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Frettlöh
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This work introduces the idea of symmetry order, which describes the rotational

symmetry types of tilings in the hull of a given substitution. Definitions are given

of the substitutions �6 and �7 which give rise to aperiodic primitive substitution

tilings with dense tile orientations and which are invariant under six- and

sevenfold rotations, respectively; the derivation of the symmetry orders of their

hulls is also presented.

1. Introduction

Aperiodic substitution tilings have been a focus of study not

only for their interesting algebraic, geometric and dynamical

properties, but also because they are seen as potential struc-

ture models for quasicrystals, materials discovered in the early

1980s. See Baake & Grimm (2013), Frettlöh (2017), Kari &

Rissanen (2016), Frank et al. (2016) and references therein.

Understanding the properties of these tilings may lead to a

better characterization of the structures they represent. One

of the distinctive qualities of an aperiodic planar substitution

tiling is n-fold rotational symmetry. It is an invariant of the

tiling and its corresponding substitution tiling space. More-

over, it can differentiate a non-periodic tiling from a periodic

one, since periodic tilings can only have two-, three-, four- or

sixfold rotational symmetries (Baake & Grimm, 2013).

Most of the well known substitution tilings have the char-

acteristic that their tiles occur in finitely many different

orientations. An example of this tiling is the Penrose dart and

kite tiling (Penrose, 1978). Its tiles occur in ten different

orientations. There are also substitution tilings with tiles that

occur in infinitely many orientations, such as the pinwheel

tiling (Radin, 1994). More precisely, the pinwheel tiling has

dense tile orientations (DTO), that is, the orientations of its

tiles are dense in a unit circle. These characteristics of the

pinwheel tilings give rise to interesting diffraction properties

closely related to amorphous systems or regular crystals

investigated by powder diffraction [see e.g. Grimm & Deng

(2011), Baake et al. (2007a,b) and Moody et al. (2006) for more

details]. Apart from DTO, the pinwheel tiling has the property

that its hull contains six non-congruent tilings invariant under

twofold rotation. This information is relevant in the compu-

tation of the cohomology of its tiling space (Barge et al., 2010).

In this light, Savinien posed the question of whether there are

other primitive tilings with DTO invariant under n-fold rota-

tion (Savinien & Frettlöh, 2013).
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In this article we present substitutions �6 and �7 which

generate primitive substitution tilings with DTO and which

are invariant under n-fold rotation, n 2 f6; 7g, respectively.

The problem of finding the orders of rotational symmetries in

the hull of a substitution is addressed, including the determi-

nation of all non-congruent tilings in the hull that are invariant

under r-fold rotation, for some r up to translations or rigid

motions. We note that the substitution �6 was first introduced

by Frettlöh et al. (2017), where it was shown to have DTO and

every tiling in its hull has finite local complexity (FLC) with

respect to rigid motions, its hull containing two tilings invar-

iant under sixfold rotation.

In this article, �6 is presented alongside �7, in the discussion

of symmetry order and particularly to illustrate the notion of

finding all the non-congruent tilings in a hull of a rotation-

invariant substitution tiling.

2. General notions and definitions

A tile is a nonempty compact set T � R2 which is the closure

of its interior. The support of a set of tiles is the union of its

tiles. A tiling of R2 is a collection of tiles T ¼ fTi j i 2 Ng such

that its support is R2 and the intersection of the interiors of

two distinct tiles Ti and Tj is empty. A finite set P � T of tiles

is called a patch of T . Examples of patches of tilings are vertex

stars and edge types. A vertex star of T is a patch of all tiles

intersecting some vertex in T . An edge type of T is a patch

consisting of two tiles that intersect along an edge. Two tiles or

patches of T are equivalent if the tiles or patches, respectively,

can be made to coincide with each other by an isometry in R2.

For each tiling T of R2, we can form a new tiling by

translating every tile of T by a nonzero t 2 R
2. This tiling is

referred to as the translate of T by t, denoted by

T þ t ¼ fT þ t j T 2 T g. A tiling T of R2 is called periodic if

there is a nonzero vector t 2 R2 such that T þ t ¼ T ; other-

wise, T is non-periodic. A tiling T of R2 is aperiodic if it is non-

periodic and each tiling in its hull XT is non-periodic. The hull

XT of a tiling T of R2 is the closure of the set fgT j g 2 Gg in

the local topology where G is the group of all translations in

R
2 or the group of all rigid motions in R

2. Closure is taken

with respect to the local topology, which can be defined via a

metric. In this metric two tilings are "-close if they agree on a

ball of radius 1=" around the origin, after a small translation or

rigid motion.

