
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 9– Issue 5, September 2020

112
www.ijcit .com

A Prototyped NL-Based Approach for the Design of

Multidimensional Data Warehouse

Abeer Alzahrani, Mohamed Alqarni, Jamel Feki
College of Computer Science & Engineering

University of Jeddah
Jeddah, Saudi Arabia

Emai:; {Aalzahranı2341.stu, alqarni, jfeki}@uj.edu.sa

Abstract— O rganizations are more and more interested in the

Data Warehouse (DW) technology and data analytics to base their

decision-making processes on scientific arguments instead of

intuition. Despite the efforts invested, the DW design issue remains

a great challenging research domain. The design quality of the DW

depends on several aspects, as the requirement gathering. In this

context, we propose a Natural Language (NL) based design

approach, which is twofold, first, it facilitates the involvement of

the decision-makers in the DW design process; indeed, NL can

encourage the decision-makers to express their requirements as

English-like sentences conform to NL-templates. Secondly, our

approach aims to generate semi -automatically a DW schema from

a set of requirements gathered as analytical queries compliant to

the NL-templates. This design approach relies on (i) two easy-to-
use NL-templates to specifying the analysis components, and (ii) a

set of five heuristic rules for extracting the multidimensional

concepts from the requirements. We demonstrate the feasibility of

our approach by developing the prototype Natural Language
Decisional Requirements to DW Schema (NLDR2DWS).

Keywords— Data Warehouse, Multidimensional schema, NL-
templates, Decisional requirements.

I. INTRODUCTION

Data is essential for organizations; it is the secret of the
success as the well-founded decisions rely on the effective
analysis of data rather than intuition. Decisional data is often
organized as a Data Warehouse (DW) which is the central
component of modern decisional systems of organizations. DW
has become really a promising technology for the managers. In
this context, merging, collecting, organizing and synthesizing
data is crucial for the DWsing process [1]. Although several
researchers have been addressing the DWsing issues such as the
design approaches and software tools [2], elicitation of user
requirements, as well as the effective design of the decisional
system, these issues still need more investigations [3] and are at
the heart of the DW design and modeling concerns [2]. In other
words, decisional requirements merit to be defined precisely and
clearly [4].

In this context, this research aims to help DW designers
elaborating the DW model relying on decisional requirements.
More accurately, it proposes a Natural Language (NL) NL-
template based design approach, which is twofold; first, it
facilitates the involvement of decision-makers in the early step
of the DW design by using NL as a natural means to encourage
them to specify their requirements as query-like English
sentences. Secondly, the approach aims to help the generation
of a DW schema from gathered requirements.

For the requirements specification, we propose two NL-
templates. Regarding the semi-automatic generation of the DW
schema, we define five extraction rules for identifying the
multidimensional concepts from requirements compliant to our
NL-templates. Finally, as the terms –i.e., words- in the user’s
requirements are susceptible to linguistic issues such as
ambiguity, we define a cleaning process and then apply it on the
cleaned concepts to build the DW model. In fact, we have
elected templates as they can guide the requirements
specification by avoiding/reducing issues due to different
structures in requirements formulations and, we have privileged
the NL because it is close to end-users.

This paper is organized into six sections. Section 2
introduces the general context of this research. Section 3 gives
an overview of the DW design approaches, completed with a
discussion of the related works. In Section 4, we briefly describe
our proposed approach for generating a DW schema from
requirements written according to NL-templates. Section 5
discusses the foundation of the suggested templates, and defines
the proposed NL-templates. Furthermore, we set five extraction
rules and illustrate with a meaningful example. Section 6
presents our NLDR2DWS prototype and evaluates it. Finally,
Section 7 concludes the paper.

II. GENERAL CONTEXT AND BASIC CONCEPTS

As we are interested in developing a DW approach based on
the decision-makers requirements and on using NL, we will give
an overview of some recent research works. In the literature,
there are two main categories of DW design approaches namely

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 9– Issue 5, September 2020

113
www.ijcit .com

Bottom-up and Top-down; a third Hybrid approach has
stemmed from the combination of them.

Before introducing these approaches, let us remember that a
DW schema is designed according to the multidimensional
model [3] built around two main concepts: Fact and Dimension.
The fact concept models the subject to analyze (i.e., business
activity); it is composed of attributes called
measures/indicators. As an example, in the Commercial
domain, the Sale and Supply are two facts. The Sale fact may
have the measures Quantity-Sold, Amount-of-Sale, Unit-
Price…. They are fundamental to analyze the business activity
(e.g., sum-up the Amount-of-Sale) and predict the future sales.
Such analyses perform according to Dimensions like the
Product, Time, and Customer…. In DWsing, a dimension
models an axis for recording and analyzing the fact measures
that are at the intersection of all dimensions. In other words, each
measure is functionally dependent from all the dimensions of its
fact. Each dimension has attributes organized semantically into
hierarchy(ies); each attribute at a given level in the hierarchy is
called Parameter. For instance, the Time dimension has the
parameters Day, MonthNo and Year; we organize them
semantically into the following hierarchy called H_Time: Day
 Month Year, where the arrow (“”) denotes a functional
dependency (One-to-One relationship and One-to-Many in the
reverse direction), we read each Day belongs to one Month that
belongs to one Year. Figure 2 exemplifies a star schema that
illustrates the multidimensional concepts.

The Bottom-up DW design approach starts by studying the
data model of the Data Source (DS) intended to load the DW; it
classifies the components of the DS data-model (generally a
relational database) into entities and relationships using a
reverse engineering technique. This classification helps to
elaborate the DW multidimensional model because, in the
literature, the entities serve to build the dimensions whereas the
relationships build the facts. This approach was initially
suggested and widely used in practice by Ralph Kimball [3] as
well as in several research works [4] [5] [6].

The Top-down approach is originally due to Bill Inmon [7];
it starts from the decision-makers requirements from where it
identifies the facts, and then for each fact its dimensions and
parameters. The result is a DW schema.

Actually, neither the first approach nor the second produce a
completely convincing DW schema; indeed, a Bottom-up
approach produces a DW schema closely related to the data
model of the DS, i.e., a large DW schema that may have much
more facts/dimensions than the decision-makers need.

Inversely, Top-down approaches may produce a DW
schema closely related to the users’ requirements; it may be
incomplete when the requirements are not exhaustive or are
ambiguous, or need data not existing in the DS. The third
category of approaches is a compromise that aims to benefit

from the advantages of top-down and bottom-up approaches
while avoiding the shortcomings of each one [8] [9] [10] [11].

Even this hybrid approach has cons; indeed, it requires from
the DW designer skills in the design of the operational systems
for understanding the DS data-model, along with skills in
gathering the requirements of the future DW users. How to
collect requirements? What format of specification? Is it free NL
or template-guided sentences? How to solve semantic
ambiguities due to natural language? …

In this DW design context, and in an attempt to bypass some
of the above problems, we have elected a Top-down NL-based
approach for the specification of the decision-makers
requirements; more accurately, this specification will be driven
by NL-templates defined in accordance with the common format
of decisional needs known as On-Line Analytical Processing
(OLAP) requirements. Using NL-templates has many benefits;
it facilitates the decision-makers involvement in the DW design
process; in addition, it encourages them to express their
requirements as English-like sentences. In the next section, we
review the pertinent recent works related to the context of our
proposal.

