Ateneo de Manila University

Sigma chromatic number of graph coronas involving complete graphs

Agnes Garciano
Maria Czarina T. Lagura
Reginaldo M. Marcelo

Follow this and additional works at: https://archium.ateneo.edu/mathematics-faculty-pubs
Part of the Mathematics Commons

Sigma chromatic number of graph coronas involving complete graphs

To cite this article: A D Garciano et al 2020 J. Phys.: Conf. Ser. 1538012003

View the article online for updates and enhancements.

IOP ebooks"

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

Sigma chromatic number of graph coronas involving complete graphs

A D Garciano ${ }^{1}$, M C T Lagura ${ }^{2}$ and R M Marcelo ${ }^{3}$
Ateneo de Manila University, Katipunan Avenue, Quezon City, 1108 Metro Manila, Philippines
E-mail: (agarciano ${ }^{1}$, rmarcelo ${ }^{3}$)@ateneo.edu, mariaczarinalagura@yahoo.com ${ }^{2}$

Abstract

Let $c: V(G) \rightarrow \mathbb{N}$ be a coloring of the vertices in a graph G. For a vertex u in G, the color sum of u, denoted by $\sigma(u)$, is the sum of the colors of the neighbors of u. The coloring c is called a sigma coloring of G if $\sigma(u) \neq \sigma(v)$ whenever u and v are adjacent vertices in G. The minimum number of colors that can be used in a sigma coloring of G is called the sigma chromatic number of G and is denoted by $\sigma(G)$. Given two simple, connected graphs G and H, the corona of G and H, denoted by $G \odot H$, is the graph obtained by taking one copy of G and $|V(G)|$ copies of H and where the i th vertex of G is adjacent to every vertex of the i th copy of H. In this study, we will show that for a graph G with $|V(G)| \geq 2$, and a complete graph K_{n} of order $n, n \leq \sigma\left(G \odot K_{n}\right) \leq \max \{\sigma(G), n\}$. In addition, let P_{n} and C_{n} denote a path and a cycle of order n respectively. If $m, n \geq 3$, we will prove that $\sigma\left(K_{m} \odot P_{n}\right)=2$ if and only if $m \leq n-2\left\lfloor\frac{n}{4}\right\rfloor+2$. If n is even, we show that $\sigma\left(K_{m} \odot C_{n}\right)=2$ if and only if $m \leq n-2\left\lceil\frac{n}{4}\right\rceil+2$. Furthermore, in the case that n is odd, we show that $\sigma\left(K_{m} \odot C_{n}\right)=3$ if and only if $m \leq H\left(\left\lceil\frac{n}{4}\right\rceil-1, n-\left\lceil\frac{n}{4}\right\rceil\right)$ where $H(r, s)$ denotes the number of lattice points in the convex hull of points on the plane determined by the integer parameters r and s.

1. Introduction

In this paper, we consider only finite, simple, connected and undirected graphs. Let G be a graph with vertex and edge sets $V(G)$ and $E(G)$ respectively. For a vertex $v \in V(G)$, the neighborhood of v in G, denoted by $N_{G}(v)$ is the set of all vertices in G that are adjacent to v. The degree of v, denoted by $\operatorname{deg}_{G}(v)$ is the cardinality of $N_{G}(v)$. Given two disjoint graphs G and H, the corona of G and H, denoted by $G \odot H$, is the graph obtained by taking one copy of G and $|V(G)|$ copies of H, and making the i th vertex of G adjacent to every vertex in the i th copy of H.

The corona of two graphs was introduced in 1970 by Frucht and Harary [3]. Since then, various types of colorings have been studied on this graph [6], [8]. In 2010, Chartrand, Okamoto and Zhang [1] introduced a neighbor-distinguishing type of coloring, called sigma coloring of a graph. Let $c: V(G) \rightarrow \mathbb{N}$ be a coloring of the vertices of a graph G in which two adjacent vertices may be assigned the same color. The color sum of a vertex v in G is the sum of the colors of the vertices in $N_{G}(v)$ and is denoted by $\sigma(v)$. When it is necessary to highlight the coloring c or the graph G, the color sum of v will also be denoted by $\sigma_{c}(v)$ or $\sigma_{G}(v)$. A coloring c of G is called a sigma coloring if $\sigma(u) \neq \sigma(v)$ whenever u and v are adjacent in G. The least number of colors required in a sigma coloring of a graph G is called the sigma chromatic number of G, and is denoted by $\sigma(G)$.

A number of researches have focused on the study of the sigma chromatic number of a graph. Dehgan, Sadeghi and Ahadi [2] showed that the problem of determining whether $\sigma(G)=2$ for a 3 -regular graph G is NP-complete. In 2016, Luzon, Ruiz and Tolentino [5] determined the sigma chromatic number of some families of circulant graphs. On the other hand, Slamin [7] introduced a coloring similar to sigma coloring where the colors used are those in the set $\{1, . ., k\}$, for some positive integer k.

It was shown in [1] that $\sigma(G) \leq \chi(G)$, where $\chi(G)$ is the chromatic number of G. In the same paper, the sigma chromatic numbers of a path P_{n}, a cycle C_{n} and a complete graph K_{n} were determined as follows: $\sigma\left(P_{n}\right)=2$ if $n \geq 4, \sigma\left(C_{n}\right)=2$ if n is even, $\sigma\left(C_{n}\right)=3$ if n is odd and $\sigma\left(K_{n}\right)=n$ for any positive integer n. In this paper, sigma colorings of $G \odot K_{n}$ and $K_{n} \odot G$ are considered. In particular, when G is either a path P_{n} or a cycle C_{n}, the values of $\sigma\left(G \odot K_{n}\right)$ will be determined. Furthermore, necessary and sufficient conditions for $\sigma\left(K_{n} \odot P_{n}\right)$ and $\sigma\left(K_{n} \odot C_{n}\right)$ to be 2 or 3 will be given.

2. Sigma Color Distribution

Suppose c_{1} and c_{2} are sigma colorings on disjoint graphs G and H, respectively. Define $c=\left(c_{1}, c_{2}\right)$ as the coloring of $G \odot H$ given by $c(v)=c_{1}(v)$, if $v \in V(G)$, and $c(v)=$ $c_{2}(v)$, if v is a vertex in any copy of H. By definition, each copy of H is colored uniformly by c_{2}.
Lemma 1 Let c_{1} and c_{2} be sigma colorings of disjoint graphs G and H respectively, and consider the coloring $c=\left(c_{1}, c_{2}\right)$ on $G \odot H$. If u and v are adjacent vertices that are both in G or both in H, then $\sigma_{c}(u) \neq \sigma_{c}(v)$.
Proof: If $u, v \in V(H)$ and $u v \in E(H)$, then $\sigma_{c}(u)=\sigma_{c_{2}}(u)+x \neq \sigma_{c_{2}}(v)+x=\sigma_{c}(v)$ where $x=c_{1}(y)$ for some $y \in V(G)$. If $u, v \in V(G)$ and $u v \in E(G)$, then $\sigma_{c}(u)=\sigma_{c_{1}}(u)+k \neq$ $\sigma_{c_{1}}(v)+k=\sigma_{c}(v)$ where $k=\sum_{x \in V(H)} c_{2}(x)$.

