
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Abbasi-Yadkori, Yasin, Bartlett, Peter L., & Malek, Alan
(2014)
Linear programming for large-scale Markov decision problems. In
Xing, E. & Jebara, T. (Eds.)
JMLR Workshop and Conference Proceedings, MIT Press, Beijing, China,
pp. 496-504.

This file was downloaded from: http://eprints.qut.edu.au/88857/

c© Copyright 2014 [Please consult the author]

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://jmlr.org/proceedings/papers/v32/malek14.pdf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/33503449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Abbasi-Yadkori,_Yasin.html
http://eprints.qut.edu.au/view/person/Bartlett,_Peter.html
http://eprints.qut.edu.au/88857/
http://jmlr.org/proceedings/papers/v32/malek14.pdf

Linear Programming for Large-Scale Markov Decision Problems

Yasin Abbasi-Yadkori YASIN.ABBASIYADKORI@QUT.EDU.AU

Queensland University of Technology, Brisbane, QLD, Australia 4000

Peter L. Bartlett BARTLETT@EECS.BERKELEY.EDU

University of California, Berkeley, CA 94720
and Queensland University of Technology, Brisbane, QLD, Australia 4000

Alan Malek MALEK@EECS.BERKELEY.EDU

University of California, Berkeley, CA 94720

Abstract
We consider the problem of controlling a Markov
decision process (MDP) with a large state space,
so as to minimize average cost. Since it is in-
tractable to compete with the optimal policy for
large scale problems, we pursue the more modest
goal of competing with a low-dimensional fam-
ily of policies. We use the dual linear program-
ming formulation of the MDP average cost prob-
lem, in which the variable is a stationary distri-
bution over state-action pairs, and we consider a
neighborhood of a low-dimensional subset of the
set of stationary distributions (defined in terms
of state-action features) as the comparison class.
We propose a technique based on stochastic con-
vex optimization and give bounds that show that
the performance of our algorithm approaches the
best achievable by any policy in the comparison
class. Most importantly, this result depends on
the size of the comparison class, but not on the
size of the state space. Preliminary experiments
show the effectiveness of the proposed algorithm
in a queuing application.

1. Introduction
We study the average loss Markov decision process prob-
lem. The problem is well-understood when the state and
action spaces are small (Bertsekas, 2007). Dynamic pro-
gramming (DP) algorithms, such as value iteration (Bell-
man, 1957) and policy iteration (Howard, 1960), are stan-

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

dard techniques to compute the optimal policy. In large
state space problems, exact DP is not feasible as the com-
putational complexity scales quadratically with the number
of states.

A popular approach to large-scale problems is to restrict
the search to the linear span of a small number of features.
The objective is to compete with the best solution within
this comparison class. Two popular methods are Approxi-
mate Dynamic Programming (ADP) and Approximate Lin-
ear Programming (ALP). This paper focuses on ALP. For
a survey on theoretical results for ADP see (Bertsekas and
Tsitsiklis, 1996; Sutton and Barto, 1998), (Bertsekas, 2007,
Vol. 2, Chapter 6), and more recent papers (Sutton et al.,
2009b;a; Maei et al., 2009; 2010).

Our aim is to develop methods that find policies with per-
formance guaranteed to be close to the best in the compar-
ison class but with computational complexity that does not
grow with the size of the state space. All prior work on
ALP either scales badly or requires access to samples from
a distribution that depends on the optimal policy.

This paper proposes a new algorithm to solve the Approxi-
mate Linear Programming problem that is computationally
efficient and does not require knowledge of the optimal pol-
icy. In particular, we introduce new proof techniques and
tools for average cost MDP problems and use these tech-
niques to derive a reduction to stochastic convex optimiza-
tion with accompanying error bounds.

1.1. Notation

Let X and A be positive integers. Let X = {1, 2, . . . , X}
and A = {1, 2, . . . , A} be state and action spaces, respec-
tively. Let ∆S denote probability distributions over set S.
A policy π is a map from the state space to ∆A: π : X →
∆A. We use π(a|x) to denote the probability of choosing
action a in state x under policy π. A transition probability

Linear Programming for Large-Scale Markov Decision Problems

kernel (or transition kernel) P : X ×A → ∆X maps from
the direct product of the state and action spaces to ∆X . Let
Pπ denote the probability transition kernel under policy π.
A loss function is a bounded real-valued function over state
and action spaces, ` : X × A → [0, 1]. Let Mi,: and M:,j

denote ith row and jth column of matrix M respectively.
Let ‖v‖1,c =

∑
i ci |vi| and ‖v‖∞,c = maxi ci |vi| for a

positive vector c. We use 1 and 0 to denote vectors with all
elements equal to one and zero, respectively. We use ∧ and
∨ to denote the minimum and the maximum, respectively.
For vectors v andw, v ≤ w means element-wise inequality,
i.e. vi ≤ wi for all i.

1.2. Linear Programming Approach to Markov
Decision Problems

Under certain assumptions, there exist a scalar λ∗ and a
vector h∗ ∈ RX that satisfy the Bellman optimality equa-
tions for average loss problems,

λ∗ + h∗(x) = min
a∈A

[
`(x, a) +

∑
x′∈X

P(x,a),x′h∗(x
′)

]
.

