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Abstract. Searches for primordial gravitational waves have resulted in constraints in a
large frequency range from a variety of sources. The standard Cosmic Microwave Back-
ground (CMB) technique is to parameterise the tensor power spectrum in terms of the
tensor-to-scalar ratio, r, and spectral index, nt, and constrain these using measurements
of the temperature and polarization power spectra. Another method, applicable to modes
well inside the cosmological horizon at recombination, uses the shortwave approximation, un-
der which gravitational waves behave as an effective neutrino species. In this paper we give
model-independent CMB constraints on the energy density of gravitational waves, Ωgwh

2,
for the entire range of observable frequencies. On large scales, f . 10−16 Hz, we reconstruct
the initial tensor power spectrum in logarithmic frequency bins, finding maximal sensitivity
for scales close to the horizon size at recombination. On small scales, f & 10−15 Hz, we use
the shortwave approximation, finding Ωgwh

2 < 1.7×10−6 for adiabatic initial conditions and
Ωgwh

2 < 2.9 × 10−7 for homogeneous initial conditions (both 2σ upper limits). For scales
close to the horizon size at recombination, we use second-order perturbation theory to calcu-
late the back-reaction from gravitational waves, finding Ωgwh

2 < 8.4× 10−7, in the absence
of neutrino anisotropic stress and Ωgwh

2 < 8.6 × 10−7 when including neutrino anisotropic
stress. These constraints are valid for 10−15 Hz & f & 3× 10−16 Hz.
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1 Introduction

Primordial gravitational waves (PGWs) offer a revelatory breakthrough for our knowledge
of the physics of the early universe, but are currently unobserved. There are two possible
sources for them: those produced during inflation, and those produced between the end
of inflation and Big Bang Nucleosynthesis (BBN). For standard models of inflation, metric
perturbations give rise to an almost scale invariant spectrum of PGWs, directly related to
the energy scale of inflation. These result in a characteristic B-mode polarization signal in
the Cosmic Microwave Background (CMB), which has been constrained by the Planck and
BICEP2/Keck experiments [1, 2].

A number of post inflationary mechanisms could also result in the production of PGWs
(see e.g. [3] for a recent review). Some of these processes include: (1) During the reheating
phase, the non-perturbative excitation of fields can result in a stochastic background of
gravitational waves, with a well defined peak at f ∼ 107-108 Hz (see [4] for examples of GW
production during preheating in a series of inflationary models); (2) If the curvature power
spectrum has large, broad peaks on small scales, the production and merger of Primordial
Black Holes (PBHs) can lead to a background within the range of direct detection experiments
(for a recent review see [5]); (3) A network of cosmic strings (or other topological defects)

– 1 –



can give rise to a background at lower frequencies. There are two sources from strings: the
irreducible emission from the time-evolution of the energy momentum tensor during scaling,
and the production and subsequent decay of cosmic string loops. There is still some debate
in the literature as to the bounds placed on the string parameters, as they vary depending
how the network evolution is modelled. However, the key property that is constrained is the
combination of the string tension µ and Newton’s constant G. For the most recent bounds
arising from a search in the 102 Hz region for an isotropic stochastic background of GWs
from the LIGO/VIRGO collaboration see [6]. Depending on the model, the bound varies
between Gµ/c2 ≤ 1.1 × 10−6 to Gµ/c2 ≤ 2.1 × 10−14. A different complementary set of
bounds can be obtained using the pulsar timing limits which give for the two string models,
Gµ/c2 ≤ 1.6 × 10−11 to Gµ/c2 ≤ 6.2 × 10−12 [7]. The wide variety of processes means
it is important to constrain the energy density of gravitational waves, Ωgwh

2, for the entire
range of observable frequencies. Limits can be obtained using observations from BBN, pulsar
timing, gravitational wave interferometers and the CMB.

Measurements of the CMB temperature and polarization power spectra can be used to
constrain Ωgwh

2. For single-field slow-roll models of inflation, the initial spectrum of tensor
perturbations is well approximated by a power-law, parameterised by the tensor-to-scalar
ratio, r, and spectral index, nt, and is directly related to Ωgwh

2. This provides a limit on
PGWs in the frequency range f . 10−16 Hz. At higher frequencies, the expected signal can
be extrapolated, assuming the power-law is valid across many decades in scale. However, the
assumption of a power-law across a large frequency range was shown to introduce sizeable
errors on the scales probed by interferometers [8]. In this work we did not assume a power-
law, instead directly reconstructing the tensor power spectrum in logarithmic frequency bins
using the latest data from Planck and BICEP2/Keck.

Primordial gravitational waves also have an effect on small-scale CMB anisotropies,
through the back-reaction of tensor fluctuations on the cosmological background. The stan-
dard approach relies on the so-called shortwave approximation, which is valid for modes well
inside the cosmological horizon [9–14]. Under this approximation, the energy-momentum ten-
sor has an equation of state w = 1/3, and so acts as an effective relativistic neutrino species.
In this paper we provide the most recent constraints using the shortwave approximation,
considering both adiabatic and homogeneous initial conditions for the PGW perturbations.

For scales close to the horizon size at recombination, the shortwave approximation is no
longer valid. No constraints on PGWs from the back-reaction of tensor fluctuations currently
exist for these scales. In this work we use the approach of [15], which shows that the effective
energy-momentum tensor of super-Hubble modes has the form of a fluid with equation of
state w = −1/3. There is a calculable transition period between the w = −1/3 super-Hubble
regime and the sub-Hubble w = 1/3 regime. Consequently a constraint can be found that
isn’t restricted to sub-Hubble gravitational waves.

The structure of the paper is as follows. In section 2 we review previous constraints on
PGWs from CMB polarisation and from CMB temperature anisotropies. In section 3 we give
model independent limits on the low-frequency reconstruction of the tensor power spectrum.
Section 4 updates previous constraints that use the shortwave approximation using Planck
2018 data. In section 5 a constraint is found in the intermediate regime using an expression
for the gravitational wave energy momentum tensor that is valid on all scales.1 In section 6
we give conclusions.

1We label these three regimes constrained by the CMB as low, intermediate and high frequency, although
compared to other methods used to constrain gravitational waves they would all be classed as low frequency.

– 2 –



2 Previous CMB constraints on PGWs

2.1 Constraints from B-mode polarisation

Inflation is predicted to produce gravitational waves with both E and B-mode polarisation,
but primordial density perturbations do not result in B-modes. Searches for inflationary
gravitational waves have therefore focused on detecting B-mode polarisation of the CMB
(see [16] and references therein). However, there are still significant contaminants to B-mode
observations, such as gravitational lensing along the line of sight and galactic foregrounds,
which need to be accurately modelled before constraints on cosmological parameters can be
found.

When the scalar and tensor primordial power spectra have conventional power-law pa-
rameterisations, the tensor-to-scalar ratio rk is defined as the ratio of amplitudes evaluated
at scale k. This is used preferentially to the tensor amplitude At by convention, but because
the scalar amplitude As is well determined, by for example Planck [17], they can be inter-
changed easily. The current best constraint on the tensor-to-scalar ratio is r0.002 < 0.056 at
95% confidence level when combining Planck 2018, BICEP2/Keck data and Baryon Acoustic
Oscillations (BAO) [1, 2].

A constraint on the tensor-to-scalar ratio r can be converted to the gravitational wave
density parameter using eq. (4) of [7]. In terms of k and the tensor power spectrum, PT (k),
the gravitational wave density parameter as a function of frequency is,

Ωgw(k)h2 =
3

128
Ωrh

2PT (k)

[
1

2

(
keq

k

)2

+
16

9

]
. (2.1)

Here h contains the uncertainty in the Hubble parameter, H0 = 100h km s−1Mpc−1, Ωr is
the density of relativistic species and keq =

√
2H0Ωm/

√
Ωr, for matter density Ωm, is the

wavenumber of a mode that enters the horizon at matter-radiation equality.

For single-field slow-roll models of inflation the tensor primordial power spectrum is well
approximated at low-frequencies by,

PT (k) = rAs

(
k

k∗

)nt

, (2.2)

where the standard value for the pivot scale, k∗ = 0.05 Mpc−1 and nt is the tensor spectral
tilt. In slow-roll models there is a consistency relation, nt = −r/8, so inflation predicts a
slightly red-tilted spectrum with −0.007 < nt < 0 (95% confidence).

