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Abstract
Traditional local-averaged state-space modeling for peak current mode (PCM) controls fails to explain the subharmonic 
oscillation phenomenon when the spectrum is higher than half of the switching frequency. To address this problem, this 
paper presents a small-signal modeling method in the z-domain, and builds a discrete linear model for the current loop of a 
full-bridge DC-DC converter. This discrete model is converted into a second-order continuous model that is able to represent 
the system performance with a wider frequency range. A frequency-domain analysis shows that this model can be used to 
explain the subharmonic oscillations and unstable characteristics. This provides an engineering guideline for the practical 
design of slope compensation. The effectiveness of the proposed modeling method has been verified by simulation and 
experimental results with a prototype working in the Buck mode.

Keywords DC-DC converter · Peak current mode control · Slope compensation · Subharmonic oscillation · Z-domain 
modeling method

1 Introduction

Peak current mode (PCM) control has been widely used in 
power electronic converters due to its accuracy, fast dynamic 
response and software flexibility [1, 2]. Flying capacitor 
Buck converters [3], flyback converters [4] and Buck LED 
drivers [5] are some examples of this PCM control. In full-
bridge DC-DC converter applications, PCM control has a 
simple structure and an inherent built-in overcurrent pro-
tection mechanism [6]. Implementation is easy due to the 
absence of a large inertia filtering link in the current feed-
back control loop [7]. This also results in the PCM control 
having a fast response.

In general, PCM control is implemented in cascaded 
double-loop control structures with the stability mainly 
depending on the inner current loop. However, when the 
steady-state duty ratio is higher than 50%, the converters 
have alternating wide pulses and narrow pulses, namely 

subharmonic oscillations. These oscillations result in poor 
system stability. Thus, it is necessary to have an appropriate 
control [8, 9].

The key to a good PCM control is to accurately model 
and analyze the characteristics of the current control loop. 
The numerical calculation in [10–12] uses a piecewise linear 
discrete model to iteratively calculate the circuit response. 
However, this method, which ignores the influence of para-
sitic parameters such as the dead-time, and the on–off volt-
age drop of the switches, is only suitable for simulations. 
The state space averaging method eases the parameter design 
for closed-loop controllers [13–17]. However, it is only valid 
for the low-frequency range below half of the switching fre-
quency. Modeling methods in z-domain [18–20] are prob-
lematic in terms of high-frequency characteristics since they 
are based on the same local-averaged state space method. 
The describing function analysis method in [21] expresses 
non-linearity with the fundamental component and har-
monic components using the Fourier series. However, since 
the sampling characteristics of the switches are not taken 
into account, this method cannot illustrate characteristics 
higher than half of the switching frequency, which are of 
special importance in the design of high bandwidth control-
lers. In addition, the aforementioned methods are relatively 
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complicated, which means they are not intuitive enough for 
practical engineers. Thus, they have limited applications.

The high-frequency characteristics and subharmonic 
oscillation phenomenon are still less-explored for PCM 
control in DC-DC converter applications. In this paper, a 
z-domain modeling method is proposed. By analyzing the 
small signal step response of the PCM current loop, the 
geometric constraint relationship between the inductance 
current and the setting current at each sampling instant is 
established. Then, the iterative equation of the current and 
duty cycle are obtained. As a result, the discrete transfer 
function of the system is derived, which can represent the 
frequency characteristics above half of the switching fre-
quency. Afterward, the model is converted to the s-domain, 
so that it is possible to design an appropriate slope compen-
sation to suppress the subharmonic oscillations.

The main contribution of this paper is to propose a 
z-domain modeling method describing the subharmonic 
oscillation in the high frequency band, which can explain 
the instability of the PCM current loop. On the basis of this 
model, an optimal coefficient adjustment method is provided 
for slope compensation, which is of great significance to 
engineering design.

