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a b s t r a c t

Chitin deacetylases have been identified and studied in several fungi and insects but not in crustaceans.
These glycoproteins function in catalyzing the conversion of chitin to chitosan by the hydrolysis of N-
acetamido bonds of chitin. Here, for the first time, the full length cDNA of chitin deacetylase (CDA) gene
from crustaceans was fully cloned using a partial fragment obtained from a transcriptome database of the
gills of black tiger shrimp Penaeus monodon that survived White Spot Syndrome Virus (WSSV) infection
employing Rapid Amplification of cDNA Ends (RACE) PCR. The shrimp CDA, named PmCDA1, was further
characterized by in silico analysis, and its constitutive expression determined in apparently healthy
shrimp through reverse transcription PCR (RT-PCR). Results revealed that the P. monodon chitin deace-
tylase (PmCDA1) is 2176 bp-long gene with an open reading frame (ORF) of 1596 bp encoding for 532
amino acids. Phylogenetic analysis revealed that PmCDA1 belongs to Group I CDAs together with CDA1
and CDA2 proteins found in insects. Moreover, PmCDA1 is composed of a conserved chitin-binding
peritrophin-A domain (CBD), a low-density lipoprotein receptor class A domain (LDL-A) and a catalytic
domain that is part of CE4 superfamily, all found in group I CDAs, which are known to serve critical
immune function against WSSV. Finally, high expression of PmCDA1 gene in the gills of apparently
healthy P. monodon was observed suggesting important basal function of the gene in this tissue. Taken
together, this is a first report of the full chitin deacetylase 1 (CDA1) gene in crustaceans particularly in
shrimp that exhibits putative immune function against WSSV and is distinctly highly expressed in the
gills of shrimp.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The chitin exoskeleton of crustaceans is an important barrier
against the external environment including bacteria and viruses, as
well as formaintaining hemolymph and tissue integrity [1]. To form
chitin, Chitin deacetylases (CDA) is needed as theyaid in the
catalysis of the acetamido group in the N-acetyl-D-glucosamine
units of chitin [2,3]. CDA is amember of the carbohydrate esterase 4
(CE4) superfamily, sharing the NodB homology domain or poly-
saccharide deacetylase domain, a conserved domain in the family’s
primary structure [4]. CDA has been associated with various bio-
logical roles. In marine bacteria, CDA function for: chitin catabolism

supporting growth, adaptation to environmental nutrient gradi-
ents, tolerance to stress, and protection from predators; and
cellular communication [5]. In fungi, CDA facilitate: cell wall syn-
thesis and spore wall formation by increasing chitosan availability,
which is a critical component that allows structural rigidity and
resistance to various stresses of spores [6]. In insects, CDA are
involved in tracheal development and tube elongation [7,8]. To
date, however, CDA has never been fully cloned in crustaceans and
has never been reported in shrimps.

One of the most lethal viruses that affect shrimp is the white
spot syndrome virus (WSSV). It infects most shrimps by traversing
into the nuclei of host cells causing disintegration and loss of
cellular structure [9]. This virus can cause complete collective
mortality within a week that makes a great burden in shrimp
agriculture. Because of this, studies that focus on understanding
WSSV and host interaction have been carried out including the
generation of transcriptome databases that could shed light on
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genes that are involved in virus pathogenesis [9,10].
Expressed sequence tags (EST) libraries and transcriptome da-

tabases serve as a pool of genetic information that may contain
valuable information in discovering significant novel genes. More
so when there is differential gene expression analysis between
healthy and infected organism. In this study, a partial fragment
obtained from a transcriptome database extracted from the gills of
black tiger shrimp (Penaeus monodon) that survived WSSV chal-
lenge [10] was fully cloned and identified to be CDA. This study
represents the first report on the presence of CDA gene in crusta-
ceans. In addition, it provides the structure and domains of the gene
and its putative function, as well as its distinctly high basal
expression in gills of shrimp.