The above lemma implies that in order to show that c is a sigma coloring of $G \odot H$, it suffices to show that $\sigma_{c}(u) \neq \sigma_{c}(v)$ for any adjacent vertices $u \in V(G)$ and $v \in V(H)$.

Let c be a coloring of a graph G using distinct colors a and b. For $u \in V(G)$, consider the ordered pair $\left(\alpha_{u}, \beta_{u}\right)$ where α_{u} and β_{u} represent the number of neighbors of u colored a, and b respectively. Then $\operatorname{deg}_{G}(u)=\alpha_{u}+\beta_{u}$ and the color sum of u is $\sigma(u)=\alpha_{u} a+\beta_{u} b$. If c is a sigma 2 -coloring of G, then for any two adjacent vertices u and $v, \sigma(u) \neq \sigma(v)$, and so, $\left(\alpha_{u}, \beta_{u}\right) \neq\left(\alpha_{v}, \beta_{v}\right)$. Now, in general, it is possible that $\sigma(u)=\sigma(v)$ even if $\left(\alpha_{u}, \beta_{u}\right) \neq\left(\alpha_{v}, \beta_{v}\right)$. However, it was shown in [4] that by choosing the colors a and b appropriately, it follows that if $\left(\alpha_{u}, \beta_{u}\right) \neq\left(\alpha_{v}, \beta_{v}\right)$ then $\sigma(u) \neq \sigma(v)$. Hence, to show that the color sums of two adjacent vertices are not equal, it is enough to show that the ordered pairs $\left(\alpha_{u}, \beta_{u}\right)$ and (α_{v}, β_{v}) are not equal. In particular, such is the case when $\operatorname{deg}_{G}(u) \neq \operatorname{deg}_{G}(v)$. Thus, from hereon, we identify $\sigma(u)$ with the ordered pair $\left(\alpha_{u}, \beta_{u}\right)$. Also, we will assume that whenever we refer to two colors a and b, they have the desired property that $\left(\alpha_{u}, \beta_{u}\right) \neq\left(\alpha_{v}, \beta_{v}\right)$ implies $\sigma(u) \neq \sigma(v)$ for any two vertices u and v in the graph.

The above notion may be extended analogously to a sigma 3 -coloring of a graph using distinct colors a, b and d, for instance. In this case, the color sum $\sigma(u)$ of a vertex u is a triple ($\alpha_{u}, \beta_{u}, \gamma_{u}$), where α_{u}, β_{u}, and γ_{u}, are the number of neighbors of u which are colored a, b, and d respectively. We note that the identification of color sums with tuples is consistent with the equivalence of sigma colorings and multiset colorings as discussed by Zhang in [9].

Let c be a 2-coloring of a graph G using distinct colors a and b. Then, c induces an ordered pair (n_{a}, n_{b}) where $n_{a}=|\{v \in V(G): c(v)=a\}|, n_{b}=|\{v \in V(G): c(v)=b\}|$ and $n_{a}+n_{b}=n$. The pair $\left(n_{a}, n_{b}\right)$ is called the color distribution associated to c. If c is a sigma coloring, we call $\left(n_{a}, n_{b}\right)$ a sigma color distribution associated to c. An ordered pair (x, y) is said to be acceptable for G if there exists a sigma coloring that induces it.

In any sigma 2 -coloring of a path P_{n} or an even cycle C_{n}, at least one in every set of four consecutive vertices must be assigned a different color. Hence we have the following observations:

Observation 2 Let c be a sigma 2 -coloring of P_{n} using colors a and b where $n \geq 4$. Then, $\left\lfloor\frac{n}{4}\right\rfloor \leq n_{a}, n_{b} \leq n-\left\lfloor\frac{n}{4}\right\rfloor$.

Observation 3 Let c be a sigma 2-coloring of C_{n}, where n is even, using colors a and b with $n \geq 4$. Then $\left\lceil\frac{n}{4}\right\rceil \leq n_{a}, n_{b} \leq n-\left\lceil\frac{n}{4}\right\rceil$.

Lemma 4 Let P_{n} be a path with $n \geq 4$ and suppose k is a positive integer such that $\left\lfloor\frac{n}{4}\right\rfloor \leq k \leq n-\left\lfloor\frac{n}{4}\right\rfloor$. Then, the pair $\left(n_{a}, n_{b}\right)=(k, n-k)$ is acceptable for P_{n}.

Proof: Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ with edges $v_{i} v_{i+1}$ where $1 \leq i \leq n-1$. Define the coloring c as follows: for $v_{i} \in V\left(P_{n}\right)$,

$$
c\left(v_{i}\right)= \begin{cases}a, & \text { if } 4 \text { divides } i \\ b, & \text { if } 4 \text { does not divide } i\end{cases}
$$

Then, c is a sigma 2-coloring of P_{n}, where $n_{a}=\left\lfloor\frac{n}{4}\right\rfloor$ and $n_{b}=n-\left\lfloor\frac{n}{4}\right\rfloor$. Without loss of generality, we may assume $\left\lfloor\frac{n}{4}\right\rfloor \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$. Consider the sequence $s: c\left(v_{1}\right), c\left(v_{2}\right), \ldots, c\left(v_{n}\right)$. Define a block of s as a maximal subsequence consisting of terms of the same color. In particular, we refer to a block of b 's as a b-block. It follows that the number of b-blocks in P_{n} is $\left\lfloor\frac{n}{4}\right\rfloor$ or $\left\lfloor\frac{n}{4}\right\rfloor+1$. To obtain a sigma coloring in which $n_{a}=k$, we change the color of $k-\left\lfloor\frac{n}{4}\right\rfloor$ vertices colored b into a. This can be accomplished by changing the color of the second vertex in $k-\left\lfloor\frac{n}{4}\right\rfloor$ of the b-blocks in P_{n} to a. If $n \equiv 0 \bmod 4$, the number of b-blocks is exactly $\frac{n}{4}$. It is possible to choose $k-\left\lfloor\frac{n}{4}\right\rfloor$ such vertices since $k-\left\lfloor\frac{n}{4}\right\rfloor \leq \frac{n}{4}$. If $n \neq 0 \bmod 4$, the number of b-blocks is $\left\lfloor\frac{n}{4}\right\rfloor+1$. Since $k \leq\left\lfloor\frac{n}{2}\right\rfloor$, we have $k-\left\lfloor\frac{n}{4}\right\rfloor \leq\left\lfloor\frac{n}{4}\right\rfloor+1$. Hence, it is also possible to choose $k-\left\lfloor\frac{n}{4}\right\rfloor$ such vertices from the b-blocks. The resulting new coloring is a sigma 2 -coloring in which $n_{a}=k$ and $n_{b}=n-k$.

