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INTRODUCTION
Amniotic membrane, the innermost layer of fetal (or 
placental) membrane, consists of a thick basement 
membrane and an avascular stroma.  It functions to 
protect the fetus from unwanted maternal insults that may 
otherwise bring about congenital defects.  It has long been 
recognized that when an incision is performed on the skin 
of a fetus even during the third trimester, there will be no 
scar evident after birth.  Such phenomenon is dubbed as 
“scarless fetal wound healing”.

The technology of exploiting such “fetal”-feature 
by applying human amniotic membranes to surgical and 
burn wounds was incepted as early as 1913 (Sabella 
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1913). Thereafter, the work by Dino et al. (1966) on the 
establishment of an amnion bank at the Philippine General 
Hospital (PGH) became the first international publication 
on human amniotic membrane applications in surgery. 
Trials on the use of these membranes have established 
the efficacy of human amnion in treating a wide variety 
of dermatological disorders.  But for reasons that are 
not very clear, the use of amnion membrane as wound 
dressing fell out of popularity. Nevertheless, of late, a 
lot of clinical works have now refocused on amniotic 
membrane transplantation for managing ocular surface 
diseases (Dua & Azuara-Blanco 1999; Kruse & Meller 
2001; Sippel et al. 2001; Kasparov & Trufanov 2001).

How then does radiation-sterilized human amniotic 
membrane (RSHAM), a medical product produced at 
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Philippine National Research Institute (Figure 1), work as 
a biologic dressing. Nine specific biological and clinical 
functions (Table I) have been ascribed to RSHAM based 
on experience by collaborative researches under the 
auspice of International Atomic Energy Agency (IAEA 
2001) and by several independent research groups 
(Robson & Krizek 1973; Walker et al. 1977; Bose 1979; 
Bennett et al. 1980; Faulk et al. 1980; Piserchia et al. 1981; 
Thomson & Parks 1981, Quinby et al. 1982; Kucan et al. 
1982; Haberal et al. 1983). Abundant in amniotic tissues 
are a myriad of basic fibroblast growth factors (bFGF) 
and hepatocyte growth factors that are among the major 
mitogens responsible for up-regulation of epithelial and 
endothelial cell proliferation.  In addition, many types 
of cytokines present in the amniotic membrane stroma 

Figure 1. The Radiation-Sterilized Human Amniotic Membrane 
(RSHAM) produced at the Philippine Nuclear Research Institute 
(PNRI) and distributed for free to indigent patients in selected 
government hospitals in the Philippines

suppress the signaling pathways of TGF-β, IL-1 and 
IL-2, which reduce inflammation and prevent scarring 
during wound healing (Na et al. 1999; Koizumi et al. 
2000; Hao et al. 2000; Lee et al. 2000; Shinmura et al. 
2001).  The adhesive property of amnions to epithelial 
cells is attributed to its basement membrane components.  
Amniotic membrane is composed mainly of type IV 
collagen.  It also has laminin 1, laminin 5, fibronectin, 
and collagen VII.  In general, the basement membrane 
side (chorion) is an ideal substrate to anchor epithelial 
cells (Fukuda et al. 1999).

While radiation-processing technology has long been 
applied in improving the shelf life of human amniotic 
membranes, little is known about the effects of radiation-
sterilization on its wound healing property.  Applying 
either 25 or 35 kGy for radiation-sterilization of the 
amniotic membranes is not arbitrary, but was determined 
on the basis of available data (AAMI 1991; ISO 1994).  
The choice of 25 kGy was based on the predicted 
bioburden after radiation treatment to achieve a sterility 
assurance level (SAL) of 10-6 for bacteria in biomaterials 
that will come into contact with immuno-compromised 
tissues.  Recently, HIV-contamination of tissues has been 
a big issue with regard to the safety of human-sourced 
materials for tissue banking.  There are a number of 
experimental reports showing that γ-irradiation deactivates 
HIV in tissue culture and in infected bones with a D10 value 
between 4 to 6 kGy.  Therefore, to achieve a SAL of 10-6 
for HIV, dried preparations of amniotic membranes need 
to be exposed to at least 35 kGy to safeguard patients 
against the spread of HIV.  This study aims to elucidate 
further the molecular bases of wound healing activity of 
RSHAM (Hansbrough 1987) by presenting data on its 
physico-chemical features.  

MATERIALS AND METHODS

Collection and Processing of Amnion Samples
One hundred-fifty five (155) placentas were collected 
from the delivery room of the East Avenue Medical Center, 
Quezon City from June-July, 2001. Amnion membranes 
were removed from the bulk of the placenta, and then 
washed with 5% sodium hypochlorite solution. Clean mats 
of amniotic membranes were freeze-dried under vacuum 
at 0.01 psi for 3 h (Heto Holten, Denmark).  Amnion 
membrane samples were divided and cut into desired 
sizes and some were pulverized in a 10-mm mesh.  The 
samples were then double-packed with polyethylene bags 
and irradiated at 25 and 35 kGy with a Laboratory-Scale 
GammaCell (Atomic Energy of Canada, Ltd.).

