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This work investigates symmetry and color symmetry properties of Kepler,

Heesch and Laves tilings embedded on a flat torus and their geometric

realizations as tilings on a round torus in Euclidean 3-space. The symmetry

group of the tiling on the round torus is determined by analyzing relevant

symmetries of the planar tiling that are transformed to axial symmetries of the

three-dimensional tiling. The focus on studying tilings on a round torus is

motivated by applications in the geometric modeling of nanotori and the

determination of their symmetry groups.

1. Introduction

Following the discovery of carbon nanotubes by Sumio Iijima

(1991), much interest has been focused on the study of other

possible forms of carbon. These forms are essentially struc-

tural variations on the bonding arrangements of carbon atoms.

When a single-wall carbon nanotube is bent and its opposite

ends are connected, one obtains a toroidal structure called a

carbon nanotorus. A carbon nanotorus can be described as a

network of carbon hexagons arranged compactly on a round

torus surface (the surface of a doughnut). The successful

synthesis of stable carbon nanotori from chemically reacted

carbon nanotubes was reported in Martel et al. (1999) and

Sano et al. (2001).

The attention researchers have paid in studying carbon

nanotori is in part driven by these nanostructures’ promising

technological applications. These applications depend on the

properties nanotori possess or are predicted to exhibit.

Calculations show that carbon nanotori possess a wide range

of structural (Liu et al., 2001), electronic (Haddon, 1997; Oh et

al., 2000), optical and vibrational (Beuerle et al., 2011), and

magnetic properties (Liu et al., 2001; Liu & Xu, 2008).

Deriving the properties of a carbon nanotorus requires a

geometric model to which calculations will be applied. These

calculations often factor in the symmetry structure of the

nanotorus. Some properties can, in fact, be described directly

through the language of symmetry or any of its general-

izations. Dienes & Thomas (2011), for instance, used the

notion of modular symmetries to discuss spectral equivalences

among physically distinct nanotori.

Motivated by the geometric modeling of nanotori and the

determination of their symmetry groups, we build on the

works of Senechal (1988) and Sullivan (2011) to study the

geometry and symmetry structures of tilings on a flat torus and

their realizations as tilings on a round torus in the Euclidean

3-space E
3. Starting with a Kepler, Heesch or Laves tiling T,

which are tilings of the plane with transitivity properties

(Appendix A), we obtain via an orbit-space construction a

tiling T
� on a flat torus. A tiling on a round torus is obtained

subsequently by projecting T
� to E

3 via a map that generalizes

the conformal map provided in Sullivan (2011).

This work uses tiling by hexagons embedded on a round

torus to model a carbon nanotorus. Carbon atoms are repre-

sented by the vertices of the tiling while atomic bonds are

represented by the edges [a related work is found in Staic &

Petrescu-Nita (2013) where torus-embedded Cayley hyper-

graphs were used to model carbon nanotori]. A theoretical

nanotorus with non-hexagonal symmetries such as a C4C8

nanotorus (Ashrafi & Shabani, 2009) will be obtained from a

monolayer modeled by a Kepler tiling. When the nanotorus is

obtained from a monolayer made up of different types of

atoms, such as a boron nitride nanotorus (Loh & Baillargeat,

2013), we introduce colors on the vertices of the tiling to

distinguish one type of atom from another.

The approach of determining the symmetry group of a tiling

on a round torus or a nanotorus involves analyzing and

identifying symmetries of T that are transformed to axial

symmetries. When the vertices, edges or faces of T are colored,

we analyze the color-fixing symmetries of T that are trans-

formed to axial symmetries of the corresponding colored tiling

on the round torus. We use as a starting point in the analysis

the plane crystallographic group type of the symmetry group

of the uncolored tiling or the color-fixing group of the

colored tiling, and from this two-dimensional setting, we arrive

at results pertaining to the symmetry group of a three-

dimensional geometric structure. This approach lends a

convenient method to determine symmetries of a structure by

looking at symmetries of an associated structure in a space of

lower dimension. It is analogous to the approach used by De

Las Peñas et al. (2014) to determine the line-group type of the

symmetry group of a single-wall nanotube. Another advantage

of the approach is that it allows the relevant non-rigid motions
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of a nanotorus considered in the literature (Bovin et al., 2001;

Arezoomand & Taeri, 2009; Zhao et al., 2012) to be derived

and characterized as four-dimensional symmetries. This offers

a rigorous treatment of these motions as Euclidean symme-

tries.

We begin the discussion by first introducing the mathema-

tical formalism needed to understand tilings on a flat torus and

their symmetry groups in the next section.

2. Tiling T
� on a flat torus

Let T be a Kepler, Heesch or Laves tiling in the Euclidean

plane E
2. The symmetry group G of T is a plane crystal-

lographic group with translation subgroup TðGÞ generated by

two linearly independent translations x and y. G acts transi-

tively on the set X of vertices, edges or faces of a Kepler,

Heesch or Laves tiling T, respectively. Let L be the subgroup

of TðGÞ generated by xm1 ym2 and xn1 yn2 , where m1;m2;
n1; n2 2 Z and m1n2 � m2n1 6¼ 0. L acts freely on E

2 and

defines the orbit space E
2=L ¼ fLu : u 2 E

2g called a flat

torus. This space is the collection of all orbits of points in E
2

under L. More specifically, a point v 2 E
2 belongs to the orbit

Lu of u 2 E
2 if and only if v ¼ lu for some l 2 L.

The Kepler, Heesch or Laves tiling T gives rise to the tiling

T
� ¼ T=L on the flat torus E

2=L. Since a flat torus is a

quotient space of E
2, it is endowed with a metric inherited

from E
2 (McMullen & Schulte, 2002). With respect to this

metric, the group G� consisting of all distance-preserving

bijective transformations of E
2=L that leave T

� invariant is

isomorphic to NGðLÞ=L, where NGðLÞ ¼ fg 2 G : gLg�1 ¼ Lg
is the normalizer of L in G (McMullen & Schulte, 2002;

Senechal, 1988). It acts on X=L ¼ fL� : � 2 Xg, the set of

(respectively) vertices, edges or faces of T
�, by left multi-

plication. More precisely, if Lg 2 NGðLÞ=L and L� 2 X=L,

then Lg � L� ¼ Lðg�Þ 2 X=L.