2  Model analysis and current loop modeling

2.1  PCM control system description

A circuit and control diagram of a full-bridge DC-DC con-
verter is shown in Fig. 1. This converter is used for the 
charging and discharging of a supercapacitor. For the sake 
of brevity only the charging power flow in the Buck opera-
tion mode is investigated, which means the secondary side 
switches work as if in a synchronous rectifier.

A double closed-loop structure is adopted to control the 
converter, where PCM control regulates the inner current 
loop. The control loop includes a voltage feedback compen-
sation network Gc(s), a current comparator, a switching logic 
control unit, a voltage sensor and a current sensor, where 
Fv is the voltage feedback coefficient, and Ki is the current 

sampling transfer function determined by the sensor and the 
conditioning circuit. The compensated voltage error signal 
is used to obtain the current loop setting value, and the cur-
rent comparator is used to modulate the switching duty cycle 
signal. Then, the average voltage on the inductor is changed 
by adjusting the turn-on time of the switches.

To simplify the analysis, it is assumed that the trans-
former is ideal and that the voltages of the DC-bus and the 
supercapacitor are constant during each switching period. 
During the steady-state, waveforms of the gate signals and 
inductance currents can be obtained as shown in Fig. 2.

US1–US4 are the driving gate signals for the switches 
Q1–Q4, IM is the magnetic current, IP is the current of the 
transformer primary, and IL is the output inductor current.

Once the closed loop controller becomes asymptoticly 
stable, the current loop model in Fig. 1 is equivalent to a 
simplified PCM circuit in a non-isolated topology as shown 
in Fig. 3. VD = UD/N is the referred voltage of the DC-bus 
voltage with respect to the supercapacitor side according to 
the turns ratio of the transformer, UC is the supercapacitor 
voltage, L is the inductor, and I2 is the current flowing at the 
transformer secondary side.

An ideal waveform of the inductor current is shown in 
Fig. 4, where Iset is the setting current, Io is the average cur-
rent, and T is a switching period.
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Fig. 1  Full-bridge DC-DC converter with PCM control

Fig. 2  Steady-state waveforms of a converter in the Buck mode
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The inductor current waveform is continuous. However, 
its derivative is not equal to 0, and the overall system is not 
at equilibrium. Therefore, it is a typical nonlinear system. 
To facilitate the design of the PI controllers, it is necessary 
to linearize the overall system around its steady-state opera-
tion point.

2.2  Traditional linear approximation models

The local-averaging method in [22, 23] is a mainstream 
modeling method for power electronic converters. Based 
on the simplified structure diagram in Fig. 3, the first-order 
approximated current loop model with the inductor current 
IL as the state variable is established as follows:

Consider the small-signal model IL, D, UD, and UC which 
are composed of an average value and ripple components:

After substituting (2) into (1) and removing the static val-
ues, the nonlinear state model can be established as:

Suppose K1 is the on-time slope of the inductor current. 
Then, the duty cycle reference in the current loop can be 
expressed below:

where G1 =
1

T⋅K1Ki

,K1 =
VD−VC

L
.

According to (2) and (4), the small signal of the duty 
cycle in the peak current mode can be the approximately 
expressed as:

From Eqs. (1)–(5), a block diagram of the current loop 
can be drawn as shown in Fig. 5.

(1)İL =

(
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L
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L
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D

NL
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L

(2)
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T ⋅ K1Ki

= (Iset − ILKi)G1

(5)D̂ ≈

(
�Iset −�ILKi

)
G1

Therefore, the AC small signal transfer function is as 
follows:

It can be seen from the transfer function that the system 
has only one pole in the left half plane and that the system 
is stable at any duty cycle. However, in actual situations, the 
inductor current oscillates when D > 0.5. Obviously, Eq. (6) 
cannot describe this unstable phenomenon.

