2 was employed for nitrogen 

in the BET calculation. 

The range of relative pressures over which BET theory was applied was chosen to obtain a: i) 

positive C value, ii) positive intercept, iii) a correlation coefficient greater than 0.9999 and iv) 

increasing  𝑉 (1 − 𝑃𝑃0) with increasing 
𝑃𝑃0.[51] Each measurement was repeated at least 3 times and 

an average BET SSA was reported. The uncertainty was calculated from the standard deviation 

(σ) between individual measurements and reported as 3 σ. 

External SSA (or non-micropore SSA) were calculated by applying i) the Harkins and Jura [52] 

and ii) the Magee Carbon Black STSA [53] (ASTM-D6556-10) t-plot equations to nitrogen 

physisorption isotherms.  

i) Harkins and Jura t-plot equation: 𝑡 (𝑛𝑚) = 0.1 [ 13.990.034−𝑙𝑜𝑔10( 𝑃𝑃0)]12
 

ii) Magee carbon black t-plot equation: 𝑡 (𝑛𝑚) = 0.1 (0.88 ( 𝑃𝑃0)2 + 6.45 ( 𝑃𝑃0) + 2.98) 

The t-plot method correlates the quantity of nitrogen adsorbed to the statistical thickness (t) of the 

adsorbed layer.  Internal SSA (or micropore SSA) were calculated as the difference between total 

(or BET) SSA and external SSA. Negative internal SSA were reported as zero. 

2.2.2. Chemical characterisation 

XPS - The surface chemistry of graphitic pellet samples was characterised by X-ray photoelectron 

spectroscopy (XPS), using a Kratos Axis Ultra DLD (Kratos Analytical, Manchester, UK) 

equipped with a monochromatic Al Ka X-ray source (operated at 15 kV anode potential and 5 mA 
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emission current). During acquisition, the analyser was operated in ‘hybrid’ lens mode with the 

‘slot’ entrance slit, which defines an analysis spot on the sample of 300 µm × 700 µm. Survey 

spectra between 1350 eV and -10 eV were collected with a pass energy of 160 eV, a step size of 

1 eV, 200 ms dwell time, and 2 sweeps. Narrow scans were acquired for the C 1s, N 1s, and O 1s 

core levels with a pass energy of 20 eV, a step size of 100 meV, 500 ms dwell time, and 3 sweeps. 

A set of survey and narrow scans was acquired for 3 areas on each sample; no significant 

differences were observed between analysis areas. Charge neutralization with a low-energy 

electron source was not required as all the samples showed no evidence of charging. Transmission 

function corrected spectra were analysed using the CasaXPS software (Version 2.3.19) in 

conjunction with the average matrix relative sensitivity factors (AMRSF) published by the 

National Physical Laboratory (NPL) [54–56] in order to determine elemental composition. For all 

spectra, the Tougaard background type was employed, although a linear background was used 

when the decay of the inelastic background was dominant. As well as the powder samples, a highly 

ordered pyrolytic graphite crystal (HOPG, ZYA quality, Scanwel Ltd.) was prepared by cleaving 

with tape to reveal a fresh surface before immediately introducing it into vacuum. The HOPG was 

then sputtered with an Ar-cluster ion beam (Ar2000+, 5 kV, 3×3 mm, 90 s) which is anticipated to 

remove any adventitious and non-graphitic carbon, to achieve a graphitic sp2 carbon surface.[57] 

Survey and high-resolution spectra were then acquired using the aforementioned parameters. The 

C 1s high resolution spectrum from HOPG was peak-fitted using the components detailed in 

Table S1 in order to obtain an experimental lineshape for the asymmetric graphitic component. 

The C 1s high resolution spectra from the powder samples were also peak fitted using the 

components detailed in Table S2, which include graphitic C=C carbon, non-graphitic C-C carbon, 

carbon-oxygen species (C-O, C=O, O-C=O and a beta-shifted O-C=O), and loss features (𝜋 − 𝜋∗ 
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transition and shake-up). The graphitic C=C carbon lineshape from the HOPG was used in fitting 

the powder samples C 1s spectra. Results from the fitting are shown in Table S3. 