It is routine to show that NGðLÞ is a translation-equivalent

subgroup of G. That is, TðNGðLÞÞ ¼ TðGÞ. Note that NGðLÞ is

also a plane crystallographic group and is an extension of

TðGÞ by its point group PðNGðLÞÞ. As a special case, when

NGðLÞ is a symmorphic group or a split extension of TðGÞ by

PðNGðLÞÞ, G� ffi ðTðGÞ=LÞ �PðNGðLÞÞ.
The following theorem is helpful in characterizing the

structure of G�.

Theorem 1. Let TðGÞ ¼ hx; yi be the translation

subgroup of a plane crystallographic group G and let

L ¼ hxm1 ym2 ; xn1 yn2i be a subgroup of TðGÞ, where

m1;m2; n1; n2 2 Z and m1n2 � m2n1 6¼ 0. Then TðGÞ=L ffi
Cd � Cjm1n2�m2n1j=d, where d ¼ gcdðm1;m2; n1; n2Þ.

Proof. Since TðGÞ ¼ hx; yi is a Z-module with basis x and y,

we can express L ¼ hxm1 ym2 ; xn1 yn2i in matrix form as

L ¼ m1 n1

m2 n2

� �
:

A useful result (Sims, 1994) states that TðGÞ=L is isomorphic

to the direct product C�1
� C�2

of finite cyclic groups, where �1

and �2 are the diagonal entries in the Smith normal form of

the matrix L. Computation using determinantal divisors

(Adkins & Weintraub, 1999) yields �1 ¼ d and �2 ¼
jm1n2 � m2n1j=d, where d is the greatest common divisor of

m1, m2, n1 and n2. &

3. Colorings of T�

Consider the set X of vertices, edges or faces of a Kepler,

Heesch or Laves tiling T, respectively. If C ¼ fc1; c2; . . . ; ckg is

a set of k colors, we define a k-coloring of T to be a surjective

function f : X ! C, which assigns to each � 2 X a color f ð�Þ
in C. The coloring f determines a partition P ¼
ff�1ðciÞ : ci 2 Cg of X, where f�1ðciÞ is assigned the color ci.

Let H be the subgroup of G which consists of symmetries of

T that effect a permutation of the colors in C. Then h 2 H if

for every ci 2 C, there is a cj 2 C such that hðf�1ðciÞÞ ¼ f�1ðcjÞ.
This defines an action of H on C where we define hci :¼ cj if

and only if hðf�1ðciÞÞ ¼ f�1ðcjÞ. The group H is called the color

group and the elements of H are referred to as the color

symmetries of the given coloring of T. The group K of

symmetries in H that fix the colors is called the color-fixing

group associated with the coloring. If H ¼ G, then the

coloring of T is called a perfect coloring.

To obtain a coloring of the tiling T
� on the flat torus E2=L

from the coloring of the tiling T in the plane and conversely, L

must be a subgroup of K to ensure that no two distinct colors

overlap in the flat torus. Given a k-coloring f : X ! C of T,

we obtain a k-coloring f � : X=L ! C of T
� defined by

f �ðL�Þ :¼ f ð�Þ, L� 2 X=L. On the other hand, given a

k-coloring f � : X=L ! C of T
�, we obtain a k-coloring

f : X ! C of T defined by f ð�Þ :¼ f
�ðL�Þ, � 2 X .

The color group and color-fixing group of the colorings

discussed above are described in the next theorem.

Theorem 2. Let f : X ! C define a coloring of T with color

group H and color-fixing group K. Then the color group H�

and color-fixing group K� of the coloring f � of T� are given by

H� ¼ NHðLÞ=L and K� ¼ NKðLÞ=L, respectively. Conversely,

if f � : X=L ! C is a coloring of T
� with color group H� ¼

H 0=L and color-fixing group K� ¼ K0=L, where H0;K0 �
NGðLÞ, then the color group H and color-fixing group K of the

coloring f satisfy H0 � H and K0 � K, respectively.

Proof. Let H� � G� ¼ NGðLÞ=L be the color group of f �

and let Lh 2 H�, h 2 NGðLÞ. Then for every ci 2 C, there is a

cj 2 C such that ðLhÞððf �Þ�1ðciÞÞ ¼ ðf �Þ�1ðcjÞ. This implies that

ðLhÞci ¼ cj and hci ¼ cj. Thus, h 2 H and Lh 2 NHðLÞ=L. For

the reverse direction, let Lh 2 NHðLÞ=L, h 2 H. Then for

every ci 2 C, there is a cj 2 C such that hci ¼ cj. Since L � K,

ðLhÞci ¼ cj. This implies that ðLhÞððf �Þ�1ðciÞÞ ¼ ðf �Þ�1ðcjÞ.
Thus, Lh 2 H�. Analogously, if K� � H� denotes the color-

fixing group of f �, then Lk 2 K� if and only if Lk 2 NKðLÞ=L.
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Suppose now that h 2 H0. Then Lh 2 H�. It follows that

for every ci 2 C, there is a cj 2 C such that ðLhÞððf �Þ�1ðciÞÞ
¼ ðf �Þ�1ðcjÞ or ðLhÞci ¼ cj: Consequently, hci ¼ cj. Thus

h 2 H. Next, let k 2 K0 so that Lk 2 K�. Hence,

ðLkÞððf �Þ�1ðciÞÞ ¼ ðf �Þ�1ðciÞ for every ci 2 C, and thus,

kci ¼ ci. Therefore, k 2 K. &

The following result whose proof follows immediately from

Theorem 2 gives a necessary and sufficient condition for a

perfect coloring of T�.

