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Abstract 
 

Using hand-collected data on top management team human capital (“management quality”) of a 
large sample of private firms, we analyze the effect of top management quality on pre-IPO innovativeness 
and the innovation strategies of these firms. We also analyze how management quality and pre-IPO 
innovation relate to these firms’ IPO characteristics. We hypothesize that firms with higher quality 
management teams invest in a greater proportion of long-term (innovative) projects, select better 
innovation projects, and manage innovation resources more efficiently, resulting in higher innovation 
productivity. We also hypothesize that such firms reap greater IPO market rewards. The evidence supports 
these hypotheses. 
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1. Introduction 

The importance of innovation for the long-run success and competitive advantage of firms is well 

known since Schumpeter and has been discussed extensively in the literature (see, e.g., Porter (1992)). 

However, the precise drivers of innovation are less well understood. It has been argued that, since 

innovation is a process involving great uncertainty and high risk of failure (see, e.g., Holmstrom (1989)), 

the drivers of innovation may differ significantly from those of more routine tasks. Thus, Manso (2011) 

argues that motivating innovation needs significant tolerance for failure in the short run and reward for 

success in the long run. One factor that may significantly affect corporate innovation that has been 

relatively neglected in the literature is the human capital or “quality” of a firm’s top management team.1 

In particular, while it is well known that venture capitalists and other early-stage investors analyze the top 

management quality of a private firm before investing in that firm, there has been little analysis in the 

literature on the relationship between the top management human capital of private firms and their 

capacity to innovate.2 The objective of this paper is to use hand-collected dataset on the characteristics of 

the top management teams of a sample of venture-backed private firms to empirically analyze how the 

human capital of top management team members affects the innovativeness of private firms in the years 

before they go public, and how the market for initial public offerings (IPO) of equity rewards greater 

innovation productivity and higher management quality in private firms when they eventually go public.  

We study two related research questions in this paper. First, how does the top management 

quality of private firms affect their innovation productivity and innovation strategies prior to going 

public? We make use of the measures of top management human capital (“management quality” from 

now on, discussed in detail below) and relate them to measures of input to innovation such as R&D 

expenses, measures of innovation output such as the number of patents awarded to a firm (quantity of 

innovation) and the citations per patent (quality of innovation), as well as measures of innovation 

                                                 
1 The importance of the human capital of employees in affecting firm performance has been hypothesized in the 
seminal theoretical work of Becker (1962), among others. 
2 An exception is the contemporaneous paper by Chemmanur, Kong, Krishnan, and Yu (2018), who use a panel 
dataset from the BoardEx database to study the relationship between top management quality and innovation in 
established public firms. We will discuss in more detail how our paper relates to the above paper in the next section.  
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strategies. Second, how does the IPO market reward greater innovativeness and higher top management 

quality in private firms in terms of the market valuation of firm equity (both at the IPO and in the 

immediate post-IPO secondary market), the age at which such firms are able to go public, and their post-

IPO operating performance?   

The quality and reputation of a firm’s management team may affect its innovation input and its 

innovation output in several ways. First, Chemmanur and Jiao (2012) argue that more talented managers 

have the ability to create long-run value by investing in long-term rather than short-term projects. This 

implies that higher quality managers will select a greater proportion of long-term projects (i.e., more 

innovative projects in our setting), so that firms with higher quality management teams may invest larger 

amounts in innovative projects. Second, higher quality management teams may select projects with 

greater innovation productivity. Third, higher quality managers may hire higher quality employees 

(scientists and engineers) who are likely to be more innovative and such managers may be able to manage 

these employees better (e.g., by exhibiting greater failure tolerance: see Manso (2011)), resulting in 

greater innovation productivity for their firms. Based on the above, we conjecture that entrepreneurial 

firms with higher top management quality will be more innovative before their IPOs, as measured by their 

input into innovative projects as well as by the quantity and quality of their innovation output. 

Top management quality may affect the innovation strategies adopted by private firms in 

potentially opposite ways. On the one hand, since higher quality top management teams may bring greater 

knowledge resources to the firm, firms with such top management teams may adopt riskier innovation 

strategies aimed at pushing the knowledge boundaries of the firm outward. On the other hand, since 

higher quality top management team members are likely to have more valuable reputations to protect, and 

riskier innovation strategies are associated with a higher chance of failure, firms with higher quality top 

management teams may adopt more conservative innovation strategies. 

The innovativeness and management quality of a private firm may also affect its valuation and 

age at IPO as well as its post-IPO operating performance. Assuming that many of the innovations 

developed by private firms before IPO turn out to be positive net present value (NPV) projects, we would 
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expect firms with greater innovation output and managed by higher quality top management teams to 

generate larger long-run cash flows (better post-IPO operating performance) and thus have higher IPO 

and immediate secondary market valuations. Since going public is costly for a firm, but has the benefit of 

raising external capital on more advantageous terms compared to private equity financing, a private firm 

will go public when the benefit of doing so exceeds the cost (see, e.g., Chemmanur and Fulghieri (1999) 

or Clementi (2002) for theoretical models of the going public decision). This means that firms with 

greater pre-IPO innovation productivity will go public earlier, since such firms will reach the above 

tipping point (where the benefit of going public exceeds the cost of doing so) at a younger age. Assuming 

that a firm with a given innovation productivity will generate larger long-run cash flows if managed by a 

higher quality top management team, we expect the joint effect of greater pre-IPO innovation productivity 

and higher management quality to also result in better post-IPO operating performance, higher firm 

valuation (both at the IPO and in the immediate post-IPO secondary market), and a younger age at IPO. 

We test hypotheses based on the above theoretical conjectures using data on a sample of venture-

backed private firms going public during 1993-2004. Data on management quality were hand-collected 

from IPO prospectuses. We make use of individual proxies for management quality used by Chemmanur 

and Paeglis (2005) and Chemmanur, Paeglis, and Simonyan (2011). We also follow the methodology in 

these papers and make use of common factor analysis on the individual management quality proxies to 

generate a management quality factor (MQFactor), which we use in our empirical analysis.3  We make 

use of the number of patents granted to a firm and the number of citations received by each patent 

obtained from the National Bureau of Economic Research (NBER) Patent Citation database as our main 

measures of firm innovation. Specifically, patent counts measure the quantity and citations per patent 

measure the quality of innovation output. The use of patenting to capture firms’ innovation output has 

now become standard in the innovation literature (see, e.g., Seru (2014) or Chemmanur, Loutskina, and 

Tian (2014)). 

                                                 
3 However, neither of these papers studies the relationship between top management quality and innovation or how 
the IPO market rewards the innovation productivity of private firms, which is our focus in this paper.  
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We confine our study to venture-backed entrepreneurial firms for two reasons. First, venture-

backed firms typically belong to industries where innovation is an important component of firm value 

(e.g., software, pharmaceutical, biotechnology).4 Second, since the existing literature has shown that 

venture backing affects firm innovation (see, e.g., Tian and Wang (2014)) and the focus of this study is on 

the effect of top management quality on innovation (and not on the effect of venture backing), we are able 

to eliminate the confounding effects of venture backing by confining our study to firms that are similar to 

each other in terms of venture backing. 

We first summarize our empirical findings on the effect of the top management quality of a 

private firm on its pre-IPO innovation input and pre-IPO innovation output. First, our baseline analysis 

shows that firms with higher top management quality (as measured by our management quality factor) 

provide greater input to innovation (as measured by their pre-IPO R&D expenses). Second, we find that 

firms with higher top management quality generate greater pre-IPO innovation output as measured by 

both the quantity (number of patents) and the quality (citations per patent) of innovation.  

It may be argued that top management quality is potentially endogenous, since higher quality 

firms are more likely to attract higher quality top managers. In order to control for this potential 

endogeneity of top management quality, we conduct an instrumental variable (IV) analysis of the effect of 

management quality on innovation. The starting point in the construction of our instrument for 

management quality is a plausibly exogenous shock to the supply of executives who might serve as 

potential managers. The motivation for this exogenous shock as a potential instrument for management 

quality comes from the fact that potential top managers hired by private firms often come from 

established firms and many top managers from established firms choose to move to private firms after 

their firms become targets of an acquisition. Thus, in order to exploit this plausibly exogenous shock to 

the supply of executives caused by established firms becoming targets of acquisitions, we use the number 

of acquisitions conducted in the entrepreneurial firm’s industry (within three years prior to the 

                                                 
4 Since most of the firms in our non-venture-backed IPO sub-sample are in industries that are not innovation-
intensive, we do not find significant variation in patents and citations per patent in this sub-sample.  
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entrepreneurial firm’s IPO) in the state in which the entrepreneurial firm is headquartered as the starting 

point in the construction of our instrument.  

However, the mobility of executives who move from one firm to another may be affected by the 

enforceability of non-compete clauses in their employment contracts which prohibit them from joining or 

founding a rival company within a few years after leaving their firm. The enforceability of such non-

compete clauses exhibits both cross-state and time series variation leading to variation in the mobility of 

managers that is unlikely to be related to corporate innovation. Therefore, in order to construct our 

instrument, we multiply the number of acquisitions as described above by the reciprocal of one plus the 

enforceability index created by Garmaise (2009).5 In other words, the instrument we use is the number of 

acquisitions in the industry and state of the sample firm within three years prior to its IPO weighted by the 

reciprocal of one plus the enforceability index of non-compete clauses in that state. Thus, our instrument 

makes use not only of the strong correlation between industry acquisitions and the movement of top 

managers but also of the exogenous variation in the ability of managers to move. The results of our IV 

analysis using this instrument are consistent with those of our baseline analysis discussed earlier, 

indicating that our findings on the relationship between the top management quality of private firms and 

their pre-IPO innovation are robust to controlling for the potential endogeneity of management quality.  

The results from the second part of our analysis, where we study the relationship between top 

management quality and private firm innovation strategies as well as the relationship between top 

management quality and inventor quality are as follows. First, we find support for the notion that private 

firms with higher top management quality engage in riskier innovation strategies, innovations involving 

new technologies, and those pushing forward the knowledge boundaries of the firm. Consistent with this, 

we find that the relationship between top management quality and the fraction of firm patents using new 

knowledge (explorative patents) is positive and significant (and is stronger than the relationship between 

top management quality and the fraction of firm patents using existing knowledge (exploitative patents)). 

                                                 
5 This enforceability index is constructed for each U.S. state and ranges from zero to nine. The higher values of this 
index indicate greater enforceability of non-compete agreements in a given state and thus less mobility of the 
managers from that state. 
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Further, top management quality is positively and significantly related to innovation diversity (see, e.g., 

Brav, Jiang, Ma, and Tian (2018)). Finally, firms with higher top management quality are able to hire a 

larger number of high quality inventors (those receiving top 10% of citations across technology classes) 

in the years before their IPO. These results continue to hold in our IV analysis of innovation strategies 

and inventor quality using the instrument for top management quality described above.       

The results from the third and final part of our analysis, where we study the relationship between 

pre-IPO innovativeness, top management quality, and the IPO market rewards to innovative activity are 

as follows. First, firms that are more innovative pre-IPO (as measured by either the quantity or the quality 

of innovation) receive higher IPO and immediate secondary market valuations. Second, when we divide 

firms into four quadrants: high and low pre-IPO innovation firms (firms with above and below the median 

number of patents or citations per patent) and high and low management quality firms (firms with above 

and below the median top management quality as measured by MQFactor), we find that the joint effect of 

pre-IPO innovation and management quality on firm valuation at IPO is also positive. In other words, 

firms in the first quadrant (above-median pre-IPO innovativeness and above-median top management 

quality) have significantly higher valuations relative to the average for firms in the other three quadrants. 

Third, firms that are more innovative pre-IPO (as measured by either the quantity or the quality of 

innovation) are able to go public at a younger age. Fourth, the joint effect of pre-IPO innovation and top 

management quality on a firm’s age at IPO is also negative. Fifth, firms that are more innovative pre-IPO 

(as measured by either the quantity or the quality of innovation) realize larger increases in post-IPO 

operating performance in the years after IPO (relative to the pre-IPO year). Sixth, the joint effect of pre-

IPO innovation and top management quality on the above increases in post-IPO operating performance is 

also positive. Overall, our results in the final part of our paper indicate that firms with greater pre-IPO 

innovativeness are able to translate this into a higher growth in post-IPO operating cash flows, and that 

the IPO market, anticipating this, rewards such firms with higher IPO market valuations and enables them 

to go public earlier. These IPO market rewards to pre-IPO innovativeness are greater for firms managed 

by higher quality top management teams. 
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The rest of this paper is organized as follows. Section 2 discusses how our paper is related to the 

existing literature. Section 3 summarizes the relevant theory and develops testable hypotheses. Section 4 

describes our data. Section 5 discusses our measures of management quality, product market innovation, 

and innovation strategies. Section 6 presents our empirical tests and results. Section 7 concludes. 

 

2. Relation to the Existing Literature and Contribution 

Our paper contributes to several strands in the existing literature. The theoretical and empirical 

literature closest to our paper is the one that analyzes innovation around a firm’s going public decision 

and the effect of patents and innovation on the going public decision of a private firm and its post-IPO 

performance. Two theoretical models that incorporate the effect of going public on the innovation 

productivity of a firm are Ferreira, Manso, and Silva (2014) and Spiegel and Tookes (2016). Both models 

predict that firms will be more innovative pre-IPO rather than post-IPO, though for reasons somewhat 

different from each other. Bernstein (2015) empirically analyzes how the innovation productivity of firms 

changes from before an IPO to after, and shows that going public leads to a decline in the innovation 

productivity of firms. Aggarwal and Hsu (2014) find that innovation quality is highest under private 

ownership and lowest under public ownership, with acquisition intermediate between the two. Gao, Hsu, 

and Li (2018) compare the innovation strategies of public and private firms and show that public firms’ 

patents rely more on existing knowledge, are more exploitative (and less likely in new technology 

classes), while private firms’ patents are broader in scope and more exploratory. Acharya and Xu (2017) 

examine the relationship between innovation and a firm’s financial dependence and demonstrate that 

public firms in external (internal) financing dependent industries have a better (worse) patent portfolio 

than their private counterparts. Cao, Jiang, and Ritter (2015) analyze the predictive power of patents for 

the long-run stock return performance of IPOs, and show that venture-backed firms with at least one 

patent at the time of IPO outperform other venture-backed firms in terms of three-year buy-and-hold 

market-adjusted stock returns. In comparison with the above literature, ours is the first paper to analyze 

the relationship between top management quality and innovation in private firms, and how private firm 
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innovation and top management quality affect the IPO valuation, age at IPO, and post-IPO operating 

performance of firms going public.    

Our paper is also related to the broader literature on how various firm, industry, and equity 

market characteristics affect innovation in established (seasoned) firms. In a contemporaneous paper, 

Chemmanur, Kong, Krishnan, and Yu (2018) use a panel dataset from the BoardEx database to study the 

effect of top management team human capital on the innovation productivity and innovation strategies of 

established firms. Unlike the above paper, our focus here is on the relationship between top management 

quality and innovation in private firms, and on how private firm innovation and top management quality 

affect IPO valuation, age at IPO, and post-IPO operating performance. It is well known that there are 

several important differences between private and public firms that may affect their ability to innovate as 

well as to hire high quality top managers and inventors. On the one hand, private firms do not have access 

to the financial markets and therefore are severely financially constrained; in contrast, since going public 

gives them a large cash infusion through the IPO and provides them with repeated access to the stock and 

bond markets, public firms are less financially constrained. Further, having publicly traded equity may 

make it easier for public firms to attract high quality top managers (using equity-based compensation 

schemes). On the other hand, public firms suffer from greater stock market induced pressure to deliver 

short-term results (corporate myopia) which may affect their incentive to invest in innovative (long-term) 

projects and the type of innovation projects they undertake. Given the above, our paper makes an 

important contribution by analyzing, for the first time, the effect of top management quality on innovation 

productivity and the innovation strategies of private firms by overcoming data availability problems by 

making use of a large hand-collected dataset on the top management team quality of private firms going 

public. We make an additional important contribution by showing, again for the first time in the literature, 

that the stock market rewards private firm innovation at the time of IPO through higher firm valuations.  

 The theoretical literature on corporate innovation has focused on the optimal organizational form 

of innovative activity in a setting of incomplete contracting (Aghion and Tirole (1994)) or the nature of 

contracting between firm managers and inventors (Manso (2011)). There is also a large empirical 



9 
 

literature focusing on how firm characteristics other than top management quality affect innovation in 

established firms. Some of these characteristics are: managerial compensation (Lerner and Wulf (2007), 

Ederer and Manso (2013), Baranchuk, Kieschnick, and Moussawi (2014)); private equity or venture 

backing (Lerner, Sorensen, and Stromberg (2011), Tian and Wang (2014), Chemmanur, Loutskina, and 

Tian (2014)); institutional ownership (Aghion, Van Reenen, and Zingales (2013)); CEO overconfidence 

and CEO characteristics (Hirshleifer, Low, and Teoh (2012), Barker and Mueller (2002)); conglomerate 

structure (Seru (2014)); and anti-takeover provisions (Atanassov (2013), Chemmanur and Tian (2018), 

Sapra, Subramanian, and Subramanian (2014)). In a contemporaneous paper, Custodio, Ferreira, and 

Matos (2017) analyze how the general versus firm-specific human capital of CEOs affects innovation in 

established firms. In contrast to the last paper above, our paper does not focus on CEO characteristics: 

rather, we analyze the relationship between top management team quality and innovation in private firms. 

