Metadata, citation and similar papers at core.ac.uk

Ateneo de Manila University

Archium Ateneo

Environmental Science Faculty Publications Environmental Science Department

2019

Recolonization of mollusc assemblages in mangrove plantations
damaged by Typhoon Chan-hom in the Philippines

Severino G. Salmo i

lan R. Tibbetts

Norman C. Duke

Follow this and additional works at: https://archium.ateneo.edu/es-faculty-pubs

b Part of the Ecology and Evolutionary Biology Commons, and the Environmental Sciences Commons


https://core.ac.uk/display/335032605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://archium.ateneo.edu/
https://archium.ateneo.edu/es-faculty-pubs
https://archium.ateneo.edu/es
https://archium.ateneo.edu/es-faculty-pubs?utm_source=archium.ateneo.edu%2Fes-faculty-pubs%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/14?utm_source=archium.ateneo.edu%2Fes-faculty-pubs%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/167?utm_source=archium.ateneo.edu%2Fes-faculty-pubs%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages

Estuarine, Coastal and Shelf Science 228 (2019) 106365

journal homepage: www.elsevier.com/locate/ecss

Contents lists available at ScienceDirect

Estuarine, Coastal and Shelf Science

ESTUARINE
¢ AL AND

LF NCE

Recolonization of mollusc assemblages in mangrove plantations damaged by | M)

Typhoon Chan-hom in the Philippines

Check for
updates

Severino G. Salmo III*>", Ian R. Tibbetts”, Norman C. Duke®

2 Department of Environmental Science, Ateneo de Manila University, 1108, Quezon City, Philippines

b School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia

¢ Centre for Tropical Water and Aquatic Ecosystems Research, James Cook University, Townsville, Qld, 4811, Australia

ARTICLE INFO ABSTRACT

Keywords: We investigated the effects of a catastrophic typhoon on mollusc assemblages of damaged mangrove plantations
Mangrove of different ages. Molluscs were sampled from infaunal, epifaunal and arboreal assemblages of mangrove stands
Restoration in Lingayen Gulf, northwest Philippines, and compared with assemblages of un-impacted areas. Prior to the
Mollusc assemblages occurrence of the typhoon, there were clear shifts in the species diversity (H”) and composition of mollusc
Disturbance . . . . is

Typhoon assemblages with stand age of mangrove forests. This was observed in species composition through the suc-

cession in dominance from pioneer to seral or putative climax species, and assemblage type (as arboreal, epi-
faunal and infaunal). However, severe damage to vegetation structure and sediment properties (associated with
a reduction in tree density and canopy cover resulting in increased temperatures and exposure) following the
typhoon resulted in an alteration of trajectory patterns in the damaged stands. There were shifts in species
composition and dominant species from having mature mangrove-associated species (pre-typhoon) to an abrupt
return in dominance of pioneer species (post-typhoon). The damage was more evident in older stands than in
intermediate-aged stands. Furthermore, the reduced presence of molluscs (and also probably their activities, i.e.
burrowing) may have contributed to the delayed recovery of mangroves. The prospects for recovery of the
system to pre-typhoon levels are therefore uncertain where the re-establishment of seral or edaphic mollusc

Habitat recovery

assemblages appears to be related to the recovery of vegetation and sediment conditions.

1. Introduction

Mangrove restoration (mainly through plantation) has been a pop-
ular resource management program in the Philippines since the late
1980s (Salmo et al., 2007). Mangrove planting has been widely prac-
ticed in most parts of the country and gains community support because
of the employment that it provides to locals. Aside from the main ob-
jectives of restoring forest cover and providing protection from ty-
phoons, mangrove planting is also used to enhance coastal fisheries
production. Among fisheries products expected to be derived from
mangrove plantations are nekton (especially fishes, crabs and shrimps)
and molluscs (Salmo et al., 2018).

Upon growth of replanted mangroves, their forest structure becomes
more complex, and increasing amounts of detritus are produced, pro-
viding food and habitat for various organisms (see reviews by Cannicci
et al., 2008; Nagelkerken et al., 2008). Patterns of changes in the
density, biomass and species composition of the fauna are expected to
occur as the forest vegetation changes with stand age. Among

mangrove-associated faunal groups, molluscs are one of the more
conspicuous organisms. Changes in the mangrove community will
likely influence shifts in species composition, abundance, and biomass
of the mollusc assemblage (Sasekumar and Chong, 1998; Netto and
Galucci, 2003) and will vary with assemblage types (from infauna to
epifauna and arboreal). We adapted the definitions of assemblage types
as infauna (molluscs inside the sediment), epifauna (molluscs on the
sediment surface), and arboreal (molluscs attached to the mangrove
stems and prop roots; cf. Salmo et al., 2017). Other factors that are
known to affect the distribution and composition of benthic fauna (e.g.,
physical attachment, structural complexity, tidal elevation) have been
assessed in several studies (see Kathiresan and Bingham, 2001;
Chapman and Tolhurst, 2007; Nagelkerken et al., 2008 inter alia). The
role of forest cover in mollusc abundance and biomass has been em-
phasized by Fondo and Martens (1998) and Sasekumar and Chong
(1998).

This notable dependence of mollusc fauna on habitat condition
leaves them vulnerable to severe disturbance events like typhoons.

* Corresponding author. Department of Environmental Science, Ateneo de Manila University, 1108, Quezon City, Philippines.
E-mail addresses: ssalmo@ateneo.edu (S.G. Salmo), i.tibbetts@ugq.edu.au (I.R. Tibbetts), norman.duke@jcu.edu.au (N.C. Duke).

https://doi.org/10.1016/j.ecss.2019.106365

Received 16 March 2018; Received in revised form 26 August 2019; Accepted 4 September 2019

Available online 06 September 2019
0272-7714/ © 2019 Elsevier Ltd. All rights reserved.



S.G. Salmo, et al.

