
Authorisation Management
in Business Process

Environments

An Authorisation Model
and a Policy Model

by

Khalid Adnan Alissa
Bachelor of Computer Engineering, King Saud University, Riyadh,

Saudi Arabia, 2004

Masters of Information Technology, Queensland University of

Technology, Brisbane, Australia, 2009

Institute for Future Environments
Faculty of Science and Engineering

Queensland University of Technology

A dissertation submitted in fulfilment

of the requirements for the degree of

Doctor of Philosophy

2015

Keywords: Authorisation management, Business process, Authorisation,
workflow, Authorisation model, Policy language model, Authorisation

policy language.

QUT Verified Signature

iv

v

To my mother and father, and to my wife Arwa.

To those who seek knowledge for the satisfaction of the mind,
and understanding of the world.

vi

Acknowledgements

I would like to thank my wife, Arwa Alumran, for her constant support
throughout my PhD experience; my 5-year-old son, Suliman, and my 1-
year-old daughter Lina for their patience.

I would also like to extend my gratitude to my parents in Saudi Arabia,
my father Adnan Alissa and my mother Sawsan Alomran, for their moral
support and guidance in my postgraduate studies and their continuous
patience while I live far away from them. This goes to my brothers as well,
Eisa, and Omar, and my one and only sister Lulu.

Special thanks to Dr. Farzad Salim for his help and professional support
throughout my studies.

I would also like to extend my thanks to Dr. Michael Adams, and Dr.
Ra↵aele Conforti for their help with YAWL. Also I would like to thank
Nishchal Kush and Nicholas Rodofile for their help with the SPCC imple-
mentation.

I would like to acknowledge the contribution made by many stakehold-
ers involved in the Airports of the Future project (www.airportsofthefuture.
qut.edu.au). Part of this research was undertaken as a part of the Airport
of the Future project (LP0990135), which is funded by the Australian Re-
search Council Linkage Project scheme.

Thanks to everyone in QUT who was there for me throughout my
pleasant PhD journey, especially my supervisors: Emeritus Professor Ed
Dawson and Dr. Jason Reid. I am very grateful to have Ed and Jason as
my supervisors and mentors. Thanks also to Professor Arthur ter Hofstede
and Dr. Chun Ouyang for their guidance through my first year.

Thanks to my colleagues in the information security discipline, and the
research student centre. Thanks to my colleagues Raphael Amoah and
Nimalaprakasan Skandhakumar. I would like to extend my thanks and
gratitude to all of my friends in Brisbane: thank you for always being
there for me.

vii

viii

Abstract

Information security is concerned with protecting information systems and
information from unauthorised access, unauthorised use, unauthorised dis-
closure, unauthorised disruption, unauthorised modification, or unautho-
rised destruction. Therefore authorisation is a key concept in informa-
tion security, and authorisation management is an important aspect in the
protection of an organisation and its information systems. Authorisation
management is concerned with writing the authorisation policies, storing
the policy, managing the policies, and enforcing the policy. This thesis
is concerned with the language for writing authorisation policies, and the
model, which enforces them.

Business process management (BPM) is a growing, maturing domain,
which today’s organisations are increasingly adopting. Business processes
are implemented using a special type of information system called Process-
Aware Information Systems (PAIS). BPM is a key concept for organising
and improveing an organisation’s activities. These activities, which are
called tasks, can be performed by individuals or by systems. Task perfor-
mance is governed by authorisation policies, which are enforced using the
authorisation model.

Authorisation models for business process environments require specific
functionalities that current authorisation models (such as RBAC) do not
support. This thesis identifies these functionalities and uses them to show
that none of the available authorisation models is suitable for organisa-
tions that use business processes. It also identifies the characteristics of an
authorisation policy language for business process environments, and uses
these characteristics to show that there is a need for a BPM authorisation
policy language.

This thesis o↵ers two main contributions. The first one is BP-TRBAC,
a unified authorisation model that can support legacy systems as well as
business process systems. BP-TRBAC uses RBAC as its base and extends
it to support specific features that are required by business process envi-
ronments. After identifying the characteristics of a business process au-
thorisation model, we used these characteristics to introduce BP-TRBAC,
which supports all the identified characteristics. BP-TRBAC is designed
to be used as an independent enterprise-wide authorisation model, rather
than having it as part of the workflow system. It is designed to be the
main authorisation model for an organisation.

ix

x

The second contribution is the proposal of BP-XACML an authori-
sation policy language that is designed to represent BPM authorisation
policies. It extends XACML to support business process environments.
The characteristics of such a language were identified, then they were used
to identify how to extend XACML to support business processes policies.
BP-XACML as a language is able to represent authorisation policies for
business processes, as well as already available authorisation policies that
are used for legacy systems. Besides the language, the contribution also
includes a policy model for BP-XACML.

Using BP-TRBAC as an authorisation model together with BP-XACML
as an authorisation policy language will allow an organisation to manage
and control authorisation requests from workflow systems and other legacy
systems.

A third contribution made in this thesis is an implementation of a
use case of BP-TRBAC. The use case is a subset of BP-TRBAC, called
the ‘Security Policy Compliance Checker’ (SPCC). It was implemented
in a workflow system called ‘Yet Another Workflow Language (YAWL)’.
SPCC is designed to overcome a shortcoming in YAWL, as YAWL allows
the process modeler, who is not a security expert, to assign users/roles
to perform tasks. SPCC provides a method for checking if the role-task
assignments are in compliance with the authorisation policy.

Contents

1 Introduction 1

1.1 Research Area . 2
1.2 Problem . 3
1.3 Aims and Objectives . 5
1.4 Approach . 6
1.5 Contributions . 6
1.6 Thesis Layout . 7

2 Background 9

2.1 Business Process Management 9
2.1.1 Process Aware Information Systems 13
2.1.2 YAWL : a BPMS . 14
2.1.3 Declarative Workflow 16

2.2 Information Security . 17
2.2.1 Authorisation Policy Languages 18
2.2.2 Access Control . 21

2.3 Information Security and Business Process 24
2.4 Summary . 25

3 Authorisation Management for Business Processes: Char-
acteristics Analysis and Literature Review 27

3.1 Example Scenario . 28
3.2 Characteristics Analysis . 31

3.2.1 Authorisation Model Characteristics 31
3.2.2 Authorisation Policy Language Characteristics . . . 34

3.3 Authorisation Management for BPM: Literature Review . . 36
3.3.1 Authorisation Models for BPM 37
3.3.2 Authorisation Policy Languages for Business Processes 42

3.4 Summary . 44

4 Business Process Task-Role-Based Access Control Model
(BP-TRBAC) 45

4.1 BP-TRBAC . 46
4.2 Conceptualisation . 48

4.2.1 ORM . 48

xi

xii

4.2.2 BP-TRBAC ORM Model 48
4.3 Formal Representation . 51

4.3.1 Roles, Users, and Permissions 51
4.3.2 Task and Task-instance 52
4.3.3 Active Access Control 53
4.3.4 Separation of Duties 55
4.3.5 Instance-level Restrictions 55

4.4 Example Scenario Revisited 56
4.5 Discussion . 59
4.6 Review . 60
4.7 Conclusion . 63

5 SPCC for YAWL: a Use-Case of the BP-TRBAC 65
5.1 YAWL . 66

5.1.1 YAWL Engine . 66
5.1.2 YAWL Resource Service 67
5.1.3 YAWL Editor . 67
5.1.4 The Problem . 68

5.2 SPCC . 68
5.2.1 Architecture . 69
5.2.2 Software . 69
5.2.3 Data Structure . 70
5.2.4 Flowchart . 72

5.3 SPCC Implementation in YAWL 74
5.3.1 YAWL Plug-in Interface 74
5.3.2 Architecture . 74
5.3.3 Interface . 77

5.4 Results and Discussion . 77
5.5 Conclusion . 80

6 BP-XACML 81
6.1 BP-XACML: Policy Structure 83

6.1.1 Request and Decision 83
6.1.2 Policy Sets . 84
6.1.3 Conditions . 89

6.2 BP-XACML: Policy Model 89
6.2.1 Authorities and Repositories 90
6.2.2 Access Control . 92
6.2.3 Policy Framework 95

6.3 BP-XACML: Policy Semantics 101
6.3.1 Users, Roles, Operations, and Permissions 101
6.3.2 Task and Task instances 103
6.3.3 SoD on Role Level 106
6.3.4 Instance-level Restrictions (IR) 109

6.4 Example Access Control policies 111
6.5 Discussion . 117

Contents xiii

6.6 Conclusion . 120

7 Conclusion and Future Directions 121
7.1 Summary of Outcomes and Objectives 122
7.2 Future Research Direction 123

7.2.1 BP-TRBAC . 124
7.2.2 SPCC . 124
7.2.3 BP-XACML . 125
7.2.4 Building Information Models 125

7.3 Concluding Remarks . 125

Appendix A: Case study 137

xiv

List of Figures

1.1 Area of research . 3

2.1 BPM lifecycle . 11
2.2 YAWL editor . 15
2.3 YAWL resource service . 15
2.4 XACML major actors . 20
2.5 RBAC concept . 22
2.6 Task-based access control concept 23

3.1 Business process model for fixing pump malfunction 29
3.2 W-RBAC concept . 39
3.3 T-RBAC concept . 40

4.1 RBAC concept . 47
4.2 BP-TRBAC model . 47
4.3 BP-TRBAC concept using ORM 49
4.4 An ‘AND’ join . 54
4.5 An ‘OR’ join and an ‘XOR’ join 54

5.1 YAWL architecture . 67
5.2 SPCC architecture . 69
5.3 Flowchart of SPCC. 73
5.4 YAWL plug-in interface. 74
5.5 SPCC communication with YAWL. 75
5.6 Sequence diagram for SPCC as a plug-in for YAWL. 76
5.7 SPCC as a plug-in for YAWL. 77
5.8 An example business process in YAWL. 78
5.9 Results of testing the SPCC in YAWL. 79

6.1 BP-XACML authorities and policy sets 82
6.2 Policy sets for a standard RBAC requests authorisation . . 85
6.3 Policy sets for task performance authorisation 86
6.4 Policy sets for role activation authorisation 88
6.5 Role enablement authority 91
6.6 Task authority . 91
6.7 Task-Permissions List (TPL) 92

xv

xvi

6.8 PDP can only access role policy set 93
6.9 REA can only access SoD policy set 94
6.10 TA can only access the IR policy set 95
6.11 BP-XACML framework . 96
6.12 Flowchart of an activating a role request 97
6.13 Flowchart of a standard resource request 98
6.14 Flowchart of a request to perform a task 100

List of Tables

3.1 Comparing di↵erent authorisation models 41

4.1 Comparing BP-TRBAC to other authorisation models . . . 61

xvii

xviii

Listings

1 Permission policy-set example 101
2 An example role policy-set for the role ‘coordinator’ 102
3 Task policy set . 103
4 An example role task policy set 105
5 SoD policy set example . 106
6 Role-assignment policy set example 108
7 Example IR policy set . 109
8 Example role-activation request in BP-XACML 111
9 Example response for role-activation request in BP-XACML 112
10 Example task performance request in BP-XACML 112
11 Example response on task performance request in BP-XACML113
12 Example standard RBAC request in BP-XACML 114
13 Example response for standard RBAC request in BP-XACML114
14 Example task performance request in BP-XACML 115
15 Example response on task performance request in BP-XACML116

xix

xx

Acronyms

List of acronyms used in this document

• BPM: Business Process management

• BPMN: Business Process Modelling Notation

• BPMS: Business Process management Systems

• BoD: Binding of Duties

• CC: Compliance Checker

• CH: Context Handler

• IR: Instance-Level Restriction

• IS: Information Security

• ORM: Object-Role Modelling

• PDP: Policy Decision Point

• PAP: Policy Administration Point

• PAIS: Process-Aware Information Systems

• PEP: Policy Enforcement Point

• PIP: Policy Information Point

• PL: Performers List

• RBAC: Role-Based Access Control

• REA: Role Enablement Authority

• ROPE: Risk-Oriented Process Evaluation

• SEPL: Security Enhanced Process Language

• SoD: Separation of Duties

• SPCC: Security Policy Compliance Checker

xxi

xxii

• TA: Task Authority

• TPL: Task-Permissions List

• UML: Unified Modelling Language

• XACML: eXtensible Access Control Markup Language

• YAWL: Yet Another Workflow Language

Previously Published
Material

The following paper has been published and was presented at the ACISP
2015 Conference:

• Khalid Alissa, Jason Reid, Ed Dawson, and Farzad Salim. BP-
XACML: an authorisation policy language for business process. In
Douglas Stebila and Ernest Foo, The 20th Australasian Conference
on Information Security and Privacy (ACISP), Brisbane. LNCS 9144,
pp. 307-325. Springer International Publishing. Switzerland. 2015.

The following paper was submitted to the International Journal of Coop-
erative Information Systems on June 2nd 2013. The paper went through
the review phase and has been resubmitted awaiting final decision:

• Khalid Alissa, Farzad Salim, Jason Reid, and Ed Dawson. Busi-
ness Process Task-Role-Based Access Control Model (BP-TRBAC).
submitted to the International Journal of Cooperative Information
Systems. World Scientific Publishing Company.

The candidate has presented the following:

• Khalid Alissa. Integrating Identity and Access Management in Busi-
ness Processes in an Airport Environment. QUT-ISI consortium.
Brisbane, Australia. November 2011.

• Nimalaprakasan Skandhakumar and Khalid Alissa. Identity Man-
agement in an Airport Environment. IATA PEMG06 Conference.
Brisbane, Australia. January, 2012.

The candidate also presented 2 posters in the:

• Airports of the Future Grand Showcase, Brisbane, Australia. May,
2012.

xxiii

xxiv

Chapter 1

Introduction

In the modern business world the design and management of business pro-
cesses is a key factor for large organisations to compete e↵ectively [43].
While business process management (BPM) and process aware information
systems are now attracting more attention [93], existing BPM method-
ologies barely consider addressing information security and authorisation
management requirements [38]. Business process management and authori-
sation management have been developed separately and often do not follow
a coherent strategy [66]. Information security considerations are typically
overlooked in business process models [38]. It is, however, crucial to ensure
the security of corporate business processes for the success of an organi-
sation [23]. To this end, it is important to consider information security
aspects such as authorisation management and authorisation policies when
developing and managing business processes.

To be able to enforce authorisation policies on business processes, it is
important to define a method that represents authorisation policies in a
structured language that process-aware information systems can interpret.
A machine-readable representation enables computational methods that
can locate conflicts and inconsistencies between policies. There have been
a number of studies on languages that translate authorisation policies from
a natural language to a machine-readable language (e.g . [74]). As will
be shown in Chapter 3, most do not consider business processes. It is
important to have an authorisation model that enforces these policies in a
business process environment.

This research explores the current state of the art of authorisation man-
agement in BPM, with an aim to develop an approach that integrates au-
thorisation management into BPM. This research focuses on two major
aspects. Firstly, with a focus on authorisation policies, it introduces an
authorisation model that enforces authorisation policies in business pro-
cess environments. Secondly, it provides a machine-readable and enforce-
able policy language that is designed to represent authorisation policies for
business processes.

1

2

The rest of the chapter is organised as follows. Section 1.1 will identify
the area of research that this thesis belongs to. Section 1.2 will identify the
problem that this thesis is aiming to address. Section 1.3 will list the aims
and objectives of this thesis. Section 1.5 will identify the contribution of
this research. Finally, Section 1.6 will provide the layout for the rest of the
thesis.

1.1 Research Area

The domain of Business Process Management (BPM) is an important and
maturing domain. A survey by Gartner [32] showed that BPM is the num-
ber one concern for many senior executives. This has motivated research in
a variety of directions. For example security-aware BPM has become a new
trend in research in the past few years. It deals with integrating the do-
main of information security into the domain of BPM. Information security
means “protecting information and information systems from unauthorised
access, use, disclosure, modification, or destruction” [40]. Authorisation
management is the process that defines and enforces what is authorised or
allowed in terms of access, use, disclosure, modification, and destruction.
An authorisation policy language provides the means by which the rules
are expressed and an authorisation model provides the method by which
the rules are enforced. This thesis is focused on authorisation manage-
ment for business process environments. With the increasing reliance on
information systems and computer networks, authorisation management
has become a critical part of business operations across di↵erent domains
[49]. A working BPM system that does not have an e↵ective authorisa-
tion management system could present a significant vulnerability for an
organisation [58].

Information systems cannot understand the nuances of natural language
or recognise its inconsistencies. It is therefore important to have a struc-
tured representation of the authorisation policies that can be interpreted by
computer systems [34]. The domain of machine-readable representation of
authorisation policies and access control is not a new domain. There have
been several investigations of a machine-readable representation of autho-
risation policies that have explored the application of structured languages
for authorisation policies (e.g . see [22, 74]).

Having the policies in a machine-readable language is not su�cient by
itself if there is no mechanism to enforce these policies. An authorisation
model provides the method of enforcing the authorisation policies. The
domain of authorisation models is not a new domain. Role-Based Access
Control (RBAC) [77] is a widely known authorisation model. There have
been numerous proposals for other authorisation models (e.g . see [86, 95]).

Figure 1.1 shows the research area that this thesis is concerned with.
The intersection between the business process management domain and
the authorisation management domain produced the domain of ‘Authori-

Introduction 3

!

Business'Process'
Management'

!
!
!
!
!'
'
'
'

Authorisation'Management'

Machine3
readable'
policy'

languages'
'
'

Authorisation!management!
for!BPM!

Technical'
Security'
controls''
'

Area'of'research'

Figure 1.1: Area of research

sation management for BPM’, which is the concern of this thesis. To be
more specific, the diagram shows which parts of the authorisation man-
agement for BPM domain that this thesis is concerned with. The domain
of structured, machine-readable policy languages involves languages that
are designed to represent policies in a way that machines and systems can
interpret and enforce. These languages seek to remove the ambiguity that
is often found in natural language. The intersection of this domain and
authorisation management gives the domain of Machine-readable authori-
sation policies languages. In this thesis we are specifically concerned with
‘machine-readable business process authorisation policies languages’. The
other concern is the enforcement control. Technical security controls are
measures that are concerned with enforcing security policy requirements.
Access control systems and firewalls are two examples of technical security
controls. Technical controls in the authorisation management domain are
concerned with authorisation models. From the technical controls side, this
thesis is focused on Authorisation models for BPM.

1.2 Problem

The past two decades have seen an increasing level of adoption of the prin-
ciples of business process management within organisations [93]. In line
with this trend, more and more organisations are seeking to make their
information systems ‘process-aware’ [26]. A Process-Aware Information
System (PAIS) can be defined as “a software system that manages and
executes operational processes involving people, applications, and/or in-
formation sources on the basis of process models” [26]. We have already
identified that it is crucial to ensure the security of the organisation’s sys-

4

tems for the success of the organisation [23], that authorisation is a key
concept in information security, and that authorisation management is an
important aspect in the protection of an organisation and its information
systems, including the process-aware information systems. In authorisa-
tion management, authorisation models provide the method of enforcing
authorisation policies, while the authorisation policy language provides the
means of expressing these authorisation policies.

In business process environments, authorisation models require spe-
cific functionalities that current authorisation models (such as RBAC) do
not support. Some proposed authorisation models have been designed for
business processes, but some of these models are designed to be part of the
workflow system and only work in the context of workflow authorisation
requests. As will be argued in Chapter 3, to ensure consistent application
of an organisation’s authorisation policy, the authorisation system should
be an independent organisation-wide system, rather than having multi-
ple authorisation systems, each of which must be separately maintained.
Other proposed models are independent, and not part of the workflow sys-
tem, but they can deal only with workflow requests. Again, this means
that the organisation will require another authorisation system for non-
workflow requests. Other models cannot support specific requirements
such as instance-level restrictions (which are discussed in more detail in
chapter 3). Therefore, there is a need for a unified authorisation model
that supports business process systems and other legacy systems at the
same time.

During the process of writing authorisation policies for business pro-
cesses it will be noted that there are specific requirements that appear
only in the business process context, and that the policy language should
be able to express the policy. For example, in business process it is expected
that the policy constraints will be expressed in terms of ‘tasks’, ‘processes’,
and ‘instances’ (more details are presented in chapter 3). Although there
are several authorisation policy languages, they do not consider business
processes and cannot express business process components. On the other
hand, there are structured, machine-readable languages that are designed
for business processes (e.g . business process compliance languages), but
these languages are not designed to express authorisation policies. There-
fore, there is a need for a structured, machine-readable business process
authorisation policy language.

To summarise, business processes are widely used nowadays, and it is
important to make sure they are supported by authorisation management
systems. Yet, as will be shown in Chapter 3, the current authorisation
models do not satisfy the necessary specific characteristics for business
process environments. Moreover, to the best of the author’s knowledge
there is no authorisation policy language that supports business process
policies. Therefore, there is a need for a BPM authorisation model and for
a BPM authorisation policy language.

Introduction 5

1.3 Aims and Objectives

This research aims to enable unified authorisation management in business
process environments, where processes run across multiple systems and
deal with di↵erent policies. To reach this main aim, this research has two
sub-aims:

• To provide an authorisation model for business process environments
that controls authorisation requests and enforces authorisation poli-
cies.

• To provide a structured, machine-readable language that has the abil-
ity to represent authorisation policies for business processes.

This research provides a case study from a security-sensitive environment
that uses business processes. The case study helps in understanding both
the problem and the contribution. The case study also provides a context
within which, the necessary characteristics for an authorisation model and
an authorisation policy language for BPM can be identified.

To reach the research aims, this research will have three main objectives:

• First Objective: A preliminarily analysis that includes:

– Provide a case scenario from a real-life security-sensitive envi-
ronment that uses business processes.

– Identify the characteristics of an authorisation model for busi-
ness process environments. Establish the characteristics that
a language should satisfy to be able to represent authorisation
policies in a business process environment.

– Evaluate the suitability of available authorisation models for
business process environments, and evaluate the suitability of
available authorisation policy languages for business process en-
vironments.

• Second Objective: Provide an authorisation model for business pro-
cess environments. The model is used to control the authorisation
requests by enforcing the authorisation policies. The model is devel-
oped based on the characteristics identified in the first objective. A
use-case implementation of the model using a workflow system is also
part of this objective.

• Third Objective: Provide a structured, machine-readable language
that has the ability to represent authorisation policies in business
processes. The characteristics identified in the first objective (the
language characteristics) are used to assess the suitability of the lan-
guage.

6

Each objective is performed as a study. The results of the first study
(Preliminarily Study) are presented in Chapter 3. The results of the second
study (Main Study 1) are presented in Chapter 4. The results of a use-case
implementation can be found in Chapter 5. The results of the third study
(Main Study 2) are presented in Chapter 6.

1.4 Approach

After we identified the need for an authorisation model for business process
environments, the first step was to identify the required characteristics for
such a model. To do so, we interviewed experts from a security-sensitive
environment to provide a case scenario as well as conducting in-depth study
of the relevant literature. Using this case scenario and the literature, we
performed an analysis to identify the required characteristics. After that
we used these characteristics to propose a new authorisation model. A
use-case implementation for a subset of the model was performed using an
open source workflow system. The implementation showed that there is a
need for an authorisation policy language that has the ability to represent
business process authorisation policies to be used with the model proposed
in this thesis. Then we proposed BP-XACML: a machine-readable autho-
risation policy language for business process environments. The language
is to be used with the authorisation model.

1.5 Contributions

This thesis provides two major contributions. The first contribution is
the proposal of a new authorisation model (BP-TRBAC). This model was
based on the BPM authorisation model characteristics identified in this
thesis. BP-TRBAC uses RBAC as a base and extends it to support spe-
cific features that are required by business process environments. It is
designed to be a unified authorisation model suitable for business pro-
cess environments. BP-TRBAC is designed to be used as an independent
enterprise-wide authorisation model, rather than having it as part of the
workflow system. Having the authorisation model as part of a workflow
system that is designed to deal only with workflow authorisation requests
is not su�cient. It means that the organisation cannot use this model by
itself, and will need another authorisation model to handle authorisation
requests that do not originate in the context of a workflow. That will cause
duplication in functionalities and policies. Moreover, having a single uni-
fied enterprise-wide authorisation model helps in having a single unified
policy that governs all the organisation’s authorisation requests.

Introduction 7

The summary of this contribution is available in the following submitted
paper:

• Khalid Alissa, Jason Reid, Ed Dawson, and Farzad Salim. BP-
XACML: an authorisation policy language for business process. In
Douglas Stebila and Ernest Foo, The 20th Australasian Conference
on Information Security and Privacy (ACISP), LNCS 9144, pp. 307-
325. Brisbane. Springer International Publishing. Switzerland. 2015.

The second contribution is the proposal of BP-XACML an authori-
sation policy language that is designed to represent BPM authorisation
policies. First we identified the characteristics needed for a business pro-
cess authorisation policy language. Based on these characteristics we ex-
tended XACML to support business process environments. BP-XACML
as a language is able to represent authorisation policies for business pro-
cesses as well as standard RBAC authorisation policies that are used for
non-workflow systems. The contribution also includes a policy model for
BP-XACML.

The summary of this contribution is available in the following accepted
paper:

• Khalid Alissa, Jason Reid, Ed Dawson, and Farzad Salim. BP-
XACML: an authorisation policy language for business processes. In
Douglas Stebila and Ernest Foo, The 20th Australasian Conference
on Information Security and Privacy (ACISP). Brisbane. Springer.
2015.

Besides the two major contributions, a third contribution was made
in this thesis: an implementation of a use case of BP-TRBAC. The use
case is a subset of BP-TRBAC that is called ‘Security Policy Compliance
Checker’ (SPCC). It was implemented in a workflow system called ‘Yet An-
other Workflow Language (YAWL)’ [90]. SPCC is designed to overcome a
shortcoming in YAWL, as YAWL allows the process modeller, who is typ-
ically not a security expert, to assign users/roles to perform tasks. SPCC
provides an automated method of checking if task-role assignments are in
compliance with the authorisation policy.

1.6 Thesis Layout

This thesis is organized as follows. Chapter 2 provides background in-
formation about business process management and authorisation manage-
ment. It provides information needed to understand the rest of the thesis.
Chapter 3 provides an example case scenario from a security-sensitive or-
ganisation. The scenario helps in understanding the need for authorisation
management in business process environments. Chapter 3 also provides a
review of the literature, showing the need for an authorisation model and

8

an authorisation policy language for business process environments. In or-
der to perform the review, the chapter first performs a systematic analysis
to identify the authorisation model characteristics. Based on these charac-
teristics it identifies the authorisation policy language characteristics. The
characteristics are used to compare the models and the languages in the
literature.

Chapter 4 introduces a new authorisation model (BP-TRBAC) that is
designed for business process environments. It is designed to address the
characteristics identified in Chapter 3. After that Chapter 5 provides a
use-case implementation. This implementation includes a subset of BP-
TRBAC concerned with checking if task-role assignments made by the
process modeler during design time of the business process are in com-
pliance with the organization’s authorisation policy. The subset is called
‘Security Policy Compliance Checker’ (SPCC). Chapter 5 describes a proof
of concept implementation for the use case (SPCC).

Chapter 6 introduces BP-XACML, an authorisation policy language
that is designed for business process environments. It is a proposal to
extend XACML (a structured authorisation policy language) to be able
to support representation of business process concepts in authorisation
policies. Chapter 7 summarise the thesis contribution, provides possible
directions for future research, and concluding remarks.

Chapter 2

Background

Business process management (BPM) is a key concept for organising and
improveing an organisation’s activities [99]. It is inherently concerned with
defining what should be done, by whom and when, to achieve a business
goal. As the name indicates, its primary organising principle lies in defin-
ing repeatable, step-by-step processes. Authorisation management shares
a related concern: it seeks to define and enforce rules about who can do
what with an organisation’s assets and information systems in order to pro-
tect those resources from misuse and loss. Its primary organising principle
is resource-centric as opposed to process-centric. In order to ensure e↵ec-
tive protection, the authorisation rules must be observed in all interactions
with the resources: both those that occur in the context of a structured
workflow and those that might be considered more ad-hoc. The authorisa-
tion rules and associated enforcement mechanisms that protect a resource
will often be in place before a business process is even defined. Therefore,
to ensure the related who and what concerns are addressed consistently,
business process management and authorisation management need to be
coordinated. As the following chapters will argue, this has not yet been
done e↵ectively in published business process authorisation models.

This chapter explores the relationship between BPM and authorisation
management. It starts with a review of business process management, then
discusses access control and authorisation management, including policy
languages. After that it reviews the domain of authorisation management
for business processes focusing on authorisation models and authorisation
policy languages.

2.1 Business Process Management

The domain of Business Process Management (BPM) is a growing and
maturing domain [93]. BPM focuses on “aligning all aspects of an organi-
sation with the wants and needs of clients, [and is considered as] a holistic

9

10

management approach” [94]. BPM includes “concepts, methods, and tech-
niques to support the design, administration, configuration, and analysis
of business processes” [99]. As is the common convention in the literature,
we use the terms workflow and business process interchangeably.

Products and services that an organisation is aiming to deliver are the
result of a number of activities. BPM is a key concept to organise and im-
prove these activities [99]. These activities can be performed by individuals
or by systems [99]. In BPM these activities are known as ‘tasks’. A task
is an atomic unit of work with clearly defined inputs and outputs. Having
these tasks in a structured flow that supports the business goals will form
a business process [37]. Weske [99] says business processes “consist of a
set of activities that are performed in coordination in an organisational
and technical environment”. A business process is a process of transferring
business objects (inputs) to business goals (outputs), where control-flow is
the core of the process [108]. A business process therefore consists of a set
of tasks that are performed in a controlled order that may include com-
plex conditional branching among tasks. For an organisation to reach its
business goals in an e�cient and e↵ective manner, it is required that the
enterprise resources cooperate in performing the business processes [99].
BPM denotes the function that defines, governs, administers and main-
tains an organisation’s business processes, including whatever is needed to
achieve this. [94].

So, BPM is considered to be important for today’s organisations as it
“helps organisations to gain higher customer satisfaction, product quality,
delivery speed and time-to-market speed” [47]. BPM is an ongoing ac-
tivity whose separate phases researchers have described as the BPM life
cycle [92]. There are di↵erent views about the BPM life cycle but the one
proposed by van der Aalst et al . seems to be the most concise [46]. The
authors state that the BPM life cycle consists of: “process design, system
configuration, process enactment, and diagnosis” [92]. Figure 2.1 shows
the business process lifecycle.

The first stage, ‘process design’, is about modelling and designing the
business process [92], which starts with collecting data about the process.
This data collection happens using methods such as interviewing stake-
holders. This data will help the business process analyst understand how
the process is being done now, which is called the “as-it-is” process [99].
Designing the as-it-is process will allow for a systematic analysis to identify
the strengths and weaknesses of the current process [99]. After identifying
the weaknesses and issues with the current process, the business process is
redesigned to produce the ‘to be’ process model [99].

The design of the process model can be done using one of many pro-
cess modeling languages such as ‘BPMN (Business Process Modeling No-
tation)’, ‘YAWL (Yet Another Workflow Language)’, and ‘UML (Unified
Modeling Language)’. While these graphical notations for process model-
ing may di↵er in their details, their fundamental characteristics are quite

Background 11

!

Process'
Design'

System'
configuration'

Diagnosis'

Process'
Enactment'

BPM!
Lifecycle!

Figure 2.1: BPM lifecycle

similar [99]. BPMN is a business process flows modeling standard proposed
by the Business Process Management Initiative (BPMI) [56]. BPMN pro-
vides a notation that is understandable by all business users, including
business analysts and technical developers [56]. One of the notations that
BPMN uses is ‘swim lane’. BPMN uses one pool for each organisation
involved in the business process and then uses one swim lane for each
subject, within this organisation, that is involved in the business process.
For example, a BPMN process model can have a swim lane for the role
‘coordinator’ and place all tasks for this role in his swim lane [56].

Although BPMN is one of the most popular modeling languages [56],
it does not have a formal foundation and does not provide automation and
simple implementation [90], which is part of the second stage of the BPM
life cycle, ‘System Configuration’. BPMN can be useful in the first stage
(process design); if BPMN was used in the first stage, in the second stage
the technical developer needs to understand the model and then build
a system based on that model. On the other hand, YAWL is based on
a formal foundation, which provides an automated transformation of the
process model (first stage) into a working system (second stage). YAWL
will be discussed in more detail in Section 2.1.2. This discussion about the
process automation and process implementation leads to the second stage
of the BPM life cycle, ‘System Configuration’.

System configuration is about implementing the design by configuring
the Business Process Management System (BPMS) and the infrastructure
(e.g . synchronisation of roles and organisation charts) [92]. A BPMS is a
“generic software system that is driven by explicit process representations
to coordinate the enactment of business processes” [99]. After designing
and verifying the process model in the first stage, in this stage the busi-
ness process is implemented using the BPMS. This is done through several

12

steps. First, an implementation platform is chosen, then the technical im-
plementation details for the process are specified to facilitate the process’s
enactment by the BPMS. Then the system needs to be configured accord-
ing to the organisational environment and the business process that needs
to be performed. The configuration includes specifying the employees’ in-
teraction with the BPM system and the integration of the other systems
with the BPMS. For these systems to provide support for the process and
deal with the BPMS, they have to be ‘Process Aware’ [92].

Process-aware information systems (PAIS) are a type of information
system that is specifically designed to provide support for business process
functionalities [51]. PAIS also allow for separating the process logic and
the application code [98] (see Section 2.1.1 for more information about
PAIS). In the configuration phase, the process aware information systems
are configured to support the enactment of the business process, which
happens in the next stage of the BPM life cycle.

After configuration, the enactment stage starts, which involves oper-
ating and executing the model from stage one into the system that was
configured in stage two [92]. It is about the actual run time of the business
process, where the BPMS configured in stage two is in control of enact-
ing the business process defined in stage one [99]. Monitoring and data
collection, important aspects of the ‘enactment stage’, allow for gather-
ing valuable information about the process execution, which is stored and
logged [99]. These logs and the information they contain are the basis for
the evaluation in the next stage.

The diagnosis stage is about analysing and enhancing the process in
all aspects using monitoring tools and analysis (process mining) [92]. In
this stage data gathered from the previous stage is used to evaluate the
process model and the implementation [99]. The information is evaluated
using process mining techniques on log files that contain data about the
processes execution [17]. These process mining techniques are designed to
identify “the quality of business process models and the adequacy of the
execution environment” [99]. Evaluation can lead to better understanding
of the issues with current processes, and how to modify and improve the
process. Process mining mainly focuses on discovery analysis, showing how
the processes are actually being executed, and on the organisational model
for a given process [17].

The BPM literature does not consider ‘information security’ in any
detail. None of the lifecycle stages has information security as an explicit
concern. Although information security should be part of the configuration
stage, it has generally been an afterthought in BPM, which might create
significant issues, as will be shown and discussed in 2.3. The following
subsection will explain more about PAIS and BPMS, focusing on YAWL
as a BPMS example.