Finally, to the extent that we study how the IPO market values pre-IPO innovation and the top 

management quality of private firms at IPO, our paper is also related to the broader theoretical and 

empirical literature on IPOs: see Ritter and Welch (2002) for a review. A number of papers in this 

literature have analyzed how various aspects of private firms affect their IPO and post-IPO characteristics 

when they go public: e.g., age at IPO (Megginson and Weiss (1991)), post-IPO operating performance 

(Jain and Kini (1994), Mikkelson, Partch, and Shah (1997)), and heterogeneity in IPO market investor 

beliefs (Chemmanur and Krishnan (2012)). We contribute to this literature by showing, for the first time, 

that the innovativeness of a private firm significantly enhances its IPO and immediate after-market 

valuation as well as its post-IPO operating performance, and enables it to go public at a younger age.6, 7 

 
                                                 
6 To the extent that they also study the financial market rewards to innovative activity, a paper indirectly related to 
ours is Kogan, Papanikolaou, Seru, and Stoffman (2017). They develop a measure of the economic importance of 
innovations and show that this measure predicts the firm productivity and subsequent output growth. See also Hall, 
Jaffe, and Trajtenberg (2005) who study how the innovativeness of public firms (measured by their R&D expenses 
to asset stock, patents to R&D expenses, and citations per patent) affects their market value. Pakes (1985) examines 
the relationship between patents and stock returns in a sample of IPO firms during 1968-1975. 
7 The broader literature on the effect of management quality on financial policies and performance is also indirectly 
related to our paper: see, e.g., Bertrand and Schoar (2003) who find that manager fixed effects explain some of the 
heterogeneity in investment, financial, and organizational practices of seasoned firms. The literature on the role of 
human capital in asset pricing is also indirectly related: see, e.g., Fama and Schwert (1977). 
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3.  Theory and Hypotheses Development 

We first develop hypotheses on the relationship between the top management quality and pre-IPO 

innovativeness of a private firm. Next, we develop hypotheses on the effect of top management quality on 

the pre-IPO innovation strategies pursued by the firm and on the quality of the inventors hired by the 

firm. Finally, we develop hypotheses on the relationship between private firms’ pre-IPO innovation (and 

top management quality) and their IPO valuation, age at IPO, and post-IPO operating performance. 

  

3.1. Management Quality, Pre-IPO R&D Expenses, and Pre-IPO Innovation 

The quality of a firm’s top management may affect its innovation input and innovation output in 

several ways. First, Chemmanur and Jiao (2012) argue that more talented managers have the ability to 

create long-run value by investing in long-term rather than short-term projects. In their setup, managers 

(facing asymmetric information in the equity market) have private information about their ability leading 

to short-run undervaluation of their firm’s equity. While investing in long-term projects will create greater 

long-run value for the firm, investing in such projects leads to the firm’s equity undervaluation lasting for 

a longer time compared to investing in short-term projects whose uncertainty is resolved sooner (see also 

Stein (1988, 1989) for other models of corporate myopia). In this setting, managers with higher reputation 

(perceived quality) will face smaller equity undervaluation and thus, in equilibrium, will invest in a 

greater proportion of long-term (innovative) projects. Second, higher quality managers may be able to 

select projects with greater innovation productivity. Third, higher quality managers may be able to hire 

higher quality scientists and engineers (who are likely to be more innovative) and manage them better 

(e.g., by being more failure tolerant: see Manso (2011)), boosting their firms’ innovation productivity. 

Thus, our first hypothesis is regarding the relationship between top management quality and the 

input to pre-IPO innovation, as measured by R&D expenses. Since investment in more innovative (long-

term) projects and hiring higher quality scientists and engineers requires more input to innovation, we 

expect firms with higher management quality to incur greater R&D expenses pre-IPO (H1). 
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Of course, the actual innovation output of a firm may not necessarily be commensurate with the 

amount of its R&D expenses. In other words, it is possible that despite significant input to innovation, 

firms may still languish in their ability to successfully innovate. We therefore next examine whether firms 

with higher top management quality are more innovative in terms of their innovation output. We expect 

firms with higher top management quality to have greater innovation output both in terms of the quantity 

(number of patents) and the quality (number of citations per patent) of innovation (H2).  

 

3.2. Management Quality, Pre-IPO Innovation Strategies, and Inventor Quality 

 We now analyze the possible differences in the innovation strategies adopted by firms with higher 

versus lower top management quality. On the one hand, higher top management quality firms may pursue 

more risky innovation strategies, those involving new technologies, and those that are likely to push the 

knowledge boundaries of the firm outward (H3A). In this case, we would expect firms with higher top 

management quality to engage in more explorative innovation strategies (in the sense of Brav, Jiang, Ma, 

and Tian (2018) and Balsmeier, Fleming, and Manso (2017)), venture into the development of newer 

technologies, or pursue innovation in areas less familiar to them. Further, in this case, we would also 

expect the patents produced by the firms with higher top management quality to have more non-self-

citations than self-citations, and higher top management quality to be associated with greater innovation 

diversity. On the other hand, higher top management quality firms may be inclined to engage in less risky 

(conservative) innovation strategies (H3B). In this case, we would expect firms with higher top 

management quality to pursue more exploitative innovation strategies (in the sense of Brav, Jiang, Ma, 

and Tian (2018) and Balsmeier, Fleming, and Manso (2017)), develop more conventional technologies, 

and pursue innovations in areas that are more familiar to them. Finally, in this case, we would also expect 

the patents produced by the firms with higher top management quality to have more self-citations than 

non-self-citations, and higher top management quality to be associated with smaller innovation diversity.8 

                                                 
8 It is difficult to predict from a priori theoretical considerations which of the above two scenarios will be realized in 
practice. We will therefore leave this question to be resolved empirically. 
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We also analyze how top management quality affects the quality of the scientists and inventors 

hired by the firm. We hypothesize that firms with higher top management quality are likely to attract and 

employ higher quality inventors, as measured by inventors’ prior track record of citations per patent (H4).9  

 

3.3. Management Quality, Pre-IPO Innovation, and the IPO Market  

 We now develop our hypotheses regarding the effect of pre-IPO innovation and top management 

quality of private firms on their IPO valuation, age at IPO, and post-IPO operating performance.  

  

3.3.1. Management Quality, Pre-IPO Innovation, and Firm Valuation at IPO 

It is reasonable to believe that a significant fraction of innovations become positive NPV projects 

in the long run and the NPV of higher quality innovations is likely to be larger. Therefore, if a firm is 

perceived by IPO market participants as more innovative (measured by the quantity and quality of pre-

IPO innovation), they may conjecture that, ceteris paribus, it will have better future cash flows on 

average. Since the value of a firm in a symmetric information setting is the present value of its future cash 

flows, IPO valuation (and immediate after-market valuation) will be greater for firms that are more 

innovative pre-IPO. Further, the IPO market may view pre-IPO innovation as a signal of future 

innovation productivity as well (in a setting of information asymmetry between firm insiders and 

outsiders), enhancing its expectation of better future cash flows, again leading to higher IPO valuation. 

For these reasons, we expect a positive relationship between pre-IPO innovation and IPO valuation (H5).  

Next, if we assume that higher quality managers can implement their firms’ innovative projects 

more ably yielding higher future cash flows, then we would expect that, for a given level of pre-IPO firm 

innovativeness, firms with higher management quality will have higher IPO (and immediate post-IPO) 

valuation. Further, as we discussed earlier, firms that are more innovative pre-IPO will have greater IPO 

valuations (for a given management quality). Given that the individual effects of pre-IPO innovation and 

                                                 
9 One way in which higher quality top managers may attract higher quality inventors is through greater failure 
tolerance (Manso (2011)). 
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management quality on IPO firm valuation can each be expected to be positive, we expect their joint 

effect on IPO valuation to be positive as well (H6).10 If we divide IPO firms into four quadrants based on 

management quality (above-median versus below-median management quality) and pre-IPO innovation 

(above-median versus below-median pre-IPO innovation), hypothesis H6 has a clear prediction for firms 

in these four quadrants: high management quality and high pre-IPO innovation (Q1), high management 

quality and low pre-IPO innovation (Q2), low management quality and high pre-IPO innovation (Q3), 

and low management quality and low pre-IPO innovation (Q4). The prediction is that firms in quadrant 

Q1 will have higher IPO valuations than the average IPO valuation of firms in the other three quadrants.  

 

3.3.2. Management Quality, Pre-IPO Innovation, and Firm Age at IPO 

There are many theoretical models of the going public decision of a firm, two of which have 

strong predictions for the relationship between pre-IPO innovation and firm age at IPO. The first model 

is that of Clementi (2002), who develops a dynamic model (in a setting of symmetric information) of the 

going public decision in which the firm operates in an industry characterized by decreasing returns to 

scale and where going public is costly. Prior to going public, a borrowing (financial) constraint keeps the 

firm’s scale of production at a sub-optimal level. In this setting, consider a sudden positive productivity 

shock affecting the firm (resulting in a new set of positive NPV projects becoming available to the firm) 

which widens the gap between the optimal and the actual scale of the firm. Such a shock means that the 

marginal benefit of expanding operations by going public outweighs the marginal cost of doing so, 

resulting in the firm going public at this time. If we assume in the above setting that greater pre-IPO 

innovation productivity is associated with a larger number of positive NPV projects, then the above 

reasoning implies that more innovative firms are likely to go public at a younger age (since such firms 

reach the tipping point where the benefits of going public exceed the cost earlier in their life cycle).  

                                                 
10 Given that Chemmanur, Simonyan, and Tehranian (2016) have shown that there is a positive association between 
management quality and IPO firm valuation and a negative association between management quality and firm age at 
IPO, we do not analyze the direct effect of management quality on these two IPO variables here. Rather, our focus 
here is on how top management quality and pre-IPO innovation jointly affect IPO firm valuation and firm age at 
IPO. 
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A second model that considers the effect of asymmetric information on a firm’s going public 

decision is that of Chemmanur and Fulghieri (1999). They model a firm’s going public decision in a 

setting where insiders have private information about firm value, but outside investors in the IPO market 

can produce information about the firm at a cost. In this setting, outsiders’ cost of producing information 

about the firm declines over time (as firms establish a track record in the product market) and firms go 

public when this cost falls below a certain threshold value. Thus, assuming that firms with greater pre-

IPO innovativeness are associated with lower costs of information production for outsiders (at any given 

age), such firms can be expected to go public earlier.11 Hence the above two models imply that more 

innovative firms will go public at a younger age, ceteris paribus (H7). 

 Next, we examine the joint effect of pre-IPO innovation and management quality on a firm’s 

age at IPO. In the Clementi (2002) setting discussed earlier, let us now add the assumption that a given 

innovation will have a greater NPV if implemented by a higher quality management team (possibly 

because a higher quality management team is able to implement the innovation more efficiently). This 

implies that for a given extent of pre-IPO innovativeness firms with higher management quality will 

reap greater benefits from expanding operations by going public. This further implies that such firms are 

more likely to go public at a younger age (since such firms reach the tipping point where the benefit of 

going public exceeds the cost earlier). Similarly, in the model of Chemmanur and Fulghieri (1999), if we 

assume that, for a given extent of innovativeness, firms with higher perceived management quality are 

associated with a lower outsider cost of information production, the implication will be that such firms 

may be expected to go public earlier. Given that the individual effects of pre-IPO innovation and 

management quality on firm age at IPO can be expected to be negative, we expect their joint effect on 

firm age at IPO to be negative as well (H8). This implies that firms in quadrant Q1 (defined earlier) will 

have a younger age at IPO compared to the average age at IPO of firms in the other three quadrants.  

 

                                                 
11 Since, in equilibrium, outsiders’ information production costs are borne by the firm through a lower IPO share 
price, the Chemmanur and Fulghieri (1999) model also predicts that firms that are more innovative pre-IPO will 
obtain higher IPO valuations, since IPO market investors’ information production costs will be lower for such firms.  
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3.3.3. Management Quality, Pre-IPO Innovation, and Post-IPO Operating Performance  

Given that a significant fraction of innovations are expected to become positive NPV projects in 

the long run, more innovative firms are likely to have a larger number of positive NPV projects leading to 

better operating performance as these projects are implemented over time. However, one confounding 

factor in the relationship between pre-IPO innovation and post-IPO operating performance is a firm’s age 

at IPO. As we discussed earlier, firms that are more innovative may be able to go public at a younger age, 

at which point their profitability may be lower than that of firms going public at an older age. Thus, if this 

second effect (firm age at IPO) dominates, pre-IPO innovation will be negatively related to the level of 

the firm’s long-term post-IPO operating performance. One can separate out the effect of pre-IPO 

innovation alone on operating performance by studying the growth (changes) in operating performance of 

a firm after IPO: we expect firms with greater pre-IPO innovation to experience unambiguously higher 

growth rates in operating performance in the years after IPO (H9). 

Next, we examine the joint effect of pre-IPO innovation and management quality on a firm’s 

post-IPO operating performance. For the reasons discussed above, we focus only on the changes in post-

IPO operating performance. As discussed earlier, let us assume that higher quality managers are able to 

implement their innovative projects more efficiently and generate higher cash flows. In this case we 

would expect that, for a given level of pre-IPO innovation, firms with higher top management quality will 

have a higher growth rate in post-IPO operating performance. Given that the individual effects of pre-IPO 

innovation and top management quality on the growth in post-IPO operating performance may be 

expected to be positive, we expect their joint effect on the growth in post-IPO operating performance to 

be positive as well (H10). This implies that firms belonging to quadrant Q1 (as defined earlier) will have 

higher growth rates in operating performance compared to firms falling in the other three quadrants.   

 

4.  Data and Sample Selection 

 The list of U.S. IPOs in 1993-2004 comes from the SDC/Platinum Global New Issues database. 

We excluded real estate investment trusts, closed-end funds, unit IPOs, spin-offs, equity carve-outs, 
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financial firms (with SIC codes between 6000 and 6999), foreign firms, and leveraged buy-outs. We 

further eliminated nine firms with no management quality information available in their prospectuses. 

We also double-checked the venture backing status from the VentureXpert database to consistently 

identify venture-backed IPOs. Thus, our final sample consists of 1,851 venture-backed IPO firms.12 

Information on various management quality proxies, such as team size, education, prior 

managerial experience, functional expertise, and tenure of management team members was hand-

collected from the “Management” section of IPO prospectuses. The data necessary to calculate the CEO 

dominance variable came from the “Executive Compensation” section of the prospectuses. Information 

on internal governance mechanisms (such as CEO/Chairman-of-the-board duality, proportion of outside 

directors, and insider stock ownership) came from the IPO prospectuses as well. IPO prospectuses were 

obtained from the Thomson Financial database. Accounting data came from Compustat and stock price 

data came from CRSP. Innovation output data (number of patents and citations per patent) came from the 

NBER Patent Citation database. The data (provided by Li, Lai, D'Amour, Doolin, Sun, Torvik, Yu, and 

Fleming (2014)) necessary for constructing innovation strategy measures were obtained from Harvard 

Dataverse Network.  

 

5. Measures of Management Quality, Innovation Output, Innovation Strategies, and Firm Quality 

5.1. Measures of Management Quality and Reputation 

We follow Chemmanur, Paeglis, and Simonyan (2011) and Chemmanur and Paeglis (2005) in 

constructing our management quality measures. Management quality is affected by the amount of human 

and knowledge resources (including education and experience) available to the management team. Our 

first proxy for management quality, the management team size, measures the amount of human resources 

available. It is the number of executive officers with a title of a vice president or higher on the team 

(TSize). The next two proxies measure the education level of managers. Our second proxy of 

                                                 
12 Given the laborious nature of hand-collecting management quality data from IPO prospectuses, our sample period 
currently covers IPOs conducted during the twelve year period from 1993 to 2004. 
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management quality is the percentage of management team members with an MBA degree (PMBA) and 

the third proxy is the percentage of management team members who are Certified Public Accountants 

(PCPA). The greater the percentages of MBAs and CPAs on the management team, the greater its quality.  

We measure prior managerial experience of management team members by using the following 

two proxies. Our fourth proxy is the percentage of managers who have served as executive officers at 

other firms prior to joining the IPO firm (PPriorExp) and our fifth proxy is the percentage of managers 

who were partners at law or accounting firms prior to joining the IPO firm (PLawAcc). Clearly, the 

greater the percentage of management team members with prior managerial experience (including 

experience in the areas of law and accounting) the greater the management team quality.  

Our sixth proxy of management quality is the percentage of team members with core functional 

expertise, namely, the percentage of team members holding positions in the areas of operations and 

production, R&D, sales and marketing, and finance (PCore). The greater the percentage of team members 

with core functional expertise, the greater the management quality.  

Our seventh proxy of management quality is CEO dominance (CEODom). While a strong CEO 

may improve the cohesion of the management team, a dominating and strong-willed CEO may also 

severely diminish possible contributions from other team members. Thus, while we believe that CEO 

dominance is an important measure of team quality, we are agnostic about the direction of the expected 

impact (positive or negative) of this measure of management quality. Our measure of CEO dominance is 

the ratio of CEO salary and bonus to the average salary and bonus of other team members listed in the 

executive compensation section of the prospectus in the fiscal year prior to the IPO. Assuming that CEOs 

have a great influence over their own pay and a nearly total influence over their subordinates’ pay, this 

measure reflects the gap between the CEO’s assessment of his own worth to the firm and his assessment 

of other team members’ worth, and thus is a good measure of CEO dominance.13  

                                                 
13 Similar measures have also been used in the strategy and organizational behavior literature to study the effect 
of management team quality on firm performance: see, e.g., D’Aveni (1990) and Hambrick and D’Aveni (1992), 
who use such measures to study the deterioration of management team quality around bankruptcies. 
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Our eighth proxy of management quality measures the reputation of management team members 

in the business community. It is the number of other firms’ corporate boards that team members sit on 

(Board). While the measures discussed above also partially capture management team reputation, this 

proxy is a better representation of the reputation and visibility of managers in the business community. 

The greater the value of Board, the greater the quality and reputation of a firm’s management team. 

Finally, we also measure the degree of uniformity or heterogeneity in the tenures of management 

team members. Our ninth proxy of management quality is the average tenure of team members (Tenure), 

defined as the average number of years that team members have been with the firm.14 Greater average 

tenure may indicate shared experiences and cohesion and thus lower costs of interaction between team 

members. However, longer tenures may also result in complacency and rigidity in team interactions. 

Thus, we are agnostic about the direction of the expected impact (positive or negative) of this measure of 

management quality. An ideal management team would have members from different cohorts, which 

would ensure an inflow of new ideas and perspectives. Further, a higher management quality would be 

associated with greater dispersion in such tenures. Therefore, we use the heterogeneity in management 

team tenures (TenHet) as our tenth management quality proxy. It is defined as the coefficient of variation 

of management team members’ tenures. 

 

5.2. Common Factor Analysis of Management Quality Variables 
 

Although the individual proxies discussed above are expected to measure management quality, 

they may each have unique limitations in capturing the underlying unobservable construct. Therefore, we 

use common factor analysis to construct a single factor for management quality that will capture the 

variation common to the observable measures of management quality and reputation.15 In order to ensure 

that this single factor captures only the effect of management quality and not that of other variables such 

                                                 
14 In our empirical tests, we have also used the median team tenure instead of the average team tenure. Our results 
were similar using this alternative measure. 
15 Several papers in the empirical finance and accounting literature make use of factor analysis to isolate the 
unobservable construct underlying several proxy variables. See, e.g., Gaver and Gaver (1993) and Guay (1999), who 
make use of factor analysis to study the size of a firm’s investment opportunity set.  
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as firm size, age, or industry characteristics, we use firm-size-, firm-age-, and industry-dummies-adjusted 

individual management quality proxies to extract the common factor. Thus, our management quality 

factor score (MQFactor) is constructed using firm-size-, firm-age-, and industry-dummies-adjusted TSize, 

MBA, PriorExp, Core, LawAcc, CPA, CEODom, and Board.16 These variables refer, respectively, to the 

management team size, the number of management team members with MBA degrees, the number of 

management team members with prior managerial experience, the number of management team members 

with core functional expertise, the number of management team members with prior experience as law or 

accounting partners, the number of management team members who are CPAs, CEO dominance, and the 

number of other firms’ corporate boards that management team members sit on.  