Typhoons are natural disturbances that frequently occur especially in
the tropics. In the Philippines, around 20 typhoons occur each year,
with intense events (> 150kmh™1) having 16-32 years oscillation
(Kubota and Chan, 2009). The particularly severe typhoons bring
strong winds, intense rainfall and large storm surges causing notable
damages to the environment, property and human lives, particularly in
coastal areas (Cinco et al., 2016). These larger typhoons are known to
cause significant reductions in mangrove forest cover as well as an
associated loss of organic matter in sediments (Salmo et al., 2014).
However, the extent and scale of damage within a forest stand are
heterogenous and vary with wind speed and localized site gradients
such as geographical position relative to shoreline and tree height
(Everham and Brokaw, 1996; Busby et al., 2008). Mangrove plantations
are perceived to be more vulnerable than natural stands because of
their lower structural complexity and lower wind firmness (cf. Gardiner
and Quine, 2000).

There is an acknowledged need to investigate the colonization by
molluscs in mangrove forests damaged by typhoons. Prior to the ty-
phoon, we reported a clear trajectory of mollusc colonization and shift
of dominant species as well as assemblage type (from arboreal to epi-
fauna to infauna) with age of the stands (Salmo et al., 2017). Such shifts
are correlated with the changes in vegetation and sediment conditions
primarily with canopy cover and biomass (for the vegetation) and OM
(in the sediments). Some species dominate in young plantations (< 10
years; Pirenella cingulata) and in intermediate-aged plantations (10-15
years; Nerita polita), while other species are known to occur most in
mature (> 15 years) and natural stands (Terebralia sulcata; Nerita pla-
nospira). The species P. cingulata and N. polita dominates in infaunal and
epifaunal assemblages while T. sulcata and N. planospira are more
prominent in arboreal assemblage. Catastrophic typhoons are likely to
contribute to reductions in habitat quality as well as a decrease in the
supply of food for molluscs. An alteration of mollusc colonization pat-
tern but more particularly a shift in dominant species (e.g. reverting
from pre-typhoon mangrove-associated species to post-typhoon pioneer
species in mature plantation) may commence after drastic changes in
vegetation and sediment conditions. Smith et al. (1994) stressed how-
ever that the effects of such severe disturbances on the recruitment and
colonization dynamics of mangrove-resident fauna had not been ade-
quately studied.

When severe Typhoon Chan-hom struck Lingayen Gulf in north-
western Philippines on 9™ May 2009 affecting our established study
sites, we took the opportunity to test the hypothesis that mangrove
habitat degradation caused by severe typhoons might influence and
possibly disrupt the colonization and restoration of mollusc assem-
blages. The following account documents our subsequent findings on
the effects of Typhoon Chan-hom on the recolonization of mangrove
mollusc assemblages (from arboreal to epifaunal and infaunal assem-
blages) in mangrove plantations in the Philippines. Based on these new
observations, we provide a re-evaluation of the possible role of molluscs
in the post-disturbance recovery of mangrove habitat.

2. Materials and methods
2.1. Site description

The study was conducted in Rhizophora mucronata plantation stands
of different ages in Lingayen Gulf, northwestern Philippines (Fig. 1).
These plantation plots (codes in brackets) were: in Tondol, Anda (6
years — labelled as P6); Mona, Alaminos (8 years — P8); Imbo, Anda (10
years — P10); Pilar, Bolinao (11 years — P11); and Bangrin, Bani (18
years — P18). Mangrove plantations in Alaminos, Anda and Bolinao are
more exposed to coastal processes, while those in Bani are located in
sheltered areas in Tambac Bay and receive freshwater inputs from the
Bani River. Mangrove plantations (dominated by R. mucronata) in the
Central Philippines (Fig. 1) were also included: in Buswang, Kalibo,
Panay Island (12 and 17 years — P12 and P17); and Banacon Island,
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Getafe, Bohol (50 years — P50). Three natural mangrove forests (of
unknown ages; neither planted nor obviously damaged) were used as
reference sites (c¢f Cairns and Heckman, 1996; Ruiz-Jaen and Aide,
2005) to plot, estimate and compare the restoration trajectory of the
restored mangroves relative to natural mangrove stands. These natural
R. mucronata stands (Fig. 1) were in Buenavista in Bohol (Nx), central
Philippines; and Masinloc (Ny) and Palauig (Nz) in Zambales, north-
northwestern Philippines shown as Nx, Ny and Nz, respectively in
Fig. 1. These forests are dominated (by at least 80%) notably by R.
mucronata (with some R. apiculata, R. stylosa, Avicennia marina and
Sonneratia alba). These mangrove sites are also protected by national
environmental laws.

The tidal inundation varies widely and ranges from 1.30 to 1.50 m
(Lingayen Gulf and Zambales) to 2.10-2.60 m (Bohol and Aklan;
WXTide32; see www.wxtide32.com, accessed 15 December 2016). All
sites receive precipitation of more than 1700 mm year ~'. Based on the
modified Corona Classification system (Lantican, 2001), sites in Lin-
gayen Gulf and Zambales have Type 1 climate (with two pronounced
seasons, dry from November to April and wet from May to October),
Aklan has Type II (no dry season, but a pronounced wet season from
December to February), and Bohol has Type IV (no pronounced wet and
dry seasons). Detailed information on vegetation and physico-chemical
characteristics of each stand and site can be found in Salmo et al. (2013,
2014, 2017).

2.2. Typhoon Chan-hom (= Typhoon Emong)

Typhoon Chan-hom (known locally as Typhoon Emong) was the
fifth typhoon that entered the Philippines in the 2009 season. Four
other typhoons (Nangka, Ketsana, Parma and Miri-nae) crossed the
Lingayen Gulf in that season; however, these typhoons had lower wind
speeds and did not pass as close to the study sites (Fig. 1). Typhoon
Chan-hom was formed near SE Vietnam in the West Philippine Sea and
crossed the Philippine Area of Responsibility (PAR) on 3 May 2009. It
had strong winds of 85-150 km h~! and was categorized as Typhoon 2
under the Saffir-Simpson Scale. Typhoon Chan-hom first crossed land at
Cape Bolinao on 7 May 2009 (see typhoon path in Fig. 1) bringing with
it strong winds, heavy rains (at least 200 mm in 24 h), and flooding
which directly affected the mangroves in northwestern Lingayen Gulf.
Plots P6, P8, P10, P11 and P18 were within ca. 5 km of the path of the
typhoon (Fig. 1; Kitamoto, 2009). P12 and P17 were approximately
600 km from the path of the typhoon. Sites in Zambales were ap-
proximately 100 km from the typhoon path, while P50 and Nx were
approximately 800 km from the path. Sites that were > 80 km from
the path were considered to be unaffected by the typhoon.