Raman spectroscopy – Confocal Raman spectroscopy was carried out using an inVia Qontor 

spectrometer (Renishaw, UK) on pelletised graphitic powders. A 532 nm laser was employed with 

a 100× objective lens (0.85 numerical aperture), with a power at the sample of 0.13 mW (1 % laser 

power) with a 2400 l/mm grating. Spectra were acquired with 2 s exposure for each measurement 

location. For each sample, spectra were recorded from 2 locations on the pellet, at each location a 

map with a 10 μm × 10 μm area (1 μm step size) was measured, for a total of 242 spectra per 

sample. Prior to peak fitting the spectra were processed in WiRE (Version 5.1) by removing the 

cosmic rays, subtracting the background and then normalizing the spectra to the peak with the 

highest intensity. Each spectrum was fitted individually to Lorentzian line shapes using WiRE and 

the relative intensities and FWHM were calculated for each spectrum. The standard deviation was 

also calculated to determine error bars. 

 

3. Results and Discussion 

3.1. Structural properties 

The morphology and lateral flake size distribution of commercial graphitic materials, available in 

powder form, were evaluated using SEM. Sample preparation for SEM involved dispersing the 

powder in a solvent and drop-casting onto a pre-heated silicon substrate with a native oxide layer. 

The morphologies of the primary particles could be directly observed from the SEM images of the 

agglomerates/aggregates observed, as shown in Figure 1. 
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Figure 1. Morphology – (a-f) Scanning electron microscopy images of carbon materials deposited 

onto a silicon substrate with a native oxide layer, showing different morphologies (images were 

collected at different magnifications). 

Materials produced via LPE methods (G1 and G2) exhibited typical flake-like morphologies 

commonly observed in layered materials. Materials produced via ball-milling exfoliation (G3 and 

G4) exhibited a more disordered structure with a high level of agglomeration/aggregation while 

graphitic carbons produced using bottom-up methods (G5 and G6) showed a non-planar 

morphology. Lateral sizes (defined as the average of the length and width) of numerous individual 

particles (> 200 for each type of material) were measured from SEM images to calculate their 

number distribution.[50] Flakes that were visibly agglomerated were excluded from the analysis 

as they were composed of multiple primary particles (definition in section 2.1 “materials”). 

However, for particles exhibiting possible aggregation/agglomeration (G5 and G6), the lateral 

sizes of the agglomerates/aggregates were measured rather than those of the individual isolated 

primary particles. Histograms representing the lateral size distributions for all six materials, 
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derived from SEM, are displayed in Figure S1, and lognormal-median lateral sizes for all samples 

are reported in Table 2, ranging from 90 nm to over 850 nm. 

Although measurement of lateral flake size is extremely important for a variety of applications, 

[58,59] the thickness of the flakes is expected to impact the BET SSA and must therefore be 

carefully assessed. Thickness measurements were performed by AFM, with samples prepared by 

dispersing powders in a solvent and sonicating them in a ultrasonicator bath for 5 minutes, before 

drop-casting on pre-heated silicon substrates with a silica layer to minimize agglomeration. 

Typical images collected using AFM are reported in Figure 2a and Figure S2 and displayed 

similar morphologies to those observed using SEM. Materials produced using bottom-up methods 

(G5 and G6) were particularly problematic to analyse with AFM because of their crumpled 

morphology, which does not result in flat 2D flakes. AFM height vs lateral size as measured using 

AFM for roughly 20 particles of each material are shown in Figure 2b and Figure S3, along with 

a linear fit of the data points. The lateral size-thickness correlation for materials produced via top-

down exfoliation methods (G1 to G4) has previously been explained as a reduction in lateral flake 

size following a reduction in flake thickness due to fracturing of the basal plane.[19,60–62] 