III. RELATED WORK

This section reviews some recent and pertinent papers
related to top-down DW design approaches.

In [12], the authors tried to simplify the complex task of DW
design; they suggest the Star Schemas from requirements
(SSReq) approach for generating a DW schema from business
requirements. They focused on the requirements specification
phase neglected in some approaches. They define a NL-based
template to allow business users to express their needs as NL-
like queries. Their approach relied on three steps: i) Business
requirements elicitation; ii) requirements normalization; and iii)
generation of Multidimensional schemas. On the one hand, their
template has difficulties that face decision-makers when writing
complex requirements, mainly when they are not familiar with
the DW concepts and OLAP needs; this may lead later to
ambiguities in the identification of multidimensional concepts.
On the other hand, their requirement normalization step does not
solve ambiguities such as synonyms. In fact, we believe the
simpler and shorter the template, the better the conceptual
results. Furthermore, we should emphasize the pre-processing
of requirements to identify synonyms, hypernyms… and then
solve these issues by enabling the DW designer to intervene.

Other authors in [11] have focused on using a decisional
ontology to support the decision–makers requirements
specification. They present a NL goal-based template to express
the requirements and enhance the involvement of the
stakeholders. Their approach automates the reasoning about the
decision-making knowledge to overcome the lack of domain
knowledge ontology and allows systematic requirements
elicitation. In an attempt to involve the decision-makers, the

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 9– Issue 5, September 2020

114
www.ijcit .com

authors in [13] define a NL-based template and a process for
requirement validation. They defined three steps to remove any
confusion in the NL queries : i) Syntax checking and Part of
Speech (PoS) tagging, ii) Mapping and disambiguation, and iii)
Generation and verification. The first step extracts the noun
phrases from the query to determine the facts and dimensions;
for any syntactic nonconformity with the pattern, the user is
alerted. The second step identifies PoS of the extracted noun
phrase, and then performs the tagging process to solve the PoS
ambiguities. Finally, in step 3, a set of matching and expansion
rules is defined to determine the multidimensional type using an
Extended Data Dictionary (EDD). Note that the use of the NL-
template is helpful in the specification and verification phase;
however, the EDD is domain-dependent and therefore difficult
to elaborate or possess in practice, which limits the usage of the
approach.

The requirement-driven approach named DW Requirement
Model (DWRM) was proposed in [14] and the authors of the
paper NL Why-Question modeling [15] were inspired by
DWRM linguistic patterns. Once again, the authors have used a
model relying on NL formalism that brings an advantage but
inherits semantic ambiguities because of the diversity of writing
styles; by using linguistic patterns, they overcome this
confusion. The main limitation is their formalism is compatible
with the common and frequent request writing style. However,
the approach does not deal with the problem of identifying
attributes of hierarchies although they are crucial for the DW
design.

The approach in [16] generates automatically DW schemas
from business keys based on NL. The main limitation is that
users' business keys are free syntax, i.e., not conform to
templates, which can lead to ambiguities. The main drawback of
the software tool developed is its limitation to creating a star
schema from users' business keys reduced to two nouns assumed
as facts. In the same extension, the authors in [17] adopted an
ontology-based hybrid methodology to produce a DW schema
and developed a tool for entering the different goals, contexts,
and measures identified in the requirement analysis task. The
limitation of the approach is decision-makers must be familiar
with the multidimensional concepts and DW modeling. TABLE
I summarizes these approaches according to a set of criteria we
have identified.

Finally, we note the absence of theoretical foundation for the
correctness of the suggested patterns/template-based works.
Does a decisional requirement need one complex template or
simple ones? Does a collection of several simple requirements
are equivalent to a complex one? Moreover, do we actually need
more than one template? The first contribution of this paper
answers these matters.

Based on the related work, we can claim there is still a real need
for further investigation in the DW design methodology. More
accurately, we tackle two main tasks: i) Requirement gathering
and ii) Automatic generation of DW schema.

TABLE I. TOP-DOWN WORKS COMPARISON

Works
Criteria

[11] [12] [13] [14] [16] [17]
Our

proposal

Involvement of users decision-makers in the design Yes Yes Yes Yes Yes No Yes

Use of Natural Language Pattern Yes Yes Yes Yes Yes No Yes

Use of more than one Pattern No Yes No No No No Yes

Use of Simple Patterns No No No No No No Yes

Use of a semantic resource Yes Yes Yes Yes No No Yes

Involvement of decision-makers in the elicitation phase Yes Yes Yes Yes Yes Yes Yes

Theoretical foundations for NL-templates No No No No No No Yes

Heuristics/Algorithms for fact construction Yes Yes Yes Yes Yes Yes Yes

Heuristics/Algorithms for measures identification No No No Yes Yes Yes Yes

Heuristics/Algorithms for dimensions construction Yes Yes Yes Yes Yes Yes Yes

Heuristics/Algorithms for dimensional attributes
identification

Yes Yes Yes Yes Yes Yes Yes

Heuristics/Algorithms for hierarchy construction No No No Yes No Yes No

Automation degree Semi Semi Full Semi Full Full Semi

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 9– Issue 5, September 2020

115
www.ijcit .com

The more precise and well-structured the requirements, the
better the quality of the DW schema, and the easier the automatic
generation of the schema. We propose, in this paper, a semi-
automatic design approach based on NL-templates; the use of NL-
templates in conjunction with extraction rules will permit easier
and efficient locating/identifying the multidimensional concepts
along with the role of each concept in the DW schema.
Furthermore, to the best of our knowledge and for the first time in
the literature, we will justify the use of simple NL-templates by
relying on properties taken from the DW literature and usually
used as DW schema-constraints; this distinguishes our work from
the existing ones. Besides, we formalize these properties. Our
approach defines rules to extract the multidimensional concepts
from requirements and automate the rules to derive a DW schema.
The following section details our approach.

IV. OVERVIEW OF THE PROPOSED APPROACH

The design of a DW is a complex, difficult and tedious task
[18] [19] [20]; it requires skilled persons in design approaches and,
in On-Line Transaction Processing (OLTP) and OLAP systems.
Therefore, involving the decision-makers reveals a challenge since
they completely ignore the DW design approaches. On the other
hand, the concept of template has demonstrated its efficacy in
many domains; a template refers to a preformatted format for
problem specification. We have elected NL-templates to help users
expressing their analytical requirements in a readable format; i.e.,
as natural language sentences; this helps bypassing the difficulties
in gathering the requirements and facilitates extracting the
multidimensional components [21]. In addition, this involves the
decision-makers in the DW design process. Figure 1 depicts our
NL template-based approach for the specification of OLAP
requirements and generation of multidimensional DW schemas.

Figure 1. NL Template-Based Approach for the Specification of OLAP

Requirements and Generation of Multidimensional Schemas.

This approach has four components hereafter explained.

Requirements Acquisition: for entering OLAP requirements by
the decision-maker according to defined NL-Templates.

Extraction of Multidimensional Components: extracts, from a
collection of requirements, the facts and their measures, the
dimensions and their attributes.

Cleaning of Multidimensional Components: cleans the
collection of each category of the extracted elements by converting

into uppercase, standardizing names, solving synonyms, removing
redundancy...

Semi-automatic Construction of the DW Schema.