2.3. Sampling design

The effects of Typhoon Chan-hom on mollusc assemblages and in
disrupting the pattern of restoration trajectory were evaluated. Mollusc
sampling was carried out in the mangrove vegetation plots before the
typhoon in December 2008 (pre-typhoon; see Salmo et al., 2017).
Subsequent samplings were made at 0.5-mo and 7-mo post-typhoon in
May and December 2009, respectively. Additional measurements were
made for Lingayen Gulf sites at 9-mo post-typhoon (March 2010) to
further establish the patterns of damage and regeneration in typhoon-
impacted sites. Additional sampling was also carried out in natural
mangrove sites in Zambales (Ny and Nz) at 9-mo post-typhoon to
provide comparison with the mangrove plantations in Lingayen Gulf.

2.3.1. Mollusc sampling

Mollusc sampling was carried out in the same vegetation plots we
had used in previous studies (n = three plots per site; Salmo et al.,
2013, 2014, 2017). Sampling was done during low tide. Each plot was
of 5 m radius. Molluscs were collected and measured from three faunal
components within the mangrove forest: arboreal (molluscs attached to



S.G. Salmo, et al.

A . <
&
S,
16.40 o &
P11 6;4“
Bolinao ¢ ,(7 <P10
Q
i1 P6
.I'
i
P18 /- .
bl NN
2,
Bani P8 o
1620 1 2" > ¢

119.90 120.00

15.55 1

1545

119.90 119.94

Estuarine, Coastal and Shelf Science 228 (2019) 106365

P17

Kalibo

122.00 122.50

124.00 124.50

Fig. 1. Location of the study sites. Numbers indicate the age of plantation. P — planted mangroves, N — Natural mangroves. The dashed lines indicate the tropical
weather disturbances that occurred in the Philippine Area of Responsibility (PAR) in 2009. The solid line corresponds to the path of Typhoon Chan-hom.

the mangrove stems and prop roots), epifaunal (molluscs collected from
the sediment surface), and infaunal (molluscs collected from the top
10 cm of the sediment). For the arboreal component, molluscs were
collected in the entire plot from the stems and roots of mangroves up to
the highest points of the top-most prop roots (for the genus Rhizophora)
and in the pneumatophores and up to 1.3 m height (above the substrate
at low tide) for non-Rhizophora species. For epifauna, three 1 x 1 m
quadrats were randomly established within each plot. All epifaunal
individuals within the quadrat were collected via visual search. For
infauna, three haphazardly located, replicate sediment cores were col-
lected from each plot using a core sampler (diameter 6.5 c¢cm) to 10 cm
depth, packed in aluminum foil. The collected sediments were washed
gently with water and passed through a 1 mm square mesh sieve. All
collected mollusc specimens were brought to the laboratory for pro-
cessing.

In the laboratory, all collected specimens were washed, dried and
weighed and preserved in 70 % alcohol until identification. The spe-
cimens were identified with reference to Dance (2002) and Laureta
(2008). The nomenclature was updated according to the WoRMS
Editorial Board (2016). The biomass and species diversity (Shannon-
Wiener diversity index, H’) of the mollusc assemblages were de-
termined per plot (three replicate plots per stand). The changes in
species composition of mollusc assemblages with mangrove age and as
affected by typhoon was assessed based on the distribution and the
habitat and substrate preference of each mollusc species (using Plaziat,
1984; Matthes and Kapetsky, 1988; Lozouet and Plaziat, 2008;
Printrakoon et al., 2008; and Palomares and Pauly, 2015).

2.4. Data analyses

Variations in mollusc assemblages were analyzed using a non-
parametric approach. Parametric tests were not possible because of
heteroscedasticity of the data, even after data transformation. Sites

were categorized based on the stage of forest and sediment develop-
ment (following Salmo et al., 2013), as: young (P6 and P8), inter-
mediate (P10 and P11), mature (P12, P17, P18 and P50), and natural
(Nx, Ny and Nz). A three-factorial Permutational Multivariate Analysis
of Variance (PERMANOVA; Anderson, 2001; Anderson et al., 2008) was
used to test the differences in mollusc assemblages with developmental
stage of the stands (factor 1), time (factor 2: pre-typhoon vs. 0.5-mo,
2.5-mo, 7-mo, and 9-mo post-typhoon), and typhoon (factor 3: im-
pacted vs. un-impacted stands). The typhoon-impacted sites were P11
and P18 plantation stands. At 9-mo post-typhoon for factor 3, only the
Ny and Nz (in Zambales) in natural stands were included in the ana-
lysis. No un-impacted sites from the mature stands were included in the
analysis.

The raw data were permuted for a total number of 9999 permuta-
tions. A similarity matrix was constructed using the Bray-Curtis algo-
rithm on standardized, log-transformed biomass data. Ordination was
through non-metric multidimensional scaling (nMDS). To test the re-
lationship between the mollusc assemblages and that of the vegetation
and sediments, stepwise multiple regression analyses were applied on a
correlation matrix (Sokal and Rohlf, 1997) separately between mollusc
assemblages and vegetation and with sediment characteristics. From
the resemblance matrix, the similarity percentage (SIMPER) procedure
was used to determine the mollusc species that contributed to the si-
milarities and dissimilarities between typhoon-impacted and unim-
pacted sites (Clarke and Warwick, 2001). The BEST-BIOENV procedure
was used to compare the rank-similarity matrices for the mollusc as-
semblages with matrices created for the vegetation and sediment
variables in 9999 permutations using datasets from Salmo et al. (2013,
2014). All multivariate analyses were conducted using PRIMER v6.1.12
(Clarke and Gorley, 2006).
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Fig. 2. Mean ( *+ standard deviation) mollusc arboreal (left), epifaunal (middle) and infaunal (right) biomass showing contrasting changes after typhoon Chan-hom

between typhoon-impacted (filled bars) and un-impacted (unfilled bars) sites.

