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1. Introduction
Understanding biological population dynamics provides insight into whether a population will
survive or become extinct. Salient features of these population dynamics, such as the growth rate
and the maximum population density, can be captured using suitable mathematical modelling
frameworks [1–12]. A common approach to model the density of a population,C(t), is to describe
the per-capita growth rate[1]. The per-capita growth rate, f(C), can be used to specify the temporal
evolution of population density as

1

C

dC

dt
= f(C). (1.1)

The most common mathematical descriptions of biological population dynamics are exponential
and logistic growth models [1]. Exponential growth is the simplest model, whereby f(C) is a
positive constant (Fig. 1a). While the exponential growth model captures observed low-density
population dynamics [1–3, 13], exponential growth implies that the population will eventually
become infinite. The logistic growth model (Fig. 1b) incorporates a linearly decreasing f(C) and
is perhaps the most widely used model of biological and ecological population dynamics [1–
3, 13]. This is because the logistic growth model captures two ubiquitous phenomena: (i) near-
exponential growth at low density, and; (ii) a finite maximum density, termed the carrying capacity
[2–5, 7, 13, 14].

Classical exponential and logistic growth models rely on several key assumptions regarding
the underlying biological mechanisms that drive population-level, or global dynamics [6, 8–11, 15].
These assumptions include: all individuals survive at all densities [1], and the intrinstic growth
and death rates are independent of density [10]. However, populations have been observed
to grow more slowly at low densities than predicted by the classical logistic model [6], while
other populations undergo extinction below a threshold density [7, 15]. These observations are
inconsistent with logistic and exponential models and modifications have been proposed to
explain these observations [2–7].

The Allee effect (Fig. 1c,d) is a common modification of the logistic model that relaxes the
assumption that all members of a population will survive. This model describes situations in
biology where the per-capita growth rate is smaller, relative to logistic growth, at low population
densities [6, 8–12, 14, 15]. The Allee effect is often discussed in the context of ecology and is
relevant for describing the extinction of endangered species [9, 14], population heterogeneity and
structure [16, 17], the impact of invasive species [14, 18], and the reduction of biological fitness
[12, 14]. While the Allee effect was first proposed in the ecology literature, more recent interest
in the cell biology literature suggests that there is a growing awareness of the role of the Allee
effect in populations of cells, including the eradication of cancer cells [19, 20], growth rates of
tumour cells [2, 3, 20–22], and cell migration and invasion assays [10]. The Allee effect typically
takes one of two forms, depending on the behaviour at low densities: (i) the Strong Allee effect,
describing negative per-capita growth below some critical density threshold (Fig. 1d), resulting
in the extinction of the population below this threshold, and; (ii) the Weak Allee effect, describing a
reduced, but positive, per-capita growth rate at low densities (Fig. 1c).

Many studies incorporating Allee effects solely examine global information [2, 3, 5, 6, 8,
9, 11, 12, 14, 21]. Therefore, it is not obvious a priori how to determine an explicit form of
an Allee effect from local, individual-based mechanisms. Alternatively, stochastic mathematical
models can incorporate individual-level mechanisms to describe growing populations [10, 23, 24].
These kind of individual-based model (IBM) simulation frameworks represent single members
of the population as agents that, for example, move, proliferate, and die according to certain
biologically-motivated stochastic rules.

IBMs are increasingly used to model population dynamics, partly because of technological
advances making it possible to perform high-throughput cell biology experiments and collect
large quantities of individual-level data. The task of choosing an appropriate model to capture
and interpret experimentally-observed individual behaviour is a significant challenge [25].
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Figure 1. Relating global population-level models to an individual-based stochastic framework. A population can

be described using one of two mathematical frameworks. In the first, global population models describe an averaged

population density, C. These global population models are described in terms of the density growth rate, dC/dt, or

the per-capita growth rate, f(C) = (1/C)(dC/dt). Common global models include (a) exponential, (b) logistic, (c) the

Weak Allee effect, (d) the Strong Allee effect, and (e) higher-order modifications. In the second, a population can also

be described using a stochastic individual-based model (f), where agents move, proliferate, and die based on stochastic

rules (blue arrows). To ensure the stochastic model is as realistic as possible, crowding effects are incorporated by not

permitting any event that would result in agent overlap (red crosses).
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Typically, global population models are calibrated to experimental data to provide insight into
the global features of the population, such as the carrying capacity or the low-density growth rate
[2, 3, 7]. However, this standard approach provides no insight into the underlying individual-
level mechanisms. In contrast, employing an IBM allows us to describe both the local and global
features of a population. While certain IBM frameworks proposed have been observed to produce
Allee effects [10, 20, 26, 27], the exact relationship between individual-based mechanisms and
global per-capita growth rates is unclear. Consequently, the task of designing an IBM to describe
specific global Allee effects, or higher-order effects (Fig. 1e), has never been considered.

