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Abstract: Background: Hyperspectral Imaging (HSI) has a strong potential to be established as a
new contact-free measuring method in medicine. Hyperspectral cameras and data processing have to
fulfill requirements concerning practicability and validity to be integrated in clinical routine processes.
Methods: Calculating physiological parameters which are of significant clinical value from recorded
remission spectra is a complex challenge. We present a data processing method for HSI remission
spectra based on a five-layer model of perfused tissue that generates perfusion parameters for every
layer and presents them as depth profiles. The modeling of the radiation transport and the solution
of the inverse problem are based on familiar approximations, but use partially heuristic methods for
efficiency and to fulfill practical clinical requirements. Results: The parameter determination process
is consistent, as the measured spectrum is practically completely reproducible by the modeling
sequence; in other words, the whole spectral information is transformed into model parameters which
are easily accessible for physiological interpretation. The method is flexible enough to be applicable
on a wide spectrum of skin and wounds. Examples of advanced procedures utilizing extended
perfusion representation in clinical application areas (flap control, burn diagnosis) are presented.

Keywords: hyperspectral image processing; perfusion measurements; clinical classifications

1. Introduction

Hyperspectral Imaging (HSI, imaging remission spectroscopy, or diffuse reflectance spectroscopy)
as a non-contact, stressless imaging measuring method is currently an intensively developing area
for diverse medical applications [1,2]. Despite the limited penetration depth in biological tissue
in the visible (VIS) and near infrared (NIR) spectral range, the effect of the specific scattering and
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absorption by tissue components in this “diagnostic window” makes it possible to retrieve information
of significant clinical value [3–11].

In perfused tissue like human skin, the remission spectra are mainly influenced by hemoglobin
(oxygenated and reduced) absorption. Additional components such as the collagen matrix, melanin, fat,
and water contribute by specific scattering and absorption processes. The main focus is the estimation
of the perfusion-related parameters of skin or similar tissue systems. Those parameters make it possible
to evaluate local (for instance wounds) and regional (for instance PAD, diabetic foot) perfusion quality,
and often also systemic attributes of the blood supply and oxygen usage [12–14]. Normally in clinical
practice, no other methods are available to gain such information in a quick and simplified manner.

For the estimation of perfusion parameters (volume fraction blood, oxygen saturation hemoglobin),
sample one- or two-layer models of the tissue with infinite depth and homogeneous distribution of the
components are frequently used. Additionally, from the NIR-part of the spectrum, the volume fraction
of water can be estimated [15]. The drawback from this is the substantial simplification of the normally
complex layered structure of skin and similar tissue systems. The penetration depth of the light, and
therefore the measuring volume, depends on the spectral range (VIS: <1 mm, NIR: 4–6 mm in skin)
caused by the specific spectral scattering and absorption in the tissue layers. In real layered tissue
systems, different layers contribute to a remission signal, depending on the wavelength. Thus, the
remission spectrum is a heterogeneous spectrum in relation to the measured volume. The perfusion
parameters estimated by these models are values averaged over different layers with unknown weights.
With these models and estimated model parameters, normally, the measured spectrum cannot be
reproduced, indicating a loss of information.

Nevertheless, even those parameters have been proven to represent a considerable information
profit, and to provide additional value for diverse clinical application areas [9–11,13,15–17].

Recently, compact and cost-efficient hyperspectral cameras for routine clinical practice have been
made available. The practicability for clinical use is accomplished by means of a simple measuring
process with laminar illumination, direct imaging by an integrated scanning process generating a
“3D-data cube“(x-y-λ), fast acquisition of a large area (i.e., approximately 5 seconds for 20 × 30 cm), and
no special measuring conditions (beside the avoidance of external light on the measuring area) [14].

In order to establish such easy-to-use cameras, and therefore, hyperspectral imaging technology in
a clinical environment, the potentially high information content of the measurement has to be exploited
and presented to the clinical user in an informative manner.

