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Abstract 

A novel, solution-processable non-fullerene electron acceptor 9,9'-(5,5-dioctyl-5H-

dibenzo[b,d]silole-3,7-diyl)bis(2,7-dioctyl-4-(octylamino)benzo[lmn][3,8]phenanthroline-

1,3,6,8(2H,7H)-tetraone) (B3) based on dibenzosilole and naphthalenediimide building 

blocks was designed, synthesized,  characterized and successfully used in a bulk-

heterojunction organic solar cells. B3 displayed excellent solubility, thermal stability and 

acquired electron energy levels matching with those of archetypal donor polymer poly(3-

hexylthiophene). Solution-processable bulk-heterojunction devices afforded 1.16% power 

conversion efficiency with a high fill factor of 53%. B3 is the first example in the literature 

using this design principle, where mild donor units at the peripheries of end-capped 



naphthalenediimide units tune solubility and optical energy levels simultaneously. 

1. Introduction 

Over the last decade, the development of solution-processable bulk-heterojunction (BHJ) 

solar cells has seen a dramatic surge due to intense research activity, resulting in increased 

power conversion efficiencies (PCEs) [1–5]. For most research groups, increasing the PCE 

has been a key aim and PCEs have increased from less than 1% in the initial reports to 10% 

in recent publications [6]. However, increasing efficiencies usually stem from the 

development of new electron donor materials that exhibit improved optoelectronic properties, 

such as light harvesting, and favourably tuned highest occupied molecular orbital (HOMO) 

and lowest unoccupied molecular orbital (LUMO) energy levels, which match with those of 

electron acceptors [1]. In fact, electron acceptors are materials which should be considered as 

equally important as donor materials. But in practice, the development of electron acceptors 

has trailed far behind that of donors. It is thus desirable that further research is carried out on 

the development of electron acceptor materials. 

With regards to electron acceptor materials, conventional fullerenes and their derivatives, 

such as [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) and its C71 analogue PC71BM, 

are the most common acceptors of choice, thanks to their superior electron affinity and good 

electron mobility [7–8]. Despite these inherent properties, fullerene derivatives are afflicted 

with a number of disadvantages, such as weak absorption in the visible spectrum, restricted 

electronic tuning, and a large electron affinity that can result in low open-circuit voltages 

(Voc) [9]. Hence, incentives remain to develop non-fullerene electron acceptors that retain the 

favourable properties of fullerene derivatives and also overcome their insufficiencies. In 

order to design new acceptors, one has to consider desirable properties such as (1) strong and 

broad absorption, (2) high charge carrier mobility, (3) solubility and (4) appropriate energy 

levels. Currently, a popular strategy for tailoring the properties of electron acceptors is 



through assimilating electron-withdrawing building blocks which are illustrated by, but not 

limited to, cyano, carbonyl, amide, imide groups and their emerging analogues. Therefore, it 

is not surprising that there exists a growing interest for the development of small molecular 

non-fullerene acceptors for solution-processable BHJ devices. Key examples of this approach 

were recently reported by P. Sonar et al. and Y. Lin et al. [10–11]. 

Recently, inspired by the brisk development of electron- and hole-transporting materials for 

organic electronics, various research groups have begun to explore non-fullerene acceptors 

for solution-processable BHJ devices [12–21]. PCEs linger around 2% and 4% with the use 

of classical donor polymer poly(3-hexylthiophene) (P3HT) and non-P3HT donors, 

respectively [22–29]. This progress is promising, albeit appreciable scope still exists to 

develop new non-fullerene acceptors which possess strong optical absorption, good 

photochemical stability and adequate solubility. In line with this outlook, functionalities such 

as dibenzosilole (DBS) and naphthalenediimide (NDI) have shown considerable promise as 

versatile building blocks for the development of non-fullerene acceptors. We and others have 

successfully shown examples of target materials based on such building blocks [10, 23, 30]. 