In this work, we propose an IBM that incorporates motility, proliferation, and death processes
in a population of individuals. This IBM incorporates crowding effects, whereby potential motility
and proliferation events can only take place if agents do not overlap (Fig. 1f). By allowing
individual-level mechanisms to depend on the density in a small neighbourhood surrounding
an agent, the IBM is capable of describing a variety of per-capita growth rates. The continuum
limit description of the IBM recovers the exact form of many Allee effect models for specific
choices of IBM parameters. The main result is to pose and solve an inverse problem that can
be described in the following way. Given a particular per-capita growth rate model, such as
might be obtained by population-level experimental data, we determine which combinations
of individual-level proliferation and death rates give rise to that particular scenario. This work
provides the missing link in understanding between local, individual-based mechanisms and
particular global outcomes, thereby providing a solid theoretical foundation for understanding
and interpreting the mechanisms associated with Allee effects. We conclude by demonstrating
how these new tools can be applied in practice by applying our modelling framework and
solving the inverse problem to interpret data from both cell biology and ecology experiments.
Additionally, interactive MATLAB applets, one of which determines IBM rates and simulations
from a user-specified per-capita growth rate, and another that determines IBM rates from a user-
specified choice of model fit to experimental data, are available to others to repeat this analysis
(Code Availability).

2. Results
We consider a population of agents on a two-dimensional hexagonal lattice (Fig. 2). The IBM
incorporates agent motility, proliferation, and death, where the individual-level rates vary with
local density. All results in the main document consider the local density to be obtained by the six
nearest neighbouring lattice sites (Fig. 2); additional results (Supplementary Information) show
how our results generalise to larger neighbourhoods. Other types of regular lattices, including
square lattices and three-dimensional cubic lattices, can also be used with the IBM framework.

The main objective of this work is to determine how individual-level mechanisms are linked
to various global Allee effects, which can be approached in two ways. The first approach is to
demonstrate that this IBM framework gives rise to a variety of Allee effects, which we refer to as
the forward problem, since the input of IBM parameters produces a certain global per-capita growth
rate. The second approach is to determine which individual-level parameters give rise to a specific
global per-capita rate. We refer to this as the inverse problem, as the inputs of the IBM parameters
are unknown for a particular output per-capita rate. To highlight the insights obtained through this
approach, we present strategies to link experimental data to various Allee effect models, which
we interpret in terms of individual-level mechanisms.

(a) The Individual-Based Model (IBM)
We perform non-dimensional simulations where the hexagonal lattice spacing is ∆. These
simulations can be rescaled to match any particular application by rescaling ∆ [23, 28]. Each

https://github.com/nfadai/Fadai_Allee2019
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Figure 2. Agents on a hexagonal lattice with rates of proliferation and death that depend on the local density.

Individuals within a population (a) are represented as agents on a two-dimensional hexagonal lattice (b). The

corresponding proliferation and death rates of each agent are dependent on the local density of agents. The simplest

measure of local density is the number of nearest neighbouring agents, n, as shown on the lattice. Here, n ranges

from from n= 0 (red hexagon) to n= 6 (black hexagon). These differences in local density are used to specify how the

attempted proliferation rates (c) and the death rates (d) depend on n. For example, in (b), there are three agents that

each have one nearest neighbour (yellow hexagons). Each of these agents will have the same attempted proliferation

and death rates, whose magnitudes are shown in (c,d) with yellow bars. We note that while an agent with six nearest

neighbours (black hexagon) can attempt to proliferate (c, black bar), the net probability of this attempt being successful

will always be zero. Nevertheless, an agent with six nearest neighbours can undergo a successful death event (d, black

bar).