Background 13

2.1.1 Process Aware Information Systems

As previously defined, PAIS are a type of ‘information system’ that sup-
ports business processes. So, as a first step let us discuss the term ‘informa-
tion systems’. Alter [4] defines the term information system as a “particular
type of work system that uses information technology to capture, transmit,
store, retrieve, manipulate, or display information, thereby supporting one
or more other work systems” [4]. This definition uses two main terms:
‘information technology’ and ‘work system’, which are defined by Alter as
follows: Information technology includes all “the hardware and software
used to store, retrieve, and transfer information” [4], and a work system
is “a system in which human participants perform a business process us-
ing information, technology, and other resources to produce products for
customers” [4]. Based on these definitions we can depict the entities of an
information system: customers, products, business process, participants,
information, and technology [26].

In this chapter we consider a special type of information system that
is process-aware: these systems link information technology to business
processes. PAIS is a “software system that executes operational parts of a
business process involving people, applications, and/or information sources
on the basis of process models” [26]. Therefore a ‘process-aware’ system is
one that has the ability to understand and that is aware of the process’s
existence. Some systems might be used to execute a process although
they are not process-aware. For example, an email client is usually not a
process-aware system, though it may be part of one. Although an execu-
tion of a task within the process might lead to sending an email, the email
client itself is unaware of the business process. A process-aware system
may include components that are not themselves process aware. Other or-
chestration components call these unaware components at the appropriate
time when they are required to perform a task.

According to Dumas et al . [26], there are a number of advantages in
shifting to process-aware information systems. The first advantage is that
the use of ‘process models’ provides an easy way to communicate between
business analysts and IT architects [26]. Also, having a system that is
working on the basis of the process model rather than on code, makes it
simpler for the system to be changed by just changing the process model,
without the need to change the code [48]. Moreover having the process as
the base of the system’s operation increases the organisation’s e�ciency
and optimises the time and resource usage. The system itself will know
where to route information using the instruction from the business process
[26]. Finally, process-aware systems provide information and logs on how
the process was performing, which helps management to enhance the way
the work is done [26].

Business process management systems (BPMS) are an example of PAIS.
They are a special type of PAIS as they are not only aware of the process
but also control the process. At the first stage, at design time, processes

14

are designed using an explicitly defined logic, then at run-time the BPMS
“orchestrates the processes according to the defined logic and allows for
the integration of users and other resources”[98]. BPMS also “enable the
automated support of business processes execution that are carried out by
a combination of human actors and systems” [51].

2.1.2 YAWL : a BPMS

Business Process Management systems (BPMS), also known as Workflow
management system (WfMS), are used to control the enactment of the
business process. YAWL (Yet Another Workflow Language) is a workflow
management system that provides a modeling language of its own [90].
YAWL has an Engine module that can translate the process model into a
working system using a web interface [90]. The YAWL modeling Language
is based on Petri nets [72]. Petri nets, used as a formal method since the
1960s [64], have been extended to include the notion of time [55] to improve
expressiveness. Then Color PetriNets (CPN) [42] were introduced where
each color represents di↵erent data types. This also helped in improv-
ing Petri nets’ expressiveness. The YAWL modeling language provides a
graphical representation to model the business process, and maintains the
formal base of Petri nets.

The YAWL language is implemented by a software system consisting of
a worklist handler, an execution engine, a resources service, and a graphical
editor. The graphical editor is used to design the process model using the
YAWL language. In Figure 2.2 the YAWL Editor shows an example process
model. As can be seen, a process model has one start and one end, with
multiple tasks in between. A process might also include splits (AND, OR,
XOR) and joins of the same type. A split is used if the process sequence
needs to branch. For example, after doing ‘issue work order’ the two tasks
‘approve work order’ and ‘activate access rights’ can be done at the same
time, as neither depends on the other one. In this case the split was ‘AND’
as both tasks need to be performed but they do not depend on each other.
If the situation was that only one task needed to be performed, but not
both, the split will be ‘XOR’. The third type of split ‘OR’ is used if either
or both tasks may be performed. For each split there has to be a join of
the same type exactly. The process describes the flow of the work and the
task order from the start point to the end point.

The YAWL editor allows the process modeler to choose a resource to
perform each task. The resource can be either human or another service.
Assigning a human resource can be by assigning a specific user or by as-
signing a specific role, so any user with that role is allowed to perform the
task. Within the YAWL system the resource service handles all resources,
and the organizational model. Logging into the resource service allows the
administrator to manage the organisational structure and to manage users’
data. Figure 2.3 shows how to use the resource service to manage roles and
users. Although the resource service helps the modeler to choose only from

Background 15

Figure 2.2: YAWL editor

available users and available roles, there is no mechanism within YAWL
to make sure that the user assignment complies with the organisation’s
authorisation policy.

Figure 2.3: YAWL resource service

When the model is ready with all the required resources and data, it can
be saved as a process specification. Then the specification can be uploaded.
The YAWL engine will then take control of enacting the business process.
The engine is the runtime component. It is responsible for determining
which tasks need to be performed and when, but it is not responsible for
actually performing the tasks themselves [85].

16

YAWL was chosen as an example BPMS to be used for a use-case
implementation in the context of this research (see Chapter 6), because
YAWL software is available as open source software and is service ori-
ented, which allows for replacing existing components with one’s own and
extending the current environment with new components [85]. Moreover,
it can handle complex data transformations, full integration with organi-
sational resources and external Web Services [85]. YAWL has a powerful
and expressive process specification language that captures control flow
dependencies. It can also automatically transfer the process model into
a working system. YAWL is a modeling language and business process
management system all in one open-source software.

2.1.3 Declarative Workflow

The YAWL language is a procedural language. Such languages are most
suitable for processes that require tight control, and can be repeated with-
out modification. The drawback of such languages is that they lack flex-
ibility, which is important for processes that are driven by user decisions,
rather than system decisions [71]. The high degree of flexibility of these
processes gives users the ability to control task ordering and coordination
while executing the process. Pesic et al . [71] proposed a new declarative
language, based on constraints, to describe the workflow model instead of
the known procedural approach.

The basic idea of the declarative language is that anything is allowed
unless explicitly forbidden. Procedural languages describe exactly how the
process should be executed stating all possible alternatives. On the other
hand, declarative languages aim to specify constraints, and state that the
process can be performed in any way as long as the constraints are not
violated. Pesic et al . [71] proposed constraints templates that can be used
to express execution constraints and some business rules. For example,
the precedence templet specifies that a certain task can be performed only
after performing another specific task, bearing in mind that other tasks
can be performed in between, e.g . precedence(A,B) means that task B can
be executed only after task A is executed.

In reality declarative languages cannot replace procedural languages.
Declarative languages can add value to procedural languages “where users
can quickly react to exceptional situations and execute the process in the
most appropriate manner” [71]. Procedural languages are still important
as most business process are “repeatedly executed in the same manner, and
are too complex for humans to handle and where human mistakes must be
minimised” [71].

Background 17

2.2 Information Security

Information is an asset, and like any asset it needs to be protected. The
focus on protecting information is becoming more important with increas-
ingly interconnected business environments [41]. Information can be found
in many forms, and is now exposed to a growing range of threats [41]. In-
formation security aims to protect information from this growing number
of threats, which means minimising risk [41]. Identifying the required pro-
tection is based on the assessment of risk. Knowing the risks will also help
to specify the security policies and the controls required to enforce these
policies [41].

Once the risks are identified, suitable security policies need to be put
in place to mitigate these risks. Policies are written with respect to the
organizational decisions on the level of risk that is accepted, and the risk
treatment approach. It also should take into consideration the relevant
national and international regulations [41].

As stated in [88] there is no simple way to define policy. There are
di↵erent points of view and themes to look at in the definition of policy
[88]. In this research we choose one of the Merriam-Webster dictionary
[59] definitions, which defines policy as “a definite course or method of
action selected from among alternatives and in light of given conditions
to guide and determine present and future decisions” [59]. A policy can
be typically seen as a “principle or rule to guide decisions and achieve
rational outcome” [8]. The objective of the information security policies is
“to provide management direction and support for information security in
accordance with business requirements and relevant laws and regulations”
[41]. Policies can be written with the help of existing standards such as the
ISO/IEC 27002, a code of practice for information security management
[41].

Policies are usually written in an ‘information security policy document’
using plain English (or any other human language). This document should
be published and communicated to all relevant parties [41]. Enforcing these
security policies needs systems that implement controls. Controls can be
categorised as administrative or technical. Administrative controls guide
and constrain the actions of employees in their conduct of an organisation’s
business. They typically specify a procedure that requires an employee or
employees to perform particular actions. Technical controls are a combi-
nation of hardware and software implemented to address a threat to an
organisation’s information assets. Access control is a vitally important
technical control. A firewall is another example. Access control consists of
‘authentication’ and ‘authorisation’. The aim of authentication is to prove
that a person (or resource) is really who is he claiming to be [25], while
authorisation is granting permission to the authenticated entity to access,
do, or have something [25]. It can be clearly seen that both aspects are
important in enforcing access control security policy [41]. Authentication

18

is the first step for making sure that it is the right user and to retrieve
all needed information, then authorisation is more involved with enforcing
the actual policies in allowing or denying the user from performing the
requested action. More detail about access control and authorisation man-
agement is presented in Section 2.2.2. Access control is only one system of
many that can be used to enforce security policies. In this thesis we focus
on the authorisation aspect of access control.

In order for these systems to be able to enforce the security policies, the
first step is for the system to understand the policies. Policies should be
translated into a language that is machine readable. That is why several
machine readable policy languages such as XACML [62] were proposed.
The language should have the ability to represent di↵erent policy compo-
nents and also have a formal base to be translated to a machine language.
Policy languages are discussed in Section 2.2.1.

We have already noted that controls can be categorised as technical or
administrative. In the past it was common for the steps required by an
administrative control to be known to employees but not written down.
If these knowledgeable employees left the organisation, the undocumented
procedure could be lost or incorrectly applied. Business process systems
helped in shifting administrative controls to being enforced using systems.
Designing a business process with a specific sequence of tasks and having
the system depend on the business process to move forward in performing
the tasks makes it easier to enforce administrative controls. The gap that
we are focusing on in this thesis is the need to integrate the systems that en-
force administrative controls (i.e. business process management systems),
and the systems that are used to enforce the technical control (i.e. access
control).

To summarise, it can be said that information security is achieved by
specifying appropriate security policies, and by implementing a suitable
set of controls that enforce these policies. Controls include both technical
systems and administrative controls [41]. According to the ISO/IEC 27002
standard, these policies and controls need to be “established, implemented,
monitored, reviewed and improved, where necessary, to ensure that the
specific security and business objectives of the organization are met. This
should be done in conjunction with other business management processes”
[41].

2.2.1 Authorisation Policy Languages

ISO/IEC 27002 [41] identifies access control as one of the main areas of an
organisation’s information security management framework. Authorisation
policies are initially authored in plain, human language. For example, ‘only
human resource employees can view employee records’. With the increased
reliance on computer systems comes the need to express these policies in
a machine-enforceable language to make sure that all policies are applied
according to specifications [22]. To automate the enforcement of a policy,

Background 19

it needs to be translated from natural language to a machine-enforceable
language, so systems are able to interpret the policy [57].

To be able to automate policy integration into a technical control sys-
tem, the first step is to provide a structured representation of these policies,
in the form of a language that information systems can interpret. In the
past decade there have been several research e↵orts aimed toward form-
ing methods or languages to represent policies in an enforceable way. Some
policy languages were focused specifically on access control policies. In this
thesis we want the language to also support business process terminology
and to represent the policies in a structured way.

Before going into details, it is important to explain and distinguish
between several types of languages: business process modelling languages,
business rules modelling languages, business process compliance languages,
and security policy specification languages. Business process modelling
languages are languages that use the analysed customer requirements to
create a process model. This process model represents the sequence of tasks
to be performed to achieve the business goal [99]. Business rules modelling
languages are languages used to derive a model of the rules and regulations
that a business has to comply with. It focuses only on representing the rules
and regulations [107]. Business process compliance languages are languages
that try to link the previous two domains. They are languages that try to
represent the rules and regulations that a business should comply with and
integrate these into the business process, to make sure that each process
of this business is in compliance with the rules and regulations [34]. A
security policy specification language is a language that represents security
policies in a structured way that is machine readable [22].

A security policy is a policy that defines information security principles
or rules that have been adopted by an organisation. It defines what it
means for a system or an organisation to be secure. For an organisation, the
security policy addresses the constraints on the behaviour of its members
and its adversaries [28]. For systems the security policy addresses functions
and their flow, and addresses constraints on access to the system or its data
by humans or other systems [28].

eXtensible Access Control Markup Language

eXtensible Access Control Markup Language (XACML) is a standard is-
sued by the Organisation for the Advancement of Structured Information
Standards (OASIS) [62]. XACML provides a XML-based language for ex-
pressing authorisation policies and a syntax and evaluation method for
access request messages and responses. The goal of XACML is to propose
a common language that provides the organisation with the ability to man-
age all the elements of its authorisation policies across all the information
systems [16].

20

In XACML the basic elements are rules that specify whether to allow
or deny a specific action on a specific resource by a specific subject [20]. A
rule contains a ‘target’, which identifies or filters the set of requests that
the rule applies to. It may also contain a condition, and an ‘e↵ect’, which
is to either ‘allow’ or ‘deny’ [68]. Rules are gathered in a policy, which also
contains a target and a rule combination algorithm. Policies are gathered
in a policy set, which contains a target, a combination algorithm, and may
also contain other policy sets [68].

XACML also provides a method for evaluating a policy [20]. It defines a
standard component called a Policy Decision Point (PDP), whose function
is to select those policies that are applicable to an access request and to
evaluate them in the requester’s context to arrive at a decision as to whether
the request should be allowed or denied [16]. Figure 2.4 shows the major
components in XACML and the data flow between these components. A
Policy enforcement point (PEP) initiates a request in response to a user’s
attempt to access a controlled resource and enforces the decision returned
by the PDP [20]. A context handler (CH) is the entity that translates
between the XACML components (PDP, PEP) and other systems [16].
CH receives the request from the PEP and translates it before forwarding
it to the PDP. The policy administration point (PAP) is responsible for
administering and managing the policies [16]. The policy information point
(PIP), is responsible for communication with other systems, in case some
extra information is needed to make a decision [20].

!

!4.!attribute!query!

3.!Request!
notification!

7.!attributes!!!
8.!response!
context!

2.!request!

6.!attributes!!!

5.!attribute!
query!

Context'
handler'

PDP'

PAP'

PIP'

PEP'

1.!
loa

d!P
oli
cy
!

9.!response!

Environment'
Resource'
Subject'

'

Figure 2.4: XACML major actors

XACML can serve as a structured policy language, but it also provides
a framework and mechanisms to make authorisation decisions [20]. For ex-
ample, XACML defines a number of policy-combining algorithms. These
algorithms will help in making a decision in case of conflict between policies
[68]. For example, ‘Permit-overrides’ is a combining algorithm. It will over-
ride all decisions if one of the policies permits the action. Other combining

Background 21

algorithms include deny-overrides and first applicable, which returns the
result of the first matching rule or policy.

XACML has become the defacto standard for enterprise-wide, policy-
based access control [52]. On the other hand, XACML does not natively
support all types of access control models. For example, role-based access
control (RBAC), which bases the policy on the role rather than on the user,
was not supported in XACML, as there is no support for the notion of role.
OASIS proposed that it is more e�cient to have an extension to XACML
than to build a new language. Therefore, the ‘XACML Profile for Role
Based Access Control (RBAC)’ was proposed by OASIS [7]. It extends
XACML with the notion of ‘role’, and provides a new authority for role
assignment [5]. OASIS argued that role assignment should be out of the
scope of the PDP, and therefore a new authority called ‘Role enablement
authority (REA)’ was introduced to handle role assignment [5]. REA uses
the role assignment policy set to decide whether the user is allowed to
have the role or not [5]. The new extension also supports role hierarchy
by including a reference to policy sets that belong to a junior role in the
policy set of the senior role [5]. The RBAC profile supports both core
and hierarchical RBAC, but it does not support separation of duty (SoD)
constraints [7].

2.2.2 Access Control

The definition of access control is “exerting control over who can interact
with a resource” [67]. It is a combination of authentication and authorisa-
tion [25]. Authentication aims to make sure that an entity has the right
to claim a unique identity within a domain. A username is a common ex-
ample of an identity and an organisation’s directory of users is an example
of a domain. Authorisation is a process that involves granting or denying
permission to an authenticated entity to access a resource in a particular
way (e.g . reading or writing a file) [25].

The specific access control method that an information system uses is
defined by the access control model that it is based on. There are three fun-
damental access control models recognised in the literature: Discretionary
Access Control (DAC), Mandatory Access Control (MAC), and Role Based
Access Control (RBAC) [25]. RBAC, widely used in commercial and busi-
ness settings, is the dominant model underlying access control proposals
for process-aware information systems [69].

Role-Based Access Control

In RBAC, permissions are assigned to roles and users acquire permissions
indirectly through being assigned as a member of a role. Thus, the approval
for accessing a resource depends on the role that the subject is playing.
For example, if an organisation’s security policy states that only operation
o�cers are allowed to access an operation room, then only users with the

22

role ‘operation o�cer’ will be able to access the door of the operation room.
RBAC supports user to role assignment, and permission to role assignment,
where these assignment relations can be many-to-many. It also supports
the inheritance of permissions via a role hierarchy, the user sessions concept
through which roles can be selectively activated and deactivated, and the
constraints to enforce the concept of separation of duties (SoD) to avoid
fraud. Figure 2.5 shows the concept of RBAC.

!

User! Role! Permissions!

Figure 2.5: RBAC concept

RBAC received broad support as an authorisation model, and so many
commercial products and academic research were based on the RBAC con-
cept, but there was no standard that specified what an RBAC implemen-
tation should contain [30]. It was hard to provide a standard model for
RBAC at the time as several requirements had been added, so the idea was
to have di↵erent levels of RBAC, each with its own model [78]. Several pa-
pers were produced in order to try to standardise RBAC. NIST provided
three RBAC standard models: RBAC0, RBAC1, RBAC2 [30]. RBAC0
(also known as Flat RBAC and Core RBAC) supports basic RBAC re-
quirements. It provides user-to-role assignments, and permissions-to-role
assignments, where these assignment relations can be many-to-many. It
also supports the concept of users’ sessions, which allow selective activa-
tion and deactivation of roles. Finally, users are able to simultaneously
exercise permissions of multiple roles [78]. RBAC1 (also known as Hierar-
chical RBAC) supports RBAC0 and the concept of role hierarchy. RBAC2
(also known as Constrained RBAC) supports RBAC1 and the concept of
separation of duties (SoD) [30].

RBAC implements the traditional notion of Separation of Duties (SoD)
by making it possible to prevent incompatible roles from being assigned to
or activated by the same user. SoD can be static or dynamic. With static
SoD, a pair of roles are defined as incompatible and therefore a user may
hold either one but not both. A common banking-based example is that
no person can be assigned the roles of teller and branch manager at the
same time. With Dynamic SoD, incompatible roles can be assigned to a
user but the user cannot activate them both simultaneously. RBAC uses
sessions to enforce this constraint, where for each user all activated roles
exist within a session [79].

Background 23

Task Based Access Control

Task Based Access Control (TBAC) [86] uses the notion of tasks to assign
permissions to users. Each user is assigned a set of tasks he/she can per-
form, and each task is assigned a set of permissions [86]. Task-Based Access
Control (also known as Activity-Based Access Control (A-BAC)) was in-
troduced to provide the notion of “just-in-time permissions” [45]. Thomas
and Sandhu [86] specify that active access control models are required for
workflow management, and that TBAC establishes the foundation for re-
search into the active access control models [45].

Just-in-time access control, (also known as active access control) means
that access right assignment is separated from activation of access rights
[86]. For example, in a business process if a task is assigned to the user to
execute (assignment of access rights), the user will not be able to execute
the task (activation of access rights) until the task prior to it in the business
process is completed. So even if a user or a role is allowed to perform
a specific task, the ability to activate the access right will be provided
‘just-in-time’. Perhaps more importantly, the right will be deactivated
immediately after the completion of the task. To achieve this, the access
control model must work in conjunction with the workflow engine that
regulates the progression of each executing process, from task to subsequent
task. RBAC supports only passive access control, where once a role is
assigned to the user and the role is activated, the associated permissions
will be available [70]. This is appropriate for tasks that do not belong to
any business process but the ability to selectively activate and deactivate
permissions according to the execution state of a process instance is an
important capability in workflow systems [45].

Figure 2.6 shows the concept of TBAC and how, even though permis-
sions are assigned to users, they are activated only as the user begins to
perform the relevant task. In this thesis we define task as it is identified in
TBAC: a collection or a set of permissions.

Figure 2.6: Task-based access control concept

Although TBAC provides access control based on task, and supports
active access control, it does not provide support for passive access control,
and does not support role hierarchy or permission inheritance [70].

24

2.3 Information Security and Business Process

After describing the domain of business process and having discussed the
concepts of information security, this section will investigate the intersec-
tion between these two domains.

An important observation is that the professionals and specialists in
the business process domain are usually not experts in information secu-
rity [58], and neglect the integration of security [38]. Business process
management (BPM) and information security management are developed
and prasticed separately and often do not follow a coherent strategy [66].
Similarly, security goals are often not presented as part of the business
process models [100].

Not having the security aspects in coherence with BPM could cause
harm to the organisation. McCoy in his article “BPM and Security: Not
Feeling So Good” [58] explained the problem of BPM without security,
and showed that a business process needs security restrictions to avoid
malicious users misusing it. So even if the process was designed to satisfy
all customer requirements, a process without security could be used against
the business. This is one of the reasons why security should be part of
BPM. Tjoa et al . [87] state that security threats could be harmful to the
business if these issues are not addressed. It is clear that both security
experts and business process domain experts need to be able to identify a
common abstract level where they can define their security goals together.

Rodŕıguez et al. [75] found that security policies are usually defined be-
fore the process modelling stage starts, which supports the idea of Wolter
and his colleagues [100] that integrating security should start from the mod-
elling level. Integrating security policies into the process model will help in
forming ‘security aware BPM’, where security policies are more transpar-
ent for those who interact with these processes [100]. D’Aubeterre et al .
[23] say that security should be considered from the requirements and data
collection phase, and should be seen as a functional requirement. Enforce-
ment of security policies can be considered a major factor for a business’s
success [100]. In conclusion, BPM experts and security experts must work
together to establish a platform that can link business processes with secu-
rity on all aspects, including authorisation management and authorisation
policies [100].

As the focus of this thesis is authorisation management, the following
chapter will provide a more detailed review of the area of authorisation
management in BPM, focusing on authorisation models for BPM as well
as authorisation policy languages for BPM.

Background 25

2.4 Summary

Business process management as a field is growing, and more systems are
becoming process-aware. Business processes need to be security-aware.
Security policies are an important factor to mitigate risk. In this thesis the
security focus is on authorisation management. So, as a first step toward
having security-aware BPM, we need a policy language that can represent
authorisation policies related to BPM.

Enforcing the security policies requires control systems such as access
control. The authentication part identifies the user; then the authorisation
makes sure that the user would perform only what is allowed, based on
the policy. It is basically making sure that all actions are in compliance
with the authorisation policy. Authorisation management models need to
be developed to support PAIS. Business process environments and process-
aware systems have unique characteristics, so access control dealing with
PAIS has specific requirements that need to be investigated. Although
RBAC is a widely used model, it is not designed for business processes.

The next chapter will show a case study from a real-life situation to
provide a motivating example scenario. It will investigate and identify
the required characteristics that an authorisation model for BPM needs to
support, as well as the characteristics needed for a BPM authorisation pol-
icy language. The chapter will also review the literature on authorisation
models and authorisation policy languages. Based on these characteristics
we will propose our new BPM authorisation model (Chapter 4), and our
BPM security policy language (Chapter 6).

26

Chapter 3

Authorisation Management for
Business Processes:
Characteristics Analysis and
Literature Review

In the previous chapter it was established that there is a need for au-
thorisation management in business process environments, including an
authorisation model and an authorisation policy language. As a first step,
it is necessary to perform an analysis to define the characteristics needed
for such a model and language. A review of the literature is also needed to
identify if a suitable authorisation model and authorisation policy language
exists based on the characteristics identified. Moreover, an example case
scenario will help throughout the thesis in understanding the need for the
model and the language. It also simplifies the understanding of the new
features introduced in this thesis.

This chapter will start by introducing an example case scenario devel-
oped using a real-life example from a complex, security-sensitive environ-
ment that uses business processes across multiple systems. We conducted
interviews with experts and stakeholders to gather information that is used
to build the case scenario. We interviewed the buildings facilities asset
manager, the operational manager, and the security compliance manager
of this security-sensitive and complex environment.

Based on the literature and the case scenario this chapter then presents
a characteristics analysis for the needed authorisation management system.
This includes a characteristics analysis for the authorisation model to be
used in a business process environment, as well as the characteristics needed
for an authorisation policy language in business process environment.

27

28

The chapter then provides a literature review on business process au-
thorisation management using the identified characteristics. It will first
review the literature for the authorisation models that are designed for
business process management environments. The review establishes that
none of the current models support all the needed characteristics. It will
then review the literature for the authorisation policy languages, showing
that none of the available languages are suitable to represent authorisation
policies for business process management environments.

3.1 Example Scenario

In order to illustrate the need for authorisation management in the busi-
ness process environment, and to help identify the requirements for an
authorisation model for workflow, this section describes an example busi-
ness process that runs across a number of di↵erent application systems.
The scenario deals with the process of fixing a pump malfunction in an air-
conditioning system in a high-security facility such as an airport, chemical
factory or prison. In such complex environments, a single process might
run across multiple inter-networked systems, and each of these systems
will typically have its own security policies and associated access restric-
tions. Coordinating these in a coherent way according to an overarching
process model is di�cult. Processes that run across multiple systems are
an increasingly common feature of the modern business landscape and they
represent a challenge for workflow security and access control in particular.

The example process is triggered by receiving an electronic pump mal-
function notification, and it ends with the closing of the work order. The
organisation’s security policy and business rules require separation of duty
and binding of duty constraints to be observed in the execution of the
process to minimise the possibility of fraud and other security violations.
There are three systems involved in this scenario. The first system is the
asset management system, which is used to manage the building’s assets
including tracking maintenance jobs and the warranty status of equipment.
The second system is the enterprise building integrator, which is used to
actively control and manage a range of electronic systems in the building,
such as heating ventilation and cooling systems, lighting, and elevators.
The third system is the physical access system, which is used to enforce
physical access restrictions through the building’s doors. The roles involved
are, the Coordinator (building facility o�cer), the Manager (coordinators’
supervisor) and the Contractor (who is contracted to fix any malfunction
when needed).

Authorisation Management for Business Processes: Characteristics

Analysis and Literature Review 29

��
��
��
��
�	

�

	�
�
��

��
���

��
	�
��
��
��
�
��

��

����������

��
��
��
��
��

�	
�

�

��
�

��
�

�
�
��
��
��
�	
�

��
�
�

��
��

��
��
�	
�

��
�
���

��
��

�
��
��
��
�

��
��
��
��
��
��

��
�

��
��

��
�

����������

��
��
�	
��
��
�

��
��
��
�

	�
�
��
��
��

��
��
	�

��
�
�

��
��
��
�

��
��

��
�

���� !�

�

�
�

��
��
��
�

�
��
��
��

��
��

��
��
��
��
��
��

��
��
��
�
��
��
�

��
��
��
�	
��
�"

	
 #

$��
%�
��
�

$�
��

��
�

��
��
��
�

�
��
��
�	
�

��
�
�

�
��

��
��

��
��
��
�

�
��
��

��
��
�

��
��
��

��
"	

��

��
�

�

��
�

��
�

��
��

��
��
��
��
��

�
��
��
��
�

�
��
��
�

��
"	

��
��

��
��

��
��
��
��
��
&�

�
��
��
��
��
"	

��

��
��
��

��
�

��
�

�
��

�
��
��
�

��
��
��
�

�

 �
��
%�
��
��
���

��
	�
�

��
��

���
�
��

�
�	
��
�"

	�
��
�%
��
��

$�
��
��
��
��

���
��

$�
��
��
��
��

���
��

$�
��

�
��
��

$� ��
�

��
��

Figure 3.1: Business process model for fixing pump malfunction

30

When a pump malfunction notification is received through the en-
terprise building integrator, the coordinator responds to the notification.
First, he would investigate the nature of the fault and attempt to electron-
ically reset the pump through the enterprise building integrator system.
If this does not correct the fault, he will physically inspect the pump and
perform a hard reset. If the problem is still not fixed then the coordina-
tor needs to take the pump o✏ine, create a maintenance job in the asset
management system and issue a work order. The work order then needs to
be approved by a manager and sent to the contractor, again via the asset
management system. The physical access permissions that the contractor
will require to access the pump room are then provisioned in the physical
access system, but without activating them.

Upon the arrival of the contractor he/she needs to show the work order
before the required access rights are activated in the physical access system.
The contractor is issued with an electronic access token which he uses to
pass through controlled access doors on his way to the pump room. The
contractor will fix the pump and then notify the coordinator, who issued
the work order, that the issue has been resolved. The coordinator will then
need to revoke the access rights from the contractor in the physical access
system, and will fill in and complete the work order through the asset
management system. The contractor’s company will then send the invoice
to the coordinator, which he will include in the work order, then close it.
Figure 3.1 shows the process model for fixing the pump malfunction.

As can be seen in Figure 3.1, a coordinator cannot perform a ‘soft reset’
on the pump unless a malfunction notification is received. If both ‘soft re-
set’ and ‘hard reset’ fail to solve the problem, a work order is issued. Only
users with the role ‘coordinator’ can issue the work order. The approval of
that work order should be done by a di↵erent user with the role ‘Manager’.
To avoid fraud, no one can perform both ‘issue work order’ and ‘approve
work order’ for the same work order (same instance). So, users can issue
work orders (by activating the role coordinator), and can approve work or-
ders (by activating the role manager), but no user can perform both tasks
for the same instance. A user with the role ‘contractor’ needs to show the
work order to gain access to the pump room. Once the issue has been
resolved the user who fixed the problem will notify the user who issued
the work order. This notification will result in revoking the access rights
granted to the contractor. The user who created the work order is the only
one allowed to close it, and will be able to do so only after receiving the
notification and the invoice. To avoid fraud it is important to have a SoD
between the roles ‘coordinator’ and ‘contractor’. So, it is not allowed to
have both roles assigned to the same user.

Authorisation Management for Business Processes: Characteristics

Analysis and Literature Review 31

The business rules and authorisation policies associated with this
process are:

1. The task ‘soft reset’ should not be performed unless a malfunction
notification was received.

2. Only the role ‘coordinator’ is allowed to issue work orders.

3. Contractors should be granted access only after showing the proper
work order documentation.

4. A work order can be closed only after receiving both work-order com-
pletion and an invoice.

5. Only the person who issued a certain work order is allowed to close
it.

6. No person is allowed to perform ‘issue work order’ and ‘approve work
order’ for the same ‘work order’.

7. No person is allowed to have both roles ‘coordinator’ and ‘contractor’.

3.2 Characteristics Analysis

In this section we will analyse and identify the characteristics needed by the
authorisation model to be able to support business process environments.
Based on these characteristics we will then identify the characteristics of
a policy language to be used with a business process authorisation model.
In order to identify these characteristics, we will use the literature and
supporting examples from the case scenario in Section 3.1.

3.2.1 Authorisation Model Characteristics

The provisioning of access rights based on roles has a number of advantages
in a workflow setting. Most notably, it reduces administrative e↵ort in
allocating access privileges to users because an administrator can grant a
complex and carefully selected set of rights to a user simply by granting
them membership of appropriate roles. This is more e�cient than directly
granting each user the same set of privileges. If a process changes and
new access rights are required, these need to be granted only once, to the
appropriate role, rather than individually to each a↵ected user. Thus, it
is practical to use a role-based resource allocation pattern with workflows
[86, 12]. Moreover, the use of role-based provisioning in the access control
model allows the system to reflect the organisational structure and the
delegation of authority to various roles and positions, as indicated by the
organisational chart [70].

32

Separation of duties (SoD) and binding of duties (BoD) are necessary
aspects to consider in an access control model for business processes [9].
RBAC supports SoD on a role level, but in a business process context SoD
can also apply on a task level (which is not supported by RBAC), where
di↵erent tasks within a business process instance cannot be done by the
same person. Sometimes the restriction is the other way around, where two
or more tasks should be done by the same person. In this case it is called
‘binding of duties’ (BoD) [14]. For example, the scenario states that ‘only
the person who issued a certain work order is allowed to close it’. This
is a binding-of-duties restriction. SoD and BoD are used to avoid fraud
and misuse, and to make sure that no conflict of interest appears using the
access control privileges [70].

In RBAC, SoD is addressed using sessions [39]. In BPM, special SoD
and BoD constrains are required that apply only within the same instance.
To solve this issue the authorisation model should support ‘instance-level
restrictions’ (IR). In the example from 3.1, it was necessary to prevent the
same user from executing the tasks of ‘issuing work order’ and ‘approving
work order’ for the same ‘fixing pump malfunction’ process instance (or
in terms of roles, one would like to avoid that the same user be the issuer
and the approver of the same instance). So Adam may be the approver
for Carol’s work order, and may himself be the issuer of a work order for a
di↵erent process instance, which must be approved by another coordinator.
This cannot be enforced through session-based restrictions because Adam
may be at the same time issuing a work order for a process instance and
approving Carol’s for another process instance, and that is acceptable pro-
vided these roles are being played in di↵erent maintenance job instances
(cases) [95]. So, standard RBAC and the notion of session are not enough
when there is a SoD or BoD restriction on a process instance level.

The example scenario shows an example of a role-level SoD, where no
person is allowed to have both roles ‘coordinator’ and ‘contractor’. To
support this restriction, the model should support SoD on role-level. The
example scenario also shows examples of an instance-level restriction where
no user is allowed to perform both tasks ‘issue work order’ and ‘approve
work order’ for the same instance. Another instance-level restriction is
where only the person who issued the work order is allowed to close it i.e.
BoD on an instance-level. To be able to satisfy such rules, it is necessary
that the access control model support separation of duties and binding of
duties on a process instance level.

Using ‘tasks’ in the task-based access control (TBAC) model helps to
group permissions and to reduce the need to interact with each permission
by itself, thereby reducing the administrative overhead [86]. Similar to how
RBAC made it easier to deal with roles rather than users, TBAC makes
it easier to deal with tasks rather than permissions, particularly since a
bundle of permissions are often required to perform a unit of work at an
application level. Therefore it is useful to use task-based allocation, to

Authorisation Management for Business Processes: Characteristics

Analysis and Literature Review 33

allocate tasks to authorised subjects in an access control model for a busi-
ness process environment [9]. A task groups a set of related permissions,
where each permission is a pair made up of an action and a resource. For
example, the task close work order includes the set of permissions (access,
asset management system), (read, work order), (read, invoice), and (edit,
work order).

