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Abstract 

Circadian regulation of kidney function is involved in maintaining whole-body homeostasis 

and dysfunctional circadian rhythm can potentially be involved in disease development. 

Magnetic Resonance Imaging (MRI) provides reliable and reproducible repetitive estimates of 

kidney function non-invasively without the risk of adverse events associated with contrast 

agents and ionizing radiation. The purpose of this study was to estimate circadian variations in 

kidney function in healthy human subjects using MRI, and relate the findings with urinary 

excretions of electrolytes and markers of kidney function. 

Phase Contrast imaging, Arterial Spin Labeling and Blood Oxygen Level Dependent R2
*-

mapping were used to assess the total renal blood flow and regional perfusion, and intrarenal 

oxygenation in eight female and eight male healthy volunteers every fourth hour during a 24h 

period. Parallel with MRI scans, standard urinary and plasma parameters were quantified. 

Significant circadian variations of total renal blood flow were found over 24h with increasing 

flow from noon to midnight and decreasing flow during the night. In contrast, no circadian 

variation in intrarenal oxygenation was detected. Urinary excretions of electrolytes, osmotically 

active particles, creatinine and urea all displayed circadian variations, peaking during the 

afternoon and evening hours. 

In conclusion, total renal blood flow and kidney function, as estimated from excretion of 

electrolytes and waste products, display profound circadian variations, whereas intrarenal 

oxygenation displays significantly less circadian variation. 

 

Key words: Circadian variation, Kidney function, Magnetic Resonance Imaging, Arterial Spin 

Labeling, BOLD, Healthy volunteers.  
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Introduction 

Many processes in humans and animals, including sleep-wake patterns, cardiac output, blood 

pressure and also numerous renal functions are influenced by circadian rhythm (1). Knowledge 

of daily fluctuations in biological processes was gained early with the first studies published in 

1861 (2, 3). Recent years have seen a growing interest in this field with a steadily increasing 

number of published studies and in 2017 the Nobel prize in Physiology or Medicine was 

awarded for the discovery of specific circadian clock genes. This growing interest has, at least 

in part been driven by the finding that disruption of circadian patterns is associated with disease 

(4, 5). The main pacemaker of the circadian clock is located in the suprachiasmatic nucleus of 

the brain (6). Suprachiasmatic nucleus is controlled by light signals transmitted from the retina 

through the retinohypothalamic tract and is synchronized with the light/dark cycle. The signal 

substance melatonin is synthesized in the pineal gland and released into the blood circulation 

in a circadian rhythm controlled by the suprachiasmatic nucleus (7). The rise in melatonin at 

night has been shown to affect a number of biological processes, to promote sleep and to 

decrease body temperature (8, 9). It has been demonstrated in animal models that melatonin 

alters blood flow to assorted vascular beds by the activation of different melatonin receptors 

(10, 11). Cook et al. demonstrated that melatonin also affects renal blood flow in humans (12). 

Moreover, circadian alterations in glomerular filtration (GFR), tubular reabsorption and tubular 

secretion have been described (5, 13). Mills and Stanbury reported circadian alterations for 

urine flow and urinary excretions of Na+ and K+ (14). A number of different renal mechanisms 

influenced by a circadian rhythm and genetics were highlighted by Solocinski et al. in a review 

from 2015 (15). There are studies demonstrating daily variations of rat kidney oxygenation as 

measured using implanted oxygen electrodes (16, 17). To our knowledge, no previous work has 

studied circadian aspects of intrarenal perfusion and oxygenation in humans. Our research 

group and others have previously shown that non-invasive magnetic resonance imaging (MRI) 
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provides reliable and reproducible biomarkers of kidney function (18-20). In this study, we use 

phase contrast imaging, Arterial Spin Labeling (ASL) and Blood Oxygen Level Dependent 

(BOLD) R2
*-mapping to assess total renal blood flow and regional perfusion, and intrarenal 

regional oxygenation to test the hypothesis that renal blood flow, perfusion and oxygenation 

display circadian variations.  
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Materials and Methods 