One way to generate aperiodic tilings is to use a substitu-

tion. Let F :¼ fT1;T2; . . . ;Tmg be a finite set of tiles and

�> 1 a real number. For each 1 � i � m, let �Ti ¼
SnðiÞ

j¼1Tij

such that each Tij
is equivalent to a tile in F and the tiles

Ti1
;Ti2

; . . . ;TinðiÞ
have pairwise disjoint interiors. Let S be the

collection of all sets of tiles equivalent to tiles in F . We define

� to be the mapping � : F ! S given by �ðTiÞ =

fTi1
;Ti2

; . . . ;TinðiÞ
g, 1 � i � m. The mapping � is called a

substitution with prototiles T1;T2; . . . ;Tm and substitution

factor �.

Throughout this article, we use R� to denote a rotation

through an angle � 2 ½0; 2�Þ about the origin and Sl to denote

a reflection across a line l passing through the origin. If T is an

equivalent copy of a prototile Ti of a substitution �, then T can

be written either as (i) T ¼ R�Ti þ t or (ii) T ¼ R�SlTi þ t,

where t 2 R2. In the former case, we consider T as a rotated

copy of Ti and in the latter case we consider T as a reflected

copy of Ti. For later purposes, we call the angle � an orientation

angle of T. Now, by setting �ðTÞ ¼ �ðR�Ti þ tÞ =

R��ðTiÞ þ �t or �ðTÞ ¼ �ðR�SlTi þ tÞ ¼ R�Sl�ðTiÞ þ �t, �
extends naturally to any copy of a prototile. Given A 2 S, �
extends to any set in S by �ðAÞ ¼ f�ðTÞ j T 2 Ag. In parti-

cular, � can be applied on Ti k times to obtain the k-order

supertile �kðTiÞ of Ti.

As an example, let T be a right triangle whose legs measure

1 and 2. Inflate T by a factor of
ffiffiffi
5

p
, then dissect

ffiffiffi
5

p
T into five

equivalent copies of T (see Fig. 1). We define a mapping �p on

T such that �pðTÞ is the set containing the five right triangles

whose union is
ffiffiffi
5

p
T. The mapping �p is known as the pinwheel

substitution (Radin, 1994) with one prototile and substitution

factor
ffiffiffi
5

p
. The first three supertiles of the pinwheel prototile

are shown in Fig. 2. Applying the substitution �p repeatedly to

T gives rise to a tiling T � (pinwheel tiling) of R2. The hull of

this tiling T � is the set of all tilings containing the same

patches as T � (Baake & Grimm, 2013).

Remark 1. Note that, in certain situations, it is helpful to

distinguish Ti and its reflected copy as two non-equivalent

prototiles.

A substitution � can produce a tiling by iteratively applying

� on a prototile, called a substitution tiling with respect to �. In

general, a tiling T is called a substitution tiling with respect to

the substitution � if for each patch P � T there is a prototile

Ti and k 2 N such that an equivalent copy of P is contained in

�kðTiÞ. Substitutions on tilings are also referred to as inflations.
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Figure 1
The pinwheel substitution.

Figure 2
The k-order supertiles of the pinwheel prototile, k ¼ 1; 2; 3.
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One of the interesting properties of a substitution is

primitivity. A substitution is primitive if there is a k 2 N such

that each k-order supertile contains equivalent copies of all

prototiles. A substitution tiling T with respect to a primitive

substitution is called a primitive substitution tiling. The set of

all substitution tilings with respect to the substitution � is

called the hull of �, denoted by X�. If � is primitive, it is well

known that for every T 2 X�, XT ¼ X� .

In this work, we will consider primitive aperiodic substitu-

tion tilings that are repetitive and have finite local complexity

(with respect to rigid motions) and DTO. A tiling T has finite

local complexity (FLC) if for a fixed r> 0 there are only

finitely many non-equivalent patches in T fitting into a ball Br

of radius r (called r-patches), while a tiling T is repetitive if for

every r> 0 there exists R ¼ RðrÞ> 0 such that every R-patch

of T contains an equivalent copy of every r-patch of T .

A tiling T has DTO if the set of orientation angles of the

tiles in T is dense in ½0; 2�Þ (Frettlöh, 2008). Now, if a

primitive substitution tiling has DTO then its hull with respect

to the group of all translations and its hull with respect to the

group of all rigid motions coincide (Frettlöh & Richard, 2014).

So in our case it does not matter which we choose. One of the

first known examples of primitive substitution tilings with

DTO are the tilings in X�p
.

The hull of the pinwheel tiling has the property that it

contains six non-congruent tilings invariant under twofold

rotation (Frettlöh et al., 2014; Baake et al., 2007a). A substi-

tution tiling that is invariant under n-fold rotation contains

bounded n-fold rotation-invariant patches of arbitrary

radius centred on its centre of n-fold rotation (Maloney,

2015).