Heights measured using AFM for these materials ranged from a few nanometers to over 100 nm, 

showing a large polydispersity and possible agglomeration in some cases where outliers were 

observed. Particles produced using bottom-up methods (G5 and G6) displayed a larger AFM 

height, with no flakes measured below 40 nm. This is due to the non-planar morphology of these 

particles, which means that the number of layers does not correlate directly to the height measured 

using AFM.  
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Figure 2. Thickness and Lateral size distribution of G1 – (a) Example of an AFM image 

(belonging to G1 graphitic powder) showing multiple graphitic flakes; (b) Recorded AFM height 

vs lateral size measured from AFM imaging, with associated error bars. The plot shows a linear fit 

of the lateral size versus thickness data points and the 95 % confidence interval of the fit; (c) 

Lateral size distribution derived from SEM images for the same sample fitted with a lognormal 

distribution; (d) AFM height distribution, as calculated from the lateral size distribution in (c), by 

applying the linear fit in (b).  

 

Although AFM provides an accurate measurement of flake thickness for flat samples, it is typically 

a time-consuming technique, and so only a small number of flakes (~20) can be measured in a 

reasonable time-frame (~ 1 day). To provide a more robust measure of the distribution of flake 

thicknesses in the sample, the linear correlation between thickness and lateral size observed using 

AFM (Figure 2c) was employed to calculate height distributions from the larger particle 
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population measured with SEM (~200) as reported in Figure 2d and Figure S4. Clearly, because 

of the broad size distribution and confidence interval in the correlation, the results found for 

particle height exhibited a large polydispersity (lognormal median for AFM heights are reported 

in Table 2). In particular, the height measured for G5 and G6 produced using bottom-up methods 

is not truly representative of the real number of graphene layers in the particles. While some 

samples displayed obvious agglomeration (e.g. ball-milled or bottom-up graphitic materials), 

samples produced through LPE likely exhibited ordered re-aggregation in the z-plane during 

dispersion and deposition, resulting in larger height measurements from AFM. 

Because of the intrinsic properties of carbon-based materials, Raman spectroscopy has been 

applied to gain information about chemistry, long range order, number of layers, and both the 

amount and type of defects.[19,63–65] For instance, the Raman D-peak vs G-peak intensity ratio 

(ID/IG) and the full width at half maximum of the G-peak (FWHM[G]) correlate to the number of 

defects present, which in turn can relate to the lateral flake size, due to the contribution of edge 

defects.[19] Likewise, the 2D-peak position (~2750 cm-1), intensity, and shape changes with the 

number of graphene layers and stacking configuration.[63] Hence, Raman spectra were measured 

for all samples to derive fundamental material properties which could then be compared with BET 

SSA values. Average Raman spectra for all samples, normalised to the intensity of the G-peak 

(~1580 cm-1), are reported in Figure 3a and in Figure S5a. All samples exhibited the typical 

vibrational modes for graphitic materials.[20,66–68] Intensity ratios for all samples derived from 

Raman spectroscopy are reported in Table 2 and were derived from the analysis of over 200 

spectra per sample. 
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Figure 3. Disorder and Chemical Composition – (a) Raman spectra normalised to the G-peak 

intensity for all samples, (b) C 1s high resolution spectra with intensity normalised to the 

maximum intensity for all materials, the inset in the figure shows the broadening of the C 1s peak 

which can be correlated to an increased non-graphitic/graphitic carbon ratio, (c) C 1s high 

resolution spectrum for a functionalised graphitic material (sample G3) with peak fitted 

components (solid black line represents the fitted envelope and circles represent the raw data), (d) 

C 1s high resolution spectrum for pure HOPG, from which the C=C graphitic line shape has been 

used for the fitting of all other samples. 
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Table 2. Summary of structural and chemical properties via SEM, AFM, Raman spectroscopy and 

XPS analysis (uncertainties reported in Table S4).  