Subjects 

The Institutional Review Board of Uppsala University, Sweden, approved all protocols and 

informed consent was obtained from each subject before inclusion in the study. Eight female 

and eight male healthy non-smoking volunteers took part in this study (Table 1). To assure 

normal renal anatomy, all subjects were scanned with ultrasound prior to the study. The 

volunteers were instructed to avoid excessive physical exercise, alcohol, coffee and tea 12h 

prior to the start of the study. The study was performed during four study occasions with four 

participating subjects on each day. The volunteers arrived fasted at 7 am for blood sampling 

and to receive a urine catheter for continuous urine collection. MRI scans of the first, second, 

third and fourth subject commenced at around 8, 9, 10, and 11 am, respectively, hence, the 

study was divided into 6 measurement periods, 08:01-12:00, 12:01-16:00, 16:01-20:00, 20:01-

24:00, 00:01-04:00, and 04:01-08:00. Urine parameters were also followed with a period of 4 

hours. All participants were given three standardized meals including water during the study. 

Breakfast was served between 08:00-09.00, lunch between 12:00-13:00 and dinner between 

17:00-18:00. The subjects were at rest in during the whole examination period and in supine 

position during the night. 

 

Data acquisition 

Subjects were scanned on a 3T MR scanner (Philips, Achieva, Best, The Netherlands). A 16-

channel torso phased array coil together with a spine coil served for signal reception. Subjects 

were positioned supine. Breath-hold balanced turbo field echo images were acquired in axial, 

sagittal and coronal directions to guide subsequent imaging planning for the study. A 

respiratory triggered T2-weighted (T2w) turbo spin echo sequence was used for anatomical 

imaging (echo time (TE) 80 ms, field of view (FOV) 368x259 mm2, acquisition matrix 
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244x247, 11 contiguous slices, slice thickness 5.5 mm, bandwidth/pixel 664 Hz). These images 

were also used for kidney volume assessment. Phase contrast MRI was acquired to measure 

renal artery blood flow using a single slice ECG triggered turbo field echo (TFE) sequence 

(TR/TE 7.8/3.6 ms, FOV 280x144 mm2, matrix 240x140, bandwidth/pixel 382 Hz). Fifteen 

measures of blood flow in the renal arteries were collected across the cardiac cycle during a 

single breath hold (15-20 sec) bilaterally. Regional renal perfusion was quantified using a flow 

sensitive alternating inversion recovery (FAIR) ASL sequence (21). The selective inversion 

slice and a non-selective slab thickness were 25 mm and 400 mm, respectively. A single 

inversion time of 1300 ms was used to allow blood to traverse the vasculature and perfuse the 

kidney. Thirty-two control/label images were collected. To generate a kidney T1 map, three sets 

of images were acquired  at each  of the 300, 400, 600, 800, 1000, 1200, 1400 and 1600 ms 

inversion times using a respiratory-triggered T1-mapping scheme with non-selective slab 

thickness of 400 mm (18). The respiratory-triggered ASL and T1-mapping utilized a balanced 

fast field echo readout scheme (TR/TE 3/1.5 ms, FOV 288x288 mm2, acquisition matrix 96x96 

mm2, bandwidth/pixel 1085 Hz, spatial resolution 2x2x5 mm3). with all measurements 

triggered to be collected at the end of expiration. A multiecho fast field echo (mFFE) sequence 

was used to quantify the blood oxygenation level dependent (BOLD) relaxation rate (R2* = 

1/T2*) (TR 84 ms, FOV 288x288 mm2, initial TE 5 ms, echo spacing 3 ms, 12 echoes, matrix 

192x192, bandwidth/pixel 620 Hz, single breath hold ~17 s) with a matched spatial resolution 

of 2x2x5 mm3. Three multislice fast field echo measurements were collected during three breath 

holds. The total measurement time of the entire session was approximately 40-45 minutes.  

 

Measurement of urinary parameters 

Urine flows were measured gravimetrically, urinary Na+ and K+ concentrations were 

determined by flame spectrophotometry (model IL543, Instrumentation Lab, Milan, Italy) and 
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urine osmolality was determined by freezing point technique (Model 210, The Fiske Micro-

Sample Osmometer Advanced Instruments, MA, USA). Urinary protein concentration was 

determined using DC Protein Assay (Bio-Rad Laboratories, Hercules, CA, USA). Creatinine in 

urine was determined colorimetrically using LabAssayTM Creatinine (Wako Pure Chemical 

Industries, Zurich, Switzerland). Thiobarbituric acid reactive substances (TBARS) were 

analyzed as previously described (22). Briefly, samples were mixed with thiobarbituric acid 

and heated to 97°C for 60 minutes followed by cooling and mixing with methanol containing 1 

mM NaOH. Samples were mixed and centrifuged before supernatant was analyzed for 

florescence using excitation/emission of 532/553 nm. The concentration was derived using a 

standard curve of malondialdehyde.  