A patch P that is invariant under n-fold rotation may serve

as a seed for n-fold rotation-invariant tiling in the following

manner. Suppose P and its supertiles (arising from a substi-

tution �) are invariant under n-fold rotation about the origin,

and suppose there exists q 2 N such that ðR��ÞqðPÞ contains

P in its centre for some � 2 ½0; 2�Þ. Then we obtain a nested

sequence ððR��ÞqkðPÞÞk2N that converges to a tiling T invar-

iant under n-fold rotation that is a fixed point of ðR��Þq. In this

case P is a seed for T .

As an example, consider the patch V of a pinwheel tiling

that is invariant under twofold rotation (see Fig. 3). Let V be

centred at the origin. Observe that �2
pðVÞ contains V in its

centre. Thus ð�2k
p ðPÞÞk2N converges to a tiling invariant under

twofold rotation that is a fixed point of �2
p. In this example, R�

is the trivial rotation.

3. Substitution tilings with DTO invariant under six-
and sevenfold rotations

To arrive at a tiling invariant under sixfold or sevenfold

rotation, we use the method from Say-awen (2016) and Fret-

tlöh et al. (2017) given as follows.

(i) Choose a first prototile T
ðnÞ
1 to be a regular n-gon of unit

edge length.

(ii) The substitution �n of T
ðnÞ
1 is given by a regular n-gon

with edge length �n, which is dissected to contain an equiva-

lent copy of T
ðnÞ
1 in its centre and n equivalent copies of a

triangle T
ðnÞ
2 along its edges, and if n � 5, into several paral-

lelograms (Fig. 4). Moreover, the resulting dissection must be

invariant under n-fold rotation. The triangle T
ðnÞ
2 is a prototile

which has interior angle

�n ¼
ðn�1Þ�

n if n is odd
ðn�2Þ�

n if n is even;

�

where the two edges forming this angle have lengths 1 and 2,

respectively. By straightforward calculations using, for

example, the cosine law, the length �n of the longest edge of

T
ðnÞ
2 is

�n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 þ 4 cos �

n

� �q
if n is oddffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5 þ 4 cos 2�
n

� �q
if n is even:

8<
:

Thus, the substitution factor equals �n.

(iii) Continue defining the substitution �n, n � 5, to T
ðnÞ
1 by

dissecting the parallelograms into triangles, giving rise to

additional prototiles T
ðnÞ
j for some j> 2 (see Fig. 5 for n ¼ 6).

390 April Lynne D. Say-awen et al. � Primitive substitution tilings Acta Cryst. (2018). A74, 388–398
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Figure 4
Dissection of the regular n-gon with length �n for 3 � n � 11.

Figure 5
A dissection of the parallelograms for n ¼ 6.

Figure 3
�2

pðVÞ contains V in its centre.
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(iv) The substitution �n is defined for other prototiles T
ðnÞ
j ,

2 � j � q, by inflating T
ðnÞ
j by a factor of �n and dissecting

�nT
ðnÞ
j into tiles such that each tile is equivalent to a prototile.

The polygons in the dissection of �nT
ðnÞ
j form the image

�nðTðnÞ
j Þ of T

ðnÞ
j under �n. It may happen that �nT

ðnÞ
j cannot

be dissected using only the existing prototiles, and it is

necessary to introduce new prototiles, which are triangles

T
ðnÞ
qþ1;T

ðnÞ
qþ2; . . . ;TðnÞ

s . The substitution of the additional

prototiles will be constructed the same way.

For n ¼ 6, the substitution factor is �6 ¼
ffiffiffi
7

p
. The substi-

tution �6 is defined using four prototiles T
ð6Þ
1 ;T

ð6Þ
2 ;T

ð6Þ
3 and T

ð6Þ
4

(Fig. 6). The parallelograms are dissected into equivalent

copies of T
ð6Þ
3 . It can be checked that

ffiffiffi
7

p
T

ð6Þ
3 can be dissected

into equivalent copies of T
ð6Þ
2 and T

ð6Þ
3 , but the prototile T

ð6Þ
4 is

introduced in this substitution to ensure primitivity.

For n ¼ 7, the substitution factor is �7 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 þ 4 cosð�=7Þ

p
and the prototiles are given in Figs. 7 and 8. Here, the edges

are equipped with half-arrows to indicate their orientations.

Edge orientations are helpful to ensure FLC. We note that the

orientation of a symmetric tile is apparent from the half-

arrows on its edges. For example, the two tiles marked by dots

in �7ðTð7Þ
1 Þ in Fig. 8 can be identified as reflected images of each

other using the half-arrows on their edges as a guide.