Combining task-based assignment in conjunction with role-based will
help make access control more e�cient and easier to use [70, 101]. For ex-
ample, if a set of tasks imply a potential risk of fraud if performed by the
same user, authorisation to perform such tasks can be assigned to di↵erent
roles at workflow design time [101]. Therefore, a “task-based assignment
of tasks according to a user’s role enforces separation of duty security re-
quirements as long as a user is restricted to a single role within a workflow
instance” [101]. However, although having the combination of task-based
and role-based reduces management overhead, it is not enough for business
process environments, as in real life business process environment users are
allowed to have multiple roles active at the same time. Therefore, to avoid
fraud, instance-level restrictions are needed to support the SoD of such
type. Tasks that imply a potential risk of fraud if performed by the same
user will have an IR stating that they cannot be performed by the same
user for the same instance, regardless of the role that the user has active
at the time.

An access control model for business processes should support active
access control as well as passive access control [86, 45]. In the example sce-
nario, although the access right to perform the task ‘soft reset’ for the pump
is assigned to the role ‘coordinator’, we do not want the coordinator to be
able to reset the pump, unless there is a valid reason. So the permission is
not activated until the pump malfunction notification is received, and the
right is revoked as soon as the task is over. Without active access control,
permissions will be turned on either too early or too late, and might remain
available long after the task is over [86]. Another example from the same
process is the technician’s authorisation to access the pump room, which
is activated only once a work order is received; otherwise, technicians are
not allowed to access this room. In other words, authorisations on tasks
depend on the outcome of another task [9].

Organisations are confronted with di�cult challenges in managing the
security of their information systems due to new rules and regulations im-
posed by governments. These rules aim to address a diverse range of issues
including improving privacy protection, ensuring greater accountability for
business practices and addressing new threats linked to terrorism. The
management of information security used to be primarily the concern of
the IT Department. It is now an enterprise-wide issue and organisations
are recognising the need for enterprise-wide approaches to information se-
curity management. In particular, this means that an authorisation system
that can regulate access to all of an organisation’s information systems and

34

resources according to a consistent set of security policies is required [65].
Against this backdrop, we argue that an authorisation system for work-
flow should be conceived as part of a larger enterprise-wide authorisation
system, not one that is internal to the workflow system itself. As a conse-
quence, it is important that the model be able to support both workflow
and non-workflow tasks. Workflow tasks means tasks that are part of a
business process, while non-workflow tasks are tasks that are not part of
a business process and performed outside of the workflow system. This
approach will assist by not adding further to the already large number of
proprietary authorisation systems that an organisation must manage. In-
stead, it o↵ers a path to consistent access enforcement based on a single
set of organisation-wide security policies.

In summary, a business process access control model should support the
following characteristics:

• Role-based access control.

• Static and dynamic separation of duties.

• Active access control.

• Instance-level restrictions.

• Task-based access control.

• Supports workflow and non-workflow tasks.

NIST-RBAC [30] supports the first two characteristics. So, an access con-
trol model for workflow should extend RBAC to support the other char-
acteristics. Moreover, in a typical organisation that uses process-aware
information systems, some tasks will not belong to any workflow. There-
fore, it should be an enterprise-wide access control model that caters for
the non-workflow tasks as well as the workflow tasks.

3.2.2 Authorisation Policy Language Characteristics

With its focus on tasks and their controlled, sequenced execution, an autho-
risation model for business processes introduces a range of capabilities not
found in the standard RBAC model [84]. Similarly, an authorisation pol-
icy language for business processes requires specific characteristics. This
section will identify the important concepts and constraints that such a
policy language should be able to express, by describing the functionalities
that business process authorisation models support. This section will use
supporting examples from the scenario in Section 3.1. The authorisation
policy language has to express the specific types of rules and constraints
that the authorisation model allows; therefore the analysis of the language
characteristics is based on the characteristics that the authorisation model
should support. We will use the authorisation model characteristics iden-
tified in the previous section, and for each characteristic we will identify

Authorisation Management for Business Processes: Characteristics

Analysis and Literature Review 35

the characteristic that the language should support in order to express the
authorisation model characteristic.

As explained in Section 3.2.1, RBAC is an important concept to be sup-
ported in a business process authorisation model [50]. Support for RBAC
among the published business process authorisation models including [95]
and [70] is widespread. So, for a policy language to be able to express
RBAC concepts, it should support the notion of user, role, and permission.
As can be seen in the example from Section 3.1, any user with the role ‘co-
ordinator’ can perform the task ‘soft reset’. The decision is based on the
role this user has activated. For a policy language to be able to express such
a policy, it should be able to represent the user’s role (i.e. coordinator), the
operation (i.e. soft reset), and the permission (i.e. permit). Moreover, the
policy language should have the ability to represent Separation of Duties
(SoD) constraints as a tool to assist in preventing fraud [29].

Tasks are a fundamental concept in business process management. They
are the building blocks of business processes, so business process authorisa-
tion models such as [70] and [95] typically focus on extending RBAC with
the notion of a task. Reflecting this, a policy language for business pro-
cess access control should have the ability to express the notion of ‘tasks’.
The example in Section 3.1 shows that the requests are to perform a ‘task’,
rather than to acquire a permission. So it is important to be able to express
tasks as well as permissions.

An important functionality that is supported by the more expressive
business process authorisation models (such as [95]) is history-based restric-
tions between tasks on the instance-level, which we refer to as ‘Instance-
level Restrictions (IR)’. For the policy language to be able to express
instance-level restrictions, the first step is to be able to distinguish be-
tween instances. Some authorisation models such as [95] and [96] support
the notion of ‘task instance’, which allows di↵erent execution instances to
be distinguished. So, a policy language should be able to represent a ‘task
instance’. The language should also have the ability to represent the actual
‘instance-level restrictions’. The example in Section 3.1 states that only
the user who requested a work order is allowed to close it. The restriction
should be applicable only within the same work order. Moreover, in order
to enforce this condition (an IR restriction), the language should have the
ability to retrieve history-based information on an instance level [96], such
as who issued a specific ‘work order’.

In summary, the key concepts that an access control policy language
for business processes should be able to represent are:

• Users.

• Roles

• Operations.

• Tasks.

• Tasks instance.

36

• Instance-level restrictions.

• Role-level-SoD restrictions.

The RBAC profile of XACML supports representation of the first three
characteristics. Therefore, the proposed policy language need to extend
RBAC-XACML to be able to express the other four characteristics.

3.3 Authorisation Management for BPM: Liter-
ature Review

Access control as a major security requirement has been a concern for
system engineers from an early stage. The issue is although it is an im-
portant aspect, it is often neglected in BPM, and typically comes as an
afterthought. Wolter et al . [100] talked about ‘Access Control’ and tried
to map it to process modelling elements as part of their e↵ort to integrate
access control to process modelling. They defined three elements in the ac-
cess control decision: “The subject that wants to access a target, the target
itself, and an operation that can be performed on this target” [100]. Sub-
ject and target can both be represented as the object in process modelling,
while operations are represented as the interaction within the model itself.
This solution only provided a way of including the authorisation policies
in the process model, but did not provide any enforcement mechanism.

As explained earlier, access control consists of ‘authentication’ and ‘au-
thorisation’. According to [33] it is safe to say that authentication has
been largely solved with single sign-on architectures. Ghalimi [33] states
that authorisation (also known as entitlement) is not yet solved in terms of
BPM. Authorisation management in general is concerned with: writing an
authorisation policy, storing the policy, managing the policy, and enforcing
the policy [13, 76, 81]. In this thesis our focus is on the language for the
authorisation policy (writing the policy), and on the authorisation model
that will enforce the policy.

The following section will review authorisation models that are based
on RBAC and designed for a business process environment. As explained
in Section 3.2, it is important that the model supports RBAC, but the
RBAC model by itself is not enough to support access control for business
process systems. Section 3.3.2 will review authorisation policy languages
for a business process environment and will investigate the suitability of
current policy languages and their extensions.

Authorisation Management for Business Processes: Characteristics

Analysis and Literature Review 37

3.3.1 Authorisation Models for BPM

RBAC is widely used and accepted as an authorisation model. Using the
‘role’ concept in RBAC minimises management overhead. Unfortunately,
as explained in Section 2.2.2, RBAC was not designed to deal with work-
flows. It does not support, for example, the idea of active access control.
This is a significant shortcoming, as Alturi and Huang argue that “a suit-
able authorisation model for workflows must ensure that authorisation is
granted only when the task starts and revoked as soon as the task finishes”
[9]. TBAC [86] was proposed as a solution that provides active access con-
trol, but TBAC lacks the support for passive access control, and does not
support the notion of ‘role’, which, as explained, is an important concept
to minimise management overhead.

The Workflow Authorisation Model (WAM) [9], was also introduced as
a model that supports active access control. According to [9], temporal
authorisation models are not suitable because they only provide a static
fixed start time and end time, which may not be in synchronisation with
the business process. To achieve active access control, WAM depends on
objects moving from one task to another where access control is a↵ected by
granting or revoking a subject’s access to this object [9]. WAM is similar
to RBAC in that it provides support for role-based authorisation including
separation of duties. It is also similar to TBAC in that it supports active
access control [9]. On the other hand, unlike TBAC, WAM does not deal
with task-based authorisation, which is an important aspect in workflows,
since tasks are the building blocks of workflows. The Flexible Workflow
Authorisation Model (FWAM) [105] was introduced as an enhancement to
WAM. Both WAM and FWAM still lack the support for task-based autho-
risation. Moreover, they both lack the ability to deal with non-workflow
task authorisation. In a normal organisation the authorisation system usu-
ally handle a mix of workflow and non-work flow requests.

The Service-Oriented workflow access control model (SOWAC) [104] is
similar to WAM in the way that it supports both role-based access control
and active access control [104]. SOWAC also supports task-based autho-
risation, but it still su↵ers from the shortcoming of not supporting non-
workflow tasks [104]. Secure Role-Based Workflow Model (SRBWM) [45]
another model introduced to extend RBAC [77] with active access control.
In addition to supporting RBAC and active access control, SRBWM also
supports task-based authorisation. However, SRBWM does not cater for
non-workflow tasks.

Another shortcoming shared by all the models we have mentioned is
the lack of the ability to di↵erentiate between task instances. As briefly
explained in 2.2.2, in BPM each task execution is considered as an in-
stance of the task. Not distinguishing between task instances means that
a permission to execute a task would imply the permission to execute any
instance of the task. In BPM we might allow Adam to perform a task
(e.g . approving a work order), unless he also performed another task for

38

the same instance (e.g . issuing a work order). The RBAC SoD, which uses
session, is not useful in this situation.

In workflow applications, it can be di�cult to apply the SoD concept
through the notion of sessions. SoD restrictions are more commonly defined
within the context of a business process instance rather than as simple rules
concerning role assignment or activation ‘at the same time’ [95]. To solve
this issue, ‘instance-level restrictions’ (IR) are needed. A process instance
is an individual execution of the process (also known as a case). Consider
a business rule that states that the person who approves a work order
must be di↵erent from the one who issued it, but it is permitted for a
person to be both an issuer and approver of work orders as long as they do
not perform both functions for the same process instance. This rule can
not be enforced through RBAC’s traditional notions of static or dynamic
SoD, since a user may need to execute multiple process instances within a
session and thus must have the roles that hold the incompatible permissions
active simultaneously. Therefore, in an access control model for workflow,
it should be possible to authorise a user to perform a task in one process
instance but deny the same user the permission to perform that task in
another, within the same session.

Bertino et al . [11] claim that they are the first to discuss the issue of
SoD on an instance-level. They propose a solution for SoD in workflow ap-
plications. It does not use history based restrictions, but rather identifies
the set of all possible assignments of roles and users that do not violate the
SoD policy and other constraints, prior to workflow execution, and only
permits assignments from this set. This solution requires prior knowledge
of the workflow specification and its tasks. Furthermore, it focuses solely
on SoD within workflows, while some examples of SoD are not related to
workflows. This solution cannot cater for such an issue. Chadwick et al .
[18] proposed Multi-session SoD (MSoD), which focuses on solving two is-
sues: the issue of long-term SoD and the issue of instance-level SoD. It
uses a new concept called ‘business context’, rather than user sessions.
This solution solves the issue of instance-level restrictions. On the other
hand, it requires pre-definition of business contexts and identification of
SoD policies that belong to each business context. MSoD does not provide
an active access control mechanism, and does not provide task-based autho-
risation. WSession [14] also requires a pre-identification of all conflicting
roles, users, tasks, and privileges. WSession does not support active access
control, does not support task-based authorisation, and does not cater for
non-workflow tasks.

W-RBAC [95] was introduced as an access control model that extends
RBAC and is specifically designed to support workflow systems. As can
be seen in Figure 3.2, W-RBAC extends RBAC with the notion of a case
(an instance of executing a business process) and a three-way relationship
called ‘doer’ between a user, permission and case. The model does not
di↵erentiate between ‘tasks’ and ‘permissions’. Comparing W-RBAC with

Authorisation Management for Business Processes: Characteristics

Analysis and Literature Review 39

previously reviewed models such as TBAC, SOWAC, and SRBWM shows
that W-RBAC has the advantage of supporting and capturing the notion
of instance-level restrictions. On the other hand, W-RBAC does not sup-
port task-based authorisation, and does not support ‘active access control’.
Another shortcoming is that W-RBAC depends on the workflow engine to
control the process, while W-RBAC will only provide the list of users al-
lowed to perform the task.

Figure 3.2: W-RBAC concept

The Task-Role-Based access control (T-RBAC) model [70] was intro-
duced in 2003. It is similar to W-RBAC in supporting instance-level re-
strictions. It has the advantage over W-RBAC by supporting active access
control and task-based authorisation. It also supports role-based access
control and caters for workflow and non-workflow tasks. As can be seen
in Figure 3.3, T-RBAC uses the concept of RBAC and adds the concept
of a task. T-RBAC supports SoD, and the notion of sessions. On the
other hand, T-RBAC does not support certain types of instance-level re-
strictions because it does not record task execution history and therefore
cannot support history-based restrictions. For example, T-RBAC cannot
support SoD on instance-level where one of the tasks (in the SoD policy)
has already been completed. It can support SoD only for task instances
that are still active. Moreover, it does not support BoD at an instance-
level. For example, a rule stating that ‘only the person who issued a certain
work order is allowed to close it’ can not be enforced using T-RBAC.

40

!

User! Role! Permissions!Task!

Figure 3.3: T-RBAC concept

Other access control models designed to support workflow systems are
based on RBAC. For example, the proposal by Weber et al . [97] extends
the core RBAC model with features to support workflow. The focus of
their work is on providing a balance between security and flexibility in
workflow systems, with an emphasis on how a workflow can be dynamically
resequenced or adapted at runtime. In their work they have stated that
they did not focus on dynamic SoD or dynamic constraints in general. AW-
RBAC [50] also extends RBAC and focuses on adaptive workflow systems,
but does not focus on task level constraints, and does not provide support
for instance level restrictions.

Strembeck and Mendling [84] present a generic metamodel that can be
used to extend workflow languages to support access control requirements
in workflow systems. The metamodel is designed to be used to extend
workflow languages. Although it supports design time and run time con-
straints (including instance level restrictions), it is designed to build on top
of an available workflow system and becomes part of the workflow system.
This model is not intended to be used as an independent enterprise-wide
authorisation system as it is not designed to cater for non-workflow tasks.
It means an organisation cannot use this model by itself: It will also need
another authorisation model to handle authorisation requests for tasks that
are not in a workflow and not managed by the workflow system.

Table 3.1 compares the most relevant authorisation models from the lit-
erature. The comparison criteria are the characteristics identified in Section
3.2.1. As can be seen in the table, none of the models we have reviewed
support all the needed characteristics. The table shows the shortcomings
of each of these models. It shows the need for a unified BPM authorisation
model that is designed to satisfy the required characteristics. The follow-
ing chapter will introduce a new authorisation model that is designed to
satisfy the required characteristics.

Authorisation Management for Business Processes: Characteristics

Analysis and Literature Review 41

Table 3.1: Comparing di↵erent authorisation models

!
Co
m
pr
es
si
on
*c
ri
te
ri
a*

RB
AC
**
W
AM

*F
W
AM

*S
RB
W
M
*T
7R
BA
C*
W
7R
BA
C*
M
So
D
*W
Se
ss
io
n*
SO
W
AC
*S
tr
.*&
*M
en
d.
*A
W
7R
BA
C*

1!
An
!in
de
pe
nd
en
t!a
cc
es
s!c
on
tr
ol
!m
od
el
!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

!
N
o!

N
o!

N
o!

Ye
s!

!
!
N
o!

Ye
s!

2!
Su
pp
or
ts
!R
ol
e7
ba
se
d!
ac
ce
ss
!co
nt
ro
l!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

3!
Su
pp
or
ts
!T
as
k7
ba
se
d!
au
th
or
is
at
io
n!

N
o!

N
o!

N
o!

Ye
s!

Ye
s!

N
o!

N
o!

Ye
s!

Ye
s!

Ye
s!

N
o!

4!
Su
pp
or
ts
!A
ct
iv
e!
ac
ce
ss
!co
nt
ro
l!

N
o!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

N
o!

N
o!

N
o!

Ye
s!

Ye
s!

N
o!

5!
Su
pp
or
ts
!S
oD
!o
n!
in
st
an
ce
7le
ve
l!!

N
o!

N
o!

N
o!

N
o!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

N
o!

Ye
s!

N
o!

6!
Su
pp
or
ts
!H
is
to
ry
7b
as
ed
!S
oD
!o
n!
IL
**
!!

N
o!

N
o!

N
o!

N
o!

N
o!

Ye
s!

Ye
s!

N
o!

N
o!

Ye
s!

N
o!

7!
Su
pp
or
ts
!B
oD
!o
n!
in
st
an
ce
7le
ve
l!!

N
o!

N
o!

N
o!

N
o!

N
o!

Ye
s!

Ye
s!

Ye
s!

N
o!

Ye
s!

N
o!

8!
Su
pp
or
t!n
on
7w
or
kf
lo
w
!ta
sk
s!

Ye
s!

N
o!

N
o!

N
o!

Ye
s!

N
o!

Ye
s!

N
o!

N
o!

!
!
N
o!

Ye
s!

9!
Su
pp
or
t!w

or
kf
lo
w
!ta
sk
s!

N
o!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

*!T
he
!R
BA
C!
m
od
el
!u
se
d!
in
!th
is
!ta
bl
e!
is
!N
IS
T!
RB
AC
2!

**
!IL
=!
In
st
an
ce
7L
ev
el
!

!
!

!
!

42

3.3.2 Authorisation Policy Languages for Business Processes

In the past few years there have been a number of investigations and studies
on finding a formal language for authorisation policies. The formalism of
languages di↵ers. For example, some languages are logic-based languages,
while others are rule-based languages.

Logic-based languages such as SecPAL [10] and OPL [3] are usually
expressive. However, “the trade-o↵ between expressiveness and e�ciency
seems to be strongly unbalanced” [76]. For example, most of the logic-
based languages do not provide a conflict resolution solution. Some lan-
guages such as Rei [44] can detect conflicts only during run time, and do
not o↵er a design time conflict resolution method, which is more practical.
Moreover, according to [76] “often the people specifying the security poli-
cies are unfamiliar with logic based languages” [76]. For that reason recent
proposals tend to express authorisation policies as rule-based documents
[76].

In rule-based languages a set of rules are used to describe the content. It
is a “declarative language, which binds logic with rules” [106]. In rule-based
languages policies and regulations are abstracted into a set of rules, usually
in ‘condition’ ‘action’ rule statements [1]. Policy Description Language
(PDL) [54] and Ponder [21] are examples of rule-based languages. Both
languages use the event-condition-action paradigm, and they both map a
series of events into a set of actions. PDL can be used to express any
type of policies, not only authorisation policies. It describes policy rules as
actions that can take place if the condition was true. PDL cannot detect
or solve conflicts between policies. PDL “do not support the composition
of policy rules into roles, or other grouping structures” [21].

Ponder distinguishes itself by pre-defining the type of policies to be
used, and provides a structure for each of these policies. This pre-definition
method makes it hard to add to Ponder and to widen the language capa-
bilities. According to Phan et al . “the main problem with the Ponder
language is its lack of generality. The language itself is more like a col-
lection of di↵erent groups of features rather than a well-designed set of
constructs that can be used to describe any behaviors in general. That is,
instead of having a common set of language constructs that can be used
to describe di↵erent types of policy, Ponder has five basic policy types and
four composite policy types each with di↵erent syntax” [73]. Ponder poli-
cies can be mapped into XML representation. Ponder is easy to enforce,
but it is complex to extend, and does not provide the ability to “analyse
policies relating to entities described at di↵erent levels of abstraction” [19].

XACML [62] is another rule-based language. As explained in Section
2.2.1, XACML supports conditional authorisation policies and policies with
external post-conditions [20]. XACML provides the ability to be extended.
One can use attributes, as well as defining new policy sets and new spe-
cialised PDP to extend XACML for a specific purpose.

Authorisation Management for Business Processes: Characteristics

Analysis and Literature Review 43

Unfortunately none of these languages are suitable for business process
authorisation policies. The languages, as they are, do not provide a rep-
resentation for task instances, nor do they have the ability to represent
instance-level restrictions. For this reason it was required either to pro-
pose a new language, or to extend a language that already exists, to be
able to support authorisation policies for business processes. As an exam-
ple, standard XACML does not support RBAC. Later OASIS provided a
new profile as an extension to XACML, to be able to support RBAC. In
our case we need an extension to support business process authorisation
policies.

To the best of the author’s knowledge, currently there is no published
work that aims to extend XACML to support business process policies.
There are several published works that extend XACML to support di↵er-
ent models but none of them focus on ‘business processes’. For example,
Wolter et al . in [103] developed a XACML customised profile that sup-
ports the RBAC concept, mandatory access control, and permission-based
separation of duty policies. The work does not take into consideration the
special requirements that ‘business process’ policies need such as ‘tasks’,
and it does not extend XACML to support business process policies. The
main focus of the paper was to propose a model transformation framework
that focuses on deriving security policies from the process model. The
framework, which uses “seBPMN” (introduced as a process modeling lan-
guage enriched with access control annotations) as the modeling language,
and uses XACML as an example policy language, is specific to “seBPMN”
and it does not extend XACML.

Another work that also focuses on translating business process compo-
nents into an XACML terminology is [102]. It proposes an approach that
automatically derives XACML authorisation policies from BPMN model
annotations. It provides a model-driven extraction of the policies based
on a mapping between BPMN (a policy modeling language) and XACML
meta-models. The method requires extending the BPMN semantics. It
is limited to BPMN only. For example, they derive the XACML subject
role attributes of the policy target from lanes and nested lanes, which is a
feature of BPMN. Sinha et al . [82] also propose a method of translating se-
curity requirements into XACML, by making use of its obligation feature.
The paper focuses on web services only.

Achim et al . in [15] presented “SecureBPMN”, and Stackelberg et al .
in [63] presented “BPMS”. They are both process modeling languages that
extend BPMN with security annotation to represent security constraints
for business processes. Both papers propose methods for translating their
extended security requirements into XACML security policies. Both pro-
posals are limited to the BPMN language. Instead of enriching XACML
to support business process, they aim to translate the BPMN extensions
to the already known XACML syntax. Vijayant et al . in [24] focus on ex-
tending XACML to deal with decentralised policies of web services, rather

44

than focusing on ‘business process’ requirements.
All the reviewed proposals are limited to the specific process modeling

language they propose. Moreover, none of the reviewed work presents
an authorisation policy language (or extends one) that can be used in a
business process environment.

3.4 Summary

The example scenario, developed from a real-life complex environment,
showed the need for authorisation management in business process en-
vironments. It showed how such environments are complex and require
specific models that are designed to support process-aware systems.

Authorisation management requires both an authorisation model and
a policy language. In order for an authorisation model to be su�cient
in business process environments and to support process-aware systems,
it should support specific characteristics. Section 3.2.1 identified these
characteristics. Moreover, for a policy language to work coherently with
an authorisation model, it needs to be able to represent and support specific
characteristics, which were identified in Section 3.2.2.

Section 3.3.1 reviewed the BPM authorisation models in the literature.
The review showed that there is no authorisation model currently available
that supports all the needed characteristics. Thus there is need for a new
authorisation model designed for BPM. RBAC, being widely accepted and
used, can form a good base on which to build the authorisation model.

Section 3.3.2 reviewed the literature on authorisation policy languages
with regard to the needed characteristics. The review showed that there
is no current security policy language that is designed for BPM. XACML,
being a widely used and accepted policy language, is a good base to build
on as a language that suits the need.

The gap that needs to be addressed is the lack of a security policy
language that is designed to support business processes and the policies
related to them, for example, having the ability to support policies that
include instance-level restrictions. Moreover, there is a need for a unified
authorisation model that is designed to control the authorisation requests
of a business process system. The system should have the ability to support
di↵erent types of instance-level restrictions, including history-based, and at
the same time to not be part of the workflow system, but be an independent
authorisation system. Therefore, there is a need for a new authorisation
model and a new policy language. The new model and the new language
should be designed to satisfy the identified characteristics.

The following chapter will introduce a new authorisation model that is
designed to satisfy all the characteristics identified in this chapter. Chapter
6 then introduces a new authorisation policy language that can be used with
the BPM authorisation model. The new language is designed to address
the characteristics identified in this chapter.

Chapter 4

Business Process Task-Role-Based
Access Control Model
(BP-TRBAC)

In the past few years there has been an increased adoption of business
process systems [26]. As explained in Chapter 3, for an authorisation model
to be able to work with business process systems it requires the ability to
support a specific set of characteristics, of which instance-level restrictions
are a notable example. This has led to the need for an authorisation
model that is specifically designed to work with process-aware information
systems (PAIS) [80].

RBAC is a widely accepted and adopted access control model [69], but
when used in the context of process-aware information systems in its stan-
dard form (i.e. NIST Standard RBAC [30]) it has an number of shortcom-
ings. For example, RBAC’s use of sessions to enforce dynamic separation of
duty is a poor match for PAIS because a process execution instance (which
may span multiple user sessions) is a more applicable context in which to
enforce constraints over which user can perform what task. The dynamic
nature of process orientation demands an access control model that is sim-
ilarly dynamic. So-called ‘active access control’ allows full advantage to be
taken of the contextual information that is available in a process model in
order to enforce security constraints through the various steps or tasks in a
process. To do this it is necessary to di↵erentiate between task assignment
and privilege activation [86], because even though a user may be authorised
to perform a particular type of task, it is necessary that he/she performs
only a specific instance of that task within an executing process when it is
the right time to do so, and not before. This means that privileges should
be activated ‘just in time’ and then deactivated. In contrast, the standard
RBAC model activates a role’s complete set of privileges as soon as the
user activates the role [70].

45

46

Because of the shortcomings in RBAC there have been a number of
access control proposals that are designed to work in a business process
environment. Some of these models support active access control such as
TBAC [86], while other models can di↵erentiate between process instances
when enforcing constraints such as W-RBAC [95]. However, to the best
of the author’s knowledge there is no model that supports all the required
characteristics that we identify in Section 3.2. This chapter will intro-
duce the ‘Business-Process Task-Role-Based Access Control model (BP-
TRBAC)’, a new unified authorisation model that is specifically designed
to provide authorisation services to business process systems. It works
cooperatively with a PAIS but it is an independent system that is also
intended to perform authorisation control for applications and functions
that are not process-aware. The model is unified in the sense that it com-
bines important characteristics and capabilities that have been proposed
separately in other workflow authorisation systems. However, prior to this
proposal, these capabilities have not been brought together in a single in-
dependent model.

BP-TRBAC is a new unified model that extends NIST RBAC [30] to
support the needs of a business process environment that included task-
based authorisation, active access control, and instance-level restrictions
(including SoD and BoD on an instance level). It also caters for workflow
and non-workflow tasks (as distinguished in Chapter 3), and is designed to
be an independent authorisation system that can interact with the workflow
system.

The rest of the chapter is organised as follows: it starts with an overview
of the new BP-TRBAC model in Section 4.1, then it describes the concep-
tualisation and annotation of the model in Section 4.2. Section 4.3 provides
the formal description of the model showing how BP-TRBAC achieves all
of the identified characteristics. In Section 4.4, the example scenario from
Chapter 3 is revisited to show how the business and security rules are en-
forced using BP-TRBAC. A discussion concerning the points of strength
and weakness of the BP-TRBAC model is presented in Section 4.5. This
is followed by a review comparing BP-TRBAC to other models from the
literature in Section 4.6. The chapter then concludes in Section 4.7.

4.1 BP-TRBAC

Role-based access control (RBAC) was introduced to minimise administra-
tion overhead. RBAC defines roles for users, granting access rights based
on the roles the user possesses. In RBAC, users acquire access rights from
the roles they activate. Figure 4.1 shows the basic RBAC concept. It can
be seen that users are assigned membership of roles and that each role has
permissions, instead of having permissions assigned directly to users.

Business Process Task-Role-Based Access Control Model (BP-TRBAC)47

!

User! Role! Permissions!

Figure 4.1: RBAC concept

BP-TRBAC uses the RBAC concept as a base, and extends it. Figure
4.2 shows the model of BP-TRBAC, which includes the main concepts of
the core NIST-RBAC [30]: user, role, permission, and session. The model
also supports the notion of constraints.

!

Constraints!Business!
Process!

User% Role% Permission%Task%

Non0
Workflow!
Task!

Session!

Workflow!
Task!

Activation!
condition!

Process!
Instance!

Task!
Instance!Performers!

List!

Figure 4.2: BP-TRBAC model

In BP-TRBAC, instead of having permissions assigned directly to roles,
permissions are assigned to tasks, which are assigned to roles. Grouping
permissions in tasks simplifies administration. It also helps minimise the
storage for history-based instance-level restrictions, which are discussed
in Section 4.3.5. Moreover, in business processes specifically, it is more
important to deal with tasks instead of permissions, as restrictions usually
apply to tasks.

BP-TRBAC expands on the notion of task to support workflow and
non-workflow authorisation requests. BP-TRBAC supports two types of
task: non-workflow and workflow. For workflow tasks it distinguishes exe-
cution instances, which have an activation condition, and performers list.

48

BP-TRBAC also supports instance-level restrictions by making use of
task-instances, their status, and the ‘Performers List’ (PL) function. Hav-
ing a unique identifier for each instance gives BP-TRBAC the ability to
satisfy the restrictions on the instance-level. The PL function in particular
is designed to help with history-based restrictions.

BP-TRBAC achieves active access control by using the ‘activation con-
dition’ and the task-instance’s status. Activation conditions are designed
to ensure that prior tasks in the business process sequence are completed,
which means it is time for this task to be performed.

More details about BP-TRBAC, its components, and the way they are
integrated are discussed in the following sections. The rest of the chapter
explains the concept and provides a formal description of BP-TRBAC,
showing how it supports the necessary characteristics that were identified
in Chapter 3.

4.2 Conceptualisation

In this chapter we use ‘Object-Role Modeling (ORM)’ [27] as a conceptu-
alisation modeling language. This section briefly explains ORM and why
it was chosen as the conceptualisation method, then describes the BP-
TRBAC conceptual ORM model.

4.2.1 ORM

ORM is “primarily a method for modelling and querying an information
system at the conceptual level” [36]. It pictures a concept in terms of
objects (entities or values) that play roles (parts in relationships). For
example, the object ‘Org. role’ plays the role of ‘can do’ a ‘task’, and the
object ‘task’ can play the role of ‘done by’ an ‘Org. role’. It makes no
explicit use of attributes [36]. For example, instead of using ‘Can be an
Accountant’ as an attribute of a ‘user’, it uses the relationship type ‘user’
‘can be’ an ‘org. role’ (e.g . an accountant). ORM’s formalism helps in
identifying how each object is represented and its relation to other objects.
For further details on ORM please refer to [36].

4.2.2 BP-TRBAC ORM Model

Figure 4.3 shows a conceptualisation of the BP-TRBAC model using ORM.
From the ORM model, we can see that a ‘user’ can play an ‘org. role’, and
an ‘org. role’ can do a ‘task’. If the ‘task’ is a ‘workflow task (W-Task)’,
then each execution of it will be considered a ‘task-instance’, which has an
‘activation condition’ and a ‘status’.

Business Process Task-Role-Based Access Control Model (BP-TRBAC)49

 S
1

 M
an

ag
er

S1

 C
le

rc
k

S2

 A
dm

in

Ta
sk

(ID
)

W
-T

as
k

O
rg

. R
ol

e
(n

am
e)

Us
er

Se
ss

io
n

(ID
)

Ac
ce

ss

M
od

e

O
bj

ec
t

Ty
pe

Ac
tiv

at
io

n
Co

nd
itio

n

Bu
sin

es
s

Pr
oc

es
s

(n
am

e)

In
st

an
ce

(n
um

be
r)

{ "
W

",
"N

W
" }

>>
 c

an
 p

la
y/

 in
clu

de
s

>>
 C

an
 d

o/
 D

on
e

by

>>
 in

clu
de

s
pe

rfo
rm

in
g

 ..
. O

n
/ a

s
a

pa
rt

of
 ..

 h
as

 p
er

m
iss

io
n

Is
 o

f /
 H

as
 a

ct
iva

tio
n

co
nd

itio
n

<<

>>
 P

ar
t o

f/
ha

s

>>
 e

xe
cu

tio
n

in
st

an
ce

/ i
ns

ta
nc

e
of

 A
li

M

an
ag

er
Al

ex

Cl

er
ck

Ad
am

Ad

m
in

.