2. Materials and methods

2.1. Sample collection

For the cloning part of this study, a live adult P. monodon was
collected from a local market in Pasay City, Philippines. For
constitutive expression analysis in different tissues, three (3) live,
apparently healthy P. monodonwere collected from shrimp farms in
Vitali Island, Zamboanga City, Zamboanga Sibugay, and Barangay
Sta. Monica, Hagonoy, Bulacan, Philippines. These 3 samples were
tested negative for WSSV by Dr. Mary Beth Maningas of the
Biochemistry Laboratory, University of Santo Tomas, Philippines
using her Juan Amplifier WSSV Diagnostic Kit (JAmp Kit). Upon
collection, shrimps were immediately dissected and tissues
including: gills, hepatopancreas, intestine, lymphoid organ, heart
and hemolymph were collected then preserved in microcentrifuge
tube containing RNA later.

2.2. Sequencing of full length PmCDA1 cDNA gene

Partial sequence was obtained from transcriptome database of
P. monodon that survived WSSV challenge [10] available at NCBI
Sequence Read Archive with accession number SRR57708030
(http://www.ncbi.nlm.nih.gov/sra). Total RNA from gills of
P. monodon was extracted using QIAzol® Lysis Reagent (QIAGEN)
following the manufacturer’s protocol. Subsequently, extracted
RNA samples were subjected to RNA purification using RNEasyMini
Cleanup Kit (QIAGEN) following the manufacturer’s protocol. RNA
yield was determined using Implen™ nanophotometer.

In the first strand cDNA synthesis, RNA template had a con-
centration of 0.103 mg/ml. The 10 ml reaction mix had the total
concentration as follows: 0.5X first strand buffer, 2 mM DTT,
0.1 mM dNTP mix, SMARTer Oligo IIA (for 50 cDNA synthesis), 5 U
RNAse inhibitor, 10 U SMARTScribe reverse transcriptase, and 1mM
of respective primers for 50 and 30 cDNA synthesis. The reactionmix
was subjected to 42 �C for 90 min and heated to 70 �C for 10 min in
a thermal cycler. Subsequently, the samples were diluted with 20 ml
of tricine-EDTA buffer.

On the other hand, RACE was carried out with the in a 25 ml
reaction mix with final concentration as follows: 1X PCR buffer,
1 mM dNTPmix, 1X polymerase mix, 1X universal primer, and gene
specific primers. Specific primers designed for facilitating 50

(PmCDA1 5RACE-1 and PmCDA1 5RACE-2) and 30 RACE (PmCDA1
3RACE-1) extensions are shown in Table 1. Primer annealing sites
are shown in Fig. S1. The reaction mixes were subjected to the
following conditions: initial denaturation at 94 �C for 3 min, 38
cycles of 94 �C for 30 s, 68 �C for 30 s and 72 �C for 3 min, then final
extension at 72 �C for 10 min. All PCR amplicons were visualized on
a 1% gel stained with ethidium bromide and documented with
SynGene G:BOX. Positive amplicons were sent to Macrogen Inc.
(Korea) for sequencing.

2.3. In silico analysis

The nucleotide sequence, translated amino acids, and average
molecular weight were analyzed and determined using Geneious
6.1.8 (Biomatters). SignalP 4.1 (http://www.cbs.dtu.dk/services/
SignalP/) and NetNGlyc 1.0 (http://www.cbs.dtu.dk/services/
NetNGlyc/) were utilized to predict signal peptide cleavage and
N-glycosylation sites, respectively. Nucleotide and amino acid
sequence identities were determined using BLASTn and BLASTp,
respectively. Complete multiple alignments were conducted using
ClustalW with default parameters. Conserved Domain Architecture
Retrieval Tool (CDART) (http://www.ncbi.nlm.nih.gov/Structure/
lexington/lexington.cgi) was used to determine conserved do-
mains. Sequences of the members of CE4 superfamily (GENBANK:
cl15692) were retrieved from NCBI. Predicted 3-dimensional
structure of the protein was generated through Protein Homol-
ogy/analogY Recognition EngineV2.0 (Phyre2) (www.sbg.bio.ic.ac.
uk/phyre2/). Phylogenetic analysis was carried out in MEGA 6
(http://www.megasoftware.net/) for the generation of tree using
Maximum Likelihood (ML) method based on the Whelan and
Goldman (WAG) model [29] with 500 bootstrap tests and complete
deletion of sites.