Only clinical applications concerning the skin are considered. Mainly quantitative information
about the perfusion situation should be generated. In this context, the estimation of the delivered
arterial blood quantity and oxygen saturation, as well as the oxygen consumption in the capillary
system of the measured area, are of special interest. The imaging measurement additionally allows
for the analysis of regional distributions of the perfusion quality and the identification of regional
perfusion distortions.

Besides the assessment of the intact skin, perfusion analyses of wounds generally are of special
interest, because their quality is an essential factor in wound healing processes. Therefore, the parameter
estimation method should be applicable to a wide variety of perfused tissue systems.

Although analytical solutions of the light transport equations in the diffusion approximation in
tissue systems are available [18,19], the measuring geometries often do not correspond to the use of a
HSI-camera in a clinical environment [20,21]. Simple models like two- or three-layer systems cannot
adequately represent the complexity and variability of real skin systems and generate parameters
of limited comparability. Solution procedures of the inverse problem (calculation of the model
parameters from the measured spectrum) for more realistic multilayer models are still computationally
expensive [20]. Also, solution procedures based on artificial neural networks (for instance, seven-layer
models require the reduction of the number of parameters) to be efficient, and therefore, do not always
adequately describe physiological conditions [22].
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We present an evaluation procedure for the remission spectra of skin and wounds, which
transforms all the information about the spectrum consistently into model parameters, which are
then easily accessible to physiological interpretation. However, we do not claim to generate an exact
solution to the problem of the realistic modeling of actual tissue systems.

Consistent transformation means that the measured spectrum should be completely reproduced
by the model and the determined model parameters. The consistently-determined model parameters
should be used as a more interpretable basis for further clinical estimations, as, for instance, in
classification procedures.

The objective is to exploit the information of HSI-measurements in consideration of clinical
demands and to create data processing of high practicability.

2. Results

2.1. D-Physiological Perfusion Imaging

The model-based processing described in Section 4 provides “depth profiles” for perfusion
parameters vHb and xHbO2 (with six values in each case), one value for vH2O, and one for vFat,
calculated from Λ5 and Λ6. Furthermore the depth profiles of the intrinsic structure parameters (s0,
s1), as well as the relative “layer thickness“ di (di = Di −Di−1, relative to D0

1), are available.
The profiles are presented independently from the layer thickness as a series of parameter values

(bars) (see Figure 6). The values of vHb are scaled according to the layer thicknesses determined by the
procedure. This form of presentation has been proved to be the most informative in practice.

From the perfusion profiles (for every image pixel), four survey images are generated, depicting
vHb and xHbO2 for the upper layers 1 and 2 (vHb_1, xHbO2_1) and for the deeper layers 5 and 6
(vHb_2, xHbO2_2). The values are color-coded in blue (low), via green (normal) to red (high).

To evaluate the physiological interpretation and validity of the model parameters, the spectra of
normal perfused skin (healthy volunteers) and from patients in different clinical areas are recorded
and the depth profiles analyzed and proved in terms of their physiological plausibility.

2.1.1. Example: Occlusion Test

As a first example, the data from an occlusion test with healthy volunteers are presented. The left
arm has been occluded (venous and arterial) and the hands were measured with a HSI camera with
the right hand as a reference (Figure 1). The occlusion test contains four phases: normal perfusion,
venous occlusion, arterial occlusion, and reperfusion after arterial occlusion. The survey images are
shown in Figure 2, and the depth profiles from the test areas in Figure 3.
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Figure 1. a. Measurements of the hands in an occlusion test; right: hand of the occluded arm, left: 
reference hand; the white quadrates indicate the tested areas from which the profiles in Figure 3 were 
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Figure 1. (a) Measurements of the hands in an occlusion test; right: hand of the occluded arm, left:
reference hand; the white quadrates indicate the tested areas from which the profiles in Figure 3 were
determined; (b) color scale vHb [0...2], c: color scale xHbO2 [0 . . . 1].
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The survey images (Figure 2) clearly show the reaction of vHb and xHbO2 in the different phases.
The depth profiles of the parameters can be plausibly explained as follows:
“Normal“ perfusion (a): the profiles from the reference and the test hand are similar; vHb shows