Urinary excretion rates was calculated by multiplying urine concentrations with urine flow.  

 

Data processing 

Mean cross-sectional area of the lumen (mm2), mean renal artery flow velocity (cm/s), and 

hence mean renal artery blood flow (ml/s) over a cardiac cycle was computed using the Q-flow 

software package (Philips Healthcare). Regional renal perfusion and T1 maps were computed 

using software (MATLAB, The Mathworks Inc., Natick, MA, USA). to model the calculation 

of rRBF calculation as described by Kwong et al. (23) and Francis et al. (24). R2
* was quantified 

by the Philips Research Integrated Development Environment (PRIDE) software package. A 

single Region of Interest (ROI) encompassing most of the cortical parenchyma was chosen for 

the analysis of renal cortex (Fig. 1B). Mean regional renal perfusion and R2* values were 

evaluated for both kidneys in the cortex, outer and inner medulla. The outer and inner medulla 

was defined as the outer and inner half of the medulla. Mean values of quantified measures in 

the medulla (inner and outer) were calculated from four different ROI positions (Fig. 1B). These 

ROIs were adjusted in size and positioned based on the T2w TSE anatomical image  avoiding 
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any large vessels. ImageJ (NIH, Bethesda, MD, USA) software was used for ROI analysis of 

regional maps. Manual segmentation of the T2w TSE images was used to calculate total kidney 

volume (TKV). Kidney weight was calculated assuming a kidney tissue density of 1.0 g/cm3 

and thereafter global renal perfusion was computed as a ratio of total renal blood flow measured 

from PC-MRI to kidney weight. The Mosteller formula was used to calculate body surface area 

(m2) = body weight (kg) x height (m)/36001/2 (25). 

 

Statistics 

MRI data were tested for normality and are presented as mean±SD. The unpaired Student’s t-

test was used to compare MRI data between gender. Multiple comparisons across time were 

performed using an ANOVA followed by Fishers PLSD test. Correlations were evaluated by 

linear regression (GraphPad Software Inc, La Jolla, CA, USA).  

The analysis of urinary data was divided into six 4h periods (8:01-12:00, 12:01-16:00, 16:01-

20:00, 20:01-24:00, 00:01-04:00 and 04:01-08:00). Mean values were calculated for each 

subject and in each period. Since multiple measurements per subject were available, the data 

were evaluated using a mixed model approach (26) as implemented in the Mixed procedure of 

the SAS software (SAS Institute Inc, Cary, NC, USA). Subject and the subject vs. time 

interaction were regarded as random factors, while time was used as a fixed factor. Post-hoc 

pairwise comparisons were adjusted for multiplicity using Tukey’s method. P<0.05 was 

considered statistically significant.  

Results 

Table 1 summarizes the characteristics of the study subjects. Representative examples of T2-

weighted, regional renal blood flow, and R2* images are shown in Fig. 1A together with typical 

placement of ROIs in Fig. 1B. Mean regional renal perfusion and R2* values in cortex, outer 

and inner medulla over the 24h period for all, female and male study subjects are shown in 
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Table 2. No significant difference in regional renal perfusion was found neither between the 

right and left kidneys nor between the genders. For R2*, no significant difference was found 

between the right and left kidneys but for outer medulla a significant difference was found 

between the genders with slightly higher values in males. Total renal blood flow was quantified 

using PC-MRI in all 16 subjects. Double renal arteries (one right sided, and two left sided) were 

found in three male subjects. In these cases, total renal blood flow was computed by the 

summation of the blood flow through both renal arteries (19). Total renal blood flow was 

significantly different (P=0.05) between genders, 829±149 ml/min and 1168±212 ml/min for 

females and males respectively (average right and left kidney, mean over 24h), but not between 

the right and left kidneys. 