We exclude Tenure and TenHet from the construction of the above common factor since these 

two proxies have negative factor loadings and negative scoring coefficients if included in the common 

factor analysis. The interpretation of our common management quality factor becomes problematic when 

some individual management quality proxies have positive scoring coefficients and others have negative 

scoring coefficients. Therefore, we restrict our common factor analysis to the first eight management 

quality proxies, since they have positive factor loadings and positive scoring coefficients when included 

in the common factor analysis. We then use Tenure and TenHet as control variables in our multivariate 

regressions.17 

Table 1 presents the results of our common factor analysis. Panel A of Table 1 shows the starting 

communalities of eight management quality proxies (for MQFactor described above), estimated as the 

                                                 
16 We adjust individual management quality proxies for firm size, firm age, and industry characteristics by 
regressing those management quality proxies on firm size, firm age, and 2-digit SIC code industry dummies, and 
take the residuals of such regressions (in other words, the variation in individual management quality proxies not 
explained by firm size, firm age, or industry characteristics) to be our firm-size-, firm-age-, and industry-dummies-
adjusted individual management quality proxies.   
17 Negative factor loadings and negative scoring coefficients of Tenure and TenHet are due to negative correlations 
that these two proxies have with other management quality variables. For example, the correlation between Tenure 
(TenHet) and the percentage of management team members with prior managerial experience at other firms 
(PPriorExp) is -0.45 (-0.12) and the correlation between Tenure (TenHet) and the percentage of management team 
members with MBA degrees (PMBA) is -0.12 (-0.04). Indeed, firms that have management teams with longer 
average tenures are more likely to develop their managers internally, rather than to hire them from outside, and 
consequently such managers are less likely to have prior managerial experience at other firms. Similarly, managers 
who have longer average tenures with their firms are more likely to acquire their managerial skills internally, rather 
than externally at an educational institution.  
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squared multiple correlations from regressions of each management quality proxy on the remaining 

management quality proxies used in our common factor analysis. Panel B of Table 1 presents the 

eigenvalues of the reduced correlation matrices. As suggested by Harman (1976), the number of factors 

necessary to approximate the original correlations among individual measures is equal to the number of 

summed eigenvalues necessary to exceed the sum of communalities. The first factor’s eigenvalue in our 

common factor analysis of MQFactor is 1.72 and it is larger than the sum of communalities of 1.55. This 

means that MQFactor parsimoniously explains the intercorrelations between individual management 

quality proxies. Panel C of Table 1 presents the correlations between MQFactor and the eight 

management quality proxies and Panel D of Table 1 provides the summary statistics of MQFactor.  

 

5.3. Measures of Product Market Innovation 

Following the innovation literature, we use patent-based metrics to capture firm innovativeness. 

We obtain information on entrepreneurial firm’s patenting from the NBER Patent Citation database (see 

Hall, Jaffe, and Trajtenberg (2001) for details). The database provides detailed information on more than 

three million patents granted by the U.S. Patent and Trademark Office (USPTO) from 1976 to 2006, 

including patent assignee names, the number of citations received by each patent, and a patent’s 

application and grant year. We use the NBER bridge file to Compustat to match patents to IPO firms. 

This link allows us to evaluate the innovation activity of IPO firms starting well before they go public.  

The NBER patent database is subject to two types of truncation problems. We follow the 

innovation literature to correct for these truncation problems. First, patents are recorded in the database 

only after they are granted and the lag between patent applications and patent grants is significant (about 

two years on average). As we approach the last few years for which there are patent data available in the 

patent database (e.g., years 2005 and 2006), we observe a smaller number of patent applications that are 

eventually granted. This is because many patent applications filed during these years were still under 

review and had not been granted until 2006. Following Hall, Jaffe, and Trajtenberg (2001, 2005), we 

correct for the truncation bias in patent counts using the “weight factors” computed from the application-
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grant empirical distribution. The second type of truncation problem is stemming from citation counts. 

Patents tend to receive citations over a long period of time, so the citation counts of more recent patents 

are significantly downward biased. Following Hall, Jaffe, and Trajtenberg (2001, 2005), the citation 

truncation is corrected by estimating the shape of the citation-lag distribution.  

The NBER patent database is unlikely to be subject to survivorship bias. An eventually granted 

patent application is counted and attributed to the applying firm at the time when the patent application is 

submitted, even if the firm is later acquired or goes bankrupt.18 In addition, patent citations attribute to a 

patent, but not a firm. Hence, a patent assigned to an acquired or bankrupt firm can continue to receive 

citations for many years even after the firm goes out of existence. We construct two measures for a firm’s 

pre-IPO innovation output. The first measure, LnCount, is the natural logarithm of one plus the annual 

truncation-adjusted patent count (the number of patent applications filed in that year that are eventually 

granted) for a firm. We construct this variable for years -1 and -2 prior to a firm’s IPO (LnCount -1 and 

LnCount -2, respectively), as well as for years -1 and -2 combined (LnCount -1 & -2). If the patent count 

data either for year -1 or year -2 is missing, we construct LnCount -1 & -2 using available data only.  A 

simple count of patents, however, may not distinguish breakthrough innovations from incremental 

technological discoveries. Therefore, we construct a second measure of pre-IPO innovation output which 

intends to capture the importance of patents, LnCite, which is the natural logarithm of one plus the 

number of non-self-citations per patent a firm applies for in a given year and is eventually granted.19 We 

exclude self-citations when we compute citations per patent, but our results are robust to including self-

citations. We construct this variable for years -1 and -2 prior to a firm’s IPO (LnCite -1 and LnCite -2, 

respectively), as well as for years -1 and -2 combined (LnCite -1 & -2). If the patent citation data either 

for year -1 or year -2 is missing, we construct LnCite -1 & -2 using available data only. 

                                                 
18 We construct the innovation variables based on the patent application year. As suggested by the innovation 
literature (e.g., Griliches, Pakes, and Hall (1987)), the application year is more important than the grant year since it 
is closer to the time of the actual innovation.  
19 Griliches, Pakes, and Hall (1987) show that the distribution of patents’ value is extremely skewed, i.e., most of 
the value is concentrated in a small number of patents.  
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It is important to note that using patenting activity to measure corporate innovation is not without 

limitations. For example, different industries have various innovation propensity and duration. Young 

firms in some industries might abstain from patenting for competitive reasons. Therefore, fewer patents 

generated in an industry might not necessarily be reflective of a less innovative industry. However, we 

believe that an adequate control for heterogeneity across industries and firms should alleviate this 

concern and lead to reasonable inferences that can be applicable across industries and firms.  

 

5.4. Measures of Innovation Strategies and Inventor Quality 

 We study a private firm’s innovation strategies by making use of the following measures. In order 

to analyze whether firms with higher management quality undertake more risky innovations involving 

new knowledge or less risky (conservative) innovations involving existing knowledge, we construct two 

measures for explorative and exploitative patents. Following Brav, Jiang, Ma, and Tian (2018) we 

construct ExplorRat (ExploitRat) as the ratio of explorative (exploitative) patents over all the patents 

applied by a firm in the two-year period prior to its IPO. A patent is explorative if at least 80% of its 

citations do not refer to existing knowledge, which includes a firm’s previous patent portfolio and all the 

patents that were cited by the firm’s patents filed over the two-year period prior to its IPO. On the other 

hand, a patent is exploitative if at least 80% of its citations refer to existing knowledge. Firms innovating 

in new and untested areas are likely to produce explorative patents, whereas firms innovating in the areas 

of existing knowledge and technologies are likely to produce exploitative patents.  

Our next two measures of innovation strategies count the number of times a firm’s patents cite 

other patents owned by the firm itself and the number of times a firm’s patents cite patents owned by 

other firms (see, e.g., Sorensen and Stuart (2000), Faleye, Hoitash, and Hoitash (2011)). LnNSelfCite is 

the natural logarithm of one plus the number of non-self-citations (i.e., the number of times that a firm’s 

patent portfolio cites patents owned by other firms) of all the patents cited by a firm in the two-year 

period prior to its IPO. LnSelfCite is the natural logarithm of one plus the number of self-citations (i.e., 

the number of times that a firm’s patent portfolio cites other patents owned by the firm itself) of all the 
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patents cited by a firm in the two-year period prior to its IPO. Firms pursuing innovations in new and 

unfamiliar areas are likely to have more non-self-citations, while firms pursuing innovations in 

established areas are likely to have more self-citations.  

The fifth measure we use to study innovation strategies is the innovative diversity of a firm’s 

patent portfolio (Diversity), which is equal to one minus the Herfindahl index of the number of patents 

filed by a firm across the three-digit technology classes in the two-year period prior to its IPO. Firms 

producing innovations in new (existing) areas are likely to have greater (smaller) innovative diversity.  

Finally, we measure the quality of inventors innovating for private firms (InventorQual) as the 

natural logarithm of one plus the number of inventors whose patents were filed by a firm in the two-year 

period prior to its IPO and who receive top 10% of the citations across various technology classes. 

 

5.5. Measures of Firm Quality and Governance 

In order to separate the effect of top management quality from that of other aspects of firm 

quality and internal governance, we control for these other aspects by including the following variables as 

controls in our multivariate tests. The first proxy of firm quality we use is firm size, defined as the natural 

logarithm of the book value of firm’s assets immediately prior to IPO (LnAssets). The second proxy of 

firm quality is firm age, defined as the natural logarithm of one plus the firm’s age (LnAge).20 The larger 

and older the firm, the greater its quality. Further, we control for the proportion of outside directors 

(directors who are not executive officers, founders, former employees, or anyone engaged in business 

dealings with the firm) in the firm’s board of directors (OutDir). Outside directors can enhance firm 

quality by providing linkages to external parties (underwriters, financial institutions, and auditors) and by 

providing additional knowledge and expertise (inputs and perspectives) to the firm’s management.21 The 

greater the proportion of outside directors, the greater the firm’s quality. We also control for insider stock 

ownership defined as the proportion of voting power held by firm insiders such as executive officers and 

                                                 
20 These measures of firm quality have been widely used in the literature (Ritter (1984), Michaely and Shaw (1994)). 
21 Several studies in the corporate control literature demonstrated that outside directors enhance firm value (see, e.g., 
Cotter, Shivdasani, and Zenner (1997) and Borokhovich, Parrino, and Trapani (1996)). 
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directors prior to IPO (InsideOwn). Next, we control for CEO/Chairman-of-the-board duality by creating 

a dummy variable equal to one if a firm’s CEO is also its Chairman of the board of directors, and zero 

otherwise (CEO/Chair). Separation of the roles of CEO and the Chairman of the board of directors creates 

greater accountability and enhances internal governance and management quality.22 Finally, we also 

control for the level of capital expenditures normalized by assets prior to IPO (CapEx/Assets -1) as well 

as firm profitability prior to IPO measured as net income over sales (NI/Sales -1). 

 

5.6. Summary Statistics  

Table 2 summarizes our measures of pre-IPO innovation, management quality, and other control 

variables that we use in our regressions. First we discuss our measures of pre-IPO innovation output (the 

number of patents and the number of citations per patent). Since the distributions of patent counts and 

citations per patent are highly right-skewed, we use the natural logarithms of one plus the number of 

patents and one plus the number of citations per patent in our empirical analysis and report the summary 

statistics of these variables in Table 2. However, for the discussion below we use the actual number of 

patents and citations per patent. Both the quantity and the quality of pre-IPO innovation output (defined in 

section 5.3) in pre-IPO year -1 is greater than that in pre-IPO year -2: the mean number of patents applied 

for in year -1 (and eventually granted) is 0.68 and it is 0.10 in year -2, and the mean number of citations 

per patent applied for in year -1 (and eventually granted) is 3.14 and it is 0.19 in year -2.  

Next we discuss our measures of pre-IPO input to innovation. We use two variables: the ratio of 

R&D expenses over assets (R&D/Assets) and the natural logarithm of one plus the total R&D expenses in 

dollars (LnR&D). Similar to our pre-IPO innovation output variables, we construct these variables for 

years -1 and -2 prior to IPO (R&D/Assets -1, R&D/Assets -2, LnR&D -1, and LnR&D -2, respectively), 

and as average R&D/Assets over years -1 and -2 prior to IPO (AveR&D/Assets -1 & -2) and the natural 

logarithm of average R&D expenses over years -1 and -2 prior to IPO (LnAveR&D -1 & -2). Table 2 

                                                 
22 Yermack (1997) shows that firms which separate the roles of a CEO and a Chairman of the board receive higher 
valuations. Rechner and Dalton (1991) show that such firms outperform those that combine these roles.  
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shows that the mean of average R&D/Assets over the two-year period prior to IPO is 0.27 and the mean 

of the natural logarithm of average R&D expenses over the same two-year period is 10.06 (the mean of 

average R&D expenses over the two-year period prior to IPO is $4.08 million). Table 2 further shows that 

firms spend more on R&D (in absolute dollar terms) in year -1 prior to IPO compared to year -2 prior to 

IPO, however when normalized by assets R&D/Assets in year -1 is somewhat smaller than that in year -2.  

Table 2 also demonstrates that the pre-IPO innovation produced by the firms in our sample is 

more explorative rather than exploitative in its nature. The mean value for ExplorRat is 0.29 compared to 

the mean value of ExploitRat of 0.01. Further, the patents produced by our sample firms in the two-year 

period prior to IPO cite patents of other firms (LnNSelfCite) more than the patents produced by their own 

firms (LnSelfCite). On average the patents produced by our sample firms in the two-year period prior to 

IPO cite 51 patents of other firms and only 0.46 patents of their own firms. Finally, with respect to 

inventor quality, Table 2 shows that in the two-year period prior its IPO a firm employs on average 2.78 

(high quality) inventors whose innovations were patented by the firm in that two-year period and who 

receive top 10% of the citations across various technology classes.  

Next, Table 2 summarizes our management quality variables. The mean (median) management 

quality factor score (MQFactor) of sample firms is 0 (-0.06), with a minimum value of -2.46 and a 

maximum value of 4.51. The mean (median) size of a firm’s management team (TSize) is 6.78 (6), 

with the smallest management team consisting of one member and the largest of 19 members. On 

average, 15.6% of management team members have an MBA degree (PMBA), 55.4% have held a 

top management position at another firm prior to joining the IPO firm (PPriorExp), 59.2% are 

employed in core functional areas of their firms (PCore), 2.4% have been partners in law or accounting 

firms (PLawAcc), and 6.6% have a CPA certification (PCPA). On average CEOs earn 29.3% more 

than the average member of the management team (CEODom). The average number of management 

team members who sit on other firms’ boards is 0.53 (Board). The average tenure of management 

team members (Tenure) ranges from one to 30 years, with the mean (median) of 4.43 (3.29) years. 

Finally, the mean (median) tenure heterogeneity (TenHet) of management teams is 0.689 (0.573).  
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The last set of variables presented in Table 2 are our control variables. In the IPO literature, two 

often-used control variables are firm size and firm age. The median (mean) firm size in our sample is 

$24.7 ($125) million and the median (mean) age is 7 (11.3) years. On average, 69.7% of the directors are 

outsiders (OutDir). The mean percentage of voting power owned by firm officers and directors prior to 

IPO (InsideOwn) is 57.2%. CEOs act as board chairmen (CEO/Chair) in 55.8% of the firms. Finally, the 

median CapEx/Assets and NI/Sales in year -1 prior to IPO are 0.059 and -0.092, respectively.  

 

6. Empirical Tests and Results 

6.1. The Effect of Management Quality on Pre-IPO Innovation 

6.1.1. OLS Analysis of the Relationship between Management Quality and Pre-IPO Innovation Input 

In this section, we test hypothesis H1 in a multivariate regression setting. It predicts that firms 

with higher management quality will spend more on R&D. Our regression specification is as follows: 
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where the dependent variable is either R&D/Assets -1, R&D/Assets -2, AveR&D/Assets -1 & -2, LnR&D 

-1, LnR&D -2, or LnAveR&D -1 & -2, as described in the previous section. We also include industry 

dummies (at 4-digit SIC code level) and year dummies to capture industry and year effects. We expect a 

positive coefficient on the management quality factor score (MQFactor). Table 3 reports the results of our 

estimation. We find that MQFactor has a positive and statistically significant coefficient estimates in all 

regression specifications using all six measures of pre-IPO input to innovation as dependent variables. 

This positive relationship holds even after controlling for firm size, age, and industry and year dummies; 

firms with higher quality management teams invest significantly more in R&D in the two-year period 

prior to their IPOs both in absolute dollar terms and as a proportion of their assets. These findings provide 

support for our hypothesis H1. Table 3 also shows that smaller firms, and those with more independent 

directors and less insider ownership invest more in R&D prior to IPO as well.  
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6.1.2. OLS Analysis of the Relationship between Management Quality and Pre-IPO Innovation Output 

In this section we test hypothesis H2 in a multivariate regression setting. This hypothesis predicts 

that firms with higher management quality will be more innovative before their IPO as measured by the 

quantity as well as the quality of their innovation output. Our regression specification is as follows: 
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where the dependent variables are LnCount -1, LnCount -2, LnCount -1 & -2, LnCite -1, LnCite -2, or 

LnCite -1 & -2 (as described in section 5.3). We also include industry dummies (at 4-digit SIC code 

level), year dummies, and as well as an additional control variable, R&D/Assets -1, to control for the fact 

that firms which spend more on R&D are likely to have a greater innovation output. We expect MQFactor 

to have positive coefficient estimates in our regressions. Table 4 reports the results of our estimation.  