lattice site has position

(xi, yj) =


(
i∆ , j∆

√
3

2

)
, j even,((

i+
1

2

)
∆ , j∆

√
3

2

)
, j odd,

(2.1)

with i= 1, . . . , I , j = 1, . . . , J , and ∆= 1.
Crowding effects are important in both cell biology and ecology [10, 23, 24, 28–30], so potential

motility and proliferation events that would result in more than one agent per site are aborted.
Agents attempt to undergo nearest neighbour motility events at rate mn ≥ 0, proliferation at rate
pn ≥ 0, and death events at rate dn ≥ 0 (Fig. 2c,d). Here, n∈ {0, 1, . . . , 6} is the number of occupied
nearest neighbour sites, providing a simple measure of the local density. While individuals attempt
to undergo motility and proliferation events at a constant rate, the actual rate of successful events
is density dependent, with the net rates being decreasing functions of density. This is the key
feature of the model that gives rise to non-logistic phenomena.

For simplicity, we assume that all agents, regardless of their local density, have the same
motility rate (mn ≡m). Furthermore, we choose m such that pn/m� 1 and dn/m� 1 for all n,
since the characteristic timescale for motility is assumed to be much shorter than the characteristic
timescale for proliferation and death [31]. Agents are initially seeded on the lattice with a constant
probability, representing spatially uniform initial conditions. Furthermore, we impose reflecting
boundary conditions and, using a Gillespie approach [33], we simulate the number of agents as a
function of time and space (Algorithm 1, Supplementary Information).

To compare data from the IBM with the global population description, we average data from
the IBM using

〈C(t)〉= 1

IJL

L∑
`=1

Q`(t). (2.2)

Here, Q`(t) is the total number of agents on the lattice at time t, in the `th identically-prepared
realisation of the IBM. The total number of identically-prepared realisations is L; we choose
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L= 100 for the results presented in Figs. 3 and 4. A description of the numerical algorithm
(Supplementary Information) and a MATLAB implementation of this algorithm are available
(Code Availability).

(b) Continuum limit
While the IBM allows us to visualise realistic-looking individual simulations of population
dynamics, as well as to explicitly specify the individual-level behaviour of agents, it is convenient
to derive a simpler mathematical description of the average behaviour of the IBM, called the
continuum limit description [10, 28]. The continuum limit description gives us the ability to study
global, deterministic, features of the IBM when the number of lattice sites is large, as well as to
understand how individual-level differences translate into global outcomes.

Since the IBM employs spatially uniform initial conditions, the net flux of agents entering and
leaving each lattice site due to motility events is, on average, zero. Therefore, spatial derivatives
in the continuum limit will vanish, meaning that the continuum description of the average agent
density, 0≤C ≤ 1, is a function of time alone. Furthermore, we assume that the occupancy status
of lattice sites is independent. This assumption, called the mean-field approximation [10, 23, 28, 32],
is mathematically convenient and is consistent with setting m� pn and m� dn [23, 32]. Our
results confirm that the mean-field approximation is very accurate for populations that migrate
faster than they proliferate or die. Populations with slow migration rates, such as populations
considered in plant ecology, are not expected to agree with the mean-field assumption continuum
limit, as local clustering will develop and thereby violate the assumption of spatial uniformity
[23, 32].

Using the mean-field approximation, we describe the local density of agents in terms of the
average agent density. Specifically, for an agent to have a local density corresponding to n nearest
neighbours, we require: (i) an agent to be present at the particular site; (ii) n nearest neighbour
sites are occupied, and; (iii) the remaining (6− n) nearest neighbour sites are vacant. These
conditions give the density of agents with n nearest neighbours, 0≤ In ≤ 1, as

In =Cn+1(1− C)6−n, n= 0, 1, . . . , 6; (2.3)

hence, In follows a binomial distribution. To determine how the global agent density evolves, we
examine the time rate of change in expected agent density due to proliferation and death events,
giving

dC

dt
=

1

6

6∑
i=1

pn(i)In(i)︸ ︷︷ ︸
proliferation events

−
6∑
j=0

(
6

j

)
djIj︸ ︷︷ ︸

death events

, (2.4)

where n(i) is the number of nearest neighbours is each neighbouring agent i. The binomial

coefficient,

(
6

j

)
=

6!