In this study we have chosen the DBS and NDI functionalities to be used in conjunction to 

design and develop a target material that (1) possesses elongated conjugation with good 

structural planarity, (2) shows high chemical and thermal stability, and (3) is highly soluble in 

common organic solvents. Keeping in mind that solubility is a critical requirement, we 

further envisioned the incorporation of peripheral lipophilic chains on the terminal NDI 

functionalities. This was done in practice by choosing a chemical entity (–octylamine) that 

contains nitrogen, a conventional donor atom. The use of such donor atoms has been 

successful in fine tuning optical energy levels [31]. The inclusion of such extraneous chains 

is in addition to the conventional alkyl chains already present on the nitrogen and silicon 

atoms of NDI and DBS functionalities, respectively. Such a target material with eight alkyl 



chains (all the chains were selected to be identical (–octyl) from a molecular symmetry point 

of view) is a highly conjugated and well-proportioned molecule, and is highly novel on its 

own. The presence of these alkyl chains not only helps to enhance the solubility of target 

chromophore, but also demonstrates excellent film forming properties without crystallization 

occurring in the film. The presence of free hydrogen atoms on the terminal nitrogen atoms 

assists to enhance the intra- and intermolecular interactions for a better π-π stacking. The 

target material reported herein, 9,9'-(5,5-dioctyl-5H-dibenzo[b,d]silole-3,7-diyl)bis(2,7-

dioctyl-4(octylamino)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone), has been 

coded as B3 and carries a DBS functionality at the central core with NDI units carrying 

peripheral chains as terminal substituents end-capped at the both ends (see Fig. 1). An initial 

screen of efficacy of B3 as an n-type material was carried out by using it in a solution-

processable BHJ device along with classical donor polymer P3HT. The BHJ device based on 

P3HT:B3 (1:1 w/w) exhibited PCE as high as 1.16% with a high fill factor (FF) of 53.4%. 

This value of FF is amongst the top values for a small molecular non-fullerene acceptor 

which has been incorporated into a single-junction BHJ device without any special treatment. 

B3 is the first non-fullerene electron acceptor in the literature with DBS as a core and NDI as 

arms. The present work is a continuation of our efforts on the design and development of 

small molecular chromophores for organic electronic applications [32–35]. 

 

FIGURE 1 GOES HERE 

2. Experimental section 

2.1 Materials and instruments 

 

All the reagents and chemicals used, unless otherwise specified, were purchased from Sigma-

Aldrich Co. The solvents used for synthetic reactions were obtained from Merck Speciality 



Chemicals (Sydney, Australia) and were used as received. 4,9-dibromo-2,7-

dioctylbenzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone was reported previously [31]. 

Unless otherwise specified, all 1H and 13C NMR spectra were recorded using a Bruker 

AV400 spectrometer at 400 MHz and 100.6 MHz, respectively, or a Bruker AV200 

spectrometer at 200 MHz and 50 MHz, respectively. Chemical shifts (δ) are measured in 

parts per million (ppm). Thin Layer Chromatography (TLC) was performed using 0.25 mm 

thick plates precoated with Merck Kieselgel 60 F254 silica gel, and visualised using ultraviolet 

(UV) light (254 nm and 365 nm). Melting points were measured using a Gallenkamp 

MPD350 digital melting point apparatus and are uncorrected. High resolution mass spectra 

experiments were carried out on MALDI-TOF mass spectrometer. All ultraviolet-visible 

(UV–Vis) absorption spectra were recorded on a Hewlett Packard HP 8453 Diode array UV–

Vis spectrophotometer. Thin films were spin-coated from o-dichlorobenzene (o-DCB) at a 

spin speed of 2000 rpm for 1 min onto cleaned glass slides. B3 was spin-coated from 

solutions at a concentration of 20 mg/mL. P3HT:B3 blend solutions were prepared in the 

same manner as for devices, i.e. P3HT (15 mg) and B3 (15 mg) in a total volume of 1 mL. 