Corollary 1. A coloring f � : X=L ! C of T� is perfect if and

only if the color group H of the coloring f : X ! C satisfies

NGðLÞ � H.

To illustrate the above results, we consider a tiling by

regular hexagons H ¼ ð63Þ, a Kepler tiling with symmetry

group G ¼ hx; y; a; bi ffi p6mm (IUCr notation) generated by

the translations x; y with vectors separated by an angle of 2�=3

radians, the sixfold (counterclockwise) rotation a about O, and

the reflection b in the axis through O in the direction of x (Fig.

1a). Consider the vertex 4-coloring of H shown in Fig. 1(b).

The coloring has color group and color-fixing group given by

H ¼ hx; y; a3; bi ffi c2mm and K ¼ hx; y2; a3bi ffi pm, respec-

tively. If we take L ¼ hx3; x4y8i � K, then NGðLÞ ¼ H. This is

an example of a non-perfectly colored tiling in E
2 that yields a

perfect coloring of the corresponding tiling H
� on E

2=L. In

this case, H� ¼ NHðLÞ=L ffi C24 �D2 and K� ¼ NKðLÞ=L ffi
C12 �D1.

In the next section, we discuss the ideas on how T
� is

realized in E
3. This allows us to visualize T

� and its colorings

using spatial figures and analyze their symmetry properties.

4. Geometric realizations of T�

4.1. Tiling T on a round torus

Consider the tiling T
� on E

2=L. Let x, y be a pair of vectors

corresponding to the translations x, y 2 TðGÞ. Position x, y in

T and let v1 ¼ m1xþ m2y and v2 ¼ n1xþ n2y.

The flat torus E
2=L can be embedded into the Cartesian

product S1 � S1 of two circles with circumferences kv2 k and

kv1 k via the bijection

’ : E2=L ! S1 � S1

Lu 7!
�kv2 k

2�
cos 2�p2;

kv2 k
2�

sin 2�p2;
kv1 k

2�
cos 2�p1;

kv1 k
2�

sin 2�p1

�
;

where

p1 ¼
u � v2ð Þ v1 � v2ð Þ � ðu � v1Þðv2 � v2Þ

v1 � v2ð Þ2 � v1 � v1ð Þ v2 � v2ð Þ
and

p2 ¼
u � v1ð Þ v1 � v2ð Þ � ðu � v2Þðv1 � v1Þ

v1 � v2ð Þ2 � v1 � v1ð Þ v2 � v2ð Þ

refer to the coefficients of projection of the point u (viewed as

a vector u) in E
2 onto v1 and v2, respectively, and ð�Þ is the

standard Euclidean inner product. It is straightforward to

show that the map ’ is well defined and is independent of

u 2 Lu. Since S1 � S1 also lies in the 3-sphere S3 of radius

ðkv1 k2 þ kv2 k2Þ1=2=2� centered at the origin of the Euclidean

4-space E
4, we can use a stereographic projection to project

the image of E2=L to E
3. Specifically, we use

 : S1 � S1 ! E
3

’ Luð Þ 7! kv2 k cos 2�p2; kv2 k sin 2�p2; kv1 k sin 2�p1

� �
ðkv1 k2 þ kv2 k2Þ1=2� kv1 k cos 2�p1

:

The image of E2=L under the composition ( 	 ’) is a round

torus. By applying ( 	 ’) to the tiling T
�, we obtain a tiling T

of the round torus whose vertices, edges and faces are the

Acta Cryst. (2015). A71, 99–110 Mark L. Loyola et al. � Tilings on a flat torus 101
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(a) An uncolored tiling H by regular hexagons with axes of the reflections
b (yellow), a3b (blue) and glide reflection ya3b (red). (b) A non-perfect
vertex 4-coloring of H.
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images under ( 	 ’) of the vertices, edges and faces of T�. We

refer to this tiling on the round torus as the geometric reali-

zation of T� defined by v1 and v2. We can imagine T as the

result of rolling T along v1 to obtain a tiling on a cylinder with

circumference kv1 k, and then bending this cylinder along v2 to

obtain a tiling on a round torus with minor circle of circum-

ference kv1 k and major circle or equator of circumference

kv2 k.

We remark that if v1 and v2 are orthogonal, then ’ is an

isometric isomorphism and, hence, the composition ( 	 ’) is

conformal (Sullivan, 2011). In this case, T is a conformal

realization of T� on the round torus. Otherwise, T is a non-

conformal realization and can be thought of as obtained by

continuously deforming T first to force v1 and v2 to be

orthogonal, before folding it into a round torus.

To illustrate the preceding notions, we have the following

examples.

Consider the tiling H
� on E

2=L where L ¼ hx3; x4y8i.
Choose the vectors x, y so that they intersect at O as shown in

Fig. 2(a). This gives us the orthogonal vectors v1 ¼ 3x and

v2 ¼ 4xþ 8y. If we apply the map ( 	 ’) to H
�, we obtain the

conformal realization presented in Fig. 2(b).

As a second example, consider the tiling H
� on E

2=L where

L ¼ hx3; x7y8i. We obtain the non-orthogonal vectors v01 ¼ v1

and v02 ¼ 7xþ 8y also shown in Fig. 2(a). The continuous

deformation of H which forces v01 and v02 to be orthogonal is

research papers
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Figure 2
(a) A tiling H by regular hexagons with vectors v1 ¼ 3x, v2 ¼ 4xþ 8y and v02 ¼ 7xþ 8y. (b) A conformal realization of H� defined by v1 and v2. (c) A
continuous deformation of the tiling in (a) that forces v01 ¼ v1 and v02 to be orthogonal. (d) A non-conformal realization of H� defined by v01 and v02. (e)
Vectors v001 ¼ 3x0 and v002 ¼ 4x0 þ 8y0. (f) A conformal realization of H� defined by v001 and v002 .
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shown in Fig. 2(c). The resulting non-conformal realization of

H
� is presented in Fig. 2(d).