j!(6− j)! , accounts for all possible configurations of an agent’s j nearest

neighbours. Furthermore, by assuming that the agent configurations In follow a binomial
distribution, we can write

pn(i)In(i) =

5∑
n=0

(
5

n

)
pnIn. (2.5)

We omit the saturated configuration, I6 (black hexagon in Fig. 2), from this sum, since
proliferation events require an empty neighbouring lattice site to produce a daughter agent.

https://github.com/nfadai/Fadai_Allee2019


7

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

By combining equations (2.4)–(2.5), we obtain the continuum limit description (i.e., the global
population description) of C(t):

dC

dt
=

5∑
n=0

[(
5

n

)
pn −

(
6

n

)
dn

]
In − d6I6

=C(1− C)

5∑
n=0

[(
5

n

)
pn −

(
6

n

)
dn

]
Cn(1− C)5−n − d6C7.

(2.6)

For convenience, we quantify the death rate as a fraction of the proliferation rate, i.e., dn = αnpn,
whereαn ≥ 0. With this substitution and some rearranging of terms in equation (2.6), we can write
the evolution of the global agent density in terms of the per-capita growth rate, (1/C)(dC/dt):

1

C

dC

dt
= g(C) = (1− C)

5∑
n=0

γn

(
5

n

)
Cn(1− C)5−n − γ6C6, (2.7)

where

γn =


pn

(
1− 6αn

6− n

)
, n= 0, . . . , 5,

p6α6, n= 6.

(2.8)

We deliberately refer to the per-capita growth rate associated with the continuum limit as g(C),
and the per-capita growth rate prescribed via the global population behaviour as f(C). Later, we
will show how to choose the IBM parameters such that f(C)≡ g(C). Additionally, we note that
equation (2.7) groups the 14 parameters (pn, αn) as 7 linearly independent parameters, γn.

(c) Allee effects arising from the IBM: the forward problem
We now demonstrate that the IBM framework gives rise to a rich variety of Allee effects. In the
first instance, we set αn = 0 for all n. Equation (2.8) implies that γn = pn for 0≤ n≤ 5 and γ6 = 0,
such that agents only proliferate and move, and do not die. While this parameter regime is by no
means a complete account of all possible parameter combinations, it serves to highlight that g(C),
from equation (2.7), can give rise to a suite of Allee effects.

We consider three different choices of pn:

pn =



1.5, 0≤ n≤ 5, (Case 1)

0.25 + 0.5n, 0≤ n≤ 5, (Case 2)

0.25

(
5

n

)
, 0≤ n≤ 5. (Case 3)

(2.9)

We note that in Cases 2 and 3, the range of proliferation rates varies by a factor of 10 as n varies
from zero to five, demonstrating a significant range of proliferation rates within a single IBM
realisation. Equation (2.7) gives,

g(C) =


1.5(1− C), (Case 1)

2.5(1− C)(0.1 + C), (Case 2)

0.25(1− C)(1 + 20C + 10C2 − 60C3 + 30C4). (Case 3)

(2.10)

The global population density, C, can be determined by solving equation (2.7) with a specified
initial condition, C(0).

While we can retrieve logistic growth from the continuum limit of the IBM (Case 1; Fig. 3),
we can also obtain more complicated, nuanced, per-capita growth rates, including the Weak
Allee effect (Case 2; Fig. 3) and completely novel Weak Allee-like per-capita growth rates never
previously described (Case 3; Fig. 3). This analysis of three simple IBM parameter regimes suffices
to show that this IBM framework is related to a large class of global population descriptions.
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Figure 3. Comparison of data from the IBM with the solution of the corresponding global population description

for different suites of proliferation rates. Simulations of the IBM are shown with three different familes of proliferation

rates pn (a,d,g), described in equation (2.9), along with the resulting per-capita rate of the global population model

(b,e,h), described in equation (2.10). The three different families of proliferation rates are referred to as Case 1 (a–c,j),

Case 2 (d–f,k), and Case 3 (g–i,l), respectively. (c,f,i) The solution of the global population description, C, is compared

with averaged density data obtained by performing 100 identically-prepared realisations of the IBM to give 〈C〉, where

the initial agent density is C(0) = 0.05. (j–l) Single realisations of the IBM, with the same colour scheme as in Fig.