Conversions between frequencies and wavenumbers are done using,

f = (1.55× 10−15 Hz Mpc)× k , (2.3)

where the numerical factor comes from the speed of light and the definition of a parsec.
Using the recent Planck and BICEP2/Keck constraint of r0.002 < 0.056 , Ωgwh

2 ranges from
1.9× 10−13 to 7.4× 10−17 for frequencies 3.4× 10−19 Hz to 2.1× 10−17 Hz respectively.

2.2 Constraints from temperature anisotropies

In the shortwave approximation, primordial gravitational waves behave like massless neutri-
nos and therefore contribute to the effective number of relativistic degrees of freedom, Neff.
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Assuming adiabatic initial conditions, Ωgwh
2 can be calculated directly from Neff as

Ωgwh
2 =

∫ ∞
0

d(log f)h2 Ωgw(f)

' 5.6× 10−6 (Neff − 3.046) = 5.6× 10−6Ngw , (2.4)

where it has been assumed that the standard model value Neff = 3.046 holds in the absence
of primordial gravitational waves. The constant in (2.4) comes from the definition of Neff,

ρr = ργ

[
1 +

7

8

(
4

11

)4/3

Neff

]
, (2.5)

where ρr is the energy density of all relativistic species and ργ is the energy density of
photons. Consequently, the conversion factor between the density parameter and the number
of gravitational wave degrees of freedom is

7

8

(
4

11

)4/3

Ωγh
2 = 5.605× 10−6 . (2.6)

The combination of Planck 2018 + BAO data give a constraint of Neff = 2.99+0.34
−0.33 (2σ) [17],

which, using the upper limit, corresponds to Ωgwh
2 < 1.6× 10−6 (although a proper analysis

should use Ωgwh
2 with a prior Ωgwh

2 ≥ 0).
In this approximation, the perturbations of gravitational waves are identical to those

of massless neutrinos, and are described by their density, δgw, velocity, θgw, shear, σgw, and
higher-order moments, with fluid equations given by Eqs. (4.7a). It is possible that these
could have non-adiabatic initial conditions, depending on the source of PGWs. Adiabatic
initial conditions would be the sensible choice if primordial gravitational waves were a ther-
malised particle species produced by the decay of the inflaton, however most known sources
of a cosmological gravitational wave background, including quantum fluctuations during in-
flation, reheating and cosmic strings produce an unperturbed background (see [3] section 4.1
or [18] section 22.7.2). Consequently the second choice of gravitational wave initial condi-
tions, homogeneous initial conditions, have no initial density perturbation (in the Newtonian
gauge). In this case the gravitational wave perturbations evolve differently to the neutrino
perturbations and consequently the degeneracy between Ωgw and Neff is broken.

[19] details how CMB temperature anisotropies can be used to constrain short wave-
length gravitational waves for both adiabatic and homogeneous initial conditions, using ob-
servations from WMAP (first-year), SDSS and the Lyman-α forest. Tighter constraints are
seen for homogeneous gravitational waves compared to adiabatic gravitational waves by a
factor of ≈ 5 − 10. These constraints have been updated using WMAP seven-year data,
finding Ωgwh

2 < 8.7×10−6 for adiabatic and Ωgwh
2 < 1.0×10−6 (both 2σ) for homogeneous

gravitational waves [20]. The adiabatic result has been obtained for Planck 2015 data [21–
23], finding Ωgwh

2 < 1.7× 10−6, but the homogeneous result has not been recently updated.
All of these CMB constraints are smaller but are of the same order of magnitude as BBN
constraints, but are valid to lower frequencies owing to the larger horizon size by the time of
recombination.

3 Low frequencies . 10−16 Hz

Rather than assume a power-law spectrum (2.2), we reconstruct PT (k) in logarithmic fre-
quency bins, between a minimum and maximum wavenumber of log10 [kMpc] = −3.5 and
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−0.3 respectively, with an interval of ∆ log10 [kMpc] = 0.2. Outside of this range, the tensor
transfer functions have very little sensitivity, so we set PT (k) to the lower and upper bin
values.

We use Planck 2018 data [17] in combination with baryon-acoustic oscillation (BAO)
data from the Baryon Acoustic Oscillation Survey (BOSS) DR12 [24], 6dF Galaxy Survey
(6dFGS) [25] and Sloan Digital Sky Survey ‘main galaxy sample’ (SDSS-MGS) [26]. This
corresponds to the TT,TE,EE + lowE + lensing + BAO data-set used in [17]. The precise
Planck likelihoods used are the TT, TE and EE spectra at l ≥ 30, the low-` likelihood using
the Commander component separation algorithm [27] and the low−l EE likelihood from
the SimAll algorithm in combination with Planck 2018 lensing.

Although Planck measured the CMB polarization over the full sky, the sensitivity for
intermediate angular scales can be improved by using results from the BICEP2/Keck Array,
with bandpowers in the range 20 < ` < 330. We use the most recent analysis from [2], which
includes new data from the Keck array at 220 GHz.

For the low-frequency reconstruction, we assume an otherwise standard LCDM model,
with adiabatic scalar perturbations parameterised by a power-law spectrum with scalar ampli-
tude As and spectral index ns. We assume three neutrinos species, two of these massless and
a single massive neutrino with mass 0.06 eV. The other model parameters are the baryon den-
sity ωb ≡ Ωbh

2, the cold dark matter density ωc ≡ Ωch
2, the Hubble parameter H0, and the

optical depth to reionization τ . We assume flat priors on these parameters, and marginalise
over the standard nuisance parameters in the Planck and BICEP2/Keck likelihood codes.

We perform Metropolis-Hastings Markov-chain Monte Carlo (MCMC) using a modified
version of the Cobaya and camb codes [28].2 We run four MCMC chains, stopping them
when the Gelman and Rubin R − 1 statistic is < 0.05. The sampling is done on the power
spectrum, PT (k). Ωgw(k)h2 is added as a derived parameter using eq. (2.1) to include the
variation of all the necessary variables. The posterior probabilities for each of the 16 bins are
shown in figure 1. The 2σ upper limits for each of the 16 bins are used as the low-frequency
constraint and are shown in figure 2. There is maximal sensitivity for scales scales close
to the horizon size at recombination, and due to the decay of modes once they enter the
horizon, these limits become much weaker for f & 10−16 Hz. A similar result was recently
found in [29]. Above these frequencies, tighter constraints come from the second order result
described in section 5. For comparison, we also plot an inflationary model with the Planck
and BICEP2/Keck upper bound of r0.002 < 0.056 and nt = −0.007.

4 High frequencies & 10−15 Hz

The effective energy-momentum tensor for gravitational waves in the short wavelength limit
is [13, 14]

T (gw) ν
µ =

1

32πG
〈hαβ|µh

αβ|ν〉 , (4.1)

where straight lines denote covariant derivatives with respect to the background metric and
hµν is the tensor perturbation to the conformal FLRW background metric, defined by,

ds2 = −a2(τ) dτ2 + a2(τ)(δij + hij) dxi dxj , (4.2)

2Cobaya is available from https://github.com/CobayaSampler/cobaya.
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Figure 1. Posterior probabilities of the gravitational wave density parameter for each logarithmic
k-bin used for the low-frequency polarisation constraint. The bins are numbered from log10 [kMpc] =
−3.5 and increase in steps of 0.2. The final bin, with −0.5 ≤ log10 [kMpc] < −0.3, is unconstrained
and is not shown. The 95% confidence limits of each posterior are used for the constraint in figure 2.
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Figure 2. CMB constraints on the gravitational wave density, Ωgwh
2, as a function of the wavenum-

ber, k, and frequency, f . The filled green bars show constraints from a reconstruction of PT (k) in
logarithmic frequency bins, and the dashed green line shows a slow-roll model with the Planck and BI-
CEP2/Keck upper bound of r0.002 = 0.056 and nt = −0.007. Shortwave constraints for adiabatic and
homogeneous initial conditions are shown in red and orange (solid) respectively. The second-order
back-reaction result (of section 3) for a steep source, including neutrino anisotropic stress (NAS),
which we apply to scales between k = 0.1 Mpc−1 and k = 1 Mpc−1, is shown in blue (dot-dash).
The constraints for delta-function sources are shown as magenta stars. A constraint from BBN [30]
(black dashed) is also shown for comparison. The second-order back-reaction and shortwave results
are integrated constraints across the given frequency range.

where τ is the conformal time and a(τ) is the scale factor. The angled brackets 〈. . .〉 denote
averaging over many wavelengths. We now illustrate that PGWs in this limit act like a
massless neutrino species.