Significant variations of total renal blood flow were found during the course of the 24h both in 

females and males (Fig. 2). Total renal blood flow was increased during the late 

afternoon/evening hours (16:01-20:00) and (20:01-24:00) compared to the early afternoon and 

night. Average cortical, outer and inner medullary regional renal perfusion was 311±44, 84±6, 

and 34±4 ml/min/100 g, respectively (mean over 24h, all subjects). No significant variations in 

cortical, outer or inner medullary regional renal perfusion were found over the period of 24h in 

neither all, female nor male subjects, this is shown summed across right and left kidney in Fig. 

3, however, cortical regional renal perfusion shows a similar pattern of diurnal changes to that 

of total renal blood flow (Fig. 2). Mean renal volume was 173±31 ml (female: 151±20 and 

male: 194±25 ml). No statistical difference in total kidney volume was found between the right 

and left kidneys for a given subject, though a significant difference was found in total kidney 

volume between genders (P0.01). A strong correlation was found between total renal blood 

flow and body surface area (P0.01) when looking at all subjects though this correlation for 

females and males separately did not reach significance (Fig 4). Also, a significant correlation 

was found between total renal blood flow and total kidney volume (P0.001) for all subjects 
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and males but not for females (Fig. 5). Global perfusion as measured from TKV corrected PC-

MRI total renal blood flow showed significant circadian fluctuations when looking at all 

subjects but not for females and males independently (Fig. 6). No significant difference 

regarding global perfusion was found between the genders. Average cortical, outer and inner 

medullary R2* was 16.5±0.8, 25.4±0.8 and 34.1±1.7 s-1 (mean over 24h, all subjects). No 

significant variations in cortical, outer or inner medulla R2* were found over the 24h period 

neither for all, female nor male study subjects (Fig. 7). 

Mean values of urine biomarkers are shown in Table 3. Urine flow reveals significant circadian 

variations with highest values during the afternoon and values dropping during the night hours 

(Fig. 8A). Creatinine clearance demonstrates significant circadian variations with maximum 

values during the evening hours and values dropping during the night (Fig. 8B). Urine urea 

excretion shows a significant difference between the genders with a significant circadian pattern 

with rising values during the day and evening hours and lower values during the night and early 

morning for all and male subjects but not for female subjects (Fig. 9). Na+ excretion also show 

significant differences between the genders and exhibits significant circadian variations with 

maximum values during the evening hours and lower values during the day and night for all 

and male subjects but not for female subjects. (Fig. 10). For tubular Na+ excretion, significant 

circadian changes were seen with values dropping during the night hours (Fig. 11A). Fractional 

Na+ excretion gradually increased during the day and evening and dropped during the night 

(Fig. 11B). K+ excretion showed a significant circadian rhythm with highest values during the 

day and lower values during the morning and evening/night hours (Table 4). Urine osmolality 

excretion reveals a significant circadian pattern with highest values during the evening hours 

and lower values during the morning and night (Table 4). For urine TBARS excretion, no 

significant circadian variation was found (Table 4). Average urine protein excretion showed no 

significant circadian variation (Table 4). Urine creatinine excretion demonstrated significant 
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circadian variations with maximum values during the evening hours and values dropping during 

the night (Table 4).  
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Discussion 

In this study we demonstrate circadian variations in total renal blood flow and global renal 

perfusion in healthy volunteers using completely non-invasive high-resolution magnetic 

resonance imaging. Total renal blood flow was collected in this study using PC-MRI and 

regional blood flow using ASL with a FAIR labelling scheme. Dynamic contrast enhanced MRI 

techniques can also be used to assess regional blood flow, but due to the invasive nature of 

these methods they cannot be used to assess repeated measures over a 24-hour period. Renal 

ASL measures have previously been validated against gold standard methods of para-

aminohippurate clearance, microspheres, ultrasound, and scintigraphy. Our results using PC 

MRI and ASL are concordant with previous findings (19, 27, 28). Further the use of a FAIR 

scheme is in-line with the renal consensus paper, however here we use a bFFE readout rather 

than a single-slice spin-echo EPI readout as this provides higher spatial resolution to select 

ROIs in the cortex, outer and inner medulla. Although previous studies have reported circadian 

variations in several physiological parameters in the mammalians (1, 7), this is, to the best of 

our knowledge, the first indication of circadian variations associated with renal blood flow and 

perfusion in humans. 

