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Abstract 

A growth experiment was conducted on juvenile red sea bream, Pagrus major 

to investigate the effect of the inclusion in fish diets, of tuna meat by-product 

hydrolysate which was processed through enzymatic hydrolysis using a 

commercially available enzyme, derived from Bacillus subtilis. Six 

experimental diets were formulated in the experiment. Three diets contained 

50, 150 and 250 g/kg of TPM-H (tuna meat by-product hydrolysate), and two 

diets with the unprocessed TPM (tuna meat by-product) at an inclusion level 

of 50 and 250 g/kg. A control diet was formulated without any addition of the 

test ingredients. Treatment diets were fed ad libitum to juvenile fish with an 

initial average body weight of 0.81 ±0.13 g for 56 days. Results of the feeding 

trial suggest that the inclusion of TPM-H at 250 g/kg in fish diets improved 

body weight gain rate (3271.58%), feed intake (24.55 g/fish/56 days) and 

feed conversion efficiency (1.12) of the fish. Apparent nutrient digestibility of 

hydrolyzed tuna meat by-product improved compared to the unhydrolyzed 

ingredient. These results suggest that TPM processed as hydrolysates can be 

efficiently utilized by fish. 
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Introduction 

Waste material from fish processing generally comprises 50% of the weight of fish 

materials processed (Shih et al., 2003; Kristinsson and Rasco, 2000). Fish processing by-

products are mostly underutilized but are protein rich materials that can be utilized as 

ingredients in animal and fish diets. Japan is one of the major consumers of tuna in the 

world and only specific parts of tuna muscle are utilized for tuna flakes, sashimi, and 

other high value food products. The other parts such as dark meat, viscera, tail and head 

are considered by-products. Tuna meat by-product meal can be used as a fishmeal 

replacement by up to 50% inclusion without negatively affecting the growth of red sea 

bream (Uyan et al., 2006). The application of enzyme technology for protein recovery 

from fish processing by-products can produce a broad spectrum of food ingredients or 

industrial products for a wide range of applications (Tonheim et al., 2005). Hydrolysates 

produced by enzymatic activity contain a well-defined peptide and amino acid profile and 

are more likely to be absorbed by enterocytes compared to high-molecular weight 

macromolecules (Onal and Langdon, 2009). Hydrolysates are associated with small 

molecular weight compounds that serve as attractants for fish (Berge and Storebakken 

1996; Aksnes et al., 2006; Mamauag et al., 2011), enhance immune response 

(Kotzamanis et al., 2007), and promote normal skeletal development (Zambonino-

Infante et al., 1997). Numerous fish hydrolysate materials have been produced using 

different types of protease enzymes (pepsin, pancreatin, alcalase, ficin and papain) from 

plant, animal, and microbial origin (Nordgreen et al., 2009; Benjakul and Morrisey, 1997; 

Chalamaiah et al., 2010). The use of fish hydrolysates in fish diets improved fish 

performance in terms of body weight gain, feed efficiency, survival, and intestinal 

development at an inclusion level of 10-25% for Atlantic cod, Gadus morhua (Aksnes et 

al., 2006), Atlantic salmon, Salmo salar (Hevroy et al., 2005)  and European sea bass, 

Dicentrarchus labrax (Cahu et al., 1999). Higher levels (>35%) of fish hydrolysate were 

not recommended as a protein source due to its negative effects on growth and feed 

efficiency. 

 In the present study, tuna meat by-products were hydrolyzed using the enzyme 

Aroase AP-10 derived from Bacillus subtilis (from Yakult Pharmaceutical Ind. Co., Ltd. 

Tokyo, Japan). In the diet of the juvenile red sea bream the hydrolyzed product was 

evaluated as an ingredient in the diet of to determine its effect on feed efficiency through 

growth performance parameters, nutrient digestibility of the ingredient, and blood 

biochemical parameters of the fish. 