The proof of the next lemma is similar to that of the Lemma 4 and is omitted here.
Lemma 5 Let $n \geq 4$ be an even integer and k a positive integer such that $\left\lceil\frac{n}{4}\right\rceil \leq k \leq n-\left\lceil\frac{n}{4}\right\rceil$. Then, the pair $\left(n_{a}, n_{b}\right)=(k, n-k)$ is acceptable for C_{n}.

3. Main Results

This section is divided into two subsections. The first subsection presents the sigma chromatic number of the corona graph $G \odot K_{n}$, while the second subsection discusses the sigma chromatic number of $K_{n} \odot G$. We first make the following observation.

Observation 6 Let c be a sigma coloring on $G \odot H$ where G and H are disjoint graphs. Then the restriction of c on H is a sigma coloring.

3.1. On the Sigma Chromatic Number of $G \odot K_{n}$

Theorem 7 Let G be a simple connected graph with $|V(G)| \geq 2$. Then, $n \leq \sigma\left(G \odot K_{n}\right) \leq$ $\max \{\sigma(G), n\}$ where $n \geq 2$.

Proof: By Lemma 1, the restriction of any sigma coloring of $\sigma\left(G \odot K_{n}\right)$ to K_{n} is a sigma coloring of K_{n}, hence $n \leq \sigma\left(G \odot K_{n}\right)$.

Let $\sigma(G)=m$. First, we assume that $m \geq n$. Let c_{1} be a sigma m-coloring of G and c_{2} be a sigma n-coloring of K_{n} such that $c_{2}\left(K_{n}\right) \subseteq c_{1}(G)$. Now let $c=\left(c_{1}, c_{2}\right)$ be the m-coloring of $G \odot K_{n}$. We claim that c is a sigma m-coloring of $G \odot K_{n}$. Let u and v be adjacent vertices in $G \odot K_{n}$. By Lemma 1 , it is enough to show that $\sigma(u) \neq \sigma(v)$ where $u \in V(G)$ and $v \in V\left(K_{n}\right)$. However, it is clear that $\operatorname{deg}(v)=n<n+1 \leq \operatorname{deg}(u)$. Thus, from Section $2, c$ is a sigma coloring on $G \odot K_{n}$ using m colors. This shows that $\sigma\left(G \odot K_{n}\right) \leq m$.

If $m<n$, we modify c_{1} and c_{2} defined above so that $c_{1}(G) \subset c_{2}\left(K_{n}\right)$. A similar technique shows that c is a sigma n-coloring of $G \odot K_{n}$, hence $\sigma\left(G \odot K_{n}\right) \leq n$.

The following corollary is a direct consequence of Theorem 7 and the fact that $\sigma\left(P_{n}\right)=2$ for $n \geq 2$ and $\sigma\left(P_{3}\right)=1$.
Corollary 8 Let m and n be positive integers with $m, n \geq 2$. Then $\sigma\left(P_{m} \odot K_{n}\right)=n$.
Figure 1 presents a sigma coloring of the corona graph $P_{m} \odot K_{4}$, where $m \geq 2$ using distinct colors a, b, d and e, where $a, b, d, e \in \mathbb{N}$. By Corollary $8, \sigma\left(P_{m} \odot K_{4}\right)=4$.

Figure 1. Sigma 4-coloring of $P_{m} \odot K_{4}$ where $m \geq 2$

Corollary 9 Let m be a positive integer with $m \geq 3$. Then
(i) $\sigma\left(C_{m} \odot K_{n}\right)=n$ if $n \geq 3$
(ii) $\sigma\left(C_{m} \odot K_{2}\right)=\sigma\left(C_{m}\right)$.

Proof: By Theorem 7, (i) and (ii) hold if m is even, since $\sigma\left(C_{m}\right)=2$ in this case. Likewise, (i) holds when m is odd since $\sigma\left(C_{m}\right)=3$.

We now prove (ii) when m is odd. By Theorem $7,2 \leq \sigma\left(C_{m} \odot K_{2}\right) \leq 3$. Suppose c is a sigma coloring of $C_{m} \odot K_{2}$. By Observation 6 , the restriction of c on K_{2} must be a sigma coloring of K_{2}, hence c will assign 2 distinct colors a and b to the vertices of (each copy) of K_{2}. If u and v are adjacent vertices of C_{m}, then $\sigma(u)=\sigma_{C_{m}}(u)+a+b$. Similarly, $\sigma(v)=\sigma_{C_{m}}(v)+a+b$. Since c is a sigma coloring on $G \odot K_{2}$, then $\sigma(u) \neq \sigma(v)$. This implies that $\sigma_{C_{m}}(u) \neq \sigma_{C_{m}}(v)$, hence the restriction of c to C_{m} is also a sigma coloring of C_{m}. But this implies that at least 3 colors are needed since m is odd. Hence, $\sigma\left(C_{m} \odot K_{2}\right) \geq 3$. Thus, $\sigma\left(C_{m} \odot K_{2}\right)=3=\sigma\left(C_{m}\right)$.

3.2. On the Sigma Chromatic Number of $K_{m} \odot G$

Theorem 10 Given a graph G and $n \geq 2$, then $\sigma(G) \leq \sigma\left(K_{n} \odot G\right) \leq \max \{n, \sigma(G)\}$.
Proof: By Observation $6, \sigma(G) \leq \sigma\left(K_{n} \odot G\right)$. Suppose $n \geq \sigma(G)$. Let c_{1} be a sigma coloring of K_{n} using n colors and c_{2} be a sigma coloring of G using $\sigma(G)$ colors such that $c_{2}(G) \subset c_{1}\left(K_{n}\right)$. We will show that $c=\left(c_{1}, c_{2}\right)$ is a sigma n-coloring of $K_{n} \odot G$. By Lemma 1, we only need to show that $\sigma_{c}(u) \neq \sigma_{c}(v)$ where u and v are adjacent vertices and $u \in V\left(K_{n}\right)$ and $v \in V(G)$. But then $\operatorname{deg}(u)=(n-1)+|V(G)|>|V(G)| \geq \operatorname{deg}(v)$. From Section $2, \sigma(u) \neq \sigma(v)$. This shows that $\sigma\left(K_{n} \odot G\right) \leq n=\max \{n, \sigma(G)\}$.

Now suppose $n<\sigma(G)$. Let c_{1} and c_{2} be as defined previously such that $c_{1}\left(K_{n}\right) \subset c_{2}(G)$. A similar argument as in the previous case shows that $c=\left(c_{1}, c_{2}\right)$ is a sigma coloring on $K_{n} \odot G$ and thus, $\sigma\left(K_{n} \odot G\right) \leq \sigma(G)$.