Regulation of renal blood flow and glomerular filtration is multifactorial (29), involving both 

neuronal and hormonal control of renal perfusion pressure, vascular tone and tubular handling 

of electrolytes. The sympathetic innervation varies during the day and decreases during sleep 

(30). Cardiac output and arterial blood pressure, controlled in part by sympathetic activity, 

fluctuates with activity level during the day and decreases at night (31, 32), potentially reducing 

renal perfusion. The well-known night time decrease in blood pressure is commonly referred 

to as “nocturnal dipping”. Notably, lack of nocturnal dipping is strongly associated with 

increased cardiovascular risk (33-35). In the kidney, sympathetic activity modulates renin 

release from granular cell located in the distal part of the afferent arterioles, vascular tone of 
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renal resistance vessels and transepithelial tubular Na+ transport (36). Renin release is the rate 

limiting step controlling the angiotensin II signaling, which influences vascular tone and 

extracellular volume via angiotensin II AT1-receptor activation (37). Due to the direct effects 

on renal perfusion pressure and vascular regulation, sympathetic signaling is also directly 

involved in regulation of GFR (38). The effect of sympathetic signaling on tubular Na+ transport 

is mediated via both direct neuronal signaling and via secondary effects of angiotensin II 

signaling to affect tubular transporter activity, location and expression levels (39). The renin 

angiotensin system has been found to be strongly influenced by the sleep/awake cycle (40, 41) 

with markedly elevated levels of renin during sleep, regardless of when sleep occurs (42). Still, 

a diurnal variation in the renin angiotensin system, independent of posture and diet has been 

reported in previous studies (43, 44). 

Vasopressin is a neuropeptide synthesized primarily in the brain that promotes the reabsorption 

of water in the kidneys (45). Besides that, vasopressin is also an important regulator of circadian 

rhythm in the suprachiasmatic nucleus (46, 47), controlled by the light cycle (48, 49). It may 

be speculated that circadian variation in vasopressin levels protects against dehydration during 

the inactive phase of the 24h day cycle when water intake is limited (45). 

Melatonin is another hormone that exhibits significant diurnal variations closely related to the 

circadian fluctuations of sympathetic innervation, renin and aldosterone (40, 50, 51) and it has 

been shown that kidney impairment is associated with alteration in the endogenous melatonin 

rhythm (52). It has also been shown that melatonin can ameliorate chronic kidney disease by 

suppressing the renal renin-angiotensin system (51).  

In this study, we found a significant decrease in renal blood flow, Na+ excretion and urine flow 

during sleep, which is consistent with the increased nocturne levels of renin reported in previous 

studies (40, 41). However, given the detected significant circadian fluctuations in total renal 

blood flow, no significant circadian variation in regional renal perfusion were detected in the 
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present study. For renal cortex perfusion there was a similar pattern as for total renal blood 

flow, although this did not reach statistical significance. It can be seen that the curve for cortical 

regional blood flow (perfusion) resembles that for total renal blood flow, but the change in 

cortical perfusion did not reach statistical significance over time. It should be noticed that 

regional perfusion is computed from voxel-wise fit to the ASL perfusion curve and this will 

have a lower signal change since the regional changes reflects the blood flow per voxel (and 

also involves an individual voxel fit) compared to the total flow through the vessel measured 

using PC-MRI for total blood flow. The lack of medullary regional blood flow variation likely 

relates to the relative insensitivity of the detection technique at these even lower perfusion rates.  

Na+ balance and volume homeostasis are absolutely vital for human life and largely depend on 

normal kidney function (53). In this study, Na+ excretion revealed significant circadian 

variations, peeking during the evening hours with lower Na+ excretions during the day and 

night. Similar circadian variations have previously been shown in human as well as in animal 

studies (14, 54, 55). Decreased Na+ excretion could either be due to decreased tubular Na+ load 

due to decreased glomerular filtration or by increased tubular Na+ reabsorption. Interestingly, 

increased angiotensin II signaling, secondary to increased renin release, would increase Na+ 

reabsorption similarly to the observed low urinary Na+ excretion during night hours. 

Urine production, also under intricate hormonal control (56), has previously been shown 

circadian variations (14, 57), which is more profound in younger subjects (58, 59). Our results 

are in line with these findings showing decreased urine flow during the inactive night hours. 