Remark 2. By construction, �n, n 2 f6; 7g, preserves the

rotational symmetry of each prototile. For instance, T
ð6Þ
3 is

invariant under threefold rotation, as well as its supertiles

�k
6 ðT

ð6Þ
3 Þ for all k 2 N.

In the following theorem, we show the existence of tilings

T n invariant under n-fold rotation arising from �n; n 2 f6; 7g.

Theorem 3. There exists a substitution tiling T n with respect

to �n that is invariant under n-fold rotation, n 2 f6; 7g.

Proof. Consider �n, n 2 f6; 7g, with corresponding proto-

tiles T
ðnÞ
1 and T

ðnÞ
2 . Let R�n

be the rotation about the origin

through �n, where �n is the smallest interior angle of

T
ðnÞ
2 . Moreover, let T

ðnÞ
1 be centred at the origin. Then

R�n
ð�nðTðnÞ

1 ÞÞ contains T
ðnÞ
1 in its centre. Consequently,

ðR�n
�nÞkðTðnÞ

1 Þ contains ðR�n
�nÞk�1ðTðnÞ

1 Þ in its centre (see Fig. 9

for k ¼ 1; 2 and n ¼ 6). Hence ððR�n
�nÞkðTðnÞ

1 ÞÞ
k2N is a nested

sequence that converges to a tiling T n which is invariant under

n-fold rotation. The n-fold rotation-invariant prototile T
ðnÞ
1

serves as a seed for the tiling T n, which is also a fixed point of

R�n
�n. &

To show the occurrence of DTO in a tiling in the hull, we

employ the following result. The (‘only if’) direction is from

Frettlöh (2008). A stronger version of the (‘if’) direction

appears in Frettlöh (2008) and Radin (1994, 1995); that is, the

orientation angles of the tiles are not only dense on the circle

but also uniformly distributed in ½0; 2�Þ. In the theorem below,

an angle � 2 ½0; 2�Þ is irrational if � =2�Q.

Theorem 4. Let � be a primitive substitution in R
2 with

prototiles T1;T2; . . . ;Tm. Any substitution tiling in X� has

DTO if and only if there are k 2 N and i 2 f1; 2; . . . ;mg such

that �kðTiÞ contains two equivalent tiles that are rotated

against each other by some irrational angle.
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Figure 6
The substitution �6. The circular arrows indicate the orientations of
symmetric tiles.

Figure 7
The first 19 prototiles of �7. The edge lengths of each tile are given, where  i ¼ 2 sinð�i=14Þ; i 2 f1; 2; 3; 4; 5; 6g.
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The following result is from Frettlöh et al. (2017) and is

probably older, which alongside theorem 4 facilitates proving

DTO for the tilings in the hull of �n.

Theorem 5. Let P be a parallelogram with edge lengths 1

and 2 and interior angles 2�=r and ½ðr � 2Þ��=r, r � 3 (see Fig.

10). Then the angles between the longer diagonal of P and the

edges of P are irrational.

Using the above results, we now prove the following.

Theorem 6. Each tiling T 2 X�n
, n 2 f6; 7g, has DTO.

Proof. Consider the tiles T and T 0 lying along the bound-

aries of rotated copies of �nðTðnÞ
1 Þ and �3

nðTðnÞ
1 Þ as shown in Figs.

11 and 12, respectively, for n ¼ 6; 7. As described in theorem

3, the boundaries are rotated against each other by 2�n, where

�n is the smallest interior angle of T
ðnÞ
2 . Thus the two tiles are

rotated against each other by 2�n.

Now, the prototiles T
ð6Þ
2 and T

ð7Þ
2 have interior angles 2�=3

and 6�=7, respectively, where the edges forming each of these

angles have lengths 1 and 2. It follows that the triangle T
ðnÞ
2 ,

n 2 f6; 7g, is congruent to the triangle with vertices 0, 2, z in

Fig. 10 with r ¼ 6 if n ¼ 6 and r ¼ 14 if n ¼ 7. So �n is irra-

tional by theorem 5. Consequently, 2�n is irrational. Thus

�3
nðTðnÞ

1 Þ contains two equivalent tiles that are rotated against

each other by an irrational angle. Therefore, each tiling in the

hull of �n has DTO by theorem 4. &

Next, we will show in theorem 8 that each tiling in X�n
,

n 2 f6; 7g, has FLC. Note that since FLC and primitivity imply

repetitivity [see Frettlöh & Richard (2014) for a proof], the

tilings are repetitive as well. In Frettlöh & Richard (2014), the

following lemma was also pointed out.