The scalar λ∗ is called the optimal average loss, while the
vector h∗ is called a differential value function. The action
that minimizes the right-hand side of the above equation is
the optimal action in state x and is denoted by a∗(x). The
optimal policy is defined by π∗(a∗(x)|x) = 1. Given `
and P , the objective of the planner is to compute the opti-
mal action in all states, or equivalently, to find the optimal
policy.

The MDP problem can also be stated in the LP formula-
tion (Manne, 1960),

max
λ,h

λ , (1)

s.t. B(λ1 + h) ≤ `+ Ph ,

whereB ∈ {0, 1}XA×X is a binary matrix such that the ith
column hasA ones in rows 1+(i−1)A to iA. Let vπ be the
stationary distribution under policy π and let µπ(x, a) =
vπ(x)π(a|x). We can write

π∗ = argmin
π

∑
x∈X

vπ(x)
∑
a∈A

π(a|x)`(x, a)

= argmin
π

∑
(x,a)∈X×A

µπ(x, a)`(x, a)

= argmin
π

µ>π ` .

In fact, the dual of LP (1) has the form of

min
µ∈RXA

µ>` , (2)

s.t. µ>1 = 1, µ ≥ 0, µ>(P −B) = 0 .

The objective function, µ>`, is the average loss under sta-
tionary distribution µ. The first two constraints ensure
that µ is a probability distribution over state-action space,
while the last constraint ensures that µ is a stationary dis-
tribution. Given a solution µ, we can obtain a policy via
π(a|x) = µ(x, a)/

∑
a′∈A µ(x, a′).

1.3. Approximations for Large State Spaces

The LP formulations (1) and (2) are not practical for large
scale problems as the number of variables and constraints
grows linearly with the number of states. Schweitzer
and Seidmann (1985) propose approximate linear program-
ming (ALP) formulations. These methods were later im-
proved by de Farias and Van Roy (2003a;b); Hauskrecht
and Kveton (2003); Guestrin et al. (2004); Petrik and Zil-
berstein (2009); Desai et al. (2012). As noted by Desai
et al. (2012), the prior work on ALP either requires access
to samples from a distribution that depends on the optimal
policy or assumes the ability to solve an LP with as many
constraints as states. (See Appendix A for a more detailed
discussion.) Our objective is to design algorithms for very
large MDPs that do not require knowledge of the optimal
policy.

In contrast to the aforementioned methods, which solve the
primal ALPs (with value functions as variables), we work
with the dual form (2) (with stationary distributions as vari-
ables). Analogous to ALPs, we control the complexity by
limiting our search to a linear subspace defined by a small
number of features. Let d be the number of features and Φ
be a (XA)× d matrix with features as column vectors. By
adding the constraint µ = Φθ, we get

min
θ
θ>Φ>` ,

s.t. θ>Φ>1 = 1, Φθ ≥ 0, θ>Φ>(P −B) = 0 .

If a stationary distribution µ0 is known, it can be added to
the linear span to get the ALP

min
θ

(µ0 + Φθ)>` , (3)

s.t. (µ0 + Φθ)>1 = 1, µ0 + Φθ ≥ 0,

(µ0 + Φθ)>(P −B) = 0 .

Although µ0 + Φθ might not be a stationary distribution, it
still defines a policy1

πθ(a|x) =
[µ0(x, a) + Φ(x,a),:θ]+∑
a′ [µ0(x, a′) + Φ(x,a′),:θ]+

, (4)

We denote the stationary distribution of this policy µθ,
which is only equal to µ0 + Φθ if θ is in the feasible set.

1We use the notation [v]− = v ∧ 0 and [v]+ = v ∨ 0.

Linear Programming for Large-Scale Markov Decision Problems

1.4. Problem definition

With the above notation, we can now be explicit about the
problem we are solving.

Definition 1 (Efficient Large-Scale Dual ALP). For an
MDP specified by ` and P , a feature matrix Φ and a sta-
tionary distribution µ0, the efficient large-scale dual ALP
problem is to produce parameters θ̂ such

µ>
θ̂
` ≤ min

{
µ>θ ` : θ feasible for (3)

}
+O(ε) (5)

in time polynomial in d and 1/ε. The model of computation
allows access to arbitrary entries of Φ, `, P , µ0, P>Φ, and
1>Φ in unit time.

Importantly, the computational complexity cannot scale
with X and we do not assume any knowledge of the op-
timal policy. In fact, as we shall see, we solve a harder
problem, which we define as follows.

Definition 2 (Expanded Efficient Large-Scale Dual ALP).
Let V : <d → <+ be some “violation function” that rep-
resents how far µ0 + Φθ is from a valid stationary dis-
tribution, satisfying V (θ) = 0 if θ is a feasible point for
the ALP (3). The expanded efficient large-scale dual ALP
problem is to produce parameters θ̂ such that

µ>
θ̂
` ≤ min

{
µ>θ `+

1

ε
V (θ) : θ ∈ <d

}
+O(ε), (6)

in time polynomial in d and 1/ε, under the same model of
computation as in Definition 1.

Note that the expanded problem is strictly more general as
guarantee (6) implies guarantee (5). Also, many feature
vectors Φ may not admit any feasible points. In this case,
the dual ALP problem is trivial, but the expanded problem
is still meaningful.