3. Results
3.1. Pre-vs post-typhoon changes in arboreal assemblage

A total of 10,625 individuals composed of 28 species from 16 fa-
milies were recorded, of which the majority were gastropods (97 %j;
Supplemental Table 1). There were no significant differences in mollusc
biomass among mangrove stands throughout the sampling periods,
largely because of the high variability in each site. Prior to the typhoon,
the pooled samples from each developmental stage yielded significant
correlation between forest stage and biomass (Y = 88.603 In (x) —
122.67; r* = 0.61). Biomass was highest in the 18-yr old plantation
(P18) with 15 = 3gm™2 and was lowest in the 8-yr old plantation
(P8) with 0.30 = 0.01 gm’2 (Fig. 2 left; see also Salmo et al., 2017).
Species richness and diversity were lowest in the young mangrove
stands, slightly higher in the intermediate stands, and peaked in the
mature stands (Supplemental Fig. 1A). The patterns in biomass, species
richness and diversity implied a clear progression of arboreal mollusc
assemblage from young to intermediate, mature and natural stands
(PERMANOVA test; Table 1A). These patterns were significantly cor-
related with the vegetation and sediment parameters. In the vegetation,
the highest correlation coefficients were attributed to the combination
of Leaf Area Index (LAI: 0.48) and above-ground biomass (AGB: 0.41; p
0.51; P < 0.001; Table 2A), while for the sediment component, the
combination of organic matter (% OM: 0.60), total nitrogen (TN: 0.47)
and redox (0.44) had the highest correlation (p 0.63; P < 0.01;
Table 1A).

The occurrence of Typhoon Chan-hom resulted in 64-93 % reduc-
tion in arboreal mollusc biomass at the impacted sites (P11 and P18;
Fig. 2, left). There was a continuous decline in arboreal mollusc biomass
in P18 until 9-mo post-typhoon. In contrast, the arboreal mollusc bio-
mass in P11 appeared to recover at 7- and 9-mo post-typhoon. The
arboreal assemblages departed from their pre-typhoon stage groupings
and this remained the case until 9-mo post-typhoon (Fig. 3, left). Both
P11 and P18 transitioned to be closer to P6, P8 and P10 over time. The

mollusc assemblages varied significantly between the typhoon-im-
pacted and un-impacted sites in all post-typhoon sampling periods (P
< 0.01; Table 1A). The SIMPER tests showed that the typhoon un-
impacted and impacted sites had 82-86 % dissimilarity across post-
typhoon periods (Table 3A). The species that contributed most to the
dissimilarity were T. sulcata, N. polita, P. cingulata and Cerithidea sp. The
typhoon-impacted sites had 68 + 5 % similarity and were character-
ized mainly by T. sulcata, L. scabra and P. cingulata. The species T.
sulcata consistently characterized the impacted sites in all post-typhoon
periods followed by L. scabra (until 2.5-mo post-typhoon, but replaced
by P. cingulata at 7-mo and 9-mo post-typhoon). The un-impacted sites
had 69 = 4% similarity and were represented by P. cingulata, N. polita,
T. sulcata, L. scabra, N. planospira and Cerithidea sp. The species P.
cingulata and L. scabra consistently characterized the un-impacted sites
in all post-typhoon periods. The species T. sulcata, N. polita, N. planos-
pira and Cerithidea sp. had high scores at 0.5-mo, 2.5-mo, 7-mo and 9-
mo post-typhoon period, respectively.

The post-typhoon changes in mollusc assemblage patterns were
significantly associated with the changes in vegetation (p
0.50;P < 0.001) and sediment parameters (p 0.65; P < 0.01).
Variables that had high correlation coefficients with mollusc biomass
were the combinations of LAI (0.47) and AGB (0.40) in the vegetation,
and OM (0.45), redox (0.45) and temperature (0.65) in the sediments
(Table 2A). Significant correlations were more apparent between the
mollusc assemblage and vegetation in all sampling periods than with
sediment properties. In contrast, at 7-mo post-typhoon, the mollusc
assemblage was not significantly associated with the sediment compo-
nent, although significant correlation was again observed at 9-mo post-
typhoon where % silt (0.53) and % OM (0.43) had high correlations
(Table 2A).

3.2. Pre-vs post-typhoon changes in epifaunal assemblage

Twenty-four species from 15 families were recorded out of the
collected 5,986 epifaunal mollusc individuals (ca. 50 % lower than the
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Table 1

Summary results of PERMANOVA test on changes in: (A) arboreal, (B) epi-
faunal, and (C) infaunal mollusc assemblages with mangrove developmental
stages, time (pre-typhoon vs. post-typhoon) and typhoon effects (impacted vs.
un-impacted sites). P denote significance at < 0.05 (*), < 0.01 (**); < 0.001
(***); ns - not significant.

A. Arboreal
Source df MS Pseudo-F P (permuted)
Stage 3 25,102 29.70 i
Time 3 5,686 6.73 i
Typhoon 1 7,974 9.43 ok
Stage x Time 9 4,609 5.45 ok
Stage x Typhoon 1 10,304 12.19 ok
Time x Typhoon 3 3,228 3.82
Stage x Time x Typhoon 2 3,914 4.63
Residual 97 845
Total 119
B. Epifauna
Source df MS Pseudo-F P (permuted)
Stage 3 36,994 54.81 i
Time 3 2,262 3.35 i
Typhoon 1 7,462 11.05
Stage x Time 9 1,837 2.72
Stage x Typhoon 1 5,863 8.69 ok
Time x Typhoon 3 832 1.23 ns
Stage x Time x Typhoon 2 1,764 2.61
Residual 110 2,131
Total 134
C. Infauna
Source df MS Pseudo-F P (permuted)
Stage 2 24,645 8.08 i
Time 4 7,626 4.61 il
Typhoon 1 8,029 4.02 *
Stage x Time 7 4,814 4.73 kel
Stage x Typhoon 1 8,459 5.29 ns
Time x Typhoon 3 4,421 1.17 ns
Stage x Time x Typhoon 1 3,154 1.21 ns
Residual 73 1,655
Total 92