Where specified, films were annealed at 110 °C for 5 min. Fluorescence spectra were 

recorded using a Perkin-Elmer LS50B fluorimeter. Photoelectron Spectroscopy in Air 

(PESA) measurements were recorded using a Riken Keiki AC-2 PESA spectrometer with a 

power setting of 5 nW and a power number of 0.5. Samples for PESA were prepared on clean 

glass substrates. The thermal stability of B3 was investigated by thermogravimetric analysis 

(TGA) and differential scanning calorimetry (DSC). Cyclic-voltammetry was performed in 

freshly distilled dichloromethane (over calcium hydride), with a supporting electrolyte of 0.1 

M tetrabutylammoniumhexafluorophosphate (TBAPF6, Electrochemical grade, Aldrich) 

which was twice recrystallized from ethanol before use. A  Glassy carbon electrode was used 

as a working electrode (ALS, Japan), which was polished with 0.05 µm alumina on a felt pad, 



washed with distilled water followed by ethanol and dried under a N2 stream before use. A 

platinum wire was used as a counter electrode and a silver wire was used as a pseudo 

reference electrode. Ferrocene was used as an internal reference, by doping all solutions with 

an approximately equimolar amount of ferrocene. Reported voltammograms were recorded 

with a scan rate of 50 mV/sec. Redox potentials (E1/2 values) were taken as a half way point 

between forward and reverse peaks for each reversible redox process. 

 

2.2 Device fabrication and characterization of photovoltaic devices 

 

Indium tin oxide (ITO)-coated glass (10 Ohms/square) was cleaned by standing it in a stirred 

solution of 5% (v/v) Deconex 12PA detergent at 90 °C for 20 min. The ITO-coated glass was 

then successively sonicated for 10 min each in distilled water, acetone, and then isopropanol. 

The substrates were then exposed to a UV–ozone clean at room temperature for 10 min. 

UV/ozone cleaning of glass substrates was performed using a Novascan PDS-UVT 

UV/ozone cleaner with the platform set to maximum height. The intensity of the lamp was 

>36 mW/cm2 at a distance of 10 cm. At ambient conditions, the ozone output of the UV 

cleaner is greater than 50 ppm. Aqueous solutions of poly(3,4-

ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) (HC Starck, Baytron P AI 

4083) were filtered (0.45 µm PVDF filter) and deposited onto glass substrates in air by spin 

coating (Laurell WS-400B-6NPP lite single wafer spin processor) at 4000 rpm for 60 s to 

give a layer having a thickness of 35 ± 5 nm. The PEDOT:PSS layer was then annealed on a 

hotplate in a glove box at 120 °C for 10 min. For OPV devices, the newly synthesized 

organic n-type material (B3) and P3HT (Nano-C) were separately dissolved in individual 

vials by magnetic stirring. Blend ratios and solution concentrations were varied to optimize 

device performance. The solutions were then combined, filtered (0.45 µm PTFE filter), and 



deposited by spin coating (SCS G3P spin coater) onto the ITO-coated glass substrates inside 

a glove box (with H2O and O2 levels both <1 ppm). Film thicknesses were determined on 

identical samples using a Dektak 6M Profilometer. The coated substrates were then 

transferred (without exposure to air) to a vacuum evaporator inside an adjacent nitrogen-filled 

glove box. Samples were placed on a shadow mask in a tray. The area defined by the shadow 

mask gave device areas of exactly 0.09 cm2. Deposition rates and film thicknesses were 

monitored using a calibrated quartz thickness monitor inside the vacuum chamber. Layers of 

calcium (Ca) (Aldrich), from an open tungsten boat, and aluminium (Al) (3 pellets of 

99.999%, KJ Lesker), from an alumina-coated graphite boat, having thicknesses of 15 nm 

and 100 nm, respectively, were evaporated onto the active layer by thermal evaporation at 

pressures less than 2×10-6 mbar. 

Current density–voltage (J–V) characteristics of organic BHJ devices were measured under 

AM1.5 G illumination at 100 mW/cm2 (SAN-EI Electric XEC-301S solar simulator). The 

light intensity of the solar simulator was calibrated using a monosilicon detector (with KG-5 

visible colour filter) to minimize the spectral mismatch. The incident photon-to-current-

conversion efficiency (IPCE) data was collected using an Oriel 150 W xenon lamp coupled to 

a monochromator and an optical fibre.  The output of the optical fibre was focused to give a 

beam that was contained within the area of the device.  IPCE data was calibrated with a 

standard, unfiltered Si cell and the data was corrected to the output of the calibrated AM1.5 

solar simulator response. AFM topographic maps were performed directly on the active layer 

of the P3HT:B3 blends using an Asylum Research MFP-3D-SA instrument. The AFM was 

run in intermittent contact mode (tapping mode) using MicroMasch NSC18 tips (typical 

resonant frequency ~100 kHz, typical probe radius ~10 nm and typical aspect ratio 3:1). 