The next observation can be easily seen by considering the vertices in K_{n}.
Observation 11 Let c be a 2-coloring of K_{m} using the colors a and b, and let $\left(m_{a}, m_{b}\right)$ be the color distribution associated to c. For a vertex $u \in V\left(K_{m}\right)$, recall that $\alpha_{u}=$ $|\{v \in N(u): c(v)=a\}|$. Then, $\alpha_{u}=m_{a}-1$ if $c(u)=a$, or $\alpha_{u}=m_{a}$ if $c(u)=b$.

Lemma 12 Let $n \geq 3$. Using 2 distinct colors, say a and b, the number of distinct acceptable ordered pairs for a path P_{n} is given by $n-2\left\lfloor\frac{n}{4}\right\rfloor+1$. For an even cycle C_{n}, the number of distinct acceptable ordered pairs is $n-2\left\lceil\frac{n}{4}\right\rceil+1$.

Proof: Suppose c is a sigma 2-coloring of a path $G=P_{n}$ with $n \geq 3$, using distinct colors a and b. By Lemma 2, $\left\lfloor\frac{n}{4}\right\rfloor \leq n_{a}, n_{b} \leq n-\left\lfloor\frac{n}{4}\right\rfloor$ and by Lemma 4, any pair $\left(n_{a}, n_{b}\right)$ is acceptable if it satisfies this inequality. Since $n_{a}+n_{b}=n$, the total number of acceptable ordered pairs for P_{n} is $n-2\left\lfloor\frac{n}{4}\right\rfloor+1$.

A similar argument may be used to show that for a cycle C_{n} where n is even, the number of acceptable ordered pairs is $n-2\left\lceil\frac{n}{4}\right\rceil+1$.

Since $\sigma\left(K_{m}\right)=m$, its value increases without bound as m increases. However, the sigma chromatic number of its corona with P_{n} may be kept low. We now present necessary and sufficient conditions for the sigma chromatic number of $K_{m} \odot P_{n}$ to be 2 .
Theorem 13 Let $m, n \geq 3$ be positive integers. Then $\sigma\left(K_{m} \odot P_{n}\right)=2$ if and only if $m \leq n-2\left\lfloor\frac{n}{4}\right\rfloor+2$.

Proof: (\Rightarrow) Suppose $\sigma\left(K_{m} \odot P_{n}\right)=2$ and let c be a sigma 2-coloring of $K_{m} \odot P_{n}$ using a and b. By Observation 6, the restriction of c to P_{n} is also a sigma coloring. For $1 \leq i \leq m$, let P_{n}^{i}, denote the i th copy of P_{n} in $K_{m} \odot P_{n}$ and let $\left(n_{a}^{i}, n_{b}^{i}\right)$ denote the color distribution associated to c on P_{n}^{i}. If u_{i} is the i th vertex in K_{m}, then by Observation 11, $\alpha_{u_{i}}=m_{a}-1+n_{a}^{i}$ or $m_{a}+n_{a}^{i}$. But by Lemma $2,\left\lfloor\frac{n}{4}\right\rfloor \leq n_{a}^{i} \leq n-\left\lfloor\frac{n}{4}\right\rfloor$. Thus, $\min _{1 \leq i \leq m}\left\{\alpha_{u_{i}}\right\}=m_{a}-1+\left\lfloor\frac{n}{4}\right\rfloor$ and $\max _{1 \leq i \leq m}\left\{\alpha_{u_{i}}\right\}=m_{a}+n-\left\lfloor\frac{n}{4}\right\rfloor$. Hence, the total number of possible values of $\alpha_{u_{i}}$ for all i, $1 \leq i \leq m$, is $\left(m_{a}+n-\left\lfloor\frac{n}{4}\right\rfloor\right)-\left(m_{a}-1+\left\lfloor\frac{n}{4}\right\rfloor\right)+1=n-2\left\lfloor\frac{n}{4}\right\rfloor+2$. Since c is a sigma 2-coloring, each vertex in K_{m} must have a distinct color sum. Hence, the number of possible values of $\alpha_{u_{i}}$ must be greater than or equal to the number of vertices in K_{m}, that is, $m \leq n-2\left\lfloor\frac{n}{4}\right\rfloor+2$.
(\Leftarrow) Suppose $m \leq n-2\left\lfloor\frac{n}{4}\right\rfloor+2$. We will construct a sigma 2-coloring c on $K_{m} \odot P_{n}$. First, denote the vertices of K_{m} as $u_{1}, u_{2}, \ldots, u_{m}$ and the i th copy of P_{n} in $K_{m} \odot P_{n}$ as P_{n}^{i} where $1 \leq i \leq m$. By Lemma 12, $n-2\left\lfloor\frac{n}{4}\right\rfloor+1$ gives the number of distinct acceptable ordered pairs for a path P_{n}.

If $m \leq n-2\left\lfloor\frac{n}{4}\right\rfloor+1$, there is a sigma 2 -coloring c_{i} on each P_{n}^{i} which induces a unique color distribution $\left(n_{a}^{i}, n_{b}^{i}\right)$. Now, if K_{m} has order $m=n-2\left\lfloor\frac{n}{4}\right\rfloor+2$, then for $1 \leq i \leq m-1$, we can define c_{i} on P_{n}^{i} as in the previous case and let c_{m} be a sigma coloring on P_{n}^{m} with a maximum number of vertices colored a, that is, $n_{a}^{m}=n-\left\lfloor\frac{n}{4}\right\rfloor$.

Next, let c_{m+1} be the coloring on K_{n} such that all vertices are colored a except for the last vertex u_{m} which is colored b. Let c be the sigma coloring on $K_{m} \odot P_{n}$ such that

$$
c(x)= \begin{cases}c_{i}(x), & \text { if } x \in P_{n}^{i}, 1 \leq i \leq m \\ c_{m+1}(x), & \text { if } x \in K_{m} .\end{cases}
$$

We claim that c is a sigma 2-coloring of $K_{m} \odot P_{n}$. Clearly, no two adjacent vertices in P_{n}^{i} have the same color sum by our definition of c. If v and u_{i} are adjacent vertices where $v \in V\left(P_{n}^{i}\right)$, and $u_{i} \in V\left(K_{m}\right)$, then $\operatorname{deg}_{G}(v)$ is 2 or 3 , whereas $\operatorname{deg}_{G}\left(u_{i}\right)=m-1+n \geq 5$ since $m, n \geq 3$. Hence, $\sigma_{G}(v) \neq \sigma_{G}\left(u_{i}\right)$.

So, what is left to show that the color sum of any two vertices in K_{m} are not equal. Suppose u_{i} and u_{j} are vertices in K_{m} where $1 \leq i<j \leq m-1$. By Observation 11, as a vertex in $K_{m}, \alpha_{u_{i}}=m_{a}-1=\alpha_{u_{j}}$. This implies that as a vertex in $K_{m} \odot P_{n}, \alpha_{u_{i}}=m_{a}-1+n_{a}^{i}$ and $\alpha_{u_{j}}=m_{a}-1+n_{a}^{j}$. But since $n_{a}^{i} \neq n_{a}^{j}$, then $\alpha_{u_{i}} \neq \alpha_{u_{j}}$. Hence, $\sigma\left(u_{i}\right) \neq \sigma\left(u_{j}\right)$. If $m \leq n-2\left\lfloor\frac{n}{4}\right\rfloor+1$, we are done.