Sample SEM 

Lateral 

size 

(nm) 

AFM 

height 

(nm) 

ID/IG I2D/IG C  

(at%) 

O  

(at%) 

N  

(at%) 

Fe 

(at%) 

B 

(at%) 

S 

(at%) 

G1 877 98 0.25 0.44 97.4 2.4 0.1 -- -- 0.1 

G2 793 68 0.39 0.43 91.9 5.9 0.7 0.7 0.7 0.1 

G3 438 57 0.73 0.44 94.6 4.7 0.7 -- -- -- 

G4 90 22 0.79 0.35 95.2 4.5 0.3 -- -- -- 

G5 215 85 0.42 1.12 98.1 1.9 -- -- -- 0.1 

G6 297 79 0.52 0.74 98.5 1.3 -- -- -- 0.1 

 

3.2. Chemical Characterisation 

The chemical composition of the samples has been determined by XPS analysis. Typical XPS 

survey spectra are shown in Figure S5b from which relative elemental compositions were derived 

and reported in Figure S5c. All samples (analysed in pellet form) exhibited a large amount of 

carbon, with the presence of oxygen impurities determined to vary in content from roughly 6 at% 

to less than 2 at%. Some graphitic materials contained additional impurities, such as nitrogen 

(< 1 at%) and small amounts (< 1 at%) of iron, boron and sulfur (Table 2 and Figure S5c). XPS 

was also used to analyse the chemical environment of the different atomic species present through 

analysis of the C 1s high resolution spectra (Figure 3b). Figures 3c and 3d shows the C 1s peak 

fitting model used for the six powder samples and a highly oriented pyrolytic graphite (HOPG) 

reference sample respectively. The chemical components discussed here are fitted for every 

powder sample C 1s spectrum, using the constraints outlined in Tables S1 and S2. For the powder 

samples, the main component observed at a binding energy of ~284.3 eV for all samples is 
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attributed to graphitic sp2 carbon (aromatic rings) and exhibits an asymmetric peak characteristic 

of electrically conducting materials. A broad, low intensity π- π* shake-up feature is also observed 

at a 5-6 eV higher binding energy than the graphitic peak, for all samples.[69] Between these 

graphitic carbon and π- π* components, carbon-oxygen species are observed, such as ethers (C-O), 

ketones (C=O), and carboxyl (O-C=O and O-C=O (beta-shifted)) groups at ~286.5 eV, ~288.0 eV, 

~289.9 eV and ~285.7 eV respectively.[70–73] In addition to the oxygen-containing moieties, a 

feature related to defects and other non-graphitic and non-oxidised carbon species at roughly 

285 eV can be inferred from the shape of the C 1s spectra of the powder samples, in comparison 

to that of cleaned HOPG.[69,74] Figure 3b shows the normalised high-resolution C 1s spectra for 

the powder samples and the HOPG reference. There is a clear broadening observed in the spectra 

of the powder samples compared to the HOPG reference. The majority of the broadening manifests 

on the higher binding energy side where the defect and oxygen components are expected. The 

FWHM [C 1s] is generally observed to increase with increasing oxygen content (Figure S5d), 

except for G2 and G3 in which some of the oxygen may be associated to other impurities present 

(such as Fe and B, see Table 2). The different chemical components inferred from the peak-fitting 

of the C 1s spectra were also employed to calculate the ratio of non-graphitic/graphitic carbon, 

which is calculated as the ratio of the areas of the non-graphitic components (C-C non-graphitic, 

C-O-C, C=O, O-C=O) over the graphitic components (C=C graphitic). 