The shortwave approximation (SWA) states that the perturbation is well inside the
horizon and that it is oscillating much faster than the background time-scale, so we can as-
sume that the background is approximately flat. Consequently, covariant derivatives become
partial derivatives;

T (gw) ν
µ =

1

32πG
〈hαβ,µhαβ,ν〉 . (4.3)

Furthermore, the equation of motion becomes

h α
µν,α = 0 . (4.4)
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Considering plane waves along z the solutions of the equation of motion depend on the re-
tarded time τ−z and consequently spatial and temporal derivatives are equivalent. Therefore
the trace of the energy-momentum tensor

T (gw) =
1

32πGa2

(
〈hij,khij,k〉 − 〈hij,τhij,τ 〉

)
= 0 , (4.5)

which implies that the equation of state wgw = 1/3, as for massless neutrinos. The full
solution is a sum of plane waves of positive and negative frequencies along all three spatial
directions (such that the full solution is isotropic), but this argument applies to each of these
spatial directions separately.

4.1 Initial conditions

The calculation of adiabatic initial conditions for a universe containing photons, neutrinos,
cold dark matter and baryons with linear perturbations is detailed in [31] (section 7). The
initial conditions for non-adiabatic modes were calculated in [32]. The general methodology
is to solve the perturbed Einstein and conservation equations in series solutions for small kτ ,
where k is the wavenumber of the mode under consideration and τ is the conformal time.
Matching the coefficients of the expansion gives the initial conditions for the full solution of
the set of differential equations.

This was performed in the synchronous gauge for the above system with the addition
of gravitational waves with density (δgw), velocity (θgw), and shear (σgw) perturbations.
The gravitational wave perturbations are expanded as for the other species, for example the
gravitational wave density perturbation is expanded as

δgw =

∞∑
n=0

aδn(kτ)n , (4.6)

where the coefficient, aδn, along with the coefficients for the other species and perturbations,
are the quantities we want to determine to establish the early time behaviour. We have
four equations from the Einstein equations and a set of fluid conservation equations for each
species [31]. For SWA gravitational waves these fluid equations are

δ̇gw +
4

3
θgw +

2

3
ḣ = 0 , (4.7a)

θ̇gw −
1

4
k2(δgw − 4σgw) = 0 , (4.7b)

σ̇gw −
2

15
(2θgw + ḣ+ 6η̇) = 0 , (4.7c)

where h and η are the synchronous gauge metric perturbations and dots denote differentiation
with respect to conformal time.

As mentioned previously the adiabatic mode has gravitational wave perturbations iden-
tical to the neutrino perturbations. For the homogeneous mode there is one free parameter
in the set of coefficients which is fixed by transforming to the Newtonian gauge using the
well-known transformation relations (see [31]) and enforcing the condition that the zeroth
order gravitational wave density coefficient is zero, ãδ0 = 0 (where the tilde denotes that
this condition is imposed in the Newtonian gauge). The resulting adiabatic, homogeneous
and gravitational wave isocurvature modes are shown in table 1. The fractional contribution
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to the radiation density Ri = ρi/
(∑

j ρj
)

for i, j = γ, ν, gw. The perturbations have their
standard definitions (and have a tilde in the Newtonian gauge), as do the metric perturba-
tions. The behaviour of gravitational wave perturbations for the well-known adiabatic mode
and neutrino density isocurvature mode are given along with the homogeneous gravitational
wave mode and two new modes, the gravitational wave velocity isocurvature mode and the
gravitational wave shear isocurvature mode.

The homogeneous mode calculated here differs from the one quoted in [33] and conse-
quently the one used in [19]. This is for two main reasons; firstly, the gravitational wave
density perturbations are not assumed to be sub-dominant to those for photons and neu-
trinos and secondly, and more importantly, because the homogeneous mode quoted in [33]
is a linear sum of the homogeneous mode given here and the neutrino density isocurvature
mode. In the homogeneous mode of [33] the photon and neutrino density perturbations are
assumed equal. We make no such assumption but can obtain the same mode by combining
the homogeneous and neutrino density isocurvature modes given in table 1. The combination
of these two modes can be done in the initial condition correlation matrix [32] to give an
equivalent result but it is the homogeneous mode given here that is the true independent
mode for gravitational waves. Because of this, small differences between the results of [19]
and this analysis should be expected for the homogeneous mode, even for the same data.

To calculate the CMB power spectrum we modified the camb code to include the
gravitational wave equations of motion, by duplicating the massless neutrino equations, and
setting the initial conditions according to table 1. The changes in the CMB power spectrum
when including adiabatic or homogeneous gravitational waves are shown in figure 3. The
contributions from the Sachs–Wolfe effect (SW) [34], integrated Sachs–Wolfe effect (ISW)
and Doppler shift (DOP) are shown separately, along with the cross-correlations between
them. The most noticeable difference between the adiabatic and homogeneous cases is that
homogeneous gravitational waves decrease the total power whereas adiabatic gravitational
waves increase the total power. This is because the homogeneous gravitational wave and
photon perturbations are out of phase with each other when inside the horizon due to the
initial conditions having opposite signs (see table 1).

Including adiabatic gravitational waves has a very small effect on the Doppler term.
Most of the change in the first peak of the power spectrum is due to the SW effect and the
SW-ISW cross-correlation. This is also true for the homogeneous mode with the addition of
a large change in the low-` part of the spectrum, driven by the SW, SW–ISW and Doppler
terms. The enhancement of the first peak and the decrease at low-` is a background effect
(i.e. still observable when the gravitational wave perturbations are turned off).

It is also worth noting the behaviour of the new modes. For the gravitational wave
shear isocurvature mode the neutrino and gravitational wave shear both have zero order
initial conditions but they balance in such a way that the right-hand side of the relevant
perturbed Einstein equation (∝

∑
iRiσi) is zero. This is also true for the density and

velocity perturbations such that there are no initial metric perturbations (in synchronous
or Newtonian gauge). Because of this all perturbations other than those for neutrinos and
gravitational waves stay zero for all times. Using the line-of-sight integral approach of [35] it
is clear that there will be no contribution to the CMB power spectrum from the shear mode.

The gravitational wave velocity isocurvature mode is the analogue of the neutrino ve-
locity isocurvature mode and consequently behaves very similarly. In the Newtonian gauge
densities and potentials have terms that go as 1/(kτ). This is a consequence of the Newtonian
gauge being inadequate when there is a non-zero anisotropic stress and does not mean that
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Figure 3. The different contributions to the CMB power spectrum for adiabatic (top) and homoge-
neous (bottom) gravitational waves. The full Cl’s are shown along with contributions from the Sachs–
Wolfe (SW), integrated Sachs–Wolfe (ISW) and Doppler terms, along with their cross-correlations.

the perturbations diverge as kτ → 0 [32]. Similarly, there is a gravitational wave density
isocurvature mode not shown in table 1 that is a direct analogue of the neutrino density
isocurvature mode.

Baryon and cold dark matter perturbations are included in table 1 though the baryon
velocity is not shown as θb = θγ , due to the tight-coupling of baryons and photons at early
times [32]. The baryon and dark matter perturbations behave similarly with and without
gravitational waves for all modes considered here. The baryon isocurvature mode is not
shown.

Isocurvature modes are well constrained by current CMB observations such that we will
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only consider constraints to the adiabatic and homogeneous modes here [1].

4.2 Parameter constraints

To obtain limits on the density of gravitational waves our modified version of camb [36] was
integrated into the cosmological parameter estimation code CosmoMC [37] to perform an
MCMC analysis.

We use the same data as in section 3, but do not include tensor modes and hence
BICEP2/Keck data. The base cosmology is an otherwise standard ΛCDM model, with the
addition of Ωgwh

2. We obtain the following 95% upper limits on the gravitational wave
density parameter;

Ωgwh
2 < 1.7× 10−6 (Shortwave, adiabatic) , (4.8)

Ωgwh
2 < 2.9× 10−7 (Shortwave, homogeneous) . (4.9)

These constraints can be seen in figure 2, along with the Big Bang Nucleosynthesis (BBN)
constraint from [30], the low-frequency constraint of section 3 and the intermediate frequency
constraint of section 5. The CMB constraints extend to much lower frequencies than those
from BBN – the exact range of validity for the shortwave approximation is discussed in
section 5.2. Note that these results, in contrast to the direct reconstruction, are integrated
constraints across the range of frequencies.

5 Intermediate frequencies 10−15 Hz & f & 10−16 Hz

In order to consider gravitational waves without the restriction of the shortwave approxima-
tion (SWA), the work of [15, 38] is closely followed. Here the effective density and pressure of
PGWs are calculated using the second order back-reaction of the tensor fluctuations on the
metric. The second order part changes the zeroth order (or background) Einstein equations,
modifying the Friedmann and continuity equations.

