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ABSTRACT 

In recent years there has been a push for more customisation 
options in games, along with a desire for greater realism. 
While graphics have been steadily improving year over year, 
the current customisation options remain limited, however 
thanks to developments in research surrounding generative 
artificial intelligence the combination of both of these desires 
may be made possible through the use of the latest 
Generative Adversarial Networks. The aim of this project is 
to implement and compare four different clustering methods. 
These methods will be used to generate classification labels 
from gameplay images which will then be given as input to a 
generative network to create photorealistic equivalents. It 
will then be determined which method is most suitable for 
this task by comparing their initial classification 
performance and the results from the photorealistic images 
they are used to generate. In order to compare classification 
performance, the Dice coefficient was calculated for each 
classification image generated, using a ground truth image to 
represent perfect segmentation. It was found that good 
classification performance does not necessarily lead to 
superior GauGAN output images, and overall the best 
performing method for this task was Region-Growing due to 
the spatial consideration in its approach. 

INTRODUCTION 

Customizing and sharing experiences is a fundamental part 
of how we enjoy games and interact with each other – even 
before video games were a mainstream form of 
entertainment, tabletop games such as Dungeons and 
Dragons thrived by allowing players to make the game their 
own with custom campaigns, characters, and enemies to be 
shared among a group of friends. Even now these aspects 
retain the popularity of more traditional games, while also 
making their way into modern video games in the form of 
fan-made modifications (mods). 

At the same time as video games have evolved to 
allow for aspects such as these, there has also been a push 
for higher realism in every aspect of gameplay – from 
mechanics to sound design, this theme has been persistent as 
a sign that increased realism makes games more immersive 
and enjoyable for certain player demographics. Part of this 
trend has seen the graphics of games gradually tend towards 

photorealism within some genres, as people want to see as 
close to a real life equivalent of what they are experiencing 
in game as possible. 

These ideas of customization and an increased 
desire for realism forms the basis of the entire project which 
attempts to convert stills of games using different 
unsupervised learning clustering methods into segmentation 
maps describing the class of every object present on a per-
pixel basis, a level of detail is required for use in the next 
stage as input for a Generative Adversarial Network (GAN) 
to produce a photorealistic image with the same objects and 
context provided by the game. These clustering methods will 
then be compared against each other in terms of pure 
clustering performance along with their applicability to this 
specific context, with a final recommendation on which 
method is likely to give the best results based on results 
gathered. 

METHOD 

The project itself can be split into two main stages – image 
processing and GauGAN translation. The vast majority of 
the implementation work falls under the former, which itself 
can be split into three sub-stages. Data loading and 
preparation is the simplest of these, in which the images to 
be used throughout the rest of the program are loaded in and 
have any pre-processing operations applied to them, such as 
image resizing or smoothing. While it does not involve much 
work, this step has a knock-on effect to the rest of the 
application – the main consideration in this area is any 
downsizing applied to the source image as this can benefit 
the performance of the application, typically at the cost of 
the accuracy of results due to lower resolution segmentation 
map outputs. The latter aspect of GauGAN translation is the 
least involved practical part of the project and simply 
involves uploading the resultant segmentation maps to the 
nVidia GauGAN tool online. These maps are then processed 
by the tool into a photorealistic output with a number of 
styles to choose from, selected based on which gives the 
most accurate output at the time.  

Colour Difference 

Colour comparison is a tricky area of computer vision in that 
the usual way numbers are compared for similarity do not 
match up with a human’s perception of colour. For example, 
an intuitive way to compare two points in a three-
dimensional system, such as RGB ‘coordinates’, would be to 
find the Euclidean distance between the two points, however 
this approach can quickly encounter problems due to the 



