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IMPROVING DEEP CONVOLUTIONAL NEURAL NETWORKS WITH UNSUPERVISED
FEATURE LEARNING

Kien Nguyen, Clinton Fookes, Sridha Sridharan

Image and Video lab, SAIVT Research Program
Queensland University of Technology, Brisbane, Australia

ABSTRACT

The latest generation of Deep Convolutional Neural Networks
(DCNN) have dramatically advanced challenging computer
vision tasks, especially in object detection and object clas-
sification, achieving state-of-the-art performance in several
computer vision tasks including text recognition, sign recog-
nition, face recognition and scene understanding. The depth
of these supervised networks has enabled learning deeper and
hierarchical representation of features. In parallel, unsuper-
vised deep learning such as Convolutional Deep Belief Net-
work (CDBN) has also achieved state-of-the-art in many com-
puter vision tasks. However, there is very limited research on
jointly exploiting the strength of these two approaches. In this
paper, we investigate the learning capability of both meth-
ods. We compare the output of individual layers and show
that many learnt filters and outputs of the corresponding level
layer are almost similar for both approaches. Stacking the
DCNN on top of unsupervised layers or replacing layers in
the DCNN with the corresponding learnt layers in the CDBN
can improve the recognition/classification accuracy and train-
ing computational expense. We demonstrate the validity of
the proposal on ImageNet dataset.

Index Terms— Deep learning, Convolutional Neural
Network, Deep Convolutional Belief Network, Unsupervised
deep learning, Supervised deep learning

1. INTRODUCTION

Feature extraction plays a key role in the performance of
recognition systems since this phase decides the discrimi-
nation capability of the systems. In traditional recognition
approaches, features are normally carefully hand-crafted to
maximise the discrimination capability. A multitude of hand-
designed features have been explored (such as SIFT [1] and
HOG [2]) and achieved great success in computer vision
tasks. However, because these features are hand-designed,
not learnt from the nature of data, they are subjective to
perception of the designers and are not always the optimal
feature set required for a given task. In addition, classifiers
(such as the SVM and k-nearest neighbor) are generic and
not robust to the diverse variation of the data. These tradi-

tional approaches represent a shallow architecture, which is
severely challenged by the non-linear complexity of the fea-
tures. Recently, deep learning researchers have proposed to
learn feature representations in a hierarchy all the way from
pixels to classifiers through multiple layers (deep) architec-
ture [3, 4]. The deep architecture allows the system to learn
to represent features by themselves based on the nature of the
data, rather than the subjective nature of human perception.
This deep architecture has been shown to achieve state-of-
the-art in many computer vision tasks with little effort in
tuning the model including text recognition [5], object detec-
tion [6], object recognition [7], face recognition [8], scene
parsing/labeling [9].

There have been 2 major trends in deep learning ap-
proaches: supervised and unsupervised. While in supervised
learning (e.g. Convolutional Neural Network [5, 10] and
Recurrent Neural Network [11]), training data includes both
the input and the desired output, in unsupervised learning
(e.g. Deep Belief Network [12] and Deep (Sparse/Denoising)
AutoEncoder [13]), the model is not provided with the de-
sired output. While both supervised and unsupervised deep
learning have achieved superior performance in several com-
puter vision tasks, there has been little effort to jointly exploit
the advantages of these two. Most recently, Erhan et al.
have shown that unsupervised pretraining, which precedes
the supervised deep learning, helps to guide the deep learning
towards basins of attraction of minima that support better gen-
eralisation from the training set [14]. This is a premiliary first
step towards exploiting the advantages of both approaches.
In this work, we approach the integration of unsupervised
and supervised deep learning from another perspective. We
show that early layers’ parameters in the supervised net-
work (DCNN) can be learnt from an unsupervised network
(CDBN), which not only reduces the number of parameters
to learn and lessens the training burden, but also improves
classification accuracy in some cases.

The remaining of this paper is organised as follows: Sec-
tion 2 presents motivations for this research, Section 3 intro-
duces background on Deep learning, Section 4 describes our
proposal on how to employ unsupervised learning to improve
the DCNN, Section 5 discusses and concludes our paper.



2. MOTIVATION

Our contribution in this paper - to learn early the DCNN
layers parameters from an unsupervised CDBN network - is
driven by the following motivations:

• Motivation 1: Training deep architecture neural net-
works is very expensive, for example, it took two weeks
for Krizhevsky et al. to train their deep learning model
on 2 Graphical Processing Units (GPUs) on 1.2 mil-
lion training images provided by the ImageNet Large
Scale Visual Recognition Challenge 2012 (ILSVRC)
[10]. However, there are many pretrained models pub-
licly available for the research community. The ques-
tion is how to take advantage of this rich information
to speed up and save computing resource without com-
promising the learning capability?