In regression 1, with LnCount -1 as the dependent variable, MQFactor has a significantly positive 

coefficient estimate even after controlling for firm size, age, industry and year dummies, and pre-IPO 

R&D expenses. This indicates that firms with higher management quality are more innovative in pre-IPO 

year -1 as they produce significantly more patents in the year prior to their IPOs. In regression 2, with 

LnCount -2 as the dependent variable, MQFactor has a positive coefficient estimate which is not 

statistically significant. This indicates that management quality does not have a significant impact on the 

innovation output in year -2 prior to IPO. This latter finding is perhaps due to the fact that, as reported in 

Table 2, our sample firms, on average, produce significantly less patents in year -2 prior to their IPO 

compared to year -1, even though they invest approximately the same amounts in R&D both in years -1 

and -2 prior to their IPOs. Given the lower number of patents produced in year -2 prior to IPO, it is not 

surprising that MQFactor has an insignificant coefficient estimate in regression 2. In regression 3, with 

LnCount -1 & -2 as the dependent variable, MQFactor has a positive and significant coefficient estimate 

indicating that management quality significantly increases the total number of patents produced in the 

two-year period prior to IPO, providing support for our hypothesis H2. 
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In regressions 4 through 6, we use the number of citations per patent as our dependent variable. 

The results of these regressions are similar to those in regressions 1 through 3; management quality has a 

significantly positive impact on the quality of pre-IPO innovation (measured by the number of citations 

per patent) in year -1 prior to IPO; however the impact of management quality on the quality of pre-IPO 

innovation in year -2 prior to IPO is not statistically significant. As reported in Table 2, the patents 

produced by our sample firms in year -1 prior to IPO receive significantly more citations per patent (and, 

thus, are of higher quality) compared to those patents produced in year -2 prior to IPO. In regression 6, 

with LnCite -1 & -2 as the dependent variable, MQFactor has a positive and highly significant coefficient 

estimate indicating that management quality significantly increases the quality of patents produced in the 

two-year period prior to IPO. Overall, our findings in Table 4 indicate that management quality has a 

positive effect on the pre-IPO innovation output of private firms both in terms of the quantity as well as 

the quality of innovation, and provide support for our hypothesis H2.  

 

6.1.3. Instrumental Variable Analysis of the Effect of Management Quality on Pre-IPO Innovation  

We have shown above that management quality has a significantly positive effect on the pre-IPO 

input to innovation and on the pre-IPO innovation output (as measured by the quantity as well as the 

quality of innovation) of entrepreneurial firms. However, management quality may be potentially 

endogenous if more innovative firms attract higher quality managers. 

We address the above endogeneity problem using IV analysis. We construct a suitable instrument 

for top management quality in two steps. First, we exploit the strong correlation between the movement of 

executives across firms and the number of acquisitions in the industry the firms belong to. It is well 

documented that many top managers of target firms in acquisitions leave their firms in the years 

immediately after an acquisition.23 It is also well documented that many private firms seek to build up 

their top management teams in the three to four years before an IPO (in preparation for their IPO) and at 

                                                 
23 See, e.g., Krug and Shill (2008), who document that more than 30% of merged firms’ top management team 
members leave their firms in the first year after the merger, that number dropping to roughly 20% in each of the 
three subsequent years after that.  
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least a part of the supply of such experienced top managers comes from the top managers of established 

firms in the same industry who choose to move to another firm (due to their previous firm being acquired 

or for other reasons).24 Thus, in constructing our instrument, we use the above plausibly exogenous shock 

to the supply of top executives available for hire by a private firm, namely, the number of acquisitions of 

public firms in the industry and state of our sample firms in the three-year window prior to their IPOs.25  

Second, the enforceability of non-compete clauses, which are commonly used in employment 

contracts for top management and prohibit them from joining or founding a rival company within one to 

two years of leaving, affects the mobility of managers across firms.26 Bishara, Martin, and Thomas (2015) 

analyze an extensive sample of CEO employment contracts and show that 80% of these contracts contain 

non-compete clauses, often with a broad geographic scope. A growing body of work (e.g., Garmaise 

(2009) and Marx, Strumsky, and Fleming (2009)) shows that higher enforceability of these non-compete 

clauses constrains employees’ mobility (including those of managers). The enforceability of such non-

compete clauses exhibits both cross-state and time series variation, which leads to variation in the 

mobility of managers that is unlikely to be related to corporate innovation.  

In sum, using the above two steps, we construct an instrumental variable which proxies for a 

plausibly exogenous shock to the supply of managers available for hire by firms, making use of the strong 

correlation between industry acquisitions and the movement of top managers from public to private firms 

as well as the exogenous variation in the ability of managers to move due to non-compete clauses. Thus, 

the instrument we use is the number of acquisitions in the industry and state of the sample firm in the 

                                                 
24 Of course, many top managers of acquired firms are subject to retention contracts that act as “golden handcuffs” 
for these managers, so that they may choose not to leave their firm in the years immediately after the firm employing 
them is acquired. However, it is worth noting that many such managers subject to retention contracts may 
nevertheless choose to move to private firms after their firm is acquired, since their future employer may 
compensate them for potential monetary losses. In any case, our instrument will be relevant as long as a significant 
number of top managers from public firms choose to move to private firms in the years immediately after their 
parent firm is acquired. We demonstrate the relevance of our instrument empirically later (in the first stage 
regressions of our IV analysis).  
25 We have constructed alternative versions of our instrument by also counting the number of acquisitions of public 
targets in industry j in state s in the previous four years as well as in previous two years. Our findings using these 
alternative versions of our instrument were similar to those reported in this paper.  
26 Since these non-compete clauses become operational only when top managers leave their prior firms, the 
enforceability of these non-compete clauses can be thought as a measure of the friction facing top managers when 
they attempt to join the current firm. 
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three-year period prior to its IPO weighted by the reciprocal of one plus an index measuring the 

enforceability of non-compete clauses in that state. We therefore compute the instrument for the top 

management quality (MQFactor) of firm i in industry j in year t as follows: 

Instrumentj,t	=	Acquisitionsj,s,t×
1

1	+	Enforceability Indexs,t
 ,             (3) 

where j, s, and t stand for industry, state, and year, respectively. Acquisitionsj,s,t is the number of 

acquisitions of public targets in industry j (identified by 2-digit SIC codes) in state s in the three year 

period prior to firm i’s IPO. We collect the information on the number of acquisitions from the 

SDC/Platinum Mergers & Acquisitions database. 

 Enforceability Indexs,t is the index of the enforceability of non-compete agreements in various 

U.S. states generated by Garmaise (2009).27 It ranges from zero (e.g., California) to nine (e.g., Florida 

after 1997), and higher values of this index indicate greater enforceability of non-compete agreements in a 

given state and thus less mobility of the managers from that state. Thus, we use the reciprocal of one plus 

the enforceability index to proxy for the ease with which managers from a given state can move to 

another job. The multiplication term, Acquisitionsj,s,t × [1/(1 + Enforceability Indexs,t)], therefore proxies 

for the supply of managers who are able to move across firms and are available for hire from state s in 

industry j in year t. We expect higher values of this instrument to be positively correlated with top 

management quality (MQFactor).28  

 Clearly, the above instrument is likely to satisfy the exclusion restriction, since both components 

of the product in equation (3) are likely to be unrelated to the innovativeness of a sample firm. To further 

ensure that the exclusion restriction is satisfied, we include year fixed-effects in our IV analysis.  

                                                 
27 Garmaise (2009) considers 12 questions analyzed by Malsberger (2004), which is the central resource describing 
noncompetition law in 50 U.S. states and the District of Columbia, and assigns one point to each jurisdiction for 
each question if the jurisdiction’s enforcement of that dimension of noncompetition law exceeds a certain threshold. 
28 Chemmanur, Kong, Krishnan, and Yu (2018) use a similar instrument in their analysis of the relationship between 
top management quality and innovation in established firms. In an earlier version of their paper, Ewens and Marx 
(2018) make use of the number of acquisitions in a sample firm’s industry as an instrument for the supply of 
managers. However, given that their dependent variable is successful exit (IPO or acquisition), they choose to use an 
alternative instrument in a later version of their paper given their fear that lagged acquisitions may affect the current 
exit market. Note, however, that we do not use the number of acquisitions as our instrument, but rather, the number 
of acquisitions weighted by the reciprocal of the enforceability index in the industry and state of the sample firm.  
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6.1.3a. IV Analysis of the Relationship between Management Quality and Pre-IPO Input to Innovation 

Table 5 presents the results of our IV analysis of the relationship between management quality 

and pre-IPO R&D expenses. In regressions 1 through 5, we study the effect of management quality on 

pre-IPO input to innovation in year -1 prior to IPO and on the average pre-IPO input to innovation in 

years -1 and -2. In these regressions we have 1,720 observations. In regressions 6 through 8 we study the 

effect of management quality on pre-IPO input to innovation in year -2 prior to IPO. Due to the scarcity 

of accounting data for year -2 prior to IPO, in regressions 6 through 8 we have only 809 observations. 

Regressions 1 and 6 present the first stage regressions of the management quality factor score (MQFactor) 

on our instrument and other control variables. The coefficient estimate of our instrument in regression 1 is 

positive and highly significant indicating a strong positive correlation between our instrument and 

MQFactor; the coefficient estimate of our instrument in regression 6 is also positive but not statistically 

significant (possibly due to a smaller number of observations used in that regression).  

The first stage regressions in Table 5 also report the F-statistics of the weak instruments test (or 

the test of excluded instruments). This test is used to determine whether instrumental variables used in 

first stage regressions are strong. In their survey of the literature on weak instruments, Stock, Wright, and 

Yogo (2002) develop benchmarks for the necessary magnitude of the F-statistic. They indicate that if the 

number of instruments is equal to one, then the critical value of the F-statistic is 8.96. Since the F-statistic 

reported for regression 1 is above the critical value (10.18), the null hypothesis that our instrument is 

weak is rejected for our IV analysis. The F-statistic reported for regression 6 is 2.11, perhaps, as 

mentioned above, due to a smaller number of observations used in that regression.   

Our second stage regressions 2, 3, 4, and 5 demonstrate that management quality has a 

significantly positive effect on pre-IPO R&D expenses in year -1 prior to IPO as well as on the average 

pre-IPO R&D expenses in years -1 and -2 prior to IPO (our dependent variables in these regressions are 

R&D/Assets -1, AveR&D/Assets -1 & -2, LnR&D -1, and LnAveR&D -1 & -2, respectively, as described 

in section 5.6). The coefficient estimates of MQFHat (the predicted value of MQFactor from first stage 

regression) in these regressions are positive and significant at the 1%, 5%, and 10% levels. These results, 
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consistent with our findings in baseline regressions, indicate that, even after controlling for the potential 

endogeneity of management quality, it still has a significantly positive effect on the input to innovation in 

entrepreneurial firms before their IPOs (especially in the year immediately prior to their IPOs). This 

provides further support for our hypothesis H1.  

 

6.1.3b. IV Analysis of the Relationship between Management Quality and Pre-IPO Innovation Output 

In Table 6 we present the results of our IV analysis of the relationship between management 

quality and pre-IPO innovation output. Regressions 1 and 6 are our first stage regressions of MQFactor on 

our instrument and other control variables. The coefficient estimates of our instrument in these 

regressions are positive and highly significant at the 1% level and the F-statistics are above the critical 

value (11.34 and 10.88 for regressions 1 and 6, respectively). This indicates a strong positive correlation 

between our instrument and MQFactor and attests to the strength of our instrument.  

Our second stage regressions 2, 3, 4, and 5 show that management quality has a significantly 

positive effect on pre-IPO innovation output (our dependent variables in these regressions are LnCount -

1, LnCount -1 & -2, LnCite -1, and LnCite -1 & -2, respectively). The coefficient estimates of MQFHat in 

these regressions are all positive and highly significant at the 1% and 5% levels indicating that, even after 

controlling for the potential endogeneity of top management quality, it still significantly increases both 

the quantity and the quality of pre-IPO innovation output of entrepreneurial firms (especially in the year 

immediately prior to their IPOs). These results provide further support for our hypothesis H2.  

 

6.2. The Effect of Management Quality on pre-IPO Innovation Strategies and Inventor Quality 

In this section, we investigate the channels through which top management quality of private 

firms is likely to affect their pre-IPO innovativeness. The channels we study are the various innovation 

strategies employed by entrepreneurial firms as well as the quality of inventors hired by them.  
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6.2.1 The Effect of Top Management Quality on Pre-IPO Innovation Strategies 

As described in detail in section 5.4, we make use of several variables to study the pre-IPO 

innovation strategies of entrepreneurial firms. First, we study the impact of top management quality on 

the fractions of explorative and exploitative patents produced by entrepreneurial firms in the two-year 

period prior to their IPOs. We run regressions as in equation (2) using ExplorRat and ExploitRat as 

dependent variables and report the results in columns 1 and 2 of Table 7, respectively. The coefficient 

estimates of MQFactor are positive in both regressions but statistically significant only in regression 1 

with ExplorRat as the dependent variable. This suggests that private firms with higher top management 

quality are likely to produce a greater fraction of explorative patents compared to the private firms with 

lower top management quality. Further, we find that the coefficient estimate of MQFactor in regression 1 

is statistically significantly larger than that in regression 2 suggesting that the positive effect of top 

management quality (in terms of fostering explorative and exploitative innovations) is much stronger in 

affecting explorative innovations and weaker in the case of exploitative innovations. This indicates that 

the higher the top management quality of private firms the more likely these firms to produce innovations 

which push the knowledge boundaries of the firm outward. These findings provide support for our 

hypothesis H3A and contradict our hypothesis H3B. 

Second, we analyze the effect of top management quality of private firms on the nature of 

innovations produced by them by studying the number of times these firms’ patents (produced in the two-

year period prior to their IPOs) cite other firms’ patents (LnNSelfCite) and the number of times they cite 

their own firms’ patents (LnSelfCite). The patents with more non-self-citations are likely to be more 

explorative in their nature whereas the patents with more self-citations are likely to be more exploitative. 

We run regressions as in equation (2) using LnNSelfCite and LnSelfCite as dependent variables and 

report the results in columns 3 and 4 of Table 7, respectively. The coefficient estimates of MQFactor are 

positive in both regressions but statistically significant only in regression 3 with LnNSelfCite as the 

dependent variable. This indicates that the patents of private firms with higher top management quality 

are likely to have more non-self-citations (be more explorative in their nature) compared with the patents 
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of firms with lower top management quality. Further, we find that the coefficient estimate of MQFactor in 

regression 3 is statistically significantly greater than that in regression 4 suggesting that the positive effect 

of top management quality (in terms of fostering explorative and exploitative innovations) is much 

stronger in affecting explorative innovations (those with more non-self-citations) and weaker in the case 

of exploitative innovations (those with more self-citations). This indicates that the higher the top 

management quality of private firms the more likely these firms to produce innovations in areas that are 

new and less familiar to them. These findings provide further support for our hypothesis H3A and 

contradict our hypothesis H3B. 

Finally, we also study the effect of top management quality of private firms on the degree of their 

patent portfolio’s (produced in the two-year period prior to their IPOs) diversification across different 

technology classes. We run a regression as in equation (2) using Diversity as the dependent variable and 

report the results in column 5 of Table 7. We find that MQFactor has a significantly positive coefficient 

estimate, implying that private firms with higher top management quality are likely to produce more 

diverse portfolios of patents (and thus pursue innovations in new and untested areas) compared to the 

firms with lower top management quality. This finding provides additional support for our hypothesis 

H3A and contradicts our hypothesis H3B.  

The results of our IV analyses (using the same instrument for management quality as in section 

6.1.3) for the above innovation strategy variables are reported in columns 1 through 6 of Table 8. The first 

stage regression in column 1 is the same as in Table 6. Similar to our OLS regressions above, the second 

stage regressions of our IV analyses show that the top management quality of private firms has a 

significantly positive effect on the fraction of explorative patents produced by them (ExplorRat), the 

number of non-self-citations in the patents they produce (LnNSelfCite), and the degree of their patent 

portfolio diversification (Diversity). We also find a significantly positive coefficient estimate for MQFHat 

in second stage regression 5 with LnSelfCite as the dependent variable indicating that higher top 

management quality is associated with a larger number of self-citations as well. However, the coefficient 

estimate of MQFHat in regression 4 is almost ten times larger than that in regression 5 suggesting that the 



35 
 

positive effect of management quality is stronger on the number of non-self-citations than on self-

citations. Thus, our IV analyses indicate that even after controlling for the potential endogeneity of top 

management quality, private firms with higher top management quality are more likely to pursue 

innovations which are explorative in their nature, supporting our hypothesis H3A and contradicting our 

hypothesis H3B. 

 

6.2.2 The Effect of Top Management Quality on Inventor Quality 

In this section we investigate the effect of top management quality of private firms on the quality 

of inventors working for such firms. Higher quality top management teams may enhance the innovation 

productivity of their firms by hiring higher quality (productivity) inventors. We run a regression as in 

equation (2) using our inventor quality variable InventorQual (defined in section 5.4) as the dependent 

variable and report the results in column 6 of Table 7. We find that the coefficient estimate of MQFactor 

is positive and statistically significant indicating that private firms with higher top management quality 

are likely to hire a larger number of higher quality inventors working for their firms, which, in turn, is 

likely to lead to higher innovation productivity of such firms.  

In columns 1 and 7 of Table 8, we present the results of our IV analysis of inventor quality. The 

first stage regression (in column 1) is the same as in Table 6. Similar to our OLS regression above, the 

second stage regression of our IV analysis (in column 7) shows that, even after controlling for the 

potential endogeneity of top management quality, the top management quality of private firms has a 

significantly positive effect on the quality of inventors working for these firms. These finding provides 

support for our hypothesis H4.  

 

6.3. Relationship between Pre-IPO Innovation, Management Quality, and the IPO Market 

In this section, we test the hypotheses regarding the effect of management quality and pre-IPO 

innovation on IPO firm valuation, firm age at IPO, and the growth in post-IPO operating performance.  
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6.3.1. Relationship between Pre-IPO Innovation and IPO Firm Valuation  

We first test our hypothesis H5, which predicts that firms which are more innovative pre-IPO will 

receive higher valuations at IPO. We measure IPO firm valuation using Tobin’s Q, which is the ratio of 

the market value of assets over the book value of assets, where the market value of assets is equal to the 

book value of assets minus the book value of equity plus the product of the number of shares outstanding 

and share price. We measure firm valuation in the IPO market by using the IPO offer price as the share 

price in the above definition (QOP) and we measure IPO firm valuation in the secondary market by using 

either the first trading day closing price as the share price in the above definition (QFTD) or the share 

price at the end of the IPO issue month (QIM). The book value of assets and the book value of equity are 

taken from the first available post-IPO quarter on Compustat. In constructing QOP and QFTD, the 

number of shares outstanding is as of the end of the first trading day; in constructing QIM, the number of 

shares outstanding is as of the end of the first available post-IPO fiscal quarter on Compustat.  