    

Materials and Methods 

Preparation of the tuna meat by-product hydrolysate. Tuna meat by-product meal (TMP, 

from Marusho Inc. Shizuoka, Japan) composed of dark meat and bones, was hydrolyzed 

using a commercially available exogenous enzyme, Aroase AP-10 derived from Bacillus 

subtilis. The TMP was dissolved in 65 g/l distilled water and stirred for 30 min. The pH of 

the solution was then adjusted to 7-8 with NaOH/1N HCl, after which the solution was 

heated at 50-60 ºC for 2–3 h. The commercial enzyme was added at 0.3 g/l of the 

solution and heated for an additional 2 h. Enzyme inactivation in the solution was 

conducted by increasing the temperature to 95-100ºC for 30 min. The mixture was then 

cooled to room temperature and centrifuged at 4500 x g at 4ºC for 30 min. The soluble 

aqueous fraction was then decanted, pooled, and freeze dried to obtain a powder form of 

TMP protein hydrolysate (TMP-H). 

Test Diets. A total of six experimental diets were formulated to contain 0 g/kg of TMP-

H (control), 50 g/kg, 150 g/kg and 250 g/kg. Two diets were formulated to contain non 

hydrolyzed TMP at rates of 50 g/kg and 250 g/kg. All the dietary treatments were 

isonitrogenous and isolipidic containing 540 g/kg protein and a lipid content of 130 g/kg.  

Prior to mixing the ingredients, fish meal and TMP ingredients were milled and sieved in a 

125µm mesh. The diets were prepared by thoroughly mixing all the dry ingredients in a 

food processor for 30 min. Blended lipid sources (pollack liver oil and soybean oil) were 

gradually added and mixed for 15 min. Carboxymethycellulose (CMC) was carefully 

dissolved in 300 ml. of water, cooked in a water bath until it was completely dissolved 

and subsequently added to the mixture to serve as a binder. The dough was then 

pelletized to 1.2 to 2.2 mm diameter pellets, air dried for 10 min. and oven dried for 1 h 
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at 60ºC. The diets were then stored in a cold room before beginning the experiment. 

Formulation of the experimental diets is shown in Table 1. 
Table 1  Ingredients and proximate composition of diets (g/kg) 

Ingredients Control TMP-H 5 
 

TMP-H 15 
 

TMP-H 25 
 

TMP 5 TMP 25 
Fish meala 700 650 530 400 640 540 
Tuna meat by-productb  -  -    -   - 50 150 
TMP, hydrolysatec  - 50 150 250  -   - 
Soybean oild 40 40 40 40 40 40 
Pollack liver oile 40 40 60 80 40 40 
Vitaminf 50 50 50 50 50 50 
Mineralg 50 50 50 50 50 50 
Cellulose 70 70 70 80 80 80 
CMC 50 50 50 50 50 50 
Proximate composition       
Protein  54.7 548.5 550.5 551.3 537.3 547.1 
Lipid  13.5.2 132.3 131.8 134.8 133.2 132.9 
Moisture  107.3 103.4 102.8 105.7 103.1 103.8 
Ash  130.1 132.2 133.5 134.2 130.4 131.8 

TMP-H 5 (tuna meat by-product hydrolysate 50 g/kg); TMP-H15 (150 g/kg); TMP-H25 (250 g/kg); 

 TMP5 (tuna meat by-product 50 g/kg); TMP15 (150 g/kg).  
a Nippon Suisan Co. Ltd., Tokyo Japan 
bMarusho Inc., Shimizu, Shizuoka, Japan. 
c,d Rikken vitamin, Tokyo, Japan 
e,f,g 

Similar to as reported by Kader et al. (2010) 
    Feeding trial. The growth experiment was conducted at the Kamoike Marine 

Laboratory, Faculty of Fisheries, Kagoshima University, Japan for 56 days. Juvenile red 

sea bream (average initial body weight of 0.82 ±0.15 g) were stocked in 100 l tank (80 l 

water volume) 15 fish/tank, in triplicate. All the fish were fed the designated diets twice 

daily (8:00 and 16:00 h), ad libitum. Uneaten feed was collected, freeze dried, and 

weighed for corrected feed intake calculation. Periodic sampling was carried out every 

two weeks to monitor growth and survival in the tanks. The seawater flow to the tanks 

was 1.4 l/min and a photoperiod of 12 h light:12 h dark was maintained throughout the 

experiment. Water temperature was 26º± 1.3 ºC, pH 7.7 ± 0.3, and salinity 32.9 ± 0.8 

g/l.   