Having access to arbitrary entries of the quantities in Defi-
nition 1 arises naturally in many situations. In many cases,
entries of P>Φ are easy to compute. For example, suppose
that for any state x′ there is a small number of state-action
pairs (x, a) such that P (x′|x, a) > 0. Consider Tetris; al-
though the number of board configurations is large, each
state has a small number of possible neighbors. Dynam-
ics specified by graphical models with small connectivity
also satisfy this constraint. Computing entries of P>Φ is
also feasible given reasonable features. If a feature ϕi is
a stationary distribution, then P>ϕi = B>ϕi. Otherwise,
it is our prerogative to design sparse feature vectors, hence
making the multiplication easy. We shall see an example of
this setting later.

1.5. Our Contributions

In this paper, we introduce an algorithm that solves the
expanded efficient large-scale dual ALP problem under a

(standard) assumption that any policy converges quickly
to its stationary distribution. Our algorithm take as in-
put a constant S and an error tolerance ε, and has ac-
cess to the various quantities listed in Definition 1. Define
Θ = {θ : θ>Φ>1 = 1−µ>0 1, ‖θ‖ ≤ S}. If no stationary
distribution is known, we can simply choose µ0 = 0. The
algorithm is based on stochastic convex optimization. We
prove that for any δ ∈ (0, 1), after O(1/ε4) steps of gradi-
ent descent, the algorithm finds a vector θ̂ ∈ Θ such that,
with probability at least 1− δ,

µ>
θ̂
` ≤µ>θ `+O

(
1

ε
‖[µ0 + Φθ]−‖1

)
+O

(
1

ε

∥∥(P −B)>(µ0 + Φθ)
∥∥

1

)
+O(ε log(1/δ))

holds for all θ ∈ Θ; i.e., we solve the expanded problem
for V (θ) bounded by a constant times the L1 error of the
violation. The second and third terms are zero for feasible
points (points in the intersection of the feasible set of LP (2)
and the span of the features). For points outside the feasible
set, these terms measure the extent of constraint violations
for the vector µ0 +Φθ, which indicates how well stationary
distributions can be represented by the chosen features.

2. A Reduction to Stochastic Convex
Optimization

In this section, we describe our algorithm as a reduction
from Markov decision problems to stochastic convex op-
timization. The main idea is to convert the ALP (3) into
an unconstrained optimization over Θ by adding a func-
tion of the constraint violations to the objective, then run
stochastic gradient descent with unbiased estimated of the
gradient.

For a positive constant H , form the following convex cost
function by adding a multiple of the total constraint viola-
tions to the objective of the LP (3):

c(θ) = `>(µ0 + Φθ) +H ‖[µ0 + Φθ]−‖1
+H

∥∥(P −B)>(µ0 + Φθ)
∥∥

1

= `>(µ0 + Φθ) +H ‖[µ0 + Φθ]−‖1
+H

∥∥(P −B)>Φθ
∥∥

1

= `>(µ0 + Φθ) +H
∑
(x,a)

∣∣[µ0(x, a) + Φ(x,a),:θ]−
∣∣

+H
∑
x′

∣∣(P −B)>:,x′Φθ
∣∣ .

(7)

We justify using this surrogate loss as follows. Sup-
pose we find a near optimal vector θ̂ such that c(θ̂) ≤
minθ∈Θ c(θ) +O(ε). We will prove

Linear Programming for Large-Scale Markov Decision Problems

1. that
∥∥∥[µ0 + Φθ̂]−

∥∥∥
1

and
∥∥∥(P −B)>(µ0 + Φθ̂)

∥∥∥
1

are

small and µ0 + Φθ̂ is close to µθ̂ (by Lemma 2 in
Section 2.1), and

2. that `>(µ0 + Φθ̂) ≤ minθ∈Θ c(θ) +O(ε).

As we will show, these two facts imply that with high prob-
ability, for any θ ∈ Θ,

µ>
θ̂
` ≤ µ>θ `+O

(
1

ε
‖[µ0 + Φθ]−‖1

)
+O

(
1

ε

∥∥(P −B)>(µ0 + Φθ)
∥∥

1

)
+O(ε) ,

which is to say that minimization of c(θ) solves the ex-
tended efficient large-scale ALP problem.

Unfortunately, calculating the gradients of c(θ) is O(XA).
Instead, we construct unbiased estimators and use stochas-
tic gradient descent. Let T be the number of iterations of
our algorithm. Let q1 and q2 be distributions over the state-
action and state space, respectively (we will later discuss
how to choose them). Let ((xt, at))t=1...T be i.i.d. sam-
ples from q1 and (x′t)t=1...T be i.i.d. samples from q2. At
round t, the algorithm estimates subgradient∇c(θ) by

gt(θ) = `>Φ−H
Φ(xt,at),:

q1(xt, at)
I{µ0(xt,at)+Φ(xt,at),:

θ<0}

(8)

+H
(P −B)>:,x′t

Φ

q2(x′t)
s((P −B)>:,x′tΦθ).

This estimate is fed to the projected subgradient method,
which in turn generates a vector θt. After T rounds, we
average vectors (θt)t=1...T and obtain the final solution
θ̂T =

∑T
t=1 θt/T . Vector µ0 + Φθ̂T defines a policy,

which in turn defines a stationary distribution µθ̂T .2 The
algorithm is shown in Figure 1.