2.3  Analysis of subharmonic oscillation

Subharmonic oscillation and instability are the two main 
problems of PCM control [5, 24, 25]. When VC/VD is close 
to 0.5, the angle between the rising curves of IL and Iset is 
smaller than the angle between the falling curves of IL and 
Iset. When there is a disturbance in the input, after a gradual 
accumulation of disturbances over several switching cycles, 
the duty cycle of two adjacent switching cycles has one large 
and one small response, which are asymmetric at the switch-
ing frequency [26]. The current loop causes subharmonic 
oscillation, as shown in Fig. 6.

Suppose the current loop input is added to a disturbance 
signal with an amplitude of one thousandth of the setting 
current and a frequency of one-half of the switching fre-
quency. When VC/VD is close to 0.5, the current loop exhibits 
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Fig. 4  Inductor current according to volt-second balancing
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an amplitude amplification at the selective frequency of ½ 
the switching frequency [27, 28].

This amplification effect can weaken the disturbance 
suppression capability of the system, reduce the equiva-
lent switching frequency by half, or even lead the system to 
instability. The results in Fig. 7 show that when the output 
voltage approaches half the input voltage, a low damping 
characteristic is exhibited by the signal in the band around 
the half the switching frequency. In addition, the amplifica-
tion of the loop amplitude at this frequency increases sharply 
until it reaches the critical stability condition. In this process, 
the current loop gradually evolves into an oscillator at half 
the switching-frequency.

Phase lag information of the current loop under different 
input and output conditions is also obtained by frequency-
domain analysis.

The bifurcation and oscillation phenomenon in the PCM 
current loop structure have been explained in [29]. During 
the process of a proportional increase between the output 
voltage and the input voltage of a full-bridge DC-DC con-
verter, the steady state of the current loop enters the bifurca-
tion state from the volt-second equilibrium state. Then, the 
oscillation phenomenon occurs.

3  Stability analysis and slope compensation

3.1  The proposed discrete modeling method

It can be seen from the steady-state operating waveforms of 
the full-bridge DC-DC converter in Fig. 4, that the rising and 
falling slopes of the inductor current, the setting current and 
the current of the starting points at two adjacent switching 
cycles form a geometric constraint relationship.

Let Iset[n], IL[n], and D[n] be the discretization values of 
the setting current Iset, the inductor current IL at the start of 
the sampling period and the duty cycle D during the switching 
period in the current loop, respectively. Based on the geometric 

relationship of each variable under the step response, as shown 
in Fig. 8, a recurrence relationship can be created.

(1) Using the tangent theorem of the triangle, the duty 
cycle D[n] can be calculated by Iset[n], IL[n], and the 
rising slope of the inductor current.

(2) The increment of the inductor current ∆IL[n] during this 
period is determined by the difference between D[n] 
and the steady-state duty cycle DDC[n], which is deter-
mined by the volt-second balance.

(3) By accumulating the values of IL[n] and ∆IL[n] of the 
present cycle, the inductor current value IL[n + 1] of the 
next cycle can be derived.

A step response diagram of the current loop operating at a 
duty cycle of 0.33 is illustrated in Fig. 8. A dynamic structure 
diagram of this recurrence relation is shown in Fig. 9. Ki is 
the current feedback constant coefficient in the actual circuit 
shown in Fig. 1, and ILF[n] is the current feedback signal.

From the geometric relationship of Fig. 8, the duty cycle of 
each sampling time is:

The incremental change in the inductor current between two 
sampling instants can be expressed as:

DDC is the steady-state duty cycle determined by the volt-
second balancing principle, which results in:

(7)D[n] = (Iset[n] − ILF[n])
1

K1KiT

(8)ΔIL[n] = (D[n] − DDC[n])
VD

L
T

Fig. 7  Amplitude-frequency characteristics of GI(Z) with various out-
put-input voltage ratios
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Fig. 8  Typical small-signal step response of PCM current control

Fig. 9  Block diagram for the proposed PCM current control
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The transfer functions of the overall dynamic structure dia-
gram in Fig. 9 can be obtained according to (7)–(9):