To test our hypothesis H5, we regress various definitions of Q ratios (as described above) on a 

pre-IPO innovation output proxy (either LnCount -1 & -2 or LnCite -1 & -2) and other control. The 

results of these regressions are presented in Panel A of Table 9. In regressions 1 through 3 we use 

LnCount -1 & -2 as a proxy for pre-IPO innovation productivity and in regressions 4 through 6 we use 

LnCite -1 & -2 as a proxy for pre-IPO innovation productivity. We find that both pre-IPO innovation 

productivity proxies have significantly positive coefficient estimates in all regressions (except for 

regression 2) indicating that firms which are more innovative pre-IPO receive higher valuations in both 

IPO and immediate secondary markets, supporting our hypothesis H5.  

 

6.3.2. Relationship between Pre-IPO Innovation, Management Quality, and IPO Firm Valuation 

Next, we investigate the joint effect of pre-IPO innovation productivity and management quality 

on IPO firm valuation. In order to study the joint effect of pre-IPO innovation productivity and 

management quality, we regress IPO firm valuation proxies on a dummy variable (either Q1Count or 

Q1Cite) and other control variables as in equation (1). These dummy variables are expected to capture the 
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joint effect of pre-IPO innovation productivity and management quality. Dummy variable Q1Count takes 

a value of one for firms with above median MQFactor score and above median Count -1 & -2. In other 

words, Q1Count takes a value of one for firms with high management quality and high pre-IPO 

innovation productivity measured by the quantity of pre-IPO innovation, and a value of zero for the 

remaining firms in our sample. Similarly, dummy variable Q1Cite takes a value of one for firms with 

above median MQFactor score and above median Cite -1 & -2. Thus, Q1Cite takes a value of one for 

firms with high management quality and high pre-IPO innovation productivity measured by the quality of 

pre-IPO innovation, and a value of zero for the remaining firms in our sample. 

We expect positive coefficients for Q1Count and Q1Cite if the joint effect of pre-IPO innovation 

and management quality on IPO firm valuation is positive. Regressions 1 through 3 in Panel B of Table 9 

present the results of our estimation using Q1Count as an independent variable and regressions 4 through 

6 present our results using Q1Cite as an independent variable. Both Q1Count and Q1Cite have positive 

and significant coefficient estimates in all regressions indicating that pre-IPO innovation productivity and 

management quality together have a significantly positive joint effect on IPO firm valuation both in the 

IPO (QOP) as well as in the immediate secondary market (QFTD or QIM). Thus, firms with both greater 

pre-IPO innovation productivity and higher management quality tend to receive the highest valuations in 

the IPO and immediate secondary market compared to the other firms in our sample. This finding 

provides support for our hypothesis H6. 

 

6.3.3. Relationship between Pre-IPO Innovation and Firm Age at IPO 
 

We now test our hypothesis H7, which predicts that firms which have greater innovation 

productivity pre-IPO will go public at a younger age. We test this hypothesis in the framework of a 

proportional hazard survival-time model. We consider firm age at IPO as the length of time a firm 

survives as a private company. In particular, we use maximum likelihood estimation for parametric 

regression survival-time model with Gompertz and Weibull survival distributions. The dependent variable 

in this estimation is the firm age (number of years from founding year to IPO year) which we regress on a 
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pre-IPO innovation output proxy (either LnCount -1 & -2 or LnCite -1 & -2) and other control variables 

(we drop LnAge and year dummies as control variables in this estimation and cluster standard errors at 

year level). We expect positive coefficient estimates for LnCount -1 & -2 or LnCite -1 & -2 if the pre-IPO 

innovation productivity of private firms enables them to go public at a younger age. In proportional 

hazard survival-time models a positive coefficient estimate for an independent variable indicates that the 

hazard of not surviving (or, in our context, the likelihood of going public at a younger age) is increasing 

in that independent variable. The results of our analysis are presented in regressions 1 to 4 in Table 10.  

We find that both LnCount -1 & -2 and LnCite -1 & -2 have significantly positive coefficient 

estimates (except for regression 2) indicating that the hazard (of not surviving for longer period of time 

or, in other words, going public at a younger age) is increasing with pre-IPO innovation. These findings 

indicate that the greater pre-IPO innovation productivity (both in terms of quantity as well as the quality 

of innovation) of a private firm enables it to go public at a younger age, supporting our hypothesis H7. 

 

6.3.4. Relationship between Pre-IPO Innovation, Management Quality, and Firm Age at IPO 

We investigate the joint effect of pre-IPO innovation productivity and management quality on 

firm age at IPO in the same way as we did in section 6.3.2 when investigating the joint effect of pre-IPO 

innovation productivity and management quality on firm valuation. In particular, we estimate the effect of 

either Q1Count or Q1Cite (as defined in section 6.3.2) on firm age at IPO by making use of proportional 

hazard survival-time model with Gompertz and Weibull survival distributions. We expect positive 

coefficients for both Q1Count and Q1Cite if the joint effect of pre-IPO innovation productivity and 

management quality on firm age at IPO is negative. We report our findings in columns 5 to 8 in Table 10.  

We find that the coefficient estimates of Q1Count and Q1Cite in all four regressions are positive 

and significant at the 5% level suggesting that firms which are more innovative pre-IPO and which have 

higher management quality are more likely to go public at a younger age compared to the other firms in 

our sample. These results provide support for our hypothesis H8. 
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6.3.5. Relationship between Pre-IPO Innovation and Post-IPO Operating Performance  

In this section, we test our hypothesis H9, which predicts that greater pre-IPO innovation 

productivity translates into higher growth rate in post-IPO operating performance of firms going public. 

We use the changes in post-IPO operating income before depreciation plus interest income scaled by total 

assets (OIBDA) as our measure for operating performance. Next, we construct the changes in OIBDA by 

subtracting the OIBDA in the year prior to the IPO (year -1) from the OIBDA in subsequent years (years 

0 through 5, where year 0 is the year of IPO). 

To test our hypothesis H9, we run quantile/median regressions of the changes in post-IPO 

OIBDA on pre-IPO innovation productivity proxies and other controls.29 Our findings are presented in 

Panel A of Table 11. Regressions 1 through 6 use LnCount -1 & -2 as a proxy of pre-IPO innovation 

productivity and regressions 7 through 12 use LnCite -1 & -2 as a proxy of pre-IPO innovation 

productivity. We find that both pre-IPO innovation productivity proxies have a significantly positive 

effect on the changes in post-IPO operating performance (except for regressions 4 and 5). In particular, 

the effect of the quality of pre-IPO innovation on the changes in post-IPO operating performance is more 

pronounced than that of the quantity of pre-IPO innovation. Thus, our findings suggest that firms which 

are more innovative pre-IPO realize greater improvements in their post-IPO operating performance, 

supporting our hypothesis H9.  

 

6.3.6. Relation between Pre-IPO Innovation, Management Quality, and Post-IPO Operating Performance  

We now proceed to investigate the joint effect of the pre-IPO innovation productivity and the 

management quality of a private firm on the changes in its post-IPO operating performance. Similar to 

our analysis of the joint effect of pre-IPO innovation and management quality on IPO firm valuation and 

firm age at IPO, we regress (using quantile/median regressions) the changes in post-IPO operating 

                                                 
29 We use quantile (median) regressions instead of OLS regressions given the large outliers in operating 
performance measures. Quantile (median) regressions estimate the conditional median of dependent variables given 
certain values of independent variables instead of the conditional mean estimated by OLS and thus are more 
appropriate here. 
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performance measures on either Q1Count or Q1Cite (as described in section 6.3.2) and other control 

variables. We expect positive coefficients for both Q1Count and Q1Cite if the joint effect of the pre-IPO 

innovation productivity and the management quality of a private firm on the changes in its post-IPO 

operating performance is positive. Regressions 1 through 6 in Panel B of Table 11 present the results of 

our estimation using Q1Count as an independent variable and regressions 7 through 12 present our results 

using Q1Cite as an independent variable.  

We find that both Q1Count and Q1Cite have positive and highly significant coefficient estimates 

in all regressions. This indicates that the joint effect of pre-IPO innovation productivity and management 

quality on the changes in post-IPO operating performance is significantly positive. Thus, firms which 

have greater pre-IPO innovation productivity (either in terms of the quantity or the quality of innovation) 

and higher management quality tend to realize the largest improvements in their post-IPO operating 

performance compared to the other firms in our sample. These findings provide support for our 

hypothesis H10. 

 

7. Conclusion  

We make use of hand-collected data on the top management quality of a large sample of private 

firms to address two research questions. First, how does the top management quality of a private firm 

affect its pre-IPO innovation productivity and innovation strategies? Second, how does the pre-IPO 

innovativeness and management quality of a firm affect its valuation at IPO, age at IPO, and post-IPO 

operating performance? We hypothesize that higher quality management teams hire higher quality 

scientists and other researchers, invest in more innovative projects, and manage these projects more ably, 

leading to higher innovation productivity. Consistent with this, we show in our baseline regressions in the 

first part of our analysis that firms with higher management quality are associated with higher innovation 

productivity in their pre-IPO years. The above relationship holds for measures of input to innovation 

(R&D expenses) and for measures of innovation output such as the number of patents (innovation 

quantity) and citations per patent (innovation quality). We further show that firms with higher top 



41 
 

management quality are more likely to produce explorative rather than exploitative innovations and are 

more likely to hire higher quality inventors. We use an IV analysis to establish that all the above 

relationships are causal. In the last part of our analysis, we find that the financial market rewards firms 

with greater pre-IPO innovativeness and higher management quality with higher valuations (both at IPO 

and in the immediate secondary market) and allows them to go public at a younger age. Consistent with 

this, such firms also exhibit higher growth in post-IPO operating performance.  
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Table 1. Common factor analysis of eight individual measures of top management quality and reputation 
The sample consists of 1,851 venture-backed IPOs conducted between 1993 and 2004. MQFactor is the management quality factor score obtained using common factor analysis on the firm-size-, firm-
age-, and industry-dummies-adjusted TSize, MBA, PriorExp, LawAcc, CPA, Core, CEODom, and Board. TSize is the size of a firm’s management team, defined as the number of executive officers 
with a rank of vice president or higher. MBA is the number of management team members with MBA degrees. PriorExp is the number of management team members who have served as executive 
officers and/or vice presidents at other firms prior to joining the IPO firm. Core is the number of management team members who have core functional expertise, namely, holding positions in operations 
and production, sales and marketing, research and development, and finance. LawAcc is the number of management team members who have previously been partners in law or accounting firms. CPA 
is the number of management team members who are Certified Public Accountants. CEODom is the ratio of CEO salary and bonus to the average salary and bonus of other management team members 
in the fiscal year prior to IPO. Board is the number of other companies’ boards that management team members sit on. 
 
Panel A. Estimated communalities of eight management quality measures 

Common factor TSize MBA PriorExp Core LawAcc CPA CEODom Board  Total 
MQFactor 0.5694 0.1142 0.3414 0.4534 0.0315 0.0234 0.0055 0.0081  1.5469 

 
Panel B. Eigenvalues of the reduced correlation matrices 

Common factor Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 
MQFactor 1.71781 0.15770 0.08523 0.03864 -0.04332 -0.07560 -0.10934 -0.22429 

 
Panel C. Correlations between the common factor and eight management quality measures 

Common factor TSize MBA PriorExp Core LawAcc CPA CEODom Board 
MQFactor 0.9413 0.4161 0.7107 0.8130 0.0474 0.0937 0.0096 0.0402 

 
Panel D. Descriptive statistics of the common factor extracted from eight management quality measures 

Common factor Maximum Third quartile Median First quartile Minimum Mean   
MQFactor 4.5107 0.5204 -0.0557 -0.6239 -2.4631 0   
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Table 2. Summary statistics 
LnCount -1, LnCount -2, and LnCount -1 & -2 are the natural logarithms of one plus the number of patents a firm files for (and is eventually 
granted) in years -1, -2, and -1 and -2 combined, respectively, prior to IPO. LnCite -1, LnCite -2, and LnCite -1 & -2 are the natural logarithms of 
one plus the number of non-self-citations per patent a firm files for (and is eventually granted) in years -1, -2, and -1 and -2 combined, 
respectively, prior to IPO. R&D/Assets -1 and R&D/Assets -2 are the ratios of R&D expenses to assets in fiscal years -1 and -2, respectively, 
prior to IPO. AveR&D/Assets -1 & -2 is the average ratio of R&D expenses to assets in fiscal years -1 and -2 prior to IPO. LnR&D -1 and 
LnR&D -2 are the natural logarithms of R&D expenses in fiscal years -1 and -2, respectively, prior to IPO. LnAveR&D -1 & -2 is the natural 
logarithm of average R&D expenses in fiscal years -1 and -2 prior to IPO. ExplorRat is the fraction of explorative patents out of all the patents 
applied by a firm in the two-year period prior to its IPO. ExploitRat is the fraction of exploitative patents out of all the patents applied by a firm 
in the two-year period prior to its IPO. LnNSelfCite and LnSelfCite are the natural logarithms of one plus the number of non-self-citations (i.e., 
the number of times that a firm cites patents owned by other firms) and the number of self-citations, respectively, of all the patents cited by a firm 
over the two-year period prior to its IPO. Diversity equals one minus the Herfindahl index of the number of patents filed by a firm over the two-
year period prior to its IPO across various technological classes. InventorQual is the natural logarithm of one plus the number of inventors whose 
patents were filed by a firm in the two-year period prior to its IPO and who receive top 10% of the citations across various technological classes. 
MQFactor is the management quality factor score obtained using common factor analysis on the firm-size-, firm-age-, and industry-dummies-
adjusted TSize, MBA, PriorExp, LawAcc, CPA, Core, CEODom, and Board. TSize is the size of a firm’s management team, defined as the 
number of executive officers with a rank of vice president or higher. PMBA is the percentage of a firm’s management team with MBA degrees. 
PPriorExp is the percentage of a firm’s management team who have served as executive officers and/or vice presidents prior to joining the IPO 
firm. PCore is the percentage of a firm’s management team who have core functional expertise, namely, holding positions in operations and 
production, sales and marketing, R&D, and finance. PLawAcc is the percentage of a firm’s management team who have previously been partners 
in law or accounting firms. PCPA is the percentage of a firm’s management team who are Certified Public Accountants. CEODom is the ratio of 
CEO salary and bonus to the average salary and bonus of other management team members in the fiscal year prior to IPO. Board is the number of 
other companies’ boards that management team members sit on. Tenure is the average number of years a firm’s management team members have 
been with the firm. TenHet is the coefficient of variation of management team members’ tenures. LnAssets is the natural logarithm of the book 
value of assets immediately prior to IPO. LnAge is the natural logarithm of one plus firm age. OutDir is the proportion of outside directors in the 
board of directors. InsideOwn is the proportion of voting power owned by firm officers and directors immediately prior to IPO. CEO/Chair is an 
indicator variable equal to one if a CEO is also a Chairman of the board of directors, and zero otherwise. CapEx/Assets -1 is the ratio of capital 
expenditures over assets in fiscal year -1 prior to IPO. NI/Sales -1 is the ratio of net income to sales in fiscal year -1 prior to IPO.  
 

Variables N Min Mean Median Max St.Dev. 
Innovation variables 

LnCount -1 1,833 0 0.184 0 4.166 0.570 
LnCount -2 1,765 0 0.016 0 4.146 0.200 
LnCount -1 & -2 1,833 0 0.189 0 4.841 0.586 
LnCite -1 1,833 0 0.337 0 5.491 0.990 
LnCite -2 1,765 0 0.020 0 4.131 0.259 
LnCite -1 & -2 1,833 0 3.185 0 241.445 12.970 
R&D/Assets -1 1,834 0 0.258 0.148 4.936 0.405 
R&D/Assets -2 852 0 0.325 0.175 4.721 0.546 
AveR&D/Assets -1 & -2 1,834 0 0.272 0.160 4.194 0.406 
LnR&D -1 1,834 0 10.259 14.498 20.364 7.127 
LnR&D -2 852 0 9.996 14.158 20.496 7.110 
LnAveR&D -1 & -2 1,837 0 10.063 14.168 20.432 7.007 
ExplorRat 1,833 0 0.291 0 1 0.438 
ExploitRat 1,833 0 0.013 0 1 0.081 
LnNSelfCite 1,833 0 1.046 0 8.494 1.947 
LnSelfCite 1,833 0 0.099 0 4.331 0.449 
Diversity 1,833 0 0.101 0 0.935 0.227 
InventorQual 1,833 0 0.373 0 5.069 0.954 

Management quality variables 
MQFactor 1,851 -2.463 0 -0.056 4.511 0.908 
TSize 1,851 1 6.782 6 19 2.515 
PMBA 1,851 0 0.156 0.111 1 0.187 
PPriorExp 1,851 0 0.554 0.571 1 0.263 
PCore 1,851 0 0.592 0.6 1 0.202 
PLawAcc 1,851 0 0.024 0 1 0.075 
PCPA 1,851 0 0.066 0 1 0.106 
CEODom 1,851 0 1.293 1.263 4.521 0.461 
Board 1,851 0 0.527 0 10 1.069 
Tenure  1,851 1 4.431 3.286 30 3.512 
TenHet 1,851 0 0.689 0.573 16.408 0.868 

Control variables 
LnAssets 1,851 12.683 17.242 17.024 22.969 1.447 
LnAge 1,851 0 2.044 1.946 5.063 0.779 
OutDir 1,851 0 0.697 0.714 1 0.179 
InsideOwn 1,851 0 0.572 0.590 1 0.262 
CEO/Chair 1,851 0 0.558 1 1 0.497 
CapEx/Assets -1 1,834 0 0.091 0.059 0.882 0.105 
NI/Sales -1 1,720 -1763.966 -7.386 -0.092 2.787 65.360 



49 
 

Table 3. Relationship between management quality and pre-IPO input to innovation (R&D expenses)  
The sample consists of 1,851 venture-backed IPOs conducted between 1993 and 2004. R&D/Assets -1 is the ratio of R&D expenses to assets in 
fiscal year -1 prior to IPO. R&D/Assets -2 is the ratio of R&D expenses to assets in fiscal year -2 prior to IPO. AveR&D/Assets -1 & -2 is the 
average ratio of R&D expenses to assets in fiscal years -1 and -2 prior to IPO. LnR&D -1 is the natural logarithm of R&D expenses in fiscal year 
-1 prior to IPO. LnR&D -2 is the natural logarithm of R&D expenses in fiscal year -2 prior to IPO. LnAveR&D -1 & -2 is the natural logarithm 
of average R&D expenses in fiscal years -1 and -2 prior to IPO. MQFactor is the management quality factor score obtained using common factor 
analysis on the firm-size-, firm-age-, and industry-dummies-adjusted TSize, MBA, PriorExp, LawAcc, CPA, Core, CEODom, and Board. Tenure 
is the average number of years a firm’s management team members have been with the firm. TenHet is the coefficient of variation of 
management team members’ tenures. LnAssets is the natural logarithm of the book value of assets immediately prior to IPO. LnAge is the natural 
logarithm of one plus firm age. OutDir is the proportion of outside directors in the board of directors. InsideOwn is the proportion of voting 
power owned by firm officers and directors immediately prior to IPO. CEO/Chair is an indicator variable equal to one if a CEO is also a 
Chairman of the board of directors, and zero otherwise. CapEx/Assets -1 is the ratio of capital expenditures over assets in fiscal year -1 prior to 
IPO. NI/Sales -1 is the ratio of net income to sales in fiscal year -1 prior to IPO. All regressions include 4-digit SIC industry code dummies and 
year dummies. t-statistics are in parentheses. ***, **, and * indicate significance at the 1, 5, and 10 percent levels, respectively.  