3.3. Gas physisorption analysis and BET SSA 

All the powder materials were obtained in dry form and degassed at two different temperatures of 

(i) 130 °C and (ii) 300 °C. This ensured the removal of all adsorbate species, while also 

investigating any major structural changes at higher degas temperatures. Nitrogen sorption 

isotherms at 77 K are reported in Figure 4a. Materials produced via LPE (G1 and G2) exhibited 
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typical isotherms for non-porous materials, while other materials generated isotherms with the 

presence of mesopores, micropores and/or relatively large external surface areas.[75] Nitrogen 

sorption isotherms were then employed to calculate BET SSA (Figure 4b). No major BET SSA 

differences were measured between the two degassing temperatures employed, suggesting no 

major structural changes at higher degas temperatures or removal of adsorbates. Samples produced 

through LPE (G1 and G2) exhibited relatively low BET SSA (< 30 m2/g), likely due to ordered re-

aggregation of the flakes in dry form; other materials exhibited relatively high BET SSA ranging 

from roughly 100 m2/g to over 700 m2/g.  

Internal and external SSA were calculated for all materials using two different thickness-plot (t-

plot) equations: i) Harkins and Jura and ii) Magee Carbon Black and are reported in Figure S6. 

The Carbon Black statistical thickness method (STSA) calculated the external SSA (STSA surface 

areas) higher than BET SSA for some of the samples. The Harkins and Jura equation produced 

better results for non-porous materials (G1 and G2 had near zero internal SSA) and is therefore 

more appropriate for these types of materials. Nevertheless, with both equations the BET SSA 

correlate linearly to external SSA and hence relationships elucidated in section 3.4 for BET SSA 

are valid for external SSA. Internal SSA could derive from: i) micropores present in amorphous 

regions of the samples (similarly to activated carbons), ii) the stacking arrangement of graphitic 

particles (platelets).  

3.4. Correlation of physicochemical characterisation and BET SSA 

To assess whether gas sorption measurements can provide useful information of the structural 

properties of commercially-available graphene/graphitic materials, the BET SSA for all six 

powders have been compared to structural and chemical parameters derived from previous 
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analyses. Firstly, BET SSAs were directly compared to the lateral size of graphitic flakes measured 

via SEM in Figure 4c.  

 

Figure 4. BET SSA vs lateral size – (a) Nitrogen sorption isotherms collected at 77 K for all 

graphitic materials degassed at 300 °C, open symbols represent desorption; (b) BET SSA derived 

from the nitrogen sorption isotherms for samples degassed at two different temperature (130 °C 

and 300 °C); (c) SEM lateral size (Lognormal median, with the mean standard deviation of the 

population distribution shown as error bars) vs BET SSA.  

Generally, BET SSA increased with decreasing lateral size of graphitic flakes. However, lateral 

size is not expected to be the direct cause for a change in BET SSA in graphitic materials, due to 

negligible contributions of edge per unit mass. Instead, smaller lateral sizes are often associated 

with increasing non-graphitic/graphitic carbon ratio (because of larger amount of edge to bulk 

carbon) and/or thinner flakes, both of which are expected to directly affect BET SSA. The lateral 

size/ thickness correlation hypothesised above was investigated with AFM in Figure 2. Graphitic 

materials all showed similar thickness/lateral size correlations (similar aspect ratios). The same 

correlation observed for lateral size against BET SSA should therefore be observed when 

considering the thickness of the particles measured (shown here as AFM height) against BET SSA 

(Figure S7a). However, due to the large polydispersity in height measured using AFM analysis, 

and to the presence of aggregates and a crumpled morphology (in particular for materials produced 
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using bottom-up methods), the AFM height cannot be directly correlated to the number of graphitic 

layers of the primary particles (flakes). AFM height was also compared to other parameters in 

Figure S7b and S7c, decreasing with an increasing FWHM of the C 1s peak and increasing non-

graphitic/graphitic carbon ratio, indicating either a potential correlation between thickness and the 

amount of non-graphitic carbon, i.e. thinner flakes may exhibit a higher number of defects, or 

potentially indicating that materials with higher non-graphitic carbon content do not 

aggregate/agglomerate to as great an extent.  