Therefore, the system shown in Fig. 9 is a simple first-order 
discrete linear time-invariant system. With the current achiev-
ing volt-second balance, the steady-state duty cycle DDC[n] in 
the structure diagram can be removed to sort out the z-domain 
small-signal model of the PCM current loop so that the trans-
fer function of GI(Z) can be obtained as follows:

The pole position is used to determine the stability and 
frequency response characteristics of the current loop on the 
z-domain. In practice, it is necessary to further manipulate 
GI(Z) in Eq. (11) by quantifying the frequency domain charac-
teristics in a unit circle of the s-domain to provide a theoretical 
basis for system stability analysis and oscillation suppression. 
Therefore, by replacing Z in Eq. (11) with esTs, and multiplying 
the transfer function of the zero-order sample-hold effect [30], 
the continuation of the discrete model GI(Z) can be obtained 
as follows:

According to the second-order Pade function, esTs can be 
approximately equal to:

(9)K1 =
VD − VC

L
,DDC[n] =

VC

VD

(10)G1 =
L

(VD − VC)Ki ⋅ T
,G2 =

VD

L
T

(11)GI(Z) =
G1G2

Z + (G1G2Ki − 1)
=

VD

(VD−VC)Ki

Z + (
VD

VD−VC

− 1)

(12)GI(S) =

VD

(VD−VC)Ki

esTs + (
VD

VD−VC

− 1)
⋅

1 − e−sTs

s
⋅ fs

(13)esTs ≈
s2 + 6fss + 12f 2

s

s2 − 6fss + 12f 2
s

,

(
Ts =

1

fs

)

Therefore, the s-domain transfer function of the discrete 
model can be obtained as follows:

where k = 12fs2/Ki, and r = 1 − 2DDC.
An example using the parameters listed in Table 1 is pre-

sented below to show the advantages of the proposed dis-
crete model over the traditional state-space averaging model. 
Bode diagrams of both models are shown in Fig. 10. When 
compared with the traditional linear model, the proposed 
discrete model is more consistent with the actual perfor-
mance of a system in the high-frequency band.

This can be seen more clearly from a spectrum compari-
son of three current signals after processing by the Cheby-
shev window as shown in Fig. 11. Among them, IL(t) is the 
actual inductor current, while ILt(t) and ILd[t] are obtained by 
the traditional state-space averaging model and the discrete 
model, respectively.

The spectrum difference between ILd[t] and IL(t) is small 
within a quarter of the switching frequency. The accuracy 
of the model is still acceptable when the frequency is close 
to half the switching frequency since the effect of the duty 
cycle on the inductor current can be correctly reflected. For 
practical engineering purposes, it is convenient to carry out 

(14)GI(S) = e−sTs ⋅
k

s2 + 6fsrs + 12f 2
s

Table 1  DC-DC converter parameters

Parameter Value

Switching frequency (fs) 40 kHz
Transformer turns ratio (N) 4:3
Inductance of L 1 mH
Capacitance of supercapacitor module 20 F
Voltage of DC-bus (UD) 550 V
Voltage of supercapacitor module (VC)
Current feedback coefficient (Ki)

250 V
0.1

Fig. 10  Bode diagram of the traditional approximation linear model 
and the proposed discrete model

Fig. 11  Spectrum comparison of traditional and discrete methods
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the analysis using the traditional approximation. However, 
the large discrepancy between IL(t) and ILt(t) after half of the 
switching frequency shows the inherent disadvantages in the 
traditional state space average method. The spectrum of the 
inductor current is not well matched and cannot reflect the 
oscillation at ½ the switching frequency.

3.2  Slope compensation model mechanism

According to the analysis in Sect. 3.1, in order to stabilize 
the current loop of the system, feedback correction is usu-
ally considered to reconfigure the unstable pole of GI(z). For 
example, the average current mode control in [31] can be 
used. Slope compensation that superimposes a rising slope 
signal on the current feedback signal is used to stabilize the 
PCM current loop [32–35].