 (1) (2) (3) (4) (5) (6) 
Dependent variable R&D/Assets -1 R&D/Assets -2 AveR&D/Assets -1 & -2 LnR&D -1 LnR&D -2 LnAveR&D -1 & -2
Constant 1.483 2.183 1.626 27.042 26.604 26.561 
 (4.09)*** (3.51)*** (4.22)*** (4.89)*** (4.60)*** (4.90)*** 
MQFactor 0.016 0.043 0.020 0.845 0.945 0.825 
 (1.76)* (1.98)** (2.15)** (6.22)*** (4.64)*** (6.19)*** 
Tenure -0.007 -0.002 -0.006 -0.029 0.056 -0.021 
 (-2.00)** (-0.28) (-1.50) (-0.54) (0.72) (-0.40) 
TenHet -0.002 -0.069 -0.004 0.087 0.138 0.092 
 (-0.25) (-0.82) (-0.35) (0.57) (0.18) (0.61) 
LnAssets -0.094 -0.135 -0.103 -0.860 -0.965 -0.853 
 (-12.97)*** (-6.90)*** (-13.38)*** (-7.76)*** (-5.28)*** (-7.84)*** 
LnAge 0.005 -0.001 0.005 0.084 0.693 0.098 
 (0.34) (-0.03) (0.31) (0.38) (1.91)* (0.46) 
OutDir 0.058 0.093 0.068 2.130 2.420 2.054 
 (1.24) (0.73) (1.36) (2.97)*** (2.03)** (2.92)*** 
InsideOwn -0.068 -0.138 -0.076 -0.898 -0.879 -0.891 
 (-2.17)** (-1.62) (-2.28)** (-1.88)* (-1.11) (-1.90)* 
CEO/Chair -0.033 0.066 -0.020 -0.097 -0.078 -0.117 
 (-2.07)** (1.66)* (-1.17) (-0.40) (-0.21) (-0.49) 
CapEx/Assets -1 0.435 -0.494 0.280 -1.072 -5.989 -1.139 
 (5.42)*** (-2.35)** (3.28)*** (-0.87) (-3.06)*** (-0.95) 
NI/Sales -1 -0.000 -0.000 -0.000 -0.000 0.000 -0.000 
 (-2.21)** (-1.36) (-2.15)** (-0.17) (0.11) (-0.21) 
Industry Dummies Yes Yes Yes Yes Yes Yes 
Year Dummies Yes Yes Yes Yes Yes Yes 
N 1,720 809 1,720 1,720 809 1,720 
R2 0.4284 0.3103 0.4055 0.6780 0.7066 0.6788 
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Table 4. Relationship between management quality and the quantity and quality of pre-IPO innovation  
The sample consists of 1,851 venture-backed IPOs conducted between 1993 and 2004. LnCount -1 is the natural logarithm of one plus the 
number of patents a firm files for (and is eventually granted) in year -1 prior to IPO. LnCount -2 is the natural logarithm of one plus the number 
of patents a firm files for (and is eventually granted) in year -2 prior to IPO. LnCount -1 & -2 is the natural logarithm of one plus the number of 
patents a firm files for (and is eventually granted) in years -1 and -2 combined prior to IPO. LnCite -1 is the natural logarithm of one plus the 
number of non-self-citations per patent a firm files for (and is eventually granted) in year -1 prior to IPO. LnCite -2 is the natural logarithm of one 
plus the number of non-self-citations per patent a firm files for (and is eventually granted) in year -2 prior to IPO. LnCite -1 & -2 is the natural 
logarithm of one plus the number of non-self-citations per patent a firm files for (and is eventually granted) in years -1 and -2 combined prior to 
IPO. MQFactor is the management quality factor score obtained using common factor analysis on the firm-size-, firm-age-, and industry-
dummies-adjusted TSize, MBA, PriorExp, LawAcc, CPA, Core, CEODom, and Board. Tenure is the average number of years a firm’s 
management team members have been with the firm. TenHet is the coefficient of variation of management team members’ tenures. LnAssets is 
the natural logarithm of the book value of assets immediately prior to IPO. LnAge is the natural logarithm of one plus firm age. OutDir is the 
proportion of outside directors in the board of directors. InsideOwn is the proportion of voting power owned by firm officers and directors 
immediately prior to IPO. CEO/Chair is an indicator variable equal to one if a CEO is also a Chairman of the board of directors, and zero 
otherwise. CapEx/Assets -1 is the ratio of capital expenditures over assets in fiscal year -1 prior to IPO. NI/Sales -1 is the ratio of net income to 
sales in fiscal year -1 prior to IPO. R&D/Assets -1 is the ratio of R&D expenses to assets in fiscal year -1 prior to IPO. All regressions include 4-
digit SIC industry code dummies and year dummies. t-statistics are in parentheses. ***, **, and * indicate significance at the 1, 5, and 10 percent 
levels, respectively. 
 

 (1) (2) (3) (4) (5) (6) 
Dependent variable LnCount -1 LnCount -2 LnCount -1 & -2 LnCite -1 LnCite -2 LnCite -1 & -2 
Constant -0.892 -0.333 -0.960 -0.348 -0.435 -0.447 
 (-1.38) (-1.39) (-1.45) (-0.30) (-1.39) (-0.38) 
MQFactor 0.034 0.000 0.035 0.103 0.007 0.102 
 (2.15)** (0.07) (2.12)** (3.52)*** (0.85) (3.47)*** 
Tenure -0.002 -0.001 -0.001 0.008 0.001 0.009 
 (-0.33) (-0.47) (-0.18) (0.73) (0.32) (0.78) 
TenHet -0.004 -0.003 -0.005 -0.011 -0.004 -0.012 
 (-0.22) (-0.50) (-0.25) (-0.33) (-0.52) (-0.37) 
LnAssets 0.037 0.014 0.039 0.022 0.017 0.026 
 (2.66)*** (2.73)*** (2.77)*** (0.89) (2.44)** (1.03) 
LnAge 0.028 0.016 0.029 0.006 0.017 0.008 
 (1.07) (1.52) (1.07) (0.12) (1.21) (0.15) 
OutDir -0.166 -0.007 -0.160 -0.109 -0.013 -0.112 
 (-1.98)** (-0.21) (-1.86)* (-0.71) (-0.31) (-0.73) 
InsideOwn -0.050 -0.024 -0.054 -0.007 -0.004 -0.002 
 (-0.89) (-1.12) (-0.94) (-0.06) (-0.15) (-0.02) 
CEO/Chair -0.048 -0.004 -0.050 -0.124 0.002 -0.115 
 (-1.71)* (-0.40) (-1.71)* (-2.40)** (0.16) (-2.20)** 
CapEx/Assets -1 0.130 0.012 0.140 -0.076 0.021 -0.039 
 (0.90) (0.22) (0.94) (-0.29) (0.29) (-0.15) 
NI/Sales -1 0.000 0.000 0.000 0.001 0.000 0.001 
 (0.50) (0.17) (0.54) (1.25) (0.06) (1.25) 
R&D/Assets -1 0.132 0.020 0.142 0.161 0.034 0.184 
 (2.78)*** (1.15) (2.92)*** (1.86)* (1.46) (2.11)** 
Industry Dummies Yes Yes Yes Yes Yes Yes 
Year Dummies Yes Yes Yes Yes Yes Yes 
N 1,706 1,661 1,706 1,706 1,661 1,706 
R2 0.1250 0.0474 0.1276 0.0946 0.0322 0.0955 
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Table 5. Instrumental variable analysis of the effect of management quality on pre-IPO input to innovation (R&D expenses) 
The sample consists of 1,851 venture-backed IPOs conducted between 1993 and 2004.  In first stage regressions, dependent variable MQFactor is the management quality factor score obtained using common 
factor analysis on the firm-size-, firm-age-, and industry-dummies-adjusted TSize, MBA, PriorExp, LawAcc, CPA, Core, CEODom, and Board. In second stage regressions, dependent variable R&D/Assets -
1 is the ratio of R&D expenses to assets in fiscal year -1 prior to IPO, AveR&D/Assets -1 & -2 is the average ratio of R&D expenses to assets in fiscal years -1 and -2 prior to IPO, LnR&D -1 is the natural 
logarithm of R&D expenses in fiscal year -1 prior to IPO, LnAveR&D -1 & -2 is the natural logarithm of average R&D expenses in fiscal years -1 and -2 prior to IPO, R&D/Assets -2 is the ratio of R&D 
expenses to assets in fiscal year -2 prior to IPO, and LnR&D -2 is the natural logarithm of R&D expenses in fiscal year -2 prior to IPO. In second stage regressions MQFHat is the predicted value of 
MQFactor from the first stage regressions. Instrument is the number of acquisitions (public targets acquired) conducted in the three-year period prior to IPO in the 2-digit SIC code industry of the IPO firm in 
the state of incorporation of IPO firm multiplied by the reciprocal of one plus the state-level non-compete agreement enforceability index. Tenure is the average number of years a firm’s management team 
members have been with the firm. TenHet is the coefficient of variation of management team members’ tenures. LnAssets is the natural logarithm of the book value of assets immediately prior to IPO. LnAge 
is the natural logarithm of one plus firm age. OutDir is the proportion of outside directors in the board of directors. InsideOwn is the proportion of voting power owned by firm officers and directors 
immediately prior to IPO. CEO/Chair is an indicator variable equal to one if a CEO is also a Chairman of the board of directors, and zero otherwise. CapEx/Assets -1 is the ratio of capital expenditures over 
assets in fiscal year -1 prior to IPO. NI/Sales -1 is the ratio of net income to sales in fiscal year -1 prior to IPO. All regressions include 4-digit SIC industry code dummies and year dummies. t-statistics of 
first stage regressions and z-statistics of second stage regressions are in parentheses. ***, **, and * indicate significance at the 1, 5, and 10 percent levels, respectively. 
 

 (1) (2) (3) (4) (5)  (6) (7) (8) 
 First stage 

regression 
Second stage 

regression 
Second stage  

regression 
Second stage 

regression 
Second stage 

regression 
 First stage 

regression 
Second stage 

regression 
Second stage 

regression 
Dependent variable MQFactor R&D/Assets -1 AveR&D/Assets -1 & -2 LnR&D -1 LnAveR&D -1 & -2  MQFactor R&D/Assets -2 LnR&D -2 
Constant -0.095 1.738 1.911 16.052 15.531  2.366 2.239 9.017 
 (-0.08) (4.43)*** (4.20)*** (2.08)** (2.10)**  (1.41) (1.46) (0.65) 
Instrument 0.005      0.003   
 (3.19)***      (1.45)   
MQFHat  0.182 0.268 6.126 5.788   0.562 5.515 
  (1.70)* (2.16)** (2.91)*** (2.86)***   (1.27) (1.38) 
Tenure -0.051 0.002 0.007 0.248 0.239  -0.038 0.018 0.232 
 (-4.99)*** (0.26) (0.96) (1.90)* (1.91)*  (-2.46)** (0.90) (1.30) 
TenHet 0.053 -0.012 -0.017 -0.200 -0.177  0.265 -0.204 -1.049 
 (1.76)* (-0.98) (-1.26) (-0.87) (-0.80)  (1.69)* (-1.34) (-0.76) 
LnAssets -0.032 -0.089 -0.095 -0.691 -0.695  0.031 -0.151 -1.104 
 (-1.51) (-10.93)*** (-10.12)*** (-4.33)*** (-4.53)***  (0.85) (-5.59)*** (-4.50)*** 
LnAge 0.081 -0.007 -0.012 -0.280 -0.244  -0.010 0.011 0.800 
 (1.88)* (-0.40) (-0.65) (-0.87) (-0.79)  (-0.14) (0.23) (1.85)* 
OutDir -0.086 0.071 0.088 2.551 2.450  -0.296 0.242 3.732 
 (-0.62) (1.47) (1.56) (2.68)*** (2.68)***  (-1.24) (1.22) (2.07)** 
InsideOwn -0.248 -0.024 -0.010 0.502 0.424  -0.209 -0.016 0.196 
 (-2.68)*** (-0.56) (-0.21) (0.60) (0.53)  (-1.31) (-0.11) (0.15) 
CEO/Chair -0.006 -0.031 -0.017 -0.050 -0.073  -0.048 0.094 0.167 
 (-0.13) (-1.94)* (-0.94) (-0.16) (-0.24)  (-0.64) (1.77)* (0.35) 
CapEx/Assets -1 0.540 0.348 0.151 -3.834 -3.735  0.657 -0.839 -9.027 
 (2.27)** (3.52)*** (1.31) (-1.97)** (-2.00)**  (1.68)* (-2.17)** (-2.58)*** 
NI/Sales -1 -0.000 -0.000 -0.000 0.002 0.002  -0.001 0.000 0.005 
 (-1.29) (-1.47) (-1.09) (0.78) (0.73)  (-1.53) (0.08) (0.90) 
Industry Dummies Yes Yes Yes Yes Yes  Yes Yes Yes 
Year Dummies Yes Yes Yes Yes Yes  Yes Yes Yes 
N 1,720 1,720 1,720 1,720 1,720  809 809 809 
Centered R2 0.2527 0.2882 0.1189 0.3363 0.3663  0.3675 -0.3399 0.4592 
F-statistic  
(p-value) 

10.18 
(0.0015) 

     2.11 
(0.1469) 
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Table 6. Instrumental variable analysis of the effect of management quality on the quantity and quality of pre-IPO innovation 
The sample consists of 1,851 venture-backed IPOs conducted between 1993 and 2004. In first stage regressions, dependent variable MQFactor is the management quality factor score obtained using common 
factor analysis on the firm-size-, firm-age-, and industry-dummies-adjusted TSize, MBA, PriorExp, LawAcc, CPA, Core, CEODom, and Board. In second stage regressions, dependent variables LnCount -1 
and LnCount -2 are the natural logarithms of one plus the number of patents a firm files for (and is eventually granted) in years -1 and -2, respectively, prior to IPO; LnCount -1 & -2 is the natural logarithm 
of one plus the number of patents a firm files for (and is eventually granted) in years -1 and -2 combined prior to IPO, LnCite -1 and LnCite -2 are the natural logarithms of one plus the number of non-self-
citations per patent a firm files for (and is eventually granted) in years -1 and -2, respectively, prior to IPO; and LnCite -1 & -2 is the natural logarithm of one plus the number of non-self-citations per patent a 
firm files for (and is eventually granted) in years -1 and -2 combined prior to IPO. MQFHat is the predicted value of MQFactor from the first stage regressions. Instrument is the number of acquisitions 
(public targets acquired) conducted in the three-year period prior to IPO in the 2-digit SIC code industry of the IPO firm in the state of incorporation of IPO firm multiplied by the reciprocal of one plus the 
state-level non-compete agreement enforceability index. Tenure is the average number of years a firm’s management team members have been with the firm. TenHet is the coefficient of variation of 
management team members’ tenures. LnAssets is the natural logarithm of the book value of assets immediately prior to IPO. LnAge is the natural logarithm of one plus firm age. OutDir is the proportion of 
outside directors in the board of directors. InsideOwn is the proportion of voting power owned by firm officers and directors immediately prior to IPO. CEO/Chair is an indicator variable equal to one if a 
CEO is also a Chairman of the board of directors, and zero otherwise. CapEx/Assets -1 is the ratio of capital expenditures over assets in fiscal year -1 prior to IPO. NI/Sales -1 is the ratio of net income to 
sales in fiscal year -1 prior to IPO. R&D/Assets -1 is the ratio of R&D expenses to assets in fiscal year -1 prior to IPO. All regressions include 4-digit SIC industry code dummies and year dummies. t-
statistics of first stage regressions and z-statistics of second stage regressions are in parentheses. ***, **, and * indicate significance at the 1, 5, and 10 percent levels, respectively. 
 