M
an

ag
er

 t
1

Cl
er

ck

t5

Ad
m

in
.

 t1
7

t1

 w
rit

e

file
1

t5

 r
ea

d

file
5

>>
 h

as
/ I

s
of

>>

 In
clu

de
s/

 a
ct

ive
 in

>>
 e

xe
cu

tio
n

in
st

an
ce

/ i
ns

ta
nc

e
of

>>
 H

as
 ty

pe
/ I

s
th

e
ty

pe
 o

f
t1

 w

t5

nw
t1

7

w

t1
_j

^t
2_

j

 t3
_j

t1
_i

^t
2_

i^(
t3

_i
 o

r t
4_

i)
 t

5_
i

 A
le

x

S1

Al
ex

 S
2

Ad
am

 S

3

t1

 F

ixM
al

fu
nc

tio
n

t5

Fi
xM

al
fu

nc
tio

n
t3

 A

ut
ho

ris
at

io
nR

eq
Fi

xM
al

fu
nc

tio
n

 1

Fi
xM

al
fu

nc
tio

n

 3
Au

th
or

isa
tio

nR
eq

 1

t1

 1

t3

 1

t5

 4

Ac
tiv

e
Ro

le

{ r
ea

d,
 w

rit
e,

 ..
. }

Ta
sk

 In
st

an
ce

St
at

us
Is

 a
 s

ta
tu

s
of

 /
Ha

s
a

st
at

us
 <

<
Ac

tiv
e

 t
3_

1
co

m
pl

et
ed

 t
5_

3
{ U

na
ss

ig
ne

d,
 A

ct
ive

,
Co

m
pl

et
ed

 }

Co
m

pl
et

ed

Ta
sk

in

st
an

ce
Ad

am

 p
l_

t1
_1

Al
ex

pl
_t

1_
2

Ad
am

pl

_t
3_

3

pe
rfo

rm
er

s
Li

st
(ID

)
is

of
 /

ha
s

pe
rfo

rm
er

's
lis

t <
<

pa
rt

of
 /

in
clu

de
s

<<
pl

_t
1_

1

 t1
_1

pl
_t

1_
2

 t1

_2
pl

_t
3_

3

 t3
_3

Pr
oc

es
s

In
st

an
ce

Figure 4.3: BP-TRBAC concept using ORM

50

The model shows that active roles are a subset of org. roles (indicated
by the heavy arrow), w-tasks are a subset of tasks, and completed task
instances are a subset of task instances. A permission is an access mode on
an object. So the ORM model shows the relation between the task and the
permission included in it by showing the access mode type and the object
that it applies to. The combination of the object and the access mode (a
permission) is unique (indicated by the line on top of the role boxes for
these two objects).

The ORM model provides example ‘population’ under each object to
further illustrate what it is supposed to be. The model also shows that
each task must have at least one type (the dot connecting the object task
to the line indicates that it should have at least one), and that it should
have no more than one type (the uniqueness line on top of the role box
indicates that for each task the type is unique, i.e. the task should have
no more than one type). Only tasks of type w-task are part of a business
process (the line connected only to the subset w-task and not to the object
task).

The figure shows that the combination of a w-task and its instance
is unique, as well as the combination of a business process and a process
instance. Each performers list belongs to one completed task instance, and
each completed task instance has only one performers list (indicated by
the two separate lines on top of the role boxes). On the other hand, the
performers list might contain one or more users. The model also shows that
each task instance must have one activation condition (the combination of
the dot on the object box (at least one) and the line on top of the role
(maximum of one) indicates that it must have one and only one activation
condition). On the other hand, the same activation condition might be
used for more than one task instance (there is no uniqueness line on top of
the role).

BP-TRBAC supports all the characteristics identified in Section 3.2.
BP-TRBAC provides instance-level restrictions in an e�cient way. A ‘per-
formers list’ in BP-TRBAC ties the user to the task performed in a specific
instance, where a task is tied to a set of permissions. By introducing the
notion ‘task’ between role and permissions, the model supports task based
authorisation. It also caters for both workflow and non-workflow tasks, as
can be seen in Figure 4.3, where tasks are categorised and labelled as either
a workflow task or a non-workflow task, and each type is dealt with in a
di↵erent way. BP-TRBAC achieves ‘active access control’ using activation
conditions.

Business Process Task-Role-Based Access Control Model (BP-TRBAC)51

4.3 Formal Representation

This section provides a formal representation of the BP-TRBAC model.
Using set theory it will start by explaining the standard components includ-
ing roles, users and permissions. Then it describes the new components:
task, and task instance. After that it describes the activation conditions.
Finally it describes the role-level SoD restrictions and the IR restrictions.

4.3.1 Roles, Users, and Permissions

This model is based on RBAC, so the formal description of all the compo-
nents that are available in RBAC (i.e. user, role, permission, session, and
user-role assignment) will follow standard RBAC terminology [77]. Let ‘O’
be the set of resources that are subject to access control, and ‘A’ be the
set of actions that can be performed on these objects (e.g . read, write).
The set of all possible actions on objects is referred to as permissions: P
= A⇥O.

p = (a, o) : a 2 A, o 2 O (4.3.1)

Let ‘U’ be the set of all users, where a user is an authenticated subject,
and ‘R’ be the set of all roles. A role is a job function within the context
of an organisation with some associated semantics regarding the authority
and responsibility conferred on the user assigned to the role [30]. User-role
assignment (URA) is a many-to-many mapping user-to-role assignment
relation.

(u, r) 2 URA ✓ U ⇥R (4.3.2)

A user may be authorised to play one or more roles. The set of roles
that can be played by a specific user (e.g . u0) can be found in URA.

8r 2 (u, r) : u = u0 (4.3.3)

‘S’ is the set of all sessions, where a session (s 2 S) is a function that
returns the set of active roles for a specific user.

s(u) = {the active roles for user u} (4.3.4)

s(u) = {r} : {r} ✓ R ^ r is active for u (4.3.5)

Since a user can activate only the roles that he is assigned, the set of
activated roles (i.e. a user’s session) must be a subset of the assigned roles.

s(u0) ✓ URA : u = u0 (4.3.6)

A user can ask for permissions only through activating roles. So, for a user
(u) to ask for a permission, s(u) 6= ?.

52

4.3.2 Task and Task-instance

Task and task-instance are part of the extension to RBAC introduced in
this chapter. To be able to cater for both workflow and non-workflow
tasks, we identified a field called ‘task type’ (ty). A task could be either a
workflow task : (ty=w), or a non-workflow task : (type=n).

Ty = {w, n} (4.3.7)

A task (t) is a tuple of id 2 N (where N is the set of natural numbers),
task type ty 2 Ty, and a set of permissions p ✓ P. The set of all tasks in
the system is referred to as ‘T’.

t = (id, ty, p) 2 N⇥ Ty ⇥ P (4.3.8)

A task is a defined unit of work; as formally identified, it contains a set
of permissions. So it will be easier dealing with tasks (collection of per-
missions) than dealing with each permission by itself. As can be seen in
Figure 4.2, a task connects permissions to roles. So instead of assigning
permissions to each role (as in RBAC), we assign permissions to tasks and
then assign tasks to roles.

Permission-task assignment (PTA) is a many-to-many mapping permis-
sions-to-tasks assignment relation.

PTA ✓ P ⇥ T (4.3.9)

Task-role assignment (TRA) is a many-to-many mapping tasks-to-roles
assignment relation.

TRA ✓ T ⇥R (4.3.10)

A user can perform a task only if the task is assigned to a role activated
by this user. So, a user (u) can perform task (t) only if:

(t, r) 2 TRA : r 2 s(u) (4.3.11)

A task of type (w) is part of a business process. We identify a business
process (bp) by its name (n), where n 2 N, and N is the set of names of all
business processes in the organisation. Each bp is a tuple of the name (n),
and a set of tasks t ✓ T. The set of all business processes in an organisation
is referred to as BP.

bp = (n, t) : t ✓ T, n 2 N, bp 2 BP (4.3.12)

Task-process assignment (TPA) is a one-to-many mapping tasks-to-business
process assignment relation. Each business process can have one or more
tasks, while each task is assigned to one business process.

TPA ✓ T ⇥BP (4.3.13)

Business Process Task-Role-Based Access Control Model (BP-TRBAC)53

A business process can be executed more than once, where each ex-
ecution is called a process instance (pi). Here we denote ‘PI’ as the set
of all process instances in an organisation. Further, each process instance
(pi 2 PI) is a tuple of (bp, n), where n 2 N and bp 2 BP.

pi = (bp, n), pi 2 PI (4.3.14)

Each ‘pi’ includes the executions of all tasks that belong to this bp. An
execution of each task is called a task instance (ti). A task instance belongs
to a pi if they have the same instance number. A ‘ti’ also has a status, where
the status of ti can be either: unassigned, active, or completed. A task
instance (ti) is a tuple of st 2 ST : ST = {unassigned, active, completed},
task t 2 T, and a number n 2 N. The set of all task instances is ‘TI’.

ti = (st, t, n) : 8(bp, n0), n = n0 (4.3.15)

‘Performers list’ is a function mapping between completed task instance
and a subset of users that performed this ti.

pl : ti ! u ✓ U, ti 2 TI ^ ti(st) = completed (4.3.16)

For every task instance the function will return a list of all the users that
performed this ‘ti’. This should include one or more user.

4.3.3 Active Access Control

In BP-TRBAC we are enhancing the ‘activation condition’ method from
T-RBAC [70]. In BP-TRBAC the ‘activation condition’ is attached to each
task-instance. This is part of the extension to RBAC introduced in this
chapter. It is simply a boolean function that returns either true of false.

AC : ti 2 TI ! v 2 {true, false} (4.3.17)

The task will be activated only if the condition returns ‘true’. The Boolean
function is a set of the immediate previous tasks instance’s status that are
required to be performed prior to this task (given that t0, · · · tn are a series
of tasks such that t

n�1 is the immediate prior task to t
n

). If the status of
the previous task-instance is ‘completed’ then it returns true, otherwise it
returns false.

AC(ti
n

) = true i↵ St(ti
n�1) = completed (4.3.18)

Note that so far, given the BP definition, we have not put any constraints
on the order in which these tasks are to be executed. In the workflow
literature the order in which one task precedes another task can take one
of the following primary forms [91]. First is the sequential tasks, where t

n

follows a single immediate prior task t
n�1. In such cases the prior definition

of ‘AC’ applies directly. Second, it is also possible that t
n

has more than

54

one immediate prior task. In such cases, the ‘AC’ will be a set of all the
immediate prior tasks with an ‘OR’ or ‘AND’ between them. For instance,
if the situation is as shown in Figure 4.4, the activation condition for t

n

will be:

AC(t
n

) = true i↵ (St(t1) = completed ^ St(t2) = completed) (4.3.19)

!

tn#AND#

t1#

t2#

Figure 4.4: An ‘AND’ join

while if the situation is one of those shown in Figure 4.5, in both cases the
activation condition for t

n

will be:

AC(t
n

) = true i↵ (St(t1) = completed _ St(t2) = completed) (4.3.20)

!

tn#OR#

t1#

t2#

!

tn#XOR#

t1#

t2#

Figure 4.5: An ‘OR’ join and an ‘XOR’ join

So, in the case of having more than one immediate prior task, the
activation condition will depend on the set of these two or more immedi-
ate prior tasks. The activation condition should have an ‘AND’ relation
between the status if the execution relationship between these tasks was
‘AND’. Otherwise, it will be an ‘OR’ between these immediate prior tasks.
In the case of the first task of the process, where there is no prior imme-
diate task the activation condition will always be ‘true’. In the motivating
scenario presented in chapter 3, the task ‘perform soft reset’ will not be
active until the task ‘receive malfunction notification’ is completed. This
will guarantee that, even though the ‘coordinator’ has the ability to per-
form soft reset, he will not be able to do so unless he receives a malfunction
notification. In the same scenario the task ‘close work order’ will not be
activated unless both tasks ‘complete work order’ and ‘receive invoice’ have
been completed.

Business Process Task-Role-Based Access Control Model (BP-TRBAC)55

Activation condition as a concept is used to achieve the idea of ac-
tive access control. Active access control is an important concept when
dealing with business process. As a practical implementation matter in a
process-aware system, active access control could be part of the authori-
sation system or the workflow system. In the system design we present
in Chapter 6, the authorisation system and the workflow system work co-
operatively to implement active access control. The authorisation system
requests confirmation from the workflow system that the activation condi-
tion is met.

4.3.4 Separation of Duties

Role-level separation of duties (SoD), as specified in NIST-RBAC [30],
identifies pairs of roles that cannot be assigned to (static), or simultane-
ously activated by (dynamic) the same user. SoD is represented as a tuple
of the roles and the type of SoD (static or dynamic).

SoD = (r1, r2, sod-type) : r1, r2 2 R and sod-type 2 {static, dynamic}
(4.3.21)

If the SoD-type was ‘static’ this means that no user is allowed to be assigned
these two roles (r1 and r2).

(r1, u) 2 URA ^ (r2, u
0) 2 URA : u 6= u0 (4.3.22)

If the SoD-type was ‘dynamic’ this means that even though a user might
be assigned both roles (r1 and r2), no user is allowed to activate these two
roles in the same session.

if r1 2 s(u) ! r2 /2 s(u) (4.3.23)

Static-SoD is achieved statically at design time, where as dynamic-SoD is
achieved using sessions.

4.3.5 Instance-level Restrictions

The concept of instance-level restrictions is part of the extension to RBAC
introduced in this chapter. These instance level restrictions (SoD and BoD
on an instance level) are enforced via the task instance and the performers
list. Every ‘ti’ is unique; the combination of the task id and the instance
number is unique; and each ‘ti’ has a status (i.e. unassigned, active, com-
pleted). The function ‘performers list’ (PL) is also an important component
for achieving instance-level restrictions (IR).

An ‘ir’ rule is written as a tuple of the two task instances and the type of
the restriction (type). The set of all instance-level restrictions in a system
is referred to as ‘IR’.

ir = (ti1, ti2, type) : ti1 ^ ti2 2 TI and type 2 {SoD,BoD}, ir 2 IR
(4.3.24)

56

As shown in Figure 4.2, the PL connects the task-instance with the user
who performed the task for that specific instance. This is used to make
sure that assigning a specific task to a user does not violate any constraints.
In BP-TRBAC every user is assigned to one or more roles, and every role
has a number of tasks assigned to it. So, for every task there is a set of
users who are allowed to perform the task, based on the role they belong
to. Before allowing the user to activate a ‘ti’, BP-TRBAC’s authorisation
engine checks the ‘ir’s that apply to this ‘ti’. It then uses the PL function
to identify if the requesting user would violate an ‘ir’ if the task were
performed by them.

For example, Adam and Anna are both assigned to the role ‘coordina-
tor’, which makes them eligible to perform the task ‘approve work order’.
Adam asked to perform the task ‘approve work order’ for the instance 3.
But the pre-defined rule (ir) states that ‘no one is allowed to issue a work
order and approve it for the same process instance’.

ir = (t1
i

, t4
j

, SoD) ! u 2 pl(t1
i

) and u 2 pl(t4
j

) i↵ i 6= j (4.3.25)

Using the PL function it was found that Adam performed ‘issue work order’
for instance 3, so Adam is not allowed to perform ‘approve work order’ for
instance 3. On the other hand, if Anna asked to perform the task, she will
be allowed since this will not violate the ‘ir’ rule. At the same time Adam
was allowed to perform ‘approve work order’ for instance 5, because Adam
did not perform ‘issue work order’ for instance 5.

So, BP-TRBAC is able to satisfy the SoD and BoD on an instance-level,
since the SoD rules are applied within the same process instance instead of
being applied within the same time or session. A user can perform ‘issue
work order’ and ‘approve work order’ tasks at the same time as long as
they do not belong to the same process instance.

4.4 Example Scenario Revisited

This section revisits the example scenario from Chapter 3, using the BP-
TRBAC model, to illustrate the detailed operation of the model and to
show the benefit of using BP-TRBAC. The example scenario in Chapter 3
included a list of business and security rules, derived from the scenario that
require access restrictions for their enforcement. To show how BP-TRBAC
operates, listed below are the rules, together with their expression using
the formal representations introduced in Section 4.3:

1. The task ‘soft reset’ should not be performed unless mal-
function notification was received.
(AC(soft reset)= true i↵ st(receive malfunction notification)=completed).

2. Only the role ‘coordinator’ is allowed to issue work orders.
((issue work order, coordinator) 2 TRA)

Business Process Task-Role-Based Access Control Model (BP-TRBAC)57

3. Contractor’s access rights should be activated only after
showing the proper clearance (the work order).
(AC(Activate access rights)= true i↵ st(show work order)=completed).

4. No work order can be closed until receiving both a ‘work
order completion’ and an invoice.
(AC(close work order)=true i↵
(st(complete work order)=completed ^ st(receive invoice)=completed)).

5. Only a person who issued a certain work order is allowed to
close it. (ir=(issue work order, close work order, BoD)).
u 2 pl(close work order

x

) i↵ u 2 pl(issue work order
x

).

6. No person is allowed to perform ‘issue work order’ and ‘re-
view work order’ for the same ‘work order’. (ir=(issue work order,
review work order, SoD)).
if u 2 pl(issue work order

x

) ! u /2 pl(review work order
x

).

7. No person is allowed to have the role coordinator and the
role contractor at anytime. (SoD=(coordinator, contractor, static)).
if (contractor, u) 2 URA ^ (coordinator, u0) 2 URA ! u 6= u0.

We will now describe the operation of each constraint in more detail.
Assume that an instance of the ‘fix pump malfunction’ process is starting
after receiving the starting trigger (the malfunction notification) and it is
called instance number 7 (i.e. n=7). When Adam wants to log in as a
coordinator, the system will first make sure that Adam is allowed to do so
(i.e. the role ‘coordinator’ is statically assigned to him),

(Adam, coordinator) 2 URA),

and that there is no violation of any ‘SoD’ rules by Adam activating the
role ‘coordinator’. Only then will the system allow Adam to activate the
role ‘coordinator’.

s(Adam) = {coordinator}.

After receiving the notification of a pump malfunction through the en-
terprise building integration system, Adam (as a coordinator) wants to
perform ‘soft reset’ (t(id)=soft reset) for instance number 7(n=7). First
the system identifies if this role is allowed to perform this task.

(soft reset, coordinator) 2 TRA.

58

The system then identifies the instance number, and knows that Adam
wants to perform task-instance:

ti = (unassigned, soft reset, 7).

Checking the IR of this ‘ti’ shows that there are no restrictions (i.e. ir(soft
reset) = null).

Then it will check the status of this ‘ti’, which is ‘unassigned’, meaning
that no one has performed this ‘ti’ yet. The activation condition of this
task instance is that the task instance ‘receive malfunction notification 7’
is done:

AC(soft reset7) = true i↵ st(receive malfunction notification7) =
completed,

which is the case for this example, so the activation condition will be true
(AC(soft reset7) = true), and ‘soft reset7’ is ready to be activated (per-
formed by a user). So the BP-TRBAC system will now allow Adam to
perform ‘soft reset for instance number 7’.

The second restriction can be achieved using BP-TRBAC because it
uses the concept of roles, and assigning tasks to roles. So, if Adam did
not activate the role ‘coordinator’ (coordinator /2 s(Adam)), he will not
be able to perform the task ‘issue work order’, as this task is assigned to
the role ‘coordinator’ ((issue work order, coordinator) 2 TRA) and only
a user with this role can perform it.

((issue work order, coordinator) 2 TRA) ^ (coordinator /2 s(Adam))

! Adam /2 pl(issue work order, coordinator)

The third restriction is achieved because BP-TRBAC uses the concept
of active access control. The activation condition of the task ‘Activate
access rights’ will only be true if the task ‘show work order’ has been
completed. Otherwise the activation condition will be false and no one
can perform the task yet. So, contractors will be granted access only after
showing the ‘work order’.

AC(Activate access rights) = true i↵ (st(show work order) =
completed).

The same property (active access control) is used to achieve the fourth
restriction. The activation condition for the task ‘close work order’ will
be true only if both tasks ‘complete work order’ and ‘receive invoice’ are
completed. So, the task of ‘closing the work order’ will not be activated
unless the work order is completed and the invoice is received. Otherwise
the activation condition will be false and no one can perform the task yet.

AC(close work order) = true i↵ (st(complete work order) =
completed ^ st(receive invoice) = completed).

Business Process Task-Role-Based Access Control Model (BP-TRBAC)59

The fifth and sixth restrictions are achieved in BP-TRBAC because of
the feature of instance-level restrictions (IR). There will be an IR on the
task ‘close work order’ saying that it should be done by the same user who
performed ‘issue work order’ for the same instance (ir=(issue work order

x

,
close work order

x

, BoD)). When a user is about to perform the task ‘close
work order’, the system will check the IR. To satisfy the restriction, it will
identify the user who performed the task ‘issue work order’ for this instance
using the ‘performers list’ function:

pl(issue work order
x

) = {Adam},

The system will allow only the same user (Adam, or any other user in the
list) to perform the task ‘close work order’.

The sixth restriction will be the other way around, as the restrictions
state that it should not be the same person (ir=(issue work order

x

, re-
view work order

x

, SoD)). The system will check the performers list of the
task ‘issue work order’:

pl(issue work order
x

) = {Adam}

The system will not allow the user (Adam, or any other user in the list) to
perform the task ‘review work order’.

The seventh restriction can be achieved using role-level SoD, which is
based on the standard RBAC SoD.

4.5 Discussion

BP-TRBAC is a unified model designed to support all the characteristics
identified in Chapter 3. To the best of the author’s knowledge, of the au-
thorisation models that are designed for business process aware systems
and that support some of the characteristics, none support all the charac-
teristics. Combining all the characteristics to be supported by one model
and maintaining the concept of RBAC to be able to support non-workflow
requests is the point of strength for BP-TRBAC. Workflow authorisation
has its own unique specifications, which do not apply to non-workflow au-
thorisation. That is why the model needs to be designed in a way that is
aware of di↵erent types of requests and that has the ability to deal with
di↵erent types of requests, as they have di↵erent requirements.

The concept of active access control is an important aspect of work-
flow authorisation models. Some of the BPM authorisation models in the
literature assume that active access control can be ignored; depending on
the fact that workflow systems are aware of the task sequencing, and it
can be assumed that all workflow requests are requested only at the right
time. In this thesis we wanted BP-TRBAC to be a unified model that is
in charge of all authorisation request decisions, and that does not rely on
any other systems to make the decision. This model can make use of in-
formation retrieved from another system but does not depend on the other

60

system to make the decision for it. For that reason we have used the idea
of activation conditions.

The activation conditions concept is proposed to make sure that the
tasks are performed only at the right time. In terms of implementation,
activation conditions can be part of the authorisation system itself, or
delivered through a cooperative interaction between the workflow system
and the authorisation system. Since workflow systems are designed to be
aware of task sequence and instance execution, the authorisation system
can make use of the workflow system to retrieve information to enforce the
activation condition. In this way, we can make sure that the authorisation
system is still responsible for enforcing the constraint, but we also do not
need to duplicate a feature that is already available in the workflow systems.

Instance-level restrictions as a concept has been addressed in di↵erent
ways by di↵erent proposals [14, 18, 70]. We have found that most of the
proposed solutions in the literature are structured in a way that cannot
support history-based instance-level restrictions. Some of the proposals
that support history-based restrictions require predefining of the context
in which the restriction will be applied [11]. Maintaining history to support
history-based restrictions is an important functionality to be able to eval-
uate instance-level restrictions that concern completed tasks. Otherwise,
it will be possible to evaluate instance-level restrictions only if the task is
still being performed, as in [11]. In BP-TRBAC we proposed the idea of
‘Performers List’ (PL) to be able to retrieve information about the users
who performed a specific completed task instance.

Supporting all these characteristics and maintaining the features of the
NIST-RBAC concept makes BP-TRBAC a unified model that can support
legacy systems and also can support workflow systems. A simple authori-
sation request that is not part of a workflow will be processed according to
how it is processed in the NIST-RBAC model.

4.6 Review

BP-TRBAC is designed to be an independent authorisation system that
interacts with the workflow system and cooperatively enforces the enter-
prise’s authorisation policies in a consistent way across both workflow and
non-workflow systems. With its architecture based on the XACML stan-
dard, BP-TRBAC is designed to form the basis of an enterprise-wide au-
thorisation system that is capable of integrating with existing applications,
not all of which need to be process-aware.

Business Process Task-Role-Based Access Control Model (BP-TRBAC)61

Table 4.1: Comparing BP-TRBAC to other authorisation models

!
Co
m
pr
es
si
on
*

cr
it
er
ia
*

RB
AC
**W

AM
*FW

AM
*S
RB

W
M
*T
7R
BA

C*
W
7R
BA

C*
M
So
D
*W
Se
ss
io
n*
SO
W
AC
*S
tr
.*&
*

M
en
d.
*
AW

7
RB

AC
*

BP
7

TR
BA

C*

1!
An
!in
de
pe
nd
en
t!

ac
ce
ss
!c
on
tr
ol
!

m
od
el
!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

N
o!

N
o!

N
o!

Ye
s!

N
o!

Ye
s!

Ye
s!

2!
Su
pp
or
ts
!R
ol
e7

ba
se
d!
ac
ce
ss
!

co
nt
ro
l!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

3!
Su
pp
or
ts
!T
as
k7

ba
se
d!

au
th
or
is
at
io
n!

N
o!

N
o!

N
o!

Ye
s!

Ye
s!

N
o!

N
o!

Ye
s!

Ye
s!

Ye
s!

N
o!

Ye
s!

4!
Su
pp
or
ts
!A
ct
iv
e!

ac
ce
ss
!c
on
tr
ol
!

N
o!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

N
o!

N
o!

N
o!

Ye
s!

Ye
s!

N
o!

Ye
s!

5!
Su
pp
or
ts
!S
oD
!

on
!in
st
an
ce
7

le
ve
l!!

N
o!

N
o!

N
o!

N
o!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

N
o!

Ye
s!

N
o!

Ye
s!

6!
Su
pp
or
ts
!

H
is
to
ry
7b
as
ed
!

So
D
!o
n!
IL
**
!!

N
o!

N
o!

N
o!

N
o!

N
o!

Ye
s!

Ye
s!

N
o!

N
o!

Ye
s!

N
o!

Ye
s!

7!
Su
pp
or
ts
!B
oD
!

on
!in
st
an
ce
7

le
ve
l!!

N
o!

N
o!

N
o!

N
o!

N
o!

Ye
s!

Ye
s!

Ye
s!

N
o!

Ye
s!

N
o!

Ye
s!

8!
Su
pp
or
t!n
on
7

w
or
kf
lo
w
!ta
sk
s!

Ye
s!

N
o!

N
o!

N
o!

Ye
s!

N
o!

Ye
s!

N
o!

N
o!

N
o!

Ye
s!

Ye
s!

9!
Su
pp
or
t!

w
or
kf
lo
w
!ta
sk
s!

N
o!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

Ye
s!

*!T
he
!R
BA
C!
m
od
el
!u
se
d!
in
!th
is
!ta
bl
e!
is
!

N
IS
T!
RB
AC
2!

**
!IL
=!
In
st
an
ce
7L
ev
el
!

!
!

!
!

62

Table 4.1 compares BP-TRBAC to the models reviewed in Chapter 2,
using the main characteristics identified in Section 3.2: RBAC, task based
authorisation, active access control, instance-level restrictions, and support
for both non-workflow tasks and workflow tasks. The table shows for each
model which characteristics are supported or not supported. To improve
clarity, the instance level restriction capability is divided into three di↵erent
characteristics. The first characteristic is SoD on an instance level, which
means SoD on active task instances. Second is history-based SoD, which
means supporting SoD restrictions that include a task instance that has
been completed. The third is BoD on an instance level. This distinction
has been made because some of the reviewed models support only a subset
of these three characteristics.

As previously stated, it can be seen in the table that all reviewed models
are RBAC-based and support workflow tasks. MSoD, W-RBAC, Strem-
beck and Mendling, and BP-TRBAC are the only models that support all
three types of the instance-level restrictions (Characteristics 4, 5, and 6).

MSoD [18] was proposed as a new SoD idea, rather than a complete
model. It is an idea to solve long-term SoD and instance-level SoD. MSoD
proposes the use of ‘business context’ instead of session, where SoD con-
straints will be defined within the ‘business context’. The MSoD concept
requires a pre-definition of business contexts and identifying SoD policies
that belong to each business context. Moreover, it does not provide task-
based authorisation, so the instance-level restrictions will be on permissions
rather than on tasks.

W-RBAC [95] defines a new notion called ‘case’, which is an instance
of a business process execution. The model also defines ‘doer’, a three-
way relation between the user, permission and the case, which makes it
easier to deal with instance-level restrictions. The doer relation connects
the user’s executions of permissions for certain cases. W-RBAC deals with
permissions rather than tasks. So even though it is possible to identify
instance-level restrictions, these will be with regard to permissions and not
tasks.

Strembeck and Mendling’s proposal [84] uses a formal method to de-
fine the instance-level restrictions. They define three new relations, one
called SME (Static Mutual Exclusion); the second DME (Dynamic Mutual
Exclusion); and the third RB (Role Binding) the instance-level binding of
duties. For example, a DME of task ‘T’ will show all tasks that are in
a dynamic SoD with task ‘t’ (e.g . DME(t1)=t2, which means that t2 is
in a dynamic SoD with t1). In BP-TRBAC we define a relation called
‘IR’ (Instance-level Restriction). If there is a SoD relation or a BoD rela-
tion between two tasks on an instance level they will be included in one
rule including the type of the restriction whether it is a SoD or BoD (e.g .
IR=(t1,t2, SoD) this is an SoD on an instance level between t1 and t2).
While achieving e↵ectively the same result, Strembeck and Mendling’s pro-
posal for each mutually excluded task two rules needs to be identified in

Business Process Task-Role-Based Access Control Model (BP-TRBAC)63

the system. In BP-TRBAC one rule will include both tasks. Moreover the
BP-TRBAC rules, by having a type, can support both SoD and BoD, while
in Strembeck and Mendling’s proposal, a specific function is proposed for
each type.

BP-TRBAC supports instance-level restrictions on tasks rather than
on permissions. It also has the ability to deal with SoD, BoD, and history-
based restrictions on an instance-level. In addition, it deals with non-
workflow tasks and is designed to be a unified system. The following
paragraph discusses other shortcomings of related models and why it is
necessary to have a model such as BP-TRBAC.

A shortcoming of W-RBAC is that it depends on the workflow engine to
control the process, while W-RBAC provides only the list of users allowed
to perform the task. It does not support task-based authorisation and it
does not cater for non-workflow tasks. It was designed to focus on workflow
tasks and to be part of the workflow system. A similar shortcoming can be
found in the Strembeck and Mendling proposal, which was also designed
to be part of the workflow system and does not cater for non-workflow
tasks. This would require the organisation to have more than one authori-
sation system. Strembeck and Mendling’s proposal has the advantage over
W-RBAC that it actually supports task-based authorisation. The MSoD
proposal is the only one beside BP-TRBAC that caters for non-workflow
tasks. Unfortunately, MSoD does not support task-based authorisation.
BP-TRBAC is the only one of these models that supports all types of IR
as well as task-based authorisation, and caters for non-workflow tasks at
the same time.

BP-TRBAC is designed to be the authorisation system in control,
avoiding duplication of functionalities. It is an independent unified au-
thorization system. It can be an enterprise-wide authorisation system that
deals with workflow and non-workflow systems.

4.7 Conclusion

In this chapter we proposed BP-TRBAC, a new unified access control
model. The model builds on the NIST RBAC model, extending it to
support process-aware systems. BP-TRBAC supports task-based autho-
risation, with both passive and active access control. One of the main
contributions is that BP-TRBAC supports instance-level restrictions, in-
cluding history-based instance-level restrictions. Another advantage of BP-
TRBAC is that it caters for both workflow tasks and non-workflow tasks.
It was designed to be the main authorisation system for the whole organ-
isation, rather than a specialised model to be embedded in a workflow
system.

64

This chapter provided a conceptual representation and a formal de-
scription of the introduced model. It showed how to represent tasks and
task instances, and showed the formal representation of the instance-level
restrictions and the separation of duties restrictions. The formal descrip-
tion helps in understanding the mechanism of the characteristics and the
way they are supported.

In comparison to other related models, BP-TRBAC introduces a uni-
fied model in which the necessary characteristics of an authorisation model
for a business process environment are supported. It is conceived as an
independent, enterprise-wide authorisation system that can provide an ac-
cess control decision making service to other systems including, but not
limited to, workflow systems, based on a consistent set of organisational
security policies.

In the following chapter we will show an example ‘use case’ of BP-
TRBAC. The chapter will show how to implement a subset of BP-TRBAC
as a use case showing implementation results. Chapter 6, then presents
a proposal for a new XACML-based policy language to be used with this
authorisation model.

Chapter 5

SPCC for YAWL: a Use-Case of
the BP-TRBAC

In the previous chapter we introduced BP-TRBAC as an authorisation
model. In this chapter we will demonstrate an implementation of a subset
of BP-TRBAC as a use case. We have identified a shortcoming in YAWL
as a workflow system. The current structure of YAWL allows the process
modeler to specify and assign users/roles to perform tasks [2]. Having this
privilege under the control of the process modeler may lead to authorisation
policy breaches. There is no method for making sure that these assignments
are in compliance with the organisation’s authorisation policies. This can
pose serious threats in a real-world business process environment, as it may
lead to breaching the company’s authorisation policies. We have identified
a subset of BP-TRBAC to produce a security policy compliance checker
(SPCC).

SPCC is a use-case of BP-TRBAC, which works as a compliance checker.
BP-TRBAC is a complete authorisation model that is used to check run
time authorisation requests, while SPCC is using only a subset to perform
design time checking. It was designed specifically to overcome the short-
coming we identified in the YAWL system. SPCC takes in the process
modeler’s assignment of a role to perform a task, checks if that assignment
is in compliance with the authorisation policy, then sends back a result
stating whether this assignment is allowed or not. So, SPCC provides de-
sign time checking of role-task assignments with regard to the authorisation
policy, and assists the process modeler in not breaching the authorisation
policy.

In this chapter we describe how SPCC has been implemented as a plug-
in for YAWL. YAWL was chosen because it is an open source workflow
system that has its own modeling language. Moreover, the new YAWL
Editor 3.0 supports extension through a pluggable interface [2].

65

66

This chapter begins by giving an overview of key technical aspects of
YAWL, showing the shortcoming that YAWL has now. Then it explains
SPCC as an application, showing its structure and design. After that it
discusses implementing SPCC as a plug-in for YAWL, explaining technical
details. Finally, it shows results from the implementation.

5.1 YAWL

The YAWL system uses the YAWL language as a business process mod-
eling language [2]. The YAWL language distinguishes itself from other
languages by having a formal foundation. This formal foundation allows
for automatic translation of the model to build a workflow system that
works based on the designed process model [90]. In YAWL the Editor al-
lows the process modeler to design the business process model (also known
as a process specification) [60]. The model uses the YAWL language, which
has a formal foundation. The YAWL Engine is able to create a workflow
system that is based on this model. The system is a web-based system,
which uses apache as a web server. The YAWL resource service manages
all resources including users/roles and applications. Using the resource
service, the administrator can add, remove, or modify resources [60]. In
the Editor the modeler can use these resources, available from the resource
service, to assign them to perform tasks [2].

The YAWL system consists of an extensible set of YAWL services, with
each having a unique set of addresses and end points and one or more
interfaces [60]. Some of these services o↵er functionality to end users,
while some interact with other services and applications and some can do
both. YAWL was developed using Java as a programing language. The
communication between YAWL services is done through HTTP GET and
POST operations and the data documents that are transferred are in XML
format [60].

The YAWL system has several services, but in this section we discuss
only the relevant aspects of YAWL. Figure 5.1 shows the most relevant
components of the YAWL system and their relationships. In the following
subsections we will give an overview of these components/services.