2, are shown at t= 0, 2, 4, and 6, corresponding to the blue circles on the 〈C〉 curves. For each realisation of the

IBM, we use a 100× 115 hexagonal lattice, corresponding to the two-dimensional domain [1, 100]× [1, 100]. Here,

m= 100max(pn).
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Furthermore, in Fig. 3, as well as videos presented in the Supplementary Information, we
show that averaged density data from the IBM, 〈C〉, agrees very well with C, confirming that
the average agent density from the simulated IBM data is faithfully captured by the global
population description. With these results, we now turn to the inverse problem to determine
which individual-level rates describe global Allee effects.

(d) Choosing IBM rates to match Allee effect models: the inverse problem
A standard practice for the application of an Allee-type model involves matching population-
level experimental data to a particular continuum model, without any regard for the underlying
individual-level mechanisms. Therefore, it is natural to ask, for a given per-capita growth rate,
f(C), how do we choose the IBM parameters so that the per-capita growth rate determined from
the continuum limit of the IBM, g(C) in equation (2.7), is identically f(C)?

Mathematically, we seek the parameters γn in equation (2.7) such that g(C)≡ f(C). To do this,
we first note that equation (2.7) is linear in γn. Therefore, we can evaluate equation (2.7) at seven
distinct pointsCi ∈ {C0, C1, . . . , C6} and obtain a corresponding linear system in γn. By denoting

g(Ci) =

6∑
j=0

Mijγj , (2.11)

we obtain the linear system
Mγγγ = f , (2.12)

where the 7× 7 matrix M has entries [Mij ], γγγ is the vector of parameter values [γj ], and f is the
vector of function values [f(Ci)]. We note that the polynomials appearing in (2.7), Cn(1− C)6−n,
are linearly independent, so M is never singular and the solution of this system is γγγ =M−1f .
Furthermore, if f(C) is a polynomial of degree 6 or less and f 6= 0, this unique solution of γγγ
provides the IBM parameters such that g(C)≡ f(C). We discuss a method of determining the
IBM parameters for other forms of f(C) in the Supplementary Information.

To prevent populations from becoming infinite, we require that f(C) will be non-positive
when C = 1, so we impose f(1)≤ 0. Noting that g(1) =−γ6 =−p6α6 ≤ 0, this implies that γ6 =
−f(1)≥ 0, which is consistent with the restriction that p6, α6 ≥ 0. Common per-capita rates and
the corresponding IBM parameters are tabulated in the Supplementary Information.

Upon determining suitable parameters γn that match a specific f(C), we then consider
choosing pn and αn from equation (2.8). However, since the birth and death rates (pn, αn) need
to be determined solely from γn, there are infinitely many different combinations of (pn, αn) that
satisfy equation (2.8). If there is further information about either pn or αn, such as additional
experimental data, a unique estimate of (pn, αn) can be determined. However, in the absence of
such data, we make a straightforward choice of parameter combinations:

(pn, αn) =



(γn , 0) , γn ≥ 0, n < 6,(
(n− 6)γn

n
, 1

)
, γn < 0, n > 0,(

R , 1− γ0
R

)
, γ0 < 0, n= 0,

(γ6, 1), γ6 > 0, n= 6,

(0, 0), γ6 = 0.

(2.13)

Here, R= max
1≤n≤6

pn and only appears in the case when f(0)< 0. This choice of R provides a

balance between minimising the relative death rate α0 > 1 while preventing p0 from dominating
other proliferation rates. These parameters can be interpreted as proliferation-dominated
behaviour when γn > 0 and death-dominated behaviour when γn < 0. Furthermore, having
γ6 > 0 only occurs when f(1)< 0, implying that the death rate d6 = p6α6, shown in black in Fig.
2, must be strictly positive.
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(i) Comparing the IBM with global population models

With this systematic method of determining the IBM proliferation and death rates that match
various choices of f(C), we compare the average agent density determined by the IBM, 〈C〉,
with its corresponding global population description, C. Results in Fig. 4 show that the IBM
agent density agrees very well with the global population description, provided that the initial
agent density, C(0), is sufficiently far away from any unstable equilibria of the global population
description. An unstable equilibrium is a particular density C∗ such that dC/dt at this density,
C∗f(C∗), is zero, but agent densities near C∗ diverge away from the equilibrium. For example,
logistic growth (Fig. 4a) has an unstable equilibrium at C∗ = 0, whereas the Strong Allee effect
(Fig. 4c) has an unstable equilibrium for a positive C∗ (Fig. 4c has C∗ = 0.4).