The kidneys are extremely well-perfused receiving approximately 20-25% of cardiac output 

(60), but extracting only 10-20% of the delivered oxygen (61). All of the blood entering the 

kidney reaches kidney cortex, but only about 10% is perfusing the renal medulla, resulting in 

relative hypoxia in this part of the kidney (62) (63, 64). Interestingly, the renal medulla is 

extremely sensitive to ischemic injury, which is attributed to the high energy demand by the 
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medullary thick ascending limb of the loop of Henle in the relation to the relatively low oxygen 

delivery to this region (63). 

About 80% of total kidney oxygen consumption is attributed to active tubular electrolyte 

transport (65). Therefore, it could be reasonable to assume that renal tissue oxygenation would 

fluctuate with alterations in Na+ reabsorption. Indeed, Emans et al. reported profound circadian 

fluctuations in renal oxygenation with increased intrarenal oxygen levels during dark hours in 

rats (16). However, we could not detect any circadian variation in intrarenal oxygenation, as 

determined by renal R2*, in healthy humans in any region of the kidney. The significant 

difference between females and males found for outer medullary oxygenation is probably due 

to the relatively low number of subjects in each group. Several mechanisms have been proposed 

to protect kidney oxygen homeostasis (66), (67), and intrarenal hypoxia is an acknowledged 

unifying pathway to chronic kidney disease (68). However, it should also be acknowledged that 

renal R2* not only reflects blood oxygenation but is also sensitive to changes in the intrarenal 

blood volume fraction, the oxy-Hb dissociation curve, and haematocrit, as well as non-

physiological measures such as magnetic field inhomogeneities (e.g. due to poor shimming or 

air interfaces) which can also influence the measured R2* value. In future we will explore the 

use of recently validated renal TRUST (T2 -relaxation-under-spin-tagging (TRUST) MRI for 

assessment of renal oxygen delivery and absolute O2 consumption, but this was not available 

at the time of this scan.   

Creatinine clearance and urinary urea excretion dropped during the night, which is in good 

agreement with earlier reports (69), and has been attributed to the rise in vasopressin levels 

during the night.  Glomerular filtration is a complex process (70), involving regulation of 

capillary hydrostatic pressure, permeability of the filtration barrier and tubular hydraulic 

resistance mainly attributed to volume reabsorption of downstream tubular segments. 

Furthermore, the integrity of the filtration barrier, as estimated by urinary leakage of proteins, 
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is one of the best predictors of progression of chronic kidney disease. In the healthy subjects 

included in the present study, urinary protein excretion was border lining detection limit and 

did not display any circadian variation although previous studies have reported a correlation 

between circadian variations in GFR and urinary protein excretion (71, 72). 

Also, the circadian variation in urinary K+ excretion in the present study is in good agreement 

with previous knowledge (14, 73). 

Urinary excretion of TBARS, indicative of oxidative stress status, did not fluctuate during the 

24h. TBARS is commonly used to estimate oxidative stress levels in pathological conditions 

such as diabetes (74) and hypertension (75). Possibly, urinary TBARS excretion may not have 

enough sensitivity to detect normal variations when levels are low. 

The nature of the imaging technique used in the present study inflicts some limitations that 

potentially could influence the results. The study subject had to be placed in the scanner every 

fourth hour, which meant they had to be woken during the normally inactive night hours, 

however they sat upright performing everyday tasks (such as reading and using a computer), 

but avoiding exercise, during the daytime hours. However, the results from the present study 

are in good agreement with previously those reported results, implying that this study design 

did not significantly impact on the outcome. Also we did not collect blood pressure measures 

at each time point, rather this was measured only in the morning, just prior to the first MRI 

scan.  

In conclusion, total renal blood flow and kidney function display distinct significant circadian 

variations, whereas intrarenal oxygenation seems to display significantly less circadian 

variation. This may indicate that tight control of intrarenal oxygen homeostasis is of great 

importance for long-term kidney function. 
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Table 1. Characteristics of the study population. 