the normal distribution over the layers 1–6; xHbO2 in the superficial layers (1 and 2) is approx. 0.36
due to oxygen consumption in the capillary system; xHbO2 in the deep layers (5 and 6) are a mixture
of arterial (approx. 98%) and venous blood (0.36) from the capillary system; in the reticular system, the
volume fraction of both arterial and venous blood are principally equal (in stationary states), so that
xHbO2 is the mean value of venous and arterial xHbO2;

Venous occlusion (b): vHb increases in all layers, but mainly in 5 and 6, because blood cannot
flow off; xHbO2 decreases due to consumption and because the arterial supply is also hindered by
venous occlusion, but there is still an arterial pressure in the capillary system;

Arterial occlusion (c): no blood flow; the available blood is gathered in the deeper vessels (layers
5 and 6); vHb in layers 1 and 2 is lower than for venous occlusion because of a lower arterial pressure;
xHbO2 strongly decreases due to consumption;

Reperfusion (d): expansion of all vessels, high blood flow; due to the high flow xHbO2 increases
in the capillary system because (stationary state) xHbO2 in the superficial layers depends of the
blood flow.

It is interesting to note the systemic reaction on the occlusion observable in the reference hand; the
systemic blood flow increases in the deeper vessel system, while the superficial vHb (layers 1 and 2)
decreases in the reference hand; due to the high flow, xHbO2 increases.

After the reperfusion phase, the perfusion returns to normal values.

2.1.2. Example: Flap Transplant for Wound Coverage

In the following example, the perfusion evolution of a skin graft over twelve days is shown
(measurement each second day).

The depth profiles are available for every point on the flap, and can be used to analyze the
perfusion quality and distribution over the flap in detail over time. With close-meshed measurements,
over time, developing perfusion problems can be detected and evaluated very early.

The survey images show the decreasing blood supply from the right side of the flap (Figure 4
vHb_2 and Figure 5a,b vHb_2), clearly indicating a distortion of the arterial conjunction already
observable at day 5 (Figure 5b).
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Figure 5. Same transplant measured at the following days (a) day 3, (b) day 5, (c) day 7, (d) day 9, (e)
day 11, (f) day 13); vHb_1, xHbO2_1, vHb_2, xHbO2_2; color scales for vHb and xHbO2, as depicted in
Figure 1.

The survey images (Figure 5) clearly show the abated arterial blood supply over time.
The automated analysis is supported by image registration transforming the flap in every image

to the same position and dimension. For automated analyses, the complete depth profiles are used.
With this methodology, an advanced procedure for describing and analyzing the perfusion

dynamics in flaps is realizable.

2.1.3. Burn Wounds

The extended parameters have been used in a first attempt to generate a classification process for
burn wounds.

Fundamental to the degree of skin damage by heat impact for the healing potential is the remaining
perfusion quality in the wound area. With depth profiles, the perfusion situation can be depicted and
evaluated on a new, higher level.

The example shows typical depth profiles of burn wounds with different degrees of damage (burn
degrees: superficial, partial-thickness, full-thickness) (see Figure 6), as well as the classification of a
burn wound on a hand, clinically assessed to be of partial-thickness (see Figure 7).
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as depicted in Figure 1) and (b) fuzzy classification (blue: superficial, green: partial-thickness, red:
full-thickness); (d) perfusion profile from the burn area.

This first attempt of a classification process was constructed based on a small number of burn
wounds (i.e., approx. 20). Additional to the perfusion parameters, the intrinsic structure parameters
of the model were evaluated, and showed characteristic differences between the burn degrees. Also,
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spectral features, for instance, quantitatively describing the degree of tissue necrosis, are used in the
classification process.