IBM simulations where the density is close to an unstable equilibrium are dominated by
stochastic noise [9, 11, 34]; therefore, we do not expect that 〈C〉 will agree with C in these cases.
Indeed, this disagreement is clear in Fig. 4 with initial conditions in the Strong Allee effect and
Hyper-Allee effect close to their unstable equilibria (see Fig. 4 caption for the explicit forms of
these per-capita rates). Nevertheless, the IBM sufficiently captures the salient features of a large
class of Allee-type dynamics with a suitable choice of proliferation rates, death rates, and initial
conditions.

(e) Mechanistic interpretation of experimental data
Per-capita growth rates describing population growth and extinction can match the global trends
in experimental data [2–7], but fail to provide any insight at the individual-level scale. In
contrast, the mathematical tools presented in this work provide the missing link that connects
various global per-capita rates to specific individual-level mechanisms, via solving equation
(2.12). Therefore, we can provide insight into individual-level behaviour from experimental data
with the following approach. First, we choose a per-capita growth rate to match the global
features of the experimental data. Second, the associated global model parameters are then fit
to the data: for example, by minimising the least-square error between the population model
and the experimental data. Last, we solve the inverse problem and determine the associated IBM
parameters that give rise to the experimentally-observed global behaviour.

To highlight the insight possible from this approach, we consider two population-level data
sets and provide previously hidden detail about individual-level behaviour [6, 7]. In Johnson
et al.[6], BT-474 breast cancer cells are seeded at three initial densities in a 96-well plate, and
cell proliferation is observed for 328 hours. Similar epithelial cell lines 20–30 µm in diameter
have motility rates of about 4–9 h−1, while their proliferation rates are approximately 0.03–0.06
h−1 [31]. Therefore, we assume that these BT-474 breast cancer cells have motility rates that are
sufficiently large compared to both proliferation and death rates. As shown in the Supplementary
Information, a motility rate that is ten times larger than the proliferation rate is sufficient for the
well-mixed assumption of the IBM continuum limit to hold.

Model selection analysis in Johnson et al.[6] suggests that an Allee effect is required to describe
this data. As there is no evidence of population extinction, we consider the Weak Allee effect with
per-capita rate

f(C) = r

(
C

A
+ 1

)(
1− C

K

)
, A > 0, and K > 0, (2.14)

where r is the per-capita growth rate at C = 0 and K is the carrying capacity with units
cells/image. We match this model to three experimental datasets simultaneously by minimising
the total least-squares error (Fig. 5) and we determine the underlying individual-level
mechanisms associated with equation (2.14) using equation (2.12). Specifically, the global Weak
Allee parameters are determined to be A= 148 cells/image, K = 315 cells/image, and r=

0.00757 h−1. In Fig. 5b, we show that the IBM proliferation rates associated with this Weak
Allee effect increase linearly with local density, as we observed when discussing the forward
problem (Fig. 3). This is to be expected, since the Weak Allee effect also features a reduced growth
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Figure 5. Number of BT-474 breast cancer cells compared to model predictions shown in Johnson et al.[6] and

the Weak Allee effect. The number of BT-474 breast cancer cells are shown at low density initial conditions (LD), shown

in blue circles, medium density initial conditions (MD), shown in red circles, and high density initial conditions (HD), shown

in green circles, over the span of 328 hours [6]. A semi-log plot of the data is shown in the inset of the figure to better

distinguish the experimental data at low cell numbers. The three datasets can be fit to a modified Allee effect (dot-dash

lines; parameters and model description shown in Johnson et al.[6]). The Weak Allee effect (solid curves) is fit to minimise

the combined least-square error of all experimental datasets shown in Johnson et al.[6]. The Weak Allee parameters are

determined to be A= 148,K = 315, and r= 0.00757, with fit initial conditions c1 = 2.27, c2 = 4.51, and c3 = 10.6.