 

 



 

2.3 Device preparation for thin film transistors 

We used thin film transistor (TFT) substrates Gen. 5: “end-of-line test substrates for 

customized semiconductor” purchased from Fraunhofer IMPS. Gate dielectric layers were 

thermally oxidized 230 ± 10 nm SiO2. Test chip sizes were 15  15 mm2. Via Gate contact 

pads were 0.5 × 0.5 mm2 structured by lift off technique. The SiO2 layer was cleaned with 

acetone followed by 2-propanol, and then treated with UV ozone. Bottom contact TFTs with 

pre-patterned source drain electrodes having a fixed channel width of 2000 m and varying 

channel lengths of 2.5, 5, 10, 20 m, with a total of 16 devices in one test chip were 

employed. Gate via, source drain contacts were 30 nm of Au with 10 nm high work function 

adhesion layer (ITO) (structured by lift off techniques). HMDS and OTS were applied as a 

passivation layer prior to the deposition of active layer. Device fabrication was completed by 

deposition of B3 (dissolved in CHCl3) by spin coating at 3000 rpm for 1 min. Measurements 

of the transistor characteristics were undertaken using an Agilent parameter analyser 

B1500A. Estimation of the carrier mobility was done using the standard transistor equation 

(1) in saturation mode: 
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where μ is the two probe field effect mobility, L is the channel length, and Ci is the gate 

insulator capacitance. 

2.4 Time of Flight Photoconductivity measurement 

The time of flight (TOF) photoconductivity system consists of a pulsed Nd:YAG laser 

pumped OPO (EKSPLA laser, pulse width < 5 ns, 1 Hz repetition rate), pulsed  generator 

(SRS-DG535), a DC voltage source, and a digital oscilloscope (Agilant-Infiniium, 1 GHz, 4 



Gsa/s). The sample for the measurement was prepared in simple device architecture of 

ITO/active layer (1200 nm)/Al. The laser of wavelength 530 nm was used to excite the 

sample through the ITO side of the device. The photocurrent under the influence of applied 

electric field was monitored across a resistor (R= 2 k) using an oscilloscope. Care has been 

taken in order to ensure that the measurement is carried out in integrated mode TOF- 

photoconductivity where the time taken to collect the maximum charge corresponds to the 

carrier transit time (tm). The TOF transients were measured by applying different negative 

voltages to the ITO electrode in order to measure the electron mobility. The time taken to 

collect maximum charges (tm) corresponds to the transit time. The charge mobility µ was 

calculated using the relation of µ = d2/tmV, where d is the film thickness and V is the applied 

voltage. 

 

2.5 Synthesis of B3 

Compound B3 was successfully synthesized via the Suzuki coupling reaction between the 

commercially available bis-boronic ester derivative of DBS, 5,5-dioctyl-3,7-bis(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)-5H-dibenzo[b,d]silole, and the penultimate mono-

bromo derivative, 4-bromo-2,7-dioctyl-9-(octylamino)benzo[lmn][3,8]phenanthroline-

1,3,6,8(2H,7H)-tetraone (1), using tetrakis(triphenylphosphine)palladium(0) [Pd(PPh3)4] as 

the catalyst (See Scheme 1). The reaction was carried out in dimethoxyethane at 120 °C for 

24 h using cesium carbonate as a base. B3 was purified by simple column chromatography 

and was fully characterized by high resolution mass spectrometry (HRMS), 1H NMR and 13C 

NMR spectroscopic techniques. 