Table 2
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collected arboreal assemblage), which comprised of 97 % gastropods
and 3 % bivalves (Supplemental Table 1). Similar to the arboreal as-
semblage, there were no significant differences in epifaunal assem-
blages among stands, primarily because of the high variability among
sites. The pooled samples per developmental stage showed significant
negative correlation of epifaunal mollusc biomass with mangrove stage
of development (Y = —15.48 In (x) + 73.82; r?2 = 0.69). The mean
biomass for P11 and PI8 was 3 = 1 g m 2and 12 = 3 g m™ 2
respectively. Species richness and diversity were high in young and
intermediate plantations and lower in more mature and natural stands
(Supplemental Fig. 1B). Prior to the occurrence of the typhoon, the
epifaunal mollusc assemblages changed significantly with mangrove
forest developmental stage (PERMANOVA test; Table 1B). The mollusc
assemblages were significantly correlated with both the vegetation and
sediment properties although the latter appeared to have stronger
correlation. Highest correlation coefficients with epifaunal mollusc as-
semblages were attributed to the combinations of LAI (0.47) and AGB
(0.42) for the vegetation (p = 0.48; P < 0.001) and % OM (0.59), and
% silt (0.41) for the sediment properties (p = 0.60; P < 0.01;
Table 2B; see Salmo et al., 2017).

Contrary to the arboreal assemblages, there was an increase in
epifaunal assemblage's biomass in impacted sites by 62-95 % for P11
and 56-64 % for P18 from pre-typhoon to 7-mo post-typhoon. Both
impacted sites then had reduced biomass at 9-mo post-typhoon (Fig. 2,
middle). There was a significant difference between the typhoon-im-
pacted and un-impacted stands in all post-typhoon sampling periods
(P < 0.01; Table 1B). The mollusc assemblage in P11 became more
similar to the younger plantations (P6 & P8) after the typhoon while
P18 completely separated from all groups (Fig. 3, middle). The typhoon
un-impacted and impacted sites had 72-78 % dissimilarity. The dis-
similarity increased from 0.5-mo to 7-mo post-typhoon but slightly
decreased at 9-mo post-typhoon (Table 3B). The species that con-
tributed most to the dissimilarity between the un-impacted and im-
pacted sites were T. sulcata and P. cingulata. The typhoon-impacted sites
had 82 = 5 % similarity and were characterized by T. sulcata and P.
cingulata. The similarity decreased from 89 % (at 0.5-mo post-typhoon)
to 69 % (at 7-mo post-typhoon) but increased to 92 % at 9-mo post-
typhoon. The un-impacted sites had 83 * 4% similarity and were
characterized by P. cingulata, L. scabra, L. philberti and N. polita,

Summary of BEST-BIOENV results showing association between (A) arboreal, (B) epifaunal, and (C) infaunal mollusc assemblages and vegetation and sediment
characteristics for each sampling period. The variables that have high correlation coefficients are in bold fonts. Legend: LAI — Leaf Area Index, AGB — Above-Ground
Biomass, OM - organic matter, TN - total nitrogen, AP — available phosphorus. P denote significance at < 0.01 (**), < 0.001 (***); ns = not significant.

Variables/Assemblages

A. Arboreal

B. Epifauna

C. Infauna

Time, pre- vs. post-typhoon

Time, pre- vs. post-typhoon

Time, pre- vs. post-typhoon

Pre- 0.5-mo 7-mo 9-mo post Pre- 0.5-mo 7-mo 9-mo post Pre- 0.5-mo 7-mo 9-mo post
Vegetation
LAI 0.48 0.47 0.47 0.47 0.47 0.43 0.48 0.57 0.38 0.47 0.03 0.12
Tree density 0.26 0.26 0.39 0.30 0.24 0.21 0.36 0.23 0.44 -0.21 0.56 0.41
AGB 0.41 0.40 0.29 0.27 0.42 0.32 0.42 0.32 0.47 0.13 0.44 0.12
p 0.51 0.50 0.57 0.48 0.48 0.44 0.56 0.58 0.50 0.47 0.56 0.44
P Kk Kk *kk Fekk F*kk Kk *kk Fekk * ns Fekk ok
Sediment
Sand 0.07 0.07 0.01 0.39 0.27 0.31 0.05 0.41 0.41 -0.10 0.01 0.41
Silt 0.17 0.23 0.22 0.53 0.41 0.38 0.13 0.43 0.01 -0.28 0.10 0.31
OM 0.60 0.45 0.19 0.43 0.59 0.45 0.24 0.32 0.48 0.05 0.35 —-0.02
TN 0.47 0.20 -0.07 0.31 0.23 0.22 0.04 0.20 0.11 -0.09 0.31 —-0.06
AP 0.26 0.13 0.19 —0.02 0.17 -0.05 0.07 —0.03 -0.13 -0.16 0.50 0.01
Salinity 0.23 0.01 0.02 0.23 0.25 —-0.01 —0.04 0.25 0.45 0.11 -0.18 0.01
pH 0.32 0.07 -0.18 0.09 0.16 —0.04 -0.14 0.17 -0.07 —0.06 -0.10 0.01
Redox 0.44 0.45 —0.22 0.08 0.38 0.35 -0.19 0.08 0.11 0.15 -0.14 -0.07
Temperature 0.20 0.65 -0.12 0.17 0.02 0.43 -0.17 0.11 -0.15 0.16 —0.05 -0.11
p 0.60 0.65 0.33 0.53 0.60 0.28 0.50 0.51 0.26 0.55 0.42
P - - ns o - ns ek - ns o -
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Fig. 3. Non-metric multi-dimensional scaling (nMDS) plots of arboreal (left), epifauna (middle) and infauna (right) mollusc assemblages showing shifts from pre-
typhoon (cf. Salmo et al., 2017) to post-typhoon (at 0.5-mo post-typhoon; 7-mo post-typhoon; and 9-mo post-typhoon). Ellipse denote grouping for each mangrove
forest age. The numbers on the top right of each plot denote the stress level.
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Table 3
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Summary results of SIMPER analysis showing the arboreal, epifaunal and infaunal mollusc species that contributed most strongly to dissimilarity (top) and similarity
(bottom) between typhoon-unimpacted and impacted sites. Species are listed in order of their percent contribution to similarities and dissimilarities.