Finally, the amount and type of disorder was analysed and their correlation with the BET SSA was 

evaluated. Firstly, disorder was assessed via Raman spectroscopy, where the FWHM of the Raman 

G-peak (FWHM[G]) is expected to scale with the lateral size of graphitic flakes.[19] A good 

correlation was observed between the FWHM[G] from Raman spectroscopy and the lateral size of 

the particles measured from SEM (Figure 5a), which points to the prevalence of edge-type defects 

over basal plane and vacancy defects. The ratio of intensities of the D- over G- peak (Figure S8a) 

showed a similar correlation, although this was not as expected for G5 and G6, produced using 

bottom-up methods. The disorder was then assessed by using i) ID/IG from Raman spectroscopy, 

ii) the FWHM of the C 1s peak from XPS and iii) the non-graphitic/graphitic carbon ratio derived 

from the peak fitting of the C 1s peaks from XPS (Figure 5b and Figure S8c). The different 

methods of quantification, for disorder and non-graphitic/graphitic carbon ratio showed a good 

correlation, giving us confidence in the analysis procedure employed. Both the amount of disorder 

and the non-graphitic/graphitic carbon ratio correlated to BET SSA in Figures 5c, 5d and 

Figure S8d. Generally, samples with higher BET SSA exhibited a larger amount of disorder or 

non-graphitic carbon, which is in agreement with recently published work.[49]  
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Figure 5. Correlation between disorder and BET SSA – (a) Full width at half maximum 

(FWHM) of the G-peak from Raman spectroscopy vs SEM lateral size; (b) Ratio of intensities of 

D- and G-peak from Raman spectroscopy vs non-graphitic/graphitic C 1s ratio derived from the 

peak fitting of C 1s spectra from XPS; (c) correlation between the level of disorder and the 

measured BET SSA; (d) correlation between the amount of non-graphitic carbon and the BET 

SSA. 

4. Conclusions Nitrogen sorption analysis has been shown to hold promise as a relatively high-

throughput method to determine the properties of graphitic powder samples. However, an 

understanding of the accuracy of this method is extremely important, as SSA determined by BET 

will be employed in REACH regulation of chemicals in the European Union, specifically for the 

classification of nanoforms of substances. With powders containing few-layer graphene and 
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graphitic particles now being produced on the large scale of tonnes per year, the knowledge of the 

strengths and limitations of measuring the SSA of these commercially-available materials with 

BET will be paramount. 

From the materials studied here, powders of graphitic materials with higher BET SSA values 

tended to contain particles with smaller lateral size (as measured using SEM), a higher non-

graphitic/graphitic carbon ratio (derived from XPS) and higher disorder (revealed using Raman 

spectroscopy).  

Heights of the particles were measured from AFM images for all samples but were not always 

truly representative of the primary particle thickness due to the presence of aggregates/ 

agglomerates or a crumpled morphology, the latter particularly for particles produced through 

bottom-up production processes. Similarly, BET SSA values are likely to overestimate the number 

of layers of the primary particles due to the presence of aggregates, thus this method could not be 

employed to directly derive the average number of layers of graphitic flakes. 

The extent of aggregation depends upon the production method and nature of the material 

analysed, which must be taken into careful consideration when employing nitrogen physisorption 

for the analysis of graphitic materials. From our study it could be hypothesised that materials with 

a higher non-graphitic/graphitic carbon ratio or a greater level of disorder, exhibited a lower degree 

of aggregation and for these materials the BET SSA is likely to be more representative of the true 

thickness of the graphitic primary particles. 
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Supplementary data 

Supplementary data to this article can be found online at XXX. 

Supplementary information includes: Histograms showing SEM lateral size distributions for all 

samples, AFM images for all materials, AFM lateral size/ height correlations for all samples, AFM 

height distributions derived from SEM lateral size distributions for all samples, Raman and XPS 

spectra for all materials, correlations between structural and chemical properties and BET SSA, 

internal and external specific surface areas, table summarising structural and chemical properties 

with associated uncertainties, fitting model employed for C 1s for XPS analysis, which was used 

to derive the non-graphitic/graphitic carbon ratios.  
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