This parameter set yields the total least-squares error, combined over all three datasets, of 230, compared to the total

least-squares error of 10900 using the model described in Johnson et al.[6]. The rescaled density is the cell number data

divided by K. Using this rescaled per-capita rate, we obtain the corresponding IBM parameters (b,c) by using equations

(2.12) and (2.13). The proliferation rates (b) are shown relative to p0, shown in red, which has been rescaled by r so

that p0 = 1. Unlike the logistic growth model (black dashed line), whose proliferation rates are independent of the local

density n, the Weak Allee effect corresponds to proliferation rates that linearly increase with n. The magnitudes of the

death rates are all zero.

rate at low densities. Furthermore, the individual-level rates increase by a factor of about three,
which is significantly different to simpler models such as the logistic growth model, where the
proliferation rates are independent of local density (see Fig. 4).

As carrying capacity densities are often reported in units of cells/well, we note that K = 315

cells/image is equivalent toK = 33500 cells/well. To convertK from units of cells/image to units
of cells/well, we make use of two key measurements: the size of the well, and the size of the image
containing cells. The Trueline 96-well plate [6] has a well diameter of 6400 µm, while the largest
region of an image shown in [6] that contains cells is approximately a 550 µm × 550 µm square.
Therefore, we have that

Kwell =Kimage ·
π
4 · 6400

2

5502
≈ 33500 cells/well.
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It is important to note that K = 33500 cells/well is simply the predicted carrying capacity
density based on these low-cell number experiments at early time. Without any late time
experimental data, where the density approaches the carrying capacity, it is impossible to predict
the carrying capacity [35]. Nevertheless, we infer the carrying capacity that minimises the least-
squares error between model predictions and early-time experimental data. We conclude that
the experimental observations presented in Johnson et al.[6] can be explained by allowing the
attempted proliferation rates of BT-474 breast cancer cells to linearly increase as a function of local
density. Without posing and solving the inverse problem described here, this individual-level
insight is not possible.

To compare contiuum descriptions with experimental results that arise in ecology, we consider
the datasets in Melica et al.[7], where the dynamics of the population density of Aurelia aurita
polyps growing on oyster shells is measured. New Aurelia aurita polyps form via free-swimming
propagules, which are released from the existing polyp into the surrounding water and land
elsewhere on the oyster shell [36]. Consequently, these polyps experience a faster motility rate,
relative to proliferation and death rates, over the surface of the oyster shell. As such, the mean-
field assumption inherent in our modelling framework is satisfied. Melica et al.[7] observe that a
series of experiments where polyps are initially distributed at low density leads the population
density evolve to some particular carrying capacity. Interestingly, when the same experiments are
performed at a much higher initial density, the population decays to a different, higher, carrying
capacity. This observation is explained in Melica et al.[7] by supposing the population dynamics
are logistic, with the requirement that there are two different carrying capacities, despite the fact
that the classic logistic model specifies a single carrying capacity only. Instead, we consider the
“Hyper-Allee effect” model, Fig. 4(d), with per-capita rate

f(C) = r

(
C

A
− 1

)(
C

B
− 1

)(
1− C

K

)
, 0<A<B <K. (2.15)

Equation (2.15) has the advantage that two stable equilibria, A and K, exist. While other cubic
per-capita growth rates have been proposed [37], this work focuses on the underlying individual-
level mechanisms giving rise to such a model. We fit this model to two experimental datasets
simultaneously by minimising the combined least-squares error of both datasets. As seen in Fig.
6, the Hyper-Allee effect model agrees with both experimental datasets with only a change in the
initial condition.

To provide further insight about the population dynamics of this experiment, we determine
the corresponding IBM parameters that give rise to this Hyper-Allee effect. We note that if
f(C) is rescaled such that the largest recorded density point, the high-density initial condition,
corresponds to C = 1 (Supplementary Information), then we must have f(1)< 0. Equation
(2.12) implies that γ6 > 0, producing non-zero attempted proliferation and death rates when an
individual has n= 6 nearest neighbours, shown in black bars in Fig. 6 b,c. However, the presence
of death rates at various local densities (Fig. 6c) drives low density populations to the smaller
carrying capacity A, while high density populations are driven to the larger carrying capacity K.
We conclude that the experimental observations in Melica et al.[7], displaying the co-existence of
two stable population densities, can be explained by varying the death rates with local density. In
both examples, there is a clear need to use global population models more nuanced than logistic
growth to capture the experimentally-observed features.