As shown in Fig. 12, Iset is the setting current, IL is the 
inductor current without disturbances added, ILdb is the 
inductor current with disturbances added, ∆I0 and ∆I1 
indicates the current error at the beginning and end of the 
period, K1 and K2 are the on-time and off-time slopes of the 
inductor current (K1 = (VD − VC)/L, K2 = VC/L), Kcp is the 
compensation slope, and Ts is the switching period.

With the help of slope compensation, the disturbance 
influence on the current can be suppressed or even elimi-
nated, as shown in Fig. 12. However, it is still not suffi-
cient to explain and solve the problem of subharmonic 
oscillations.

To address this, it is interesting to analyze the effect of 
slope compensation. Then, the analytical optimal value of 
the compensation slope Kcp should be derived by analyzing 
the z-domain system model presented in Sect. 3.1.

According to Fig. 9 and Eq. (9), the pole of the current 
loop is:

This indicates that instability only depends on the oper-
ating points of the input and output voltage, and that it has 
nothing to do with other parameters, which means that 

(15)1 − G1G2Ki = 1 −
1

K1Ki

VD

L
Ki = 1 −

VD

VD − VC

changing the system internal parameters cannot eliminate 
instability. When the switching device is turned on, the 
lack of a rise rate causes the gain of the current loop to be 
too large. Therefore, the crux of the problem is to reduce 
the loop gain of the current loop without changing the 
input and output voltage conditions. The solution adopted 
in this paper is to superimpose a rising slope signal on 
the current feedback signal, as shown in Fig. 13. In this 
way, the error at the starting point of the switching cycle 
results in a lower duty cycle output, which is equivalent to 
a reduction in the loop gain.

The expressions of the compensated current open-loop 
gain are as follows:

The condition for system stability is shown below:

or:

Therefore, the inequality for the critical compensation 
condition is:

If the compensation slope increases to the critical value, 
the compensation slope is equal to the absolute value of 
the inductor current falling slope. At this time, Kcp = VC/L 
and the pole of the current loop are pushed towards the ori-
gin of the Z-plane. Then, the current loop becomes a time-
delayed first-order system. For step inputs in the range of 
the small signal, the subharmonic oscillation of the current 
loop is well suppressed. However, the adjusting time is as 

(16)

G1G2Ki =
1(

K1+Kcp

)
Ki ⋅ T

⋅

VD

L
T ⋅ Ki =

1

VD−VC

L
+ Kcp

VD

L

(17)||G1G2Ki − 1|| < 1

(18)G1G2Ki =
VD

VD − VC + LKcp

< 2

(19)Kcp >
VC − 0.5VD

L
=

(
DDC − 0.5

)
VD

L

Fig. 12  Current waveforms and slope compensation
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long as one switching period, as shown in Fig. 14, where 
Dcp[n] is the duty cycle with slope compensation.

Since the fixed slope rate is not suitable for all of the 
operating conditions, the compensation slope is parameter-
ized for easy adjustments.

where X is the normalized slope adjustment parameter with a 
value range of (0, 1]. Accordingly, the range of the slope Kcp 
is in the range of [(VC − 0.5VD)/L, VC/L]. In these cases, the 
z-domain small signal transfer function of the PCM current 
loop can be expressed as follows:

To observe the effect of slope compensation, the compen-
sation coefficient X is increased in steps of 0.25. The current 
loop Bode diagram characteristics for different values of X 
are shown in Fig. 15.