Expanding the Einstein equations to second order and averaging over all space (the
spatial average of the linear terms are zero by definition),

G̃µν + 〈δ(2)Gµν〉 = 8πG
(
T̃µν + 〈δ(2)Tµν 〉

)
, (5.1)

where G̃µν and T̃µν are the background Einstein and energy-momentum tensors respectively,
and δ(2)Gµν and δ(2)Tµν are the second order perturbations to the Einstein and energy-
momentum tensor respectively. This allows an effective energy-momentum tensor, τµν to be
defined,

τµν =
1

8πG

(
8πG〈δ(2)Tµν 〉 − 〈δ(2)Gµν〉

)
. (5.2)

In general the choice of gauge is important when calculating the effective energy-
momentum tensor, but since the tensor perturbation hij in the transverse-traceless gauge
defined in eq. (4.2) is gauge-invariant, this will not be a problem (see [15] for details).
Consequently, in vacuum, the evaluation of the effective energy-momentum tensor for GWs
simplifies to evaluating the perturbed Einstein tensor,

τµν = − 1

8πG
〈δ(2)Gµν〉 , (5.3)

– 11 –



Adiabatic Homogeneous Neut. Dens. IC GW Vel. IC GW. Shear IC

h 1
2k

2τ2 1
2k

2τ2 O(k3τ3) O(k3τ3) O(k3τ3)

η 1− (9−4Rγ)
12(19−4Rγ)k

2τ2 1− (9−4Rγ+4Rgw)
12(19−4Rγ+4Rgw)k

2τ2 − Rν
6(19−4Rγ+4Rgw)k

2τ2 − 4Rgw

3(9−4Rγ)kτ O(k3τ3)

δγ −1
3k

2τ2 −Rgw

Rγ

20
(19−4Rγ+4Rgw) − Rν(19−4Rγ)

Rγ(19−4Rγ+4Rgw)
4Rgw

3Rγ
kτ O(k3τ3)

θγ O(k4τ3) −Rgw

Rγ

5
19−4Rγ+4Rgw

k2τ − Rν(19−4Rγ)
4Rγ(19−4Rγ+4Rgw)k

2τ −Rgw

Rγ
k + 1

6
Rgw

Rγ
k3τ2 O(k4τ3)

δν −1
3k

2τ2 −1
3k

2τ2 1− 1
6k

2τ2 O(k3τ3) −2Rgw

3Rν
k2τ2

θν O(k4τ3) O(k4τ3) 1
4k

2τ
8Rgw

15(9−4Rγ)k
3τ2 Rgw

Rν
k2τ

σν
2

3(19−4Rγ)k
2τ2 2

3(19−4Rγ+4Rgw)k
2τ2 15+8Rgw

30(19−4Rγ+4Rgw)k
2τ2 − 16Rgw

15(9−4Rγ)kτ −Rgw

Rν
+

Rgw

Rν

2
15k

2τ2

δgw −1
3k

2τ2 20
19−4Rγ+4Rgw

4Rν
19−4Rγ+4Rgw

−4
3kτ

2
3k

2τ2

θgw O(k4τ3) 5
19−4Rγ+4Rgw

k2τ Rν
19−4Rγ+4Rgw

k2τ k −k2τ

σgw
2

3(19−4Rγ)k
2τ2 4

3(19−4Rγ+4Rgw)k
2τ2 Rν

15(19−4Rγ+Rgw)k
2τ2 4

15

(
1− 4Rgw

9−4Rγ

)
kτ 1− 2

15k
2τ2

δc −1
4k

2τ −1
4k

2τ O(k3τ3) O(k3τ3) O(k3τ3)

δb −1
4k

2τ −Rγ(19−4Rγ)+2Rgw(2Rγ−5)
4Rγ(19−4Rγ+4Rgw

k2τ
Rν(19−4Rγ)

8Rγ(19−4Rγ+4Rgw
k2τ2 Rgw

Rγ
kτ O(k3τ3)

δ̃γ − 20
19−4Rγ

− 20(Rγ+Rgw)
Rγ(19−4Rγ+Rgw) − Rν(19−8Rγ)

Rγ(19−4Rγ+4Rgw)
16Rgw

9−4Rγ

1
kτ O(kτ)

θ̃γ
5

19−4Rγ
k2τ

5(Rγ−Rgw)
Rγ(19−4Rγ+4Rgw)k

2τ − 19Rν
4Rγ(19−4Rγ+4Rgw)k

2τ − 9Rgw

Rγ(9−4Rν)k O(k3τ2)

δ̃ν − 20
19−4Rγ

− 20
19−4Rγ+4Rgw

23−8Rγ

19−4Rγ+4Rgw

16Rgw

9−4Rγ

1
kτ O(kτ)

θ̃ν
5

19−4Rγ
k2τ 5

19−4Rγ+4Rgw
k2τ

15+8Rgw

4(19−4Rγ+4Rgw)k
2τ − 4Rgw

9−4Rγ
k

Rgw

Rν
k2τ

δ̃gw O(kτ) O(kτ) O(kτ)
16Rgw

9−4Rγ

1
kτ O(kτ)

θ̃gw O(k3τ2) 10
19−4Rγ+4Rgw

k2τ − 2Rν
19−4Rγ+4Rgw

k2τ
Rgw(9−4Rγ−4Rgw)

9−4Rγ
k −k2τ

δ̃c − 15
19−4Rγ

− 20
19−4Rγ+4Rgw

4Rν
19−4Rγ+4Rgw

16Rgw

(9−4Rγ)
1
kτ O(kτ)

θ̃c
5

19−4Rγ
k2τ 5

19−4Rγ+4Rgw
k2τ − Rν

19−4Rγ+4Rgw
k2τ -

4Rgw

(9−4Rγ)k O(k3τ2)

δ̃b − 15
19−4Rγ

− 20
19−4Rγ+4Rgw

4Rν
19−4Rγ+4Rgw

16Rgw

(9−4Rγ)
1
kτ O(kτ)

Φ
14−4Rγ

19−4Rγ

14−4Rγ+4Rgw

19−4Rγ+4Rgw
− 2Rν

19−4Rγ+4Rgw

4Rγ

9−4Rγ

1
kτ O(kτ)

Ψ 10
19−4Rγ

10
19−4Rγ+4Rgw

Rν
19−4Rγ+4Rgw

− 4Rγ

9−4Rγ

1
kτ O(kτ)

Table 1. Initial conditions on synchronous gauge (top) and Newtonian gauge quantities (bottom -
with tildes) to second order in kτ (in the synchronous gauge) for the modes relevant to the gravitational
wave (GW) analysis. The adiabatic and neutrino density isocurvature (IC) modes are well known
and are extended here to include gravitational wave initial conditions. The homogeneous mode is the
same as the homogeneous mode of [33], except for a decoupling of the neutrino density isocurvature
mode, while the gravitational wave velocity IC and gravitational wave shear IC modes are new. There
is a gravitational wave density IC mode that is a rescaling of the neutrino density IC mode and is not
shown. The gravitational wave and neutrino shears are not given in the Newtonian gauge as the shear
is gauge-invariant and hence unchanged. The baryon velocity is not shown in either gauge as θb = θγ ,
due to the tight-coupling when the initial conditions are set [32] and θc is zero in the synchronous
gauge [31].
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whose components are τµν = diag
(
−ρgw, p̄gw, p̄gw, p̄gw

)
. The off-diagonal terms are zero

under averaging, assuming an isotropic source of PGWs. Bars are put on the pressure here
as considerations of the conservation of the total energy-momentum tensor show that there
is a term missing in p̄gw when calculated using eq. (5.3) [15, 39].

The evaluation of the effective energy-momentum tensor can be done using eq. (35.58b)
of [14]. Eq. (5.3) is very similar to eq. (35.61) of [14],

T (GW )
µν = − 1

8πG

(
〈R(2)

µν (h)〉 − 1

2
g̃µν〈R(2)(h)〉

)
, (5.4)

where R
(B)
µν and R

(2)
µν (h) are the background and second-order Ricci tensors respectively and

g̃µν is the background metric. However, in this analysis the average is a spatial average, not
over many wavelengths, so can be applied to super-horizon modes.