 

Scheme 1 GOES HERE 

 



 

Synthesis of 4-bromo-2,7-dioctyl-9-(octylamino)benzo[lmn][3,8]phenanthroline-

1,3,6,8(2H,7H)-tetraone (1) 

To a solution of –octylamine (500 mg, 3.87 mmol), sodium t-butoxide (558 mg, 5.81 mmol) 

and palladium acetate (112 mg, 0.50 mmol) in toluene was added 4,9-dibromo-2,7-

dioctylbenzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (2.51 g, 3.87 mmol) followed 

by the addition of tri-t-butylphosphine (404 mg, 2 mmol) at room temperature. The resulting 

suspension was refluxed overnight. Thin-layer chromatography indicated the presence of a 

product, and the reaction mixture was filtered through Celite followed by solvent 

evaporation. The crude mass was subjected to column chromatography on silica gel 

(hexane/ethyl acetate 9.5: 0.5) to yield 870 mg (32.3%) of 1 as a light pink solid. M. Pt. = 

110–111 °C; 1H NMR (CD2Cl2, 300 MHz, δ/ppm): 10.09 (t, 1H, NH), 8.86 (s, 1H, NDI), 

8.28 (s, 1H, NDI), 4.24-4.17 (t, J = 7.2 Hz, 4H), 3.71-3.62 (m, 2H), 1.98-1.87 (m, 2H), 1.82-

1.71 (m, 4H), 1.49-1.21 (m, 30), 0.98-0.87 (m, 9H); 13C NMR (CDCl3, 75 MHz, δ/ppm): 

165.80, 161.85, 161.67, 161.26, 151.68, 138.10, 128.48, 127.24, 123.32, 123.17, 121.25, 

120.37, 120.14, 99.73, 53.42, 43.39, 41.42, 40.51, 31.81, 31.79, 29.38, 29.29, 29.22, 29.16, 

27.99, 27.95, 27.16, 27.03, 22.64, 12.09; HRMS (MALDI-TOF): calculated for 

C38H54BrN3O4 [m/z] = 696.3370, found 696.3380. 

Synthesis of 9,9'-(5,5-dioctyl-5H-dibenzo[b,d]silole-3,7-diyl)bis(2,7-dioctyl-4-

(octylamino)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone) (B3) 

5,5-Dioctyl-3,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5H-dibenzo[b,d]silole 

(200 mg, 0.304 mmol) and compound 1 (635 mg, 0.91 mmol) were dissolved in 1,2-

dimethoxyethane (30 mL) in a 100 mL round bottom flask followed by the addition of 

cesium carbonate (293 mg, 0.903 mmol) at room temperature. The resulting suspension was 

stirred for 30 min and degassed by vacuum/N2 purging (3 times) before 



tetrakis(triphenylphosphine)palladium(0) [Pd(PPh3)4] (58 mg, 0.05 mmol) was added. The 

resulting dark yellow suspension was stirred at 120 °C overnight. The solvent was evaporated 

off to get crude yellowish-red solid, which was subjected to flash chromatography (SiO2, 1:1 

– 2:1, CH2Cl2/n-hexane) to afford a red solid. This red solid was then crystallized from n-

hexane to afford B3 as a shiny red powder (310 mg, 62.2%). M. Pt. = 201–202 °C; 1H NMR 

(CD2Cl2, 300 MHz, δ/ppm): 10.13 (t, 2H, NH), 8.61 (s, 2H, NDI), 8.35 (s, 2H, NDI),8.05-

7.98 (d,  J = 7.1 Hz, 2H), 7.76 (s, 2H), 7.59-7.51 (d, J = 6.8 Hz, 2H), 4.25-4.21 (t, J = 7.4 Hz, 

4H),  4.16-4.03 (t, J = 7.4 Hz, 4H),  3.71-3.62 (m, 4H), 1.98-1.87 (m, 4H), 1.82-1.67 (m, 8H), 

1.49-1.19 (m, 84H), 1.11-1.06 (m, 4H), 0.98-0.87 (m, 12H), 0.83-0.79 (t, J = 7.1 Hz , 12H); 

13C NMR (CDCl3, 75 MHz, δ/ppm): 166.66, 163.14, 163.08, 152.33, 147.68, 141.85, 140.63, 

138.22, 135.53, 134.05, 130.97, 129.30, 128.73, 123.52, 122.95, 120.91, 120.84, 120.38, 

100.26, 43.70, 40.58, 33.93, 32.27, 32.23, 32.20, 29.88, 29.77, 29.67, 29.59, 29.56, 28.42, 

27.56, 27.41, 24.44, 23.04, 14.21, 12.78; HRMS (MALDI-TOF): calculated for 

C104H148N6O8Si [M + Na]+ = 1661.1057 m/z, found 1661.1051. 