Now suppose $m=n-2\left\lfloor\frac{n}{4}\right\rfloor+2$ and consider the last vertex u_{m} in K_{m}. Since $c\left(u_{m}\right)=b$, then by Observation 11, as a vertex in $K_{m}, \alpha_{u_{m}}=m_{a}$. Since $n_{a}^{m}=n-\left\lfloor\frac{n}{4}\right\rfloor$, then as a vertex in $K_{m} \odot P_{n}$, we have $\alpha_{u_{m}}=m_{a}+n-\left\lfloor\frac{n}{4}\right\rfloor$. Since $\left\lfloor\frac{n}{4}\right\rfloor \leq n_{a}^{i} \leq n-\left\lfloor\frac{n}{4}\right\rfloor$, then $\alpha_{u_{m}}=m_{a}+n-\left\lfloor\frac{n}{4}\right\rfloor \geq m_{a}+n_{a}^{i}>m_{a}-1+n_{a}^{i}=\alpha_{u_{i}}$ for all $1 \leq i \leq m$. This proves that c is a sigma 2-coloring of $K_{m} \odot P_{n}$.

The next theorem is a counterpart of the previous theorem for the corona of a complete graph with an even cycle. The proof is analogous.

Theorem 14 Let $m \geq 3$ and $n \geq 4$ be positive integers where n is even. Then $\sigma\left(K_{m} \odot C_{n}\right)=$ 2 if and only if $m \leq n-2\left\lceil\frac{n}{4}\right\rceil+2$.

We now consider sigma colorings on the corona graph $K_{m} \odot C_{n}$, where n is odd. By Observation 6, a sigma coloring on this graph must be a sigma coloring on C_{n}, and will thus require the use of at least 3 colors. As in the case of sigma 2 -colorings, if c is a sigma 3 coloring of a graph G using colors a, b and d, we define a sigma color distribution associated to c as a triple $\left(n_{a}, n_{b}, n_{d}\right)$ where n_{a}, n_{b}, n_{d} are the numbers of vertices colored a, b and d respectively. Likewise, a triple (x, y, z) is said to be acceptable for G if there exists sigma 3-coloring which induces it.

Lemma 15 Let n be an odd integer and $n \geq 3$. Suppose c is a sigma 3-coloring of C_{n}, using distinct colors a, b and d. Then the following hold: (i) $1 \leq n_{a}, n_{b}, n_{d} \leq n-\left\lceil\frac{n}{4}\right\rceil$; and (ii) $\left\lceil\frac{n}{4}\right\rceil \leq n_{a}+n_{b}, n_{a}+n_{d}, n_{b}+n_{d} \leq n-1$.
Proof: Since c is a sigma 3-coloring, then $n_{a}, n_{b}, n_{d} \geq 1$. Since $n_{a}+n_{b}=n-n_{d}$, then $n_{a}+n_{b} \leq n-1$. Since no four consecutive vertices must have the same color, then $n_{a}, n_{b} \leq n-1-\left\lfloor\frac{n-1}{4}\right\rfloor=n-\left\lceil\frac{n}{4}\right\rceil$. Similarly, $n_{d} \leq n-\left\lceil\frac{n}{4}\right\rceil$, hence, $n_{a}+n_{b}=n-n_{d} \geq\left\lceil\frac{n}{4}\right\rceil$. The other inequalities are similar.

Lemma 16 Let n be a positive odd integer. Suppose $x, y \in \mathbb{N}$ and (i) $1 \leq x, y \leq n-\left\lceil\frac{n}{4}\right\rceil$, (ii) $\left\lceil\frac{n}{4}\right\rceil \leq x+y \leq n-1$ and (iii) $z=n-x-y$. Then, (x, y, z) is acceptable for C_{n}.

Proof: First, we make two claims.
Claim 1: $1 \leq z \leq n-\left\lceil\frac{n}{4}\right\rceil$
Proof of Claim 1: From the assumptions (i) to (iii) above, $1=n-(n-1) \leq n-(x+y) \leq n-\left\lceil\frac{n}{4}\right\rceil$. Since $z=n-(x+y)$, then $1 \leq z \leq n-\left\lceil\frac{n}{4}\right\rceil$.
Claim 2: $\left\lceil\frac{n}{4}\right\rceil \leq y+z \leq n-1$ and $\left\lceil\frac{n}{4}\right\rceil \leq x+z \leq n-1$
Proof of Claim 2: From assumption (i), $\left\lceil\frac{n}{4}\right\rceil=n-\left(n-\left\lceil\frac{n}{4}\right\rceil\right) \leq n-y \leq n-1$. Since $x+z=n-y$, then $\left\lceil\frac{n}{4}\right\rceil \leq x+z \leq n-1$. Similarly, it can be shown that $\left\lceil\frac{n}{4}\right\rceil \leq y+z \leq n-1$.

Without loss of generality, we assume that $x \geq y \geq z$. In the following, we will show that there is a sigma coloring of C_{n} using distinct colors a, b and d, and with sigma color distribution (x, y, z). We consider two cases: first, when $z=1$ and second, when $z \geq 2$.
Case 1: Suppose $z=1$. Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ where $v_{i} v_{i+1} \in E\left(C_{n}\right)$ for $1 \leq i \leq n$, where addition is done modulo n. Since $z=1$, we pick a vertex, say v_{1} and assign the color d to it. Consider the remaining $n-1$ vertices v_{2}, \ldots, v_{n}. These induce a subgraph isomorphic to P_{n-1}. We claim that there is a sigma 2-coloring of this subgraph using colors a and b with color distribution (x, y). By Lemma 4 , such a coloring exists if and only if x and y satisfy

$$
\begin{equation*}
\left\lfloor\frac{n-1}{4}\right\rfloor \leq x, y \leq n-1-\left\lfloor\frac{n-1}{4}\right\rfloor . \tag{1}
\end{equation*}
$$

Note that since n is odd, then $\left\lceil\frac{n}{4}\right\rceil=\left\lfloor\frac{n-1}{4}\right\rfloor+1$. By assumption (i), we have $x \leq n-\left\lceil\frac{n}{4}\right\rceil=$ $n-1-\left\lfloor\frac{n-1}{4}\right\rfloor$. Furthermore, by Claim 2, $\left\lceil\frac{n}{4}\right\rceil \leq x+z=x+1$, hence $\left\lfloor\frac{n-1}{4}\right\rfloor=\left\lceil\frac{n}{4}\right\rceil-1 \leq x$. This shows that x satisfies the inequality given in inequality (1). A similar proof can be given to show that $\left\lfloor\frac{n}{4}\right\rfloor \leq y \leq n-1-\left\lfloor\frac{n-1}{4}\right\rfloor$. Thus, a sigma coloring c^{\prime} on the subgraph P_{n-1} exists using colors a and b.