 (1) (2) (3) (4) (5)  (6) (7) (8) 
 First stage 

regression 
Second stage 

regression 
Second stage  

regression 
Second stage 

regression 
Second stage 

regression 
 First stage 

regression 
Second stage 

regression 
Second stage 

regression 
Dependent variable MQFactor LnCount -1 LnCount -1 & -2 LnCite -1 LnCite -1 & -2  MQFactor LnCount -2 LnCite -2 
Constant -0.369 -0.402 -0.454 0.810 0.750  0.078 -0.353 -0.508 
 (-0.32) (-0.48) (-0.53) (0.53) (0.47)  (0.07) (-1.49) (-1.55) 
Instrument 0.005      0.005   
 (3.37)***      (3.30)***   
MQFHat  0.547 0.581 1.065 1.141   0.047 0.124 
  (2.56)** (2.61)*** (2.70)*** (2.78)***   (0.75) (1.44) 
Tenure -0.051 0.025 0.027 0.059 0.063  -0.053 0.001 0.007 
 (-4.99)*** (1.84)* (1.96)** (2.37)** (2.46)**  (-4.95)*** (0.34) (1.32) 
TenHet 0.054 -0.032 -0.035 -0.064 -0.070  0.050 -0.006 -0.011 
 (1.81)* (-1.33) (-1.37) (-1.42) (-1.49)  (1.67)* (-0.82) (-1.11) 
LnAssets -0.019 0.045 0.048 0.039 0.043  -0.005 0.014 0.017 
 (-0.81) (2.69)*** (2.75)*** (1.24) (1.35)  (-0.23) (2.96)*** (2.53)** 
LnAge 0.070 -0.001 -0.003 -0.050 -0.053  0.055 0.014 0.012 
 (1.59) (-0.04) (-0.07) (-0.80) (-0.81)  (1.14) (1.41) (0.87) 
OutDir -0.071 -0.133 -0.124 -0.046 -0.045  -0.109 -0.002 -0.001 
 (-0.51) (-1.31) (-1.18) (-0.25) (-0.23)  (-0.77) (-0.07) (-0.01) 
InsideOwn -0.226 0.075 0.079 0.228 0.252  -0.229 -0.012 0.025 
 (-2.44)** (0.89) (0.90) (1.46) (1.55)  (-2.43)** (-0.49) (0.73) 
CEO/Chair 0.010 -0.052 -0.054 -0.131 -0.122  0.018 -0.005 0.001 
 (0.20) (-1.54) (-1.52) (-2.09)** (-1.88)*  (0.37) (-0.50) (0.04) 
CapEx/Assets -1 0.506 -0.116 -0.123 -0.540 -0.540  0.555 -0.013 -0.043 
 (2.11)** (-0.58) (-0.59) (-1.45) (-1.40)  (2.23)** (-0.21) (-0.50) 
NI/Sales -1 -0.001 0.001 0.001 0.001 0.001  -0.001 0.000 0.000 
 (-2.00)** (1.57) (1.62) (2.12)** (2.14)**  (-1.17) (0.43) (0.52) 
R&D/Assets -1 0.090 0.079 0.086 0.062 0.077  0.105 0.015 0.020 
 (1.14) (1.30) (1.35) (0.55) (0.66)  (1.30) (0.83) (0.82) 
Industry Dummies Yes Yes Yes Yes Yes  Yes Yes Yes 
Year Dummies Yes Yes Yes Yes Yes  Yes Yes Yes 
N 1,706 1,706 1,706 1,706 1,706  1,661 1,661 1,661 
Centered R2 0.2587 -0.1926 -0.2229 -0.3082 -0.3943  0.2582 0.2354 0.1540 
F-statistic (p-value) 11.34 (0.0008)      10.88 (0.0010)   
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Table 7. Relationship between management quality and pre-IPO innovation strategies and inventor quality 
The sample consists of 1,851 venture-backed IPOs conducted between 1993 and 2004. ExplorRat is the fraction of explorative patents out of all the 
patents a firm files for (and is eventually granted) in the two-year period prior to its IPO. A patent is explorative if at least 80% of its citations do not 
refer to existing knowledge, which includes a firm’s previous patent portfolio and all the patents that were cited by the firm’s patents filed over the 
two-year period prior to its IPO. ExploitRat is the fraction of exploitative patents out of all the patents a firm files for (and is eventually granted) in 
the two-year period prior to its IPO. A patent is exploitative if at least 80% of its citations refer to existing knowledge, which includes a firm’s 
previous patent portfolio and all the patents that were cited by the firm’s patents filed over the two-year period prior to its IPO. LnNSelfCite is the 
natural logarithm of one plus the number of non-self-citations (i.e., the number of times that a firm cites patents owned by other firms) of all the 
patents cited by a firm’s patents filed for (and eventually granted) in the two-year period prior to its IPO. LnSelfCite is the natural logarithm of one 
plus the number of self-citations of all the patents cited by a firm’s patents filed for (and eventually granted) in the two-year period prior to its IPO. 
Diversity equals one minus the Herfindahl index of the number of patents filed by a firm (and eventually granted) over the two-year period prior to 
its IPO across 2-digit technological classes defined by the NBER patent database. InventorQual is the natural logarithm of one plus the number of 
inventors whose patents were filed by a firm in the two-year period prior to its IPO and who receive top 10% of the citations across various 
technological classes. MQFactor is the management quality factor score obtained using common factor analysis on the firm-size-, firm-age-, and 
industry-dummies-adjusted TSize, MBA, PriorExp, LawAcc, CPA, Core, CEODom, and Board. Tenure is the average number of years a firm’s 
management team members have been with the firm. TenHet is the coefficient of variation of management team members’ tenures. LnAssets is the 
natural logarithm of the book value of assets immediately prior to IPO. LnAge is the natural logarithm of one plus firm age. OutDir is the proportion 
of outside directors in the board of directors. InsideOwn is the proportion of voting power owned by firm officers and directors immediately prior to 
IPO. CEO/Chair is an indicator variable equal to one if a CEO is also a Chairman of the board of directors, and zero otherwise. CapEx/Assets -1 is 
the ratio of capital expenditures over assets in fiscal year -1 prior to IPO. NI/Sales -1 is the ratio of net income to sales in fiscal year -1 prior to IPO. 
R&D/Assets -1 is the ratio of R&D expenses to assets in fiscal year -1 prior to IPO. All regressions include 4-digit SIC industry code dummies and 
year dummies. t-statistics are in parentheses. ***, **, and * indicate significance at the 1, 5, and 10 percent levels, respectively.   
 
  (1) (2)  (3) (4)  (5) (6) 
Dependent variable ExplorRat ExploitRat  LnNSelfCite LnSelfCite  Diversity InventorQual 
Constant 0.016 -0.036  -1.924 -0.170  -0.255 -2.251 
 (0.03) (-0.37)  (-0.95) (-0.32)  (-1.02) (-2.01)** 
MQFactor 0.031 0.003  0.189 0.013  0.015 0.052 
 (2.51)** (1.15)  (3.78)*** (0.97)  (2.46)** (1.87)* 
Tenure 0.001 -0.000  0.006 0.001  -0.003 -0.003 
 (0.14) (-0.05)  (0.33) (0.25)  (-1.18) (-0.26) 
TenHet -0.001 0.001  0.041 0.005  0.002 0.017 
 (-0.09) (0.40)  (0.73) (0.34)  (0.25) (0.57) 
LnAssets 0.015 0.001  0.153 0.018  0.025 0.095 
 (1.41) (0.51)  (3.56)*** (1.64)  (4.68)*** (4.01)*** 
LnAge -0.014 -0.002  -0.157 -0.023  -0.003 -0.039 
 (-0.70) (-0.58)  (-1.89)* (-1.05)  (-0.24) (-0.84) 
OutDir 0.000 0.015  -0.203 -0.073  -0.021 0.089 
 (0.01) (1.16)  (-0.77) (-1.07)  (-0.64) (0.62) 
InsideOwn -0.022 0.000  -0.114 -0.035  -0.036 -0.154 
 (-0.51) (0.04)  (-0.65) (-0.78)  (-1.65)* (-1.59) 
CEO/Chair -0.049 -0.002  -0.136 -0.031  -0.014 -0.059 
 (-2.26)** (-0.50)  (-1.53) (-1.36)  (-1.26) (-1.20) 
CapEx/Assets -1 0.128 0.021  0.525 -0.004  0.005 0.345 
 (1.16) (0.97)  (1.16) (-0.03)  (0.09) (1.38) 
NI/Sales -1 0.000 -0.000  0.000 0.000  0.000 0.001 
 (0.63) (-1.01)  (0.41) (0.62)  (0.53) (1.22) 
R&D/Assets -1 0.097 0.002  0.574 0.043  0.089 0.294 

(2.67)*** (0.35)  (3.86)*** (1.13)  (4.80)*** (3.58)*** 
Industry Dummies Yes Yes  Yes Yes  Yes Yes 
Year Dummies Yes Yes  Yes Yes  Yes Yes 
N 1,706 1,706  1,706 1,706  1,706 1,706 
R2 0.3168 0.1406  0.3954 0.2541  0.3415 0.2596 
         

 
Difference between the coefficients of 
MQFactor in regressions (1) and (2) 

with χ2-statistic in parentheses 

 Difference between the coefficients 
of MQFactor in regressions (3) and 
(4) with χ2-statistic in parentheses 

   

 0.028 (5.33)**  0.177 (16.70)***    
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Table 8. Instrumental variable analysis of the effect of management quality on pre-IPO innovation strategies and inventor quality 
The sample consists of 1,851 venture-backed IPOs conducted between 1993 and 2004. In first stage regression, dependent variable MQFactor is 
the management quality factor score obtained using common factor analysis on the firm-size-, firm-age-, and industry-dummies-adjusted TSize, 
MBA, PriorExp, LawAcc, CPA, Core, CEODom, and Board. In second stage regressions, dependent variables are as follows. ExplorRat is the 
fraction of explorative patents out of all the patents a firm files for (and is eventually granted) in the two-year period prior to its IPO. A patent is 
explorative if at least 80% of its citations do not refer to existing knowledge, which includes a firm’s previous patent portfolio and all the patents 
that were cited by the firm’s patents filed over the two-year period prior to its IPO. ExploitRat is the fraction of exploitative patents out of all the 
patents a firm files for (and is eventually granted) in the two-year period prior to its IPO. A patent is exploitative if at least 80% of its citations 
refer to existing knowledge, which includes a firm’s previous patent portfolio and all the patents that were cited by the firm’s patents filed over 
the two-year period prior to its IPO. LnNSelfCite is the natural logarithm of one plus the number of non-self-citations (i.e., the number of times 
that a firm cites patents owned by other firms) of all the patents cited by a firm’s patents filed for (and eventually granted) in the two-year period 
prior to its IPO. LnSelfCite is the natural logarithm of one plus the number of self-citations of all the patents cited by a firm’s patents filed for 
(and eventually granted) in the two-year period prior to its IPO. Diversity equals one minus the Herfindahl index of the number of patents filed by 
a firm (and eventually granted) over the two-year period prior to its IPO across 2-digit technological classes defined by the NBER patent 
database. InventorQual is the natural logarithm of one plus the number of inventors whose patents were filed by a firm in the two-year period 
prior to its IPO and who receive top 10% of the citations across various technological classes. MQFHat is the predicted value of MQFactor from 
the first stage regressions. Instrument is the number of acquisitions (public targets acquired) conducted in the three-year period prior to IPO in the 
2-digit SIC code industry of the IPO firm in the state of incorporation of IPO firm multiplied by the reciprocal of one plus the state-level non-
compete agreement enforceability index. Tenure is the average number of years a firm’s management team members have been with the firm. 
TenHet is the coefficient of variation of management team members’ tenures. LnAssets is the natural logarithm of the book value of assets 
immediately prior to IPO. LnAge is the natural logarithm of one plus firm age. OutDir is the proportion of outside directors in the board of 
directors. InsideOwn is the proportion of voting power owned by firm officers and directors immediately prior to IPO. CEO/Chair is an indicator 
variable equal to one if a CEO is also a Chairman of the board of directors, and zero otherwise. CapEx/Assets -1 is the ratio of capital 
expenditures over assets in fiscal year -1 prior to IPO. NI/Sales -1 is the ratio of net income to sales in fiscal year -1 prior to IPO. R&D/Assets -1 
is the ratio of R&D expenses to assets in fiscal year -1 prior to IPO. All regressions include 4-digit SIC industry code dummies and year 
dummies. t-statistics of first stage regression and z-statistics of second stage regressions are in parentheses. ***, **, and * indicate significance at 
the 1, 5, and 10 percent levels, respectively. 
  
  (1) (2) (3) (4) (5) (6)    (7) 

  
First stage 
regression 

Second stage 
regression 

Second stage 
regression 

Second stage 
regression 

Second stage 
regression 

Second stage  
regression 

Second stage 
regression 

Dependent variable MQFactor ExplorRat ExploitRat LnNSelfCite LnSelfCite Diversity InventorQual 
Constant -0.369 0.237 -0.056 -1.351 -0.138 -0.191 -2.062 

(-0.32) (0.34) (-0.59) (-0.42) (-0.24) (-0.53) (-1.37) 
Instrument 0.005       

(3.37)***       
MQFHat  0.507 -0.010 2.560 0.259 0.264 1.034 

 (2.83)*** (-0.42) (3.12)*** (1.76)* (2.86)*** (2.67)*** 
Tenure -0.051 0.026 -0.001 0.131 0.014 0.010 0.049 

(-4.99)*** (2.28)** (-0.47) (2.54)** (1.53) (1.75)* (2.00)** 
TenHet 0.054 -0.028 0.002 -0.091 -0.009 -0.012 -0.037 

(1.81)* (-1.35) (0.64) (-0.97) (-0.52) (-1.14) (-0.84) 
LnAssets -0.019 0.023 0.001 0.193 0.022 0.029 0.112 

(-0.81) (1.62) (0.43) (3.00)*** (1.93)* (4.02)*** (3.67)*** 
LnAge 0.070 -0.042 -0.002 -0.295 -0.037 -0.017 -0.096 

(1.59) (-1.46) (-0.39) (-2.25)** (-1.57) (-1.15) (-1.55) 
OutDir -0.071 0.032 0.014 -0.049 -0.057 -0.005 0.153 

(-0.51) (0.37) (1.18) (-0.13) (-0.81) (-0.11) (0.84) 
InsideOwn -0.226 0.094 -0.003 0.464 0.025 0.025 0.085 

(-2.44)** (1.33) (-0.30) (1.43) (0.43) (0.67) (0.56) 
CEO/Chair 0.010 -0.052 -0.002 -0.153 -0.033 -0.016 -0.066 

(0.20) (-1.84)* (-0.52) (-1.18) (-1.41) (-1.07) (-1.08) 
Capex/Assets -1 0.506 -0.101 0.027 -0.616 -0.122 -0.115 -0.128 

(2.11)** (-0.60) (1.18) (-0.80) (-0.88) (-1.32) (-0.35) 
NI/Sales -1 -0.001 0.001 -0.000 0.002 0.000 0.000 0.001 

(-2.00)** (1.76)* (-1.22) (1.70)* (1.37) (1.70)* (2.12)** 
R&D/Assets -1 0.090 0.047 0.004 0.329 0.018 0.063 0.192 

(1.14) (0.93) (0.55) (1.41) (0.43) (2.40)** (1.75)* 
Industry Dummies Yes Yes Yes Yes Yes Yes Yes 
Year Dummies Yes Yes Yes Yes Yes Yes Yes 
N 1,706 1,706 1,706 1,706 1,706 1,706 1,706 
Centered R2  0.2587 -0.4221  0.1224   -0.5666 0.0609  -0.4070  -0.4050 
F-statistic (p-value) 11.34 (0.0008)       
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Table 9. Relationship between pre-IPO innovation, management quality, and IPO firm valuation  
The sample consists of 1,851 venture-backed IPOs conducted between 1993 and 2004. QOP, QFTD, and QIM are three definitions of Tobin’s Q. 
Tobin’s Q is the ratio of the market value of assets to the book value of assets, where the market value of assets is equal to the book value of assets 
minus the book value of common equity plus the number of shares outstanding times the market price (either IPO offer price (for QOP), first 
trading day closing price (for QFTD), or the closing price at the end of the issue month (for QIM)). LnAssets is the natural logarithm of the book 
value of assets immediately prior to IPO. LnAge is the natural logarithm of one plus firm age. OutDir is the proportion of outside directors in the 
board of directors. InsideOwn is the proportion of voting power owned by firm officers and directors immediately prior to IPO. CEO/Chair is an 
indicator variable equal to one if a CEO is also a Chairman of the board of directors, and zero otherwise. CapEx/Assets -1 is the ratio of capital 
expenditures over assets in fiscal year -1 prior to IPO. NI/Sales -1 is the ratio of net income to sales in fiscal year -1 prior to IPO. All regressions 
include 4-digit SIC industry code dummies and year dummies. Dependent variables are winsorized at the 99th percentile. t-statistics are in 
parentheses. ***, **, and * indicate significance at the 1, 5, and 10 percent levels, respectively. 
 
Panel A. Relationship between pre-IPO innovation and firm valuation at IPO and in the immediate post-IPO secondary market 
LnCount -1 & -2 is the natural logarithm of one plus the number of patents a firm files for (and is eventually granted) in years -1 and -2 combined 
prior to IPO. LnCite -1 & -2 is the natural logarithm of one plus the number of non-self-citations per patent a firm files for (and is eventually 
granted) in years -1 and -2 combined prior to IPO. 
 

 (1) (2) (3) (4) (5) (6) 
 QOP  QFTD  QIM QOP  QFTD  QIM  

Constant 4.342 6.276 4.085 4.257 6.130 3.810 
 (2.43)** (1.38) (0.90) (2.38)** (1.35) (0.84) 
LnCount -1 & -2 0.129 0.219 0.414    
 (1.78)* (1.19) (2.22)**    
LnCite -1 & -2    0.078 0.177 0.265 
    (1.90)* (1.69)* (2.50)** 
LnAssets -0.216 -0.288 -0.269 -0.214 -0.284 -0.260 
 (-5.89)*** (-3.10)*** (-2.85)*** (-5.82)*** (-3.05)*** (-2.77)*** 
LnAge -0.213 -0.653 -0.467 -0.212 -0.651 -0.461 
 (-3.29)*** (-3.95)*** (-2.80)*** (-3.26)*** (-3.94)*** (-2.76)*** 
OutDir -0.008 0.016 0.611 -0.021 -0.001 0.575 
 (-0.03) (0.03) (1.01) (-0.09) (-0.00) (0.95) 
InsideOwn 0.541 0.932 0.783 0.534 0.919 0.760 
 (3.44)*** (2.34)** (1.95)* (3.40)*** (2.31)** (1.90)* 
CEO/Chair 0.053 -0.211 -0.159 0.055 -0.203 -0.152 
 (0.67) (-1.04) (-0.77) (0.69) (-0.99) (-0.74) 
CapEx/Assets -1 0.088 0.486 1.704 0.109 0.519 1.764 
 (0.22) (0.48) (1.65)* (0.27) (0.51) (1.71)* 
NI/Sales -1 -0.000 0.002 0.002 -0.000 0.002 0.002 
 (-0.12) (0.98) (1.30) (-0.15) (0.94) (1.26) 
Industry Dummies Yes Yes Yes Yes Yes Yes 
Year Dummies Yes Yes Yes Yes Yes Yes 
N 1,651 1,653 1,610 1,651 1,653 1,610 
R2 0.3913 0.3523 0.3611 0.3915 0.3530 0.3617 
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Table 9 (continued) 
Panel B. Relationship between pre-IPO innovation, management quality, and firm valuation at IPO and in the immediate post-IPO secondary 
market  
Q1Count is a dummy variable which takes a value of one for firms with above median number of patents a firm files for (and is eventually 
granted) in years -1 and -2 combined prior to IPO and above median MQFactor, and zero otherwise. Q1Cite is a dummy variable which takes 
a value of one for firms with above median number of non-self-citations per patent a firm files for (and is eventually granted) in years -1 and -2 
combined prior to IPO and above median MQFactor, and zero otherwise. MQFactor is the management quality factor score obtained using 
common factor analysis on the firm-size-, firm-age-, and industry-dummies-adjusted TSize, MBA, PriorExp, LawAcc, CPA, Core, CEODom, and 
Board. Tenure is the average number of years a firm’s management team members have been with the firm. TenHet is the coefficient of variation 
of management team members’ tenures.  
 