V. NL-PATTERN FOUNDATIONS AND DEFINITION

As our approach has a twofold objective, first, help the
decision-makers expressing their analytical needs, and secondly

automate the extraction of the multidimensional components from
requirements, we build the structure of the NL-templates around

unambiguous keywords (as verbs, functions…) familiar to end-
users. Each NL-template component plays a precise role in
identifying what the user wants to analyze (facts, measures) and

according to what criteria (i.e., dimensions and hierarchies).

The proposed templates are query-like English sentences and
allow decision-makers to write a wide range of requirements [12],
either as short or Complex analytical queries. Before introducing
our NL-templates, we clarify the meaning of Short and Complex
queries along with our intuition and the theoretical properties
supporting them.

A Complex OLAP-query (C-query for short) is a decisional
query that encompasses several multidimensional components

(i.e., fact, measures, dimensions, parameters, and conditions) at a
time; as query Q1: Analyze the Amount of sales by Client-

Country, Client-city, Product-Category and Year of sale. In Q1,

the bold terms are multidimensional components; for instance,
Amount is a measure for the Sale fact, and Client-Country, Client-

city… are parameters (i.e., detail levels of analysis). Although not
very complex, Q1 is difficult to write by a novice decision-maker.

A short query (S-query) is simple to write by decision-makers
even when they are not familiar with the DW concepts and OLAP
analysis. In addition, S-queries are very helpful and efficient for
the extraction of multidimensional components; moreover, a short
query is subject to fewer ambiguities when identifying the role of
each of its terms.

Naturally, replacing a C-query by an equivalent collection of
S-queries is possible, and inversely. To justify this, we define two
novel properties P1 query decomposition and P2 query re-
composition. They rely on four constraints (definitions 1 to 4)
taken from the DW literature. Let us use the following notation.

Query Q = (FQ , DQ)
Where:

 FQ: the fact in the query Q

 DQ: a non-empty set of dimensions of fact FQ, such as:
- FQ = (FQ

Name
 , MQ)

- FQ
Name

 : the name of the fact FQ
- MQ = (m

1
Q, m

2
Q … m

n
Q,) : a non-empty set of n

measures of FQ, and

- DQ= (d
1
Q, d

2
Q … d

k
Q,) : a non-empty set of k

dimensions in Q, such as

- dQ
i
= (d

Name
Qi, AQi) i ∈ [1..k]

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 9– Issue 5, September 2020

116
www.ijcit .com

- AQ i = a non-empty set of attributes of dimension dQ
i

Note that in the generic notation above, we replace the letter
Q with C or S to denote a Simple or a Complex query respectively.

P1. Query decomposition. Any Complex query C can be
broken down into an equivalent collection of h simple-queries S1,
S2,…Sh having the same fact FC as C, without loss of information.

The decomposition of C into S1, S2,…Sh is without loss of
information if the h subqueries have the same fact as C and their
measures and dimensions covers all measures and dimensions of
C. Formally, if and only if the decomposition respects the
following conditions:

 i ∈ [1..h], FS i = FC ̂ (MS) i ⊆ MC ^ (DS) i ⊆ DC

 ⋃ (𝑀𝑆)𝑖

ℎ

𝑖=1
= 𝑀𝐶

 ⋃ (𝐷𝑆)𝑖
ℎ

𝑖=1
= 𝐷𝐶

P2. Query composition. Given a collection of h simple queries

on the same fact F, we can use all-or-part of their

multidimensional components to write a collection of complex
queries on the same fact F without loss of information, and without
respecting necessarily the additivity constraint of measures of F.

Note that the composition must satisfy the same conditions as
the decomposition, but in the reverse direction. Accordingly, the
decomposition of the C-query Q1 (above) is equivalent to the
following four simple queries on the same fact sales as Q1:

S1: Analyze the Amount of sales by Client-Country.

S2: Analyze the Amount of sales by Client-City.

S3: Analyze the Amount of sales by Product-Category.

S4: Analyze the Amount of sales by Year of sale.

In this decomposition, each Simple query Si uses one
dimension; this shortens writing the requirements by users. Note if
Q1 has several measures each measure can be alone or combined
with other measures in each Si.

Splitting a complex query Q into an equivalent collection S1,
S2, ...,Sn of n (n>>1) short queries will facilitate the expression of
requirements without assistance of IT persons. Therefore, this
motivated us to define a first NL-template (cf., syntax T1).

Inversely, the equivalence C = S1, S2, ...,Sn in property P2 states
that we can recompose a C-query C from its simple sub-queries
S1,…..Sn since all components in C are also in the sub-queries. This
is important for the design; it means that the design starting from
C or from S1, S2, ...,Sn builds the same star schema.

We base these properties on definitions from [22] [23][24]
initially used as DW schema constraints. We define them
hereafter.

1 An attribute b is said to be functionally dependent on attribute a (a≠b) if and

only if for each value of a it corresponds only one value of b at any time (b is

Definition 1: Orthogonality of dimensions.

Orthogonality means that two distinct attributes belonging to

two different dimensions are not functionally dependent
1

 [25].

This simplifies the queries and reduces their number since
combining attributes belonging to different dimensions in the
same query is not necessary at the design step (it remains possible
and favorable at the query phase). Relying on this property, we
need just simple and significant mono-dimensional queries; i.e.,
queries using parameters all belonging to the same dimension.
This justifies restricting S-query (and therefore NL-Pattern) to
one dimension.

Definition 2: Aciclicity.

Aciclicity controls the absence of cycles in a dimensional
hierarchy; i.e., a parameter cannot be parent and child by
transitivity [26].

This justifies that each parameter exists only once in a query;
repeating a parameter leads to ambiguity as occurrences having
different meanings (polysemy).

Definition 3: Hierarchical root.

The hierarchical root property means that all hierarchies in a
dimension D must start from the finest parameter that is the
identifier of D [27].

This design constraint means if n (n≥2) attributes are identified
as parameters for a dimension D therefore they must be organized
into hierarchy(ies) starting from the identifier of D.

Definition 4: Non-Isolation.

Non-Isolation means every attribute of a dimension D must
necessarily belong to at least one hierarchy of D either as a
parameter or as a weak attribute [28].

This guarantees that the union of attributes in all the hierarchies
of a dimension is the set of attributes specified in the requirements.
Naturally, we need to refer to the semantics of the DW business-
domain. (A weak attribute labels, i.e. describes, a parameter to
improve the readability of OLAP queries results).

NL-Template for OLAP-Queries

Based on the two properties, we have elaborated two NL-
templates to help decision-makers expressing their OLAP
requirements as comprehensive English-like queries [29]. These
templates will help us simplify and accurate the second process of
our approach (i.e., Extraction of Multidimensional components)
because they use predefined keywords to locate the DW
components to extract. We call them Simple NL-template and
Complex NL-template. The Simple NL-template (T1) is useful for
fact specification mainly, while the Complex NL-template (T2) is

not necessarily the same in time). For example, each Client_Id is associated

with only one Client_Name.

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 9– Issue 5, September 2020

117
www.ijcit .com

for specifying facts, measures, dimensions and dimensional
attributes.

Simple NL-Template
OLAP-Verb Analysis-process (T1)
By D-name [(a1 <…<an)]

Complex NL-Template
OLAP-Verb [S-function {measure} | measure]

of Analysis-process
By D-name [(a1 <…<an)] (T2)
{where | when} condition

In these templates,

 OLAP-Verb: is a verb that decision-makers use in OLAP-
requirements specification; e.g., Analyze, Examine

 S-function: is a statistical function (e.g., Min, Max,
Average, Count) to aggregate the numeric measures and
help in their identification.