Now consider the 3-coloring c on C_{n} defined by $c\left(v_{1}\right)=d$ and $c\left(v_{i}\right)=c^{\prime}\left(v_{i}\right)$ for $i \neq 1$. Since c^{\prime} is a sigma coloring on P_{n-1}, then to show that c is a sigma 3-coloring on C_{n}, it is enough
to show that $\sigma_{c}\left(v_{i}\right) \neq \sigma_{c}\left(v_{i+1}\right)$ for $i \in\{n-1, n, 1,2\}$. Equivalently, we need to show that $\left(\alpha_{v_{i}}, \beta_{v_{i}}, \gamma_{v_{i}}\right) \neq\left(\alpha_{v_{i+1}}, \beta_{v_{i+1}}, \gamma_{v_{i+1}}\right)$ for this set of values of i. The values of the indicated triples are shown in Figure 2.

Figure 2. 3-coloring of C_{n} with $z=1$.
As seen in Figure 2, no triples corresponding to adjacent vertices are equal. Hence, $(x, y, 1)$ is acceptable for C_{n}.
Case 2: Assume that $z \geq 2$. We make a third claim.
Claim 3: There exist two consecutive values of x^{\prime} that satisfy the following.
(i) $\left\lceil\frac{y}{3}\right\rceil-1 \leq x^{\prime} \leq 3(y+1)$
(ii) $x-3(z-1) \leq x^{\prime} \leq \begin{cases}x-\left\lceil\frac{z}{3}\right\rceil-1, & \text { if } z \not \equiv 2 \bmod 3, \\ x-\left\lceil\frac{z}{3}\right\rceil, & \text { if } z \equiv 2 \bmod 3 .\end{cases}$

Proof of Claim 3: Let $r_{1}=\left\lceil\frac{y}{3}\right\rceil-1, r_{2}=3(y+1), s_{1}=x-3(z-1), s_{2}=x-\left\lceil\frac{z}{3}\right\rceil-1$ if $z \not \equiv 2 \bmod 3, x-\left\lceil\frac{z}{3}\right\rceil$ if $z \equiv 2 \bmod 3$. Clearly, $r_{1}<r_{2}$ and $s_{1}<s_{2}$. It is enough to show that $s_{1}<r_{2}$, and $r_{1}<s_{2}$, since it will follow that the two closed intervals $\left[r_{1}, r_{2}\right]$ and $\left[s_{1}, s_{2}\right]$ will intersect in at least two consecutive integers.

Since n is odd and $n=x+y+z$, then $4\left(\frac{x+y+z}{4}\right)<4\left\lceil\frac{x+y+z}{4}\right\rceil$. By Claim 2, $4\left\lceil\frac{x+y+z}{4}\right\rceil \leq$ $4(y+z)$. From this, it follows that $x-3(z-1)<3(y+1)$ or equivalently $s_{1}<r_{2}$. Since $x \geq y \geq z$, then $\left\lfloor\frac{n}{3}\right\rfloor \geq z$, and since $z \geq 2$, then $n \geq 7$ and $x \geq 3$. It follows that $\left\lceil\frac{y}{3}\right\rceil+\left\lceil\frac{z}{3}\right\rceil \leq\left\lceil\frac{y+z}{3}\right\rceil+1 \leq\left\lceil\frac{x+y+z}{3}\right\rceil \leq x$. Thus, $\left\lceil\frac{y}{3}\right\rceil-1 \leq x-\left\lceil\frac{z}{3}\right\rceil-1$ and clearly, $\left\lceil\frac{y}{3}\right\rceil-1<x-\left\lceil\frac{z}{3}\right\rceil$.

We will show that $\left\lceil\frac{y}{3}\right\rceil-1 \neq x-\left\lceil\frac{z}{3}\right\rceil-1$, if $z \not \equiv 2 \bmod 3$. On the contrary, suppose that $\left\lceil\frac{y}{3}\right\rceil-1=x-\left\lceil\frac{z}{3}\right\rceil-1$ when $z \not \equiv 2 \bmod 3$. Then, $x=\left\lceil\frac{y}{3}\right\rceil+\left\lceil\frac{z}{3}\right\rceil \leq\left\lceil\frac{x+y+z}{3}\right\rceil$. Since $3\left\lceil\frac{y}{3}\right\rceil \leq y+2$ and $3\left\lceil\frac{z}{3}\right\rceil \leq z+2$, we have $(y+2)+(z+2) \geq 3\left\lceil\frac{x+y+z}{3}\right\rceil \geq x+y+z$. Thus, $x \leq 4$. Since $z \geq 2$, then $(x, y, z) \in\{(3,3,3),(4,4,3)\}$. Any one of these ordered triples results to $\left\lceil\frac{y}{3}\right\rceil-1 \neq x-\left\lceil\frac{z}{3}\right\rceil-1$, a contradiction. This proves Claim 3.

Let x^{\prime} satisfy the conditions in Claim 3. We note that we can take x to be odd or even, as necessary. We will show that there exists a sigma coloring on the subgraph $P_{x^{\prime}+y}$ induced by the vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{x^{\prime}+y}$, using colors a and b and with color distribution (x^{\prime}, y). By Lemma 4 , such a sigma coloring exists if and only if $\left\lfloor\frac{x^{\prime}+y}{4}\right\rfloor \leq x^{\prime}, y \leq x^{\prime}+y-\left\lfloor\frac{x^{\prime}+y}{4}\right\rfloor$. Clearly, it is enough to show that $\left\lfloor\frac{x^{\prime}+y}{4}\right\rfloor \leq x^{\prime}$ and $\left\lfloor\frac{x^{\prime}+y}{4}\right\rfloor \leq y$.

Let $r=y \bmod 3$, where $r \in\{0,1,2\}$.
Case 1: Assume that $r=0$. From Claim 3(i), $x^{\prime} \geq\left\lceil\frac{y}{3}\right\rceil-1$. Since $3 \mid y, x^{\prime} \geq \frac{x^{\prime}+y-3}{4}$, and since x^{\prime} is an integer, $x^{\prime} \geq\left\lceil\frac{x^{\prime}+y-3}{4}\right\rceil=\left\lfloor\frac{x^{\prime}+y}{4}\right\rfloor$.
Case 2: Suppose $r \neq 0$. By Claim 3(i), $x^{\prime} \geq\left\lceil\frac{y}{3}\right\rceil-1=\left(\frac{y-r}{3}+1\right)-1=\frac{y-r}{3}$. It follows that $x^{\prime} \geq \frac{x^{\prime}+y-r}{4}$. Since x^{\prime} is an integer, then $x^{\prime} \geq\left\lceil\frac{x^{\prime}+y-r}{4}\right\rceil \geq\left\lfloor\frac{x^{\prime}+y}{4}\right\rfloor$.