• Motivation 2: We observe that even though there are
a plethora of deep architectures, the key to all these
architectures is the hierarchy of the feature representa-
tion, which means each layer in the deep learning multi-
ple layer model learns to represent images from pixels,
to edges, to textons, to motifs, to parts and to objects
in that order [15]. Notably, both supervised (DCNN)
[16] and unsupervised (DCBN) [12] deep learning ap-
proaches learn the hierarchy in the same hierarchical
manner. It is obvious that the feature representation will
differ at higher layers of both approaches; however, the
similar representation of low-level and mid-level layers
raises a question of how to incorporate the learnt infor-
mation from both approaches?

• Motivation 3: Transfer learning has been successfully
used to transfer knowledge learnt from one domain to
another. Recently, Oquab et al. discussed how image
representation learnt with CNN can be efficiently trans-
ferred to other visual recognition tasks [17]. In other
words, the parameters learnt from one dataset can be
transferred to other datasets. Now rather than transfer
learnt parameters from one dataset to another dataset,
an interesting question is whether we can transfer learnt
parameters from one learning category (unsupervised)
to another (supervised)?

• Motivation 4: The benefit of unsupervised learning is
the unlabeled training data, which allows it to train on
huge quantity of data. Training on big data enables un-
supervised learning learn parameters accurately. If the
parameters learnt from unsupervised learning (CDBN)
can be transferred to supervised learning (DCNN), not
only the burden of training on DCNNs is less compu-
tational expensive, but the accuracy may also be im-
proved due to more accurate training on big data of the
unsupervised learning.

3. DEEP LEARNING

This section introduces a typical supervised and a typical un-
supervised deep network, which are used in this research.

3.1. Deep Convolutional Neural Network (DCNN)

Inspired by the visual cortex of the human and animal brain,
convolutional neural networks (CNN) were first introduced
in 1980 by Kunihiko Fukushima [18]. The first major influ-
ential model of CNN is the deep architecture called LeNet-
5 introduced by Lecun et al. [5]. Lenet-5 consists of a se-
ries of layers, including an input layer, followed by a number
of feature extracting Convolutional and Subsampling layers,
and finally a number of fully connected layers that perform
the classification as shown in Figure 1. The famous network
can classify digits successfully, which is applied to recognize
checking numbers. However, without efficient computing re-
sources and methods to prevent from overfitting if the num-
bers of layers becomes larger and larger, it did not perform
well with more complex problems. The second major influ-
ential model of CNN is KrizhevskyNet [10]. KrizhevskyNet
is an extension of LeNet-5 fulfilled by the power of latest
computing hardware. KrizhevskyNet is deeper with 7 lay-
ers as shown in Figure 2, larger with 60 million parameters.
This was made possible by the fast hardware (GPU-optimised
code), big dataset (1.2 million training images) and better reg-
ularisation (dropout).

3.2. Convolutional Deep Belief Network (CDBN)

Deep belief network (DBN) is a generative graphical model
consisting of a layer of visible units and multiple layers of
hidden units [19]. Each layer, which is a Restricted Boltz-
manzz Machine (RBM), encodes correlations in the units in
the layer below to learn higher-level feature representations
from unlabeled data, suitable for use in tasks such as classi-
fication. A breakthrough in training DBN was proposed by
Hinton et al. with layer-wise training, which greedily trains
each layer (from bottom to top) [19]. Recently, Lee et al. pro-
posed to employ Convolutional RBM (CRBM) as a replace-
ment for RBM with the advantage that the weights between
layers are shared among all locations in an image [12]. A
CDBN is constructed simply by stacking multiple CRBMs
following by max-pooling layers. The authors reported the
CDBN is able to learn the hierarchical representation of nat-
ural images. The first layer has been shown to learn oriented,
localised edge filters. The second layer learn contours, cor-
ners, angles and surface boundaries in the image. The third
layer has been shown to learn object parts, even though the
algorithm was not given any label specifying the locations of
either objects or their parts. Higher layers in the CDBN learn
features which are not only higher level, but also more spe-
cific to particular object categories.



Fig. 1. The first major influential model of CNN: LeNet-5 [5]

Fig. 2. The second major influential model of CNN: KrizhevskyNet [10]

4. IMPROVING DCNN BY UNSUPERVISED
FEATURE LEARNING

4.1. Network architecture

4.1.1. DCNN

In this work, we employ the network architecture presented
by Krizshevesky et al. [10] as shown in Figure 2 on a public
framework called CAFFE [20]. Caffe is a clean and modi-
fiable C++ framework with state-of-the-art deep learning al-
gorithms for training and deploying general-purpose convo-
lutional neural networks and other deep models efficiently
on commodity architectures. By separating model represen-
tation from actual implementation, Caffe allows experimen-
tation and seamless switching among platforms for ease of
development and deployment from prototyping machines to
cloud environments. The benefits of using Caffe is the rich-
ness of reference models from the community.