Assemblage Post-typhoon period
0.5-mo 2.5-mo 7-mo 9-mo
A. Arboreal 86.05 82.69 85.22 85.04
T. sulcata T. sulcata T. sulcata T. sulcata
N. polita P. cingulata P. cingulata P. cingulata
P. cingulata N. polita Cerithidea sp.
Unimpacted, 74.72 Impacted, Unimpacted, Impacted, Unimpacted, Impacted, Unimpacted, Impacted,
57.15 59.86 63.77 62.98 78.39 77.64 73.42
P. cingulata T. sulcata P. cingulata T. sulcata P. cingulata T. sulcata P. cingulata T. sulcata
N. polita L. scabra L. scabra L. scabra L. scabra P. cingulata L. scabra P. cingulata
T. sulcata N. polita N. planospira Cerithidea sp.
B. Epifauna 75.96 76.14 78.48 72.45
T. sulcata P. cingulata T. sulcata C. cingulata
P. cingulata T. sulcata P. cingulata T. sulcata
76.08 88.89 86.43 77.78 77.50 68.89 93.97 91.60
P. cingulata T. sulcata P. cingulata T. sulcata P. cingulata T. sulcata P. cingulata T. sulcata
T. sulcata P. cingulata L. philberti P. cingulata T. sulcata P. cingulata N. polita P. cingulata
L. philberti N. polita T. sulcata
C. Infauna 80.83 65.32 79.51 71.52
T. nodifera A. perspectiva P. cingulata P. cingulata
P. cingulata P. cingulata C. urceus A. nodifera
A. cornea A. nodifera N. polita
44.69 28.23 51.57 43.66 40.38 21.09 45.76 27.76
P. cingulata A. nodifera P. cingulata P. cingulata P. cingulata P. cingulata P. cingulata P. cingulata
N. polita P. cingulata L. philberti N. polita N. polita C. urceus N. polita A. nodifera
C. urceus

although T. sulcata also had high score at 7-mo and 9-mo post-typhoon.
The similarity among un-impacted sites fluctuates with sampling per-
iods.

The changes in mollusc assemblages were significantly correlated
with both vegetation (p = 0.44; P < 0.001) and sediment character-
istics but not with sediment at 7-mo post-typhoon (p = 0.58;
P < 0.001; Table 3). For vegetation, LAI consistently appeared to have
high correlation with the mollusc assemblage followed by AGB. For
sediments, the reduction in % OM (0.45) and increased temperature
(0.43) had the highest correlation at 0.5-mo post-typhoon but this was
changed at 9-mo post-typhoon when % sand (0.41) and % silt (0.43)
had higher correlations.

3.3. Pre-vs post-typhoon changes in infaunal assemblage

A total of 1,406 individuals composed of 12 species from 10 families
were collected from young, intermediate and mature mangrove plan-
tations in Lingayen Gulf, but not in other more mature plantations and
natural mangroves (Supplemental Table 1). Species richness, diversity,
and biomass were highest in the youngest plantation and decreased
with age of the stands. There was a significant negative correlation of
infaunal biomass (62.78 *+ 25.11 gm_s; Y = —436.31n (x) + 1248.1;
r* = 0.72) with stand age. Infaunal mollusc assemblages significantly
varied with age of the forest stands showing a clear pattern from young
to intermediate plantations through to mature plantations (PERMAN-
OVA test; Table 1C). The infaunal mollusc assemblages were sig-
nificantly correlated with vegetation and sediment characteristics. The
combinations of AGB (0.47) and tree density (0.44) for the vegetation
characteristics (p = 0.50; P < 0.05; Table 3a), and % OM (0.48),
salinity (0.45), and % sand (0.41) for the sediment characteristics
(p = 0.51; P < 0.01; Table 2C) had the highest correlation coefficients.

There was a 40-60 % reduction in infaunal mollusc biomass be-
tween pre-typhoon and 0.5-mo post-typhoon. However, there was a
50-70 % increase in infaunal mollusc biomass from 0.5-mo to 9-mo
post-typhoon (Fig. 2, right). There was a significant difference between
pre-typhoon and post-typhoon infaunal mollusc assemblages that

persisted until 9-mo post-typhoon (PERMANOVA test; Table 1C; Fig. 3,
right). The infaunal assemblage varied between typhoon-impacted and
un-impacted sites (P < 0.05). The typhoon-impacted sites differed
significantly with developmental stage and with time. There were,
however, no significant interactions between time and typhoon, and
among mangrove developmental stages (Table 1C). The typhoon un-
impacted and impacted sites had 65-81 % dissimilarity and tended to
decrease with time (Table 3C). The species that distinguished the ty-
phoon un-impacted from impacted sites differed with the arboreal and
epifaunal assemblages, and with periods. In the impacted sites, the
species P. cingulata consistently appeared across all post-typhoon per-
iods but other species that had high scores were T. nodifera and C. ur-
ceus at 0.5-mo post-typhoon, A. perspectiva at 2.5-mo post-typhoon, C.
urceus and A. nodifera at 7-mo post-typhoon and A. nodifera and N.
polita at 9-mo post-typhoon. The un-impacted sites had higher simi-
larity at 40-46% (with high contribution from P. cingulata, N. polita, C.
urceus, and L. philberti) than the typhoon-impacted sites (21-44 %; with
high contribution from A. nodifera and P. cingulata). In the impacted
sites, N. polita and C. urceus had high scores at 7-mo and 9-mo post-
typhoon.