For the transverse-traceless perturbation defined in eq. (4.2) the components of the
perturbed Einstein tensor are,

G(2) 0
0 =

1

4a2

(
1

2
ḣkmḣkm + 4Hhkmḣkm − 2hkmh f

km,f + hkm,jhkj,m −
3

2
hkm,jhkm,j

)
,

(5.5)

G(2) 0
i =

1

4a2

(
−ḣkmhkm,i − 2hkmḣkm,i + 2hkmḣik,m

)
, (5.6)

G(2) i
0 =

1

4a2

(
ḣkmh

km,i + 2hkmḣ
km,i − 2hkmḣ

ik,m + 4Hhkmhkm,i − 4Hhkmhik,m
)
, (5.7)

G(2) i
j =

1

4a2

(
− 2ḣikḣjk − 2hikḧjk +

3

2
δij ḣ

kmḣkm + 2δijh
kmḧkm − 4Hhikḣjk

+ 4Hδijhkmḣkm − 2hjm,kh
ik,m + 2hjk,mh

ik,m − 2δijh
kmh j

km,j

+ δijhkj,mh
km,j − 3

2
δijhkm,jh

km,j + hkm,ihkm,j + 2hkmh ,i
km j

− 2hkmh ,i
jk m − 2hkmhik,jm + 2hkmhij,km + 2hikh m

jk,m

)
, (5.8)

where we have introduced H = ȧ/a, with ȧ ≡ da/dτ .
We note that these agree with Eqs. (8–11) of [38] except for the last two terms of

eq. 5.7. It does however agree with eq. (2.30) of [40]. This could be due to an ambiguity in
the notation, to be clear, by ḣkm,i we mean ∂i∂0h

km.
Because the usage of the final expressions from this section are integral to the analysis

of this section of this paper the following calculation is given in detail. From the expressions
for the Einstein tensor the density and pressure are found by spatial averaging defined via
[15, 38],

〈A〉x = lim
V→∞

1

V

∫
A dV , (5.9)

and using the gravitational wave equation of motion to find,

ρgw(τ) =
1

8πGa2

(
1

8
〈〈(∇hij)2〉〉Q,x +

1

8
〈〈(ḣij)2〉〉Q,x +H〈〈hij ḣij〉〉Q,x

)
, (5.10a)

pgw(τ) =
1

8πGa2

(
7

24
〈〈(∇hij)2〉〉Q,x −

5

24
〈〈(ḣij)2〉〉Q,x +

H
2

(1 + w(0))〈〈hij ḣij〉〉Q,x
)
,

(5.10b)
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where w(0) is the equation of state of the background spacetime, and we have also performed
an average Q over the ensemble average of stochastic initial conditions. These satisfy the
continuity equation

ρ̇gw + 3H
(
ρgw + pgw

)
= 0. (5.11)

The background equation of state appearing in eq. (5.10b) is related to an impor-
tant assumption. The approach of [15] inherently assumes that the back-reaction is a small
perturbation to the background spacetime. Consequently ρgw/ρcrit � 1 is required at all
times.

We next Fourier transform the tensor metric perturbation,

hij(~x, τ) =

∫
d3 k

(2π)3
hij(~k, τ)ei

~k.~x , (5.12)

and decompose the Fourier components in terms of the polarisation tensor εij [41],

hij(~k, τ) =
∑
λ=±2

εij(k̂, λ)h̃(k, τ) , (5.13)

where λ is the gravitational wave helicity and h̃ is the gravitational wave amplitude. In
Fourier space the spatial averaging of a product of two general functions,

〈f ij(~x, τ)gij(~x, τ)〉x =

∫
d3 k

(2π)3
f ij ∗(~k, τ)gij(~k, τ) , (5.14)

where we have rewritten the complex exponentials from the Fourier transforms as a Dirac
delta function and used this to do one of the wavenumber integrals. Here we have also set
V = 1 as it is only included to keep track of dimensions (see [42] chapter 3). We can do this
integral in spherical polar coordinates to find,

〈f ij(~x, τ)gij(~x, τ)〉x =

∫
d ln k

k3

π2
f̃∗(k, τ)g̃(k, τ) , (5.15)

where we have evaluated the products of the polarisation tensor using [41],∑
λ

ε∗ij(q̂, λ)εjk(q̂, λ) = 2δ ki − 2q̂iq̂
k . (5.16)

Using this for the density and pressure of gravitational waves,

ρgw(τ) =
1

8πGa2

∫
d ln k

k3

π2
ρ̃gw,Q(k, τ) , (5.17a)

pgw(τ) =
1

8πGa2

∫
d ln k

k3

π2
p̃gw,Q(k, τ) , (5.17b)

where,

ρ̃gw,Q(k, τ) =
k2

8
〈|h̃(k, τ)|2〉Q +

1

8
〈| ˙̃h(k, τ)|2〉Q

+H〈|h̃∗(k, τ)
˙̃
h(k, τ)|2〉Q , (5.18a)

p̃gw,Q(k, τ) =
7k2

24
〈|h̃(k, τ)|2〉Q −

5

24
〈| ˙̃h(k, τ)|2〉Q

+
1

2
H(1 + w(0))〈|h̃∗(k, τ)

˙̃
h(k, τ)|2〉Q . (5.18b)
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We can separate the initial condition from the time evolution of the gravitational wave
amplitude as,

h̃(k, τ) = AkD(k, τ) , (5.19)

such that the primordial power spectrum,

Pprim(k) =
k3

π2
〈|Ak|2〉Q , (5.20)

specifies the ensemble average of stochastic initial conditions.
The time evolution of the gravitational wave amplitude is now described by the function

D(k, τ) which obeys the gravitational wave equation of motion,

D̈ + 2
ȧ

a
Ḋ + k2D = 16πGa2Π(T) , (5.21)

where Π(T) is the Fourier transform of the anisotropic stress tensor decomposed in terms of
the gravitational wave polarisation [41]. This equation comes from the first order vacuum

Einstein equation for gravitational waves R
(1)
µν (h) = 0. The helicity dependence of h̃(k, τ)

was dropped earlier because this equation of motion is helicity independent.
We now have our final expressions for the density and pressure,

ρgw(τ) =
1

8πGa2

∫ kmax

kmin

d ln k ρ̃gw(k, τ)Pprim(k) , (5.22a)

pgw(τ) =
1

8πGa2

∫ kmax

kmin

d ln k p̃gw(k, τ)Pprim(k) , (5.22b)

where,

ρ̃gw(k, τ) =

[
1

8

(
k2D2 + Ḋ2

)
+HḊD

]
, (5.23a)

p̃gw(k, τ) =
7k2

24
D2 − 5

24
Ḋ2 +

H
2

(1 + w(0))ḊD , (5.23b)

and the primordial power spectrum is conventionally parameterised via,

Pprim(k) = At(k∗)

(
k

k∗

)nt

. (5.24)

Consequently the methodology for calculating the density and pressure of gravitational waves
is as follows. We solve the gravitational wave equation of motion (eq. (5.21)) for a given
background cosmology and use the solution for D(k, τ) to evaluate the k-space density and
pressure using Eqs. (5.23). This is then integrated with the power spectrum of eq. (5.24) to
get the total homogeneous density and pressure according to Eqs. (5.22).

5.1 Equation of state for single fluid backgrounds

The k-space density and pressure can be evaluated analytically for radiation, matter and de
Sitter backgrounds. This can be used to consider the behaviour of the k-dependent equation
of state before integrating over k to find the total gravitational wave density and pressure.
For convenience we will define x = kτ . Here the neutrino anisotropic stress is assumed to be
zero.
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For a radiation background, D(x) = B sincx, where B is the initial condition on the
gravitational wave amplitude, ȧ/a = 1/τ and the equation of state of the background is 1/3.
Consequently,

ρ̃gw =
B2

4x2τ2

(
− 7 + 2x2 + 7 cos 2x+ 6x sin 2x

)
, (5.25)

p̃gw =
B2

12x2τ2

[
3(7− 4x2) cos 2x+ 26x sin 2x+ 2x2 − 21

]
. (5.26)

For a matter background, D(x) = 3B(sincx−cosx)/x2, ȧ/a = 2/τ and the equation of state
of the background is 0. Consequently,

ρ̃gw =
9B2

4x6τ2

[
− 39− 28x2 + 2x4 + (39− 50x2) cos 2x+ 6x(13− 2x2) sin 2x

]
, (5.27)

p̃gw =
3B2

4x6τ2

[
− 117− 56x2 + 2x4

+ x(234− 68x2) sin 2x+ (117− 178x2 + 12x4) cos 2x
]
. (5.28)

Finally, for a de Sitter background,

D(x) = Bx

(
sinx+

cosx

x

)
+ Cx(sincx− cosx) , (5.29)

ȧ/a = −1/τ and the equation of state of the background is −1. Considering only the even
part of D(x) such that C = 0 (though the conclusions are the same if C is included),

ρ̃gw =
B2k2

8

[
− 7 + 2x2 − 6x sin 2x− 7 cos 2x

]
, (5.30)

p̃gw =
B2τ−2

24

[
7 + 2x2 + 14x sin 2x+ (7− 12x2) cos 2x

]
. (5.31)

For the above backgrounds we can calculate the equation of state parameter wgw(k, τ) =
p̃gw(k, τ)/ρ̃gw(k, τ) in the super-Hubble regime (x � 1) by expanding in x and in the sub-
Hubble regime (x � 1) by averaging trigonometric functions, e.g., 〈sin 2x〉 = 〈cos 2x〉 = 0.
Doing this we find,

wgw =

{
−1

3 , if kτ � 1 ,

+1
3 , if kτ � 1 ,

(5.32)

for radiation, matter and de Sitter backgrounds.
The equation of state for a general ΛCDM background can be solved numerically, and

is shown in figure 4 for Planck 2018 parameter values and k = 0.05 Mpc−1. It starts at
−1/3 when the mode is outside the horizon, then goes through a transition period where it
goes through large negative and positive values before exhibiting stable oscillations about an
average value of wgw = 1/3.