2.1. Analysis

In this section, we state and prove our main result, The-
orem 1. We begin with a discussion of the assumptions
we make then follow with the main theorem. We break
the proof into two main ingredients. First, we demonstrate
that a good approximation to the surrogate loss gives a fea-
ture vector that is almost a stationary distribution; this is
Lemma 2. Second, we justify the use of unbiased gradients

2Recall that µθ is the stationary distribution of policy

πθ(a|x) =
[µ0(x, a) + Φ(x,a),:θ]+∑
a′ [µ0(x, a′) + Φ(x,a′),:θ]+

.

With an abuse of notation, we use µθ to denote policy πθ as well.

Input: Constant S > 0, number of rounds T , constant
H .
Let ΠΘ be the Euclidean projection onto Θ.
Initialize θ1 = 0.
for t := 1, 2, . . . , T do

Sample (xt, at) ∼ q1 and x′t ∼ q2.
Compute subgradient estimate gt (8).
Update θt+1 = ΠΘ(θt − ηtgt).

end for
θ̂T = 1

T

∑T
t=1 θt.

Return policy πθ̂T .

Figure 1. The Stochastic Subgradient Method for Markov Deci-
sion Processes

in Theorem 3 and Lemma 5. The section concludes with
the proof of Theorem 1.

We make a mixing assumption on the MDP so that any
policy quickly converges to its stationary distribution.

Assumption A1 (Fast Mixing) Let Mπ be a X ×
(XA) matrix that encodes policy π,Mπ

(i,(i−1)A+1)-(i,iA) =

π(·|xi). Other entries of this matrix are zero. For any
policy π, there exists a constant τ(π) > 0 such that
for all distributions d and d′ over the state-action space,
‖dPMπ − d′PMπ‖1 ≤ e−1/τ(π) ‖d− d′‖1.

Further, we assume columns of the feature matrix Φ are
positive and sum to one. Define

C1 = max
(x,a)∈X×A

∥∥Φ(x,a),:

∥∥
q1(x, a)

,

C2 = max
x∈X

∥∥(P −B)>:,xΦ
∥∥

q2(x)
.

These constants appear in our performance bounds. So we
would like to choose distributions q1 and q2 such that C1

and C2 are small. For example, if there is C ′ > 0 such
that for any (x, a) and i, Φ(x,a),i ≤ C ′/(XA) and each
column of P has only N non-zero elements, then we can
simply choose q1 and q2 to be uniform distributions. Then
it is easy to see that∥∥Φ(x,a),:

∥∥
q1(x, a)

≤ C ′ ,
∥∥(P −B)>:,xΦ

∥∥
q2(x)

≤ C ′(N +A) .

As another example, if Φ:,i are exponential distributions
and feature values at neighboring states are close to each
other, then we can choose q1 and q2 to be appropriate
exponential distributions so that

∥∥Φ(x,a),:

∥∥ /q1(x, a) and∥∥(P −B)>:,xΦ
∥∥ /q2(x) are always bounded. Another ex-

ample is when there exists a constant C ′′ > 0 such

Linear Programming for Large-Scale Markov Decision Problems

that,3 for any x,
∥∥P>:,xΦ

∥∥ / ∥∥B>:,xΦ
∥∥ < C ′′ and we have

access to an efficient algorithm that computes Z1 =∑
(x,a)

∥∥Φ(x,a),:

∥∥ and Z2 =
∑
x

∥∥B>:,xΦ
∥∥ and can sample

from q1(x, a) =
∥∥Φ(x,a),:

∥∥ /Z1 and q2(x) =
∥∥B>:,xΦ

∥∥ /Z2.
In what follows, we assume that appropriate distributions
q1 and q2 are known.

We now state the main theorem.

Theorem 1. Consider an expanded efficient large-scale
dual ALP problem, with violation function V = O(V1 +
V2), defined by

V1(θ) = ‖[µ0 + Φθ]−‖1
V2(θ) =

∥∥(P −B)>(µ0 + Φθ)
∥∥

1
.

Assume τ := sup{τ(µθ) : θ ∈ Θ} < ∞ is finite. Sup-
pose we apply the stochastic subgradient method (shown
in Figure 1) to the problem. Let ε ∈ (0, 1). Let T = 1/ε4

be the number of rounds and H = 1/ε be the constraints
multiplier in the subgradient estimate (8). Let θ̂T be the
output of the stochastic subgradient method after T rounds
and let the learning rate be ηt = S/(G′

√
T), where

G′ =
√
d + H(C1 + C2). Then, for any δ ∈ (0, 1), with

probability at least 1− δ,

µ>
θ̂T
` ≤ min

θ∈Θ

(
µ>θ `+O

(
1

ε
(V1(θ) + V2(θ))

)
+O(ε)

)
,

(9)
where the constants hidden in the big-O notation are poly-
nomials in S, d, C1, C2, and log(1/δ).

The functions V1 and V2 are bounded by small constants
for any set of normalized features: for any θ ∈ Θ,

V1(θ) ≤ ‖µ0‖1 + ‖Φθ‖1
≤ 1 +

∑
(x,a)

∣∣Φ(x,a),:θ
∣∣ ≤ 1 + S

√
d ,

where the last step follows from the fact that columns of Φ
are probability distributions. Further,

V2(θ) ≤
∑
x′

∣∣P>:,x′(µ0 + Φθ)
∣∣+
∑
x′

∣∣B>:,x′(µ0 + Φθ)
∣∣

≤
∑
x′

P>:,x′ |µ0 + Φθ|+
∑
x′

B>:,x′ |µ0 + Φθ|

= 21> |µ0 + Φθ|
≤ 21> (|µ0|+ |Φθ|)

≤ 2(1 + S
√
d) .