Table I. Clinical benefits from the use of amniotic membranes as 
wound dressings*

Clinical benefits
Decrease in bacterial count of the wound

Reduction of fluid loss

Promotion of healing

Protection of growing epithelium

Tight adherence to the wound surface, increase in mobility and diminished pain

Help in prediction of readiness for grafting

Preparation of skin defects for closure

Decrease in physiological stress for the patient

Stimulation of neovascularization

*Hansbrough 1987
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Sterility Test
Powdered amnion samples (0.5 g each) were aseptically 
transferred to 2-mL thioglycollate broth.  The tubes were 
incubated at 32oC for 14 d and examined daily for any 
change.  Turbidity in the media indicates presence of 
microbial contamination.  The sample broth was then 
plated onto a Plate Count Agar (Biotest) and colony 
growth was checked after 2 d incubation at 32oC in a 
microbial incubator (Sanyo, Japan).  Sterility testing was 
done in duplicates.

Proximate Analysis
Total nitrogen content of the samples was determined 
using the Kjeldahl procedure. The pH was measured 
using a Beckman P50 pH meter. Absorption spectrum 
was obtained using a Perkin-Elmer Lambda 20/1.0 nm 
UV/Vis Spectrometer. Moisture content was determined 
by desiccation in the Sartorious Moisture Analyzer MA 
30. These proximate analyses were done in triplicate 
samples.

Atomic Force Microscopy
Molecular topographic analysis was carried-out using a 
TMX 2000 Explorer Atomic Force Microscope. Silicon 
nitride probe tips were used to scan the sample surface. 

Water Retention Experiment
Amnion disks of 1.0-cm diameter were used for the 
water retention experiment.  Individual weights of the 
disks were determined using a Sartorius microanalytical 
balance. The samples were placed in a 96-well microtiter 
plate (Dynatech, USA) and 100 µL of [H3] labeled water 
was added to each well. After incubation for 2 h at 
room temperature, amnion samples were transferred to 
polyethylene scintillation vials and absorbed tritium was 
measured by liquid scintillation using Wallac 1414 LSC.  
Mean water retention of the capacity of six replicates was 
expressed in counts per minute/milligram (cpm/mg)

Tensile Strength Analysis
Determination of tensile strength on dumbell-shaped 
amnion strips was carried out using the Instron Model 
1011 Universal Testing Instrument at ambient conditions. 
A total of 56 amnion strips samples were tested. Thickness 
of individual strip was measured.

Statistical Analysis
Single-factor ANOVA at 95% confidence level was 
employed to determine significant changes in the property 
of the amniotic membranes.

RESULTS
The irradiated amnion membranes were negative 
for microbial growth. It was interesting to note that 
lyophilized amnion samples failed to present neither a 
change in coloration nor turbidity in the thioglycollate 
broth.  However, some colony growth was observed 
with the Plate Count Agar with the non-irradiated control 
samples showing the initial bioburden of the material.  

Table 2 presents the mean values of the physico-
chemical properties of the amnion samples. Radiolytic 
change in the amniotic membrane was evident in the 
dose-dependent decrease in pH.  Nevertheless, the slight 
drop in pH was still within the physiologic range and may 
not disrupt wound-healing processes.  By inspection, we 
failed to find change in the percentage nitrogen content in 
the tissues.  For both tensile strength and water retention/
absorption tests, no significant change was also seen after 
irradiation.  

Table 2. Some physical properties of irradiated and non-irradiated  
 amniotic membrane.

Dose
(kGy) pH % Nitrogen [H3]-Retention

(cpm/mg)

Tensile 
Strength
(kg/m2)

0 6.97 + 
0.00 1.42 + 0.31 26.87 + 17.07 0.023 + 0.011

25 6.81 + 
0.01 1.49 + 0.37 33.46 + 11.26 0.035 + 0.016

35 6.73 + 
0.02 1.44 + 0.34 34.55 + 12.70 0.009 + 0.008

p-value < 
0.001* 0.8397 0.7205 0.0933

* significant at 95% level of confidence

Radiolytic UV-vis absorption spectra showed increase 
in the optical densities as the sample absorbs within the 
UV region (190-195 nm) for 25 kGy and 35 kGy irradiated 
amnion extracts. In contrast, water extract of non-
irradiated control displayed decreased optical densities 
towards the UV region (Figure 2).