 

failing of this method to take different shades of colours into 
account when comparing them and treating intensity as an 
equal part of the calculation. As a solution to this, the 
CieLab (LAB) colour space (Luo, 2015) was developed as a 
different way to represent colours – instead of the typical 
red, green, and blue channels colours are represented by their 
lightness (L), the colour on a scale from green to red (A), 
and the colour on a scale from blue to yellow (B). This 
allows comparison calculations to put emphasis on different 
parts of a colour’s properties, in this case putting less 
emphasis on a colour’s intensity. Alongside the LAB colour 
space, a series of ‘Delta E’ formulae were developed to 
utilize this different representation of colour, gradually 
getting more sophisticated with each iteration. In this 
application these two Delta E formulae will be used 
wherever a substantial advantage is given by either of the 
two, and where the difference between both is negligible 
Delta E 76 will be used due to its better processing time. The 
choice made for each clustering method is detailed in the 
following section. 
 
Clustering Methods 
 
The implementation of the clustering methods themselves 
forms the most crucial part of the application as it is here that 
the accuracy of the data that the classifier must work with is 
determined, and therefore the accuracy of the application 
results overall. Each of the four methods implemented were 
selected for their different core approaches to segmentation 
in a hope to draw out different strengths and weaknesses 
potentially making them more applicable for different 
scenarios. 
 The first of these four is the K-Means algorithm, 
selected due to its relative simplicity making it a good basis 
for other algorithms to be compared to. It functions by taking 
a set number of target clusters as input and gradually 
determining the location of these clusters within the colour 
space by iteratively updating each pixel in the image to the 
closest cluster available. These clusters then have their 
centres calculated as the average value of all member pixel’s 
colours, and the process is repeated until convergence is 
reached. 
 The next method, Mean-Shift, takes a different 
approach in developing its cluster centres by employing a 
density-based method to find the local maxima within the 
dataset. It does this by initially setting each pixel as a cluster 
centre and then gradually moving them towards dense areas 
within a local window until they are either combined with 
another cluster or converge on the most dense area within 
their local window. This provides the advantage over mean 
shift of not needing to define the number of clusters initially, 
however the radius used for the local window around cluster 
centres must still be defined. 
 Region-Growing takes a completely different 
approach in comparison, considering each pixel individually 
and adding them permanently to their final clusters. It does 
this by assigning a number of seed pixels as the initial 
regions distributed evenly across the image. Each of these 
clusters is then considered in turn comparing each member 
pixel to its neighbouring pixels and adding them to the 
cluster if the new pixel is similar to the initial seed pixel of 
the group using a predefined similarity factor. This process 
continues until either all pixels belong to a region or no more 

pixels can be added to regions, at which point new seed 
pixels are assigned and the process starts again. 
 Simple Linear Iterative Clustering (SLIC) was 
developed in 2010 (Achanta, R. et al., 2010), specifically for 
the task of image processing and starts similarly to Region-
Growing by initializing seed pixels as clusters across the 
image. The primary difference is that a cluster only considers 
pixels within a certain radius around its position, making this 
method far more spatially considerate than any others tested. 
To calculate the membership of a pixel between certain 
clusters, the similarity in colour and the physical distance 
between the pixel and cluster centre are combined into a 
five-dimensional similarity formula. Over the process of 
convergence, neighbouring clusters swap pixels back and 
forth while their centre positions are updated until no more 
swaps are made.  
 
Classification and GauGAN 
 
Classification forms the final stage of this application where 
an attempt is made to determine the objects and features 
present in a segmentation map on a pixel-by-pixel basis. The 
first step in this process is loading in the data describing the 
target classes and their corresponding features – in this case 
class information has three components loaded: the average 
colour of every texture in game, the colour of the related 
classes in the GauGAN application, and the name of these 
classes from a text file. The texture and label information are 
stored as two separate image files, with the relation between 
each being defined as their position in the images themselves 
(figure 1).  
 