2.4. Expression analysis

Total RNA from different tissues of three (3) apparently healthy
P. monodon samples were extracted using QIAzol® Lysis Reagent
(QIAGEN) following the manufacturer’s protocol. These are then
used for cDNA synthesis. The reverse transcription (RT) reaction
mix had the components with final concentration as follows: 1X
Buffer RT, 0.5 mM dNTPs, 1 mM Oligo-dT primer, 10 units RNase
inhibitor, 4 units Omniscript Reverse Transcriptase (QIAGEN), with
0.203 mg/ml of RNA template. RT e Polymerase Chain Reaction was
used to determine expression of PmCDA1 from different tissues of
healthy P. monodon following [12] withmodifications. Primers used
for the amplification of PmCDA1 (GSP forward and GSP reverse) and
elongation factor 1 alpha (EF1a) (EF1a forward and EF1a reverse)
are shown in Table 1. The following cycling parameters: initial
denaturation at 95 �C for 5 min, 30 cycles of denaturation at 95 �C
for 30 s, annealing at 55 �C for 30 s, 72 �C for 30 s, and final
extension at 72 �C for 10 min, were used for amplification of both
PmCDA1 and EF1a. Negative control contained no template. All PCR
amplicons were visualized on a 1% gel stained with ethidium bro-
mide and documented with SynGene G:BOX. Relative expression
based on light intensity was measured using ImageJ software
(http://imagej.nih.gov/ij/) [11] and standard deviations were
computed.

3. Results and discussion

This study serves as the first report on the presence of chitin
deacetylase (CDA) gene in crustaceans particularly in shrimps.

Table 1
Primer sequences used to amplify and sequence chitin deacetylase 1 in P. monodon
cDNA.

Primer name Sequence (50 / 30)

PmCDA1 5RACE-1 TTCTTCCACTCTGCCTTCCTG
PmCDA1 5RACE-2 TAGCAGTAGCAATCGGGGAGGCGGCAG
PmCDA1 3RACE-1 GCGTCGTCGACGGCCCACCCTTC
GSP forward GTCATGAACGAGATGGACCG
GSP reverse CAGTACTTGCTCTACCTGGCC
EF1a forward ATGGTTGTCAACTTTGCCCC
EF1a reverse TTGACCTCCTTGATCACACC
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Results revealed that the shrimp CDA (GENBANK: KU156741.1), has
a length of 2176 bp with open reading frame (ORF) of 1596 bp
encoding for 532 amino acids (AA), and a molecular weight of
61.271 kDa (GENBANK: ALO20448.1) (Fig. 1). BLAST analysis
showed 63% identity of protein query with rice grasshopper Oxya
chinensis chitin deacetylase 1 (OcCDA1) and red flour beetle Tribo-
lium castaneum chitin deacetylase precursor [13,14] and 59% iden-
tity with cotton bollworm Helicoverpa armigera chitin deacetylase 1
(HaCDA1) [15]. The nucleotide sequence contains 59 bp upstream-
untranslated region and 518 bp downstream-untranslated region,
followed by poly-adenylation signal sequence (AATAAA) and A þ T
rich region. Further analysis revealed that it includes a potential
signal peptide in its AA positions 23 and 24, and contains N-
glycosylation sites at AA positions 236, 260 and 288. Chitin-binding
peritrophin-A domain (CBD) (AA41 to AA95), low-density lipo-
protein receptor class A domain (LDL-A) (AA 115 to AA 149) and
catalytic NodB homology domain of the carbohydrate esterase 4
superfamily (CE4) (CDD accession: cl15692) (AA 191 to AA 460) that
includes polysaccharide deacetylase (AA 192 to 301) were also

found. CE4 domain was described to have several signature motifs
(TFDD, H[S/T]xxHP, RxP[Y/F], DxxDW, GxxxFxx) that render
different functions, and are variable that allows distinction in
enzyme activity [16]. The predicted 3D structure of PmCDA1 is
shown in Fig. S2. Themodel revealed alpha helices and beta strands
in the protein structures as well as conserved sites based on
Conserved Domain Database (CDD) including putative catalytic
sites and NodB motif.