5.1.1 YAWL Engine

The YAWL Engine manages the execution of instances or cases [2]. The
specified data mappings between the case and its tasks are performed as
required by the Engine and each case is executed according to its current
state and control-flow description. The Engine is crucial for execution as
it determines whether a work item should be o↵ered or announced to the
environment at each stage of the process. Generally a YAWL service is
explicitly associated for each task in a process instance during design time
[2]. In this chapter we will not be dealing with the engine, as our focus will
be on design time only.

SPCC for YAWL: a Use-Case of the BP-TRBAC 67

YAWL Engine

YAWL Editor

Process model

Users/Roles
Admin
Apps

Event Log

Web ServiceResource Service

Figure 5.1: YAWL architecture

5.1.2 YAWL Resource Service

The YAWL resource service is completely separate from the Engine and
provides the resource perspective for specifications [60]. The main function
of the Resource Service is to allocate work items to resources for processing.
A resource can be a person, an application, or a service. YAWL allows
assignment of roles to users, and also allows assignment of positions to
users [60]. This allows for better control and flexibility by assigning a role
to perform a specific task rather than assigning a specific user. The resource
service also allows each participant to possess a number of capabilities [60].
So, resource assignments to tasks can be based on the user’s capabilities
rather than his role. The resource service is used to identify and manage
the resources, while the ‘Editor’ can be used to specify the resourcing
requirements for tasks at design time to be used at run time [2].

5.1.3 YAWL Editor

The YAWL Editor can be used for creating, editing, configuring, validat-
ing, and analysing workflow specifications [60]. The first step in executing
a workflow model is defining it and this is done using the Editor. In the
Editor the process modeler can also assign tasks to predefined users/roles
[2]. Graphical representation allows solution architects and developers to
capture workflow models and automatically detect potential errors early
on with the help of the graphical editor. Other functionalities such as the
verification functionality help in detecting errors. The verification func-
tionality allows for detecting syntax errors such as having a task that does

68

not have a successor task. Another functionality, validation, allows for
identifying design errors such as closed loops [60]. Unfortunately, there
is no function that checks if resource assignments are in compliance with
the organisation’s authorisation policy. YAWL’s editor is the most related
aspect of YAWL to the plug-in that will be presented in this chapter.

5.1.4 The Problem

During the process design time, a process modeler has the ability to assign
task performance to user’s roles, specifying the role that has the ability
to perform this task. However, process modelers are not security experts
and may not be aware of the organisation’s authorisation policy for cer-
tain resources or applications. Therefore, the assignments might not be
in compliance with the policy. Task performance sometimes requires in-
teraction with other applications that have their own authorisation policy.
If the modeler’s assignment is not in compliance with these policies, the
task will not be performed, as the user will be denied during run time, and
therefore, the process will not be completed. If it was chosen to disable the
run time policy enforcement method (e.g . authorisation model) in order
to make the process work, then the protected asset or system is at risk of
misuse or loss with the associated potential for undesirable consequences
for the organisation (e.g . regulatory fines for unauthorised use of personal
information).

One method for making sure that these assignments are in compliance
with the authorisation policies is having the modeler manually check each
assignment against the authorisation policies. This manual process is ex-
pensive and time consuming. Moreover, human actions are comparably
more prone to errors. Therefore, there is a need for an automatic method
to check if the assignments are in compliance with the policy. As explained
earlier, YAWL provides a functionality for checking the context, and the
design, but there is no functionality to check the resource assignment.

5.2 SPCC

To solve the shortcoming in YAWL, the Security Policy Compliance Checker
(SPCC) was designed to work in the YAWL environment to check the com-
pliance of the assignments. SPCC is intended to check the compliance of an
assignment of tasks to a roles with the organisation’s authorisation policy
during design time. This is achieved through integrating the SPCC soft-
ware module with YAWL so that the SPCC service can be called through
the editor. The request includes the process modeler’s assignments of roles
to tasks. Then SPCC checks if these assignments are in compliance with
the authorisation policy, and sends the results for all assignments at once.

The following subsection will provide details about the design, archi-
tecture, and structure of SPCC.

SPCC for YAWL: a Use-Case of the BP-TRBAC 69

5.2.1 Architecture

This section explains the architecture of SPCC by itself. Figure 5.2 shows
the architecture of SPCC without showing the connections to the workflow
system. In SPCC, Compliance Checker receives the request from an exter-
nal system (i.e. workflow system). The request contains a list of role-task
assignments, each of which should be checked for compliance with the au-
thorisation policy. For this purpose, the Compliance Checker might need
to get extra information from log files (or the workflow system). The Com-
pliance Checker then passes a request for each assignment and the needed
information to the Policy Decision Point (PDP).

!!

Security!Policy!Compliance!Checker!

Authorisation!
Policy!

Compliance!
Checker! PDP!

Request'

Decision''
Log!file!

Request!

Result!

Figure 5.2: SPCC architecture

The PDP then checks if the task-role assignment is in compliance with
the policy file. For this purpose, PDP reads the policy file. If the assign-
ment complies with the policy, PDP will send ‘Allow’ output to the Com-
pliance Checker. If the assignment violates the authorisation policy, PDP
sends ‘Deny’ output to the Compliance Checker. If there is no matching
policy for the assignment, PDP sends ‘No match found’ to the Compliance
Checker.

5.2.2 Software

The software module for SPCC consists of two major components, the
Compliance Checker (CC) and the Policy Decision Point (PDP).

Compliance Checker

The ‘ComplianceChecker’ class is used for receiving the request to check
compliance with the policy and for framing the request to the required
format. It also gathers extra information and passes it along with the for-
matted request to the (PDP) class. It then receives the output from PDP
and interprets the output into an appropriate response. The ‘Compli-
anceChecker’ class contains three methods: ‘main’, ‘format’ and ‘readFile’.

70

Main Method: performs the entire execution of the SPCC software mod-
ule.
Format Method: frames the request into a specified format when the
elements are passed as arguments by the workflow system.
ReadFile Method: receives data from the workflow system and returns
the result.

In short the ‘ComplianceChecker’ class does the following:

• Reads request and gathers extra information

• Sends requests to PDP

• Receives decision from PDP

• If result was No match found, CC makes a default decision (currently
configured as ‘allow’)

Policy Decision Point (PDP)

The PDP class checks the compliance of the received request with the pol-
icy. For this purpose, it reads the policy file and checks the request against
the policy. The PDP sends back the output to the compliance checker in-
forming whether the request complies with the policy or not; it also informs
the compliance checker if no matching policy is found. This class consists
of one method, which is ‘PDP’.

PDP Method: is called by the main method in ComplianceChecker class.
It reads the policy file, checks if the request matches with any policy, then
assigns the appropriate value to variable response. If the request does not
match the policy, it assigns No match found to the variable response.

In short ‘PolicyDecisionPoint’ class does the following:

• Receives request from CC

• Reads policy file

• Searches policy file for all matching policies

• If matching policy found, retrieves rule from policy file and sends to
CC

• If multiple results found, and at least one of them is deny, then sends
deny to CC

• If no result found meeting the request, the PDP returns no match
found

5.2.3 Data Structure

Since the aim of the implementation is to investigate the use case, we have
defined our own simple data structure. We used a specific structure for

SPCC for YAWL: a Use-Case of the BP-TRBAC 71

the policy file and the request. In this section we will explain the data
structure used in the software module of SPCC.

Policy File Structure

The policy file includes the policies that the role/task assignments need to
be in compliance with. Each policy contains a subject, an object, an action,
and a resulting rule. The structure of the policy says if this subject wants
to perform this action on this object, then the resulting rule should apply.
For example, a policy will look like this: Subject: coordinator role, Object:
pump, Action: hard reset, Rule: allow. Such policy means a user with the
role coordinator can perform hard reset on the pump. For each policy, the
subject element comes first, object element second, action element third,
and rule element last.

We have identified our own structure to test the PDP and the CC of the
SPCC. The structure is simple, and intended to test only if SPCC is doing
what it is supposed to do and can communicate with YAWL. Building this
simple policy structure helped us to recognise the need for a structured
language. This opportunity helped us to understand the elements and the
structure of such a language. In general the policy file should be unam-
biguous, up-to-date, and complete. Having a clear naming convention and
using a structured machine-readable language helps in making sure that
the policy file is unambiguous. Having a single organisation-wide autho-
risation policy file makes it easier to make sure that the policy is always
up-to-date. If there were multiple copies of the file, it will be harder to
make sure that all copies are up-to-date. Finally, for a policy file to be
complete it has to cover policies for all assets and systems in the organisa-
tion. In order to do so, the language should have the ability to represent
policies for di↵erent systems. For example, the language should have the
ability to represent policies for business process system.

Request Structure

An authorisation request is a request by a subject to perform a specific ac-
tion on a specific object. Therefore, each request should contain a subject,
an object, and an action. For example, if a request contains the following:
Subject: ‘coordinator’ role, Object: ‘pump’, Action: ‘soft reset’, the re-
quest is asking if the user with the role ‘coordinator’ is allowed to perform
‘soft reset’ on the ‘pump’.

Decision

Decisions sent from PDP to CC will be any of the following:

• Allow

• Deny

• No match found

72

Conflict Resolution

If more than one policy is found matching with the specified request, and
at least one of the decisions for the matching policies is ‘deny’, then ‘deny’
will be the final decision. If all matching policies decisions are ‘allow’, then
it will return ‘allow’.

If ‘no match found’ output was received from the PDP, then the ‘Com-
pliance Checker’ should make a decision based on the business requirement.
Currently, ‘Compliance Checker’ will return ‘Allow’ as the response to the
workflow interface if there was no match found.

5.2.4 Flowchart

This section describes the flowchart of the SPCC software and how it works.
Figure 5.3 shows the steps SPCC performs to reach an authorisation deci-
sion. SPCC works as follows:

1. Compliance checker (CC) receives the request and needed informa-
tion and passes them as parameters to PDP.

2. PDP then reads the policy file from specified address.

3. PDP checks each request for matching statement in policy file.

4. If a policy match is found then the PDP saves the decision stated at
the end of the policy, and keeps searching for matching policies, until
the end of the policy file.

5. If there is more than one matching policy statement, then the output
to ‘Compliance Checker’ will be ‘allow’ when all the decisions for each
of the matching policy statements are ‘allow’; otherwise ‘deny’ will
be the final output.

6. If there is no matching policy found, PDP sends ‘No match found’ to
‘Compliance Checker’.

7. If the result ‘Compliance Checker’ received from PDP is ‘allow’, then
‘Compliance Checker’ prints ‘allow’ as output.

8. If the result ‘Compliance Checker’ received from PDP is ‘deny’, then
‘Compliance Checker’ prints ‘deny’ as output.

9. If the result ‘Compliance Checker’ received from PDP is ‘No match
found’, then ‘Compliance Checker’ prints ‘allow (No match found)’
as output.

SPCC for YAWL: a Use-Case of the BP-TRBAC 73

!

Press!SPCC!
button!

CC!gathers!information!
from!YAWL’s!editor!

CC!form!a!request!for!
each!task!assignment!

CC!sends!request!
to!PDP!

PDP!understand!
request!

PDP!searches!policy!file!
for!matching!policies!

Set!the!decision!to!
‘no!match!found’!

Found!a!!
policy!

Save!decision!

Is!it!end!of!
policy!file?!

More!than!
one!policy!
found!

One!of!the!
results!is!
‘deny’!

Send!final!decision!to!
CC!

Set!
decision!
to!‘deny’!

Set!
decision!
to!‘allow’!

CC!add!decision!to!
report!

Is!it!final!
task?!

CC!sends!report!to!
YAWL’s!editor!

Yes!

No!

No!

No!

No!

Yes!

Yes!

Yes!

Yes!

No!

Figure 5.3: Flowchart of SPCC.

74

5.3 SPCC Implementation in YAWL

The real benefits of SPCC are realised only when it is integrated with a
workflow engine. In this chapter we will use the plug-in feature to integrate
SPCC as a plug-in in YAWL. This section will outline the implementation
of SPCC as plug-in within YAWL, showing the implementation architec-
ture, design, and interface.

5.3.1 YAWL Plug-in Interface

The new YAWL Editor 3.0 supports extension through a pluggable inter-
face. Using the plug-in interface gives the plug-in access to the underlying
application framework [2]. A new plug-in will be added in the plug-in menu
in the Editor’s interface. Through the menu, the plug-in’s actions can be
executed, so they can provide additional functionality to the editor. The
editor also provides the option of calling a plug-in when an event occurs
(e.g . opening a file) [2]. Figure 5.4 shows the YAWL 3.0 editor showing
the plug-in interface.

Figure 5.4: YAWL plug-in interface.

5.3.2 Architecture

Figure 5.5 shows the architecture of the SPCC as a YAWL plug-in. As the
architecture shows, the compliance checker (CC) part of the SPCC is the
one that communicates with YAWL. SPCC will deal only with the Editor
part of YAWL; it will not be communicating with the Engine or the Re-
source service. It is a design time compliance checker for YAWL, aiming
to check the modeler assignments of roles to tasks at design time if they
are in compliance with the policy or not.

SPCC for YAWL: a Use-Case of the BP-TRBAC 75

!

Security!Policy!Compliance!Checker!

Security!
Policy!

Compliance!
Checker! PDP!

YAWL!

Editor! Engine! Resource!
Service!

Request'

Decision''

Figure 5.5: SPCC communication with YAWL.

Needed information such as user, role, task, and action will be gathered
through the interface and sent to the CC part of the SPCC. CC should
form the request into the standard accepted format and forward the request
to the PDP. A decision should be made by the PDP based on the policy
file. The decision will be sent to CC, which will forward this information to
print a message in the YAWL editor saying either ‘Role is allowed’, ‘Role is
allowed (no match found)’ or ‘Role is not allowed’. The first decision Role
is allowed will appear if there was a policy stating that this assignments is
allowed. The second decision Role is allowed (no match found) will appear
if there was no matching policy for this assignment. As explained earlier,
if there was no matching policy, the PDP will send No match found to
CC, which makes a decision based on the business environment. In this
implementation, for the sake of simplicity, CC is configured to make the
decision to allow, if no match found. It will send the following result Role is
allowed (no match found). The third decision Role not allowed will appear
if there was a policy stating that this assignment is not allowed.

Figure 5.6 shows the sequence diagram of SPCC as a YAWL plug-
in. As can be seen, the ‘Editor’ is the only part of YAWL that interacts
with SPCC. When SPCC is chosen, CC will send to the ‘Editor’ gathering
information about the roles assignment to all tasks. Then CC sends each
role/task assignment by itself as a request. The PDP will assess the request
and send the decision back to CC. After completing all requests, CC will
send back to the ‘Editor’ the complete results of all assignments.

76

!

YAWL’s'
editor' CC' PDP'

SPCC!button!push!notification!

Enquire!role!assignment!of!
first!task!

Sends!request!for!single!
assignment!

Sends!final!decision!on!this!
assignment!

Sends!a!formal!request!for!
the!next!assignment!

Sends!final!decision!on!this!
assignment!

Sends!a!request!for!final!
task’s!assignment!

Sends!final!decision!on!this!
assignment!

.'

.'

.'

.'

Get!role!assignment!of!first!
task!

! Enquire!role!assignment!of!
2nd!task!

Get!role!assignment!of!2nd!
task!

! .'
.'
.'

Enquire!role!assignment!of!
Final!task!

Get!role!assignment!of!
Final!task!

!

Sends!final!report!showing!
decisions!on!all!

!
Figure 5.6: Sequence diagram for SPCC as a plug-in for YAWL.

SPCC for YAWL: a Use-Case of the BP-TRBAC 77

5.3.3 Interface

SPCC appears in YAWL’s plug-in menu interface as shown in Figure 5.7.
Once the plug-in is clicked it will trigger the SPCC to check all current
task-role assignments.

Figure 5.7: SPCC as a plug-in for YAWL.

When the SPCC plug-in is chosen, a menu will give the modeler the
option to choose the policy file that will be used to check the assignments.
After that, the SPCC plug-in will check all assigned roles and send back
a report for all tasks, showing for each task assignment if it is allowed or
not.

5.4 Results and Discussion

After implementing SPCC as a plug-in for YAWL, we tested the plug-in
using an example business process as shown in Figure 5.8. It is the process
of fixing a pump malfunction. The process includes several tasks with some
authorisation constraints. Then we created a policy file that contains all
the authorization policies related to this process. The policy file followed
the structure explained in Section 5.2.3. After that we assigned di↵erent
roles to the tasks in this business process. During the role assignments
we covered all expected types of results. We deliberately chose roles that
are not supposed to perform the task, roles that are authorised to perform
the task, and assignments that do not have a matching policy. Finally we
used the SPCC plug-in by activating it to test if the assignments are in
compliance with the policy file.

78

Figure 5.8: An example business process in YAWL.

SPCC for YAWL: a Use-Case of the BP-TRBAC 79

The final results (see Figure 5.9) shows that SPCC was able to check
the assignments, compare them with the selected policy, and send back the
result for each assignment showing if it is in compliance with the selected
policy or not.

Figure 5.9: Results of testing the SPCC in YAWL.

For example, SPCC is telling the process modeler that, according to
the selected policy, the role assigned to perform the task Soft Reset is not
allowed to perform such a task. Therefore, the modeler can choose another
role to assign to this task and then check again. In another example, we
assigned the role coordinator for the task Hard reset, which is actually in
compliance with the authorisation policy. Therefore, as can be seen in
the figure, the result is Role is allowed. To test the result of no match
found, we assigned a new role to perform the task Send work order ; this
role has no policy related to it to say whether it is allowed or not. The
result actually came as no match found, and because of the current design
of CC, it translated the decision to Role is allow (no match found). To be
more secure, CC code can be easily modified to translate the results of no
match found to be ‘Role is Not allowed (no match found)’.

SPCC, as an addition to YAWL, helps in making sure that the modeler
assignments are in compliance with the policy before run time. The current
implementation of SPCC uses a specific structure that is designed solely for
the purpose of testing the SPCC components. SPCC originally is meant
to check assignment requests against the organisation’s actual policy. In

80

real life the policy is an organisation-wide policy, therefore the language
used for such policies should have the ability to represent the policies and
constraints for di↵erent kinds of systems. There is a need for a standard-
ised, structured language, such as XACML [62]. The current version of
the SPCC application needs to be improved to be able to deal with such
a structured policy language. However, a first step is to identify the lan-
guage requirements. XACML for example, is a structured, standardised
language. It is also machine-readable, which is important for enforcing the
policies by the system. The next chapter will investigate the issue of using
XACML as an authorisation policy language.

5.5 Conclusion

SPCC can be used to overcome the lack of policy compliance checking
in YAWL. It helps the process modeler, who is not a security expert, to
make sure that all assignments of roles to tasks are in compliance with
the authorisation policy. Therefore, it helps in making sure that during
run time the role-to-task assignment does not breach of the organisation’s
authorisation policy.

As stated in the beginning of this chapter, SPCC is a subset of BP-
TRBAC. BP-TRBAC is designed to check authorisation requests during
run time, and can satisfy more conditions. SPCC is only a design time
checking tool. The successful implementation of SPCC demonstrates the
feasibility of some of the key concepts we introduced in this thesis.

This implementation showed us the need for a policy language, and
that having the model by itself is not enough. When we tried to test the
implementation we were faced with the need for a structured policy lan-
guage that the machine can understand and use. We used the opportunity
proposed by this implementation to identify the elements of such a lan-
guage. As shown in Section 5.2.3, the policy files need to have certain
elements. The analysis from Chapter 3 identified the characteristics of
such a language. The following chapter will use these findings to introduce
a policy language that can be used with BP-TRBAC as a policy model.
The language will be designed to be generic and can be used with other
authorisation models besides BP-TRBAC.

Chapter 6

BP-XACML

The BP-TRBAC authorisation model introduced in Chapter 4 extends
RBAC to support business process systems. The implementation in Chap-
ter 5 showed that with such models comes the need for an authorisation
policy language that will work with BPM authorisation models. An autho-
risation policy language provides the means by which access control policies
are expressed in a manner that can be enforced in an information system.
One authorisation policy language that has become widely used and ac-
cepted is the eXtensible Access Control Markup Language (XACML) [52],
an XML defined standard language for authorisation policies. In [7] it was
shown that XACML by itself is not enough to support all types of authori-
sation models. For example, it does not support RBAC policies, as it does
not have a way to represent the notion of ‘role’. ‘XACML-RBAC Profile’
was proposed to extend the initial version of XACML to support the notion
of roles and be able to support role-based access control policies [7].

In a similar way, BPM authorisation models include specific charac-
teristics that neither XACML nor the XACML-RBAC profile can sup-
port. Both profiles do not provide support for business process aspects.
For example, they do not provide representation of the notion of tasks or
task instances. Moreover, they do not support instance-level restrictions.
Therefore, there is a need to extend XACML to support BPM. To the best
of the author’s knowledge, currently there is no published work that aims
to extend the XACML language to support authorisation policies for busi-
ness processes. A complete description of the characteristics needed for a
business process authorisation policy language can be found in Chapter 3.

This chapter will introduce BP-XACML, an extension to XACML, to
express authorisation policies for business processes. The proposed exten-
sion builds on the RBAC profile to support the notion of tasks and task
instances, to support instance level restrictions and separation of duties
(SoD) constraints. BP-XACML is designed to support the requirements
described in Chapter 3. This chapter describes the new XACML profile,
BP-XACML, which introduces a new function called ‘performers list’ to

81

82

support the history-based instance-level restrictions. It also proposes a
new policy set to support tasks, and a new attribute to recognise the task
instances. It introduces new conditions and functions to support SoD in
BP-XACML. Figure 6.1 shows the complete framework of BP-XACML
with all ‘policy-sets’ and authorities. Policy-sets are distinguished from
authorities by having a fold in the corner. Elements shaded in white are
from the XACML standard; those with dotted background are added in
the RBAC-XACML profile; while the ones shaded with dark background
are newly introduced in this thesis (BP-XACML).

Context handler is responsible for translating received requests into the
XACML context, and translating results back to the native language of the
other system. It is also responsible for communicating between the other
components. In XACML the PDP (Policy Decision Point) is responsible
for making decisions on the authorisation requests based on the policy
sets. In RBAC-XACML there is a new type of request that deals with role
activation. In RBAC-XACML it was decided that role activation should
be out of the scope of PDP. For this reason the Role Enablement Authority
(REA) was introduced. REA is a specialised PDP that deals only with role
activation decisions. BP-XACML has a new type of request, to perform a
workflow task. In order to deal with such a request a new specialised PDP
called Task Authority (TA) is introduced, to be responsible for workflow
task performance decisions.

TA

PDP

PAP

PL

TPL Environment, Resource,
Subject

Context handler

REA

PIP

Session

PEP

Workflow
system

Role
PolicySet

Permission
PolicySet

SoD
PolicySet

RoleAssignment
PolicySet

IR
PolicySet

RoleTask
PolicySet

Task PolicySet

Figure 6.1: BP-XACML authorities and policy sets

The rest of the chapter is organised as follows. The structure of the
policy language is discussed in Section 6.1. Section 6.2 explains the policy
model. The language semantics are described in Section 6.3. Section 6.4
provides example policies using the BP-XACML language. Section 6.5
discusses BP-XACML pointing out strengths and weaknesses of the new
policy model. Section 6.6 provides concluding remarks.

BP-XACML 83

6.1 BP-XACML: Policy Structure

BP-XACML is based on XACML, which implements rule-based access con-
trol [76]. An authorisation policy may contain multiple authorisation rules
(AR), which are the basic building blocks for stating authorisation restric-
tions. Each AR consists of four elements: Subject, Object, Action, and
Condition, the evaluation of which results in a Allow or Deny decision.

AR = {S,O,A,C} ! {Allow,Deny}. (6.1.1)

Action (A) is implementation specific. Condition (C) is a boolean ex-
pression that is evaluated, based on the value of variables determined at
run time, as either true or false. Conditions can be used to represent com-
plex constraints. The rule has its specified e↵ect (allow or deny) if the
condition evaluates as true.

In BP-XACML the interpretation of the concepts of subject and object
is ‘policy-set’ specific. It di↵ers from one policy set to another depend-
ing on what the policy set is regulating access to. For example, in the
Task<PolicySet> the subject is a role, and the object is a task, while in
the RoleAssignment<PolicySet> the subject is a user, and the object is
a role. Section 6.1.2 will explain the interpretation of subject and object
for each policy set in more detail.

Rules are grouped together in ‘policies’, which may contain a target that
limits the applicability of rules to requests matching the target’s subject,
object and action [62]. Policies also specify a rule-combining algorithm,
which resolves potential conflicts when more than one rule is applicable
[62]. Policies can be grouped together in a ‘PolicySet’ that also contains
a target, and a policy-combining algorithm. PolicySets may also contain
other policy sets included by reference [62].

6.1.1 Request and Decision

An XACML request message is sent to the PDP when a user tries to access
a controlled resource. The PDP identifies matching policies based on their
target and evaluates the request against them to arrive at an authorisation
decision. The Request (RQ) is in the form of {S,O,A}. In BP-XACML
there are three types of resources whose related policies are defined in three
di↵erent policy sets (see Section 6.1.2). In the context of the request, the
interpretation of S, O and A are di↵erent for each type. Because of this,
each type of request is processed by a di↵erent authority.

In the case of a user requesting to perform a workflow task, the subject
(S), will be the identifier for the specific user making the request. The
object (O) is the task that the user wants to perform. Since a task explicitly
defines its associated permissions (i.e. object-action pairs), they are not
separately identified in the request. The Action (A) is simply the request
to ‘perform’. In the second case a user requests access to a resource object
that is not a workflow ‘task’, for example (based on the scenario from

84

Chapter 3) to access the ‘pump room’. In this case, O will be the ‘pump
room’, and A will be ‘access’. The third type of request is to activate a
role, for example, ‘Adam’ wants to activate the role ‘coordinator’. In such
requests, S is ‘Adam’, O is the role ‘coordinator’, and A is ‘activate’. The
decision (DS) will be either {Allow}, {Deny}, or {Not applicable} if no
matching policies are found.

6.1.2 Policy Sets

As explained earlier, ‘Policy sets’ are used to group related policies, which
group related access control rules. The RBAC profile of XACML predefines
some policy sets and makes use of them to determine the access control
decision. For example, a RoleAssignment<PolicySet> will include all
policies and rules related to role assignment. In this extended profile we
make use of these policy sets and introduce new policy sets.

BP-XACML includes seven types of access control policy sets. The
PDP will use two policy sets, the Role<PolicySet> and the Permission

<PolicySet>, to make decisions on the requests directed to the PDP. The
Task<PolicySet> and the RoleTask<PolicySet> are used to state the
tasks that a role is allowed to perform. IR<PolicySet> is used to state
instance-level restrictions. The SoD<PolicySet> and the RoleAssignment
<PolicySet> are used for stating and activating roles of each user. The
Role<PolicySet>, Permission<PolicySet>, and RoleAssignment<Poli-

cySet> are adopted from the XACML RBAC profile [62]. The rest of the
PolicySets are newly introduced in BP-XACML. This section will explain
the policy sets and their relationship. The mechanism and application of
these policy sets will be discussed in more detail in Section 6.3.

Policy Sets for Standard RBAC Requests

Figure 6.2 shows the relation between the policy sets involved in the autho-
risation decision for a request to access a resource that is not a workflow
task (Role<PolicySet> and Permission<PolicySet>). It also gives a
summary of the structure of each of these policy sets, which are described
in detail in the following paragraphs.

Role<PolicySet> (RPS) is a <PolicySet> that links a role with its au-
thorised permissions as specified in the referenced Permission<PolicySet>.
The <Target> element of the Role<PolicySet> is used to restrict the
applicability of the <PolicySet> to subjects holding the corresponding
role attribute. Each Role<PolicySet> references a single correspond-
ing Permission<PolicySet>. It does not contain or reference any other
<Policy> or <PolicySet> elements. In the Role<PolicySet>, Subject (S)
refers to the user’s role and Object (O) refers to the non-workflow resource
(e.g . File2).

BP-XACML 85

• PPS
• One per role.
• Combining algorithm: Permit override.
• Target: not restricted.
• Contains: One policy for all allowed permissions for this role.
 - Target: not restricted
 - Combining algorithm: Permit override.
 - Contains: A Rule for each permission the role can perform.

 Effect: permit
 Target: restricted by match to resource name.

• Deny if no rule permits.
• PPS can point to a PPS of a junior role.

Permission<PolicySet>

Role<PolicySet>

• RPS
• One per Role.
• Combining algorithm: Permit override.
• Target: restricted by subject match to role.

• Points to the corresponding PPS.

Permission
.
.

Permission

Permission<PolicySet>

Figure 6.2: Policy sets for a standard RBAC requests authorisation

The Permission<PolicySet> (PPS) is a <PolicySet> that contains
the actual permissions associated with a given role. A Permission<Policy-

Set> contains ‘policy’ and ‘Rules’ elements describing the actions and
resources that a given subject is permitted to perform. It should also
express any conditions related to that access. The <Target> element
of a Permission<PolicySet> should not limit the applicability of the
<PolicySet>. To achieve role hierarchy, the Permission<PolicySet>

associated with a senior role may also contain references to Permission

<PolicySet>s associated with junior roles, thereby allowing the senior role
to inherit all access to Permissions associated with the junior roles. We
adopted the Permission<PolicySet> from the RBAC profile for XACML.
In the Permission<PolicySet> the subject is the role and the object is a
non-workflow resource (e.g . File2).

Policy Sets for Workflow Requests

Figure 6.3 shows the relation between the policy sets involved in the au-
thorisation decision on task performance request (IRPS, RTPS, and TPS).
It also gives a summary of the structure of each of these policy sets, which
are described in detail in the following paragraphs.

86

IR
<P

ol
ic

yS
et

>

R
ol

eT
as

k<
Po

lic
yS

et
>

 • R
TP

S
• O

ne
 o

nl
y

pe
r s

ys
te

m
.

• C
om

bi
ni

ng
 a

lg
or

ith
m

: P
er

m
it

ov
er

rid
e.

• T

ar
ge

t:
no

t r
es

tri
ct

ed
.

 • C
on

ta
in

s:
 O

ne
 p

ol
ic

yS
et

 fo
r e

ac
h

R
ol

e.

- T
ar

ge
t:

re
st

ric
te

d
by

 su
bj

ec
t r

ol
e

m
at

ch
.

- C
om

bi
ni

ng
 a

lg
or

ith
m

: P
er

m
it

ov
er

rid
e.

- P

oi
nt

s t
o

th
e

co
rr

es
po

nd
in

g
TP

S.

 • A
no

th
er

 p
ol

ic
yS

et
 fo

r a
no

th
er

 R
ol

e.

- T
ar

ge
t:

re
st

ric
te

d
by

 su
bj

ec
t r

ol
e

m
at

ch
.

- C
om

bi
ni

ng
 a

lg
or

ith
m

: P
er

m
it

ov
er

rid
e.

- P

oi
nt

s t
o

th
e

co
rr

es
po

nd
in

g
TP

S.

• I
R

PS

• O
ne

 o
nl

y
pe

r s
ys

te
m

.
• C

om
bi

ni
ng

 a
lg

or
ith

m
: D

en
y

ov
er

rid
e.

• T

ar
ge

t:
no

t r
es

tri
ct

ed
.

 • C
on

ta
in

s:
 O

ne
 p

ol
ic

y
fo

r e
ac

h
ta

sk

th
at

 h
as

 a
n

IR
.

- T
ar

ge
t:

re
st

ric
te

d
by

 re
so

ur
ce

 m
at

ch
 o

n
ta

sk
 n

am
e.

- C

om
bi

ni
ng

 a
lg

or
ith

m
: D

en
y

ov
er

rid
e.

- H

as
 a

 R
ul

e
th

at
 w

ill
 re

tu
rn

s ‘
de

ny
’ i

f I
R

vi

ol
at

ed
.

• A

t t
he

 e
nd

 it
 h

as
 a

 p
oi

nt
er

 th
at

po

in
ts

 to
 th

e
R

TP
S.

•
TP

S
•

O
ne

 p
er

 ro
le

.
•

C
om

bi
ni

ng
 a

lg
or

ith
m

: P
er

m
it

ov
er

rid
e.

•

Ta
rg

et
: n

ot
 re

st
ric

te
d.

•

C
on

ta
in

s:
 O

ne
 p

ol
ic

y
fo

r a
ll

al
lo

w
ed

 ta
sk

s f
or

th

is
 ro

le
.

o
Ta

rg
et

: n
ot

 re
st

ric
te

d

o
C

om
bi

ni
ng

 a
lg

or
ith

m
: D

en
y

ov
er

rid
e.

o

C
on

ta
in

s:
 R

ul
e

fo
r e

ac
h

ta
sk

 th
e

ro
le

 c
an

pe

rf
or

m
.

Ef

fe
ct

: p
er

m
it

Ta

rg
et

: r
es

tri
ct

ed
 b

y
re

so
ur

ce
 m

at
ch

 to

ta
sk

 n
am

e.

•
D

en
y

if
no

 ru
le

 p
er

m
its

.
•

TP
S

ca
n

po
in

t t
o

a
TP

S
of

 a
 ju

ni
or

 ro
le

.

Ta
sk

<P
ol

ic
yS

et
>

Ta
sk

. .

Ta
sk

Ta
sk

<P
ol

ic
yS

et
>

Figure 6.3: Policy sets for task performance authorisation

BP-XACML 87

Task<PolicySet> (TPS) is a <PolicySet> that contains the actual
tasks authorized for a given role. The <Target> element of a TPS should
not limit the applicability of the <PolicySet>, as the IR<PolicySet> and
the RoleTask<PolicySet> restrict access (see Figure 6.3). To achieve role
hierarchy, a TPS associated with a senior role may also contain references
to TPSs associated with junior roles, thereby allowing the senior role to
inherit all access to tasks associated with the junior roles. In a TPS, (S)
refers to user’s role, and (O) refers to task. The Task<PolicySet> is newly
introduced in BP-XACML.

RoleTask<PolicySet> (RTPS) is a <PolicySet> that contains the
Roles. For each role it points to the corresponding Task<PolicySet> (i.e.
the TPS is included in the RTPS by reference). The <Target> element
of a RTPS should not restrict the applicability of the <PolicySet>, but
the <PolicySet>s for each role (included within the RTPS) have a tar-
get restricting applicability for the specified role only. The RTPS is used
to achieve role hierarchy. In BP-XACML users can have more than one
role active at the same time. For this reason, the RoleTask<PolicySet>

includes a <PolicySet> for each system role. To evaluate a request to
perform a task, each role is checked to see if the user has it active and if so,
the corresponding Task<PolicySet> is evaluated to see if it grants permis-
sion to perform the requested task. In the RTPS, Subject (S) refers to the
user’s role and Object (O) refers to the task. The RoleTask<PolicySet>

is newly introduced in BP-XACML.
IR<PolicySet> (IRPS) is a <PolicySet> that describes instance-level

restrictions. The RTPS and TPS can be reached only through the IRPS,
where they are included by reference. The Task Authority will first access
this policy set to check that there is no violation of an IR constraint;
then it will be pointed via the RoleTask<PolicySet> to the related Task

<PolicySet>. Section 6.3.4 explains this in more detail. In the IRPS, the
subject (S) is not restricted because IR constraints deal with task instances
regardless of the subject. The object (O) is the task, and the action (A)
is ‘perform’. For example, no user is allowed to perform both ‘issue work
order’ and ‘approve work order’. In this case the IRPS will have both tasks
in one policy, making sure that the user does not perform both for the same
instance. IR<PolicySet> is newly introduced in BP-XACML.