Given the same L in the first example, we can obtain a

different conformal realization by choosing x0; y0 so that they

intersect at O0 as shown in Fig. 2(e). By doing so, we obtain the

orthogonal vectors v001 ¼ 3x0 and v002 ¼ 4x0 þ 8y0. These vectors

define the conformal realization of H� presented in Fig. 2(f).

In each of Figs. 2(b), 2(d) and 2(f), the minor and major

circles of the round torus are colored red and blue, respec-

tively.

4.2. Symmetry group of T

Since the stereographic projection  is conformal but not

isometric, the composition ð 	 ’Þ is not an isometry. In fact, a

flat torus cannot be isometrically embedded into a round torus

(O’Neill, 2006; Sullivan, 2011). Thus, the symmetry group of T,

which we denote by G (isometries of E3 that leave T invar-

iant), is not isomorphic to the symmetry group G� ffi NGðLÞ=L

of T
�. Nevertheless, each symmetry in G� corresponds to a

motion of T that maps face boundaries to face boundaries

(Senechal, 1988). Thus, G� contains an isomorphic copy of G.

By nature, each of the isometries in G must fix the principal

rotation axis z and the ring axis r of the round torus (Fig. 2b).

In addition, since T is a tiling on a finite surface, G is neces-

sarily finite. As such, G is isomorphic to one of the seven axial

point groups (Table 1). Axial point groups are exactly the

common finite subgroups of the full symmetry group D1h of

the round torus and the orthogonal group Oð3Þ of dimension

3. Consequently, G may contain only the following types of

isometries: rotation about the z axis; reflection in the equa-

torial plane (the plane containing the r axis); reflection in a

plane passing through the z axis; twofold rotation about an

axis lying in the equatorial plane; and rotoinversion about the

center of the round torus (the point of intersection of the z

axis and the equatorial plane).

The elements of G may be determined by identifying planar

symmetries in NGðLÞ that become axial symmetries when T is

folded to form T. Note that the translation x
n1
n y

n2
n , where

n ¼ gcdðn1; n2Þ, yields an n-fold rotation �n about the z axis.

Thus, G always contains �n and hence contains a subgroup

isomorphic to Cn. Now to check for other axial symmetries in

G we take into account v2. Since v2 becomes the major circle

of the round torus, we use as a basis the position of the vector,

center or axis of a translation, rotation or reflection/glide

reflection, respectively, relative to v2 in determining whether

the particular symmetry becomes an axial symmetry.

If there is a translation in NGðLÞ whose vector is parallel to

or coincides with v2, then this translation becomes a rotation

about the z axis (a power of �n). If a twofold rotation in NGðLÞ
has a center lying on v2, then we get a twofold rotation about

an axis lying in the equatorial plane. We denote one such

rotation by �.

Other axial symmetries arise when v1 is orthogonal to v2.

Suppose there is a reflection in NGðLÞ. If the axis of reflection

contains v2, then this reflection becomes the reflection �h in

the equatorial plane. If the axis is perpendicular to v2, on the

other hand, we obtain a reflection in a plane containing the z

axis. We denote one such reflection by �v. Lastly, a glide

reflection in NGðLÞ with axis containing v2 becomes a

rotoinversion about the center of the torus. In particular, a

glide reflection whose translation component is x
n1
2ny

n2
2n yields an

n-fold rotoinversion �2n about the center of the torus.

No other axial symmetries arise when v1 is not orthogonal

to v2. This is an inevitable consequence of the deformation of

T resulting from the map ( 	 ’), which destroys axes of

symmetries.

The above discussion is summarized in Table 2.

Theorems 3–4 characterize G based on the symmetries

present in NGðLÞ. In Fig. 3, we present unit cells of NGðLÞ
(Schattschneider, 1978) together with v1, v2. Before proving

the theorems, we first state and prove the following lemma.

Lemma 1. Suppose v1, v2 are orthogonal. If NGðLÞ contains

a rotation with angle 	 radians, then 	 ¼ k�=2, where k ¼ 0, 1,

2 or 3. The case when k ¼ 1 or 3 happens only if kv1 k¼ kv2 k.

Proof. Let ðt; 
Þ be a rotation in NGðLÞ with vector

component t and orthogonal component 
. Then the vector

component 
v2 of ðt; 
Þðv2; idÞðt; 
Þ�1 ¼ ð
v2; idÞ 2 L is in the

lattice � spanned by v1 and v2. Since v1 and v2 are orthogonal,

� must either be square or rectangular. Thus, v1 and v2 are

vectors of minimal lengths in �. It follows that either 
v2 ¼ v2,


v2 ¼ �v2, 
v2 ¼ v1 or 
v2 ¼ �v1. Let 	 be the angle of

rotation of ðt; 
Þ. If 
v2 ¼ v2 or 
v2 ¼ �v2, then 	 ¼ 0 or �. If


v2 ¼ v1 or 
v2 ¼ �v1, on the other hand, then 	 ¼ �=2 or

3�=2. Because 
 preserves distance, 
v2 ¼ v1 or 
v2 ¼ �v1

happens only if kv1 k¼ kv2 k. &

As a consequence of Lemma 1, we see that if L corresponds

to a pair of orthogonal vectors, then NGðLÞ cannot be

isomorphic to a crystallographic group of type p3, p3m1,

p31m, p6 or p6mm. In Theorem 3 below, we do not consider

these crystallographic group types in our analyses.

Theorem 3. Suppose v1, v2 are orthogonal.

(i) If NGðLÞ contains reflections in a single direction, then

G ffi Cn, S2n, Dn, Cnv, Cnh or Dnd.

(ii) If NGðLÞ contains reflections in more than one direction,

then G ffi Cn, S2n, Dn, Cnv, Dnd or Dnh.

(iii) If NGðLÞ does not contain any reflection, then G ffi Cn,

S2n or Dn.
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Table 1
The seven axial point groups and their generators.