A similar proof can be used to show that $y \geq\left\lceil\frac{x^{\prime}+y}{4}\right\rceil$.
Let $x^{\prime \prime}=x-x^{\prime}$. Since x^{\prime} can be even or odd, $x^{\prime \prime}$ can also be even or odd. Our next goal is to give a coloring of the remaining $x^{\prime \prime}+z$ vertices of C_{n} which induce a subgraph isomorphic to
$P_{x^{\prime \prime}+z}$. We will show that a sigma 2-coloring of $P_{x^{\prime \prime}+z}$ exists using the colors a and d with color distribution $\left(x^{\prime \prime}, z\right)$. First, we note that from Claim 3, we have
(1) $3(z-1) \geq x^{\prime \prime} \geq \begin{cases}\left\lceil\frac{z}{3}\right\rceil+1, & \text { if } z \not \equiv 2 \bmod 3 \\ \left\lceil\frac{z}{3}\right\rceil, & \text { if } z \equiv 2 \bmod 3\end{cases}$
(2) $x^{\prime \prime} \equiv 3(z-1) \bmod 2$.

Furthermore, note that $3(z-1)$ has the same parity as $\left\lceil\frac{z}{3}\right\rceil$ or $\left\lceil\frac{z}{3}\right\rceil+1$, depending on the congruence class of $z \bmod 3$. We want to exhibit a sigma 2 -coloring of $P_{x^{\prime \prime}+z}$ satisfying the following requirements:
(R1) The endpoints of the path are colored d.
(R2) Immediate neighbors of the endpoints are colored a.
(R3) Between any two consecutive vertices colored d, there is/are 0,1 or 3 vertices colored a.
(R4) Between any two consecutive vertices colored a, there is/are 0,1 or 3 vertices colored d.
The requirements R3 and R4 are imposed to ensure that no color strings of the form adda or daad occur in the coloring of $P_{x^{\prime \prime}+z}$, as such strings give rise to adjacent vertices with equal color sums. Moreover, these requirements also ensure that in any given string of four consecutive vertices, not all vertices have the same color.

First, suppose $z \equiv 2 \bmod 3$. We want to define a sigma 2-coloring on $P_{x^{\prime \prime}+z}$ using colors a and d with color distribution $\left(x^{\prime \prime}, z\right)$, for any possible value of $x^{\prime \prime}$ satisfying (1) and (2). From R1,R2, R3 and R4, the minimum number of vertices that can be colored with a is $\frac{z-2}{3}+1=\left\lceil\frac{z}{3}\right\rceil$. Thus, we can have a sigma coloring with color distribution $\left(\left\lceil\frac{z}{3}\right\rceil, z\right)$. If we replace a string of the form $d d d$ by dadad we obtain a sigma coloring with color distribution $\left(\left\lceil\frac{z}{3}\right\rceil+2, z\right)$. By replacing other strings of the form $d d d$ by dadad or strings of the form dad by daaad, we obtain sigma colorings with color distributions $\left(\left\lceil\frac{z}{3}\right\rceil+4, z\right),\left(\left\lceil\frac{z}{3}\right\rceil+6, z\right), \ldots(3(z-1), z)$. The last color distribution corresponds to the color string daaadaaad...daaad. Effectively, each of these possibilities describe a sigma coloring for $P_{x^{\prime \prime}+z}$ with color distribution $\left(x^{\prime \prime}, z\right)$ where $x^{\prime \prime}$ satisfies (1) and (2).

The cases where $z \equiv 1$ or $0 \bmod 3$ may be dealt with following a similar scheme as the one above.

Finally, consider the coloring c on C_{n} induced by the sigma colorings on $P_{x^{\prime}+y}$ and $P_{x^{\prime \prime}+z}$ (Refer to Figure 3) using the colors a, b and d. We will show that c is a sigma 3 -coloring on C_{n}.

Figure 3. 3-coloring of C_{n} using colors a, b and d.

Observe that $\sigma_{c}\left(v_{x^{\prime}+y}\right)=\left(\alpha_{1}, \beta_{1}, 1\right), \sigma_{c}\left(u_{1}\right)=\left(\alpha_{2}, \beta_{2}, 0\right), \sigma_{c}\left(v_{1}\right)=\left(\alpha_{3}, \beta_{3}, 1\right)$ and $\sigma_{c}\left(u_{x^{\prime \prime}+z}\right)=$ $\left(\alpha_{4}, \beta_{4}, 0\right)$, for some nonnegative integers α_{i} and $\beta_{i}, 1 \leq i \leq 4$. Clearly, $\sigma_{c}\left(v_{x^{\prime}+y}\right) \neq \sigma_{c}\left(u_{1}\right)$ and $\sigma_{c}\left(v_{1}\right) \neq \sigma_{c}\left(u_{x^{\prime \prime}+z}\right)$. From the construction, it follows that c is a sigma 3-coloring on C_{n}. Furthermore, the associated color distribution is (x, y, z). This proves the lemma.

By Lemma 16, any set of triples (x, y, z) satisfying (i), (ii) and (iii) of the lemma is acceptable for C_{n}. Note that z is completely determined by $x+y$. Let $\mathcal{N}=$
$\left\{(x, y): 1 \leq x, y \leq n-\left\lceil\frac{n}{4}\right\rceil,\left\lceil\frac{n}{4}\right\rceil \leq x+y \leq n-1\right\}$. Then $N=|\mathcal{N}|$ corresponds to the number of lattice points in the convex hull of the hexagon with vertices $A\left(\left\lceil\frac{n}{4}\right\rceil-1,1\right), B\left(1,\left\lceil\frac{n}{4}\right\rceil-1\right)$, $C\left(1, n-\left\lceil\frac{n}{4}\right\rceil\right), D\left(\left\lceil\frac{n}{4}\right\rceil-1, n-\left\lceil\frac{n}{4}\right\rceil\right), E\left(n-\left\lceil\frac{n}{4}\right\rceil,\left\lceil\frac{n}{4}\right\rceil-1\right)$ and $F\left(n-\left\lceil\frac{n}{4}\right\rceil, 1\right)$ (Refer to Figure 4).

Figure 4. Set \mathcal{N}
For two nonnegative integers r, s with $s \geq r$, let $H(r, s)$ be the number of lattice points in the convex hull of $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}$ and F^{\prime} where $A^{\prime}(r, 0), B^{\prime}(0, r), C^{\prime}(0, s), D^{\prime}(r, s), E^{\prime}(s, r)$ and $F^{\prime}(s, 0)$. Then, $H(r, s)=(s+1)^{2}-\binom{r+1}{2}-\binom{s-r+1}{2}$. Thus, $N=H(r, s)$ where $r=\left\lceil\frac{n}{4}\right\rceil-2$ and $s=n-\left\lceil\frac{n}{4}\right\rceil-1$.