 
Figure 1 - Classification labelling data 
 
The method then goes through every pixel in the segmented 
image, comparing the colour of each to the texture colour of 
every loaded class after which the corresponding pixel in the 
output image has its colour set to the paired label colour of 
the closest texture measured. The accuracy of this stage is 
heavily influenced by the method of colour comparison as 
mentioned previously, so to maximise performance different 
outputs are generated each using a different comparison 
method. These are then evaluated separately with the highest 
scoring method being retained. The images generated by the 
classification stage use the same colours to describe each 
label as those used in the GauGAN application, so no 
additional processing is needed, and the images can be 
directly uploaded to the online application. As part of this 
upload process images are automatically resized from the 
resolution of the screenshot taken in game to the much lower 



 

resolution used for the model. Once uploaded an image can 
be converted into multiple different photorealistic outputs 
using style filters available – the style used will vary 
between scenarios depending on which produces the best 
results with the ground truth image. Once processing is 
complete, the photorealistic output can then be downloaded 
for comparison alongside the other generated images.  
 
Testing and Evaluation 
 
The four clustering methods implemented will be tested and 
evaluated . The first and most important area of comparison 
is how well these methods classify a given image,  using the 
Sørensen–Dice coefficient (Sørensen–Dice coefficient, 
2020)–It calculates a region’s score by comparing the area 
predicted by the clustering attempt (Ap), the area of the same 
class in the Ground-Truth image (Al), and the area of 
overlap between these two (Apl) as seen in equation 1. 
Consideration must also be given to the testing scenario and 
seven scenes were selected based on the scene complexity 
and lighting effects. Seven scanarios with very different 
characteristics were identified for the evaluation e.g Forest, 
Snow, Day, Canyon, Underground, Beach and Night scene.  
 
 
 

 
Equation 1 - Sørensen–Dice coefficient 

 
RESULTS 
 
Each clustering method has at least one user defined 
parameter which influences the accuracy. Instead of using 
one fixed value for all testing scenarios, which would favour 
some scenarios over others, each method was tested for each 
scenario extensively with a wide range of parameters to find 
the best-case performance for each scenario and method 
combination. These are presented in Figure 2. 
 
Figure 2 Variance in ‘best’ parameters for each 
clustering methods across scenarios 
 

 
 
Figure 3 shows the diustribution of Dice scores across 
scenarios and classes (sky, sand, stone, water, wood). A Dice 
score is calculated for each region present in the Ground-
Truth image  across all seven scenarios. The sky and water 
classes are more accurately classified. The most variance 
appears in the stone, grass and brick classes. 

 
Figure 3 Performance of classification scores across 
classes and scenarios. 
 

 
 
An average score will also be taken from the average of all 
region scores within each image and to give an indication to 
the overall performance of methods in each scenario, with 
each individual region having equal weighting towards this 
final score (Figure 4). 
 
 
Figure 4 Performance of classification scores across 
scenarios and clustering methods 
 

 
 
 
The visual result for scenario 1 Forest is presented in Figures 
5 - 9 showing the game source image, clustering and 
labelling result based on KMeans, Mean-shift, Region-
growing and SLIC, and GauGAN output of that clustering 
and classification.  
 



 

Figure 4 Scenario 1 – K-Means 
 

 

 

 
 
 
Figure 5 Scenario 1 – Mean-Shift 
 

 

 

 
 
 
 

Figure 6 Scenario 1 – Region-Growing 
 

 

 

 
 
 
Figure 7 Scenario 1 – SLIC 
 

 

 

 
 
 
 



 