The network, which we name as KrizhevskyNet, is com-
posed of eight layers: five successive convolutional layers,
C1,...,C5, and three fully connected layers, FC6,...,FC8.
Response-normalisation layers follow the first and sec-
ond convolutional layers. Max-pooling layers follow both
response-normalisation layers as well as the fifth convolu-
tional layer. Readers should refer to [10] for details of convo-
lutional, response-normalisation and max-pooling layers.

4.1.2. CDBN

For CDBN, we implement our own version of Honglak Lee
proposal based on the paper [12] as described in Section 3.2.
Three layers, are trained in the Kyoto dataset to learn the pa-
rameters of the CDBN model. To be compatible with the early
layers of the DCNN, the first two layers of the CDBN archi-
tecture are followed by probabilistic max-pooling layers. The
third layer is not followed by any max-pooling operation. Lee
et al. have shown that the CDBN can learn hierarchical rep-
resentations of the natural images [12].

4.2. Learning early layers in DCNN from an unsuper-
vised network CDBN

The first layer of the DCNN [10] has 96 filters of size 11×11
(actual size is 11×11×3, but here we will not focus on the
color image, so we reduce the filter to gray filter). The DCNN
model is trained on the ImageNet dataset using for ImageNet
Large Scale Visual Challenge [7]. The learnt filters of the
first layer of the DCNN is illustrated in Figure 3. We also
train one unsupervised learning layer of the CDBN to learn
the same number of filters with the same size. The first layer
of the CDBN is configured with 96 filters of size 11×11. We
applied layer-wise training approach to train the first layer of
the CDBN on Kyoto dataset as described in [12]. The learnt



Fig. 3. The filters learnt supervisedly in the first layer of the
DCNN [10]

96 filters of the CDBN are shown in Figure 4. Observe that
even though two models are trained with different datasets,
interestingly, the 96 filters learnt look a bit similar in a way as
edge detectors and corner detectors.

From the above observation, our proposal is to replace
the early layers’ filters of the DCNN with the corresponding
filters learnt from the unsupervised CDBN approach. While
DCNN training is done with backpropagation on the whole
parameters set, which is computationally expensive with 60
million parameters for KrizshevskyNet, learning these filters
from unsupervised approach not only reduces the computa-
tional expense, but also achieve competitive classification per-
formance as illustrated in Table 1. By fixing the parameters
of the early layer, the number of parameters of the DCNN
to learn reduces (96×11×11×3). Consequently, the training
time reduces by 30% from 2 weeks as in [10] to 10 days. In-
vestigating the learning capability of the DCNN model, we
observe a slight increase in the classification accuracy from
18.2% top-5 error rate down to 17.7%. Similarly, replacing
the first and second layers’ filters with the filters learnt in the
second layer of unsupervised CDBN results in less training
burden (7 days) but the classification accuracy does not im-
prove (18.1%). Substituting the first, second and third layers’
filters with those learnt from the unsupervised CDBN leads
to further decrease in training time (5 days) but a raise in
the error rate (18.9%). Thus transferring the learnt param-
eters from unsupervised learning to supervised learning can
improve performance in terms of accuracy and training com-
putational expense with a single layer replacement. Further
reduction in training time can be achieved through the re-
placement of higher layers with a small reduction in accuracy.

Fig. 4. The filters learnt unsupervisedly in the first layer of
the CDBN [12]

Table 1. Effect of learning filters from unsupervised CDBN
to training time and accuracy of DCNN.

Approaches Training time Accuracy (EER)
Original DCNN 14 days 18.2%
One layer replaced 11 days 17.7%
Two layers replaced 8 days 18.1%
Three layers replaced 5 days 18.9%

This result aligns with and adds to recent findings by
Boureau et al. in [21], which showed that even though dif-
ferent categories of classes lead to different statistics of the
data, the low-level and mid-level features learnt in one dataset
can be useful for another regarding the similarity of low- and
mid-level image representations. We have further shown that
the similarity in low- and mid-level image representations can
be exploited to cross learn between unsupervised and super-
vised networks. Thus by training the unsupervised layers one
time, these layers parameters can be employed as early layers
in supervised networks to reduce the training time without
compromising the recognition performance.

5. CONCLUSION

Both our approach and others employ unsupervised learn-
ing to improve the performance of the supervised learning.
However, while others utilise learnt parameters as initial val-
ues to iteratively train the model, our approach encodes the
parameters in various layers, resulting in competitive recog-
nition/classification performance while reducing the training
burden. Even though the experiments have been shown with
the DCNN and the CDBN, we believe that our proposed ap-
proach should also work with other supervised and unsuper-
vised networks. Our next step is to investigate the application
to other network architectures to gain further insight into the
proposed approach.
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