 

 

Total 

(N=16) 

Female 

(N=8) 

Male 

(N=8) 

Age (y) 23±4 24±5 23±2 

Body weight (kg) 69±11 63±8 76±11* 

Height (cm) 176±10 169±4 184±9** 

Body mass index (kg/m2) 22.4±1.7 22.0±1,9 22.5±1.6 

Body surface area (m2) 1.84±0.20 1.71±0.12 1.97±0.19** 

Heart rate (bpm) 66±10 69±8 63±11 

Systolic blood pressure (mmHg) 121±11 114±7 127±12* 

Diastolic blood pressure (mmHg) 74±7 72±7 76±6 

Plasma Na+ (mmol/l) 140±1 140±1 141±1 

Plasma K+ (mmol/l) 3.7±0.2 3.7±0.2 3.8±0.2 

Plasma creatinine (μmol/l) 80±18 68±13 92±15** 

Plasma urea (mmol/l) 4.5±1.2 4.2±1.0 4.8±1.3 

Plasma glucose (mmol/l) 5.4±0.6 5.1±0.5 5.8±0.6* 

Serum C-peptide (mmol/l) 0.62±0.16 0.64±0.20 0.60±0.13 

HbA1c (mmol/mol) 34±1 34±1 34±1 

Data presented as mean±SD. * denotes P<0.05 vs female, and ** demotes P<0.01 vs female.  
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Table 2. Mean regional renal blood flow (rRBF) and mean regional renal oxygenation 

(rRenal oxygenation) in the cortex, outer and inner medulla for all, female and male study 

subjects over the 24h period. 

 Cortex 

(N=16) 

Outer medulla 

(N=16) 

Inner medulla 

(N=16) 

rRBF (ml/100g/min) All 

rRBF (ml/100g/min) Female 

rRBF (ml/100g/min) Male 

rRenal oxygenation (R2*; s-1) All 

rRenal oxygenation (R2*; s-1) Female 

rRenal oxygenation (R2*; s-1) Male 

311±58 

322±57 

301±59 

16.5±0.8 

16.3±0.6 

16.7±0.9 

 

 

84±9* 

82±9* 

86±9* 

25.4±0.8* 

25.0±0.6* 

25.9±0.7* 

 

 

34±7*§ 

33±7*§ 

36±7*§ 

34.1±1.6*§ 

33.6±1.4*§ 

34.5±1.8*§ 

Data presented as mean±SD. * denotes P<0.001 vs cortex,  § demotes P<0.001 vs outer medulla 

and  denotes P<0.01 vs female. 
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Table 3. Urinary excretions of electrolytes, osmotically active particles, TBARS, protein, 

creatinine and urea in all study subjects. 

 All subjects 

(N=16) 

Female 

(N=8) 

Male 

(N=8) 

Urine flow (ml/min) 1.6±0.9 1.6±1.0 1.6±0.8 

Urinary Na+ excretion (mmol/min) 0.14±0.07 0.14±0.07 0.15±0.07* 

Urinary K+ excretion (mmol/min) 0.07±0.03 0.06±0.02 0.07±0.03 

Urinary osmolar excretion (mOsm/min) 0.73±0.23 0.64±0.23 0.82±0.20* 

Urinary TBARS excretion (nmol/min) 0.02±0.07 0.04±0.09 0.00±0.00 

Urinary protein excretion (mg/min) 0.01±0.02 0.01±0.02 0.00±0.00 

Urinary creatinine excretion (µmol/min) 8.5±3.3 6.9±3.0 10.3±2.6** 

Urinary urea excretion (mmol/min) 0.40±0.20 0.32±0.21 0.48±0.15* 

Data presented as mean±SD. * denotes P<0.05 vs female, and ** denotes P<0.01 vs female. 
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Table 4. Circadian variations of urinary excretions of K+, osmotically active particles, TBARS, protein and creatinine in all study subjects (N=16 

in all groups). 