These radiolytic changes may also be evident with the 
molecular topography analysis  of the amnion samples.  
Surface matrix of irradiated amnion membranes at 35 
kGy appeared to have deeper and more scattered ridges 
compared to the non-irradiated amnion.  However, 
these may be interpreted by possible effects on sample 
preparation.  Generally, we failed to see drastic differences 
in the film topographies, and this may corroborate with our 
results of no significant change in the tritium absorption 
or tensile property analyses. (Figure 3).
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DISCUSSION
Applications of allogenic amnion grafts range from 
wound dressing of severe burns, dermabrasions, and lower 
extremity ulcer treatments to plastic surgery, laryngology 
and ophthalmology. In the Philippines, the preservation 
of these amniotic membranes are done by lyophilization 

or deep-freezing and subsequent radiation-sterilization 
at a dose of 25 kGy.    From year 2001-2002, over 200 
preserved RSHAM allografts (with a total surface area of 
over 20,000 cm2) have been prepared at the PNRI tissue 
bank and distributed to clinics and hospitals within Metro 
Manila (PNRI 2003).  In Warsaw Tissue Bank (Poland), 
human amnions that are distributed to various clinics are 
irradiated at 35 kGy (Tyszkiewicz et al. 1999).  

Irradiation of biopolymers may result in chemical 
changes in proteins such as fragmentation, cross-
linking, aggregation and oxidation.  These are likewise 
dependent on its chemical nature, physical state and 
irradiation condition.  In general, such irreversible 
changes happen because of breakage of covalent bonds 
of the polypeptide chain happening in both random and 
non-random fashion. Fragmentation involves reaction of 
α-carbon radicals with oxygen to form peroxyl radicals 
that decompose to fragment the polypeptide chain.  In 
contrast, proteins may be converted to higher molecular 

Figure 3.  Molecular topography of irradiated and non-irradiated 
human amniotic membrane viewed under an atomic force microscope. 
(In a 50x50 µm2 window, ridges appeared less pronounced, in terms 
of depth and density, in the control (0 kGy) when compared to 
irradiated samples.  These changes are a subtle indication of micro-
damage to the material due to radiation-processing).

Figure 2.  Absorption spectrum of control and irradiated human 
amnion membranes.  After irradiation, amniotic membrane samples 
were homogenized in PBS buffer.  After clearing step, supernatants 
were normalized for protein concentration and absorption spectra 
were compared.  Increased absorption was observed from 190-195 
nM range for irradiated amnion.  These peaks were not present 
originally in the non-irradiated lot.
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weight aggregates due to generation of inter-protein 
cross-linking reactions, hydrophobic and electrostatic 
interactions, and formation of disulfide bonds. The 
formation of high-molecular weight aggregates is 
negligible at low dose range, but increases significantly 
at higher doses (Woods & Pickaev 1994), such as the 
range used in human amnion processing.

From the tests performed, we find significant 
changes in pH, UV-Vis spectra, and matrix topography 
of irradiated amnion membranes.  The acidic shift 
after irradiation is likely the consequence of the 
oxidation of amino acids residues and denaturation 
of the protein components leading to the liberation 
of some acidic components.  The result from UV-Vis 
spectrophotometry of water-soluble amniotic extracts 
showed a consistent pattern of radiolytic degradation. 
There is an increase in optical densities within the 
ultraviolet region indicating the chemical groups having 
amino, ethelene or ketone that are released during 
protein radiolysis. In one end, it can be observed that 
there was also more noise in the region below 195 nm, 
which is typical for turbid samples.

With regard to structure, its major protein component 
would either be fragmented or cross-linked.  One possible 
mechanism for collagen fragmentation is given by the 
oxidation of proline, followed by cleavage of the Gly-
Pro peptide bond (Uchida et al. 1990). In addition to 
fragmentation, denaturation of collagen may also have 
effect on its surface.  Fibrillar proteins, like collagen, 
are typified by a heterogenous packing density and its 
unfolding as a result of free radical reactions would result 
in a corresponding specific volume increase (Majeska & 
Dancewicz 1977).  

Some physico-chemical changes such as water 
absorption and tensile strength were also studied to 
determine clinical functionality of RSHAM.  The 
absorption capacity of the amniotic membrane as 
measured by retention of [H3] water preludes proper 
biological adherence and optimal solvent-accessibility 
of growth factors.  Tensile strength is vital to ensure that 
the material does not disintegrate prior to and during its 
application as a wound dressing.  For both parameters, we 
found no significant difference using a highly sensitive 
tritium absorption technique (Horricks & Peng 1971) 
and the standard tensitometric analysis (Marin & Sauer 
1959).  Judging from the results, we suspect that both 
protein fragmentation and cross-linking reactions may 
have occurred within the radiation doses used that led to 
a “cancellation effect” on the structural (in)stability of 
amnion after radiation exposure.  From the present results, 
we have demonstrated the maintenance of structural 
integrity of our biomaterial and provided some molecular 

bases for the prudent choice of irradiating amnions at 
25 and 35 kGy, balancing both the concurrent need to 
achieve product sterility and to avoid excess damage to 
the biomaterial.
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