 Analysis-process: is the subject (i.e., the fact representing
the activity) to analyze.

 By: reveals the presence of a dimension name.

 D-name [(a1 <…<an)]: is a dimension name followed by an
optional list of its attributes, preferably ordered
semantically from the lowest to the highest attribute (e.g.,
Prod-ID < Sub-Categ < Category).

 Condition: is a condition on the dimensional-attributes
(a1,…,an) specified after the D-name in the same query. It
can use the logical operators as well as the comparison
operators.

 [], { } and "|" denote respectively an optional part,
mandatory part, or an alternative (OR).

Note that the statistical functions are optional.

TABLE II lists a collection of requirements conform to
template T1; Sales is located after the keyword Analyze, therefore
it is a fact. Product, Time and Client come after the keyword by
hence, they are Dimensions for the Sales fact.

TABLE II. EXAMPLES OF SIMPLE REQUIREMENTS

Query# Simple Queries (SQ)

SQ1 Analyze Sales by Product

SQ2 Analyze Sales by Time

SQ3 Analyze Sales by Client

TABLE III shows queries for the template T2 where Sales is a

fact since it comes before the keyword by. Client, Time, and
Product are dimensions. Furthermore, the keywords Where and
When announce the dimensional attributes, hence id, city and
country are parameters for the Client dimension, and so are

monthNo, monthName, quarter and year for the Time; similarly,
are the id, name, unitprice, category and subcategory for the
Product dimension.

TABLE III. EXAMPLES OF SIMPLIFIED LONG REQUIREMENTS

Query# Examples of Simplified Long Queries (LQ)

LQ1 Analyze Sales by Client where Id > 123 and < 386

LQ2
Examine Total Amount of Sales by Client where City =

"Jeddah"

LQ3 Analyze Sales by Client where Country = "USA"

LQ4
Analyze Amount of Sales by Time when Year = 2016 or Year

= 2017

LQ5 Analyze Sales by Time when Month-no = 2

LQ6 Analyze Sales by Time when Month-name = "APRIL"

LQ7 Analyze Sales by Product where Id =22

LQ8 Study Sales by Product where Color = "Green"

LQ9 Analyze Sales by Product where Category = "Toy"

LQ10 Analyze Sales by Product where Name = "Pram"

LQ11 Analyze Sales by Product where Subcategory ="Boy toys"

Figure 2 shows the schema we construct using the components

extracted from the requirements in TABLES II and III. We have
assumed the DW designer has organized the dimensional attributes
into hierarchies based on his knowledge of the DW business-
domain. Next, we define the rules to identify the multidimensional
elements from requirements.

Figure 2. Star Schema Constructed from Queries in Tables II and III

A. Rules for the generation of the DW schema from
requirements

We define extraction rules for identifying the DW schema
components (facts, measures, as well as dimensions and their
attributes) from the requirements [29]. We adopt the following
notation:

 Simple-requirement: stands for a requirement written
according to the simple NL-template T1.

 SReq: a collection of Simple-requirements.

 LReq: a collection of Long-requirements.

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 9– Issue 5, September 2020

118
www.ijcit .com

 Long-requirement: a requirement written according to the
Complex NL-template T2.

1) Facts Construction
A fact is a focus of interest for the decision-making analysis-

process [4]. Facts construction is the process of finding out the
facts from requirements, we conduct it through three phases i)
Facts Extraction, ii) Cleaning, and iii) Facts Setting.

a) Facts Extraction. This phase extracts facts firstly from
SReq to build a first collection FS of potential facts, and secondly

from LReq to build a second collection FL of facts. We define two
rules FR1 and FR2 to apply on SReq and LReq respectively.

FR1: In a Simple-requirement, any noun located after the
OLAP-verb is a candidate fact; we insert it into FS.

By applying the rule FR1 to SReq in TABLE IV, we obtain the
redundant collection of facts FS = {DIStribution, distributions,
DISTRIBUTION, Distributions, RETURNED_item,
Returned_item, RETURNED_ITEM, Returned_Item,
Returned_Items, Returned_products, ordered_items}.

TABLE IV. EXAMPLE OF SIMPLE REQUIREMENTS

Query # Simple Requirements (SReq)

SQ1 Study DIStribution by Item

SQ2 Analyze distributions by time

SQ3 Study DISTRIBUTION by items

SQ4 Evaluate Distributions by retailers

SQ5 Examine Distributions by Retailer

SQ6 Analyze RETURNED_item by TIME

SQ7 Examine Returned_item by items

SQ8 Analyze RETURNED_ITEM by Items

SQ9 Evaluate Returned_Item by RETAILERS

SQ10 Analyze Returned_Items by items

SQ11 Evaluate Returned_Items by Retailer

SQ12 Analyze Returned_products by Retailer

SQ13 Analyze Returned_products by item

SQ14 Analyze ordered_items by product

We continue the facts extraction from the LReq using rule FR2.

FR2: In a Long-requirement, any noun located immediately
before the keyword By is a candidate fact; we insert it into the FL.

By applying the rule FR2 to LReq in TABLE V, we obtain FL=
{Distributions, Distribution, distribution, distributions,
DISTRIBUTION, Returned_item, Returned_items,
returned_item, RETURNED_ITEM, manufacturing}

TABLE V. EXAMPLES OF LONG REQUIREMENTS

Query# Long Requirements (LReq)

LQ1
Analyze Max Quantity of Distributions by Time when
sale_period ="end of the year" and week= 3

LQ2
Study amounts of DISTRIBUTION by Time when

Promotion_period = "summer " and day = 6

LQ3
Evaluate AVERAGE unit_price of distribution by time when
month=11

LQ4
Study Amounts of distribution by time when month="June"

and sale_period ="new year"

LQ5
Analyze SUM QUANTITY of distribution by time when

quarter = "Third" and year= 2013

LQ6
Analyze Unit_Price of distributions by time when semester=
"first"

LQ7
Analyze Max Qty of Distributions by Time when quarter=3 and

day = 29

LQ8
Study Quantity of Distribution by item when subcategory =
"Phones" and name="Samsung"

LQ9
Study total dist_amount of DISTRIBUTION by Item when
category = "Electronics"

LQ10
Analyze Unit_price of Distribution by item when subcategory

= "kitchen appliance" and origin = "USA"

LQ11
Examine unit_price of distribution by item when category =
"Appliance"

LQ12 Study distribution by RETAILER when City = "Jeddah"

LQ13
Examine MIN unit_price of Distribution by retailers where

region="west" and CITY = "Jeddah"

LQ14
Study TOTAL Dist_amounts of Distribution by Retailer when
NAME= "extra" or city = "Riyadh"

LQ15
Examine MIN unit_price of Distribution by retailers when

Region = "North " or name = "extra"

LQ16
Analyze Max quantities of Returned_item by Time when

Sale_Period = "New year" and year = 2019

LQ17
Study total amounts of Returned_item by Time when
Promotion_period = "Summer" and month= 7 and week= 4

LQ18
Analyze RETURNED_qty of Returned_items by time when

week = 3

LQ19 Examine Amounts of returned_item by time when day = 6

LQ20
Evaluate MIN unit_price of returned_item by time when month
= 11

LQ21
Evaluate MAX unit_price of returned_item by time when

month = "June"