The post-typhoon changes in the infaunal assemblages were asso-
ciated with variations in both the vegetation and sediment character-
istics although the variables that showed significant correlation varied
over time. The infaunal assemblage was significantly correlated with
vegetation and sediment parameters at 7-mo and 9-mo post-typhoon,
but not at 0.5-mo post-typhoon. The combination of tree density (0.56)
and AGB (0.44) had the highest correlation with the changes at 7-mo
(p = 0.56; P < 0.001) and 9-mo post-typhoon (p = 0.44; P < 0.01).
The mollusc assemblage was significantly correlated with sediment
characteristics at 7-mo (p = 0.55; P < 0.01) and 9-mo post-typhoon
(p = 0.42; P < 0.01) but not at 0.5-mo post-typhoon. The combination
of Available Phosphorus (AP) content (0.50) and % sand (0.41) had the
highest correlation with the infaunal assemblage.
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4. Discussion

A total of 38 species from 23 families were collected from all sites
which is comparable to the mature and natural Rhizophora mangroves
in SE Asia (see Salmo et al., 2017) — 26 in natural stands in Selangor,
Malaysia (Sasekumar, 1974), 34 in natural and planted mangroves in
Ranong, Thailand (Macintosh et al., 2002), and 44 in nearly pristine
mangroves in Sarawak, Malaysia (Ashton et al., 2003). Consistent with
published reports, only a few taxa (at most 5-9) dominate at each site
(Sasekumar, 1974; Tolhurst and Chapman, 2007). Prior to the typhoon,
a clear separation between the groups of young and intermediate stands
as compared to the groups of mature and natural stands was manifested
(Salmo et al., 2017). Moreover, the mollusc assemblages between ma-
ture plantations and natural stands did not vary. In all assemblage
types, similarity among planted and natural stands always began at the
11'" year of the mangrove stands. A similar mollusc colonization pat-
tern (with mangrove age) was also reported in mangroves from New
Zealand (Morrisey et al., 2003).

The combination of changes to vegetation and sediment character-
istics resulted in post-typhoon changes in mollusc assemblages
(Table 3). It is not straightforward, however, to identify a single par-
ticular variable that causes the changes since vegetation and sediments
are interrelated, although at some point certain variables show higher
correlation. For example, in arboreal mollusc assemblage, the reduc-
tions in LAI and AGB had significant correlation at 0.5-mo post-ty-
phoon, but as time progressed, it appeared that forest cover alone had a
more direct effect than either tree density or AGB. At 7-mo and 9-mo
post-typhoon, both tree density and AGB were in continuous decline
while LAI regenerated, although very slowly. The increase in LAI co-
incided with the re-establishment of other mollusc species which pos-
sibly indicates recovery. For sediment parameters, the reductions in OM
coupled with low redox values and elevated temperatures were asso-
ciated with the arboreal mollusc assemblage at 0.5-mo post-typhoon. At
9-mo post-typhoon, when redox and temperature appeared to be near
pre-typhoon values, only OM and silt had a significant association with
the arboreal and epifaunal mollusc assemblages. For infaunal mollusc
assemblages, association with sediment changes were manifested at 7-
mo post-typhoon, which was attributed almost solely to increased AP
content. This possibly implies a lag period since AP enhancement oc-
curred at 0.5-mo post-typhoon (Salmo et al., 2014). The post-typhoon
changes in vegetation and sediment conditions in typhoon-impacted
sites, and with time, were reported in Salmo et al. (2014).

4.1. Altered mollusc colonization and trajectory patterns

Typhoon Chan-hom caused significant changes in arboreal, epi-
faunal, and infaunal mollusc assemblages in typhoon-impacted sites.
There are very few studies on the effects of typhoons on the dynamics of
mangrove-dependent fauna (Smith et al., 1994) thus comparisons of the
present study with published data are wanting. To our knowledge, this
study reports the first account on changes in mollusc assemblages af-
fected by a catastrophic typhoon. Perhaps the closest comparison that
could be made is the loss of forest cover brought about by deforestation
in Gazi Bay, Kenya (Fondo and Martens, 1998; Bosire et al., 2008) and
habitat modification in Moreton Bay, Australia (Skilleter and Warren,
2000). These studies pointed out that any level of disturbance may
affect the diversity and biomass of molluscs. The loss of forest cover and
impoverished sediment conditions (anoxic and warm sediments)
translates into loss or reduction of food and shelter for molluscs.

Changes in the biomass of molluscs manifested immediately after
the typhoon but varied with assemblage type (Figs. 2 and 3; Table 1).
For arboreal mollusc assemblage, there was an immediate reduction in
P18 and did not appear to recover even at 9-mo post-typhoon. In P11
however, there was an immediate biomass reduction only at 0.5-mo
post-typhoon but appeared to recover at 9-mo post-typhoon (Fig. 2,
left). Such differences may imply more intense damage in P18 than in
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P11 as there were more trees that died in the older stands. The P18 have
taller trees and are thus more prone to wind impacts.

The reduction in food and habitat may have forced arboreal mol-
luscs to move from the vegetation and instead colonized the sediment
surface. Hence, there was a sudden increase in epifaunal biomass (but
notably with higher contribution from T. sulcata; Table 3) up to 7-mo
post-typhoon although it declined at 9-mo post-typhoon. Prior to the
occurrence of the typhoon, the epifaunal assemblage in the P11 stands
were dominated by P. cingulata and T. nodifera. Then, in all post-ty-
phoon periods, the contribution of T. sulcata increased up to 60 %. At 7-
mo post-typhoon, the refoliation observed in P11 (but not in P18) may
have provided canopy shades and reduced the effect of higher sediment
temperatures. The infaunal assemblage had a different fate, where an
immediate reduction in P11 occurred at 0.5-mo post-typhoon but re-
covered thereafter. In P18, infaunal molluscs emerged only at 9-mo
post-typhoon. The changes in infaunal assemblage coincided with the
degraded vegetation and sediment conditions (because of reduced ca-
nopy cover and increased temperature, respectively), particularly with
the dumping of fine sediments after the typhoon. From these patterns, it
can also be inferred that the sediment column may have been in a more
favorable condition to attract molluscs than the vegetation similar to
what was observed in the epifaunal assemblages.