Lemma 7. A substitution tiling T with respect to a substi-

tution � with a finite prototile set consisting of polygons

satisfying the condition that the tiles in �kðTiÞ meet full-edge

to full-edge for all k 2 N and for all prototiles Ti of � implies

T 2 X� has FLC.

Theorem 8. Each tiling T 2 X�n
, n 2 f6; 7g, has FLC.

Proof. For each n 2 f6; 7g, the prototile set of �n is finite and

the prototiles are all polygons. To ensure FLC, the substitu-

tions are defined such that tiles in each supertile of a prototile

meet full-edge to full-edge. In the construction process an

392 April Lynne D. Say-awen et al. � Primitive substitution tilings Acta Cryst. (2018). A74, 388–398
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Figure 8 (continued)
The substitution �7. The prototiles T

ð7Þ
j ; j 2 f20; 21; . . . ; 36g, are shown.

Figure 8
The substitution �7. The prototiles T

ð7Þ
j ; j 2 f20; 21; . . . ; 36g, are shown.
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additional vertex (pseudo-vertex) is introduced at the

midpoint of the edge of length 2 in T
ðnÞ
2 , n 2 f6; 7g. Taking into

account this pseudo-vertex, the tiles in each 1-order supertile

meet full-edge to full-edge. For instance, in Fig. 13, if a pseudo-

vertex (red dot) is introduced, the pink and blue tiles meet

full-edge to full-edge. Moreover, inflated edges by �n,

n 2 f6; 7g, of the same length are dissected in the same

manner. For instance, the image of each edge of length 1 for

n ¼ 6 is an edge of length
ffiffiffi
7

p
, and the image of each edge of

length
ffiffiffi
7

p
is a composition of 7 edges of length 1 (Fig. 6). For

n ¼ 6, this guarantees that the tiles in any supertile meet full-

edge to full-edge. Consider any two tiles T and T 0 in a 1-order

supertile �6ðTiÞ meeting at an edge. Observe that the length of

this edge is 1. Hence, �6ðTÞ and �6ðT 0Þ meet at an edge of

length
ffiffiffi
7

p
in �6

2ðTiÞ. As a result, �6
2ðTÞ and �6

2ðT 0Þ meet at a

super-edge of length 7. Since a super-edge of length 7 is a

composition of 7 edges of length 1, then tiles meet at the

super-edge full-edge to full-edge. The same analysis applies to

any pair of two tiles meeting at the super-edge.

For n ¼ 7, additional prototiles are introduced. It is possible

to define �7 using only 20 prototiles: T
ð7Þ
j , j 2 {1, 2, 3, 5, 6, 8, 9,

12, 14, 16, 19, 20, 22, 23, 25, 26, 29, 31, 33, 36}. But to ensure

FLC, the substitution is defined using 36 prototiles. In the case

where two coincident edges have opposite orientations, the

composition of their super-edges is such that it is mirror
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Figure 8 (continued)
The substitution �7. The prototiles T

ð7Þ
j ; j 2 f20; 21; . . . ; 36g, are shown.

Figure 9
The first three terms of the nested sequence ððR�6

�6ÞkðTð6Þ
1 ÞÞ

k2N.

Figure 10
The parallelogram P.

Figure 11
Tiles T and T 0 in �3

6ðT
ð6Þ
1 Þ are rotated against each other by 2�6.
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symmetric about its midpoint. For example, a super-edge of

length �7 5 = 4 + 5 5 + 2 3 has the composition  5 � 1 �  3

� 1 �  5 �  5 �  5 � 1 �  3 � 1 �  5. An example of such

super-edge is the longest super-edge of �7ðTð7Þ
20 Þ as shown in

Fig. 14. This ensures that the tiles in any supertile meet full-

edge to full-edge (see Fig. 15 for an illustration).

By the above considerations, a substitution tiling with

respect to �n, n 2 f6; 7g, will satisfy the condition that the tiles

in �k
nðTiÞ meet full-edge to full-edge for all k 2 N and for all

prototiles Ti. Thus, each tiling T 2 X�n
has FLC by lemma 7.

&

To prove aperiodicity of a tiling in the hull, we need the

following results. Theorem 9 is from Grünbaum & Shephard

(1986) and theorem 10 is from Baake & Grimm (2013).

Theorem 9. A substitution tiling with respect to a substi-

tution is non-periodic if in this tiling the 1-order supertiles can

be identified in a unique way.

Theorem 10. A repetitive tiling in R2 that is non-periodic is

aperiodic.

Theorem 11. Each tiling T 2 X�n
; n 2 f6; 7g; is aperiodic.