LQ22
Study SUM Quantity of returned_item by time when quarter
= "fourth" and month = "December"

LQ23
Analyze Unit_price of returned_item by time when semester =
"second"

LQ24
Analyze MAX AMOUNTS of returned_item by time when year

= 2019

LQ25
Analyze Quantities of Returned_items by item when Name =
"Extra" and subcategory = "laptops"

LQ26
Study total amount of Returned_items by Item when category =

"Electronics"

LQ27
Examine Returned_qty of Returned_item by item when

subcategory = "IPad" or origin= "USA"

LQ28
Study amount of Returned_item by Retailer where city =
"JEDDAH"

LQ29
Examine Average unit_price of Returned_item by retailers

where region = "North "

LQ30
Analyze RETURNED_QTY of RETURNED_ITEM by retailer
where NAME = "eddy" or ZIP = 6667

LQ31
Study total Amounts of manufacturing by retailer where city =
"Dammam"

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 9– Issue 5, September 2020

119
www.ijcit .com

After this extraction, we continue building the facts by
applying the Cleaning phase of our approach.

b) Cleaning

Note that the collections FS and FL obtained so far may overlap,
have synonyms, or uncommon elements. This Cleaning phase
solves the issues for which we develop a four-step Cleaning
method applicable to facts as well as measures and dimensions. It
deals with redundancy, synonyms and antonyms. These steps
apply in the following order:

i. Convert into capital all elements in FS and FL. This is to

avoid the case-sensitivity problem in comparisons.
ii. Replace with singular each element in FS and FL.
iii. Find synonyms if any, by using WordNet as an open-

source semantic resource. We highlight the most frequent
synonym encountered (as a default to keep) to the DW designer

and we allow him to select which synonym is better appropriate
for the business domain of the DW under construction.

iv. Eliminate the redundancy in each collection to obtain

two cleaned sets noted FSC and FLC.

v. Purge the sets FSC and FLC. Each element in FLC – (FSC

 FLC) must be either removed from FLC or moved to FSC if it is
not recognized as a synonym for an element in FSC.

In step v), we can consider FS (and then FSC) as a reference
collection of facts so that only the facts in FS will be acceptable
during the entry step of the Long-requirements.

For instance, we clean the fact collections FS and FL,
previously extracted, trough the above steps as follows:

i. Convert into capital gives
FS = {DISTRIBUTION, DISTRIBUTIONS, DISTRIBUTION,

DISTRIBUTIONS, RETURNED_ITEM, RETURNED_ITEM,
RETURNED_ITEM, RETURNED_ITEM, RETURNED_ITEMS,
RETURNED_PRODUCTS, ORDERED_ITEMS}, and

FL = {DISTRIBUTIONS, DISTRIBUTION, DISTRIBUTION,

DISTRIBUTIONS, DISTRIBUTION, RETURNED_ITEM,
RETURNED_ITEMS, RETURNED_ITEM, RETURNED_ITEM,
MANUFACTURING}

ii. Replace with singular produces
FS = {DISTRIBUTION, DISTRIBUTION, DISTRIBUTION,

DISTRIBUTION, RETURNED_ITEM, RETURNED_ITEM,

RETURNED_ITEM, RETURNED_ITEM, RETURNED_ITEM,

RETURNED_PRODUCT, ORDERED_ITEM}, and

FL = {DISTRIBUTION, DISTRIBUTION, DISTRIBUTION,

DISTRIBUTION, DISTRIBUTION, RETURNED_ITEM, RETURNED_ITEM,
RETURNED_ITEM, RETURNED_ITEM, MANUFACTURING}

iii. Find synonyms
In FS RETURNED_ITEM and RETURNED_PRODUCT are

synonymous, we elect RETURNED_ITEM.

iv. Eliminate redundancy in each collection
FSC = {DISTRIBUTION, RETUUREND_ITEM, ORDERED_ITEM};
FLC = {DISTRIBUTION, RETUUREND_ITEM, MANUFACTURING}

v. Purge the sets FSC and FLC
As we note there is an element (MANUFACTURING) in FLC

not in FSC; we warn the user to add simple and may be Long
queries for this fact or remove it. In the next that follows, we
assume the designer has dropped the fact; therefore, the result is:

FSC = {DISTRIBUTION, RETUUREND_ITEM, ORDERED_ITEM}, and

FLC = {DISTRIBUTION, RETUUREND_ITEM}.

After these two phases, we end with the Facts Setting phase.

c) Facts Setting

We compare the two cleaned collections of facts FSC and FLC
to build a Final set of facts FFinal. The comparison of two sets leads
to consider at least two cases: FSC FLC ≠ ∅ or when FSC FLC
= ∅. However, the cleaning step has simplified the problem so that
we have now only the two following situations: i) FLC ⊂ FSC; this
means that some facts accepted in the Short-requirements are
unused within the Long-requirements. Therefore, we warn the DW
designer with the unused fact(s). In the second situation ii) FLC =
FSC, all facts are common; we accept them all. For example, the
fact ORDERED_ITEM in FSC is not common with FLC; (i.e., FLC ⊂
FSC.), we warn the DW designer with this vacant fact. Assume
(s)he abandons this fact, the final set of facts is FFinal =
{DISTRIBUTION, RETUUREND_ITEM}. Next, we will complete our
approach with the identification of measures.

2) Measures Identification
It aims to find attributes [4] optionally preceded by an

aggregation function in the Long-requirements. We define the
following rule MR for the extraction of measures.

MR: Any noun or sequence of nouns, in a requirement l ∈ LReq,
located after an aggregate function and/or before “of” is a
candidate measure for the fact extracted from l using rule FR2.

By applying the rule MR on queries in TABLE V, we obtain
the measures in TABLE VI. After we have identified the measures,
we may encounter the same problems as the facts; hence, we apply
the same Cleaning steps as for the facts.

Cleaning of Measures. The final set of measures, obtained for
each fact, after capitalizing, replacing with singular, solving
synonyms, and eliminating the redundancy is:

DISTRIBUTION measures = {QUANTITY, AMOUNT, UNIT_PRICE} and
RETURNED_ITEM measures = {QUANTITY, AMOUNT, UNIT_PRICE,}.

3) Dimensions Determination
Dimensions are composed of attributes called parameters (i.e.,

Analysis levels) according to which we aggregate the measures of
the fact. The determination of dimensions is driven by the by
keyword. For this purpose, we define the rule DR.

DR: In a Long-requirement l ∈ LReq, any noun located after the
by keyword would be a candidate dimension for the fact extracted
from l using rule FR2.

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 9– Issue 5, September 2020

120
www.ijcit .com

The application of the rule DR on queries in TABLE V gives
the three dimensions depicted in TABLE VI. Once again, we
purify the collection of dimensions by applying the same Cleaning
steps; we obtain the following final cleaned sets of dimensions:

DISTRIBUTION dimensions = {TIME, RETAILER, ITEM} and
RETURNED_ITEM dimensions = {TIME, RETAILER, ITEM}

We continue to extract for each dimension its attributes useful
for the construction of hierarchies.

4) Extraction of dimensional attributes and Hierarchies

construction
Hierarchy construction builds hierarchies of dimensions. The

semantics is a key issue for ordering the attributes into hierarchies
since this semantics is Business-domain dependent, and therefore
requires Human skills.

a) Dimensional attributes extraction.