Axial point group Minimal generating set Abstract group

Cn �n Cn

Dn �n; � Dn

Cnh �n; �h Cn � C2

Cnv �n; �v Dn

S2n �2n C2n

Dnd �v; �2n D2n

Dnh �n; �v; �h Dn � C2, Cn �D2

Cn – cyclic group of order n; Dn – dihedral group of order 2n.
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Proof. (i) Suppose NGðLÞ contains reflections in a single

direction. Then NGðLÞ ffi pm, p2mg or cm. If there is an axis of

glide reflection that contains v2, then we obtain a rotoinversion

�2n that is a generator of G. Additionally, if there is an axis of

reflection that is perpendicular to v2, we obtain a reflection �v,
a second generator of G. In either case, G ¼ h�2ni ffi S2n or

G ¼ h�v; �2ni ffi Dnd (Figs. 3b–3c).

If no axis of glide reflection contains v2, then we have four

cases. If a reflection axis is perpendicular to v2, then we

obtain �v. Together with �n, we have G ¼ h�n; �vi ffi Cnv. If a

reflection axis contains v2, we obtain the reflection �h and

hence G ¼ h�n; �hi ffi Cnh. If the center of a twofold rotation

lies on v2, we obtain a twofold rotation �. Thus, G ¼
h�n; �i ffi Dn. Otherwise, G ¼ h�ni ffi Cn (Figs. 3a–3c).

(ii) Suppose NGðLÞ contains reflections in more than one

direction. Then NGðLÞ ffi p2mm, c2mm, p4mg or p4mm. If

there is an axis of glide reflection containing v2, then using the

arguments in the proof of (i), either G ffi S2n or G ffi Dnd (Figs.

3e–3f).

If no axis of glide reflection contains v2, the situations that

occur are as follows. If a reflection axis is perpendicular to v2,

we obtain �v. If another reflection axis also contains v2, then

�h is also contained in G. In these cases, either G ¼
h�n; �vi ffi Cnv or G ¼ h�n; �v; �hi ffi Dnh. Suppose now that
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Figure 3
Different positions of the orthogonal vectors v1 (red) and v2 (blue) drawn in a unit cell of NGðLÞ. The bold lines represent reflection axes; the dashed
lines represent glide axes; the diamonds and squares represent centers of twofold and fourfold rotations, respectively. (a) NGðLÞ ffi pm, (b) NGðLÞ ffi cm,
(c) NGðLÞ ffi p2mg, (d) NGðLÞ ffi p2mm, (e) NGðLÞ ffi c2mm, (f) NGðLÞ ffi p4mg, (g) NGðLÞ ffi p4mm, (h) NGðLÞ ffi pg, (i) NGðLÞ ffi p2, (j)
NGðLÞ ffi p2gg, (k) NGðLÞ ffi p4.
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no reflection axis is perpendicular to v2. If the center of a

twofold rotation lies on v2, we have G ffi Dn. Otherwise,

G ffi Cn (Figs. 3d–3g).

(iii) Suppose NGðLÞ does not contain any reflection. Then

NGðLÞ ffi p1, pg, p2, p2gg or p4. A check for an axis of glide

reflection containing v2, or a center of twofold rotation lying

on v2 is carried out. The proof follows the same arguments in

the proof of (i) (Figs. 3h–3k). &

The axial-point-group type of G when v1, v2 are non-

orthogonal is stated in the next theorem. The proof of this

theorem is immediate.

Theorem 4. Suppose v1, v2 are non-orthogonal. If a center of

a twofold rotation lies on v2, then G ffi Dn, otherwise G ffi Cn.

The results of Theorems 3–4 are summarized in Table 3.

The theorems are applied to determine G for the three

examples discussed previously in x4.1. Note that, for all three,

NGðLÞ ¼ hx; y; a3; bi ffi c2mm.

For the first one, since v1, v2 are orthogonal and NGðLÞ
contains reflections in more than one direction, we use

Theorem 3(ii). Since v2 is perpendicular to the reflection axis

of b and is contained in the reflection axis of a3b (Fig. 1a), the

symmetry group of the tiling in Fig. 2(b) is G ¼
h�4; �v; �hi ffi D4h.

The second example pertains to the case when v01, v02 are

non-orthogonal. Note that the center O of the twofold rota-

tion a3 lies on v02. By Theorem 4, the symmetry group of the

tiling in Fig. 2(d) is G
0 ¼ h�1; �i ffi D1.

The third example pertains to the case when v001 , v002 are the

same as the vectors v1, v2 but moved to a different position. In

this case, Theorem 3(ii) is again applicable. Since v002 is

contained in the axis of the glide reflection ya3b and is

perpendicular to the reflection axis of b as shown in Fig. 1(a),

the theorem implies that the symmetry group of the tiling in

Fig. 2(f) is G
00 ¼ h�v; �8i ffi D4d.

From a group-theoretic perspective, it is interesting to see

how the abstract group structure of G (refer to Table 1) relates

to that of G�. For instance, consider each of the three

symmetry groups G, G
0

and G
00

discussed in the preceding

examples above arising from G� ffi C24 � D2. To see the

relation, we decompose each symmetry group as a semidirect

product of subgroups of C24 and D2. In the first example,

we have G ffi D4h ffi C4 � D2; where C4 ffi h�4i and D2 ffi
h�v; �hi. In the second one, we have G

0 ffi D1 ffi D1, which can

also be written as C1 � D1, where C1 ffi h�1i and D1 ffi h�i.
Finally, in the third example, we have G

00 ffiD4d ffi D8, which is

decomposable as C8 � D1, where C8 ffi h�8i and D1 ffi h�vi.

Similar decompositions may be easily accomplished for

symmetry groups of types Cn and Cnv, which can also arise

when NGðLÞ ffi c2mm (refer to Table 3).