3. Results and discussion 

3.1 Synthesis and characterization 

Compound B3 was synthesized as per reaction scheme 1 [For 1H NMR and 13C NMR spectra, 

please see supplementary information (SI)]. As expected, B3 exhibited excellent solubility in 

a variety of common organic solvents, such as chloroform, dichlorobenzene and toluene (for 

instance, >30 mg/mL in o-dichlorobenzene), owing to the presence of the eight –octyl 

lipophilic chains. High solubility of organic semiconducting materials is one of the prime 

requirements for the fabrication of large area roll-to-roll solution-processable organic 

electronic devices, such as organic solar cells, and B3 fulfils this criterion. TGA revealed that 

B3 exhibits excellent thermal stability and is stable up to 350 °C, a finding that strongly 

supports the high temperature annealing of P3HT:B3 devices and is consistent with DSC plot 



of B3 (see Fig. S1, SI). 

3.2 Optical and electrochemical properties 

The UV–Vis spectral absorptivity of B3 was measured in chloroform solution and is 

represented in Fig. 2. In solution, an absorption maximum (λmax) at 536 nm (ε = 47, 030 M-1 

cm-1; solution concentration = 3.05 µm) with an onset at 600 nm was measured for B3, and 

λmax at 552 nm with an onset at 630 nm was measured in the thin solid film. 

 

FIGURE 2 GOES HERE 

 

The thin film absorption spectrum showed a bathochromic shift of about 16 nm when 

compared with the solution spectrum of B3, a finding that is consistent with our previous 

work [32,35]. The red shift in solid state is attributed to inter-/intramolecular interaction 

arising from the free hydrogen atoms. The blend film of P3HT:B3 (1:1 w/w) exhibited 

quenching of the photoluminescence [see Fig. S2, SI], a finding that is consistent with 

literature reporting non-fullerene electron acceptors [30]. The electrochemical property of B3 

was also investigated using cyclic voltammetry. Cyclic voltammetry (CV) was carried out in 

freshly distilled dichloromethane at a scan rate of 50 mV sec-1. As shown in Fig. 3, B3 

exhibited two reversible reduction waves, a result that is consistent with literature reported 

materials [30], and suggests the suitability of B3 as an electron acceptor.  

 

FIGURE 3 GOES HERE 

 

The HOMO energy of B3 was estimated on a spin coated thin film using PESA and the 

LUMO energy was calculated by adding the bandgap to the HOMO value (see Fig. S3 and 

Table S1 in SI). The HOMO of B3 is very low (-5.92 eV) which is primarily due to the 



presence of two strong electron withdrawing NDI groups at the ends of central DBS 

functionality. The LUMO of B3 is matching very well with that of PC61BM, which clearly 

indicates the significance of maintaining control of the LUMO energy of non-fullerene 

acceptors by a rational design approach. This lowering of HOMO energy levels is also very 

important to make materials more stable at ambient conditions. To compare experimental 

energy levels with respect to the electron density distribution of molecular orbitals, we 

conducted density functional theory (DFT) calculations using the Gaussian 09 suite of 

programmes and the B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level of theory [36]. We 

observed that the HOMO density of B3 was homogeneously populated over the whole 

molecular backbone, with major and sizable contribution from the central DBS block and the 

peripheral nitrogen atoms respectively. The participation of terminal nitrogen atoms clearly 

corroborates the design principle of B3 that the functionalities carrying such atoms can 

indeed play a significant role in tuning energy levels, and to enhance the solubility profile of 

the material at the same time. The LUMO was primarily distributed over the NDI 

functionalities. Such a HOMO-LUMO density distribution is vital for an optimum band gap. 

The DFT distribution is shown in Fig. 4, and Fig 5 depicts the energy level diagram. 