Initial samples from the stock tank of 20 fish were taken for body chemical 

composition and amino acid analysis. In order to minimize error in proteolytic enzyme 

activity analysis and body weight data, fish were starved for 24 h before terminal 

sampling. All fish were anaesthetized with chilled water to ensure ease of handling during 

blood collection. Total number of fish and individual body weight of fish in each tank were 

recorded. Three fish from each replicate tank were randomly chosen and stored at -20°C 

for body chemical composition and amino acid analysis. Fish were dissected for liver and 

digestive tract samples, individually weighed, and stored at -80ºC for further analysis. 

Blood was collected with heparinized syringes from the caudal vein of the fish in each 

replicate tank. The blood was then pooled, and kept in a cooler for analysis. 

Proximate analysis and body chemical composition. The test diets and fish samples 

(initial and final) in each dietary treatment were analyzed for moisture with the Sartorius 

MA 35 moisture analyzer (Goettingen, Germany), and Eyela FDU 1100 (Rikakikai, Co. 

Ltd., Tokyo, Japan) freeze drier, respectively. Ash and crude protein were analyzed with 

Tecator Kjeltec Systems, (Hillerød, Denmark) and total lipids were determined with the 

Soxhlet method using standard AOAC methods (AOAC 1995).  

Amino acid analysis. Amino acid, diets, and fish samples were analyzed with high 

performance liquid chromatography (HPLC, Shimadzu Corp., Kyoto, Japan) according to 

Teshima et al., (1986). About 2 mg of each dry sample was weighed and hydrolyzed with 

4 N-methanesulfonic acid for 22 h at 110 ºC for total amino acids analysis. The pH of the 

hydrolysate was adjusted to pH 2.2, passed through a 45 µm syringe filter (Ministart RC 

15, Sartorius Stedim Biotech, Germany) and stored at 4°C for HPLC injection. A known 

amount of norleucine (0.06 mg) was used as an internal standard. To quantify free amino 

acid, a 40 mg sample was mixed with 100 µl norleucine (as internal standard 0.6 mg), 

900µl cold distilled water, and 2.5 ml of cold 10% trichloroacetic acid (TCA). It was then 

homogenized; samples were centrifuged at 3000 x g for 15 min at 4°C and washed with 
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diethyl ether to remove TCA from the homogenate. The pH of the homogenate was then 

adjusted to 2.2 and diluted to 5 ml with sodium citrate, filtered, and stored at 4°C ready 

for HPLC injection. 

Blood plasma biochemical parameters. Plasma chemical parameters such as 

hemoglobin, blood urea nitrogen (BUN), glutamyl oxaloacetic transaminase (GOT), 

glutamic pyruvate transaminase (GPT), total cholesterol (TCH), and total bilirubin (TBB) 

were measured spectrophotometrically with an automated analyzer (SPOTCHEM EZ 

Model SP4430i Arkray, Inc., Kyoto, Japan). Biological antioxidant potential (BAP) and 

reactive oxygen metabolites (d-ROMs) were also measured spectrophotometrically from 

blood plasma with an automated analyzer FRAS4 (Diacron International s.r.l., Grosseto, 

Italy) following Morganti et al. (2002). Plasma samples were obtained by centrifugation 

at 3000 x g for 15 min using a high speed refrigerated microcentrifuge (MX 160, Tomy 

Tech. Inc., USA).  

Non-specific protease activity. Liver and digestive tract samples of fish were washed 

with distilled water and blotted dry using filter paper. Then 50 mM Tris HCl Buffer 

solution (pH 7.6) was added at a ratio of 1:4 w/v, homogenized, and samples were 

centrifuged at 10,000 x g, 4°C for 30 min. The supernatant was then removed and 

stored at -80°C for protease and protein content assay. 