Thus V1 and V2 can be small given a carefully designed set
of features.

3This condition requires that columns of Φ are close to their
one step look-ahead.

The optimal choice for ε is ε =
√
V1(θ∗) + V2(θ∗), where

θ∗ is the minimizer of the RHS of (9). Thus, the optimized
error bound scales like O(

√
V1(θ∗) + V2(θ∗)). Unfortu-

nately, θ∗ is not known in advance. To partially alleviate
the problem, once we obtain θ̂T , we can estimate V1(θ̂T)

and V2(θ̂T) and use input ε =

√
V1(θ̂T) + V2(θ̂T) in a

second run of the algorithm.

The next lemma, providing the first ingredient of the proof,
shows how the amount of constraint violation of a vector θ
shifts the resulting stationary distribution µθ.
Lemma 2. Let u ∈ RXA be a vector. Assume∑
x,a

u(x, a) = 1, ‖[u]−‖1 ≤ ε′,
∥∥u>(P −B)

∥∥
1
≤ ε′′.

The vector [u]+/ ‖[u]+‖1 defines a policy, which in turn
defines a stationary distribution µu. We have that

‖µu − u‖1 ≤ (τ(µu) log(1/(2ε′ + ε′′)) + 2)(2ε′ + ε′′) .

Proof. Define h = [u]+/ ‖[u]+‖1. We first show that h is
almost a stationary distribution, in the sense that∥∥h>(P −B)

∥∥
1
≤ 2ε′ + ε′′ . (10)

To see this, notice that the first assumption is equivalent to
‖[u]+‖1 − ‖[u]−‖1 = 1, so

∥∥h>(P −B)
∥∥

1
is equal to∥∥∥∥ [u]>+

‖[u]+‖1
(P −B)

∥∥∥∥
1

=

∥∥(u− [u]−)>(P −B)
∥∥

1

1 + ‖[u]−‖1
≤
∥∥u>(P −B)

∥∥
1

+
∥∥[u]>−(P −B)

∥∥
1

≤ ε′′ + ‖[u]−‖1
∥∥(P −B)>

∥∥
1

≤ ε′′ + 2ε′,

because the linear maps defined by P and B have operator
norms (corresponding to the 1-norm) bounded by 1. Next,
notice that

‖h− u‖1 ≤ ‖h− [u]+‖1 + ‖[u]+ − u‖1
= ‖[u]−‖1 + ‖[u]−‖1 ≤ 2ε′.

Next we bound ‖µh − h‖1. Let ν0 = h be the initial state-
action distribution. We will show that as we run policy h
(equivalently, policy µh), the state-action distribution con-
verges to µh and this vector is close to h. From (10), we
have ν>0 P = h>B + v0, where v0 is such that ‖v0‖1 ≤
2ε′ + ε′′. Let Mh be the X × (XA) matrix that encodes
policy h, via Mh

(i,(i−1)A+1)-(i,iA) = h(·|x = i). Other
entries of this matrix are zero. Define the state-action dis-
tribution after running policy h for one step as

ν>1 := h>PMh = (h>B + v0)Mh

= h>BMh + v0M
h = h> + v0M

h .

Linear Programming for Large-Scale Markov Decision Problems

Let v1 = v0M
hP = v0P

h and notice that ‖v1‖1 =∥∥Ph>v>0 ∥∥1
≤ ‖v0‖1 ≤ 2ε′ + ε′′. Thus,

ν>2 = ν>1 PM
h = h> + (v0 + v1)Mh.

By repeating this argument for k rounds, we get that

ν>k = h> + (v0 + v1 + · · ·+ vk−1)Mh.

Since the operator norm of Mh is no more than 1,∥∥(v0 + v1 + · · ·+ vk−1)Mh
∥∥

1
≤
∑k−1
i=0 ‖vi‖1 ≤ k(2ε′ +

ε′′). Thus, ‖νk − h‖1 ≤ k(2ε′ + ε′′). Now, since νk is
the state-action distribution after k rounds of policy µh,
by the mixing assumption, ‖νk − µh‖1 ≤ 2e−k/τ(h). By
the choice of k = τ(h) log(1/(2ε′ + ε′′)), we get that
‖µh − h‖1 ≤ (τ(h) log(1/(2ε′ + ε′′)) + 2)(2ε′ + ε′′).

The second ingredient is the validity of using estimates of
the subgradients. We assume access to estimates of the sub-
gradient of a convex cost function. Error bounds can be
obtained from results in the stochastic convex optimization
literature; the following theorem, a high-probability ver-
sion of Lemma 3.1 of Flaxman et al. (2005) for stochastic
convex optimization, is sufficient. The proof can be found
in Appendix B.