Policy Sets for Role Activation Requests

Figure 6.4 shows the relation between the policy sets involved in the au-
thorisation decision on role activation request (SoDPS, and RAPS). It also
gives a summary of the structure of each of these policy sets, which are
described in detail in the following paragraphs.

88

!

SoD<PolicySet>!
!

RoleAssignment<PolicySet>!
!•RAPS!
•One!only!per!system.!
•Combining!algorithm:!Permit!override.!
•Target:!not!restricted.!
!
•Contains:!One!policy!for!each!User.!
B!Target:!restricted!by!subject!ID!match.!
B!Combining!algorithm:!Permit!override.!!
B!Contains:!A!rule!for!each!role!the!user!is!allowed!!
!!!!!!!!!!!!!!!!!!!!!to!activate.!
! B!Target:!restricted!by!resource!match!on!role.!!
! B!Effect:!permit.!
!
•Deny!if!no!policy!Permit.!
!

•SoDPS!
•One!only!per!system.!
•Combining!algorithm:!Deny!override.!
•Target:!not!restricted.!
!
•Contains:!One!policy!for!each!Role!that!
has!a!conflicting!role.!
B!Target:!restricted!by!resource!match!on!role.!
B!Combining!algorithm:!Deny!override.!!
B!Has!a!Rule!that!returns!‘deny’!if!SoD!
restriction!is!violated.!
!
!

•At!the!end!it!has!a!pointer!that!points!to!
the!RAPS.!
!

Figure 6.4: Policy sets for role activation authorisation

RoleAssignment<PolicySet> (RAPS) is a <PolicySet> that describes
which roles can be enabled by which users. This type of policy is used by
a Role Enablement Authority, which will be explained in 6.2.1. In the
RoleAssignment<PolicySet>, the subject (S) is the user, the object (O)
is the role, and the action (A) is ‘request for activation’. RoleAssignment
<PolicySet> was adopted from the RBAC profile for XACML.

SoD<PolicySet> (SoDPS) is a <PolicySet> that describes separation
of duties constraints. It restricts access to the RoleAssignment <PolicySet>.
The Role Enablement Authority will first access this policy set to check
that there is no violation of any SoD constraint, and then will be pointed
to the RoleAssignment<PolicySet>. In a SoDPS, the subject (S) is not
restricted because SoD constraints deal with roles regardless of the subject.
The object (O) is a role. Each policy in the SoD<PolicySet> includes a
pair of conflicting roles. An early draft of the RBAC-XACML [6] had pro-
posed the idea of the SoD<PolicySet>. This policy set was then removed
in the final version [7], which states that “the policies specified in this pro-
file do not deal with static or dynamic separation of duties” [7]. In this
chapter we have adopted the idea of the policy set, but we implemented
the SoD<PolicySet> in a di↵erent way. In that earlier RBAC-XACML
draft [6], all the roles assigned to a user are assumed to be simultaneously
active, which e↵ectively means there is no way to prevent the activation
of pairs of roles which are subject to a dynamic separation of duty con-
straint. Instead they use the SoD<PolicySet> to prevent “a user who
possesses conflicting role attributes from gaining any access to resources”
[6]. While in the BP-XACML architecture the SoD<PolicySet> is used to
avoid activating two conflicting roles from the beginning. The architecture
of BP-XACML implements the SoD<PolicySet> in a way to make use of
the ‘session’ function, which reports a user’s active roles.

BP-XACML 89

6.1.3 Conditions

A condition is specified as a Boolean expression that is evaluated at run-
time. There are two main types of policy conditions of interest in specifying
access restrictions in this policy model. The first one is dynamic Separa-
tion of Duty (SoD) conditions on role level. The other is instance-level
restrictions (IR).

A dynamic SoD condition is an expression that can be evaluated for
user-role relation by testing the current active roles for this user. It is used
to prevent a user from activating two conflicting roles at the same time.
They are defined as policies in the SoD<PolicySet>.

SoD : (Role1, Role2). (6.1.2)

Dynamic SoD constraints are defined in the SoD<PolicySet>. The role
enablement authority (REA) will be able to know the SoD restriction be-
fore enabling a role. It will use the ‘session‘ component to check the current
status of role enablement for a user requesting role activation. The session
maintains the list of active roles for each user.

An ‘instance-level restriction’ (IR) condition is an expression that can
be evaluated to check the relation between two objects within the same
instance. They are defined as policies within the IR<PolicySet>.

IR : ({Task1, Task2}, type). (6.1.3)

IR is a type of SoD (or BoD) restriction on a task level that applies
only within the same instance. It makes sure that the restriction is met
within the same instance. For example, the task of ‘closing work order’
should have a restriction that it can be done only by the same user who
performed ‘issue work order’ for this same instance.

6.2 BP-XACML: Policy Model

BP-XACML is designed to support backward-compatibility with the RBAC-
XACML policy structure. This has an important benefit. It means that
role-based authorisation policies can be defined and managed indepen-
dently of the workflow authorisation system. These policies will still be
applied when a user requires access to a controlled resource to execute an
instance of a business process. This design approach introduces some com-
plexity, most notably in the inclusion of the Task Authority as a separate
PDP to authorise task activation. But it is necessary because the role-based
authorisation policies that control access to an organisation’s valuable re-
sources, (e.g . customer records, financial records) are typically created and
maintained independently of the business processes. These policies will
often exist before a workflow is created that uses the controlled resources.
These policies still need to be applied in the context of the workflow, but

90

we argue that this should not be done by a parallel and duplicated work-
flow authorisation system, since this would be ine�cient and di�cult to
maintain. Accordingly, we have designed the BP-XACML policy structure
to work with an existing RBAC-XACML policy set. This results in an inte-
grated system which can handle both workflow and non-workflow requests
from a single (and therefore consistent) set of policies.

After explaining the structure of the BP-XACML policy language, this
section describes the BP-XACML policy model, showing how access deci-
sions are made using the defined ‘policy sets’, describes the needed author-
ities and repositories, and explains the policy model framework.

6.2.1 Authorities and Repositories

In this policy model we introduce a new authority and two repositories
that are needed to fulfill the requirements. They are the Task Authority
(TA), Performers List (PL), and Task-Permissions List (TPL). We also
include the ‘Role Enablement Authority (REA)’ and the ‘session’ concept
from the XACML RBAC profile, and we elaborate on how to use them, as
the RBAC profile does not provide these details.

It might appear unnecessarily complex to add the REA and TA, which
are essentially specialised PDPs. One might argue that one PDP should
be enough. However, the RBAC-XACML profile [7], which is proposed by
OASIS, adopts this approach in introducing the REA. The RBAC profile
shows that role enablement should be out of the scope of the PDP; that
is why REA was introduced to be responsible for role assignment and
enablement [7]. The justification for having a specialised PDP for role
enablement can be understood by looking at the basic request concept of
XACML, where each request contains a subject and an object. The PDP
is designed to deal with one interpretation of each aspect of the request
(subject, object, action). For example, in RBAC-XACML if the PDP
receives a request, it will look at the subject as the user’s role, and the
object as the resource that the user wants to perform an action on. For
example, Adam, who is a manager, wants to read file2. The PDP will use
the permission policy to determine if managers are allowed to read file2. A
request to activate a role has the subject as the user ID, and the object as
the role that needs to be activated. That is why it was necessary to have a
specialised PDP called REA. This REA is designed to look at the subject
as the user’s ID, with the object as the role that the user wants to activate.
Therefore it will be able to deal with activation requests.

BP-XACML deals with three di↵erent type of requests, where each type
of request has a di↵erent interpretation of subject and object. The change
in subject and object interpretation makes it necessary to have a di↵erent
authority to deal with each di↵erent type of request. The request to per-
form a task has the user’s role as the subject and the task ID as the object.
Therefore, the authorisation of task performance is out of the scope of the
PDP. TA is introduced in this model to be the specialised PDP responsible

BP-XACML 91

for making task performance decisions. It permits compatibility with the
role and permission policy sets defined in RBAC-XACML. TA deals with
requests on the basis that the subject is the user’s role and the object is
the task ID. Therefore, it is able to deal with requests to perform a task.

!

Ge
t!r
ela
ted

!
po
lic
ies
!

SoD!<PolicySet>!

Role!activation!
request!

Decision!
(Allow/Deny)!

Session!

Role%Enablement%
Authority%(REA)%

Update!

Receive!! Send!!

RoleAssignment!
<PolicySet>!

Figure 6.5: Role enablement authority

Role Enablement Authority (REA): uses the SoD<PolicySet>, and
RoleAssignment<PolicySet> to either allow or deny activation of a spe-
cific role for a specific user.

Session: provides a queryable service, which maintains and continuously
refreshes the state of user-role enablement relations.

Figure 6.5 shows how REA uses the RoleAssignment<PolicySet> to
know if the user is allowed to enable a role or not. Before reaching the
RoleAssignment<PolicySet>, REA checks the SoD<PolicySet> for an
SoD policy for this role. If such a policy exists, REA needs to know the
status of the user’s activated roles. This information can be retrieved from
the user’s session. The information allows REA to evaluate if the condition
is met or not. Based on that, the REA will send the final decision on the
role enablement request.

!

Ge
t!r
ela
ted

!!
po
lic
ies
!

IR!
<PolicySet>!

Task!performance!
request!

Decision!
(Allow/Deny)!

!
Task%Authority%

(TA)%
Receive!! Send!!

RoleTask!
<PolicySet>! Task!

<PolicySet>!

Task!
<PolicySet>!

Task!
<PolicySet>!

Performers!List!(PL)!

Upd
ate!

Figure 6.6: Task authority

92

Task Authority (TA) uses the IR<PolicySet>, and Task<PolicySet>

to either allow or deny a user’s request to perform a specific task.

Performers List (PL) is introduced to provide a queryable service to
report the user that performed a completed task instance. It maintains
the state of user ‘task instance’ performance relations, and continuously
refreshes the state.

As can be seen in Figure 6.6, TA uses the Task<PolicySet> to check
if the role is allowed to perform the task or not. Before checking the
Task<PolicySet>, TA first checks the IR<PolicySet> to determine if there
are any instance-level restrictions on the requested task. If a restriction is
found, TA needs to retrieve extra information to assess the restriction. This
information can be found through the ‘Performers List’ (PL). In order for
an IR condition to be evaluated, it is necessary to know the performer of
a given task instance.

Task-Permissions List (TPL) is a new proposal. It maintains the state
of task-permissions relations. As can be seen in Figure 6.7, TPL is used by
the context handler (CH) to determine the set of permissions associated
with each task. TPL provides a list of permissions for each task, where a
permission is an action on a resource.

!

Sends!Task!ID!
Task,permissions!list!

(TPL)!
Context'Handler'

(CH)'
Sends!list!of!permissions!

linked!to!the!task!

Figure 6.7: Task-Permissions List (TPL)

6.2.2 Access Control

BP-XACML policy framework controls three types of access control re-
quests: activating a role (controlled by the REA), performing a workflow
task (controlled by the TA), and performing an action on a resource; we
call this ‘standard resource’ request (controlled by the PDP). A standard
resource request can arise in two ways. Firstly, a standard resource request
can arise in the context of a non-workflow request where a user requests,
for example, to read a file. Secondly, a standard resource request can arise
in the context of a workflow request: after the TA has authorised the user
to perform the task, the individual permissions required to perform a task
are authorised by the PDP individually.

BP-XACML 93

The context handler is responsible for forwarding the request to the
corresponding authority depending on its type. Access control is imple-
mented using the seven defined types of <PolicySet>s: Role<PolicySet>,
Permission<PolicySet>, IR <PolicySet>, RoleTask<PolicySet>, Task
<PolicySet>, SoD<PolicySet>, and RoleAssignment<PolicySet>.

One Role<PolicySet> is defined for each role. To make sure that the
‘PolicySet’ is applicable only to subjects with the given role attribute, the
‘PolicySet’ contains a <Target> element to limit the applicability of the
‘PolicySet’. The Role<PolicySet> also contains a single <PolicySetId

Reference> element, which refers to a unique Permission<PolicySet>

associated with this role. No other ‘Policy’, ‘PolicySet’, or ‘PolicyIdRefer-
ence’ elements are included in the Role<PolicySet>. These relationships
are shown in Figure 6.2.

Permission<PolicySet> is a set of all permissions that can be per-
formed by a given role. For each role, one Permission<PolicySet> is de-
fined. It is applicable for a specific role, but should not be limited to this
role. As explained previously, the Permission<PolicySet> may contain a
<PolicySetIdReference> element that references another Permission<P-
olicySet> of a junior role to achieve permission inheritance for hierarchal
roles.

! Permission)
<PolicySet>)

!

Role)<PolicySet>)
!

Resource!..!Action!
.!
.!
.!

Resource!..!Action!

PDP)

Role!!
!

!!PPS!

Figure 6.8: PDP can only access role policy set

As shown in Figure 6.8, Permission<PolicySet> instances must be
stored in a policy repository in such a way that they can never be reached
directly by the PDP; Permission<PolicySet> instances must be reachable
only through the corresponding Role<PolicySet>. This is because, in
order to support ‘hierarchical roles’, the Permission<PolicySet> depends
on its corresponding Role<PolicySet> to ensure that only subjects holding
the corresponding role attribute will gain access to the permissions in the
given Permission<PolicySet>.

94

For the PDP to make a decision on an access request it accesses the
Role<PolicySet>s for the specific role(s) that the requester has activated.
These ‘PolicySets’ will point to their related permission<PolicySet> that
contains the access control rules related to the role.

A single SoD<PolicySet> is defined in the system, which contains all
SoD restrictions. The policy set itself is not limited (i.e. the target is empty
and therefore does not restrict the applicability of the included policies),
but each policy is limited to a specific role. The policy set contains a single
<PolicySetIdReference> element, which refers to the RoleAssignment

<PolicySet> (RAPS). There is a single RAPS in a system, which contains
the information on whether to allow or deny the role activation for a specific
user.

! RoleAssignment!
<PolicySet>!

SoD!<PolicySet>!
!

User!..!Role!
.!
.!
.!

User!..!Role!

REA$

SoD!rules!

Figure 6.9: REA can only access SoD policy set

As shown in Figure 6.9, the RAPS must be stored in a policy repository
in such a way that it can never be reached directly by the REA; RAPS
must be reachable only through the SoDPS. This is because, in order to
support separation of duties, it is important that the SoD policies are
checked before reaching the RAPS. For REA to achieve a decision on a role
activation request, it will first check any related SoD restrictions through
SoDPS, then it will be pointed to RAPS to check if the user is allowed to
activate the role.

A single IR<PolicySet> is defined in the system, which contains all IR
restrictions. The policy set itself is not limited, as the policy set target
is empty, but each policy is limited to a specific task. The policy set
contains a single <PolicySetIdReference> element, which refers to the
RoleTask<PolicySet>. For the system there is a single RoleTask<Policy
Set>, with <PolicySet>s for each role, pointing to their corresponding
Task<PolicySet>. A user will be authorised to perform a task if there is
a permit rule for the task in the TPS for a role that the user has active.

BP-XACML 95

!
RoleTask<PolicySet>!
!

IR<PolicySet>!
!

Role!!!TPS!
.!
.!
.!

Role!!!TPS!

TA#

IR!rules!
Task!

.!

.!

.!

Task!
!

Task<PolicySet>!
!

Task!
.!
.!
.!

Task!

Task<PolicySet>!
!

Figure 6.10: TA can only access the IR policy set

As shown in Figure 6.10, TPS instances and the RTPS must be stored in
a policy repository in such a way that they can never be reached directly by
the TA. RTPS must be reachable only through the IRPS. This is because, in
order to support ‘role hierarchy’, the TPS depends on the RTPS to ensure
that only subjects holding the corresponding role attribute (or senior role)
will gain access to perform tasks in the given TPS. For TA to make a
decision on a request to ‘perform a task’, it first must access the IRPS
and check if there are any related IR policies. IRPS will then point to
RTPS. Using the user’s role, RTPS points to the corresponding TPS, which
contains rules stating whether this role is allowed to perform a task or not.
These <PolicySet> relationships and constraints are summarised in Figure
6.3.

6.2.3 Policy Framework

Figure 6.11 shows the complete BP-XACML framework without the ‘policy
sets’. It includes all the authorities, components, and repositories. As
explained earlier, the policy model should be unified and should deal with
all authorisation requests, regardless of whether or not they arise in the
context of a workflow. For this reason, the BP-XACML policy model is
designed to deal with several types of requests. It could be a request to
activate a role for a user, a request to perform a task, or a standard resource
request to perform an action on a resource. This section discusses each type
of request separately, showing how it is handled within the framework.

96

!

Context'handler'

PDP'

PAP'REA'

PIP'

Session'

PEP'

PL'Workflow'
system'

TA'

Environment,'Resource,'
Subject'

'

TPL

Figure 6.11: BP-XACML framework

The role activation requests are directed to the ‘role enablement author-
ity (REA)’ by the context handler. The REA will use the SoD<PolicySet>
to check for any SoD restrictions on this role. It will then point to the RAPS
to decide if this user is allowed to activate this role or not. If there was an
SoD constraint on the role, REA needs to make sure that activating this
role will not breach the SoD condition by requesting information about the
activated roles of this user from the ‘session’ through the CH.

Figure 6.12 shows the steps related to a role activation request. As can
be seen, the first step is when the PAP loads the SoD<PolicySet> to the
‘role enablement authority (REA)’. When CH receives a request for role
activation from the PEP (Step 2), it will forward the request to the REA
(Step 3). If REA finds any SoD restriction related to this request it then
asks the CH for extra information regarding this user’s session (Step 4).
CH will query the Session to get the user’s active roles (Step 5). After
getting the session information (Step 6), CH will forward the information
to the REA (Step 7). After that the REA will make a decision based
on evaluating the SoD<PolicySet> and the RoleAssignment<PolicySet>.
The decision will be sent to the CH (Step 8), and then forwarded to PEP
(Step 9). CH will also update the user’s session to add the new role if it
was activated (Step 10).

BP-XACML 97

!

7.!
Ro
le!
att
rib
ut
e!&

!st
atu

s!

8.!
Ro
le!
en
ab
lin
g!d
ec
isi
on
!!

Context'
handler'

PAP'REA'

PIP'

Session'

PEP'

1.!Load!
SoD<PolicySet>!

2.!Role!activation!request!

Workflow'
system'

3.!
Ro
le!
ac
tiv
ati
on
!qu

er
y!

4.!
Ro
le!
att
rib
ut
e!q
ue
ry
!

5.!User!session!query!

9.!Response!

6.!Role!enabling!state!
10.!Updates!role!session!status!!

Environment,'Resource,'
Subject'

'

Figure 6.12: Flowchart of an activating a role request

The standard resource request is a request to perform an action on a
resource, where the resource is not a role or a task (e.g . read a file). It
is the type of request that was described in Chapter 4 as a non-workflow
request. This type of request is directed to the PDP, and will be handled
in the same way access requests are handled in the RBAC-XACML pro-
file [62] using the Role<PolicySet> and Permission<PolicySet>. The
context handler will forward the request to the PDP. The PDP will use
the user’s active roles to identify the proper Role<PolicySet>s, which
contain the permissions that this user is allowed to perform based on the
roles activated at the request time. The Role<PolicySet>s will point to
the related Permission<PolicySet>s, where each is a collection of per-
missions that are assigned to a specific role. A permission is an action on
a resource. To achieve role hierarchy, a Permission<PolicySet> can in-
clude a <PolicySetIdReference> to refer to Permission<PolicySet>s of
junior roles. In BP-XACML, a request to perform a task will produce a set
of one or more requests of this type (standard resource request), generated
by the context handler and submitted individually to the PDP.

98

!

4.!Query!
3.!Access!Request!

7.!Attributes!!!

8.!Decision!

2.!Permission’s!performance!
request!

6.!Attributes!!!

5.!Query!

Context'
handler'

PDP'

PAP'

PIP'

PEP'

1.!
Lo
ad
!R
ole
!! !

<P
oli
cy
Se
t>
!

9.!Response!

Environment'
Resource'
Subject'

'

Figure 6.13: Flowchart of a standard resource request

Figure 6.13 shows the flowchart of a standard resource request. First,
PAP loads Role<PolicySet>s to the PDP (Step 1). When the CH receives
the request from PEP (Step 2), it forwards the request to PDP (Step 3).
Sometimes the PDP requires extra information to be able to evaluate a
condition. PDP sends a query to the CH (Step 4), which will be gathered
via the PIP (Step 5). When CH receives the needed information (Step 6),
it forwards it to the PDP (Step 7). After that PDP makes a decision on the
request based on the Role<PolicySet> and the Permission<PolicySet>,
and sends the decision to the CH (Step 8). CH then forwards the decision
to PEP (Step 9).

If the request was to perform a specific task, the context handler will
foreword the request to the TA. The TA will use the IRPS to check if
there are any IR restrictions on this task. Violation of an IR results in a
deny decision as the combining algorithm for the IR<PolicySet> is deny
overrides. Then it will use the user’s active roles to identify the applicable
TPS through the RTPS. TPS identifies the tasks that this user is allowed
to perform, based on the roles activated at the request time. If an IR is
restricting the assigning of a task, the TA will obtain extra information
from the ‘performers list (PL)’ through the context handler to evaluate the
IR condition. If the condition is violated, the e↵ect of the IR rule will be
‘deny’ and the task request will be denied since the combining algorithm
for the IR<PolicySet> is ‘deny overrides’.

BP-XACML 99

If the TA allows the user to perform the task, CH will use the Task
Permissions List (TPL) to retrieve all permissions associated with the task.
Each permission is a pair of an action and a resource. CH will create a
standard resource request for each permission, with requests containing
the subject-ID, which can be used to retrieve the active roles, action, and
resource. These requests will be sent to the PDP. The PDP will send back
each decision individually. CH will combine the decisions, where deny
overrides. So, if one request was denied, the whole request to perform the
task will be denied, since the task cannot be completed. If all requests were
allowed, the CH will then send back to the PEP that this user is allowed
to perform the task.

Figure 6.14 shows the flowchart for task performance requests. Firstly,
PAP will load the Role<PolicySet>s to the PDP (Step 1), and the IR

<PolicySet> to the TA (Step 1.b). When the PEP sends a task perfor-
mance request to the CH (Step 2), the CH will forward the request to the
TA (Step 3). TA will check IRPS for any related instance-level restrictions.
If more information is needed to be able to evaluate the IR policy, TA will
query the CH for this information (Step 4). CH will use the PL to get
the information about the users who performed certain completed task in-
stance (Step 5). After retrieving the information (Step 6), CH will forward
the information to the TA (Step 7). After that TA will make a decision on
the request based on the IRPS, RTPS, and TPS. The decision will then be
sent to the CH (Step 8). If the decision was ‘deny’ then CH will send ‘deny’
to PEP. If it was allow then CH will query TPL to get all the permissions
related to this task (Step 9). After receiving the set of permissions related
to the task (Step 10), CH will create a standard resource request for each
permission and send it to the PDP (Step 11). Similar to Figure 6.13, PDP
might require extra information that will be obtained through the CH and
provided to PDP (Steps 12, 13, 14, and 15). A decision on the permission
request will be sent to the CH (Step 16). CH will repeat these steps for
each permission related to the task in the request. It makes a final decision
based on the collective decisions from the PDP using combining algorithm
‘deny-override’. Then it sends the final decision to PEP (Step 17).

100

!

12
.!Q
ue
ry

15
.!A
ttr
ib
ut
es
!!!

17
.!R
es
po
ns
e!

13
.!Q
ue
ry

14
.!A
ttr
ib
ut
es
!!!

10
.!T
as
k’
s!p
er
m
is
si
on
s!l
is
t!!

9.
!T
as
k’
s!p
er
m
is
si
on
s!q
ue
ry
!!

TP
L$

Co
nt
ex
t$

ha
nd
le
r$

PD
P$

PA
P$

PI
P$

PE
P$

1.
!L
oa
d!

Ro
le
!

<P
ol
ic
yS
et
>!

PL
$

W
or
kf
lo
w
$

sy
st
em

$

11
.!A
cc
es
s!R
eq
ue
st
!

4.
!IR
!q
ue
ry
!

2.
!T
as
k!
pe
rf
or
m
an
ce
!re
qu
es
t!

7.
!IR
!st
at
us
!!

16
.!D
ec
is
io
n!

18
.!U
pd
at
es
!ta
sk
!p
er
fo
rm
er
s!l
is
t!!

5.
!T
as
k!
pe
rf
or
m
er
!q
ue
ry
!

6.
!T
as
k!
pe
rf
or
m
er
s!

TA
$

1.b.!Load!
IR!<PolicySet>!

3.
!R
eq
ue
st
!to
!p
er
fo
rm
!a
!ta
sk
!

8.
!D
ec
is
io
n!

Figure 6.14: Flowchart of a request to perform a task

BP-XACML 101

6.3 BP-XACML: Policy Semantics

In this section, we will refine the previously described policy structure with
specific data and language representations.

6.3.1 Users, Roles, Operations, and Permissions

Users, roles, operations and permissions are all part of the RBAC pro-
file of XACML. In this chapter we adopt these entities and the way they
are expressed from RBAC-XACML [7]. So, reflecting how they are ex-
pressed in RBAC-XACML, in BP-XACML users are expressed as sub-
jects, and Roles are expressed as attributes of subjects. Operations are
expressed using XACML Actions, and Permissions are expressed using the
Permission<PolicySet>. In the listings we use simple examples such as
‘coordinator’, ‘perform’, and ‘work-order’ to improve readability. Note that
in an actual implementation an appropriate naming convention should be
adopted to ensure the uniqueness of these labels.

Listing 1 is an example permission policy set that includes a permission
policy. The example permission policy includes two rules. One rule (lines
13 to 29) allows the action ‘write’ on the object ‘work order’. The other
rule (lines 33 to 49) allows the action ‘read’ on the object ‘work order’.

1 <PolicySet ... PolicySetId="PPS:coordinator:role"

PolicyCombiningAlgId="&policy-combine;permit-overrides">

2 <Target>

3 <Subjects><AnySubject/></Subjects>

4 <Resources><AnyResource/></Resources>

5 <Actions><AnyAction/></Actions>

6 </Target>

7 <Policy PolicyId="Permissions" RuleCombiningAlgId="&rule-combine;

permit-overrides">

8 <Target>

9 <Subjects><AnySubject/></Subjects>

10 <Resources><AnyResource/></Resources>

11 <Actions><AnyAction/></Actions>

12 </Target>

13 <Rule RuleId="Permission:to:write:in:work:order" Effect="Permit">

14 <Target>

15 <Subjects><AnySubject/></Subjects>

16 <Resource>

17 <ResourceMatch MatchId="&function;string-match">

18 <AttributeValue DataType="&xml;string">work order</

AttributeValue>

19 <ResourceAttributeDesignator AttributeId="&resource;resource-id

" DataType="&xml;string"/>

20 </ResourceMatch>

21 </Resource>

22 <Actions>

23 <ActionMatch MatchId="&function;string-match">

24 <AttributeValue DataType="&xml;string">write</AttributeValue>

102

25 <ActionAttributeDesignator AttributeId="&action;action-id"

DataType="&xml;string"/>

26 </ActionMatch>

27 </Actions>

28 </Target>

29 </Rule>

30 .

31 .

32 .

33 <Rule RuleId="Permission:to:read:work:order" Effect="Permit">

34 <Target>

35 <Subjects><AnySubject/></Subjects>

36 <Resource>

37 <ResourceMatch MatchId="&function;string-match">

38 <AttributeValue DataType="&xml;string">work order</

AttributeValue>

39 <ResourceAttributeDesignator AttributeId="&resource;resource-id

" DataType="&xml;string"/>

40 </ResourceMatch>

41 </Resource>

42 <Actions>

43 <ActionMatch MatchId="&function;string-match">

44 <AttributeValue DataType="&xml;string">read</AttributeValue>

45 <ActionAttributeDesignator AttributeId="&action;action-id"

DataType="&xml;string"/>

46 </ActionMatch>

47 </Actions>

48 </Target>

49 </Rule>

50 </Policy>

51 </PolicySet>

Listing 1: Permission policy-set example

The policy set includes a permission policy (lines 7-50) that includes
rules that allow the action write on the object work order and the action
read on the object work order. As can be seen, the subject is not limited
to the role ‘coordinator’ (line 3). This is because, as explained in section
6.1.2, Permission<PolicySet>s should not be limited. As can be seen
in Listing 2, the Role<PolicySet> for the role ‘coordinator’ limits the
applicability to the ‘coordinator’ role (lines 4-10). Then it points to the
corresponding permission policy set (line 15). It can be also seen in Listing
2 that ‘coordinator’ is seen as a value of the attribute ‘role’ in the subject
(lines 6-7).

1 <PolicySet ... PolicySetId="RPS:coordinator:role"

PolicyCombiningAlgId="&policy-combine;permit-overrides">

2 <Target>

3 <Subjects>

4 <SubjectMatch MatchId="&function;any-of">

5 <Apply FunctionId="urn:oasis:names:tc:xacml:3.0:function:string-

equal">

BP-XACML 103

6 <AttributeValue DataType="&xml;string">coordinator</

AttributeValue>

7 <SubjectAttributeDesignator AttributeId="urn:someapp:attributes

:role" DataType="&xml;string"/>

8 </Apply>

9 </SubjectMatch>

10 </Subjects>

11 <Resources><AnyResource/></Resources>

12 <Actions><AnyAction/></Actions>

13 </Target>

14 <!-- Use permission associated with the "coordinator" role -->

15 <PolicySetIdReference>PPS:coordinator:role</PolicySetIdReference>

16 </PolicySet>

Listing 2: An example role policy-set for the role ‘coordinator’

The policy set is limited to a specific role. For example, the pol-
icy set in Listing 2 is limited to subjects with role attribute equal to
‘coordinator’ (lines 5-7), and points to the permission policy set called
PPS:coordinator:role (line 15).

6.3.2 Task and Task instances

Task and task instances are new features that are not supported in RBAC-
XACML. In BP-XACML tasks are expressed as an XACML Resource.
Listing 3 shows an example Task<PolicySet> showing the task as a re-
source (lines 16-21).

1 <PolicySet ... PolicySetId="TPS:coordinator:role"

PolicyCombiningAlgId="&policy-combine;permit-overrides">

2 <Target>

3 <Subjects><AnySubject/></Subjects>

4 <Resources><AnyResource/></Resources>

5 <Actions><AnyAction/></Actions>

6 </Target>

7 <Policy PolicyId="Allowed tasks" RuleCombiningAlgId="&policy-

combine;permit-overrides">

8 <Target>

9 <Subjects><AnySubject/></Subjects>

10 <Resources><AnyResource/></Resources>

11 <Actions><AnyAction/></Actions>

12 </Target>

13 <Rule RuleId="issue:work:order:task Effect="Permit">

14 <Target>

15 <Subjects><AnySubject/></Subjects>

16 <Resources>

17 <ResourceMatch MatchId="&function;string-match">

18 <AttributeValue DataType="&xml;string"> issue work order</

AttributeValue>

19 <ResourceAttributeDesignator AttributeId="&resource;resource-id

" DataType="&xml;string"/>

20 </ResourceMatch>

104

21 </Resources>

22 <Actions>

23 <ActionMatch MatchId="&function;string-match">

24 <AttributeValue DataType="&xml;string">perform</AttributeValue>

25 <ActionAttributeDesignator AttributeId="&action;action-id"

DataType="&xml;string"/>

26 </ActionMatch>

27 </Actions>

28 </Target>

29 </Rule>

30 </Policy>

31 </PolicySet>

Listing 3: Task policy set

In Listing 3, task was represented as a resource (lines 16-21) in the
policy because TPSs are linking the user’s role to the task, so the task is
the object. To be able to represent ‘Task instance’, a new object attribute
called ‘instance’ is introduced. It is similar to the ‘role’ attribute from
the RBAC-XACML profile. In section 6.3.4 an example listing showing an
instance-level restriction will show how to make use of the new attribute
‘instance’.

The Task<PolicySet> includes a policy containing rules for each task
the role is allowed to perform (lines 7-30). The example includes a rule for
the task ‘issue work order’ (lines 13-29) as a part of the policy set. The
rule says if someone wants to perform the action ‘perform’ (lines 22-27)
on the resource ‘task:issue work order’ (lines 16-21) they will be permitted
(line 13). If there exists another rule that has the e↵ect of denying the
user from performing the task, the end result will still be allowed, because
the combining algorithm is ‘permit overrides’ (line 7), which means if one
rule says ‘permit’ then the result will be permit regardless of the other
rules. As can be seen in the listing, the policy set target (lines 2-6) is
not limiting the applicability of the policy set. RoleTask<PolicySet> will
limit the applicability to users with the role ‘coordinator’ and then point
to this policySet. Listing 4 is an example RoleTask<PolicySet>. As
can be seen the RoleTask<PolicySet> contains a <PolicySet> for each
role. The example in Listing 4 shows an example of two roles: coordinator
(lines 7-21), and contractor (lines 25-39). Each <PolicySet> applicability
is limited to the role itself, via subject match on the role attribute, and
then points to the corresponding Task<PolicySet>. For example, it can
be seen that <PolicySet> for the role ‘coordinator’ is limited to subject
role = coordinator (lines 9-16), and is pointing to the TPS for the role
coordinator (line 20).

BP-XACML 105

1 <PolicySet ... PolicySetId="RTPS" PolicyCombiningAlgId="&policy-

combine;permit-overrides">

2 <Target>

3 <Subjects><AnySubject/></Subjects>

4 <Resources><AnyResource/></Resources>

5 <Actions><AnyAction/></Actions>

6 </Target>

7 <PolicySet ... PolicySetId="RTPS:coordinator:role"

PolicyCombiningAlgId="&policy-combine;permit-overrides">

8 <Target>

9 <Subjects>

10 <SubjectMatch MatchId="&function;any-of">

11 <Apply FunctionId="urn:oasis:names:tc:xacml:3.0:function:string-

equal">

12 <AttributeValue DataType="&xml;string">coordinator</

AttributeValue>

13 <SubjectAttributeDesignator AttributeId="urn:someapp:attributes

:role" DataType="&xml;string"/>

14 </Apply>

15 </SubjectMatch>

16 </Subjects>

17 <Resources><AnyResource/></Resources>

18 <Actions><AnyAction/></Actions> </Target>

19 <!-- Use tasks associated with the "coordinator" role -->

20 <PolicySetIdReference> TPS:coordinator:role</PolicySetIdReference>

21 </PolicySet>

22 .