The protease enzyme activity of liver and digestive tract was determined using the f 

Cupp-Enyard (2008) method with casein as substrate (0.65% w/v casein solution, 50 mM 

potassium phosphate buffer). In a 15 ml vial, 5 ml of 0.65% casein solution was 

equilibrated in a water bath at 37ºC for 5 min. One ml of the prepared sample was then 

added to the vial and incubated at 37ºC for exactly 10 min. The protease activity and 

consequential liberation of tyrosine during this incubation time was measured. TCA (5 ml) 

was then added to stop the reaction. The samples were incubated for 30 min at 37°C 

after which the solution was filtered with a 0.45 µm filter. Sodium carbonate and Folin’s 

reagent was added to the sample which was again incubated for 30 min at 37°C. After 

the 30 min incubation, 2 ml of the solution was filtered into the cuvettes and measured in 

a spectrophotometer at a wavelength of 660 nm. 

The calculation to determine the enzyme activity in units per ml was: 

Units/mg = (µmole tyrosine equivalents released) x 11 / (1) x (10) x (2) 

where 

11 = total volume (in milliliters) of assay 

10 = time of assay (in minutes) as per unit definition 

1 = volume of enzyme (in milliliters) of enzyme used 

2 = volume (in milliliters) used in colorimetric determination. 

Diet digestibility and ingredients. The reference diet formulation used in the 

digestibility experiment was similar to the control diet used in the growth experiment 

with a slight modification. The test diet was prepared to contain 70% of the reference 

diet mixture and 30% of the test ingredient (TMP and TMP-H) following the method of 

Cho et al. (1982). All diets contained 1 % Cr2O3 as an inert indicator. Red sea bream (21 

g) from a similar batch of fish used in the growth experiment were randomly stocked in 

tanks at a stocking density of 12 fish/tank. Water quality parameters were similar to the 

growth experiment. The fish were acclimated to the control diet for 4 days after which 

they were fed the reference and test diets twice daily (0700 and 1500) for 20 days. 

Three days after the initial feeding, feces and uneaten feeds were gently siphoned out 3h 

after every feeding and rinsed with distilled water. Feces was collected over 21 days, 

then freeze-dried and stored for proximate analysis for (a) digestibility coefficient of the  

nutrient in the diet and (b) apparent digestibility coefficient (ADC) of the nutrients in the 

ingredients which were calculated with the formula described by Cho et al. (1982). 

 (a) ADC = 1 – (F / D x Di  / Fi) 

D = % nutrient in the diet 

       F = % nutrient feces 

       Di = Cr2O3 Diet 

       Fi = Cr2O3 Feed 
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(b) ADCi= ADCt + ((1-S) Dr / sDi) (ADCt – ADCr) 

ADCt = test diet 

       ADCr = reference diet 

       Dr = % nutrient in reference diet 

       Di = % nutrient of the test ingredient 

       S = proportion of test ingredient in test diet (0.3) 

       1-s = proportion of reference diet in test diet. 

Statistical analysis. Three replicates were assigned to each dietary treatment, using a 

completely randomized design. Data were tested in Super ANOVA (Abacus Concepts, 

Berkley, CA, USA) or Sigma Stat 3.5 (Systat Software Inc.San Jose, CA, USA). 

Differences between diets were tested by one-way ANOVA on tank means and Tukey-

Kramer test if means are significant. Relative data limited to 0-100% were arcsine 

transformed prior to testing. Differences were considered significant at P<0.05. 

 

Results 

The proximate composition of the dietary treatments is shown in Table 2.  
 

Table 2 Composition of reference and test diets used in the in vivo digestibility (g/kg) 

Ingredients Reference TestTMP TestTMP-H 

Fish meal 700 490 490 
Tuna meat by-product  300  
TMP,hydrolysate    300 
Soybean oil 40 28 28 
Pollack liver oil 40 28 28 
Vitamin 50 35 35 
Mineral 50 35 35 
Cellulose 60 39 39 
CMC 50 35 35 
Cr2O3 10 10 10 
 

Total essential amino acid and proximate composition of the TMP and TMP-H ingredients 

indicated similar amino acid profiles, however, protein content increased and lipid content 

decreased after processing the TMP (Table 3).  
 