The perfusion profiles show significant differences between the burn degrees; for instance, a
strong hyperemic reaction for superficial and intermediate partial degrees. With increasing degrees
of damage, vHb decreases in all layers; the damage of the deeper vessels is obvious in Figure 6e
(full thickness).

Theoretically, with these parameters, an efficient classification can be constructed, but the time
after the burn has to be included as a fundamental factor. Especially for intermediate burn degrees, the
development of the perfusion in the first 2–3 days is essential for the assessment of the healing potential.

With this methodology, a significant increase in terms of the quantitative and qualitative nature of
descriptions and evaluations of burn wounds and wound processes seems to be achievable; therefore,
a reliable diagnosis and treatment supporting procedure for burn medicine is foreseeable.

2.2. Comparison with Perfusion Parameters Based on a One-Layer Model

Actual standard data processing of hyperspectral imaging spectra involves the calculation of
perfusion parameters based on a model consisting of a homogeneous, infinite, one-layer system with
hemoglobin as the main component [14,15]. These parameters are comparable, and were validated
with other parameters from standard tissue oximetry systems. The perfusion parameters are THI,
StO2, and NIR-perfusion. THI (tissue hemoglobin index) denotes the relative volume content of
hemoglobin/blood in the measuring volume, StO2 the oxygen saturation of the hemoglobin, and
NIR-perfusion a measure of perfusion quality calculated from the NIR-spectral region. The algorithms
for THI and StO2 as described in [14] and [15] use wavelength segments from 500 to 800 nm, restricting
the depth sensitivity. In the NIR-region (NIR-perfusion), there is no separation of relative volume
content and oxygen saturation.

Because the remission spectra can be completely reproduced by the five-layer model parameters,
the THI-, StO2-, and NIR parameters can be principally calculated from the model parameters. THI
and StO2 are related to a mixture of the vHb resp. xHbO2 of layers 1–4, the NIR-perfusion parameter
is a function of (vHb � xHbO2), and vHb and xHbO2 of layers 4–5.

Although these one-layer model parameters have been shown to be of high clinical value, the
new five-layer model represents a description of the perfusion situation, especially differentiating
between the superficial capillary blood volume and oxygen saturation and the parameters of the deeper
vessel system. This gives rise to better clinical estimations of perfusion quality, or disturbances of the
perfusion system. This additional clinical value will be described for different application areas in
subsequent publications.

2.3. Wound Healing Disorders

Objective diagnostics in wound healing disorders is a long-term problem with no implications
in daily life. The intra- and inter- observer difference is often discussed in the literature [23,24]. A
validated, computer-assisted measurement tool based on conventional RGB-imaging has been available
for some fifteen years [25,26]. Based on color segmentation, the software is able to quantify the
surface, wound borderline, diameter, numeric and percentile part of necrotic tissue, and the fibrin
and granulation tissue. Based on this quantification, we are able to analyze the progress of surface
reduction, the progression of granulation tissue, and part of the fibrin and necrotic tissue. If the
progress of granulation tissue is reduced, we have to check the local therapeutic concept or identify the
underlying reasons, e.g., perfusion, edema, oxygenation, infection, etc.

Additionally, perfusion can be measured by ultrasound and oxygenation with TcPO2; however,
the examination is time consuming, and edema can only be measured with the circumferences of
lower legs.

With hyperspectral imaging, all the following parameters are available within one measurement:
perfusion, as described above; based on the characteristic features of the remission spectra, a detailed
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and quantified segmentation and classification of the wound area, providing portions of necrotic tissue,
fibrin, granulation and epithelial tissue; and tissue which is endangered by insufficient perfusion.

The advanced and specific methodology for the clinical application areas addressed in the
examples will be described in detail in separate articles.