5.2 Shortwave validity

The SWA is valid on scales averaged over a “sufficient number of wavelengths”. With a
prescription how to evolve PGWs on super-horizon scales, we now quantify how many wave-
lengths are required to give accurate enough CMB constraints, and hence what frequency
range the SWA can be applied on.
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Figure 4. The equation of state of gravitational waves, wgw, as a function of conformal time for a
representative mode with k = 0.05 Mpc−1. It is −1/3 when the mode is outside the horizon, goes
through a transition region and then oscillates about 1/3 when well inside the horizon. The conformal
time at recombination (grey dot-dash) is shown for comparison. The small and large scale values of
−1/3 and 1/3 are shown in orange (dashed) along with the time after which the averaging to 1/3 is
valid.

From figure 4 it is clear that there are two time-scales in the evolution of wgw: the
high-frequency oscillatory behaviour, and the lower frequency transition from −1/3 to 1/3.
Our task is to find the number of wavelengths required such that a constant wgw = 1/3 is a
good approximation to calculate the CMB power spectrum.

A cosmic variance limited CMB experiment, up to a given `, requires a precision of
approximately [43]

δC`
C`

=
3

`
, (5.33)

in the power spectrum C`. This corresponds to 0.1–0.2% for ` = 2000.
To proceed we assume the PGW source is a δ-function for a given frequency, with energy

density Ωgwh
2. We then compute the fractional difference in C` for the correct evolution,

compared to the SWA with constant wgw = 1/3. This error decreases for higher frequency
sources, as these enter the horizon and thus behave like a relativistic species earlier. We
determine the minimum frequency such that δC`/C` < 0.2% for all `. Of course, it is
less important to have the correct evolution the smaller Ωgwh

2 is. We therefore choose
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Ωgwh
2 = 5.6×10−6, corresponding to ∆Neff = 1 in the SWA, such that the PGW source has

an appreciable affect on the background evolution at matter-radiation equality.

We find that a source with k > 1 Mpc−1 is required for the SWA to satisfy δC`/C` <
0.2% for all `. This corresponds to the mode undergoing 50 oscillations by the epoch of
equality. This limit is indicated in figure 4 for a mode with a smaller k = 0.05 Mpc−1 –
clearly by equality a constant wgw = 1/3 is not yet a good approximation. The SWA result
in figure 2 therefore extends from k > 1 Mpc−1. We note that, compared to figure 2 of [19],
they use a factor of ∼ 20 wavelengths. Our analysis suggests that a slightly more conservative
limit is required.

5.3 Behaviour of gravitational wave density and pressure

The gravitational wave density and equation of state exhibit a range of interesting physical
behaviours. Figure 5 shows these for standard ΛCDM parameter values as a function of k
and t in the absence of neutrino anisotropic stress. A smoothing has been applied to wgw to
more clearly show the behaviour when the gravitational wave amplitude is highly oscillatory.
The super-horizon and sub-horizon regimes can be seen clearly, along with the transition
region between the two.

When super-horizon the gravitational wave equation of state is −1/3 as verified above,
apart from at late times, during the matter to cosmological constant transition, when it goes
below −1/3 (this can be seen by closely inspecting the top-left of the lower panel of figure
5). This is a phenomenon that has not previously been mentioned in the literature. We an-
alytically verified the behaviour by solving the equation of motion in a matter-cosmological
constant background for small k and matched solutions for different time regimes (see ap-
pendix for details). This showed that the equation of state of super-horizon modes dips below
−1/3 during the matter to cosmological constant transition to values of ∼ −0.5 (dependent
on various parameters) but returns back to −1/3 soon after the cosmological constant is
dominating.

The integrated density of eq. (5.22) and the subsequent equation of state are shown
in figure 6, for a representative PGW source with nt = 3, kmin = 0.1 Mpc−1 and kmax =
1 Mpc−1. The lower cutoff is chosen to be compatible with the low-frequency constraint,
and the spectral index must be relatively steep, nt & 3, to also satisfy this constraint. The
high-frequency cutoff is chosen as the SWA can be used for frequencies above this. The sub-
and super- Hubble regimes are clear in both cases and the transition region between the two
can also be seen.

We note that the energy density is negative for super-Hubble modes, as stated in section
4 of [38]. Since wgw = −1/3 it can be interpreted as additional positive curvature. This
contribution can lead to a reduction in the expansion rate, depending on the integration
limits and spectrum in eq. (5.22).

5.4 Neutrino anisotropic stress

So far anisotropic stress has been neglected in the equation of motion for gravitational waves
given in eq. 5.21. [44] showed that anisotropic stress from free-streaming neutrinos has a non-

negligible affect on the gravitational wave evolution.3 The neutrino anisotropic stress, Π
(T)
ν

is a functional of the time derivative of the gravitational wave amplitude so the gravitational

3Damping of GWs by photons has been shown to be small but can in principle be detectable via CMB
spectral distortions [45].
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Figure 5. Contour plots of the gravitational wave density, ρgw and equation of state, wgw as func-
tions of wavenumber and cosmological time for standard ΛCDM parameter values without neutrino
anisotropic stress. The transition between wgw = −1/3 and wgw = 1/3 can be seen clearly. The
plot of the equation of state also shows an interesting feature in which super-horizon gravitational
waves have an equation of state which goes below −1/3 during the matter to cosmological constant
transition. The (red) long-dashed contour shows when each mode has undergone 50 oscillations, and
the (blue) short-dashed contour the epoch of matter-radiation equality.
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Figure 6. The gravitational wave density and equation of state as a function of cosmological time after
k-integration for a representative PGW source with nt = 3, kmin = 0.1 Mpc−1 and kmax = 1 Mpc−1

and no neutrino anisotropic stress. The density has two regimes, one where it goes as a−2 with a
negative density (dashed) and one where it goes as a−4 with a positive density (solid), with a transition
in between. These regimes can be seen more clearly in the equation of state. There is some numerical
noise as the equation of state approaches 1/3 but this has no observable consequences.

wave equation of motion becomes an integro-differential equation for the gravitational wave
amplitude. The affect of this is to increase the damping term in the equation of motion and
reduce the gravitational wave amplitude. This will change the analysis detailed above as, for
example, the gravitational wave density and pressure are quadratic in the gravitational wave
amplitude or its time derivative.

The change in the amplitude is most prominent when the k-mode comes inside the
horizon. Consequently, neutrino anisotropic stress is expected to alter the behaviour of the
gravitational wave density and pressure for the intermediate constraint but result in the
shortwave approximation constraints still being valid.4 This is expected from the analysis

4This is neglecting the changes in the degrees of freedom in the early Universe which change the behaviour
of the neutrino sector, see [46] for details of this which are valid in the shortwave approximation.
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Figure 7. Top panel: The ratio of the gravitational wave densities with and without neutrino
anisotropic stress. Bottom panel: The ratio of the gravitational wave equation of state with and
without neutrino anisotropic stress. The density roughly halves in the shortwave region but this is
compensated by an equivalent reduction in the pressure such that the equation of state is still 1/3.
The equation of state becomes more negative for super-horizon scales before neutrino free-streaming.
The absolute values in the absence of anisotropic stress are shown in figure 5.

of [44], where the sub-horizon amplitude is multiplied by a constant factor when including
neutrino anisotropic stress and is confirmed in figure 7, where the equation of state in the
shortwave regime is still 1/3 as the density and pressure both decrease by the same factor.