Dimensional attributes come from the Long requirements, they
are preceded by Where or When. We define the rule HR and then
illustrate it on our running example.

HR: In a Long-requirement l∈ LReq, a noun located after the
keyword Where or When is a candidate dimensional attribute, for
the dimension extracted from l using rule DR.

Applying HR on the set LReq in TABLE V, we extract the
dimensional attributes depicted in TABLE VI where we have

conventionally named a dimensional attribute as the concatenation
of its dimension with the underscore (‘_’) and the attribute name
extracted from requirements.

Following our approach, we perform the same Cleaning steps
as for the facts, and we obtain the results below:

TIME dimension attributes = {SALE_PERIOD, QUARTER, YEAR

ROMOTION_PERIOD, DAY, WEEK, MONTHSEMESTER}

ITEM dimension attributes = {NAME, ORIGION, CATEGORY,

SUBCATEGORY}

RETAILER attributes {NAME, ZIP, CITY, REGION}

Since our approach is semi-automatic, it asks the DW designer

to classify manually the extracted attributes into parameters and
weak attributes, associate the parameters with weak attributes then
organize them into hierarchies. We delegate the semantic
organization to the DW designer relying on his knowledge of the
Business-domain of the DW.

In addition, for each dimension, we generate an Identifier (as a
surrogate key) when no Id is encountered. Note that for the TIME
dimension the DW designer manually renamed the MONTH
attribute to be MONTHNO and added the new attribute
MONTH_NAME.

In our running example, we have parameters and weak
attributes the DW designer uses to construct the hierarchies:

TABLE VI. MULTIDIMENSIONAL ELEMENTS EXTRACTED FROM QUERIES IN TABLES IV AND V

Fact Names Measures
Common

Dimension

Names

Dimension

Names

Extracted Dimensional

Attributes

Suggested Name for Extracted

Dimensional Attribute

DISTRIBUTION
(LQ1-LQ15)

QUANTITY
 (LQ1, LQ5, LQ7, LQ8)

AMOUNT
 (LQ2, LQ4, LQ9, LQ14)

UNIT_PRICE
(LQ3, LQ6, LQ10, LQ11,

LQ13, LQ15)

TIME
(LQ1- LQ7

LQ16-LQ24)

ITEM
(LQ8- LQ11)

(LQ25-LQ27)

RETAILER
(LQ12- LQ15
LQ28- LQ30)

TIME

SALE_PERIOD (LQ1, LQ4, LQ16) TIME_ SALE_PERIOD

 PROMOTION_PERIOD

 (LQ2, LQ17)
TIME_ PROMOTION_PERIOD

 DAY (LQ2, LQ7, LQ19) TIME_DAY

 WEEK (LQ1, LQ 17, LQ18) TIME_WEEK

 MONTH (LQ3, LQ4, LQ17,
LQ20, LQ21, LQ22)

TIME_MONTH

 QUARTER (LQ 5, LQ7, LQ22) TIME_QUARTER

 SEMESTER (LQ6, LQ23) TIME_SEMESTER

 YEAR (LQ5, LQ16, LQ24) TIME_YEAR

RETURNED_ITEM
(LQ16- LQ30)

QUANTITY
(LQ16, LQl8, LQ22,
LQ25, LQ27, LQ30)

AMOUNT

(LQ17, LQ19, LQ24,
LQ26, LQ28)

UNIT_PRICE

(LQ20, LQ21, LQ23,
LQ29)

ITEM

NAME (LQ8, LQ25) ITEM_NAME

 ORIGIN (LQ10, LQ27) ITEM_ORIGIN

 SUBCATEGORY (LQ8, LQ10,
LQ25, LQ27)

ITEM_SUBCATEGORY

 CATEGORY (LQ9, LQ11, LQ26) ITEM_CTEGORY

RETAILER

NAME (LQ14, LQ15, LQ30) RETAILER_NAME

 ZIP (LQ30) RETAILER_ZIP

 CITY (LQ12, LQ13,LQ14, LQ28) RETAILER_CITY

 REGION (LQ13, LQ15, LQ29) RETAILER_ REGION

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 9– Issue 5, September 2020

121
www.ijcit .com

 Four hierarchies for the TIME dimension:

TIME_H1: TIME_ID < TIME_WEEK

TIME_H2: TIME_ID < TIME_PROMOTION_PERIOD

TIME_H3: TIME_ID < TIME_SALE_PERIOD

TIME_H4: TIME_ID < TIME_DAY <TIME_MONTHNO

(TIME_MONTH_NAME) < TIME_QUARTER < TIME_SEMESTER
<TIME_YEAR

 One hierarchy for the ITEM dimension:

ITEM_H1: ITEM_ID (ITEM_NAME, ITEM_ORIGION) <

ITEM_SUBCATEGORY < ITEM_CATEGORY

 One hierarchy for the RETAILER dimension:

RETA_H1: RETAILER_ID (RETAILER _NAME) < RETAILER_ZIP
< RETAILER_CITY < RETAILER_REGION

Finally, we obtain two facts (DISTRIBUTION and
RETURNED_ITEM) having three common dimensions (TIME, ITEM,

and RETAILER); this is typically a Constellation schema as
depicted in Figure 3. A constellation has multiple facts sharing
common dimensions [30]. The obtained DW schema is able to
answer complex queries as “Total Amount and Quantity
(measures) returned by City (parameter) of RETAILER
(dimension) and by ITEMs (dimension) from a given Category
(parameter) of items during the third Quarter of the Year 2019
(parameters of the TIME dimension).

Figure 3 . Constellation Schema Built from Requirements in Tables IV and V

VI.THE NLDR2DWS PROTOTYPE

To prove the feasibility of our DW design approach and
evaluate it, we have implemented a software prototype called

NLDR2DWS (NL Decisional Requirements to DW Schema) that
supports it. It produces a DW schema from entered requirements
as per the defined templates. We have built a benchmark of 30

queries in the Supply Chain Management business-domain and
tested it. NLDR2DWS checks some constraints on the obtained

DW schema to verify i) the Non-Isolated-fact constraint that
guarantees every fact must be linked to two dimensions at least,
and ii) the presence of the Minimal hierarchy in each dimension.

A. Software Environment

Since the NLDR2DWS future users are decision-makers not
familiar with the DW technology, we made sure that the software
is simple for use by non-IT persons. We have opted for Python as
an environment that includes libraries for the design of graphical
interfaces, and as a means to access a linguistic resource. Mainly,
we have used three libraries:

 wxPython facilitates the creation of robust and greatly
functional graphical user interface programs [31].

 Natural Language Tool Kit (NLTK): A comprehensive
efficient tool in NL Processing domain [32] to access and
explore lexical resources such as WordNet [33] that we
have used to find out semantic relationships among
concepts [32]: Synonymy (as customer and client) and
Antonym (when two words have opposite meanings as Sell
and Purchase). This improves the consistency of the design
result. Indeed, we warn the user with these situations and
we ask him to rectify, if necessary.

 SQLite Database Library: An open source code to bind with
Python [34].

B. NLDR2DWS Presentation

We built our framework components in two main
complementary interfaces: Simple NL-Interface and Long NL-
Interface. The user starts with the Simple NL-interface (cf. Figure
4) to enter facts and dimensions and then validate them. The
second interface (cf. Figure 5) is for entering complementary
components for the validated components. This stepwise method
is an incremental process for entering requirements.