(20)Kcp =

(
DDC − 0.5 + 0.5X

)
VD

L

(21)

Gd(Z) =
G1G2

Z + (G1G2Ki − 1)
=

VD

(VD−VC)+LKcp

⋅

1

Ki

Z +

(
VD

(VD−VC)+LKcp

− 1

)

It is important to note that with an increase of the coef-
ficient X, the damping for the high-frequency signal gradu-
ally increases. In addition, the phase shift also increases. 
In other words, increasing the slope compensation Kcp can 
improve the stability of the system. However, it also affect 
the response speed of the system.

Following the analysis in Sect.  3.1, the s-domain 
expression of Gd(Z) can be obtained by Eqs. (20)-(21) as 
follows:

According to Eq. (22), the dynamic performance and 
the steady-state performance of the system are mainly 
determined by Gk(S). Therefore, comparing this with a 
standard second-order system yields:

where ωn is the natural oscillation frequency, and ζ is the 
damping of the system.

Substituting Eq.  (23) into Eq.  (22), the normalized 
slope adjustment parameter X can be calculated as:

In engineering applications, while ensuring the stabil-
ity of the system, the response speed of the system should 
be increased as much as possible. Therefore, the damping 
coefficient ζ for the system is often set to 0.707, which is 
the optimal damping coefficient.

However, the introduction of the coefficient X brings 
peak inductor current errors. When X increases, the error 
increases. As can be seen from Fig. 14, when the slope 
compensation reaches its maximum value, the actual 
inductor current cannot approach its reference setting. 
Therefore, the current setting value needs to be modified 
according to the slope compensation Kcp together with the 
steady-state duty cycle D, as shown below:

After modifying the setting value, the actual peak 
inductor current is equal to I∗

set
 . In an ideal case, the error 

caused by the peak current control can be eliminated.

(22)

⎧
⎪⎪⎨⎪⎪⎩

Gd(S) = e−sTs ⋅
12f 2

s

s2 + 6fsrds + 12f 2
s

= e−sTs ⋅ Gk(S)

rd = 1 −
2

VD

⋅ (VC − LKcp) = X

(23)

⎧⎪⎨⎪⎩

�n = 2
√
3fs

� =
3fsrd

�n

(24)X =
��n

3fs
=

2
√
3

3
⋅ �

(25)I∗
set

= Iset + KCP ⋅ D ⋅ T

Fig. 14  Current loop step responses with Kcp = VC/L 

Fig. 15  Current loop amplitude-frequency characteristic with various 
compensation slopes
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4  Simulation and experimental results

4.1  Simulation results

A current loop model is built in MATLAB/Simulink to 
control a full-bridge DC-DC converter working in the 
Buck mode. The specified parameters set according to an 
actual system are shown in Table 1. The target inductor cur-
rent range of the current loop is 0-20A. In this subsection, 
the effects of the slope compensation on the dynamic and 
steady-state performances are analyzed by simulations.

In this example, X is chosen as 0.8164 to have the opti-
mal damping coefficient of 0.707. Then, the slope com-
pensation Kcp can be obtained by Eq. (20). The current 
setting value Iset is modified based on Eq. (25). When the 
current loop is suddenly set at 20A, the current of systems 
steps up, and the results are shown in Fig. 16 and Fig. 17.

With an increase of the slope compensation coefficient 
X, the subharmonic oscillation phenomenon is gradually 

suppressed. However, if X is too large, the response speed 
of the current loop becomes slow, as shown in Fig. 16. 
When X is equal to 0.8164, the steady-state performance 
of the current loop is greatly improved. Meanwhile, it 
also ensures that the system has fast response. This vali-
dates the theoretical analysis in Sect. 3, where the system 
achieves good dynamic and steady-state performances by 
adding an appropriate slope compensation.

4.2  Experimental results

Experiments were carried out to validate the discrete model 
and the slope compensation technique. The experimental 
set-up is shown in Fig. 18. The structure diagram and ini-
tial condition settings are shown in Fig. 19. Supercapacitor 
modular energy storage devices were used as loads at the 
low-voltage side with the rated voltage being 360 V. The 
DC-bus supply was used at the high-voltage side, which was 
made up of an AC power source and a diode rectifier bridge.