CONCLUSION 
 
The primary goal of combining unsupervised learning and 
Generative Adversarial Networks for the purpose of 
computational creativity in games has been demonstrated. 
The clustering methods display varying results across 
different criteria that make the methods applicable to 
different use cases, and as it stands Mean-Shift appears to be 
the most reliable method in terms of pure clustering 
performance. As demonstrated however this does not 
necessarily carry over to desirable GauGAN results due to 
issues of noise, and as such the local, spatially based 
methods of Region-Growing and SLIC are more suitable for 
this specific task. Of these two methods, Region-Growing is 
recommended as the overall best solution for clustering due 
to its high classification performance when compared with 
all other methods. With the further work suggested however 
this recommendation may be subject to change as there are 
options to resolve each method’s shortcomings – in this 
regard any method may become performant enough to justify 
its use. 
 The other factor for consideration is the 
appropriateness of GauGAN for the task of generating 
images. From the beginning of the project building a custom 
network was out of  scope, and as such GauGAN became the 
default option due to its ease of access and, most 
importantly, its superior performance compared to the 
previous networks it was based off. Despite this limitation 
GauGAN performed well and served as a good base to test 
the hypothesis without much obstruction. It is clear however 
from the results that many improvements could be made to 
better fit the network by fine-tuning parameters. For example 
retraining the  SPADE network for every novel 
setting/scenario  would lead to improved results. In addition, 
out with the core focus of this project, this method may also 
have potential not just for content creation on finished games 
but also as a tool for artists and designers to use during the 
production of the game itself. To accomplish this a model 
could be trained on images from the game to generate new 
scenarios from its existing style and could be used to allow 
creators to mock-up new level designs and setting concepts. 
 This study also demonstrates the potential for the 
existing creative effort put into developing a game to be 
utilized for Computational Creativity. The visual methods 
discussed in this paper only highlight one aspect of this 
potential as well, with areas such as sound and level design 
possibly opening entirely new routes of investigation. On the 
other hand, the results obtained also demonstrate the 
diversification Computational Creativity can offer to content 
customisation in games as the photorealistic images 
generated are unlike anything available in current games. All 
of this serves only as a starting point of interest, with 
improvement required in almost every area of the process 
before such methods become commercially viable and ready 
for mass inclusion in games, however with further 
integration to a game’s content pipeline this improvement 
should be attainable without much more work required. 
 Overall this project may be considered a success in 
its initial goal of combining unsupervised learning and 
generative networks to create entirely a new way to visualise 
existing game worlds and presents several future  lines of 
investigation.   
 

 FUTURE RESEARCH 
 
While the current implementation of this project serves well 
as a proof of concept, further work would be required to 
realise it as a commercially viable application. Part of the 
limitation comes down to the unreliable classification 
performance which would need to be addressed by the 
improvements discussed above, or to implement a different 
method of segmentation which overcomes the shortcomings 
of unsupervised learning. Fortunately, this task may be 
trivial in a games application when developing the game 
itself since perfect segmentation performance could be 
achieved by building the functionality directly into the 
game’s graphics pipeline, which would work by simply 
changing the material of every object to a solid colour of its 
intended label and disabling any additional lighting and 
effects. Without this type of access to a game’s source code, 
machine learning methods, such as those discussed in this 
paper, can serve as a good alternative for more limited 
application. The GauGAN model used for this project is also 
limited in that it can only generate images of landscapes 
from the datasets it has been trained on, as has been 
discussed from the results gathered. It would likely then be 
beneficial to train a bespoke model for games application, 
particularly if the intended use case is a fiction or fantasy 
setting as many of the labels that would be identified in these 
will not have real-life equivalents. To accomplish this, it 
would then be necessary to create a custom dataset with 
photorealistic fictional settings and their labelled equivalent, 
perhaps sourced through live action films and television 
series. This use case would be particularly applicable to 
games that have a direct relation to such media. For example, 
the game Star Wars Jedi: Fallen Order (EA, 2020) would 
have a vast amount of live action source material from the 
Star Wars franchise meaning that the majority of objects, 
characters, and settings in the game could have a ‘real-life’ 
equivalent. A further benefit in training a custom generator 
would be in the ability to adapt specifically how the model is 
trained based on the use case, making it possible to train a 
network with more “creative freedom” in how it deals with 
the input labels. For example, a network could be trained to 
accept input as a description of the rough location of a class 
within an image, rather than the pixel-wise implementation 
currently used. Additionally, the model could be adapted to 
accept more general labels to allow it more room to work 
with when generating the photorealistic equivalent of the 
region – for example trees and bushes could instead be 
described simply as “foliage”. This would likely result in an 
output that would be less true to the source image, however 
it could appear more realistic overall due to more emphasis 
put on this factor. 
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