Table 3 Amino acid (g/100g dry diet) and proximate composition of TMP and TMP-H ingredients 

      As summarized in Table 4, the results indicated a 

significantly (P<0.05) improved weight gain in fish 

fed the diets supplemented with TMP-H. The TMP-H25 

diet exhibited the highest body weight gain by as 

much as 3271 % in comparison with the rest of the 

dietary treatments. The body weight of fish fed TMP5 

and TMP25 were not significantly (P>0.05) different 

from those fed the control diet. Feed intake (FI) 

significantly (P<0.05) improved when fish were fed 

the diets with TMP-H, with fish fed the TMP-H25 diets 

showing the highest feed intake. Similarly, feed 

conversion efficiency (FCE) was significantly improved 

(P<0.05) in the dietary treatments supplemented 

with TMP-H regardless of the level of inclusion in 

comparison to the control diet. However, FI and FCE of fish fed the diets with TMP was 

not significantly different (P>0.05) with that of the control diet group. After 56 days, 

survival rates were greater than 90% and were not significantly different among the 

dietary treatments. Proximate (moisture, crude protein, crude fat and ash) and total 

amino acid analysis compositions of fish did not exhibit significant (P>0.05) differences in 

all groups. Moreover, hepatosomatic index did not differ significantly (P>0.05) among 

fish fed with the experimental diets.  
 
 
 
 
 

Amino acid TMP TMP-H 

EAA   
  Methionine 1.3 1.1 
  Threonine 2.9 2.1 
  Valine 2.5 2.0 
  Isoleucine 2.8 2.8 
  Leucine 5.4 4.5 
  Phenylalanine 2.5 2.6 
  Histidine 4.8 4.8 
  Lysine 4.5 4.6 
  Tryptophan 0.1 0.1 
  Arginine 4.5 4.3 
Proximate 
composition (g/kg) 

  

  Protein 721.2 850 
  Lipid 134.2 11 

  Ash 92.1 84.1 
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Table 4 Performance and whole body proximate composition (%) of red sea bream juvenile1 

 Initial Control TMP-H 5 TMP-H 15 TMP-H 25 TMP 5 TMP 25 

Initial body  
weight (g)   

 0.82±0.0 0.81±0.1 0.82±0.01 0.82±0.02 0.81±0.0 0.81±0.0 

Final body  
weight (g) 

 22.6±0.6a 24.9±0.3b 25.3±0.4b 28.5±0.3c 22.7±0.4a 22±0.3a 

Survival (%)  93.3±0.0 93.3±0.0 93.3±0.0 95.6±0.0 93.3±0.0 95.6±0.0 
Feed intake2   21.7±0.3a 22±0.6a 22.4±0.5a 24.5±0.3b 21.9±0.3a 21.3±0.3a 

FCE3  1.0±0.0a 1.1±0.0b 1.1±0.1b 1.1±0.0b 0.99±0.0a 0.99±0.0a 

HSI4  1.1±0.0 1.1±0.0 1.1±0.0 1.11±0.0 1.08±0.0 1.07±0.0 
Protein 9.6±0.2     11.2±0.4 11.2±0.4 11.5±0.3 112.3±0.2 111.3±0.2 111.2±0.5 
Fat 1.8±0.8 2.9±0.9 2.8±0.2 2.8±0.9 2.8±0.5 2.7±0.8 2.8±0.4 
Ash 2.9±0.3 3.3±0.0 3.3±0.7 3.3±0.0 3.3±0.5 3.3±0.1 3.4±0.1 
Moisture 80.2±0.3 81.0±0.3 80.4±0.7 80.1±0.6 80.3±0.7 80.5±0.6 80.2±0.2 
1Each value is the mean ± SEM of data from triplicate groups. Within a row, means with the same letters are 
not significantly different (P>0.05).  
2g dry diet / fish / 56 days 

3Feed conversion efficiency = body weight gain / dry feed intake  
4Hepatosomatic index = (100 x liver weight) / fish weight 

 

Juvenile  red sea bream proteolytic enzyme activity from liver and digestive tract 

indicated that dietary treatment with TMP-H and TMP did not influence (P>0.05) the 

digestive enzyme capacity of the fish. Blood plasma indicators for liver integrity (TBB, 

GOT, GPT and BUN) as well as oxidative stress indicators (BAP and d-ROM) did not differ 

significantly (P>0.05) in all the dietary treatments (Table 5). 
  