Proof. It can be shown that the 1-order supertiles of

T 2 X�n
, n 2 f6; 7g, can be identified in a unique way. Hence

T is non-periodic by theorem 9. Moreover, since T is also

repetitive, T is aperiodic by theorem 10. &

4. Symmetry order

In this section we introduce the idea of symmetry order, which

describes the rotational symmetry types of tilings in the hull of

a given substitution. The symmetry order of the hull X� of a

substitution � is given by ðr1; r2; . . . ; rqÞ such that

r1 < r2 < . . . < rq and each ri 2 N is the order of a rotational

symmetry of some tiling T 2 X�.

To determine the symmetry order of X�, we look at finite

(small as possible) patches arising from � that are invariant

under r-fold rotation which could serve as seeds for r-fold

rotation-invariant tilings. In such a patch, a centre of rota-

tional symmetry can be (a) the centre of a tile, (b) a vertex or

(c) the midpoint of an edge of the tiling. The possibilities are

prototiles, vertex stars or edge types of �.

Theorem 12. The symmetry order of X�6
is ð2; 3; 6Þ. The

symmetry order of X�7
is ð2; 7Þ.

Proof. The prototile T
ð6Þ
1 is a seed for the tiling T 6 2 X�6

invariant under sixfold rotation (Fig. 9). Similarly, if T
ð6Þ
3 and

T
ð6Þ
4 are centred at the origin, then �2

6ðT
ð6Þ
3 Þ and �2

6ðT
ð6Þ
4 Þ contain
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Figure 12
Tiles T and T 0 in �3

7 ðTð7Þ
1 Þ are rotated against each other by 2�7.

Figure 13
A patch of �6ðTð6Þ

1 Þ is shown.

Figure 14
The composition of the longest super-edge of �7ðTð7Þ

20 Þ is symmetric about
its midpoint.

Figure 15
The tiles on the longest boundaries of the two supertiles meet full-edge to
full-edge.
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T
ð6Þ
3 and T

ð6Þ
4 in their centres, respectively (see Fig. 16). Hence

T
ð6Þ
3 and T

ð6Þ
4 are seeds for tilings in X�6

invariant under

threefold rotation. Now, examples of vertex stars that are

invariant under twofold rotation are the patches V6;3 and V6;4

shown in Fig. 17. Let V6;3 and V6;4 be centred at the origin. As

illustrated in Fig. 18, the centre of �6ðV6;3Þ is V6;4 and the

centre of �6ðV6;4Þ is V6;3. It follows that �2
6ðV6;3Þ and �2

6ðV6;4Þ
contain V6;3 and V6;4 in their centres, respectively. Thus

ð�2k
6 ðV6;3ÞÞk2N and ð�2k

6 ðV6;4ÞÞk2N converge to two tilings in X�6

invariant under twofold rotation with seeds V6;3 and V6;4,

respectively. Morever, we note that the order of a non-trivial

rotational symmetry of an edge type is always 2. Therefore,

since there are no other prototiles, vertex stars and edge types

(see Fig. 17) that have rotational symmetries with orders aside

from 2, 3 and 6, the symmetry order of X�6
is ð2; 3; 6Þ.

For n ¼ 7, the prototile T
ð7Þ
1 is a seed for the tiling T 7 2 X�6

that is invariant under sevenfold rotation. From the prototile

set (Fig. 7) of �7, T
ð7Þ
1 is the only prototile that has rotational

symmetry. In particular there are no prototiles invariant under

two-, three-, four-, five- and sixfold rotation. Now, it can be

checked that the highest order of a rotational symmetry of a

vertex star is 2. Examples of such vertex stars are shown in Fig.

19. In particular, consider W2;1 and let it be centred at the

origin. As shown in Fig. 20, �2
7ðW2;1Þ contains W2;1 in its

centre. Thus ð�2k
7 ðW2;1ÞÞk2N converges to a tiling in X�7

invariant under twofold rotation whose seed is W2;1. There-

fore, the symmetry order of X�7
is ð2; 7Þ. &

Remark 13. A (rotation) symmetric patch such as a proto-

tile, vertex star or edge type may not always be a seed for a

rotation-invariant tiling. This needs to be verified by studying

how the patch behaves under the given substitution. For

example, as described in Fig. 17, for k � 2 the central patch of

�k
6 ðV6;1Þ is an equivalent copy of V6;3 or V6;4. This indicates

that V6;1 is not a seed for a tiling in X�6
.

Apart from the problem of finding the orders of rotational

symmetries in the hull of a substitution, a question that comes

to mind is how to determine the non-congruent tilings in the

hull invariant under r-fold rotation for some r up to transla-

tions or rigid motions. We illustrate this idea for X�6
in

Theorem 15.