Theorem 3. Let Z be a positive constant and Z be a
bounded convex subset of Rd such that for any z ∈ Z ,
‖z‖ ≤ Z. Let (ft)t=1,2,...,T be a sequence of real-valued
convex cost functions defined over Z . Let z1, z2, . . . , zT ∈
Z be defined by z1 = 0 and zt+1 = ΠZ(zt − ηf ′t), where
ΠZ is the Euclidean projection onto Z , η > 0 is a learning
rate, and f ′1, . . . , f

′
T are unbiased subgradient estimates

such that E [f ′t |zt] = ∇f(zt) and ‖f ′t‖ ≤ F for some
F > 0. Then, for η = Z/(F

√
T), for any δ ∈ (0, 1),

with probability at least 1− δ,

T∑
t=1

ft(zt)−min
z∈Z

T∑
t=1

ft(z) ≤ ZF
√
T (11)

+

√
(1 + 4Z2T)

(
2 log

1

δ
+ d log

(
1 +

Z2T

d

))
.

Remark 4. LetBT denote the RHS of (11). If all cost func-
tions are equal to f , then by convexity of f and an applica-
tion of Jensen’s inequality, we obtain that f(

∑T
t=1 zt/T)−

minz∈Z f(z) ≤ BT /T .

As the next lemma shows, Theorem 3 can be applied in our
problem to optimize the cost function c. The proof can be
found in Appendix B.

Lemma 5. Under the same conditions as in Theorem 1, we

have that for any δ ∈ (0, 1), with probability at least 1− δ,

c(θ̂T)−min
θ∈Θ

c(θ) ≤ SG′√
T

(12)

+

√
1 + 4S2T

T 2

(
2 log

1

δ
+ d log

(
1 +

S2T

d

))
.

With both ingredients in place, we can prove our main re-
sult.

Proof of Theorem 1. Let bT be the RHS of (12). Lemma 5
implies that with high probability for any θ ∈ Θ,

`>(µ0 + Φθ̂T) +H V1(θ̂T) +H V2(θ̂T) ≤ `>(µ0 + Φθ)

+H V1(θ) +H V2(θ) + bT . (13)

From (13), we get that

V1(θ̂T) ≤ 1

H

(
2(1 + S

√
d) +H V1(θ) +H V2(θ) + bT

)
def
= ε′ , (14)

V2(θ̂T) ≤ 1

H

(
2(1 + S

√
d) +H V1(θ) +H V2(θ) + bT

)
def
= ε′′ . (15)

Inequalities (14) and (15) and Lemma 2 give the following
bound:∣∣∣µ>

θ̂T
`− (µ0 + Φθ̂T)>`

∣∣∣ ≤
(τ(µθ̂T) log(1/(2ε′ + ε′′)) + 2)(2ε′ + ε′′) . (16)

From (13) we also have

`>(µ0 +Φθ̂T) ≤ `>(µ0 +Φθ)+H V1(θ)+H V2(θ)+bT ,

which, together with (16) and Lemma 2, gives the final re-
sult:

µ>
θ̂T
` ≤ `>(µ0 + Φθ) +H V1(θ) +H V2(θ) + bT

+ (τ(µθ̂T) log(1/(2ε′ + ε′′)) + 2)(2ε′ + ε′′)

≤ µ>θ `+H V1(θ) +H V2(θ) + bT

+ (τ(µθ̂T) log(1/(2ε′ + ε′′)) + 2)(2ε′ + ε′′)

+ (τ(µθ) log(1/(2V1(θ) + V2(θ))))

× (2V1(θ) + V2(θ)) .

Recall that bT = O(H/
√
T). Because H = 1/ε and T =

1/ε4, we get that with high probability, for any θ ∈ Θ,
µ>
θ̂T
` ≤ µ>θ `+O

(
1
ε (V1(θ) + V2(θ))

)
+O(ε).

Linear Programming for Large-Scale Markov Decision Problems

Let’s compare Theorem 1 with results of de Farias and Van
Roy (2006). Their approach is to relate the original MDP
to a perturbed version4 and then analyze the corresponding
ALP. (See Appendix A for more details.) Let Ψ be a feature
matrix that is used to estimate value functions. Recall that
λ∗ is the average loss of the optimal policy and λw is the
average loss of the greedy policy with respect to value func-
tion Ψw. Let h∗γ be the differential value function when the
restart probability in the perturbed MDP is 1− γ. For vec-
tor v and positive vector u, define the weighted maximum
norm ‖v‖∞,u = maxx u(x) |v(x)|. de Farias and Van Roy
(2006) prove that for appropriate constants C,C ′ > 0 and
weight vector u,

λw∗ − λ∗ ≤
C

1− γ
min
w

∥∥h∗γ −Ψw
∥∥
∞,u + C ′(1− γ) .

(17)
This bound has similarities to bound (9): tightness of both
bounds depends on the quality of feature vectors in repre-
senting the relevant quantities (stationary distributions in
(9) and value functions in (17)). Once again, we empha-
size that the algorithm proposed by de Farias and Van Roy
(2006) is computationally expensive and requires access to
a distribution that depends on optimal policy.

Remark 6. In our algorithm, we estimate the subgradient
by sampling constraints of the LP. A natural question to ask
is if we can first sample constraints then exactly solve the
resulting LP. Analysis for such an algorithm is presented in
Appendix C. However the analysis requires stronger condi-
tions on the choice of feature vectors.