 

FIGURE 4 GOES HERE 

FIGURE 5 GOES HERE 

 

3.3 Photovoltaic properties 

After establishing that B3 possesses promising optical properties and energy levels that are 

similar to PC61BM, we fabricated solution-processable BHJ devices. The classical donor 

polymer P3HT was used as a p-type semiconducting component along with B3 (n-type) to 

generate a blend solution and to cast an active layer on top of the PEDOT:PSS surface. The 



BHJ device architecture used was ITO/PEDOT:PSS (38 nm)/active layer/Ca (20 nm)/Al (100 

nm) where the active layer was a 1:1 blend of P3HT/B3, spin-casted from o-dichlorobenzene. 

 

FIGURE 6 GOES HERE 

 

These primitive BHJ devices yielded reasonable performance and the photovoltaic cell 

parameters, Voc, short circuit current density (Jsc), FF and PCE, reached 0.64 V, 3.40 

mA/cm2, 53.4% and 1.16%, respectively. Notably, all the devices yielded very high FF 

values. In fact, the value of FF ~53% is among the highest values reported for a single 

junction BHJ device based on a novel non-fullerene electron acceptor. The respective J–V 

curve is shown in Fig. 6. The analysis of the incident-photon-to-current conversion efficiency 

(IPCE) measurement of the BHJ device indicated a broad spectrum IPCE over the visible 

range which levels out at a value of 26% at around 550 nm (see Fig. 7). 

 

FIGURE 7 GOES HERE 

 

Even though the IPCE value is moderate, the result itself is significant with a view of using 

B3 in combination with low band gap conjugated donors, polymers or small molecules so 

that the charge generation could be achieved over a broad range of wavelengths. The physical 

microstructure of the blend surface was examined using atomic force microscopy (AFM) in 

tapping mode. The actual surface morphology in terms of phase and height images of as-cast 

B3 (a, b) and the P3HT:B3 (1:1, w/w) blend annealed at 110 °C for 5 min (c, d) is shown in 

Fig. 8. Pristine B3 appears to have terrace-like morphology with large layered distinguishable 

platelets. On the other hand, the P3HT:B3 blended film exhibits smooth morphology and 

better intermixing of donor and acceptor components, with crystalline grains and smaller size 



domains with a root-mean square (RMS) roughness of 2.3 nm. This crystalline behaviour of 

blend film indicates self-organization of P3HT that can be beneficial for charge transport in 

thin films [37]. 

 

FIGURE 8 GOES HERE 

 

3.4 Charge transport studies  

In order to determine the electron mobility of B3, we used both organic field effect transistor 

(OFET) and TOF techniques. In OFET devices, B3 was spin coated on the 

octyltrichlorosilane (OTS-C8) and octadecyl trichlorosilane (OTS-C18) self-assembled 

monolayer (SAM) treated Si/SiO2 substrates. The highest electron mobility measured was 1.6 

× 10-4 cm2/Vs for the OTS-C18 treated substrate at room temperature (see Table S2 in SI). As 

the main intention of designing B3 was to use it as an electron acceptor in the organic solar 

cell devices, we also measured the electron mobility in vertical diode structure (resemblance 

to the solar cell device structure) by the time of flight photoconductivity (TOF-PC) method 

[38–39]. The detailed information about the TOF-PC technique was reported in an earlier 

publication [40]. ITO/B3 (1200 nm)/Al; a simple diode structure was used and the electron 

mobility was measured directly by exciting a pulsed laser of wavelength 530 nm (pulse width 

<5 ns, 1 HZ repetition rate) on the thin film. In order to measure the electron mobility, a 

negative voltage bias was applied across the device. By varying the bias voltage using an 

oscilloscope, the TOF transients (raised due to electrons) are measured. The film thickness of 

B3 was around 1200 nm and the TOF measurements were carried out using integrated mode. 

The charge carrier mobility (μ) was measured using the relation of μ =d2/tmV, where d is the 

film thickness, V is applied voltage and tm is time taken to collect the maximum charge 



estimated from the transient. The calculated electron mobility for different electric fields 

using tm obtained at various transients is shown in Fig. 9. 