First, we give the following theorem, which is helpful in

determining other possible seeds for rotation-invariant tilings

in X�6
. We also show in the theorem that a seed P for a tiling in

the hull X� of a substitution � and any reflected copy of P give

rise to congruent tilings in X� up to rigid motions when P is

mirror symmetric. A patch P in a tiling in X� is mirror

symmetric if �kðPÞ is invariant under a reflection for all k.

Theorem 14. Let � be a primitive substitution. Suppose P is

invariant under r-fold rotation and is a seed for a rotation-

invariant tiling T 2 X�. If P0 is a patch of a supertile of � and

is a reflected copy of P, then P0 is a seed for a tiling T 0 2 X� ,

which is a reflected image of T . In addition, if P is mirror

symmetric, P and P0 give rise to congruent tilings in X� up to

rigid motions.

Proof. Suppose P is a seed for a tiling T in X� invariant

under r-fold rotation. Then P is the centre of �qðPÞ for some

q 2 N and T is the limit of the nested sequence ð�kqðPÞÞk2N.

Let P0 be a reflected copy of P. Without loss of generality, let

P0 = Sl1
P for some reflection Sl1

. Now, P0 = Sl1
P and

P � �qðPÞ imply that P0 = Sl1
P � Sl1

�qðPÞ = �qðSl1
PÞ =

�qðP0Þ and �qðP0Þ contains P0 in its centre. Thus P0 is a seed

for a tiling T 0 2 X� invariant under r-fold rotation that is the

limit of the nested sequence ð�kqðP0ÞÞk2N. Moreover, T 0 is a

reflected image of T because Sl1
�kqðPÞ = �kqðP0Þ for all

k 2 N.

Now suppose P is mirror symmetric. Without loss of

generality, we let Sl2
�kqðPÞ = �kqðPÞ for some reflection Sl2

.

Thus ð�kqðP0ÞÞk2N = ðSl1
�kqðPÞÞ

k2N = ðSl1
Sl2
�kqðPÞÞ

k2N. Thus

P and P0 give rise to congruent tilings up to rigid motions.
&

Theorem 15. There are 16 non-congruent rotation-invariant

tilings in X�6
up to rigid motions: two tilings invariant under

sixfold rotation, four tilings invariant under threefold rotation

and ten tilings invariant under twofold rotation.

Proof. First, let us show that each patch (or isometric

image) of a tiling in X�6
has a reflected copy in some supertile

of �6. Let P be a patch of a tiling in X�6
. Then there exists

k 2 N and a prototile T
ð6Þ
j , j 2 f1; 2; 3; 4g, such that �k

6 ðT
ð6Þ
j Þ

contains an equivalent copy of P. Now, consider the prototile

T
ð6Þ
3 . Because �6 is primitive, there exists q 2 N such that

�q
6 ðT

ð6Þ
3 Þ contains an equivalent copy of T

ð6Þ
j . Thus �qþk

6 ðTð6Þ
3 Þ

contains an equivalent copy of P, say P0. Now observe that T
ð6Þ
3

has a reflected copy T
ð6Þ0
3 that occurs in �6ðT

ð6Þ
1 Þ (see Fig. 6).

Thus, �qþk
6 ðTð6Þ0

3 Þ is a reflected copy of �qþk
6 ðTð6Þ

3 Þ and contains a
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Figure 16
�2

6ðT
ð6Þ
3 Þ and �2

6ðT
ð6Þ
4 Þ contain T

ð6Þ
3 and T

ð6Þ
4 , respectively, in their centres.
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reflected copy of P0. Thus P (or isometric image) has a

reflected copy in a supertile of �6.

We now determine non-trivial rotation-invariant tilings in

X�6
. We know that the prototile T

ð6Þ
1 is a seed for the tiling

T 6 2 X�6
invariant under sixfold rotation. From the above

result, a reflected copy T
ð6Þ0
1 of T

ð6Þ
1 occurs in a supertile of �6.

By theorem 14, T
ð6Þ0
1 is also a seed for a tiling in X�6

invariant

under sixfold rotation. Note that T
ð6Þ
1 is not mirror symmetric.

Thus the tilings arising from T
ð6Þ
1 and T

ð6Þ0
1 are non-congruent

tilings up to rigid motions. Similarly, T
ð6Þ
3 and T

ð6Þ
4 are not

mirror symmetric. Thus T
ð6Þ
3 and T

ð6Þ
4 each give rise to

two non-congruent tilings in X�6
invariant under threefold

rotation.