We are now ready to prove the last theorem.
Theorem 17 Let m and n be positive integers where $m, n \geq 3$ and n is odd. Then, $\sigma\left(K_{m} \odot C_{n}\right)=3$ if and only if $m \leq H\left(\left\lceil\frac{n}{4}\right\rceil-1, n-\left\lceil\frac{n}{4}\right\rceil\right)$.
Proof: (\Rightarrow) Let $G=K_{m} \odot C_{n}$ and suppose $\sigma(G)=3$. Let c be a sigma 3-coloring of G using the colors a, b and d. Suppose (r, s, t) is the color distribution induced by c on K_{m}. If $v \in V\left(K_{m}\right)$, then restricted to $K_{m}, \sigma_{K_{m}}(v)$ is $(r-1, s, t),(r, s-1, t)$ or $(r, s, t-1)$ according to whether $c(v)$ is a, b or d respectively. Consider the restriction of c to the copy of C_{n} that is joined to v in G. Note that this restriction is a sigma 3 -coloring of C_{n}. If (x, y, z) is the sigma 3 -color distribution on this copy of C_{n}, then the possible values of $\sigma(v)$ are as follows:

$$
\begin{equation*}
(x, y, z)+(r-1, s, t) \text { or }(x, y, z)+(r, s-1, t) \text { or }(x, y, z)+(r, s, t-1) \tag{2}
\end{equation*}
$$

Note that we can ignore the third component in each triple in (2) since it is dependent on the first two components. Furthermore, to simplify computations, we can look at the resulting color sums as translations of $(r-1, s-1)$, that is, the possible values of $\sigma(v)$ given in (2), can be simplified to $(x, y)+(0,1),(x, y)+(1,0)$ and $(x, y)+(1,1)$ respectively. The total number of such values corresponds to $H\left(\left\lceil\frac{n}{4}\right\rceil-1, n-\left\lceil\frac{n}{4}\right\rceil\right)$. Since the vertices in K_{m} should have distinct color sums, then $m \leq H\left(\left\lceil\frac{n}{4}\right\rceil-1, n-\left\lceil\frac{n}{4}\right\rceil\right)$.
(\Leftarrow) Suppose $m=H\left(\left\lceil\frac{n}{4}\right\rceil-1, n-\left\lceil\frac{n}{4}\right\rceil\right)$. Let $\mathcal{A}=\mathcal{N}$,
$\mathcal{B}=\left\{(x, y) \in \mathcal{N}:\left\lceil\frac{n}{4}\right\rceil-1 \leq x \leq n-\left\lceil\frac{n}{4}\right\rceil\right.$ and $y=1$, or $x=n-\left\lceil\frac{n}{4}\right\rceil$ and $\left.1 \leq y \leq\left\lceil\frac{n}{4}\right\rceil-1\right\}$
and $\mathcal{D}=\{(x, y) \in \mathcal{N}: x+y=n-1\}$. Then, $m=|\mathcal{A}|+|\mathcal{B}|+|\mathcal{D}|$.
We will now exhibit a sigma 3 -coloring on G. First, we color the vertices in K_{m} such that $|\mathcal{A}|$ are colored $a,|\mathcal{B}|$ are colored b and $|\mathcal{D}|$ are colored d. Next, for each vertex colored a in K_{m}, assign to the corresponding C_{n} a sigma coloring with distinct color distribution from \mathcal{A}. Similarly, assign to the corresponding C_{n} of each vertex colored b (respectively, d) in K_{m} a sigma coloring with distinct color distribution from \mathcal{B} (respectively, \mathcal{D}).

In the succeeding part of the proof, refer to Figure 5 below. From the construction, the color sums of the vertices in K_{m} colored a correspond to distinct elements of $\mathcal{A}+(0,1)$ (region shaded by horizontal lines). Similarly, the color sums of the vertices in K_{m} colored b correspond to distinct elements of $\mathcal{B}+(1,0)$ (two perpendicular line segments with a common endpoint). Finally those colored d have color sums that correspond to the elements of $\mathcal{D}+(1,1)$ (line segment). Clearly, no differently colored vertices in K_{m} have equal color sums. Furthermore, the total number of distinct color sums generated by these sets is m.

Figure 5. Color sums in $K_{m} \odot C_{n}$, where n is odd
If $m<H\left(\left\lceil\frac{n}{4}\right\rceil-1, n-\left\lceil\frac{n}{4}\right\rceil\right)$, then we can choose subsets of \mathcal{A}, \mathcal{B} and \mathcal{D} such that the union has cardinality m, and assign the colors accordingly. Hence, we have $\sigma\left(K_{m} \odot C_{n}\right) \leq 3$. By Theorem 10, $\sigma\left(K_{m} \odot C_{n}\right) \geq 3$.

4. Conclusion

In this paper, bounds for $\sigma\left(G \odot K_{n}\right)$ and $\sigma\left(K_{n} \odot G\right)$, for which G is arbitrary, were given. Consequently the values of $\sigma\left(P_{m} \odot K_{n}\right)$ for $m, n \geq 2$ and $\sigma\left(C_{m} \odot K_{n}\right)$ for $m \geq 3$ and $n \geq 2$ were determined. Moreover, necessary and sufficient conditions for $\sigma\left(K_{m} \odot C_{n}\right)$ to be 2 or 3 were given. Determining $\sigma(G \odot H)$ and $\sigma(H \odot G)$ for other families of graphs G and H are recommended for further research.

Acknowledgments

The authors would like to thank the Loyola Schools of the Ateneo de Manila University for the LS Scholarly Work Grant to be able to conduct this research. They are also grateful to the reviewers of this paper for their helpful comments and suggestions.

References

[1] Chartrand G, Okamoto F and Zhang P 2010 The sigma chromatic number of a graph Graphs Combin. 26 755-773
[2] Dehgan A, Sadeghi M R and Ahadi A 2014 The complexity of the sigma chromatic number of cubic graphs arXiv 11403.6288 (math.CO)
[3] Frucht R and Harary F 1970 On the corona of two graphs Aequationes Math. 4 322-325
[4] Lagura M C 2016 On the sigma chromatic number of the join of paths, cycles and complete multipartite graphs Master's Thesis (Ateneo de Manila University)
[5] Luzon P A, Ruiz M and Tolentino M A 2016 The sigma chromatic number of the circulant graphs $C_{n}(1,2)$, $C_{n}(1,3)$, and $C_{2 n}(1, n)$, Discrete Comput. Geom. eds. Akiyama J, Ito H, Sakai T and Uno Y Springer Lect. Notes in Computer Science 9943
[6] Molam S, Geetha J and Somasundaram K 2017 Total toloring of the corona product of graphs Australas. J. Combin. 68(1) 15-22
[7] Slamin 2017 On distance irregular labelling of graphs Far East J. Math. Sci. 102(5) 919-932
[8] Venkatesam K, Joseph V and Mathiyazhagan V 2015 On star coloring of corona graphs Appl. Math. E-Notes 15(4) 97-104
[9] Zhang P 2016 A Kaleidoscopic View of Graph Colorings (Kalamazoo: Springer Nature)