Table 5 Blood parameters in red sea bream juvenile1 

 Control TMP-H 5 TMP-H 15 TMP-H 25 TMP 5 TMP 25 

Hb (g/dl) 6.3±0.1 6.6±0.1 6.2±0.1 6.5±0.1 6.4±0.1 6.3±0.0 
TBB (g/dl) 0.4±0.3 0.42±0.1 0.41±0.3 0.40±0.2 0.42±0.3 0.4±0.1 
GOT (IU/l) 48.3±0.6 47.6±0.2 47.1±0.3 47.2±0.5 47.5±0.6 47.6±0.20 
GPT (IU/l) 24.4±0.4 25.2±0.4 24.8±0.3 24.1±0.2 24.7±0.4 24.5±0.5 
BUN (mg/dl) 4.3±0.4 4.3±0.3 4.3±0.1 4.24±0.5 4.3±0.4 4.2±0.1 
TCH (mg/dl) 327.4±0.7 328.4±0.9 320.8±1.3 320.5±0.6 330.4±0.8 30.6±0.7 

BAP (U Carr) 2106±134 2110±89 2107±77 2118±101 2113±114 2109±109 
d-ROM (µmol/l) 124±8.2 119±13.2 121±9.4 118±7.4 123±8.9 121±6.3 

1Each value is the mean ± S.E.M. of data from triplicate groups. Within a row, means with the same letters 
are not significantly different (P>0.05).  

2Hb: hemoglobin, TBB: total bilirubin, GOT: glutamyl oxaloacetic transaminase, GPT: glutamic pyruvate 
transaminase, BUN: blood urea nitrogen, TCH: total cholesterol, BAP; biological antioxidant potential, d-
ROM; reactive oxygen metabolites. 

 

 Protein and dry matter apparent digestibility coefficient (ADC %) of the reference 

diet, test diets (TMP and TMP-H) and ingredients (TMP and TMP-H) are presented in 

Table 6.  
Table 6 Percent apparent nutrient digestibility of the reference diet, test diet and test ingredients1 

  Test diet     Ingredient   

Ingredient Reference TMP  TMP-H TMP TMP-H  
ADCP

2 97.1±0.4 95.3±0.1a 97.8±0.8b 92.6±0.3a 98.6±0.4b  
ADCDM

3 83.4±0.2 84.2±0.5a 85.5±0.4b 85.3±0.3a 88.3±0.7b  

1Each value is the mean ± SEM of data from triplicate groups. Within a row, means with the same  
letters are not significantly different (P>0.05).  
2Apparent digestibility coefficient of protein. 
3Apparent digestibility coefficient of dry matter. 
 

 The results indicated a higher protein digestibility (P<0.05) of the TMP-H ingredient of 

98.58% vs. 92.64% (TMP). Similarly, dry matter digestibility was significantly (P<0.05) 

higher for the TMP-H ingredient (88.34%). 
 

Discussion 

The present experiment was conducted to evaluate hydrolyzed TMP as an ingredient for 

juvenile red sea bream diets. Protein digesting enzyme (subtilisin, a serine 

endopeptidase) derived from Bacillus spp. has been widely used in numerous studies to 

prepare functional feed protein hydrolysate due to its superior protein recovery, low lipid 

content, and excellent functional properties (Chalamaiah et al., 2010; Kristinsson & 