Chitin-binding peritrophin-A domain (CBD), the first conserved
domain found, is known to be significant in enhancing enzyme
activity to allow prolonged interaction with the substrate [17,18].
revealed that a group of CBD containing proteins is one of the four
groups of proteins that are highly up-regulated after WSSV infec-
tion suggesting its immune-related function against the virus. CBD-
containing proteins were included in the fifty most abundant genes
and unique genes with increased differential abundance in WSSV-
infected library [9]. This supports the transcriptome database of
P. monodon that survived WSSV challenge generated by Ref. [10]
wherein CBD-containing CDA was differentially expressed in

Fig. 1. The full-length cDNA sequence and deduced amino acid sequences of PmCDA1. The predicted signal peptide is underlined with a broken line. Chitin-binding peritrophin-A
domain is highlighted in light gray, low-density lipoprotein receptor class A domain is highlighted in dark gray, and catalytic NodB homology domain of the carbohydrate esterase 4
superfamily is underlined with two lines and signature motifs are boxed with solid line. Predicted N-glycosylation sites are boxed with broken line and poly-adenylation signal is
italicized.
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survivor shrimp relative to apparently healthy shrimp. CBD is
present in insects and animal chitinases as part of peritrophic
matrix proteins, including peritrophins [19]. Peritrophin in fleshy
prawn Fenneropenaeus chinensis was reported to have gram-
negative bacteria binding activity and chitin binding activity, and
was found to be highly induced in hemocytes, heart, stomach, gut,
and gills of infected shrimp, predicting its role in immune defense
and other physiological responses [20]. Previously reported
P. monodon chitin-binding protein (PmCBP) and peritrophin-like
protein from pacific white shrimp Litopenaeus vannamei (LvPT)
revealed interaction between host shrimp and envelope protein of
WSSV, which further strengthens the significance of the role of
proteins with chitin-binding activity in shrimp-WSSV interaction
[21,22]. Collectively, the presence of CBD in the shrimp CDA may
also be involved in defense mechanism of P. monodon against
WSSV.

Low-density lipoprotein receptor class A domain (LDL-A) was
the second domain found in the shrimp CDA. In kuruma shrimp
Marsupenaeus japonicus, C-type lectins (CTLs) which binds toWSSV
causing decreased WSSV replication contain critical LDL-A to carry
out pattern-recognition mechanisms during immune response
[23]. In fact, disrupting CTLs caused increasedWSSV replication and
allows attachment and penetration of WSSV in shrimp [23]. Given
this, LDL-A in shrimp CDA may also be predicted to have the same
binding activity of pattern-recognition mechanisms in black tiger
shrimp. LDL-A also occurs in insect and fungi CDAs, however no
further function of the domain have been discussed in previous
reports.

A putative catalytic domain of CDA proteins which serves as part
of CE4 superfamily was also observed in shrimp CDA. The CE4 su-
perfamily is comprised of different enzymes including chitin
deacetylase, bacterial peptidoglycan N-acetylglucosamine deace-
tylases and acetylxylan esterases that aids in the catalysis of N- or
O-deacetylation of their respective substrates [24]. Among the AA
sequence of these enzymes, the NodB homology domain is always
present. Previous reports about the domain mainly focuses on
nitrogen-fixing bacteria that mediates synthesis ofhost-specific
signal molecules [25]. However, the function of this domain has
not been extensively studied in other organisms.

CDAs are suggested to occur from five to nine members, cate-
gorized into five groups (Group I e V), depending on the species
[30]. These CDAs have variable assortment of domains that some-
times differ in organization. Group I includes CDA1 and CDA2 that
have single and multiple isoforms, respectively. CDAs belonging to
this group have a complete set of the three domains: CBD, LDL-A,
and CE4. Group II includes CDA3 that has similar domain organi-
zationwith CDAs from group I but are substantively different in the
amino acid composition. Group III includes CDA4 that lacks LDL-A.
Group IV includes CDA5 with similar organization with CDA4 only
that CBD and CE4 are separated by a long glutamine-rich inter-
vening region. Group V includes CDA5-9 that lacks CBD and LDL-A,
then are only left with CE4. Since the shrimp CDA possess a com-
plete set of CBD, LDL-A, and CE4 domains (Fig. S3), it can be grouped
to Group 1.