3. Experiments
In this section, we apply our algorithm to the four-
dimensional discrete-time queueing network illustrated in
Figure 3. This network has a relatively long history; see,
e.g. (Rybko and Stolyar, 1992) and more recently (de Farias
and Van Roy, 2003a) (c.f. Section 6.2). There are four
queues, µ1, . . . , µ4, each with state 0, . . . , B. Since the
cardinality of the state space isX = (1+B)4, even a mod-
est B results in huge state spaces. For time t, let Xt ∈ X
be the state and let si,t ∈ {0, 1}, i = 1, 2, 3, 4 denote the
actions. The value si,t = 1 indicates that queue i is be-
ing served. Server 1 only serves queue 1 or 4, server 2
only serves queue 2 or 3, and neither server can idle. Thus,
s1,t + s4,t = 1 and s2,t + s3,t = 1. The dynamics are de-
fined by the rate parameters a1, a3, d1, d2, d3, d4 ∈ (0, 1)
as follows. At each time t, the following random vari-
ables are sampled independently: A1,t ∼ Bernoulli(a1),
A3,t ∼ Bernoulli(a3), and Di,t ∼ Bernoulli(disi,t) for
i = 1, 2, 3, 4. Using e1, . . . , e4 to denote the standard basis

4In a perturbed MDP, the state process restarts with a certain
probability to a restart distribution. Such perturbed MDPs are
closely related to discounted MDPs.

vectors, the dynamics are:

X ′t+1 =Xt +A1,te1 +A3,te3

+D1,t(e2 − e1)−D2,te2

+D3,t(e4 − e3)−D4,te4,

and Xt+1 = max(0,min(B,X ′t+1)) (i.e. all four states
are thresholded from below by 0 and above by B). The
loss function is the total queue size: `(Xt) = ||Xt||1. We
compared our method against two common heuristics. In
the first, denoted LONGER, each server operates on the
queue that is longer with ties broken uniformly at random
(e.g. if queue 1 and 4 had the same size, they are equally
likely to be served). In the second, denoted LBFS (last
buffer first served), the downstream queues always have
priority (server 1 will serve queue 4 unless it has length
0, and server 2 will serve queue 2 unless it has length 0).
These heuristics are common and have been used an bench-
marks for queueing networks (e.g. (de Farias and Van Roy,
2003a)).

We used a1 = a3 = .08, d1 = d2 = .12, and d3 = d4 =
.28, and buffer sizes B1 = B4 = 38, B2 = B3 = 25
as the parameters of the network. The asymmetric size
was chosen because server 1 is the bottleneck and tends to
have longer queues. The first two features are the stationary
distributions corresponding to the two heuristics LONGER
and LBFS. We also included two types of features that do
not correspond to stationary distribution. For every interval
(0, 5], (6, 10], . . . , (45, 50] and action A, we added a fea-
ture ψ with ϕ(x, a) = 1 if `(x, a) is in the interval and
a = A. To define the second type, consider the three in-
tervals I1 = [0, 10], I2 = [11, 20], and I3 = [21, 25]. For
every 4-tuple of intervals (J1, J2, J3, J4) ∈ {I1, I2, I3}4
and actionA, we created a feature ψ with ψ(x, a) = 1 only
if xi ∈ Ji and a = A. Every feature was normalized to
sum to 1. In total, we had 372 features which is about a
104 reduction in dimension from the original problem.

To obtain a lower variance estimate of our gradient, we
sampled gt(θ) 1000 times and averaged (which is equiv-
alent to sampling 1000 i.i.d. constraints from both q1 and
q2). Rather than the fixed learning rate η considered in Sec-
tion 2, our learning rate began at 10−4 and halved every
2000 iterations. The results of the simulations are plot-
ted in Figure 3, where θ̂t denotes the running average of
θt. The left plot is of the LP objective, `>(µ0 + Φθ̂t).
The middle plot is of the sum of the constraint violations,∥∥∥[µ0 + Φθ̂t]−

∥∥∥
1

+
∥∥∥(P −B)>Φθ̂t

∥∥∥
1
. Thus, c(θ̂t) is a

scaled sum of the first two plots. Finally, the right plot
is of the average losses, `>µθ̂t and the two horizontal lines
correspond to the loss of the two heuristics, LONGER and
LBFS. The right plot demonstrates that, as predicted by
our theory, minimizing the surrogate loss c(θ) does lead
to lower average losses.

Linear Programming for Large-Scale Markov Decision Problems

µ1 µ2

µ3µ4

d1a1

d2 a3

d2

d4

server1 server2

Figure 2. The 4D queueing network. Customers arrive at queue µ1 or µ3 then are referred to queue µ2 or µ4, respectively. Server 1 can
either process queue 1 or 4, and server 2 can only process queue 2 or 3.

0 2000 4000 6000 8000
36

37

38

39

40

41

42
loss of running average

0 2000 4000 6000 8000
10

−2

10
−1

10
0

total constraint violation of running average

0 2000 4000 6000 8000
36

38

40

42

44

46

48

50

52
average loss of the running average policy

Figure 3. The left plot is of the linear objective of the running average, i.e. `>Φθ̂t. The center plot is the sum of the two constraint
violations of θ̂t, and the right plot is `>µ̃θ̂t (the average loss of the derived policy). The two horizontal lines correspond to the loss of
the two heuristics, LONGER and LBFS.

All previous algorithms (including (de Farias and Van Roy,
2003a)) work with value functions, while our algorithm
works with stationary distributions. Due to this difference,
we cannot use the same feature vectors to make a direct
comparison. The solution that we find in this different ap-
proximating set is comparable to the solution of de Farias
and Van Roy (2003a).