During the experiments, the sampled value of the induc-
tor current was superimposed with a ramp signal, and 
compared with the setting value, which generates a duty 
cycle modulation signal. In Fig. 20, CH1 is the ramp signal 
generated by the ramp circuit according to Kcp, CH3 is the 
inductor current, CH2 represents the inductor current of the 
superimposed ramp signal after gain adjustment, and CH4 is 
the duty cycle signal. The dotted line in the figure indicates 
the simulated setting value of the inductor current.

Fig. 16  Current loop step responses under different slope compen-
sation coefficients: a X = −  0.38, Kcp = 0; b X = 0, Kcp = 43,750; c 
X = 0.8164, Kcp = 212,130; d X = 3, Kcp = 662,500

Fig. 17  Steady-state current waveforms with different slope compen-
sation coefficients: a X = 0, Kcp = 43,750; b X = 0.8164, Kcp = 212,130
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The system was set according to the initial conditions 
shown in Table 1. When the current loop was suddenly set 
to 10A, the current of the system steps up, and the experi-
mental waveform is shown in Fig. 21. In this figure, CH1 is 
the inductor current waveform, CH4 is the primary current 
waveform, and CH2 and CH3 are the PWM drive signals 
of the full-bridge module. Due to the addition of the ramp 

signal, a corresponding peak error was generated, which had 
been compensated by the correction formula (25).

Under the effect of the step response, the system worked 
in the maximum duty cycle, and the inductor current rose 
rapidly. However, the subharmonic oscillation phenomenon 
appeared as shown in Fig. 21a. The optimal value of the 
slope compensation can be calculated by Eqs. (20), (24), 
(25) and the corresponding current waveforms are shown in 
Fig. 21b. When compared with Fig. 21a, it can be seen that 
the subharmonic oscillation with the new slope compensa-
tion was well suppressed. Thus, the inductor current and the 
primary current were more stable.

Steady-state results are given in Fig. 22 with the same 
initial conditions. CH1 and CH2 are the PWM drive signals 
of the full-bridge switches, CH3 is the primary current, and 
CH4 is the inductor current.

The waveforms in Fig. 22 show that the duty cycles of 
two adjacent switching cycles have one large and one small 
response when no slope compensation is added. This is con-
sistent with the analysis in Sect. 3. The presented inductor 
current and primary current waveforms exhibited subhar-
monic oscillations, and the transformer emitted significant 
noise. With the addition of appropriate slope compensation, 
all of the current waveforms remained stable and the subhar-
monic oscillations were eliminated.

CH1

CH3

CH2

CH4

Fig. 20  Ramp signal and duty cycle waveforms
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Fig. 21  Step response transient waveforms with different slope com-
pensation coefficients when: a X = 0, Kcp = 43,750; b X = 0.8164, 
Kcp = 212,130
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Fig. 22  Steady-state waveforms with different slope compensation 
coefficients in experiments when: a X = 0, Kcp = 43,750; b X = 0.8164, 
Kcp = 212,130
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5  Conclusion

In this paper, a small-signal discrete modeling method was 
presented and analyzed in the z-domain for the peak-cur-
rent mode (PCM) control of full-bridge isolated DC-DC 
Buck converters. This new modeling method can improve 
the linear approximate accuracy of converters in the high-
frequency band above half of the switching frequency when 
compared with existing local-averaged modeling methods. 
The new modeling method can be used to explain the insta-
bility problem of current control loops. Furthermore, an 
adjustable slope compensation coefficient has been provided 
based on the system model in the z-domain, which makes 
the slope compensation reliable and optimal. Simulation and 
experimental results have been shown to verify the accuracy 
of the modeling method, and the capability of the adjustable 
slope compensation in suppressing the subharmonic oscilla-
tions and improving dynamic and steady-state performance.
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