3. Discussion
Allee effects were first proposed to describe observed behaviour of populations that exhibit
features unable to be explained by classical models, such as exponential and logistic growth.
Such classical models rely on heavily simplifying assumptions, including all population densities
being able to survive, and the growth and death rates being independent of the local density. The
Allee effect relaxes these assumptions and modifies the logistic model by reducing the per-capita
growth rate of a population to small or negative values at low densities, resulting in the potential
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Figure 6. Density of Aurelia aurita polyps compared to model predictions of logistic growth and the Hyper-Allee

effect. (a) The density of polyps are shown in low density treatments (LD), shown in red triangles, and high density

treatments (HD), shown in blue triangles, over the span of 42 days. The two datasets can be fit to logistic growth separately

(red and blue dot-dash lines; parameters are listed in Melica et al.[7]), but cannot match both datasets simultaneously. The

Hyper-Allee effect (equation (2.15), solid curves) is fit to minimise the combined least-square error of both expiremental

datasets shown in Melica et al.[7]. The Hyper-Allee parameters are determined to be A= 2.24, B = 4.69,K = 5.16,

and r= 0.161, with two fit initial conditions c1 = 0.0691 and c2 = 7.73. The stable carrying capacities of both models

are shown with dashed lines in the colours that correspond to their respective model. The rescaled density is the density

data divided by the maximal experimentally observed polyp density, c2. Using this rescaled per-capita rate, we obtain

the corresponding IBM parameters (b,c) by using equations (2.12) and (2.13). The attempted proliferation rates (b) are

shown relative to p0, shown in red, which has been rescaled by r so that p0 = 1. The magnitudes of the death rates (c)

are shown relative to their corresponding proliferation rates in (b). Since the rescaled density C = 1 is not an equilibrium

point, the attempted proliferation and death rates when n= 6 (black bars) are non-zero.

extinction of a population below some critical density threshold. However, examination of Allee
effects are nearly always performed at a global population scale alone. As such, unpacking the
underlying, individual-level mechanisms that match a particular global Allee effect model has
remained an open question in biology and ecology.

We demonstrate that by permitting proliferation and death rates in the IBM to vary with local
density, we retrieve a large family of global population per-capita growth rates, including Allee
effects. Furthermore, we propose a systematic method to determine individual-level mechanisms
in the IBM that agree with a given particular per-capita growth rate model, such as might
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arise from experimental data. For example, once a per-capita growth rate is chosen to match
the global features of experimental data, we can solve an associated linear system to determine
the IBM parameters that give rise to the experimentally-observed global behaviour. While these
IBM parameters cannot be uniquely identified without additional information, the underlying
net-growth mechanisms in the IBM are uniquely identifiable. This method demonstrates that
commonly used global per-capita growth rates, such as logistic growth, the Strong Allee effect,
and the Weak Allee effect, can all be recovered with this IBM.

In this work, we also present strategies to connect experimental data to various global
population models, which can in turn be linked to individual-level mechanisms. Specifically, we
examine two experimental datasets arising in cell biology and ecology [6, 7]. In both cases, an
Allee effect describes these datasets, and the global model parameters are not sensitive to initial
conditions as suggested previously. Consequently, the IBM associated with these Allee effects
not only provides better understanding of individual-level behaviour, but also provides insight
into the limitations of commonly used per-capita rates. This IBM is useful for both theorists and
experimentalists when analysing population dynamics; the modelling framework is simple to use
and interpret, yet the insight and implications of the framework are broad and widely applicable.

By shifting to a modelling paradigm that involves the combination of an individual-based
framework and its corresponding population dynamics, we provide insight into the behaviour
of individuals from observed global behaviour. This insight provides a solid justification for
the inclusion of more complex individual-level mechanisms to describe the salient features of
population behaviour. The modelling approach proposed here provides a framework capable of
unifying common global population descriptions with more complex population descriptions.
Indeed, our results are not in conflict with the most common global population descriptions,
including logistic growth and various forms of the Allee effect. Instead, our work highlights that
by building a model from the individual-scale up, we systematically recover the basic underlying
mechanisms that provide insight into whether a population will survive or become extinct.
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