Phylogenetic analysis using ML method involving eighteen (18)
AA sequences with a total of 335 positions also revealed that the
shrimp CDA belonged to group I CDAs, forming a clade together
with reference sequences of CDA1 and CDA2 from various insects
supported by a bootstrap value of 100% (Fig. 2). Previous studies
revealed that CDA1 are found in all insect species whereas CDA2 are
specific only to pupa, and that pre-mRNAs of CDA2 undergo RNA
splicing and/or exon skipping to yield CDA isoforms [30,31]. These
two CDAs were also distinctly differentiated based on their signa-
ture motifs in its CE4 domain, particularly TFDD motif 1 in CDA1
was substituted as TFNG in all isoforms of CDA2 that makes it

inactive [30]. CDA from P. monodonwas found to have TFDDmotif 1
(Fig. 1) suggesting that it is CDA1 hence it is named here as PmCDA1.
Differences in motifs from CDAs of different groups are further
exemplified in multiple alignment of CDA sequences (Fig. S4).

The present study also observed that PmCDA1 was specifically
highly expressed in the gills of black tiger shrimp (Fig. 3). Gills in
shrimps serve as the predominant site for the formation of hemo-
cyte nodules during injection of foreign particles and accumulation
of viable bacteria during infection, suggesting its significant role in
shrimp defense [32,33]. Gills mediate direct contact to the external
environment, hence its cells play a vital role in response to biotic
and abiotic factors [34]. In addition to this, PmCDA1 was also
observed to be expressed in the muscle and lymphoid organ of
shrimps. The lymphoid organ in penaeid prawns was predicted to
be a major phagocytic organ that serves a major site for viral
degradation [26,27]. Previous study revealed that muscle-related
genes were upregulated after pathogen infection which serves as
an effective way in clearing invading pathogens [28].

Expression of CDA from other species was reported to be high
during early developmental stages of insects and pathogen infec-
tion in fungi. In rice grasshopper O. chinensis, highest expression of
OcCDA1 was observed in the integument of early stage of its
development [13]. In addition, expression of NlCDA1 peaked in the
moulting stage of the brown planthopper Nilaparvata lugens sug-
gesting its critical role in the turnover of the old insect cuticle [31].
Upregulation of CDA gene in the common mushroom Agaricus
bisporus infected with mycoparasite Verticillium fungicola was
previously observed [35]. In contrast, down-regulation of chitin
deacetylase-like protein was observed during baculovirus infec-
tivity in cotton bollworm H. armigera, which serves as a defense
mechanism preventing entrance of baculoviruses in its host by
decreasing peritrophic membrane permeability [15]. Given this,
and the distinct high expression of PmCDA1 in gills of apparently
healthy shrimp suggest an important functional role for the said
gene at a possible entry site of infection. Such is worth pursuing in
future studies to elucidate further “resistance” of WSSV “survivor”

Fig. 2. Phylogenetic analysis of PmCDA1 and amino acid sequences of CE4 super family
CDA members using ML method, andWAG model. The percentage of trees in which the
associated taxa clustered together is shown next to the branches. Reference CDA se-
quences were obtained from the following organisms: red flour beetle Tribolium cas-
taneum (Tc), cotton bollworm Helicoverpa armigera (Ha), brown planthopper
Nilaparvata lugens (Nl), rice grasshopper Oxya chinensis (Oc), and silkworm Bombyx
mori (Bm). All reference sequences obtained from GENBANK were labelled with
database accession numbers.
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shrimps.
In conclusion, the study fully cloned and identified the first CDA

in crustaceans, particularly in black tiger shrimp P. monodon,
named here as PmCDA1. In addition, it provided the structure and
domains of the gene and its possible role in the immune function of
the gills of shrimp against WSSV. Such discovery is important in
further understanding the effects ofWSSV in the immune system of
black tiger shrimp, an economically important culture species
worldwide, and in providing long-term molecular-based solutions
in combating the WSSV infection.
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