5. Geometric model of nanotori

In theory, a carbon nanotorus is a nanosized material obtained

when a hexagonal monolayer of carbon atoms (graphene) is

rolled into a cylindrical tube along v1 (the transverse vector)

and then joined end to end along v2 (the longitudinal vector)

to form a toroidal nanostructure (Arezoomand & Taeri, 2009).

In this work, a geometric model of a carbon nanotorus is

obtained as follows. Consider a tiling by regular hexagons

H ¼ ð63Þ with symmetry group G ¼ hx; y; a; bi ffi p6mm and

a pair of generating translations for L corresponding to a pair

of orthogonal vectors v1 ¼ m1xþ m2y and v2 ¼ n1xþ n2y,

where ð2m1 � m2Þn1 þ ð2m2 � m1Þn2 ¼ 0. Then the tiling H

on the round torus defined by v1 and v2 models a ðm1 � m2;
m2; n1 � n2; n2Þ carbon nanotorus. The vertices of the tiling

represent carbon atoms and the edges represent atomic bonds.

Table 4 lists the subgroups L which give rise to models of

carbon nanotori. For each L, we provide the group G� and the

various possible symmetry groups G of the corresponding

carbon nanotorus. We remark that the orthogonality restric-

tion imposed on v1 and v2 implies that kv1 k 6¼ kv2 k.

Fig. 2(b) shows a model of a ð3; 0;�4; 8Þ carbon nanotorus

with G� ffi C24 � D2 and G ffi D4h.
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Table 3
Possible axial-point-group types for the symmetry group G of T defined
by v1 and v2.

The symbol (�) indicates non-applicability.

G

NGðLÞ Orthogonal Non-orthogonal

p1 Cn Cn

p2 Cn, Dn Cn, Dn

p3 � Cn

p4 Cn, Dn Cn, Dn

p6 � Cn, Dn

pg Cn, S2n Cn

p2gg Cn, S2n, Dn Cn, Dn

pm Cn, Cnv, Cnh Cn

cm Cn, S2n, Cnv, Cnh Cn

p2mg Cn, Dn, Cnv, Cnh, Dnd Cn, Dn

p2mm Cn, Dn, Cnv, Dnh Cn, Dn

c2mm Cn, Dn, Cnv, Dnd, Dnh Cn, Dn

p3m1 � Cn

p31m � Cn

p4mg Cn, S2n, Dn, Cnv, Dnd, Dnh Cn, Dn

p4mm Cnv, Dnd, Dnh Cn, Dn

p6mm � Cn, Dn

Table 2
Correspondence between planar symmetries in NGðLÞ and axial symmetries in G.

Planar symmetry Special position Axial symmetry

Translation With vector parallel to or coinciding with v2 Rotation about the z axis
Twofold rotation With center lying on v2 Twofold rotation about an axis lying in the equatorial plane
Reflection With axis perpendicular to v2 Reflection in a plane containing the z axis

With axis containing v2 Reflection in the equatorial plane
Glide reflection With axis containing v2 Rotoinversion about center of the torus
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There are two special motions of a carbon nanotorus that

preserve the ring axis but not the principal rotation axis – the

whirling motion and the torus screw rotation. These motions

are not distance preserving and hence are not elements of G.

Nevertheless, we can regard them as four-dimensional

symmetries in G� acting on H
� with analogous effects as three-

dimensional non-rigid motions acting on the nanotorus. In

related literature (Bovin et al., 2001; Arezoomand & Taeri,

2009; Zhao et al., 2012), these are also considered as symmetry

elements.

An m-fold whirling motion !m about the r axis can be

described as a ‘rotation’ of a nanotorus about r. It is brought

about by a translation in NGðLÞ with vector perpendicular to

v2. It sends points near the equator to points near the center of

the torus, and conversely, via circular paths (Fig. 4a). One such

whirling motion corresponds to the element Lðxm1
m y

m2
m Þ of order

m ¼ gcdðm1;m2Þ in G�.

A torus screw rotation �q
p about the r axis, on the other hand,

is a composition of a whirling motion by an angle of 2�=p

about r and a rotation by an angle of 2�=q

about the principal rotation axis z. It results

from a translation in NGðLÞ with vector neither

coinciding with nor parallel or perpendicular to

v2. It sends points near the equator to points

near the center of the torus, and conversely, via

a helical path (Fig. 4b). One such torus screw

rotation corresponds to an element of order

jm1n2 � m2n1j=d in G�.

If we consider the tiling H with its vertices

assigned more than one color and fold it into a

round torus, then we obtain a model of a

structural analog of a carbon nanotorus. By a structural analog,

we mean a toroidal nanomaterial with the same geometric

structure as that of a carbon nanotorus but made up of

different atoms. The symmetry group K of a structural analog

consists of axial symmetries of the colored tiling H on the

round torus. It is obtained by looking at the symmetries in

NKðLÞ that become axial symmetries following the same

arguments in the previous section. The whirling motions and

torus screw rotations of a structural analog can be regarded as

elements of K�.
Let us take, for example, the vertex 4-coloring of H with

color-fixing group K ¼ hx; y2; a3bi ffi pm appearing in Fig.

1(b). Using L ¼ hx3; x4y8i � K with NKðLÞ ¼ K, we obtain a

geometric model of a structural analog of the ð3; 0;�4; 8Þ
carbon nanotorus in Fig. 2(b). This analog shown in Fig. 5 is

composed of four different types of atoms (48 in all) that occur

in the same number. The symmetry group of this structural

analog is K ¼ h�4; �hi ffi C4h. The non-rigid motions of this

nanotorus include the threefold whirling motion !3 and the

torus screw rotation �4
3 corresponding, respectively, to the

elements Lx of order 3 and Lx2y2 of order 12 in K� ffi
C12 � D1.