23 .

24 .

25 <PolicySet ... PolicySetId="RTPS:contractor:role"

PolicyCombiningAlgId="&policy-combine;permit-overrides">

26 <Target>

27 <Subjects>

28 <SubjectMatch MatchId="&function;any-of">

29 <Apply FunctionId="urn:oasis:names:tc:xacml:3.0:function:string-

equal">

30 <AttributeValue DataType="&xml;string">contractor</

AttributeValue>

31 <SubjectAttributeDesignator AttributeId="urn:someapp:attributes

:role" DataType="&xml;string"/>

32 </Apply>

33 </SubjectMatch>

34 </Subjects>

35 <Resources><AnyResource/></Resources>

36 <Actions><AnyAction/></Actions> </Target>

37 <!-- Use tasks associated with the "contractor" role -->

38 <PolicySetIdReference> TPS:contractor:role</PolicySetIdReference>

39 </PolicySet>

40 </PolicySet>

Listing 4: An example role task policy set

106

6.3.3 SoD on Role Level

In BP-XACML, SoD is expressed as policies in the SoD<PolicySet>. SoD
refers to the dynamic role level separation of duty, which is used to make
sure that no one user activates two conflicting roles at the same time.
Listing 5 shows an example SoD policy set. The policy set includes policies
stating conflicting roles. For example, the policy set in Listing 5 includes
a policy (lines 7-44) stating that in order to activate the role ‘coordinator’,
the role ‘manager’ should not be in the activated roles of the same user
(lines 18-30). Also the role ‘contractor’ should not be in the activated roles
of the same user (lines 31-43).

1 <PolicySet ... PolicySetId="SoD" PolicyCombiningAlgId="&policy-

combine;First-applicable">

2 <Target>

3 <Subjects><AnySubject/></Subjects>

4 <Resources><AnyResource/></Resources>

5 <Actions><AnyAction/></Actions>

6 </Target>

7 <Policy PolicyId="Coordinator:Role" RuleCombiningAlgId="&rule-

combine;deny-overrides">

8 <Target>

9 <Subjects><AnySubject/></Subjects>

10 <Resources>

11 <ResourceMatch MatchId="&function;string-match">

12 <AttributeValue DataType="&xml;string"> Coordinator </

AttributeValue>

13 <ResourceAttributeDesignator AttributeId="&resource;resource-id

" DataType="&xml;string"/>

14 </ResourceMatch>

15 </Resources>

16 <Actions> activate </Actions>

17 </Target>

18 <Rule RuleId="role:manager:active" Effect="Deny">

19 <Target>

20 <Subjects><AnySubject/></Subjects>

21 <Resources><AnyResource/></Resources>

22 <Actions><AnyAction/></Actions>

23 </Target>

24 <Condition FunctionId="urn:oasis:names:tc:xacml:3.0:function:any-

of">

25 <AttributeValue DataType=&xml;string">manager</AttributeValue>

26 <Apply FunctionId="http://localhost/BPXACML/function#function;

Session">

27 <SubjectAttributeDesignator AttributeId="&subject;subject-id"

DataType="&xml;string"/>

28 </Apply>

29 </Condition>

30 </Rule>

31 <Rule RuleId="role:contractor:active" Effect="Deny">

32 <Target>

BP-XACML 107

33 <Subjects><AnySubject/></Subjects>

34 <Resources><AnyResource/></Resources>

35 <Actions><AnyAction/></Actions>

36 </Target>

37 <Condition FunctionId="urn:oasis:names:tc:xacml:3.0:function:any-

of">

38 <AttributeValue DataType=&xml;string">contractor</

AttributeValue>

39 <Apply FunctionId="http://localhost/BPXACML/function#function;

Session">

40 <SubjectAttributeDesignator AttributeId="&subject;subject-id"

DataType="&xml;string"/>

41 </Apply>

42 </Condition>

43 </Rule>

44 </Policy>

45 <Policy PolicyId="manager:Role" RuleCombiningAlgId="&rule-combine;

deny-overrides">

46 <Target>

47 <Subjects><AnySubject/></Subjects>

48 <Resources>

49 <ResourceMatch MatchId="&function;string-match">

50 <AttributeValue DataType="&xml;string"> manager </

AttributeValue>

51 <ResourceAttributeDesignator AttributeId="&resource;resource-id

" DataType="&xml;string"/>

52 </ResourceMatch>

53 </Resources>

54 <Actions> activate </Actions>

55 </Target>

56 <Rule RuleId="role: Coordinator:active" Effect="Deny">

57 <Target>

58 <Subjects><AnySubject/></Subjects>

59 <Resources><AnyResource/></Resources>

60 <Actions><AnyAction/></Actions>

61 </Target>

62 <Condition FunctionId="urn:oasis:names:tc:xacml:3.0:function:any-

of">

63 <AttributeValue DataType=&xml;string"> Coordinator </

AttributeValue>

64 <Apply FunctionId="http://localhost/BPXACML/function#function;

Session">

65 <SubjectAttributeDesignator AttributeId="&subject;subject-id"

DataType="&xml;string"/>

66 </Apply>

67 </Condition>

68 </Rule>

69 </Policy>

70 <PolicySetIdReference> Role:Assignment </PolicySetIdReference>

71 </PolicySet>

Listing 5: SoD policy set example

108

The function ‘Session’ (line 64) is a new function that verifies that
the given role is not available in the activated roles of the given user. This
function takes one argument of data-type ‘..#string’, which is the user’s ID
(line 65). It returns a list of all roles currently activated for this user. Then
the predefined function any-of (line 62) will compare the given string (line
63) with the list retrieved by the session function. If the role was found the
function will return the result true, and if it was not found, it will return
false. If the condition was true the rule (line 56) will return deny and the
request will be denied. If the condition returns false, the rule will not do
anything and continue to the RoleAssignment<PolicySet> (line 70). The
combining algorithm (line 1) of the SoD<PolicySet> is ‘First applicable’
this algorithm will cause the REA to halt and not continue through the
<PolicySet> file as soon as a match is found. The reason for using this
combining algorithm is that we have designed the <PolicySet> file to have
one policy for each role, which will contain a rule for each role that is in
dynamic SoD relation with this role. So, as soon as the REA hits the
correct policy for the requested role there is no reason to look into the rest
of the <PolicySet>. It needs only to check all rules within the matched
policy. For example, Listing 5 shows a policy for the role ‘coordinator’ (line
7). It shows that to be able to activate this role, the user should not have
the role ‘manager’ active, and also should not have the role ‘contractor’
active. To simplify readability we included only one reverse policy, the one
for the role ‘manager’ (lines 45-69), and did not include a policy for the
role ‘contractor’.

Listing 6 shows an example RoleAssignment<PolicySet>. The <Poli-
cySet> contains a policy for each user, which contains rules for each role
the user can activate. The policy set in Listing 6 includes an example
policy for the user Adam (lines 7-30), which includes an example rule for
activating the role ‘coordinator’ (lines 18-29).

1 <PolicySet ... PolicySetId="Role:Assignment" PolicyCombiningAlgId

="&policy-combine;deny-overrides">

2 <Target>

3 <Subjects><AnySubject/></Subjects>

4 <Resources><AnyResource/></Resources>

5 <Actions><AnyAction/></Actions>

6 </Target>

7 <Policy PolicyId="Roles:For:user:Adam" RuleCombiningAlgId="&rule-

combine;deny-overrides">

8 <Target>

9 <Subjects>

10 <SubjectMatch MatchId="&function;string-match">

11 <AttributeValue DataType="&xml;string"> Adam </AttributeValue>

12 <SubjectAttributeDesignator AttributeId="&subject;subject-id"

DataType="&xml;string"/>

13 </SubjectMatch>

14 </Subjects>

15 <Resources><AnyResource/></Resources>

BP-XACML 109

16 <Actions><AnyAction/></Actions>

17 </Target>

18 <Rule RuleId="Permission:to:activate:coordinator:role" Effect="

Permit">

19 <Target>

20 <Subjects><AnySubject/></Subjects>

21 <Resources>

22 <ResourceMatch MatchId="&function;string-equal">

23 <AttributeValue DataType="&xml;string"> Coordinator </

AttributeValue>

24 <ResourcesAttributeDesignator AttributeId="&resource;resource-

id" DataType="&xml;string"/>

25 </ResourcetMatch>

26 </Resources>

27 <Actions> Activate </Actions>

28 </Target>

29 </Rule>

30 </Policy>

31 </PolicySet>

Listing 6: Role-assignment policy set example

6.3.4 Instance-level Restrictions (IR)

Instance-level restrictions (IR) are used to fulfill the need to apply history-
based restrictions within the same instance. For example, the scenario in
Section 3.1 states that the user who closes the ‘work order’ should be the
same user who issued it. So, for the same work order (same instance), the
user to perform close work order must be the same user who performed
issue work order. IR restrictions are written as policies in the IR policy
set.

Listing 7 is an example IR<PolicySet> that includes instance-level
restriction using the BP-XACML language. The IR policy set has a policy
for the task ‘close work order’ (lines 7-34). The policy has a rule (lines
18-33) stating that the user must be the same user who issued the work
order for the same instance.

1 <PolicySet ... PolicySetId="IRPS" PolicyCombiningAlgId="&policy-

combine;Deny-overrides">

2 <Target>

3 <Subjects><AnySubject/></Subjects>

4 <Resources><AnyResource/></Resources>

5 <Actions><AnyAction/></Actions>

6 </Target>

7 <Policy PolicyId="close:work:order:task"

8 <Target>

9 <Subjects><AnySubject/></Subjects>

10 <Resources>

11 <ResourceMatch MatchId="&function;string-match">

110

12 <AttributeValue DataType="&xml;string"> close work order</

AttributeValue>

13 <ResourceAttributeDesignator AttributeId="&resource;resource

-id" DataType="&xml;string"/>

14 </ResourceMatch>

15 </Resources>

16 <Actions><AnyAction/></Actions>

17 </Target>

18 <Rule RuleId="Must:be:who:issued:work:order" Effect="Deny">

19 <Target>

20 <Subjects><AnySubject/></Subjects>

21 <Resources><AnyResource/></Resources>

22 <Actions><AnyAction/></Actions>

23 </Target>

24 <Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:

not">

25 <Apply FunctionId="urn:oasis:names:tc:xacml:3.0:function:any-

of">

26 <SubjectAttributeDesignator AttributeId="&subject;subject-id

" DataType="&xml;string"/>

27 <Apply FunctionId="http://localhost/BPXACML/function#function;

PL">

28 <AttributeValue DataType=&xml;string"> issue work order </

AttributeValue>

29 <ResourceAttributeDesignator AttributeId="urn:someapp:

attributes:instance" DataType="&xml;string"/>

30 </Apply>

31 </Apply>

32 </Condition>

33 </Rule>

34 </Policy>

35 <!-- Point to the RoleTask policy set -->

36 <PolicySetIdReference> RTPS </PolicySetIdReference>

37 </PolicySet>

Listing 7: Example IR policy set

The function ‘PL’ (line 27) is a new function that retrieves the perform-
ers list of a specific task for a specific instance. This function takes two
arguments of data-type ‘..#string’, a task name and an instance number
(lines 28-29). It returns a list of all users who performed the task for this
instance. Then the predefined function any-of (line 25) will compare the
given string, which is the username of the user who requests to perform
the task, with the list retrieved by the PL function. The function any-of
will return true if the user was in the performers list, and it will return
‘false’ if it was not found in the performers list. If it was a SoD-IR then
this condition will be satisfied and the user will be denied if found to be
part of the list. Because it is a binding of duties constraint in this case,
we want the rule to deny only if the user was not found in the list (i.e. the
function any-of returned false), and permit it if found in the list (i.e. the

BP-XACML 111

function ‘any-of’ returned true). For this reason the function not (line 24)
has been added to reverse the output of the function.

6.4 Example Access Control policies

This section shows example requests in BP-XACML and explains how to
assess these requests. It details the policy sets and rules needed as ex-
amples. This section will use the example from Chapter 3 to show how
BP-XACML can be used to manage authorisation.

Let us consider the example scenario from Chapter 3. After receiving
a ‘pump malfunction notification’, the user Adam wants to activate the
role ‘coordinator’ to deal with the pump malfunction. Listing 8 shows an
example of a BP-XACML request where Adam wants to activate the role
‘coordinator’.

1 <Request>

2 <Subject>

3 <Attribute AttributeId="urn:someapp:subject:subject-id" DataType

="&xml;string">

4 <AttributeValue> Adam </AttributeValue>

5 </Attribute>

6 </Subject>

7 <Resource>

8 <Attribute AttributeId="urn:someapp:resource:resource-id"

DataType="&xml;string">

9 <AttributeValue> coordinator </AttributeValue>

10 </Attribute>

11 </Resource>

12 <Action> activate </Action>

13 </Request>

Listing 8: Example role-activation request in BP-XACML

To be able to assess the request, the context handler will forward the
request to the Role Enablement Authority (REA), since it is a request to
activate a role. REA can only access the SoD policy set, so, it will search for
an SoD policy with a matching object coordinator. Listing 5 in Section 6.3.3
shows an example SoD<policySet>. It can be seen that there is a policy
for the role ‘coordinator’ (lines 7-44) with a target match on the resource
to coordinator (lines 8-17). The policy states that in order to activate the
role coordinator the user should not have the role manager active (lines 18-
30). In this example we assume that Adam does not have the role manager
active. Therefore the rule will not apply. The SoD<policySet> will then
point to the Role-assignment<policySet>. In this example it is named
(Role:Assignment) (line 70). Listing 6 from Section 6.3.3 shows an example
RoleAssignment<policySet>. It can be seen that there is a policy for the
user Adam (lines 7-30). Within this policy there is a rule stating that the
user Adam can activate the role coordinator (lines 18-29). Based on the

112

policy sets, REA will send the decision on this request, which is in this case
permit. Listing 9 is an example response on the role activation request.

1 <Response>

2 <Request>

3 <Subject>

4 <Attribute AttributeId="urn:someapp:subject:subject-id" DataType

="&xml;string">

5 <AttributeValue> Adam </AttributeValue>

6 </Attribute>

7 </Subject>

8 <Resource>

9 <Attribute AttributeId="urn:someapp:resource:resource-id"

DataType="&xml;string">

10 <AttributeValue> coordinator </AttributeValue>

11 </Attribute>

12 </Resource>

13 <Action> activate </Action>

14 </Request>

15 <Result>

16 <Decision>Permit</Decision>

17 <Status>

18 <StatusCode Value="urn:someapp:status:ok"/> </Status>

19 </Result>

20 </Response>

Listing 9: Example response for role-activation request in BP-XACML

After having the pump fixed, Adam wants to close the work order he
issued. Listing 10 is an example request in BP-XACML. It is a request by
the user Adam to perform the task ‘close work order’.

1 <Request>

2 <Subject>

3 <Attribute AttributeId="urn:someapp:subject:subject-id" DataType

="&xml;string">

4 <AttributeValue> Adam </AttributeValue>

5 </Attribute>

6 </Subject>

7 <Resource>

8 <Attribute AttributeId="urn:someapp:resource:resource-id"

DataType="&xml;string">

9 <AttributeValue> close work order </AttributeValue>

10 </Attribute>

11 </Resource>

12 <Action> Perform </Action>

13 </Request>

Listing 10: Example task performance request in BP-XACML

To be able to assess the request, the context handler will forward the
request to the Task Authority, since it is a request to perform a task. As
TA can only access the IR policy set, it will search for an IR policy with

BP-XACML 113

a matching object (close work order). Listing 7 in Section 6.3.4 shows
an example IR policy set that applies to this situation. As can be seen
(lines 7-34) there is a policy stating that in order to allow a person to
perform ‘close work order’, it must be the same user who performed ‘issue
work order’ for this instance. The PL function (line 27), takes in the task
name of the other task ‘issue work order’ (line 28), and the instance of
the requested task (line 29) and sends back a list of users who performed
this task for this instance. After applying the IR-BoD function, the result
was that Adam is in the performers list of the task ‘issue work order’ for
this instance. So, the condition will return true and the rule result will
be permit. The IR policy set then will point to the RoleTask policy set.
Listing 4 from Section 6.3.2 shows an example RoleTask<PolicySet> that
is applicable for this situation. It is a RoleTask<PolicySet> for the role
‘coordinator’, which states that if the role of the subject is ‘coordinator’
(lines 9-16) then go to the task policy set TPS: coordinator:role (line 38).

Listing 3 from Section 6.3.2 shows an example TPS:coordinator:role
policy set. As can be seen, the task ‘close work order’ is included in the
task policy set of this role (lines 13-29), which means the role coordinator is
allowed to perform this task. So, TA will send back to the context handler
that Adam is allowed to perform the task ‘close work order’. Listing 11 is
an example response to the request from Listing 10, based on the policy
sets in Listings 3, 4 and 7.

1 <Response>

2 <Request>

3 <Subject>

4 <Attribute AttributeId="urn:someapp:subject:subject-id" DataType

="&xml;string">

5 <AttributeValue> Adam </AttributeValue>

6 </Attribute> </Subject>

7 <Resource>

8 <Attribute AttributeId="urn:someapp:resource:resource-id"

DataType="&xml;string">

9 <AttributeValue>close work order</AttributeValue> </Attribute>

10 </Resource>

11 <Action> Perform </Action>

12 </Request>

13 <Result>

14 <Decision>Permit</Decision>

15 <Status>

16 <StatusCode Value="urn:someapp:status:ok"/>

17 </Status>

18 </Result>

19 </Response>

Listing 11: Example response on task performance request in BP-XACML

114

The CH will then retrieve the permissions associated with this task
using the TPL. As explained each permission is a pair of action and a
resource. In this case the TPL will show the following as permissions
associated with this task: (access, assets management system), (read, work
order), (read, invoice), and (edit, work order). Then the CH will create
a single standard RBAC request for each one of these permissions using
the roles activated by the user and forward these requests to the PDP. An
example request will be (coordinator, read, work order). Listing 12 shows
how such a request is presented using BP-XACML. Such a request will be
repeated using other roles activated by the user.

1 <Request>

2 <Subject>

3 <Attribute AttributeId="urn:someapp:subject:subject-id" DataType

="&xml;string">

4 <AttributeValue> coordinator </AttributeValue>

5 </Attribute>

6 </Subject>

7 <Resource>

8 <Attribute AttributeId="urn:someapp:resource:resource-id"

DataType="&xml;string">

9 <AttributeValue> work order </AttributeValue>

10 </Attribute>

11 </Resource>

12 <Action> read </Action>

13 </Request>

Listing 12: Example standard RBAC request in BP-XACML

To be able to assess this type of request it will be forwarded to the
PDP. This type of request is handled by the PDP in the same way it is
handled in the RBAC-XACML profile. PDP will be able to access the
Role<PolicySet> for the roles activated by Adam, which is in this case
coordinator. Listing 2 from Section 6.3.1 is an example Role<PolicySet>

for the role coordinator. The policy set target is set to match coordinator
with any of the roles active for the subject (lines 3-10). The policy set then
points to the corresponding Permission<PolicySet> (line 15). Listing 1
from Section 6.3.1 shows an example Role<PolicySet> for the role coor-
dinator. The policy set has a policy for all the permissions for this role.
This policy includes a rule (lines 33-49) stating that this role can perform
the action read on the resource work order. So, the PDP decision will be
permit this request. Listing 13 shows an example response to such request.

1 <Response>

2 <Request>

3 <Subject>

4 <Attribute AttributeId="urn:someapp:subject:subject-id" DataType

="&xml;string">

5 <AttributeValue> Adam </AttributeValue>

6 </Attribute>

BP-XACML 115

7 </Subject>

8 <Resource>

9 <Attribute AttributeId="urn:someapp:resource:resource-id"

DataType="&xml;string">

10 <AttributeValue> work order </AttributeValue>

11 </Attribute>

12 </Resource>

13 <Action> read </Action>

14 </Request>

15 <Result>

16 <Decision>Permit</Decision>

17 <Status>

18 <StatusCode Value="urn:someapp:status:ok"/> </Status>

19 </Result>

20 </Response>

Listing 13: Example response for standard RBAC request in BP-XACML

The CH will collect responses from the PDP for each request. If all
request decisions were permitted then the CH will send back the result as
permit. If one of the requests was denied then the CH will send back deny,
and the request of the user to perform the task will be denied.

To demonstrate an example were the request is denied, let us assume
that after having the pump fixed, another user (Smith) wants to close the
work order that Adam has issued. Listing 14 is an example request in
BP-XACML. It is a request by the user Smith to perform the task ‘close
work order’.

1 <Request>

2 <Subject>

3 <Attribute AttributeId="urn:someapp:subject:subject-id" DataType

="&xml;string">

4 <AttributeValue> Smith </AttributeValue>

5 </Attribute>

6 </Subject>

7 <Resource>

8 <Attribute AttributeId="urn:someapp:resource:resource-id"

DataType="&xml;string">

9 <AttributeValue> close work order </AttributeValue>

10 </Attribute>

11 </Resource>

12 <Action> Perform </Action>

13 </Request>

Listing 14: Example task performance request in BP-XACML

To be able to assess the request, the context handler will forward the
request to the Task Authority, since it is a request to perform a task. As
TA can only access the IR policy set, it will search for an IR policy with
a matching object (close work order). Listing 7 in Section 6.3.4 shows

116

an example IR policy set that applies to this situation. As can be seen
(lines 7-34) there is a policy stating that in order to allow a person to
perform ‘close work order’, it must be the same user who performed ‘issue
work order’ for this instance. The PL function (line 27), takes in the task
name of the other task ‘issue work order’ (line 28), and the instance of the
requested task (line 29) and sends back a list of users who performed this
task for this instance. After applying the IR-BoD function, the result was
that Smith is not in the performers list of the task ‘issue work order’ for
this instance. So, the condition will return false and the rule result will
be deny. Since the combining algorithm for this IR policy set is ”Deny-
overrides” then the final result of this request will be deny, because Smith
is not allowed to close the work order since he is not the one who issued it.

So, TA will send back to the context handler that Smith is not allowed
to perform the task ‘close work order’. Listing 15 is an example response
to the request from Listing 14, based on the policy set in Listing 7.

1 <Response>

2 <Request>

3 <Subject>

4 <Attribute AttributeId="urn:someapp:subject:subject-id" DataType

="&xml;string">

5 <AttributeValue> Smith </AttributeValue>

6 </Attribute> </Subject>

7 <Resource>

8 <Attribute AttributeId="urn:someapp:resource:resource-id"

DataType="&xml;string">

9 <AttributeValue>close work order</AttributeValue> </Attribute>

10 </Resource>

11 <Action> Perform </Action>

12 </Request>

13 <Result>

14 <Decision> Deny </Decision>

15 <Status>

16 <StatusCode Value="urn:someapp:status:ok"/>

17 </Status>

18 </Result>

19 </Response>

Listing 15: Example response on task performance request in BP-XACML

After that the CH will send back deny, and the request of the user to
perform the task will be denied.

BP-XACML 117

6.5 Discussion

BP-XACML is designed based on the characteristics described in Chap-
ter 3. BP-XACML is designed to extend RBAC-XACML to be able to
support the notions of task, task instance, instance-level restrictions, and
role-level SoD. An important feature, that is part of core RBAC, is the idea
of user-selected role activation and sessions, which implies having multiple
roles active at the same time for the same user. The current version of the
RBAC-XACML profile does not require support for sessions. It makes ses-
sion support an implementation issue. However, NIST-RBAC [30] defines
sessions as a required feature of core RBAC. For this reason, BP-XACML
was designed to support sessions and the idea of having multiple roles ac-
tive at the same time for the same user. So if a user requests to perform a
task, BP-XACML is designed to look into all the active roles of this user
to make a decision. More specifically, to evaluate a request to perform a
task, the TA must do a subject match for each Role<PolicySet> for every
role in the system to determine if the user has this role active. If they
do, it must check the associated Task<PolicySet> to see if it grants the
permission to perform the task. If an organisation has hundreds of roles,
the PDP still needs to look into all these roles before making a decision,
and this may have a negative impact on performance.

Given the design approach, it is necessary to consider the performance
of PDPs when they must deal with large numbers of policies or rules.
The time a PDP needs to load and evaluate policies is implementation
dependent [89]. PDP e�ciency in general di↵ers from one XACML imple-
mentation to another [53]. For example, Sun’s XACML PDP [61], which is
one of the most widely used engines [89], requires less than 40 milliseconds
to evaluate 1000 policies, and less than 14 seconds to load the 1000 policies
when the system is initialised [89]. Turkmen and Crispo in [89] studied
the performance of three di↵erent implementations (Sun’s XACML [61],
XACML Enterprise [31], and XACMLight [35]). According to their study,
the time needed to load the policies grows linearly with the number of poli-
cies [89]. They also state that the time for evaluation became proportional
to the number of rules in the policy after 100 rules, while before reaching
100 rules the increase in the number of rules did not show any obvious e↵ect
on evaluation time [89]. Liu et al . in [53] proposed XEngine, a PDP that is
designed to deal specifically with large numbers of policies and rules. The
paper shows that in some cases XEngine was 3000 times faster than Sun’s
PDP [53]. The performance di↵ers from one experiment to another, but
in general the experiments demonstrate that “XEngine is highly scalable
and e�cient in comparison with the Sun PDP” [53]. PDP e�ciency with
large number of policies and rules is implementation dependent. Most of
the popular implementations are su�ciently fast that they take millisec-
onds to evaluate thousands of policies. Moreover, some implementations
(i.e. XEngine) are designed to deal with very large numbers of policies and

118

rules. We believe this provides a basis for a reasonable degree of confidence
that BP-XACML is scalable, and that having a large number of policies
or rules will not have a noticeable e↵ect on the performance, particularly
if the PDPs were implemented using a high performance implementation
such as XEngine.

BP-XACML is designed to be a generic authorisation policy language
that can be used with any workflow authorisation model. By supporting
backward compatibility, BP-XACML can also to be used with NIST-RBAC
authorisation models. We have used the characteristics from Chapter 3 to
design the policy language. These characteristics were achieved through an
independent analysis that focused on what such a language should support,
regardless of which model is being used. Therefore, the language produced
based on that, BP-XACML, is designed to be generic and can be used to
support the features commonly found in workflow authorisation models or
any NIST-RBAC authorisation model. On the other hand, BP-XACML
is bound by the defined characteristics. So, if a model was designed with
specific requirements that are not generic, BP-XACML might not be able
to support all the authorisation policies for such a specific model. For ex-
ample, BP-XACML can be used along with the BP-TRBAC authorisation
model introduced in Chapter 4. The only feature of BP-TRBAC that was
not supported in BP-XACML is the ‘active access control’ feature. The
concept of ‘activation condition’, which was used in BP-TRBAC to achieve
active access control, requires positive verification that the preceding tasks
in a workflow have been completed before authorising a task. Control over
the sequenced execution of tasks in a workflow is a primary function of
a workflow engine. Therefore, we argue that it is reasonable to rely on
the workflow engine to assure that tasks are performed at the right time.
Since the context handler is designed to have the ability to distinguish a
workflow request, the CH can be implemented to do the following: when a
task performing request is received the CH can send the workflow engine
a query to confirm that it is the right time for the task to be performed.
Since workflow engines are designed to be aware of the task sequence and
also be aware of the status of each process instance, the workflow engine
will be able to answer the question whether it is time for this task to be
performed or not. Positive verification by the CH ensures that the request
to perform the task did not originate from another system where the action
would be out of sequence, or from a user trying to perform an unauthorised
action.

At the time of designing BP-XACML we kept in mind the idea of
backward compatibility and supporting legacy systems. We designed BP-
XACML so that the final decision is based on the current organisation
policies for permissions. Therefore, even if a TA said that the user is al-
lowed to perform a task, BP-XACML would still look into all permissions
associated with such task and check if the user is allowed to perform these
permissions or not. To achieve this property it was important to identify

BP-XACML 119

a link between the task and the associated permissions. Because PDPs
are designed to deal with one type of subject and one type of object, and
because the link between role-task-permission is a three-way link, it is not
applicable to have one request to one PDP that gives the permissions asso-
ciated with a task and then decide whether the role is allowed to perform
these permissions. For this reason BP-XACML was designed to let the CH
deal with retrieving the permissions associated with each task. We intro-
duced the Task-Permissions List (TPL), a function that takes in a task ID
and sends back a list of permissions associated with the task. In a way it is
similar to the idea of ‘session’. A session takes in a user ID and sends back
a list of active roles, while TPL takes in a task and sends back a list of
permissions. The only di↵erence is that TPL does not need to be updated
as frequently as the session.

The first draft of the RBAC-XACML profile proposed the idea of the
SoD<PolicySet>, which was removed in the final version. Although in BP-
XACML we have adopted the idea of the SoD<PolicySet>, there is a sig-
nificant di↵erence in the design architecture and the way this <PolicySet>
was used. The RBAC-XACML draft used the SoD<PolicySet> to avoid
giving a user with conflicting roles access to the resources. So, the model
would allow the user to have conflicting roles but then will not allow him to
access the resources. They have designed the model in a way that PDP will
access SoD<PolicySet> and if a user has conflicting roles active the decision
will be deny. In any case, support for SoD was optional. In BP-XACML
we designed the model in a way that the REA controls role activation and
enforces dynamic SoD constraints. It will not allow the user to activate
conflicting roles in the first place. So, instead of checking at the time of
requesting access, BP-XACML checks at the time of activating the role.
The SoD<PolicySet> in BP-XACML is designed to have a single policy for
each role. This policy will contain rules for all the conflicting roles. Setting
the combining algorithm for the SoD<PolicySet> to be ‘First applicable’
will mean that the REA will need to look into only one policy and will not
need to check the rest of the <PolicySet> because ‘first applicable’ means
that the PDP should halt as soon as a match was found. As soon as an
SoD violation is found the REA responds with deny. On the other hand
this means for each pair of conflicting roles two policies are required, one
for each role, to ensure that the first role cannot be activated if the second
is already active and that the second role cannot be activated if the first
role is active.

120

6.6 Conclusion

This chapter introduced BP-XACML, a new profile that extends RBAC-
XACML and enables the specification of business process authorisation
policies. In addition to supporting the XACML RBAC profile, the ex-
tended language also supports the representation of tasks and tasks in-
stances. It proposes new a policy set called Task<PolicySet> for the
incorporation of business process tasks. BP-XACML also supports sep-
aration of duties and binding of duties constraints at the level of pro-
cess instances. The new IR<PolicySet> supports the representation of
instance-level restrictions in a way that can be linked to the related tasks
and can be evaluated. The new function ‘performers list’ helps in evalu-
ating the instance-level restrictions. The new repository TPL links tasks
to permissions. Finally, it supports the ‘separation of duties’ on the role
level, making use of the ‘REA’ and the ‘sessions’ to find and evaluate the
SoD restrictions from the SoD<PolicySet>.

Although BP-XACML is designed to work with the model introduced
in Chapter 4, BP-TRBAC, it is also designed to be generic. BP-XACML
is designed using the characteristics from Chapter 3 to be able to support
authorisation policies for any workflow authorisation model.

Chapter 7

Conclusion and Future Directions

Authorisation management for business process environments requires spe-
cific capabilities. The reliance on expert employees to make sure that
authorisation policies are complied with is not always practical. This ap-
proach will keep the organisation relying on particular experts who are
always needed to do the integration. It will also be potentially costly,
inaccurate and inconsistent, as a human might forget a policy or change
their behavior. Moreover, the organization will be exposed to risks if the
authorisation policy is not enforced. To automate the enforcement of the
authorisation policies in business process environments first, there is a need
for an authorisation model to enforce the authorisation policies. Secondly,
there is a need for an authorisation policy language to express these poli-
cies in a machine-enforceable way. As this thesis showed, in the current
literature there is no authorisation model that supports all the required
characteristics, and there is no authorisation policy language that satisfies
the required characteristics.

The main argument of this thesis is that integrating BPM and autho-
risation management can improve the security of these environments by
making sure that the authorisation policies are enforced and that all task
performances are in compliance with the authorisation policies. To be able
to do so, there is a need for a model for enforcing the policies, and a
machine-enforceable language to write the policies.

We have interviewed experts and performed an analysis using the litera-
ture to identify the required characteristics. Using these characteristics we
proposed BP-TRBAC, an authorisation model that supports the required
characteristics. A use case implementation of a subset of the model was
done with YAWL as the workflow system. This implementation showed
that there is a need for an authorisation policy language to work in concert
with the BP-TRBAC. BP-XACML was then introduced as the authorisa-
tion policy language for business process environments.

121

122

It was shown in Chapter 3 that the current models and languages can
not support the necessary characteristics to be used as an organisation-
wide authorisation management system and support business process au-
thorisation requests. This thesis introduces an authorisation model and
an authorisation policy language that can be used together to allow the
organisation to manage and control authorisation requests from workflow
systems and other legacy systems. To do so, a range of challenges in au-
thorisation management in business process environments are addressed,
and a number of contributions are made, as summarised in the following
section. A future research direction is presented in Section 7.2. Concluding
remarks for both the chapter and the thesis provided in Section 7.3.

7.1 Summary of Outcomes and Objectives

This section lists the main outcomes of this thesis and maps them to the
research objectives identified in Chapter 1. It will list the three objectives
from Chapter 1, and for each objective it will state the related outcomes
that were achieved.

Objective 1: Conduct a preliminarily analysis identifying the need the
characteristics of the authorisation model and the authorisation policy lan-
guage. The following outcomes are related to this objective:

• A case scenario from a real-life security-sensitive environment showed
the need for authorisation management in such complex environ-
ments. After collecting data and interviewing with stakeholders we
were able to provide the scenario of performing a specific job in this
complex organisation through a business process.

• The characteristics of an authorisation model for business process
environments, and the characteristics that a business process autho-
risation language should satisfy were presented.

• A literature review of the BPM authorisation models, and the BPM
authorisation policy languages, demonstrated the need for a new
model, and a new policy language.

Objective 2: Provide an authorisation model for business process envi-
ronments. The model should be used to control the authorisation requests
by enforcing the authorisation policies. The following outcomes are related
to this objective:

• Introduced BP-TRBAC, a business process authorisation model. It
extends RBAC to support business process requirements. BP-TRBAC
is a unified organisation-wide authorisation model that can support

Conclusion and Future Directions 123

workflow authorisation requests and non-workflow authorisation re-
quests. BP-TRBAC is designed to support all the needed character-
istics identified in the first objective.

• A use-case implementation is provided. The use-case represents a
subset of BP-TRBAC. The subset is called SPCC, and is intended
to check design time assignments. The implementation showed that
this subset of BP-TRBAC can be used with a workflow system. It
showed that SPCC was able to communicate with YAWL, obtain
the required information, and respond with an informed decision on
whether this role is allowed to perform this task or not. It was able
to deal with tasks rather than permissions, and to use the policy file
to make the decision.