The contour plots of the gravitational wave density and equation of state in figure 7
gives the ratios of these quantities in the presence and absence of anisotropic stress and shows
other interesting effects. It is helpful to consider figure 5 when comparing the absolute values
of these quantities instead of their ratios. The equation of state of super-horizon gravitational
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waves before matter-radiation equality is ≈ −0.52 and therefore considerably more negative
than its value of −1/3 without anisotropic stress. This is due to the change in the initial
condition for the time derivative of the gravitational wave amplitude when shear is included,
which increases in magnitude by ≈ 1.1. This change in Ḋ changes the density and pressure
via the third terms (which depend on ḊD) in equations (5.23).5 The tensor initial conditions
when including anisotropic stress are calculated in [47] and show,

Ḋ = − 5

15 + 4Rν
k2τ +O(k3τ2) , (5.34)

Π(T)
ν =

4

15 + 4Rν
k2τ2 +O(k3τ3) . (5.35)

Putting these values into Eqs. (5.23) and taking the ratio, the initial equation of state for
super-horizon gravitational waves is,

wgw,init = −1

3

(
25 + 28Rν
25− 4Rν

)
. (5.36)

This gives wgw,init ≈ −0.52 for ΛCDM parameter values as seen in the numerical calculation.
The equation of state increases from this value around matter-radiation equality until the
super-horizon gravitational waves have an equation of state of ≈ −1/3 after redshift ∼ 100.
The change in the equation of state for super-horizon modes during the matter-cosmological
constant transition is unaffected by neutrino anisotropic stress.

The neutrino anisotropic stress → 0 in the matter-dominated era which results in the
density of k-modes being nearly unchanged by the inclusion of neutrino anisotropic stress.
This can be seen above the blue-dashed line in the top panel of figure 7 and was noted in
[46].

5.5 Perturbations

The effective energy-momentum tensor at linear order is given by

τ0
0 = − (ρ+ δρ) , (5.37)

τ0
i = (ρ+ p) vi , (5.38)

τ ij = (p+ δp) δij + p Πi
j , (5.39)

where Πi
j = τ ij − δijτkk /3 is the anisotropic stress. Previously we have calculated the back-

ground energy density and pressure. The fluctuating part can be calculated by subtracting
the average,

∆µ
ν = τµν − 〈τµν 〉 . (5.40)

Using Eqs. (5.5-5.8) the fluctuating part can be related to the components of Eqs. (5.37-5.39).
Numerically, however, these are much more challenging to calculate, as they cannot easily be
written in terms of the initial spectrum of fluctuations. We therefore take a phenomenological
approach to the PGW perturbations, treating them as an effective Parameterized Post-
Friedmann (PPF) fluid.

The PPF framework is usually used in ‘smooth’ dark energy models [48], but has several
properties useful to model PGW perturbations. Firstly, it is able cross the w = −1 divide,

5The first terms (dependent on k2D2) are unchanged and the second terms (dependent on Ḋ2) do not
contribute for super-horizon modes at early times.
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which occurs for PGW oscillations after entering the horizon. Secondly, it is designed to
conserve energy and momentum on large scales, where PGWs behave like positive curvature
with wgw = −1/3. Finally, on small scales the PPF fluid is designed to be smooth compared
to cold dark matter, which one would expect for PGWs due to the pressure support with
wgw = 1/3. In our approach we use the default PPF parameters in camb, and leave a more
detailed study of PGW perturbations to future work.

One point worth mentioning is that in the SWA, PGWs are modelled as an effective
neutrino species, with a hierarchy of moments describing the perturbations. In the second-
order method no such hierarchy exists, and the fluid is described by its effective energy-
momentum tensor. There are therefore two main observable differences expected compared
to the shortwave treatment; (1) due to the background evolution, and (2) in the treatment
of perturbations.

5.6 Observables

The effects of high-frequency gravitational waves (as in section 4) on cosmological observables
can be compared to the intermediate gravitational wave analysis of this section. Figure 8
shows the CMB power spectrum for Ωgwh

2 = 5.6 × 10−6 for SWA gravitational waves with
adiabatic and homogeneous initial conditions. The intermediate gravitational waves are
shown for the same density with representative parameters of nt = 3 and kmin, kmax =
0.1, 1 Mpc−1 and no anisotropic stress. The intermediate analysis changes the temperature
anisotropies in similar ways to the adiabatic SWA gravitational waves.

The fractional changes in the Hubble rate, H(z), and the scale of the sound horizon, rs,
are shown in figure 9. As expected, due to these quantities only depending on the background
and not the perturbations, the adiabatic and homogeneous high-frequency gravitational waves
have identical affects on these parameters. The intermediate gravitational waves increase the
Hubble rate similarly to the SWA result when dominated by high-frequency, wgw = 1/3 modes
but decreases the Hubble rate at high redshift when dominated by wgw = −1/3 modes. The
same affect is seen in the scale of the sound horizon but with opposite sign and a small move
to lower redshift.

We note that the intermediate model shares some similarities with the axion-model that
can potentially alleviate the Hubble tension [49, 50]. In particular, there is an early dark
energy (EDE) phase with wgw = −1/3 before a radiation phase with wgw = 1/3. Even though
the energy density is negative when wgw = −1/3, the sound horizon can still be reduced at
the time of recombination. We leave the study of whether the PGW model can reduce the
Hubble tension to future work.

This analysis assumes that the gravitational wave density is small enough that it can
be calculated as a perturbation on a ΛCDM background. This was tested by iteratively
recalculating the background including gravitational waves. Repeating this procedure until
convergence shows an error of less than 0.01% in H(z) over all z, for the maximum value
of Ωgwh

2 allowed by data. We conclude that this is a small enough error to use the ap-
proximation that gravitational wave back-reaction can be calculated on a standard ΛCDM
background.

The observable consequences of primordial gravitational waves depends on the source
function considered. Two source functions are considered here. So far a steep primordial
power spectrum with tilt, nt ≥ 3 has been used. This is motivated by the existing constraints
and the possible sources in this region and is used for frequencies between ∼ 10−16 Hz and
∼ 10−15 Hz. The second sources that will be considered are delta-function sources for specific
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Figure 8. Top panel: The CMB temperature power spectrum for Ωgwh
2 = 5.6×10−6 with adiabatic

shortwave approximation (SWA) initial conditions (blue dashed), homogeneous SWA initial conditions
(orange dotted) (as detailed in section 4) and using the intermediate frequency method of section
5 (green dot-dash). Bottom panel: the fractional difference in the CMB power spectrum due to
gravitational waves as described above when compared to the case where there are no PGWs.

frequencies. These give constraints that are independent of any assumptions about the
spectrum of gravitational waves. These sources therefore give the upper-limit dependent
only on the data and can be used as a consistency check on the steep sources as well as
functioning as an independent constraint.

5.7 Parameter constraints

To obtain limits on Ωgwh
2, a modified version of camb was integrated into cobaya to perform

an MCMC analysis. We use the same data as in section 4, using an otherwise standard ΛCDM
model. For PGWs, we choose kmin = 0.1 Mpc−1, as below this the low-frequency constraint
dominates, and kmax = 1 Mpc−1, as above this the SWA can be used. We marginalise over
the tensor spectral index, nt, in the prior range 3 to 5, where the lower limit is chosen to be
compatible with the low-frequency constraint. The upper limit is chosen so as to include a
range of short lasting early universe phenomena. Any production mechanism that produces
gravitational waves in a short time frame will correspond to a large tilt. As examples, both
cosmic strings and first order phase transitions can produce gravitational waves in the low
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Figure 9. Top panel: The fractional change in the Hubble rate as a function of redshift. The
SWA analysis of section 4 is used with adiabatic (blue) and homogeneous (orange dashed) initial
conditions. The effects due to the intermediate frequency analysis of section 5 is shown in green.
When the equation of state of the intermediate frequency analysis goes negative a reduction in the
Hubble rate occurs in contrast to the increase at early times seen for the shortwave analysis. Bottom
panel: The fractional change in the size of the comoving sound horizon with line styles as above.

to intermediate frequency regime [3, 51–53].
We obtain the following 95% upper limits on the gravitational wave density parameter

without neutrino anisotropic stress;

Ωgwh
2 < 8.4× 10−7 (Second-order, no anisotropic stress) . (5.41)

When including neutrino anisotropic stress the constraint has almost the same magnitude,

Ωgwh
2 < 8.6× 10−7 (Second-order, with anisotropic stress) . (5.42)

These are similar in magnitude to the shortwave adiabatic result and are tighter than the B-
mode constraint for most of the region where the constraints overlap. These are integrated
constraints and the constraint when neutrino anisotropic stress is included is shown as a
horizontal line in figure 2 for the frequency range considered.