Rasco, 2000; Zhong et al., 2007). The use of commercial enzymes instead of chemicals 

or endogenous enzymes allows good control of hydrolysis resulting in a superior quality 

product (Chalamaiah et al., 2010; Kristinsson & Rasco, 2000).  
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Fishmeal was replaced by up to 50% TMP ingredient in juvenile red sea bream diets 

without negatively affecting growth (Uyan et al., 2007). When comparing the post and 

pre hydrolyzed TMP ingredients, it was found that the amino acid profile of the two 

ingredients did not significantly differ. Protein content of the hydrolyzed TMP was higher 

due to the solubulization of protein during hydrolysis, the removal of insoluble undigested 

non-protein substance, and the partial removal of lipid after hydrolysis (Guerard et al., 

2002; Safari et al., 2009; Benjakul & Morrissey, 1997). Lipid content of the TMP-H 

ingredient was reduced due to the process of hydrolysis. 

     Results of the present experiment indicated that processing TMP through enzymatic 

hydrolysis, and supplementing diets with it, can improve feed utilization of red sea 

bream. The highest feed intake was observed in fish fed the TMP-H250 diet. The 

improved feed intake in fish fed the TMP-H can be attributed   to the free amino acid  and 

nucleotides produced during the hydrolysis of the TMP (Aksnes et al., 2006)  and the low 

molecular acidic peptide monosodium glutamate (MSG) potentiating activity (Kristinsson 

& Rasco, 2000). Enzyme hydrolysis of food proteins allows the improvement or 

modification of the physicochemical, functional and sensory properties of the native 

protein without affecting its nutritional value (Chalamiah et al., 2012). The increased 

feed intake in fish fed the TMP-H diet may also explain the improved weight gain of fish 

in that treatment as higher feed intake would increase the amount of protein and energy 

available for fish growth (Mamauag et al., 2011). 

The maximum inclusion level of 250 g/kg TMP-H was based on previous studies. Other 

reports also showed enhanced growth, survival, and feed efficiency when 19% of fish 

hydrolysate was added in the diet for 10 day old European sea bass, D. labrax (Cahu et 

al. 1999). In juvenile Atlantic salmon, S. salar, a 20% inclusion of fish hydroysate 

(Savoie et al., 2006), and 15% inclusion (Refstie et al., 2004), was suggested. A higher 

level of inclusion can lead to an inferior growth caused by the increased absorption of 

free amino acid, di- and tri-peptides that saturate the intestinal transporter mechanisms 

and imbalance amino acid absorption (Ganapathy et al., 1994; Berge et al., 1999; 

Aragão et al., 2004; Cahu et al., 1999).  

Blood plasma TBB, GOT, GPT, BUN and TCH which are indicative of liver health as well 

as the oxidative stress indicators d-ROM and BAP were similar in all treatments and their 

values within the range reported others (Kader et al., 2010; Kader et al., 2011). Blood 

parameters are important indicators of physiological stress responses as well as general 

fish health deriving from their nutritional intake. The inclusion of TMP-H did not alter the 

normal range of blood parameters and did not cause any deleterious effect to fish health. 

This was also seen in Coho salmon Oncorhynchus kisutch (Murray et al., 2003). 

The proteolytic enzyme activity of the treated fish did not vary among the dietary 

treatments, suggesting good adaptation to the diets and an acceptable composition of 

the dietary treatment (Mamauag et al., 2011).  

The apparent digestibility coefficient of protein was improved when the ingredient was 

hydrolyzed. The ADC of an ingredient is an indicator of the digestive efficiency of 

ingredients in feeds and their contribution to maintenance and growth (Eusebio et al., 

2004). Digestibility of protein and essential amino acids improved when fish hydrolysate 

was incorporated in the diet of Atlantic salmon (Hevroy et al., 2005; Berge & 

Storebakken, 1996).  

 In conclusion, 250 g/kg hydrolysate generated from tuna meat by-product can be 

utilized as a partial substitution for fishmeal since it improves feed intake, growth and 

digestibility of feed in juvenile red sea bream. Fractionation and utilization of the 

bioactive peptides from fish hydrolysate should be conducted to elucidate the specific 

effect of peptide on fish growth, immune response and nutrient utilization. Furthermore, 

an economic analysis should be conducted on the utilization of fish hydrolysates on a 

commercial scale. 
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