3. Discussion

The requirements for the development of the data processing were:

- The tissue model should describe the physiological structure in a manner which is sufficiently
detailed to enable information retrieval, especially concerning the perfusion situation with high
clinical value (adequacy);

- The modeling should be able to reproduce real measured remission spectra from skin and wounds
over the complete spectrum in detail; the variety of spectra is described in the confidence range,
and should sufficiently cover a variety of clinical problems (consistency);

- The solution of the inverse problem should be practicable for imaging measurements with the
described measuring geometry in clinical routine environment; the processing should be fast for
imaging measurements (practicability).

The challenge is to find a reasonable compromise between the flexibility and adaptivity of the
tissue model (many parameters), the physiological informative value, and the physical–mathematical
correctness of the solution of the inverse problem.

The described tissue model seems to be sufficiently detailed to offer insights into the perfusion
situation, and fulfills the adequacy requirement. The determined model parameters represent perfusion
values of the capillary system and the deeper vessel system, and seem to be more informative concerning
the perfusion situation.

The values have been proved to be physiologically and clinically plausible (up to now), and the
multitude of parameters constitute a better basis for classification processes.

The processing also fulfills the consistency and the practicability requirement. A complete
processing of a measurement image with a 50% tissue content needs approx. 10–15 seconds for the 3D
physiological perfusion imaging result to be determined.

Many details of the spectrum forms are explainable by the modeling and the dynamics of measuring
depth variation over the spectral range. In Λ3, the measuring depth changes very dynamically with the
wavelength. Structures such as those at 650nm and 715nm, the rise at 600nm, as well as in Λ5 and Λ6,
are only explainable by the dynamic transition between different layers, and have to be distinguished
from biochemical contributions to the spectrum.

The other side of the compromise is that the modeling of the radiation transfer through the system
is not physically stringent:

The spectral segments are selected by simple plausibility arguments based on knowledge about
the penetration depth in perfused human tissue. By this predetermined dependence upon measuring
depth, the spectral segments define the layer thickness relative to the standard value D0

1.
The heuristic visibility function, enabling the layer separation and differentiation in the successive

procedure is based on a theoretical and simulative analysis. The specification of this function, as well
as the dependence of the mean path length on the wavelength, is accessible to further refinement
and optimization, for instance by expanding to higher orders (taking into account the nonlinearity of
the “visibility”). The globally fixed function D = f A

D (A) could be empirically diversified for different
spectrum forms and different layer structures.

The use of globalized heuristic functions does not sufficiently correspond to the variety of
individual forms of skin systems; the interpretation of the results has to assessed with respect to
these limitations.

The parameters have to be empirically validated concerning their physiological interpretation
and clinical information content (in consideration of the different clinical context).
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Clinically-validated classification processes based on the model parameters will account for
gaining confidence in the usability and adequacy of the parameters.

The data processing of HSI remission spectra based on a five-layer model of perfused tissue
generates perfusion parameters for every layer and presents them as depth profiles. The evaluation
procedure transforms the whole information of the spectrum consistently into model parameters so
that the measured spectrum can be completely reproduced.

For the first time, we present a complete system of powerful hyperspectral imaging data acquisition
and data processing with high applicability in clinical practice. The main advance of the data processing
method is its enhanced information content with highly plausible physiological interpretation and
high clinical relevance, which is currently not available with other methods.

The data processing is integrated into a piece of software running on a computer which is
associated with the hyperspectral camera. The data processing requires approx. 10–15 seconds, so that
directly after data acquisition, the perfusion parameters are presented to the physician and the patient
(bedside diagnostics).

4. Methods and Materials

4.1. Hyperspectral Measuring System

All measurements were performed with a HSI-camera TIVITA® Tissue (Diaspective Vision GmbH;
Am Salzhaff, Germany) with written consent from volunteers. Data acquisition from patients was
conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Ethics
Committee of the Ärztekammer Sachsen-Anhalt, Germany (35/17). All patients gave informed consent.