.

Figure 4. Interface for Entering Requirements using the Simple NL-Template

http://www.ijcit.com/
http://nltk.org/nltk_data/
http://nltk.org/nltk_data/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 9– Issue 5, September 2020

122
www.ijcit .com

Figure 5. Interface for Entering Requirements using the Long NL-Template

Once we have extracted the schema components we can
visualize them as a list or as a tabular format (cf. Figure 6). After
that, the DW designer can edit the schema components manually:
he can rename, remove and/or rarely add new measures or weak
attributes (cf. Figure 7).

Figure 6. Result of the Design from the Requirements in Tables IV and V

Figure 7. Interface for Editing the Result of the Design

C. Evaluation

The results show that NLDR2DWS is able to extract the

multidimensional concepts from the requirements and alert the
user with the synonym and antonym ambiguities that could be
solved by the DW designer relying on his expertise of the DW

business-domain. However, in certain circumstances, some issues
remain hard to identify; this is mainly with composed words that

require the implementation of additional features. We identify the
following:

 Synonyms problem. From the business domain viewpoint,
some words are synonymous; in such a case, WordNet was
unable to detect; for instance, the facts
RETURNED_PRODUCT and RETURNED_ITEM
should be synonymous in the Supply Chain Management
(SCM) domain. In this case, a fine look to the result by the
designer is necessary to identify and decide which one is
the most appropriate.

 Redundancy/Abbreviation. The use of abbreviations
raises ambiguity as in queries LQ1, 5, 7, 8 where
QUANTITY and QTY should be equivalent, but the result
is two different measures; manual editing is necessary.

 Inclusivity problem. This occurs when decision-makers use
the same word differently. As an example, in queries LQ3
and LQ4, MONTH is identified as an attribute for the
TIME dimension. However, in LQ3 MONTH designates
the MONTH number (as MONTH=11), and in LQ4 it
indicates the name (MONTH="June"). NLDR2DWS
detects this issue; the DW designer will manually rename

http://www.ijcit.com/

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 9– Issue 5, September 2020

123
www.ijcit .com

the MONTH attribute to MONTHNO and add a new
attribute MONTH_NAME associated with MONTHNO.

These are semantic difficulties; the DW designer should edit
the design result through the interface in Figure 7.

VII. CONCLUSION

We have proposed a semi-automatic design approach for
entering analytical requirements according to one Simple template
from which we identify the facts, and one Complex for measures,

dimensions and analysis levels. We have established the templates
relying on two properties: decomposition and re-composition

defined on requirements. We have based these properties on
constraints issued from the literature of the DW conceptual
domain. The approach accepts a collection of OLAP requirements

conform to NL-templates, extracts the multidimensional concepts
from these requirements, and then applies three phases i) Fact
construction, ii) Measures Identification, and iii) Dimension

determination; it generates a DW schema. We have defined five
extraction rules. For feasibility, we have developed the prototype

NLDR2DWS that implements the different steps of the approach.
Actually, we have conducted some experiments on a set of
analytical requirements in two different domains: students’

registration deanship and Supply Chain Management.
NLDR2DWS produces quasi-automatically a respectable DW
schema, and therefore the results are very promising under further

extensions. Really, the DW designer should intervene to solve
some problems due to synonyms, antonyms, and to complete the

design with the build of the dimensional hierarchies representing
the levels of analysis for the fact measures.

For the short term, expected extensions deal with improving
the design quality of the DW schema by emphasizing additional

Schema constraints like the Additivity of measures to guarantee
that the fact measures are summarizable according to one
dimension at least. This requires enriching the schema with the

data type of measures and answer the following question: Do the
sum of a measure by each dimension is a meaningful value? In the
same direction, we consider to include the Hierarchy constraint for

checking that all hierarchies of a dimension D must start from the
identifier of D.

For the long-term, we intend to build a domain-semantic
resource as a dictionary from the OLTP database tables in order to
check whether the facts and dimensions are compliant to the
Business domain of the DW; also, it could be used to organize
semi-automatically the extracted dimensional attributes into
hierarchies. Ultimately, the Model Driven Architecture (MDA)
paradigm [35] [36] is extremely interesting to automate rapidly the
implementation of the DW using the Query/View/Transformation
(QVT) Language [37].

REFERENCES

[1] M. Rosemann and J. vom Brocke, “ The six core elements of business process
management,” in Handbook on business process management 1, Springer,
2015, pp. 105–122.

[2] B. Husemann, J. Lechtenborger, and G. Vossen, “ Conceptual data

warehouse design,[w:] Proceedings of the International Workshop on
Design and Management of Data Warehouses,” Stock. Sweden, June, pp. 5–
6, 2000.

[3] R. Kimball and M. Ross, The data warehouse toolkit: the complete guide to
dimensional modeling. John Wiley & Sons, 2011.

[4] M. Golfarelli, D. Maio, and S. Rizzi, “ The dimensional fact model: A
conceptual model for data warehouses,” Int. J. Coop. Inf. Syst. , vol. 7, no.

02n03, pp. 215–247, 1998.

[5] A. Nabli, A. Soussi, J. Feki, H. Ben Abdallah, and F. Gargouri, “ Towards an
automatic data mart design,” Dimension, vol. 1, p. V1, 2005.

https://www.researchgate.net/profile/J_Feki/publication/220708768_Towar
ds_an_Automatic_Data_Mart_Design/links/54cccfd70cf298d6565b136e.p
df

[6] Y. Hachaichi and J. Feki, “ An automatic method for the design of

multidimensional schemas from object oriented databases,” Int. J. Inf.
Technol. Decis. Mak., vol. 12, no. 06, pp. 1223–1259, 2013.
https://www.researchgate.net/profile/J_Feki/publication/262874868_An_au
tomatic_method_for_the_design_of_multidimensional_schemas_from_obj

ect_oriented_databases/links/53cf76790cf25dc05cfaf3f9/An-automatic-
method-for-the-design-of-multidimensional-schemas-from-object-ori ented-
databases.pdf

[7] W. H. Inmon, Building the data warehouse. John wiley & sons, 2005.

[8] J. Smith and M. Rege, “ The Data Warehousing (R) Evolution: Where’s i t
headed next?,” in Proceedings of the International Conference on Compute
and Data Analysis, 2017, pp. 104–108.

[9] P. Giorgini, S. Rizzi, and M. Garzetti, “ GRAnD: A goal-oriented approach
to requirement analysis in data warehouses,” Decis. Support Syst., vol. 45,
no. 1, pp. 4–21, 2008.

[10] F. Bargui, H. Ben-Abdallah, and J. Feki, “ A hybrid approach for data mart
schema design from NL-OLAP requirements,” in International Conference
on Application of Natural Language to Information Systems, 2009, pp. 295–
296.

[11] F. Bargui, H. Ben-Abdallah, and J. Feki, “ Enhancing the involvement of
decision makers in data mart design,” Int. J. Data Anal. Tech. Strateg. , vol.
11, no. 2, pp. 148–175, 2019.

[12] E. Elamin, S. Alshomrani, and J. Feki, “ SSReq: A method for designing Star
Schemas from decisional requirements,” in 2017 International Conference
on Communication, Control, Computing and Electronics Engineering
(ICCCCEE), 2017, pp. 1–7.