Time of day 08:01-12:00 12:01-16:00  16:01-20:00 20:01-24:00 

 

 00:01-04:00 

 

04:01-08:00 

 

Urianry K+ excretion (mmol/min) 0.07±0.01 0.11±0.01 0.09±0.01 0.07±0.01 0.03±0.01 0.03±0.01 

Urinary osmolar excretion (mOsm/min) 0.70±0.06 0.79±0.06 0.80±0.06 0.85±0.06 0.72±0.06 0.62±0.06 

Urinary TBARS excretion (nmol/min) 0.01±0.01 0.01±0.01 0.02±0.01 0.02±0.01 0.01±0.01 0.01±0.01 

Urinary protein excretion (mg/min) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.00±0.00 

Urinary creatinine excretion (µmol/min) 8.50±0.85 8.86±0.85 9.43±0.85 9.64±0.84 7.30±0.87 7.33±0.88 

Data presented as mean±SD.  denotes P<0.05 vs 20:01-24:00,  denotes P<0.05 vs 00:01-04:00,  denotes P<0.05 vs 04:01-08:00,  denotes P<0.01 

vs 12:01-16:00,  denotes P<0.01 vs 16:01-20:00,  denotes P<0.01 vs 20:01-24:00,  denotes P<0.01 vs 00:01-04:00,  denotes P<0.01 vs 04:01-

08:00,  denotes P<0.001 vs 08:01-12:00,  denotes P<0.001 vs 12:01-16:00,  denotes P<0.001 vs 16:01-20:00,  denotes P<0.001 vs 20:01-24:00, 

 denotes P<0.001 vs 00:01-04:00, and  denotes P<0.001 vs 04:01-08:00. 
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Figure legends 

 

Figure 1. A: Representative T2-weighted (anatomical information), regional renal perfusion 

(arterial spin labeling; ASL) and transverse relaxation rate (R2*; blood oxygen level dependent; 

BOLD) oxygenation images. B: Typical positioning of the regional of interest in cortex (red), 

outer (yellow) and inner medulla (green). 

 

Figure 2. Circadian variation in total renal blood flow, data shown for mean and SD of all (A), 

female (B) and male (C) study subjects. 

 

Figure 3. Circadian variation in regional renal perfusion in cortex, outer medulla and inner 

summed across right and left kidney, data shown for mean and SD of all (A), female (B) and 

male (C) study subjects. 

 

Figure 4. Correlations between total renal blood flow and body surface area for all (A), female 

(B) and male (C) study subjects. 

 

Figure 5. Correlations between total renal blood flow and total renal volume for all (A), female 

(B) and male (C) study subjects. 

 

Figure 6. Circadian variation in global renal perfusion shown for mean and SD of for all (A), 

female (B) and male (C) study subjects. 
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Figure 7. Circadian variation in regional renal oxygenation in cortex, outer medulla and inner 

medulla, time points shown the mean and SD across all (A), female (B) and male (C) study 

subjects. 

all study subjects. 

 

Figure 8. Circadian variation in urine flow (A) amd creatinine clearance (B), time points show 

the mean and SD across all study subjects.. 

 

Figure 9. Circadian variation in urinary excretion of Urea. Time points shown the mean and 

SD across all (A), female (B) and male (C) study subjects. 

 

Figure 10. Circadian variation in urinary excretion of Na+. Time points shown the mean and 

SD across all (A), female (B) and male (C) study subjects. 

 

Figure 11. Circadian variation in tubular Na+ transport (A) and fractional Na+ excretion (B), 

time points shown the mean and SD across all study subjects. 
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Figure 1.  
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Figure 2.  
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Figure 3. 

08:01-12:00 12:01-16:00 16:01-20:00 20:01-24:00 00:01-04:00 04:01-08:00

0

100

200

300

400

Time of Day

R
e
g

io
n

a
l 
R

e
n

a
l 
B

lo
o

d
 F

lo
w

 (
m

l/
m

in
/1

0
0
g

)

Cortex

Inner medulla

Outer medulla

08:01-12:00 12:01-16:00 16:01-20:00 20:01-24:00 00:01-04:00 04:01-08:00

0

100

200

300

400

Time of Day

R
e
g

io
n

a
l 
R

e
n

a
l 
B

lo
o

d
 F

lo
w

 (
m

l/
m

in
/1

0
0
g

)

Cortex

Outer medulla

Inner medulla

08:01-12:00 12:01-16:00 16:01-20:00 20:01-24:00 00:01-04:00 04:01-08:00

0

100

200

300

400

Time of Day

R
e
g

io
n

a
l 
R

e
n

a
l 
B

lo
o

d
 F

lo
w

 (
m

l/
m

in
/1

0
0
g

)

Cortex

Outer medulla

Inner medulla

A

C

B



27 

 

Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7.  
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Figure 8. 
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Figure 9. 
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Figure 10. 
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Figure 11.  
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