The values of the constraint on the gravitational wave density parameter for different
wavenumbers in the range 0.02−0.5 Mpc−1, when using delta-function sources and including
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k/
(

Mpc−1
)

0.02 0.045 0.1 0.18 0.5

1017 × f/Hz 3.1 7.0 16 28 78

107 × Ωgwh
2 (95% upper limit) 4.3 7.7 4.9 6.1 9.3

Table 2. Constraints on the gravitational wave density for delta-function sources with wavenumber,
k. The corresponding value of the frequency, f is also shown. The constraint weakens slightly for lower
frequencies but is of a similar magnitude to the adiabatic shortwave constraint for all k considered.

neutrino anisotropic stress, are shown in table 2. They are also plotted in figure 2 as stars.
The constraint is extended to lower frequencies than the constraint for a steep source and
weakens slightly as the frequency decreases but is of nearly the same magnitude for the region
of overlap.

6 Conclusions

In this paper we have presented constraints on primordial gravitational waves from the CMB
for the entire range of observable frequencies. This includes updated constraints from B-mode
polarisation at the lowest frequencies, the shortwave approximation at high frequencies, and
a new intermediate constraint that bridges the region of applicability of the two. These
constraints are compatible at their extremities and provide the tightest current constraints
in particular frequency ranges.

The constraint from low ` polarisation shows that peak sensitivity occurs for scales close
to the horizon size at recombination, corresponding to f ∼ 10−17 Hz, with a gravitational
wave density Ωgwh

2 ∼ 10−16. These limits become much weaker for f & 10−16 Hz, and at
f ∼ 3×10−16 Hz a stronger result comes from the second-order back-reaction of gravitational
waves. This allows us to place a limit of Ωgwh

2 < 8.4 × 10−7 in the absence of neutrino
anisotropic stress and Ωgwh

2 < 8.6× 10−7 when including neutrino anisotropic stress (both
at 95% confidence), in a previously unconstrained frequency region of 10−15 Hz & f & 3 ×
10−16 Hz. At higher frequencies, f & 10−15 Hz, we use the shortwave approximation (SWA)
to update previous constraints and quantify the validity of the SWA using the intermediate
approach, finding Ωgwh

2 < 1.7×10−6 for adiabatic initial conditions and Ωgwh
2 < 2.9×10−7

for homogeneous initial conditions (both at 95% confidence).

These constraints will be tightened by future ground and space based CMB observations
from CMB-S4 and from polarisation via. LiteBIRD, CORE and PIXIE among others [54–
57]. These will result in an order of magnitude improvement in the measurement of extra
relativistic degrees of freedom and an even greater improvement in the tensor-to-scalar ratio.
Combining these with other cosmological observables promises to further illuminate the early
Universe.

There are several possibilities for future work. Due to the numerical challenges of
calculating the fluctuations due to the second-order back-reaction, in this analysis we have
treated them as an effective PPF fluid. In future work we plan to extend the line-of-sight
CMB formalism to calculate these. It is worth noting though that, even in the shortwave
limit, differences are expected compared to modelling them as an effective neutrino species
with a hierarchy of moments. One further avenue might be investigating the possibility
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of PGWs alleviating the Hubble tension. The second-order model, with an appropriate
source of PGWs, increases the relativistic degrees of freedom at recombination, thereby
reducing the sound horizon, and having an early dark energy phase with wgw = −1/3. This
would, however, require a non-standard source with a steep nt & 3 spectrum peaking at
f ∼ 10−15 Hz.
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A Solving the super-horizon gravitational wave equation of motion in a
matter and cosmological constant background

In this appendix conformal time is not used and dots denote cosmological time derivatives.
In a matter and cosmological constant background the scale factor,

a(t) =

(
Ωm

ΩΛ

)1/3
[

sinh

(
3

2
H0

√
ΩΛt

)]2/3

. (A.1)

So the gravitational wave equation of motion (compare to eq. (5.21)) in the absence of
neutrino anisotropic stress,

D̈(k, t) + 3H(t)Ḋ(k, t) +
k2

a2(t)
D(k, t) = 0 , (A.2)

becomes,
D′′(κ, x) + 2 cothxD′(κ, x) + κ2(sinhx)−4/3D(κ, x) = 0 , (A.3)

where,

x =
3

2
H0

√
ΩΛt , κ =

(
ΩΛ

Ωm

)1/3 2k

3H0

√
ΩΛ

, (A.4)

and primes denote differentiation with respect to x. κ and x are reduced wavenumber and
time variables respectively.

We solve the equation of motion in a power series for κ2;

D(κ, x) = D0(x) + κ2D1(x) , (A.5)

because we are considering modes that are super-horizon at current (and near future) times.

Background solution

D0 is the solution of the simpler equation,

D′′0(x) + 2 cothxD′0(x) = 0 , (A.6)

The general solution is D0(x) = D̄0 − α cothx. Imposing that the gravitational wave ampli-
tude is finite as x→ 0,

D0(x) = D̄0 . (A.7)

This constant is going to be set to 1 in most cases.
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Perturbed solutions

The equation of motion to order κ2 is,

D′′1(x) + 2 cothxD′1(x) + (sinhx)−4/3D̄0 = 0 . (A.8)

This can be solved in three separate regimes, low-x, intermediate-x and high-x and
these solutions can be matched together at xa and xb.

Low-x solution

For small x the equation of motion is,

D′′1(x) +
2

x
D′1(x) +

D̄0

x4/3
= 0 , (A.9)

with solution,

D1(x) = − 9

10
D̄0x

2/3 , (A.10)

where the initial condition is D1(0) = 0.

Intermediate solution

The intermediate solution is the most complicated and consequently we define new variables
to simplify the solution.

Expanding about the midpoint of the intermediate region,

λ =
xa + xb

2
, (A.11)

the intermediate solution is valid for more of the intermediate region than if either xa or xb
was used. This results in the equation of motion becoming,

D′′1(x) + 2(α+ βx)D′1(x) + D̄0(γ + ηx) = 0 , (A.12)

where,

α = cothλ− λβ , β = 1− coth2 λ ,

γ =
3 sinhλ+ 4λ coshλ

3(sinhλ)7/3
, η = − 4 coshλ

3(sinhλ)7/3
. (A.13)

Making the further definition,

x̄ =
α+ βx√

β
, (A.14)

the intermediate solution for D1(x) is,

D1(x) = D̄0

{
C1 +

C2
√
πeα

2/β erf x̄−
√
βηx

2β3/2

+
(βγ − αη)

4β3

[
2βx̄2

1F2

(
{1, 1}; {3/2, 2}; x̄2

)
− πβ erf x̄ erfi x̄

]}
(A.15)

where erf x is the error function, erfix is the imaginary error function, pFq is the generalised
hypergeometric function and the matching onto the low-x solution at xa determines the
coefficients C1 and C2.
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Figure 10. The equation of state for gravitational waves as a function of x for κ = 0.045 (corre-
sponding to k = 10−5 Mpc−1) from a numerical solution of the gravitational wave equation of motion
(blue) and from an analytic solution found by matching solutions for small, intermediate and large
x (orange). The analytic solutions are matched together at xa = 0.35 and xb = 1.15 and verify the
behaviour observed in the numerical solution.

High-x solution

For large x the equation of motion becomes,

D′′1(x) + 2D′1(x) + 24/3D̄0e
−4x/3 = 0 . (A.16)

The high−x solution is,

D1(x) = C3 −
C4

2
e−2x +

9D̄0

25/3
e−4x/3 . (A.17)

C3 and C4 are determined by matching onto the intermediate solution at xb.

GW equation of state parameter

The gravitational wave equation of state parameter for a matter + cosmological constant
background from the above analytics and from a numerical computation can be seen in
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figure 10. The analytic solutions were matched at xa = 0.35 and xb = 1.15 to get the best
agreement with the numerics. They confirm the fact that the equation of state departs from
−1/3 for super-horizon GWs during the matter-cosmological constant transition but returns
back to −1/3 when the cosmological constant comes to dominate. There are discontinuities
due to imperfect matching of the solutions. Effectively the solutions are not of high enough
order to fully encompass the behaviour in their specific regimes. This could be improved
by using the intermediate solution twice and having four separate matched regimes but the
analysis given here is sufficient to verify the numerical behaviour.
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