 (1) (2) (3) (4) (5) (6) 
 QOP QFTD QIM QOP QFTD QIM 

Constant 4.324 6.261 3.990 4.321 6.255 3.981 
 (2.42)** (1.38) (0.88) (2.42)** (1.38) (0.88) 
Q1Count 0.319 0.642 1.001    
 (2.23)** (1.74)* (2.68)***    
Q1Cite    0.318 0.638 0.997 
    (2.21)** (1.73)* (2.66)*** 
Tenure -0.035 -0.074 -0.055 -0.035 -0.074 -0.054 
 (-2.02)** (-1.67)* (-1.21) (-2.01)** (-1.66)* (-1.19) 
TenHet 0.058 0.036 0.018 0.058 0.036 0.018 
 (1.16) (0.28) (0.14) (1.16) (0.28) (0.14) 
LnAssets -0.212 -0.281 -0.257 -0.212 -0.281 -0.256 
 (-5.80)*** (-3.03)*** (-2.73)*** (-5.79)*** (-3.03)*** (-2.72)*** 
LnAge -0.156 -0.504 -0.348 -0.156 -0.504 -0.348 
 (-2.05)** (-2.61)*** (-1.78)* (-2.06)** (-2.62)*** (-1.78)* 
OutDir -0.036 -0.067 0.521 -0.035 -0.067 0.521 
 (-0.15) (-0.11) (0.86) (-0.15) (-0.11) (0.86) 
InsideOwn 0.544 0.954 0.783 0.543 0.952 0.780 
 (3.45)*** (2.39)** (1.95)* (3.45)*** (2.39)** (1.94)* 
CEO/Chair 0.061 -0.189 -0.138 0.061 -0.190 -0.140 
 (0.76) (-0.93) (-0.67) (0.76) (-0.93) (-0.68) 
CapEx/Assets -1 0.071 0.460 1.732 0.071 0.460 1.732 
 (0.18) (0.45) (1.67)* (0.18) (0.45) (1.67)* 
NI/Sales -1 -0.000 0.002 0.002 -0.000 0.002 0.002 
 (-0.13) (0.96) (1.31) (-0.13) (0.96) (1.31) 
Industry Dummies Yes Yes Yes Yes Yes Yes 
Year Dummies Yes Yes Yes Yes Yes Yes 
N 1,651 1,653 1,610 1,651 1,653 1,610 
R2 0.3944 0.3545 0.3629 0.3944 0.3545 0.3629 
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Table 10. Relationship between pre-IPO innovation, management quality, and firm age at IPO 
The sample consists of 1,851 venture-backed IPOs conducted between 1993 and 2004. Dependent variable in all regressions is the number of 
years from firm founding year to IPO year. LnCount -1 & -2 is the natural logarithm of one plus the number of patents a firm files for (and is 
eventually granted) in years -1 and -2 combined prior to IPO. LnCite -1 & -2 is the natural logarithm of one plus the number of non-self-citations 
per patent a firm files for (and is eventually granted) in years -1 and -2 combined prior to IPO. Q1Count is a dummy variable which takes a value 
of one for firms with above median number of patents a firm files for (and is eventually granted) in years -1 and -2 combined prior to IPO and 
above median MQFactor, and zero otherwise. Q1Cite is a dummy variable which takes a value of one for firms with above median number of 
non-self-citations per patent a firm files for (and is eventually granted) in years -1 and -2 combined prior to IPO and above median MQFactor, and 
zero otherwise. MQFactor is the management quality factor score obtained using common factor analysis on the firm-size-, firm-age-, and 
industry-dummies-adjusted TSize, MBA, PriorExp, LawAcc, CPA, Core, CEODom, and Board. LnAssets is the natural logarithm of the book 
value of assets immediately prior to IPO. OutDir is the proportion of outside directors in the board of directors. InsideOwn is the proportion of 
voting power owned by firm officers and directors immediately prior to IPO. CEO/Chair is an indicator variable equal to one if a CEO is also a 
Chairman of the board of directors, and zero otherwise. CapEx/Assets -1 is the ratio of capital expenditures over assets in fiscal year -1 prior to 
IPO. NI/Sales -1 is the ratio of net income to sales in fiscal year -1 prior to IPO. All regressions include 4-digit SIC industry code dummies. 
Specifications (1), (3), (5), and (7) are maximum-likelihood estimations for proportional hazard survival-time models with Gompertz survival 
distribution. Specifications (2), (4), (6), and (8) are maximum-likelihood estimations for proportional hazard survival-time models with Weibull 
survival distribution. Standard errors are clustered at year level. z-statistics are in parentheses. ***, **, and * indicate significance at the 1, 5, and 
10 percent levels, respectively. 
 

 (1) (2) (3) (4) (5) (6) (7) (8) 
Constant -0.306 -1.047 -0.341 -1.110 -0.146 -0.524 -0.150 -0.529 
 (-0.80) (-1.69)* (-0.91) (-1.83)* (-0.51) (-0.92) (-0.52) (-0.93) 
LnCount -1 & -2 0.073 0.103       
 (1.70)* (1.53)       
LnCite -1 & -2   0.060 0.088     
   (2.57)** (2.25)**     
Q1Count     0.127 0.221   
     (2.43)** (2.13)**   
Q1Cite       0.122 0.214 
       (2.27)** (2.00)** 
Tenure     -0.106 -0.166 -0.106 -0.166 
     (-3.28)*** (-3.25)*** (-3.28)*** (-3.25)*** 
TenHet     -0.123 -0.205 -0.123 -0.205 
     (-2.21)** (-2.05)** (-2.21)** (-2.05)** 
LnAssets -0.162 -0.231 -0.160 -0.227 -0.122 -0.201 -0.121 -0.201 
 (-6.96)*** (-5.66)*** (-7.11)*** (-5.75)*** (-6.55)*** (-6.09)*** (-6.55)*** (-6.08)*** 
OutDir 0.693 1.017 0.682 0.997 0.370 0.530 0.370 0.530 
 (6.65)*** (5.92)*** (6.40)*** (5.67)*** (2.98)*** (2.71)*** (2.98)*** (2.71)*** 
InsideOwn 0.007 0.023 0.008 0.029 0.088 0.168 0.088 0.168 
 (0.08) (0.17) (0.10) (0.21) (1.24) (1.22) (1.24) (1.22) 
CEO/Chair 0.077 0.078 0.080 0.081 0.122 0.164 0.122 0.164 
 (1.41) (0.94) (1.51) (1.00) (2.25)** (1.87)* (2.25)** (1.87)* 
CapEx/Assets -1 -0.245 -0.154 -0.245 -0.155 -0.914 -1.416 -0.914 -1.416 
 (-0.55) (-0.22) (-0.55) (-0.23) (-1.72)* (-1.57) (-1.72)* (-1.57) 
NI/Sales -1 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 
 (-4.50)*** (-3.82)*** (-4.58)*** (-3.93)*** (-5.36)*** (-4.34)*** (-5.35)*** (-4.33)*** 
Industry Dummies Yes Yes Yes Yes Yes Yes Yes Yes 
N 1,706 1,706 1,706 1,706 1,706 1,706 1,706 1,706 
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Table 11. Relationship between pre-IPO innovation, management quality, and the changes in post-IPO operating performance  
The sample consists of 1,851 venture-backed IPOs conducted between 1993 and 2004. OIBDA is the ratio of operating income before depreciation plus interest income (Compustat items 13 and 62, 
respectively) to the book value of total assets (item 6). ΔOIBDA is the change in OIBDA calculated as the difference in the OIBDA in a given year after the IPO (up to five years including the year of IPO) 
and the OIBDA in the fiscal year prior to IPO (year -1). Year 0 is the year of IPO. LnAssets is the natural logarithm of the book value of assets immediately prior to IPO. LnAge is the natural logarithm of 
one plus firm age. OutDir is the proportion of outside directors in the board of directors. InsideOwn is the proportion of voting power owned by firm officers and directors immediately prior to IPO. 
CEO/Chair is an indicator variable equal to one if a CEO is also a Chairman of the board of directors, and zero otherwise. CapEx/Assets -1 is the ratio of capital expenditures over assets in fiscal year -1 prior 
to IPO. NI/Sales -1 is the ratio of net income to sales in fiscal year -1 prior to IPO. All regressions include 4-digit SIC industry code dummies and year dummies. All specifications are estimated using 
quantile/median regressions. t-statistics are in parentheses. ***, **, and * indicate significance at the 1, 5, and 10 percent levels, respectively. 
 
Panel A. Relationship between pre-IPO innovation and the changes in post-IPO operating performance  
LnCount -1 & -2 is the natural logarithm of one plus the number of patents a firm files for (and is eventually granted) in years -1 and -2 combined prior to IPO. LnCite -1 & -2 is the natural logarithm of one 
plus the number of non-self-citations per patent a firm files for (and is eventually granted) in years -1 and -2 combined prior to IPO.  
 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
Dependent variable ΔOIBDA 

-1 to 0 
ΔOIBDA 

-1 to 1 
ΔOIBDA 

-1 to 2 
ΔOIBDA 

-1 to 3 
ΔOIBDA 

-1 to 4 
ΔOIBDA 

-1 to 5 
ΔOIBDA 

-1 to 0 
ΔOIBDA 

-1 to 1 
ΔOIBDA 

-1 to 2 
ΔOIBDA 

-1 to 3 
ΔOIBDA 

-1 to 4 
ΔOIBDA 

-1 to 5 
Constant 0.735 0.090 0.533 1.591 1.632 1.229 0.726 0.058 0.508 0.825 0.881 1.113 
 (1.75)* (0.21) (1.11) (3.41)*** (3.06)*** (2.26)** (1.76)* (0.13) (1.09) (1.76)* (1.63) (2.07)** 
LnCount -1 & -2 0.034 0.031 0.046 0.021 0.005 0.048       
 (2.05)** (1.71)* (2.31)** (1.05) (0.22) (1.94)*       
LnCite -1 & -2       0.033 0.027 0.041 0.035 0.028 0.042 
       (3.61)*** (2.61)*** (3.73)*** (2.95)*** (2.05)** (3.00)*** 
LnAssets -0.034 -0.018 -0.012 -0.017 -0.025 -0.027 -0.032 -0.017 -0.012 -0.015 -0.026 -0.025 
 (-4.11)*** (-1.95)* (-1.15) (-1.60) (-1.89)* (-2.00)** (-3.90)*** (-1.80)* (-1.20) (-1.35) (-1.98)** (-1.86)* 
LnAge -0.035 -0.031 -0.066 -0.065 -0.061 -0.123 -0.034 -0.027 -0.063 -0.067 -0.067 -0.107 
 (-2.42)** (-1.94)* (-3.54)*** (-3.34)*** (-2.60)*** (-5.06)*** (-2.37)** (-1.65)* (-3.49)*** (-3.36)*** (-2.90)*** (-4.46)*** 
OutDir 0.077 0.170 0.098 0.127 0.106 0.102 0.073 0.170 0.099 0.123 0.103 0.050 
 (1.45) (2.94)*** (1.49) (1.85)* (1.30) (1.18) (1.40) (2.85)*** (1.55) (1.75)* (1.29) (0.59) 
InsideOwn -0.089 -0.055 -0.073 -0.084 -0.106 -0.131 -0.096 -0.044 -0.067 -0.092 -0.090 -0.122 
 (-2.52)** (-1.40) (-1.64) (-1.80)* (-1.91)* (-2.26)** (-2.75)*** (-1.09) (-1.54) (-1.94)* (-1.65) (-2.13)** 
CEO/Chair 0.008 -0.007 0.012 0.004 0.020 0.031 0.007 -0.003 0.011 0.018 0.032 0.043 
 (0.43) (-0.34) (0.52) (0.19) (0.69) (1.05) (0.38) (-0.13) (0.49) (0.74) (1.15) (1.50) 
CapEx/Assets -1 0.240 0.394 0.333 0.338 0.226 0.084 0.198 0.422 0.332 0.331 0.178 0.142 
 (2.67)*** (3.98)*** (2.82)*** (2.66)*** (1.50) (0.56) (2.23)** (4.13)*** (2.89)*** (2.55)** (1.20) (0.97) 
NI/Sales -1 -0.001 -0.001 -0.000 -0.001 -0.001 -0.001 -0.001 -0.001 -0.000 -0.001 -0.001 -0.001 
 (-6.21)*** (-5.57)*** (-1.90)* (-3.45)*** (-4.26)*** (-3.26)*** (-6.36)*** (-5.38)*** (-1.98)** (-3.57)*** (-4.33)*** (-3.37)*** 
Industry Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
N 1,670 1,536 1,372 1,218 1,088 893 1,670 1,536 1,372 1,218 1,088 893 
Pseudo R2 0.1329 0.1166 0.1290 0.1720 0.1829 0.2286 0.1346 0.1178 0.1330 0.1740 0.1847 0.2318 
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Table 11 (continued) 
Panel B. Relationship between pre-IPO innovation, management quality, and the changes in post-IPO operating performance  
Q1Count is a dummy variable which takes a value of one for firms with above median number of patents a firm files for (and is eventually granted) in years -1 and -2 combined prior to IPO and above 
median MQFactor, and zero otherwise. Q1Cite is a dummy variable which takes a value of one for firms with above median number of non-self-citations per patent a firm files for (and is eventually granted) 
in years -1 and -2 combined prior to IPO and above median MQFactor, and zero otherwise. MQFactor is the management quality factor score obtained using common factor analysis on the firm-size-, firm-
age-, and industry-dummies-adjusted TSize, MBA, PriorExp, LawAcc, CPA, Core, CEODom, and Board. Tenure is the average number of years a firm’s management team members have been with the firm. 
TenHet is the coefficient of variation of management team members’ tenures. 
 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
Dependent variable ΔOIBDA 

-1 to 0 
ΔOIBDA 

-1 to 1 
ΔOIBDA 

-1 to 2 
ΔOIBDA 

-1 to 3 
ΔOIBDA 

-1 to 4 
ΔOIBDA 

-1 to 5 
ΔOIBDA 

-1 to 0 
ΔOIBDA 

-1 to 1 
ΔOIBDA 

-1 to 2 
ΔOIBDA 

-1 to 3 
ΔOIBDA 

-1 to 4 
ΔOIBDA 

-1 to 5 
Constant 0.696 0.652 0.601 0.844 0.763 1.139 0.808 0.663 0.602 0.845 0.773 1.139 
 (1.63) (1.39) (1.24) (1.59) (1.36) (2.07)** (1.95)* (1.41) (1.24) (1.57) (1.39) (2.07)** 
Q1Count 0.142 0.112 0.147 0.118 0.094 0.111       
 (4.43)*** (3.15)*** (3.83)*** (2.70)*** (2.01)** (2.39)**       
Q1Cite       0.144 0.119 0.149 0.126 0.093 0.111 
       (4.56)*** (3.31)*** (3.88)*** (2.85)*** (1.98)** (2.39)** 
Tenure -0.004 -0.004 -0.005 -0.006 -0.005 -0.014 -0.004 -0.004 -0.005 -0.006 -0.006 -0.014 
 (-1.09) (-0.88) (-1.06) (-1.18) (-0.91) (-2.03)** (-1.14) (-0.84) (-1.05) (-1.19) (-0.95) (-2.03)** 
TenHet -0.002 -0.016 -0.015 -0.006 -0.011 -0.004 -0.002 -0.017 -0.015 -0.007 -0.010 -0.004 
 (-0.14) (-1.26) (-1.04) (-0.38) (-0.67) (-0.29) (-0.14) (-1.32) (-1.06) (-0.48) (-0.65) (-0.29) 
LnAssets -0.030 -0.021 -0.015 -0.024 -0.026 -0.025 -0.031 -0.021 -0.015 -0.023 -0.026 -0.025 
 (-3.71)*** (-2.26)** (-1.45) (-2.02)** (-1.98)** (-1.85)* (-3.82)*** (-2.29)** (-1.46) (-1.97)** (-2.00)** (-1.85)* 
LnAge -0.024 -0.019 -0.045 -0.050 -0.050 -0.074 -0.023 -0.017 -0.045 -0.049 -0.050 -0.074 
 (-1.45) (-0.96) (-2.11)** (-2.05)** (-1.80)* (-2.53)** (-1.40) (-0.91) (-2.13)** (-2.00)** (-1.82)* (-2.53)** 
OutDir 0.077 0.162 0.093 0.127 0.105 0.026 0.072 0.157 0.092 0.125 0.103 0.026 
 (1.45) (2.71)*** (1.42) (1.70)* (1.29) (0.30) (1.39) (2.62)*** (1.42) (1.67)* (1.27) (0.30) 
InsideOwn -0.101 -0.049 -0.067 -0.092 -0.088 -0.128 -0.104 -0.047 -0.068 -0.090 -0.086 -0.128 
 (-2.87)*** (-1.21) (-1.51) (-1.82)* (-1.59) (-2.27)** (-3.01)*** (-1.16) (-1.53) (-1.78)* (-1.57) (-2.27)** 
CEO/Chair 0.003 -0.006 0.018 0.009 0.023 0.036 0.002 -0.005 0.019 0.010 0.022 0.036 
 (0.18) (-0.29) (0.83) (0.34) (0.83) (1.25) (0.14) (-0.23) (0.84) (0.39) (0.77) (1.25) 
CapEx/Assets -1 0.253 0.419 0.318 0.255 0.167 0.129 0.269 0.418 0.319 0.274 0.174 0.129 
 (2.84)*** (4.12)*** (2.72)*** (1.86)* (1.12) (0.90) (3.08)*** (4.10)*** (2.74)*** (1.98)** (1.18) (0.90) 
NI/Sales -1 -0.001 -0.001 -0.000 -0.001 -0.001 -0.001 -0.001 -0.001 -0.000 -0.001 -0.001 -0.001 
 (-6.46)*** (-4.10)*** (-1.95)* (-3.38)*** (-3.08)*** (-3.20)*** (-6.57)*** (-5.38)*** (-1.95)* (-3.34)*** (-2.94)*** (-3.20)*** 
Industry Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Year Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
N 1,670 1,536 1,372 1,218 1,088 893 1,670 1,536 1,372 1,218 1,088 893 
Pseudo R2 0.1383 0.1208 0.1331 0.1754 0.1854 0.2336 0.1385 0.1210 0.1334 0.1757 0.1852 0.2336 

 