[13] F. Bargui, H. Ben-Abdallah, and J. Feki, “ Multidimensional concept
extraction and validation from OLAP requirements in NL,” in 2009
International Conference on Natural Language Processing and Knowledge

Engineering, 2009, pp. 1–8.

[14] F. Bargui, J. Feki, and H. Ben-Abdallah, “ A natural language approach for
data mart schema design,” 9th Int. ACIT, Tunis., 2008.

[15] M. A. Guessoum, R. Djiroun, and K. Boukhalfa, “ Towards Decisional
Natural Language Why-Question Recommendation Approach in Business
Intelligence Context,” in 2019 International Conference on Networking and
Advanced Systems (ICNAS), 2019, pp. 1–6.

[16] R. Lumbantoruan, E. M. Sibarani, M. V. Sitorus, A. Mindari, and S. P.
Sinaga, “ An Approach for Automatically Generating Star Schema from
Natural Language,” Telkomnika, vol. 12, no. 2, p. 501, 2014.

[17] M. Thenmozhi and K. Vivekanandan, “ A tool for data warehouse
multidimensional schema design using ontology,” Int. J. Comput. Sci.
Issues, vol. 10, no. 2, p. 161, 2013.

[18] E. M. Leonard, “ Design and implementation of an enterprise data

http://www.ijcit.com/
https://www.researchgate.net/profile/J_Feki/publication/220708768_Towards_an_Automatic_Data_Mart_Design/links/54cccfd70cf298d6565b136e.pdf
https://www.researchgate.net/profile/J_Feki/publication/220708768_Towards_an_Automatic_Data_Mart_Design/links/54cccfd70cf298d6565b136e.pdf
https://www.researchgate.net/profile/J_Feki/publication/220708768_Towards_an_Automatic_Data_Mart_Design/links/54cccfd70cf298d6565b136e.pdf
https://www.researchgate.net/profile/J_Feki/publication/262874868_An_automatic_method_for_the_design_of_multidimensional_schemas_from_object_oriented_databases/links/53cf76790cf25dc05cfaf3f9/An-automatic-method-for-the-design-of-multidimensional-schemas-from-object-oriented-databases.pdf
https://www.researchgate.net/profile/J_Feki/publication/262874868_An_automatic_method_for_the_design_of_multidimensional_schemas_from_object_oriented_databases/links/53cf76790cf25dc05cfaf3f9/An-automatic-method-for-the-design-of-multidimensional-schemas-from-object-oriented-databases.pdf
https://www.researchgate.net/profile/J_Feki/publication/262874868_An_automatic_method_for_the_design_of_multidimensional_schemas_from_object_oriented_databases/links/53cf76790cf25dc05cfaf3f9/An-automatic-method-for-the-design-of-multidimensional-schemas-from-object-oriented-databases.pdf
https://www.researchgate.net/profile/J_Feki/publication/262874868_An_automatic_method_for_the_design_of_multidimensional_schemas_from_object_oriented_databases/links/53cf76790cf25dc05cfaf3f9/An-automatic-method-for-the-design-of-multidimensional-schemas-from-object-oriented-databases.pdf
https://www.researchgate.net/profile/J_Feki/publication/262874868_An_automatic_method_for_the_design_of_multidimensional_schemas_from_object_oriented_databases/links/53cf76790cf25dc05cfaf3f9/An-automatic-method-for-the-design-of-multidimensional-schemas-from-object-oriented-databases.pdf

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 9– Issue 5, September 2020

124
www.ijcit .com

warehouse,” 2011.

[19] M. A. Naeem and I. S. Bajwa, “ Generating OLAP queries from natural
language specification,” in Proceedings of the International Conference on
Advances in Computing, Communications and Informatics, 2012, pp. 768–
773.

[20] N. El Moukhi, I. El Azami, A. Mouloudi, and A. ElMounadi,
“ Requirements-based approach for multidimensional design,” Procedia
Comput. Sci., vol. 148, pp. 333–342, 2019.

[21] M. A. Naeem, S. Ullah, and I. S. Bajwa, “ Interacting with data warehouse
by using a natural language interface,” in International Conference on
Application of Natural Language to Information Systems, 2012, pp. 372–
377.

[22] C. A. Hurtado and A. O. Mendelzon, “ OLAP dimension constraints,” in
Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, 2002, pp. 169–179.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.135.8570&rep=r

ep1&type=pdf

[23] C. A. Hurtado, C. Gutierrez, and A. O. Mendelzon, “ Capturing
summarizability with integrity constraints in OLAP,” ACM Trans. Database

Syst., vol. 30, no. 3, pp. 854–886, 2005.

[24] B.-M. I. Feki J., “ NL-PI: A natural language tool for the reuse of
multidimensional patterns,” in International Arab Conference on
Information Technology (ACIT’09), Sana’a, Yemen, December 2009.

[25] A. Abelló, J. Samos, and F. Saltor, “ YAM2: a multidimensional conceptual
model extending UML,” Inf. Syst., vol. 31, no. 6, pp. 541–567, 2006.

[26] J. Feki and H. Ben-Abdallah, “ Multidimensional pattern construction and

logical reuse for the design of data marts,” Int. Rev. Comput. Softw., vol. 2,
no. 2, pp. 124–134, 2007.

[27] M. Ben Abdallah, J. Feki, and H. Ben-Abdallah, “ Patrons

multidimensionnels constraints,” in SIIE’08 Conférence Internationale des
Systèmes d’Information et Intelligence Economique. Tunisia, 2008, pp. 14–
16.

[28] B. Angela, F. Cattaneo, S. Ceri, A. Fuggetta, and S. ParaBoschi, “ Designing

Data Marts for Data Warehouse,” J. ACM Trans. Softw. Eng. Methodol., vol.
10, no. 4, pp. 452–483, 2001.

[29] A. Alzahrani and J. Feki, “ Toward a Natural Language-Based Approach for

the Specification of Decisional-Users Requirements,” in 2020 3rd
International Conference on Computer Applications & Information Security
(ICCAIS), 2020, pp. 1–6.

[30] H. L. H. S. Warnars and R. Randriatoamanana, “ Datawarehouser: A Data

Warehouse artist who have ability to understand data warehouse schema
pictures,” in 2016 IEEE Region 10 Conference (TENCON), 2016, pp. 2205–
2208.

[31] H. Talbot, “ wxPython, a GUI Toolkit,” Linux J., vol. 2000, no. 74es, p. 5,
2000.

[32] G. A. Miller, “ WordNet: a lexical database for English,” Commun. ACM,
vol. 38, no. 11, pp. 39–41, 1995.

[33] J. Perkins, Python text processing with NLTK 2.0 cookbook. Packt
Publishing Ltd, 2010.

[34] S. T. Bhosale, T. Patil, and P. Patil, “ Sqlite: Light database system,” Int. J.

Comput. Sci. Mob. Comput., vol. 4, no. 4, p. 882, 2015.

[35] J.-N. Mazón and J. Trujillo, “An MDA approach for the development of data
warehouses,” Decis. Support Syst., vol. 45, no. 1, pp. 41–58, 2008.

[36] O. M. G. MDA, “ Object Management Group Model Driven Architecture. ”
2008.

[37] O. M. G. QVT, “ Object Management Group: Meta Object Facility (MOF)

2.0 Query/View-/Transformation, v1. 1.” Standard, 2011.

http://www.ijcit.com/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.135.8570&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.135.8570&rep=rep1&type=pdf