The camera was a compact measuring system certified for clinical use [27]. Remission spectra
were recorded in the spectral range of 500 to 1000 nm with a resolution of 5 nm; the measuring area
was approx. 20 × 30 cm, standard image size was 640 × 480 Pixel, and the recording needed approx.
5 seconds.

4.2. Hyperspectral Imaging Data Analysis and Processing

To ensure good qualitative and undisturbed measuring data, the following tests were performed:

- Regular tests of the camera calibration and comparison of spectra from reference objects with
corresponding reference spectra.

By software:

- Quality tests of the spectra concerning wavelength-dependent noise to ensure that relevant
spectral details for parameter estimation are presented in sufficient quality;

- Tests concerning disturbing influences on the spectra, such as reflection, external light, and strong
inclination of parts of the measuring area.

To define adequate quality measures, experimental tests and numerical Monte Carlo
simulations [28] were performed.

In the preprocessing procedure of the measuring data, the data quality was tested; data of
insufficient quality were excluded from further processing.

4.2.1. Model-Based Analysis

The skin is modeled as a five-layer-system (Figure 8). Every layer is regarded as homogenous,
and is provided with the relevant components:

- Layer 1 (stratum corneum, epidermis): melanin, vHb, and xHbO2; vHb denotes the relative
volume fraction of total hemoglobin, xHbO2 the oxygen saturation of hemoglobin; layer 1 contains
also blood and xHbO2, because this layer cannot be sufficiently separated from the next;
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- Layer 2 (upper dermis: papillary or capillary system): vHb, xHbO2, and collagen structure;
- Layer 3 (reticular dermis): vHb, xHbO2, and collagen structure;
- Layer 4 (deep dermis, subcutis): vHb, xHbO2, vH2O, vFat, collagen structure, and connective

tissue; vH2O and vFat denote the volume fractions for water and fat;
- Layer 5 (subcutis): vHb, xHbO2, vH2O, vFat, and connective tissue.
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Figure 8. Five-layer skin model.

For every layer, the absorption of hemoglobin, water, and fat is explicitly described in a linear
approximation; the background absorption and scattering by the collagen matrix, vessels, and
connective tissue is jointly described by a linear function containing the so-called intrinsic structure
parameters:

“Absorbance” A = ln
(

R
I0

)
= s0 + s1l + L

∑
i

ϑi εi (1)

where R: remission, I0
: incident intensity, S(L) = s0 + s1(L): intrinsic contributions to absorption and

scattering; ϑi: volume fraction, and εi extinction coefficient of component i; L denotes a mean path
length, which could be calculated from the path length distribution [29].

Especially for hemoglobin, the derivates Hb ad HbO2 are represented in the form

ϑH (εHbO2 + x εHb) (2)

with ϑH as the volume fraction of the total haemoglobin and x as the oxygen saturation of the
haemoglobin.

The measuring geometry used with this HSI-camera with laminar illumination precludes the
separation of different layers by technical control of the path length distribution. The remission at one
measuring point is given by an integral over many path length distributions; the measuring volume
defined by this distribution varies with the wavelength, depending on the scattering and absorption.

The form of the spectra is mainly determined by the absorption spectra of hemoglobin (mainly
in the range 500–600nm and around 760 nm), as well as by the water and fat absorption spectra
increasingly from approx. 700 nm (see Figure 9). The remission spectra contain contributions from the
different layers in the measuring volume with a measuring depth depending on the wavelength.
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4.2.2. Transformation of the HSI-Remission Spectra

In this modeling, the parameters in L ϑ cannot be determined separately (the scattering is not
described explicitly in the model), and depending on the wavelength, L(Λ) may have different values.

Because layer thickness and path length distributions are not explicitly determinable parameters
in this model, a depth scale cannot be defined. To obtain a depth profile, we have to make concrete
statements about the measuring depth and the path length.