Species composition in all assemblages in the impacted sites
changed dramatically after the typhoon. Our findings contrast those of
Diele et al. (2013) who studied the impacts of typhoons in sesarmid
crabs in 18 to20-yr old mangrove plantations in Vietnam. They re-
ported no significant departure from pre-typhoon crab assemblages,
and posited that crabs are robust against typhoons. Molluscs however,
may have higher dependence to mangrove vegetation and sediments
than crabs. Dominant species that were recorded prior to the typhoon
were either severely reduced or completely lost, but this was more
apparent in arboreal assemblages. The sustained dominance of P. cin-
gulata and T. sulcata in P11 and P18 throughout the sampling periods,
respectively, may indicate the adaptedness (or possible greater resi-
lience) of these species to disturbance. Re-emergence of other pre-ty-
phoon species occurred two months earlier in infaunal and epifaunal
assemblages as compared to the arboreal molluscs. We also observed
the sudden increased in dominance (by at least 60 %) of the species
Littoraria scabra (in P11) and Telescopium telescopium (in P18) starting at
7-mo post-typhoon. Such emergence as a co-dominant species may be a
response to the altered environment. These species are known to be an
indicator of the stage of mangrove development in intermediate and
mature stage stands (see Salmo et al., 2017). Thus, such sudden dom-
inance may also indicate that the restoration trajectory could have been
turned back by 10-15 years, which is the age of the intermediate and
mature stands. Post-typhoon mollusc recolonization pattern probably
suggest that mollusc recovery will occur first with the infaunal and
epifaunal assemblages until such time as the vegetation and sediment
condition takes to re-establish, to allow the recruitment of arboreal
molluscs.

4.2. Implications and prospects of post-typhoon recovery

Post-typhoon recovery of mangrove forest cover may be improved
in plantation stands with appropriate site selection and substrate-spe-
cies matching. Comparable with other forest types, mangrove planta-
tions have increased structure (as tree density and biomass) with stand
age (Salmo et al., 2013). In this way, as vegetation maturity progresses,
there is simultaneous progress in the colonization and build-up of
mollusc assemblages (Salmo et al., 2017) as well as in nekton com-
munities (Salmo et al., 2018). These and other fauna are attracted to
mangroves because of the food and habitat provided by the developing
forest stands. Furthermore, most of the mollusc and nekton species
found in mangroves are economically important for coastal residents as
sources of food and livelihood resources (Tabuchi, 2004; Peralta-Milan
and Salmo, 2013). It is important to appreciate that this provisioning of
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food and livelihoods derived from mature mangrove plantations en-
courages coastal residents to participate in mangrove planting pro-
grams (Salmo et al., 2007).

Most mangrove plantations in the Philippines are monospecific
(using the Rhizophora genus) and inappropriately designed. These
plantations are often located in sub-optimal planting sites (see
Primavera and Esteban, 2008, for example). Hence, mangrove planta-
tions often have stunted growth and poor survival (Samson and Rollon,
2008). Even if stands reach > 20 yrs and look similar to natural stands
(Salmo and Juanico, 2015), most mangrove plantations have low
structural complexity. These stands display delayed development by at
least 10 years (Salmo et al., 2013), as compared to natural mangrove
forest growth under natural canopy gap regeneration (cf. Duke, 2001).
When hit by a catastrophic typhoon, severe damage to vegetation
structure, such as high tree mortalities (resulting in reduced tree density
and biomass) leads to impoverished sediment conditions (like high
temperature and salinity). While such damage is similarly manifested in
adjacent natural mangrove stands, the species that are mainly from the
genera Avicennia and Sonneratia have coppiced and show refoliation (SS
& NCD pers. obs.). Such resprouting and recovery capability is evident in
Avicennia-dominated stands damaged during an extreme weather event
(Duke et al., 2017). In contrast, Rhizophora species do not recover
asexually (see Duke, 2001). These differences in growth and response
capabilities amongst different mangrove species is rarely considered in
assessments of severe disturbance. The altered habitat recovery tra-
jectories in turn equate to losses in food and habitat leading to reduc-
tions in mollusc assemblages, and more importantly affecting their re-
storation trajectories (Fig. 3; Table 2).

In November 2017 (ca. 8-yr post-typhoon), the damaged plantation
showed few signs of recovery, although the 11-yr stands (P11, now 19-
yr old) had some refoliation and those P18 trees that survived (now 26-
yr old) remained defoliated. Seedling densities in both damaged stands
were either very low or undetectable. In contrast, natural stands
nearing P18 had completely refoliated, although the canopy cover was
still at < 60 % and some trees showed signs of decay. High seedling
densities and some saplings were observed in the forest floor (mainly
Avicennia sp. and Sonneratia sp.). We observed some molluscs (primarily
T. telescopium, L. scabra and N. polita) either attached to the seedlings or
on the sediment surface. Molluscs are known bioturbators in which
their burrowing and feeding activities could provide aeration to man-
groves (Zvonareva et al., 2015). It is possible that the post-typhoon
seedling and sapling recruits provide spaces for mollusc to colonize. In
return, these mollusc assemblages may have similarly assisted the
mangroves to grow and possibly to recover. Such observations were
lacking in the damaged mangrove plantations. Given the beneficial role
that molluscs likely contribute to mangrove recovery, we suggest an
assessment of mollusc assemblages be included as an indicator in stu-
dies of post-typhoon recovery.

Prospects for mollusc recovery are unclear. Complete recovery will
depend on the rate of recovery and re-establishment of both vegetation
and sediment conditions to pre-typhoon levels. If ever they recover, the
critical variables would be the re-establishment of forest cover and the
enhancement of organic matter in the sediment. The regeneration
pathway may follow the pre-typhoon pattern, starting with the infaunal
and epifaunal assemblages first and when the forest recovers the colo-
nization of arboreal faunal assemblage may commence.

5. Conclusions

A catastrophic typhoon resulted in the alteration of the restoration
trajectory of mollusc assemblages. But the damage was more evident in
more mature stands than in intermediately old stands. Post-typhoon
changes in mollusc assemblages were attributed to the sudden reduc-
tion or loss of their sources of habitat and food. Shifts in dominant
mollusc species from pre-typhoon to post-typhoon in all assemblages
were attributed to changes in vegetation and sediment conditions.
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Moreover, the severe reduction in the vegetation (mainly through tree
density and canopy cover) caused the molluscs to occupy the sediment.
As molluscs are known bioturbators, the sudden changes in mollusc
assemblages may have also contributed to the delayed recovery of the
mangrove forest.
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