Objective 3: Provide a structured machine-readable language that has
the ability to represent authorisation policies in business processes. The
following outcomes are related to this objective:

• Introduced BP-XACML an authorisation policy language for business
processes. BP-XACML extends XACML to provide a new profile
that supports specific business process requirements. BP-XACML
provides backward compatibility with the RBAC-XACML profile.
Therefore it can support standard RBAC policies. It can be used
to write authorisation policies for business process systems and other
legacy systems. BP-XACML is designed to support all the required
characteristics identified in Chapter 3. The policy language can be
used with the authorisation model introduced in this thesis, BP-
TRBAC, but it was also designed to be generic and can be used
with other workflow authorisation models.

• A complete policy model for BP-XACML is provided. The policy
model showed how the language can be used. It showed how, us-
ing this language, a system can handle and evaluate authorisation
requests. The policy model extends the XACML policy model with
the needed authorities, attributes, and policy sets to support the
BP-XACML language. The policy model is in compliance with the
authorisation model BP-TRBAC, which was introduced in the second
objective.

7.2 Future Research Direction

This section provides a discussion on potential opportunities for future re-
search on the proposals presented in this thesis. It also summarises various
limitations of the previous chapters.

124

7.2.1 BP-TRBAC

The main objective of the implementation of SPCC presented in Chapter
5 was to show the technical feasibility of implementing part of the BP-
TRBAC and integrating it with a workflow management system, which
demonstrates the feasibility of key concepts proposed in this thesis. A de-
cision was made to implement a subset of BP-TRBAC, and leave out cer-
tain components of BP-TRBAC, due to resource constraints. Even though
the current version of our implementation is not intended to demonstrate
the full authorisation model that can be used in an operational environ-
ment, it serves as practical evidence to support our claim that there is a
need for better authorisation models for business processes. We demon-
strated the shortcoming in the workflow system YAWL, and showed how
this BP-TRBAC subset can be used to address this shortcoming.

An important future direction for this research is to implement the
proposed authorisation model (BP-TRBAC) as a whole in an operational
environment. The environment should be one that uses business processes
and has complex authorisation requirements, such as an airport, a chemical
plant, or other security-sensitive environment. This would enable testing
and evaluating our proposal, and the idea that integrating BPM and au-
thorisation management would provide better security for business process
environments. Another associated step would be to explore the integration
of BP-TRBAC with various workflow systems, showing that it can work
with di↵erent workflow systems.

Besides testing the technical capabilities of the proposal, it is also nec-
essary to test the feasibility of implementing the whole model, and the
usability of such a model with end users. Such testings of non-technical
aspects is desirable, but this would require integration with live commercial
systems, and that was not feasible within the scope of this thesis.

A possible next step is to perform a field trial to evaluate and sup-
port the claims by integrating a number of operational systems, including
a workflow system, in a security-critical environment with a BP-TRBAC
system. This would require building a system with appropriate user in-
terfaces and testing it among sta↵ that are normally tasked with similar
tasks of authorisation administration. In addition to the required systems
development and integration, it is also necessary to find appropriate skilled
people to participate in such a study. For these reasons such a field trial
was beyond the scope of the thesis.

7.2.2 SPCC

As explained in Chapter 5 SPCC is implemented using our own policy file
format. In order for SPCC to be a useful plug-in that can be used with
YAWL it should be implemented to deal with a structured, standardised
policy language. BP-XACML as shown in Chapter 6 is a standardised,
machine-readable language that is able to represent authorisation policies

Conclusion and Future Directions 125

for di↵erent systems including the business process authorisation policies.
An interesting future research direction is to develop an implementation of
SPCC using BP-XACML as the policy language. This will allow for using
SPCC in real life scenarios, which can be also used to test the usability of
SPCC.

7.2.3 BP-XACML

In Chapter 6, we discussed how BP-XACML as a policy model deals with
authorisation requests. The chapter provides details on how the model
works including all the new authorities, policy sets, and attributes. Al-
though the chapter provides details on how these new components are
integrated with the XACML model, and provides the details of how each
type of request is handled, due to resource constraints the BP-XACML
policy model was not implemented. This is one of the interesting future
research directions that could significantly influence the implementation of
the authorisation model as a whole.

7.2.4 Building Information Models

A PhD thesis by Nimalaprakasan Skandhakumar [83] used building infor-
mation models to control physical access in smart buildings. The thesis
integrated authorisation management with building information models.
It also used XACML as the policy language after extending it to repre-
sent buildings models aspects. An exciting future research direction is
the integration of the work of this thesis with the work from our the-
sis. The integration may produce an authorisation model that can control
organisation-wide authorisation requests, and control physical access using
the building information models for such requests.

7.3 Concluding Remarks

Business process management is an important domain that requires the at-
tention of information security researchers, specifically in the authorisation
management field. Business process environments require specific charac-
teristics to be supported by the authorisation management system. This
thesis addresses important challenges in research associated with authori-
sation management for business process environments by investigating and
developing an authorisation model and an authorisation policy language
that are designed specifically to meet the identified characteristics.

Increasing adoption of business processes in critical infrastructures,
such as airports, makes it important to find e↵ective measures to integrate
authorisation management with business processes. The work presented
in this thesis contributes to this e↵ort. The work provided in this thesis
would be enhanced by extending the evaluation of this work with practical
testing and deployment of these ideas in real operational environments.

126

Bibliography

[1] S. Abiteboul and S. Grumbach. A rule-based language with functions
and sets. In ACM Transaction on Database Systems, volume 16,
pages 1–30, 1991. 42

[2] M. Adams and A. ter Hofstede. YAWL - User Manual. The YAWL
Foundation, version 3.0 edition, 2014. 65, 66, 67, 74

[3] C. Alm, R. Wolf, and J. Posegga. The opl access control policy
language. In S. Fischer-Hübner, C. Lambrinoudakis, and G. Per-
nul, editors, TrustBus, volume 5695 of Lecture Notes in Computer
Science, pages 138–148. Springer, 2009. 42

[4] S. Alter. Information Systems : A Management Perspective. Addison
Wesley, 4th edition, 2002. 13

[5] A. Anderson. Xacml profile for role based access control (rbac).
OASIS Access Control TC committee draft, 1:13, 2004. 21

[6] A. Anderson. Xacml profile for role based access control (rbac),
committee draft 01. Standard, OASIS, February 2004. 88

[7] A. Anderson. Core and hierarchical role based access control (rbac)
profile of xacml version 2.0, oasis standard. Standard, OASIS Open,
February 2005. 21, 81, 88, 90, 101

[8] C. Anderson. What’s the di↵erence between policies and procedures?
Electronic: www.Bizmanualz.com, April 2005. 17

[9] V. Atluri and W. kuang Huang. An authorization model for work-
flows. In E. Bertino, H. Kurth, G. Martella, and E. Montolivo,
editors, European Symposium on Research in Computer Security,
volume 1146 of Lecture Notes in Computer Science, pages 44–64.
Springer, 1996. 32, 33, 37

[10] M. Y. Becker, C. Fournet, and A. D. Gordon. Design and semantics of
a decentralized authorization language. In 20TH IEEE COMPUTER
SECURITY FOUNDATIONS SYMPOSIUM, pages 3–15, 2007. 42

[11] E. Bertino, E. Ferrari, and V. Atluri. A flexible model support-
ing the specification and enforcement of role-based authorization in
workflow management systems. In ACM Workshop on Role-Based
Access Control, pages 1–12, 1997. 38, 60

127

128

[12] E. Bertino, E. Ferrari, and V. Atluri. The specification and enforce-
ment of authorization constraints in workflow management systems.
ACM Transactions on Information and System Security (TISSEC),
2(1):65–104, 1999. 31

[13] B. Blobel. Authorisation and access control for electronic health
record systems. In International journal of medical informatics, vol-
ume 73, pages 251–257, 2004. 36

[14] R. A. Botha and J. H. P. Elo↵. Separation of duties for access con-
trol enforcement in workflow environments. IBM Systems Journal,
40(3):666–682, 2001. 32, 38, 60

[15] A. D. Brucker, I. Hang, G. Lückemeyer, and R. Ruparel. Securebpmn:
Modeling and enforcing access control requirements in business pro-
cesses. In Proceedings of the 17th ACM Symposium on Access Control
Models and Technologies, SACMAT ’12, pages 123–126, New York,
NY, USA, 2012. ACM. 43

[16] J. Bryans. Reasoning about xacml policies using csp. In the 2005
workshop on Secure web services, page 35. ACM, 2005. 19, 20

[17] I. Celino, A. K. A. de Medeiros, G. Zeissler, M. Oppitz, F. M. Facca,
and S. Zoeller. Semantic business process analysis. In SBPM. Cite-
seer, 2007. 12

[18] D. W. Chadwick, W. Xu, S. Otenko, R. Laborde, and B. Nasser.
Multi-session separation of duties (msod) for rbac. In ICDE Work-
shops, pages 744–753, 2007. 38, 60, 62

[19] F. J. G. Clemente, G. M. Pérez, J. A. B. Blaya, and A. F. G.
Skarmeta. Representing security policies in web information systems.
In Proceedings of WWW 2005, May 2005. 42

[20] J. Crampton and H. Khambhammettu. Xacml and role-based access
control. In Presentation at DIMACS Workshop on Security of Web
Services and e-Commerce, page 174. Springer, 2005. 20, 42

[21] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder pol-
icy specification language. In Workshop on Policies for Distributed
Systems and Networks (Policy2001), pages 29–31, Bristol, UK, Jan
2001. Springer-Verlag. 42

[22] N. C. Damianou, A. K. Bandara, M. S. Sloman, and E. C. Lupu. A
survey of policy specification approaches. Technical report, Depart-
ment of Computing, Imperial College, 2002. 2, 18, 19

[23] F. D’Aubeterre, R. Singh, and L. Iyer. Secure activity resource co-
ordination: empirical evidence of enhanced security awareness in de-
signing secure business processes. European Journal of Information
Systems, 17(5):528 – 542, 2008. 1, 4, 24

[24] V. Dhankhar, S. Kaushik, and D. Wijesekera. Securing workflows
with xacml, rdf and bpel. In V. Atluri, editor, Data and Applications

Bibliography 129

Security XXII, volume 5094 of Lecture Notes in Computer Science,
pages 330–345. Springer Berlin Heidelberg, 2008. 43

[25] G. Dhillon. Principles of Information Systems Security: text and
cases. John Wiley and Sons, New York, 2007. 17, 21

[26] M. Dumas, W. M. P. van der Aalst, and A. H. M. ter Hofstede,
editors. Process-aware Information systems: Bridging people and
software through process technology. John Wiley and Sons, 2005. 3,
13, 45

[27] E. D. Falkenberg. Concepts for modelling information. In G. M. Ni-
jssen and Freudenstadt, editors, IFIP Working Confrence on Mod-
elling in Data Base Management Systems, pages 95–109, Germany,
1976. North-Holland Publishing. 48

[28] C. Feltus. Preliminary literature review of policy engineering meth-
ods - toward responsibility concept. In 3rd international conference
on information and communication technologies : from theory to ap-
plications (ICTTA 08), Damascus, Syria, 2008. 19

[29] D. Ferraiolo and D. Kuhn. Role-Based Access Control. In 15th Na-
tional Computer Security Conference, pages 554–563, October 1992.
35

[30] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chan-
dramouli. Proposed NIST standard for role-based access control.
ACM Transactoin of Information System Security, 4(3):224–274,
Aug. 2001. 22, 34, 45, 46, 47, 51, 55, 117

[31] T. A. S. Foundation. Apache xerces2 java parser. Technical report,
The Apache Software Foundation, http://xerces.apache.org/xerces2-
j/, 2010. 117

[32] Gartner. Leading in times of transition: The 2010 CIO agenda. In
Gartner EXP CIO report, 2010. 2

[33] I. Ghalimi. BPM, ECM, ESB, and security. in Enter-
prise Irregulars, Retrieved: 15 December 2011, From:
http://www.enterpriseirregulars.com/ei/20794, 2007. 36

[34] G. Governatori and S. Sadiq. The journey to business process com-
pliance. In Hand- book of Research on BPM, pages 426–454. IGI
Global, 2009. 2, 19

[35] O. Gryb. Xacmlight. Technical report, XACMLight,
http://xacmllight.sourceforge.net/, 2013. 117

[36] T. Halpin. Object-role modeling: an overview, Retrieved: 6 March
2011, From: http://www.orm.net/pdf/ormwhitepaper.pdf. unpub-
lished, 2001. 48

[37] P. Harmon. Business process change: a manager’s guide to improv-
ing, redesigning, and automating processes. Morgan Kaufman Pub-
lishers, San Francisco, 1st edition, 2003. 10

130

[38] G. Herrmann and G. Pernul. Viewing business process security from
di↵erent perspectives. In 11th International Bled Electronic Com-
merce Conference, Slovenia, 1998. 1, 24

[39] P. C. K. Hung and K. Karlapalem. A secure workflow model. In
AISC on ACSW frontiers 2003, volume 21, pages 33–41. Australian
Computer Society Inc., 2003. 32

[40] ISACA. Cisa review manual 2006. In Information Systems Audit and
Control Association, 2006. 2

[41] ISO. Iso/iec 27002: Information technology – security techniques –
code of practice for information security controls. Standard, Inter-
national Organisation for Standardisation, 2013. 17, 18

[42] K. Jensen. Coloured petri nets: A high level language for system
design and analysis. In G. Rozenberg, editor, Advances in Petri Nets
1990, volume 483 of Lecture Notes in Computer Science, pages 342–
416, Berlin, 1990. Springer-Verlag. 14

[43] J. Jeston and J. Nelis. Business process management. Routledge,
2014. 1

[44] L. Kagal, T. W. Finin, and A. Joshi. A policy language for a pervasive
computing environment. In POLICY, pages 63–. IEEE Computer
Society, 2003. 42

[45] S. Kandala and R. S. Sandhu. Secure role-based workflow models.
In M. S. Olivier and D. L. Spooner, editors, DBSec, volume 215 of
IFIP Conference Proceedings, pages 45–58. Kluwer, 2001. 23, 33, 37

[46] R. K. L. Ko. A computer scientist’s introductory guide to business
process management (bpm). In ACM Crossroads, volume 15, New
York, NY, USA, 2009. ACM Press. 10

[47] M. Kohlbacher. The e↵ects of process orientation on customer sat-
isfaction, product quality and time-based performance. In the 29th
International Conference of the Strategic Management Society, pages
11–14, Washington DC, October 2009. 10

[48] A. Lanz, B. Weber, and M. Reichert. Workflow time patterns for
process-aware information systems. In Enterprise, Business-Process
and Information Systems Modeling, pages 94–107. Springer, 2010. 13

[49] T. P. Layton. Information Security: Design, Implementation, Mea-
surement, and Compliance. Auerbach publications, Boca Raton, FL,
2007. 2

[50] M. Leitner, S. Rinderle-Ma, and J. Mangler. Aw-rbac: access control
in adaptive workflow systems. In Sixth International Conference on
Availability, Reliability and Security (ARES), pages 27–34. IEEE,
2011. 35, 40

[51] M. Leitner, S. Rinderle-Ma, and J. Mangler. Responsibility-driven
design and development of process-aware security policies. In Sixth

Bibliography 131

International Conference on Availability, Reliability and Security,
2011. 12, 14

[52] A. X. Liu, F. Chen, J. Hwang, and T. Xie. Xengine: A fast and
scalable xacml policy evaluation engine. In Proceedings of the 2008
ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’08, pages 265–276,
New York, NY, USA, 2008. ACM. 21, 81

[53] A. X. Liu, F. Chen, J. Hwang, and T. Xie. Xengine: a fast and scal-
able xacml policy evaluation engine. In ACM SIGMETRICS Per-
formance Evaluation Review, volume 36, pages 265–276. ACM, 2008.
117

[54] J. Lobo, R. Bhatia, and S. A. Naqvi. A policy description language.
In AAAI/IAAI, pages 291–298, 1999. 42

[55] G. B. M. Ajmone Marsan and G. Conte. Modelling with generalized
stochastic petri nets. In Wiley series in parallel computing, New
York, 1995. Wiley. 14

[56] J. R. M. Owen. Bpmn and business process management introduction
to the new business process modeling standard. Internet, Popkin
Software, 2003. 11

[57] W. Mallouli, F. Bessayah, A. R. Cavalli, and A. Benameur. Security
rules specification and analysis based on passive testing. In Proc. of
the Global Communications Conference on Exhibition and Industry
Forum Co-located with WTC (GLOBECOM’08), pages 2078–2083,
New Orleans, LA, USA, November-December 2008. Institute of Elec-
trical and Electronics Engineers (IEEE). 19

[58] D. McCoy. BPM and Security: Not feeling
so good, Retrieved: 12 December 2010, From:
http://blogs.gartner.com/dave mccoy/2008/10/16/bpm-and-
security-not-feeling-so-good, 2008. 2, 24

[59] Merriam-Webster. Merriam-webster online, Retrieved: 17 March
2011, From: http://www.m-w.com. 17

[60] A. t. H. Michael Adams and S. Clemens. YAWL - Technical Manual.
The YAWL Foundation, 2.1 edition, 2010. 66, 67, 68

[61] S. Microsystems. Sun’s xacml implementation. Technical report, Sun
Microsystems, http://sunxacml.sourceforge.net, 2005. 117

[62] T. Moses. Extensible access control markup language (xacml) version
2.0. oasis standard. Technical report, OASIS Open, 2005. 18, 19, 42,
80, 83, 84, 97

[63] J. Mülle, S. v. Stackelberg, and K. Böhm. A security language for
bpmn process models. In Karlsruhe Reports in Informatics. Karl-
sruhe, 2011. 43

[64] T. Murata. Petri nets: Properties, analysis and applk a tions. In
IEEE, volume 77, pages 541–580, APRIL 1989. 14

132

[65] N. Nagaratnam, A. Nadalin, M. Hondo, M. McIntosh, and P. Austel.
Business-driven application security: From modeling to managing
secure applications. In IBM Systems Journal, volume 44, pages 847–
867, Riverton, NJ, USA, October 2005. IBM Corp. 34

[66] T. Neubauer, M. D. Klemen, and S. Bi✏. Secure business process
management: A roadmap. In The International Conference on Avail-
ability, Reliability and Security (ARES), pages 457–464, 2006. 1, 24

[67] T. Norman. Integrated Security Systems Design: Concepts, Specifi-
cations, and Implementation. Butterworth-Heinemann, Burlington,
MA, USA, January 2007. 21

[68] OASIS. XACML language proposal, version 0.8. Technical report,
OASIS, 2001. 20

[69] A. O’Connor and R. Loomis. Economic analysis of role-based ac-
cess control. Technical report, National Institute of Standards and
Technology, December 2010. 21, 45

[70] S. Oh and S. Park. Task-role based access control (t-rbac): An im-
proved access control model for enterprise environment. In M. T.
Ibrahim, J. Küng, and N. Revell, editors, DEXA, volume 1873 of
Lecture Notes in Computer Science, pages 264–273. Springer, 2000.
23, 31, 32, 33, 35, 39, 45, 53, 60

[71] M. Pesic, H. Schonenberg, and W. van der Aalst. Declarative
workflow. In Modern Business Process Automation, pages 175–201.
Springer, 2010. 16

[72] C. A. Petri. Communication with automata. PhD thesis, University
of Hamburg, 1966. 14

[73] T. Phan, J. Han, J.-G. Schneider, T. Ebringer, and T. Rogers. A
survey of policy-based management approaches for service oriented
systems. In Australian Software Engineering Conference, pages 392–
401. IEEE Computer Society, 2008. 42

[74] C. Ribeiro, A. Zúquete, P. Ferreira, and P. Guedes. SPL: An ac-
cess control language for security policies with complex constraints.
In In Proceedings of the Network and Distributed System Security
Symposium, pages 89–107, 1999. 1, 2

[75] A. Rodŕıguez, E. Fern’andez-Medina, and M. Piattini. A BPMN
extension for the modeling of security requirements in business pro-
cesses. The Institute of Electronics, Information and communication
Engineers (IEICE) TRANSACTIONS on Information and Systems,
90:745–752, 2007. 24

[76] P. Samarati and S. C. Vimercati. Access control: Policies, models,
and mechanisms. In R. Focardi and R. Gorrieri, editors, Foundations
of Security Analysis and Design, volume 2171 of Lecture Notes in
Computer Science, pages 137–196, Berlin Heidelberg, 2001. Springer.
36, 42, 83

Bibliography 133

[77] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role - based
access control models. In IEEE Computer, volume 29, pages 38–47,
1996. 2, 37, 51

[78] R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST model for role-
based access control: towards a unified standard. In Proceedings
of the fifth ACM workshop on Role-based access control, RBAC ’00,
pages 47–63, New York, NY, USA, 2000. ACM. 22

[79] R. S. Sandhu. Separation of duties in computerized information sys-
tems. In DBSec, pages 179–190, 1990. 22

[80] A. Schaad, V. Lotz, and K. Sohr. A model-checking approach to an-
alyzing organizational controls in a loan origination process. In ACM
Symposium on Access Control Models and Technologies;, volume 6 of
Symposium on Access Control Models and Technologies (SACMAT),
pages 139–149, New York, USA, 2006. ACM. 45

[81] J. Shi, Y. Li, H. R. Deng, W. He, and E. W. Lee. A secure platform
for information sharing in epcglobal network. International Journal
of RFID Security and Cryptography, 2(1-4):107–118, 2013. 36

[82] S. Sinha, S. Sinha, and B. Purkayastha. Synchronization of autho-
rization flow with work object flow in a document production work-
flow using xacml and bpel. In V. Das and R. Vijaykumar, editors,
Information and Communication Technologies, volume 101 of Com-
munications in Computer and Information Science, pages 365–370.
Springer Berlin Heidelberg, 2010. 43

[83] N. Skandhakumar. Integrated access control for smart buildings using
building information models. PhD thesis, Queensland University of
Technology, 2014. 125

[84] M. Strembeck and J. Mendling. Modeling process-related rbac mod-
els with extended uml activity models. Information & Software Tech-
nology, 53:456–483, 2011. 34, 40, 62

[85] A. M. ter Hofstede, W. van der Aalst, M. Adams, and N. Russell, ed-
itors. Modern Business Process Automation: YAWL and its Support
Environment. Springer, 2010. 15, 16

[86] R. K. Thomas and R. S. Sandhu. Task-based authorization controls
(tbac): A family of models for active and enterprise-oriented autor-
ization management. In T. Y. Lin and S. Qian, editors, DBSec, vol-
ume 113 of IFIP Conference Proceedings, pages 166–181. Chapman
& Hall, 1997. 2, 23, 31, 32, 33, 37, 45, 46

[87] S. Tjoa, S. Jakoubi, and G. Quirchmayr. Enhancing business im-
pact analysis and risk assessment applying a risk-aware business pro-
cess modeling and simulation methodology. In International Confer-
ence on Availability, Reliability and Security (ARES), pages 179–186.
IEEE Computer Society, 2008. 24

134

[88] S. Torjman. What is policy? White Paper 1-55382-142-4, The Cale-
don Institute of Social Policy, Ontario, Canada, September 2005. 17

[89] F. Turkmen and B. Crispo. Performance evaluation of xacml pdp im-
plementations. In Proceedings of the 2008 ACM workshop on Secure
web services, pages 37–44. ACM, 2008. 117

[90] W. M. Van der Aalst and A. H. Ter Hofstede. Yawl: yet another
workflow language. Information systems, 30(4):245–275, 2005. 7, 11,
14, 66

[91] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and
A. P. Barros. Workflow patterns. Distributed and Parallel Databases,
14(1):5–51, 2003. 53

[92] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske.
Business process management: A survey. In W. M. P. van der Aalst,
A. H. M. ter Hofstede, and M. Weske, editors, Business Process Man-
agement, volume 2678 of Lecture Notes in Computer Science, pages
1–12. Springer, 2003. 10, 11, 12

[93] J. Vom Brocke and M. Rosemann. Handbook on business process
management. Springer, 2010. 1, 3, 9

[94] J. vom Brocke and M. Rosemann, editors. Handbook on Business
Process Management: Strategic Alignment, Governance, People and
Culture, volume 1 of International Handbooks on Information Sys-
tems. Springer, Berlin, 2010. 10

[95] J. Wainer, A. Kumar, and P. Barthelmess. WRBAC a work-flow
security model incorporating controlled overriding of constraints. In
International Journal of Cooperative Information Systems (IJCIS),
volume 4, pages 455–486, 2003. 2, 32, 35, 38, 46, 62

[96] J. Wainer, A. Kumar, and P. Barthelmess. DW-RBAC: A formal
security model of delegation and revocation in workflow systems. Inf.
Syst., 32(3):365–384, 2007. 35

[97] B. Weber, M. Reichert, W. Wild, and S. Rinderle. Balancing flexibil-
ity and security in adaptive process management systems. In CoopIS,
volume 3761 of LNCS, pages 59–76, 2005. 40

[98] B. Weber, S. Rinderle-Ma, and M. Reichert. Change support in
process-aware information systems-a pattern-based analysis. Techni-
cal report, University of Twente, Enschede, The Netherlands, 2007.
12, 14

[99] M. Weske. Business Process Management: concept, Languages, Ar-
chitectures. Springer, Berlin, 2007. 9, 10, 11, 12, 19

[100] C. Wolter, M. Menzel, and C. Meinel. Modelling security goals in
business processes. In T. Kühne, W. Reisig, and F. Steimann, editors,
Modellierung, volume 127 of LNI, pages 197–212. GI, 2008. 24, 36

Bibliography 135

[101] C. Wolter and A. Schaad. Modeling of task-based authorization con-
straints in bpmn. In G. Alonso, P. Dadam, and M. Rosemann, edi-
tors, BPM, volume 4714 of Lecture Notes in Computer Science, pages
64–79. Springer, 2007. 33

[102] C. Wolter, A. Schaad, and C. Meinel. Deriving xacml policies from
business process models. In M. Weske, M.-S. Hacid, and C. Godart,
editors, Web Information Systems Engineering – WISE 2007 Work-
shops, volume 4832 of Lecture Notes in Computer Science, pages
142–153. Springer Berlin Heidelberg, 2007. 43

[103] C. Wolter, C. Weiss, and C. Meinel. An xacml extension for business
process-centric access control policies. In Policies for Distributed Sys-
tems and Networks, 2009. POLICY 2009. IEEE International Sym-
posium on, pages 166–169, July 2009. 43

[104] W. Xu, J. Wei, Y. Liu, and J. Li. Sowac: A service-oriented workflow
access control model. In COMPSAC, pages 128–134. IEEE Computer
Society, 2004. 37

[105] L. Yang, Y. Choi, M. Choi, and X. Zhao. Fwam: A flexible workflow
authorization model using extended rbac. In CSCWD, pages 625–
629. IEEE, 2008. 37

[106] L. Zhang, G.-J. Ahn, and B.-T. Chu. A rule-based framework for
role-based delegation and revocation. ACM Trans. Inf. Syst. Secur.,
6:404–441, August 2003. 42

[107] M. zur Muehlen and M. Indulska. Modeling languages for business
processes and business rules: A representational analysis. Informa-
tion Systems, 35(4):379–390, Elsevier, 2010. 19

[108] M. zur Muehlen and M. Rosemann. Multi-paradigm process man-
agement. In J. Grundspenkis and M. Kirikova, editors, International
Conference on Advanced Information Systems Engineering (CAiSE)
Workshops (2), pages 169–175. Faculty of Computer Science and In-
formation Technology, Riga Technical University, Riga, Latvia, 2004.
10

136

Appendix A

Case study

This appendix provides a brief outline of the case study and the interviews
conducted with the experts and stakeholders from the security sensitive
environment.

Introduction and Justification

Business Process Management (BPM) is a widely accepted and used in
industrial organisations. For instance, modern airports adopt BPM in
order to e�ciently manage and allocate tasks to employees. Di↵erent types
of information systems are becoming a Process-Aware Information Systems
(PAIS). Organisations in all sectors are becoming business process oriented,
where they rely and heavily depend on their process-aware systems. These
systems are now the backbone to control, administer and enact all core
business activities.

However, existing BPM methodologies barely consider information se-
curity requirements and policies. Business processes and information se-
curity requirements are dealt with separately and often do not follow a
coherent strategy, e.g. information security considerations are typically
overlooked in business process models. It is however crucial to ensure the
security of corporate business processes for the success of an organisation,
as failure to follow security policies is no longer an option.

Moreover, business processes in large organisations such as airports
usually run across multiple systems, where each system has its own policy
and its own access control restrictions. In managing complex organisations
such as airports a lot of the integration of these policies happens in the mind
of expert employees, which makes the organisation heavily dependent on
such employees and subject to human error. Therefore, it is important
to provide a method of integrating security restrictions and access control
into the business processes.

137

138

Aim

The aim of this case study is to collect relevant information by interview-
ing experts and stakeholders to be able to build a real-life case scenario,
which can be used to understand how business processes are executed in
real-life security sensitive organisations. It will also show how business
processes run across multiple systems and deal with di↵erent authorisation
management policies.

Methodology

After recognising the problem, an organisation with a complex, and security-
sensitive environment (which is a partner of the Airports of the Future
Project) was approached to build a case study from their environment,
demonstrating the existence of the problem. The organisation was chosen,
because it exists in a complex environment, where business processes runs
across multiple systems, besides being a partner to the project. Moreover,
it is a perfect example where security is an important aspect as well as the
use of business processes.

Specific processes were chosen to investigate, where they show the com-
plexity of the environment, and run across multiple systems. Processes
were diverse, where some require more physical access and others are more
logical access. Some are processes that happen everyday, where others are
maintenance.

Several interviews were done with personnel who are directly related
to the processes in this case study. Processes were chosen and specific
questions were developed before having the meetings. After building the
processes and stating the access control policies from the gathered infor-
mation, the same people were asked to validate the output and notify of
any errors or inconsistencies.

Choosing the process

Based on the criteria identified earlier on choosing the business process
(show the complexity of the environment, run across multiple systems, and
includes sensitive access control requirements), and after long discussions
with the representative of this organisation, three operations were chosen
to be investigated and designed as business processes. They are: ‘fixing a
pump malfunction’, ‘baggage handling’, and ‘getting physical access clear-
ance’.

Case study 139

Targeted interviewees

As the three chosen processes are operational and deal with the assets and
systems of the organisation, and because access control is our focus the
following were the target to conduct the interviews with them:

• Building facilities assets manager

• Operational manager

• Security compliance manager

Interviews

Interviews were conducted separately with few days between each interview
and the other. They were conducted in the o�ces of each interviewee to
be close to the systems they deal with everyday.

A set of questions were developed to be asked during the interview.
The following are the questions that were asked during each interview.

Pump malfunction process:

1. How is a pump malfunction detected ?

2. If a pump malfunction is detected what are the steps to fix the mal-
function ?

3. Who are the people involved in the process ?

4. What are the roles of the people involved ?

5. What is the role hierarchy of these roles (chain of command) ?

6. What are the systems involved in this process and who is responsible
of these systems ?

7. What kind of information security concerns do you have in relation
to this process ?

8. Are there any access control restrictions related to systems involved
in this process ?

Baggage handling process:

1. What are the steps for a normal bag to travel from customer to the
airplane ?

2. Who are the people involved in the process ?

3. What are the roles of the people involved ?

4. What is the role hierarchy of these roles (chain of command) ?

140

5. What are the systems involved in this process and who is responsible
of these systems ?

6. What kind of information security concerns do you have in relation
to this process ?

7. Are there any access control restrictions related to systems involved
in this process ?

Getting physical access clearance:

1. Who are the people involved in the previous processes, and how do
they get clearance ?

2. What is the process of getting ID ?

3. What is the process of getting authorisation ?

4. Is authorisation temporal or permanent ?

5. If a user is authorised to perform a task, is he allowed to do it any-
time? or are there some extra time-based restrictions ?

Conclusion

After conducting the interviews enough data was gathered to design the
three business processes. After that the process models were presented
to the same stakeholders and experts to validate that the process models
are describing the exact process. The feedback was taken, and the final
exact process for each operation was presented in the corresponding process
model.

The results of the case study showed that business processes do not
consider access control although they are closely related. It showed three
di↵erent processes from a complex environment and how each process deals
with di↵erent types of access controls along the execution of the process.
Each example showed how the business process is represented, and that
there are some access control policies that need to be followed which are
not visible nor known to people executing the business process.

The results of the the case study work included the three business
process models and the access control requirements associated with each
process. However in this thesis only the process of ‘fixing a pump mal-
function’ was used. This process was chosen after discussing the three
processes and their details with the research team. The process of fixing
the pump malfunction was found to be the most relevant and the one with
more complexity and more access control requirements.

	Introduction
	Research Area
	Problem
	Aims and Objectives
	Approach
	Contributions
	Thesis Layout

	Background
	Business Process Management
	Process Aware Information Systems
	YAWL : a BPMS
	Declarative Workflow

	Information Security
	Authorisation Policy Languages
	Access Control

	Information Security and Business Process
	Summary

	Authorisation Management for Business Processes: Characteristics Analysis and Literature Review
	Example Scenario
	Characteristics Analysis
	Authorisation Model Characteristics
	Authorisation Policy Language Characteristics

	Authorisation Management for BPM: Literature Review
	Authorisation Models for BPM
	Authorisation Policy Languages for Business Processes

	Summary

	Business Process Task-Role-Based Access Control Model (BP-TRBAC)
	BP-TRBAC
	Conceptualisation
	ORM
	BP-TRBAC ORM Model

	Formal Representation
	Roles, Users, and Permissions
	Task and Task-instance
	Active Access Control
	Separation of Duties
	Instance-level Restrictions

	Example Scenario Revisited
	Discussion
	Review
	Conclusion

	SPCC for YAWL: a Use-Case of the BP-TRBAC
	YAWL
	YAWL Engine
	YAWL Resource Service
	YAWL Editor
	The Problem

	SPCC
	Architecture
	Software
	Data Structure
	Flowchart

	SPCC Implementation in YAWL
	YAWL Plug-in Interface
	Architecture
	Interface

	Results and Discussion
	Conclusion

	BP-XACML
	BP-XACML: Policy Structure
	Request and Decision
	Policy Sets
	Conditions

	BP-XACML: Policy Model
	Authorities and Repositories
	Access Control
	Policy Framework

	BP-XACML: Policy Semantics
	Users, Roles, Operations, and Permissions
	Task and Task instances
	SoD on Role Level
	Instance-level Restrictions (IR)

	Example Access Control policies
	Discussion
	Conclusion

	Conclusion and Future Directions
	Summary of Outcomes and Objectives
	Future Research Direction
	BP-TRBAC
	SPCC
	BP-XACML
	Building Information Models

	Concluding Remarks

	Appendix A: Case study