In Fig. 6, we present boron carbon nitride (BxCyNz) hexa-

gonal monolayers represented by vertex colorings of H. We

remark that boron nitride nanotori, which can be obtained

from the BN monolayer in Fig. 6(a), have been investigated

very recently in Loh & Baillargeat (2013). Using Theorem 3,

we are able to determine for each L the group K� and the

possible symmetry group K of the boron carbon nitride

nanotori that will arise from these monolayers. The groups are

listed in Table 5.
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Figure 4
(a) Oriented circular paths depicting a whirling motion. (b) An oriented
helical path depicting a torus screw rotation.

Table 4
Symmetry groups of carbon nanotori.

L ¼ hxm1 ym2 ; xn1 yn2 i NGðLÞ G� G

m2 ¼ 0 and 2n1 ¼ n2 hx; y; b; a3bi ffi c2mm ðCd � C2mn=dÞ � D2 Cnv, Dnd, Dnh

2m1 ¼ m2 and n2 ¼ 0 hx; y; b; a3bi ffi c2mm ðCd � C2mn=dÞ � D2 Cnv, Dnd, Dnh

m1 ¼ m2 and n1 ¼ �n2 hx; y; a2b; a5bi ffi c2mm ðCd � C2mn=dÞ � D2 Cnv, Dnd, Dnh

m1 ¼ �m2 and n1 ¼ n2 hx; y; a2b; a5bi ffi c2mm ðCd � C2mn=dÞ � D2 Cnv, Dnd, Dnh

m1 ¼ 0 and n1 ¼ 2n2 hx; y; ab; a4bi ffi c2mm ðCd � C2mn=dÞ � D2 Cnv, Dnd, Dnh

m1 ¼ 2m2 and n1 ¼ 0 hx; y; ab; a4bi ffi c2mm ðCd � C2mn=dÞ � D2 Cnv, Dnd, Dnh

Other values hx; y; a3i ffi p2 ðCd � Cjm1n2�m2n1 j=dÞ � C2 Cn, Dn

ð2m1 � m2Þn1 þ ð2m2 � m1Þn2 ¼ 0, d ¼ gcdðm1;m2; n1; n2Þ, m ¼ gcdðm1;m2Þ, n ¼ gcdðn1; n2Þ.

Figure 5
A structural analog of the ð3; 0;�4; 8Þ carbon nanotorus in Fig. 2(b).
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Generating the vertex colorings of H employed to model

structural analogs in this paper was facilitated by a coloring

framework found in De Las Peñas et al. (2006, 2011). The

framework was translated into GAP (The GAP Group, 2013)

and Mathematica (Wolfram Research, 2011) codes to arrive at

these colorings and render them as three-dimensional

graphics.

Other theoretical studies (see, for example, Ashrafi &

Shabani, 2009; Moradi, 2013) deal with nanotori obtained

from a C4C8 monolayer of atoms. Such a monolayer is

represented by a truncated square tiling S ¼ ð4 � 82Þ, a Kepler

tiling with symmetry group G ¼ hx; y; a; bi. The group G is a

plane crystallographic group of type p4mm, which is generated

by the translations x; y with vectors separated by an angle of

�=2 radians, the fourfold (counterclockwise) rotation a about

O, and the reflection b in the axis through O in the direction of

x (Fig. 7a).

Analogous to a carbon nanotorus, a ðm1;m2; n1; n2Þ C4C8

nanotorus can also be modeled by a tiling S on a round torus

defined by a pair of orthogonal vectors v1 ¼ m1xþ m2y and

v2 ¼ n1xþ n2y, where m1n1 þ m2n2 ¼ 0. Table 6 lists the

subgroups L which give rise to models of C4C8 nanotori. For

each L, we provide the group G� and the various possible

symmetry groups G of the corresponding C4C8 nanotorus. If

we consider a vertex coloring of S, then we obtain a model of a

structural analog of a C4C8 nanotorus.

As an illustration, let us take the perfect vertex 2-coloring

of S with color-fixing group K ¼ hx2; xy; a; ybi ffi c2mm

appearing in Fig. 7(b). Using L ¼ hx4; y6i � K, we obtain a

geometric model of a structural analog of a (4, 0, 0, 6) C4C8

nanotorus. This analog, shown in Fig. 8, is composed of two

types of atoms (96 in all) that occur in the same number. The

symmetry group of this analog is K ¼ h�v; �6i ffi D3d.

6. Conclusion and outlook

In this work, we associated two symmetry groups with a tiling

T
� ¼ T=L on a flat torus E

2=L obtained as a quotient of a

tiling T of the Euclidean plane E
2: the symmetry group G� of

T
� itself and the symmetry group G of the corresponding tiling

T on the round torus.

This paper dealt with the computation and characterization

of G� and G when T is one of the 27 Kepler, Heesch and Laves

tilings. We also discussed concepts of color-symmetry theory

for these tilings when embedded on a flat torus. One result

gives the color group H� and color-fixing group K� of a

coloring of T
� in relation to the color

group H and color-fixing group K of

the corresponding coloring of T, and

conversely. A corollary to this result

gives a necessary and sufficient condi-

tion for a perfect coloring of T�.
The symmetry group G of T was

computed by identifying symmetries in

G that are transformed into symmetries

of T. We have determined that G arises

from one of the seven axial point groups

and that its type depends on the posi-

tion of the pair of vectors used to roll T

into T relative to the centers of rota-

tions and axes of reflections or glide

reflections of T that are in NGðLÞ.
This paper also demonstrated how a

tiling T on a round torus defined by

a pair of orthogonal vectors can

be employed to model a nanotorus
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Table 5
Symmetry groups of boron carbon nitride nanotori.