Consider the list of vertex stars given in Fig. 17. Observe

that among them, V6;3, V6;4 and V7;2 and its reflected copy V7;3

have rotational symmetry. From theorem 12, V6;3 and V6;4 are

seeds for tilings in X�6
invariant under twofold rotation. Now,

as indicated by the blue arrows in Fig. 17, the centre of �6ðV7;2Þ
is V7;3 and the centre of �6ðV7;3Þ is V7;2. Thus, ð�2k

6 ðV7;2ÞÞk2N and

ð�2k
6 ðV7;3ÞÞk2N yield two additional tilings invariant under

twofold rotation in X�6
.

The edge types that are invariant under twofold rotation are

shown in Fig. 21. It can be checked that the central patch of

�k
6 ðEiÞ, i ¼ 1; 2; . . . ; 8, is either an equivalent copy of E1 or E2

for all i and k � 2. Thus, we consider E1 and E2 as the only

edge types that can be seeds for tilings invariant under twofold

rotation. As illustrated in Fig. 22, E1 and

E2 are the central patches of �6ðE2Þ
and �6ðE1Þ, respectively. As above,

ð�2k
6 ðE1ÞÞk2N and ð�2k

6 ðE2ÞÞk2N converge

to two tilings in X�6
. The vertex stars

V6;3 and V6;4 and edge types E1 and E2

are not mirror symmetric, so their

reflected copies can also serve as seeds

for tilings invariant under twofold

rotation. Therefore, there are ten non-

congruent tilings in X�6
invariant under

twofold rotation. &

5. Conclusion

In this article we have presented

primitive substitutions �6 and �7 which

generate substitution tilings with DTO

and which are invariant under sixfold

and sevenfold rotations, respectively.

We have also identified properties of the

tilings in X�n
, n ¼ 6; 7, such as FLC,

repetitivity and aperiodicity.

The algorithm described in this work

can be used to obtain other tilings

invariant under n-fold rotation

(n ¼ 3; 4; 5; 6; 8) given by Frettlöh et al.

(2017) and this can also be adopted to

construct higher-ordered rotation-

invariant tilings. Starting with a regular

n-gon T
ðnÞ
1 and a scalene triangle T

ðnÞ
2

with irrational angle �n, the process may

be iterated to obtain a substitution tiling

T n with DTO that is invariant under n-

fold rotation. The prototile T
ðnÞ
1 serves

as a seed for T n, which is a fixed point of

R�n
�n. There is a pattern that emerges

for dissection of �nT
ðnÞ
1 into one copy of

�nT
ðnÞ
1 , n copies of T

ðnÞ
2 and parallelo-

grams (Fig. 4), and �nT
ðnÞ
2 into copies

of T
ðnÞ
2 and other triangle prototiles.

However, the number of prototiles is

expected to be large for some values of
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Figure 17
The list of non-equivalent vertex stars in T 2 X�6

. Blue arrows indicate the action of �6 as
illustrated in Fig. 18.
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n; more so if the tilings are constructed to satisfy other

properties.

Another aspect discussed in this study is the notion of

symmetry order of the hull of a substitution tiling. The method

employed in determining the symmetry order entailed looking

at a patch (either a prototile, vertex star or edge type) that is

invariant under r-fold rotation that can serve as a seed for an

r-fold rotation-invariant tiling in the hull.

Interestingly, the derived results in this work have impli-

cations in the context of dynamical properties of the hull. For

instance, Frettlöh & Richard (2014) state that the repetitivity

of T 2 X�n
, n 2 f6; 7g, implies the minimality of the dynamical

system ðX�n
;GÞ, where G is the group of translations or direct

Euclidean motions. Moreover, proposition 2.12 of Frettlöh &

Richard (2014) states that T is linearly repetitive, due to the

primitivity of �n and the FLC property of T 2 X�n
. In addi-

tion, the linear repetitivity of T 2 X�n
implies that ðX�n

;GÞ is

uniquely ergodic (Lagarias & Pleasants, 2003; Frettlöh &

Richard, 2014). It would be a good idea to explore the dyna-

mical properties of the respective hulls of the constructed

tilings presented in this work.

In relation to the study of cohomology groups, results from

Barge et al. (2010) assert that the occurrence of tilings invar-

iant under s-fold rotation in the hull of a substitution implies

that the second cohomology group of the hull has a torsion

subgroup. For example, for X�6
, the ten tilings in X�6

that

are invariant under twofold rotation contribute a torsion

subgroup Z10�1
2 ¼ Z9

2 to the second cohomology group of X�6
.

Hence it becomes interesting to determine the number of

tilings in the hull of a given substitution that are invariant

under s-fold rotation up to direct Euclidean motions.
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Baake, M., Frettlöh, D. & Grimm, U. (2007a). J. Geom. Phys. 57,
1331–1343.
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