Basis is an analysis of the path length distribution which is dependent on the wavelength to
estimate L(Λ); therefore, the measuring depth D is defined as the maximal depth with minimal intensity
Imin: path length distribution h(l, L) Þ L(L) = f (s(L), a(L)); s: scattering; a: absorption; measuring

depth D: I
I0

= e−a L = IminÞ Lmin =
− ln(Imin)

a ; without further knowledge about the dependencies
between D and L, the measuring depth D corresponding to the path length Lmin is supposed to be
D = f a

D Lmin.
Because the actual path length distribution is not known, as a first approach, a global function

D(L) = f A
D (A(L)) (≈ 1

a0(L)
) is used, including a globally fixed a0(λ). Thereby, the measuring depth D for

a spectral segment Λ becomes determinable using the total absorbance A of the system (corresponding
to the assumption of a homogenous system and the dependence of the measuring depth on µa

(absorption) and µs (scattering)).
Thereby, different measuring depths can be assigned to different spectral segments:
In the segment 535–585nm (Λ2), the measuring depth is least and defines layer 1. The segment

500–535 (Λ1) comprises layers 1 and 2, 585–595nm (Λ3) layers 1, 2 and 3. The segment 595–690nm (Λ4)
additionally comprises layer 4. The segment 690–825nm (Λ5) comprises all layers (1–5), and segment
825–1000nm (Λ6) layers 1–4.

In Λ3, the measuring depth changes very dynamically from layers 3 to 5; therefore, the segment is
further subdivided in Λ3a und Λ3b.

Due to the higher absorption of H2O and fat, the measuring depth is reduced in Λ5 und Λ6 in
comparison to Λ4. Water and fat fractions can only be determined in Λ5, and especially Λ6, with
sufficient reliability.

It has to be emphasized once again that the layers are defined by the measuring depths of the
spectral segments.
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The spectral segments are not strictly fixed, but may be adapted to the actual form of the total
absorbance spectrum, and are therefore overlapping.

The different layers contribute differently to the resulting remission spectrum depending on the
spectral segments. The nonlinear relation between the layer contributions and the remission spectrum
is not explicitly modeled in this framework. Instead, to achieve a separation of the layers, a heuristic
function is introduced describing the “visibility” of a lower layer (layer 2) underlying an upper layer
(layer 1) in a first order linear approximation:

Visibility function fV = f 0
v

(
D2 −D1

D1

)α
R1

βe−a1L1 (3)

where D1 denotes the measuring depth (layer thickness) of layer 1 and D2 of layers 1 and 2, L1 is the
mean path length corresponding to the measuring depth D1, and R1 the remission of layer 1.

In a first approximation, the pathways through layer 2 are only affected in layer 1 by absorption
a1, and therefore, by path length L1 (β = 0). The exponent α, determining the volume portion of layer
2 relative to layer 1, is globally fixed.

The determination of the parameter of the visibility function is based on comparison with Monte
Carlo simulations of two-layer systems.

Because D1 resp. L1 are not known for individual measurements, standard values are defined: L0
1 =

D0
1

f A
D

.

In the first step, for every spectral segment, a numerical adaptation to a homogenous equivalent
system (i.e., a homogeneous, one-layer model with the relevant components) is performed. The
adaptation quality is a measure of the appropriateness of the segment selection, and therefore, for the
layer structure. Inside the segment, the dependence on the measuring depth should be low.

For the approximate determination of the layer contributions, two-layer modeling is performed
successively for the underlying layers:

1. The volume captured by Λ2 is defined as layer 1. From the remission R1(Λ2), the parameters
S1(L2) and ϑ1 L1(L2) (L1(L2) = L0

1) are determined.

2. In Λ1, layer 2 is also captured; the combined remission R12(Λ1) can be presented in the form
R12(L1) = R1(L1) + fV(L1)·R2(L1), with fV as the visibility function. R1(Λ1) results from
S1(L1) and ϑ1 L1(L1), with L1(L1) = fL(L) L0

1.

From the remission spectrum R2(L1) =
R12(L1)−R1(L1)

fV(L1)
, the parameters of layer 2 are determined.