BN
(Fig. 6a)

BC3

(Fig. 6b)
BCN
(Fig. 6c)

BC2N (type I)
(Fig. 6d)

BC2N (type II)
(Fig. 6e)

L ¼ hxm1 ym2 ; xn1 yn2 i NKðLÞ K� K NKðLÞ K� K NKðLÞ K� K NKðLÞ K� K NKðLÞ K� K

m2 ¼ 0 and 2n1 ¼ n2 cm K�
1 Cn, S2n, Cnh c2mm K�

3 Cnv, Dnd, Dnh pm K�
1 Cn, Cnh p2mm K�

3 Cnv, Dnh pm K�
1 Cn, Cnh

2m1 ¼ m2 and n2 ¼ 0 cm K�
1 Cn, Cnv c2mm K�

3 Cnv, Dnd, Dnh pm K�
1 Cn, Cnh p2mm K�

3 Cnv, Dnh pm K�
1 Cn, Cnh

m1 ¼ m2 and n1 ¼ �n2 cm K�
1 Cn, S2n, Cnh c2mm K�

3 Cnv, Dnd, Dnh p1 K�
2 Cn p2 K�

4 Cn, Dn p1 K�
2 Cn

m1 ¼ �m2 and n1 ¼ n2 cm K�
1 Cn, Cnv c2mm K�

3 Cnv, Dnd, Dnh p1 K�
2 Cn p2 K�

4 Cn, Dn p1 K�
2 Cn

m1 ¼ 0 and n1 ¼ 2n2 cm K�
1 Cn, S2n, Cnh c2mm K�

3 Cnv, Dnd, Dnh p1 K�
2 Cn p2 K�

4 Cn, Dn p1 K�
2 Cn

m1 ¼ 2m2 and n1 ¼ 0 cm K�
1 Cn, Cnv c2mm K�

3 Cnv, Dnd, Dnh p1 K�
2 Cn p2 K�

4 Cn, Dn p1 K�
2 Cn

Other values p1 K�
2 Cn p2 K�

4 Cn, Dn p1 K�
2 Cn p2 K�

4 Cn, Dn p1 K�
2 Cn

ð2m1 � m2Þn1 þ ð2m2 � m1Þn2 ¼ 0, d ¼ gcdðm1;m2; n1; n2Þ, m ¼ gcdðm1;m2Þ, n ¼ gcdðn1; n2Þ. K�
1 ffi ðCd � C2mn=dÞ � D1; K�

2 ffi Cd � Cjm1 n2�m2 n1 j=d ; K�
3 ffi ðCd � C2mn=dÞ � D2;

K�
4 ffi ðCd � Cjm1 n2�m2 n1 j=dÞ � C2.

Figure 6
Sections of boron carbon nitride hexagonal monolayers represented by vertex colorings of H.
Yellow vertices, boron; red vertices, carbon; blue vertices, nitrogen. (a) BN, (b) BC3, (c) BCN, (d)
BC2N (type I), (e) BC2N (type II).
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obtained from a monolayer of atoms represented by a Kepler

tiling T. In particular, we computed the symmetry groups

associated with carbon and C4C8 nanotori. We have shown

that only five types of axial point groups are possible for their

symmetry groups. These are Cn, Dn, Cnv, Dnd and Dnh. We also

explained how relevant non-rigid motions of a carbon nano-

torus such as whirling motions and torus screw rotations can

be identified as motions in G�.

Vertex colorings of T, on the other

hand, were employed to model struc-

tural analogs of nanotori. The colors in

the colored tiling are used to distin-

guish among different types of atoms.

Perfect colorings of T� suggest highly

symmetric nanotori. An example is the

coloring of H
� obtained from the

vertex coloring of H in Fig. 1(b). It was

used to model the structural analog in

Fig. 5 with an equal distribution of four

types of atoms. To illustrate the results highlighted in this

work, we computed the symmetry groups associated with

structural analogs of carbon nanotori obtained from boron

carbon nitride hexagonal monolayers.

This research can be extended to include tilings in the plane

without regularity and transitivity properties. Such an exten-

sion will cover, for instance, carbon nanotori which contain

carbon pentagons and heptagons in addition to carbon hexa-

gons, such as those considered in Beuerle et al. (2011) and

Chuang et al. (2011). One can also consider applying the

approach presented in this paper to investigate the symmetry

and color-symmetry properties of Kepler, Heesch and Laves

tilings embedded on other orbit spaces. It is particularly

interesting to see the approach applied to pentaheptite

modifications of a graphite sheet (Deza et al., 2000) embedded

on Klein bottles and Möbius strips.

APPENDIX A
The 11 Kepler tilings, five Heesch tilings and 11 Laves

tilings are given in Figs. 9–11, respectively.
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Figure 9
The 11 Kepler tilings.

Figure 10
The five Heesch tilings.

Figure 11
The 11 Laves tilings.

electronic reprint



O’Neill, B. (2006). Elementary Differential Geometry, 2nd ed. USA:
Elsevier.

Sano, M., Kamino, A., Okamura, J. & Shinkai, S. (2001). Science, 293,
1299–1301.

Schattschneider, D. (1978). Am. Math. Mon. 85, 439–450.
Senechal, M. (1988). Discrete Comput. Geom. 3, 55–72.
Sims, C. C. (1994). Computations with Finitely Presented Groups. New

York: Cambridge University Press.
Staic, M. D. & Petrescu-Nita, A. (2013). Acta Cryst. A69, 435–439.

Sullivan, J. M. (2011). Bridges 2011: Mathematics, Music, Art,
Architecture, Culture, pp. 593–596. Phoenix: Tessellations
Publishing.

The GAP Group (2013). GAP – Groups, Algorithms and Program-
ming, Version 4.7.2. http://www.gap-system.org.

Wolfram Research (2011). Mathematica Version 8.0 for Microsoft
Windows (32-bit). http://www.wolfram.com.

Zhao, X., Xing, S., Li, Y., Cai, Z., Pan, Y., Shang, Z., Wang, G., Xu, X.
& Li, R. (2012). J. Math. Chem. 50, 2248–2271.

research papers

110 Mark L. Loyola et al. � Tilings on a flat torus Acta Cryst. (2015). A71, 99–110

electronic reprint


	Symmetry Groups Associated With Tilings on a Flat Torus
	Recommended Citation

	tmp.1634799173.pdf.xHyWT