 

FIGURE 9 GOES HERE 

 

The TOF-PC transients measured are shown in the inset of Fig. 9. The electron mobility for 

B3 acceptor was in the range of 2 × 10-5 cm2/Vs at an applied electric field of 3.7 × 105 V/cm. 

The main benefits of the TOF-PC method are related with the measurement of charge 

mobility in dispersive samples and the contact effect doesn’t hamper the measurement. 

 

Although the material reported in this study was found to be highly suitable for the solution-

processable BHJ devices and achieved promising PCE with a high FF, there still remains an 

appreciable scope to explore device strategies to enhance PCE. The performance can be 

improved by either using an effective interlayer, such as a metal oxide interlayer, which can 

facilitate the efficient charge extraction, or by devising processing methods, such as using 

solvent additives and solvent annealing techniques. Also, strategies such as the use of other 

conjugated polymers as well as small molecular donors can be applied to explore the use of 

B3 as a versatile non-fullerene acceptor. Working towards some of these strategies is the 

subject of current work in our laboratories. The discovery of materials, such as B3, 

possessing promising optoelectronic properties opens up the way to develop such motifs 

(based on the terminal NDI functionalities using peripheral donor atoms) and paves the way 

for such materials to be used for other organic electronic applications. 

4. Conclusions 



In summary, a novel, solution-processable small molecule B3 was designed and developed as 

a non-fullerene electron acceptor for organic BHJ devices. B3 exhibited excellent solubility, 

thermal stability, broad and strong absorption, appropriate energy levels matching with those 

of P3HT and good electron mobility. The P3HT:B3 blend film exhibited good nanoscale 

interpenetrating networks with structure, which is beneficial to charge separation and 

enhanced efficiency of the BHJ devices. Simple solution-processable BHJ devices based on 

the blend of P3HT and B3 exhibited PCEs as high as 1.16% with a very high FF of 53.4%, 

which, in fact, is among the highest FF values reported for solution-processable single-

junction BHJ devices based on small molecular non-fullerene acceptors. The work illustrated 

herein indicates that B3 indeed is a promising non-fullerene electron acceptor that has the 

potential to be added to the molecular library of n-type materials. The optimization of this 

work as well as work on a few of the strategies mentioned above is the subject of on-going 

research in our laboratories. 
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Fig. 1 Molecular structure of the newly designed and synthesized non-fullerene electron 

acceptor B3. 



 

Fig. 2 UV–Vis absorption spectra of pristine film (B3 F; solid red line), 1:1 P3HT:B3 blend 

(B3 B; solid blue line), and in chloroform solution [B3 solution (S) and B3 molar absorptivity 

(MA)]. 

 

Fig. 3 Cyclic-voltammogram of B3, in freshly distilled dichloromethane at a sweep rate of 50 

mV sec-1, showing two reversible reduction waves. 



 

Fig. 4 Orbital density distribution for frontier molecular orbitals of B3. DFT calculations 

were performed using the Gaussian 09 suite of programs and B3LYP/6-

311+G(d,p)//B3LYP/6-31G(d) level of theory. 



 

Fig. 5 Energy level diagram showing alignments of different components of the BHJ device 

architecture 



 

Fig. 6 Current density–voltage (J–V) curve for the BHJ device based on B3 in blends with 

P3HT (1:1 w/w) under simulated sunlight (AM 1.5, 1000 W m-2). Device structure is: 

ITO/PEDOT:PSS (38 nm)/active layer/Ca (20 nm)/Al (100 nm) where the active layer was a 

blend of B3 and P3HT spun on top of the PEDOT:PSS surface using o-dichlorobenzene. 
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Fig. 7 IPCE spectrum measured for the P3HT:B3 based OPV device. 



 

Fig. 8 AFM images for a thin film of as-casted B3 (a, b) and P3HT:B3 blend (c, d) annealed 

at 110 °C for 5 min (1:1 blend in 1 mL o-dichlorobenzene, 1000 rpm/s for 1 min). 



 

Fig. 9 Variation of electron mobility with applied electric field; Inset:  current integrated 

TOF-PC transients for electrons measured for different applied voltages. 
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