The parameters refer to the path length ∆L2 = L2(L1) − L1(L1) (approximately), and are finally scaled
with respect to the standard value L0

1. a1 L1 in the visibility function is determined using the total
absorbance A(Λ1).

3. In the further segments, i.e., Λ3 etc., the further layers (3, etc.) are successively captured. The
processing is analogue to 2. (R123 = R12 + fV(L3) R3, etc.).

From this result, the component parameters of the layers are (s0, s1, {ϑi L0
1

}
) and the visibility

function fV(Li) (parameter D) for the actual spectral segments is Λi. D is the mean measuring depth of
the actual layer. A depth range [Dmin . . . Dmax] for every layer is stored. With these values and the
global function f A

D (A), the spectral segments can be reconstructed, with A as the absorbance of the
total HES.

4.2.3. Reconstruction of the Spectrum

With the spectral segments, the layer parameters and the visibility function, the complete spectrum
can be reconstructed successively:

1. With Λ2 and the parameters of layer 1, R1(Λ2) is calculated.
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2. With Λ1, the parameters of layer 2, D2(Λ1), R2(Λ1), and A1(Λ1), R12(Λ1) is calculated.

Based on R12, the parameters of HES12(Λ1) are determined.

3. With Λ3 and the parameters of layer 3, R3(Λ3) is calculated from D2(Λ3) and D3(Λ3), as well as
R12(Λ3) and A12(Λ3). With HES12, R123(Λ3) is calculated.

Analogue processing for the further layers.
Consistency: With the model parameters determined by this process, the measured spectrum

can be reproduced nearly perfectly (see Figure 10). This means that the information contained in the
spectrum is practically completely transformed into the model parameters.
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Uniqueness: Generally, there is no unique adaptation maximum in the (model) parameter space,
especially for the spectral segments, except Λ2 and partially Λ5 and Λ6. To reduce potential ambiguity,
the pathway between the actual maximum and the successively following maximum for the next
spectral segment is estimated by additional intermediate segments (not fulfilling the requirement of
quasi-stationarity with respect to the measuring depth). Thereby, the actual valid maximum can be
selected with a higher level of probability.

Principally, in each case, even the global maximum of adaptation cannot be regarded as the “true“
solution due to the limited reality of the modeling system.

4.2.4. Parameters and Confidence Range of Modeling

The parameters vHb und xHbO2 named in the layer model are related to the model parameters:
vHb = ϑH1 L0

1; xHbO2 ≡ x in formula (2).
Because L0

1 is a globally fixed parameter, vHb represents an index value (range [0...2.5]); the
x-values are in the range [0...1].

The physiologically-acceptable variation ranges of the model parameters define the variety of
spectrum forms representable by the model. In the processing procedure, every real spectrum is
proved to be within this confidence range before further processing.

The reproduction quality of the spectrum is a test of consistency.

5. Conclusions

Despite the aforementioned limitations, the presented processing method provides a more
differentiated outcome in relation to the perfusion situation in the layered tissue structure, and
comprehensively utilizes the information content of hyperspectral measuring data.
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The examples show the potential for creating a new, valuable, clinical procedural and investigative
category in different medical fields. The processing is a further step for establishing hyperspectral
imaging in medicine, and considers the measuring conditions and essential requirements for
clinical practicability.

To create a supporting powerful diagnosing system using hyperspectral imaging technology,
model-based data processing has to be complemented by an efficient, knowledge-based method.

6. Further Validations and Developments

A fundamental problem is the lack of reliable and accurate reference methods for detailed
perfusion values in the layers. A systematic comparison with a Monte-Carlo simulation is in progress,
as well as a comparison with spectroscopic measurement methods, enabling control of the measuring
depth, and other methods depicting the layer structure, e.g., OCT.

Methodical progressions concern the improvement of the modeling of radiation transport, the
separation of the layers, and more generally, a reduction of the described limitations.
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