4. Conclusions
In this paper, we defined and solved the extended large-
scale efficient ALP problem. We proved that, under certain
assumptions about the dynamics, the stochastic subgradient
method produces a policy with average loss competitive to
all θ ∈ Θ, not not just all θ producing a stationary dis-
tribution. We demonstrated this algorithm on the Rybko-
Stoylar four-dimensional queueing network and recovered
a policy better than two common heuristics and compara-
ble to previous results on ALPs (de Farias and Van Roy,
2003a). A future direction is to find other interesting reg-
ularity conditions under which we can handle large-scale
MDP problems. We also plan to conduct more experiments
with challenging large-scale problems.

5. Acknowledgements
We gratefully acknowledge the support of the NSF through
grant CCF-1115788 and of the ARC through an Aus-
tralian Research Council Australian Laureate Fellowship
(FL110100281).

References
Y. Abbasi-Yadkori. Online Learning for Linearly

Parametrized Control Problems. PhD thesis, University
of Alberta, 2012.

R. Bellman. Dynamic Programming. Princeton University
Press, 1957.

D. P. Bertsekas. Dynamic Programming and Optimal Con-
trol. Athena Scientific, 2007.

D. P. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Program-
ming. Athena scientific optimization and computation
series. Athena Scientific, 1996.

G. Calafiore and M. C. Campi. Uncertain convex programs:
randomized solutions and confidence levels. Mathemat-
ical Programming, 102(1):25–46, 2005.

Linear Programming for Large-Scale Markov Decision Problems

M. C. Campi and S. Garatti. The exact feasibility of ran-
domized solutions of uncertain convex programs. SIAM
Journal on Optimization, 19(3):1211–1230, 2008.

D. P. de Farias and B. Van Roy. The linear programming
approach to approximate dynamic programming. Oper-
ations Research, 51, 2003a.

D. P. de Farias and B. Van Roy. Approximate linear pro-
gramming for average-cost dynamic programming. In
NIPS, 2003b.

D. P. de Farias and B. Van Roy. On constraint sampling
in the linear programming approach to approximate dy-
namic programming. Mathematics of Operations Re-
search, 29, 2004.

D. P. de Farias and B. Van Roy. A cost-shaping linear pro-
gram for average-cost approximate dynamic program-
ming with performance guarantees. Mathematics of Op-
erations Research, 31, 2006.

V. H. de la Peña, T. L. Lai, and Q-M. Shao. Self-normalized
processes: Limit theory and Statistical Applications.
Springer, 2009.

V. V. Desai, V. F. Farias, and C. C. Moallemi. Approximate
dynamic programming via a smoothed linear program.
Operations Research, 60(3):655–674, 2012.

A. D. Flaxman, A. T. Kalai, and H. B. McMahan. Online
convex optimization in the bandit setting: gradient de-
scent without a gradient. In SODA, 2005.

C. Guestrin, M. Hauskrecht, and B. Kveton. Solving fac-
tored mdps with continuous and discrete variables. In
UAI, 2004.

M. Hauskrecht and B. Kveton. Linear program approxima-
tions to factored continuous-state markov decision pro-
cesses. In NIPS, 2003.

R. A. Howard. Dynamic Programming and Markov Pro-
cesses. MIT, 1960.

H. R. Maei, Cs. Szepesvári, S. Bhatnagar, D. Precup,
D. Silver, and R. S. Sutton. Convergent temporal-
difference learning with arbitrary smooth function ap-
proximation. In NIPS, 2009.

H. R. Maei, Cs. Szepesvári, S. Bhatnagar, and R. S. Sutton.
Toward off-policy learning control with function approx-
imation. In ICML, 2010.

A. S. Manne. Linear programming and sequential deci-
sions. Management Science, 6(3):259–267, 1960.

M. Petrik and S. Zilberstein. Constraint relaxation in ap-
proximate linear programs. In ICML, 2009.

A. N. Rybko and A. L. Stolyar. Ergodicity of stochas-
tic processes describing the operation of open queueing
networks. Problemy Peredachi Informatsii, 28(3):3–26,
1992.

P. Schweitzer and A. Seidmann. Generalized polynomial
approximations in Markovian decision processes. Jour-
nal of Mathematical Analysis and Applications, 110:
568–582, 1985.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. Bradford Book. MIT Press, 1998.

R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Sil-
ver, Cs. Szepesvári, and E. Wiewiora. Fast gradient-
descent methods for temporal-difference learning with
linear function approximation. In ICML, 2009a.

R. S. Sutton, Cs. Szepesvári, and H. R. Maei. A convergent
O(n) algorithm for off-policy temporal-difference learn-
ing with linear function approximation. In NIPS, 2009b.

V. N. Vapnik and A. Y. Chervonenkis. On the uniform con-
vergence of relative frequencies of events to their prob-
abilities. Theory of Probability and its Applications, 16
(2):264–280, 1971.

M. H. Veatch. Approximate linear programming for aver-
age cost mdps. Mathematics of Operations Research, 38
(3), 2013.

T. Wang, D. Lizotte, M. Bowling, and D. Schuurmans.
Dual representations for dynamic programming. Jour-
nal of Machine Learning Research, pages 1–29, 2008.

M. Zinkevich. Online convex programming and general-
ized infinitesimal gradient ascent. In ICML, 2003.

