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Abstract 

In this paper we analyse the market determinants of price differentials between new 

and remanufactured products in Electronics by using data on purchases made on 

eBay UK. The empirical analysis is carried out by means of linear regression 

methods, which are capable of controlling for the presence of collinearity among the 

explanatory variables. Our empirical results suggest that seller reputation, length of 

warranties, proxies of demand and supply of remanufactured products, duration and 

end day of product listings as well as the availability of return policies are important 

determinants of price differentials. Most importantly, we find that the seller identity 

plays an important role, as our empirical results are predominantly driven by 

transactions carried out by non manufacturer-approved vendors. 

 

Key words 

Remanufacturing, Price differentials, Regression methods, Collinearity, 

Bootstrapping. 
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1. Introduction 

Remanufacturing can be defined as “returning a used product to at least its original 

performance with a warranty that is equivalent to or better than that of the newly 

manufactured product” (British Standards, BS8887: Part 2 2009). This implies that 

remanufactured products are allegedly, in terms of product performance, identical to 

their corresponding new products. Through a stringent remanufacturing process, used 

products are disassembled, serviced, tested and their components are repaired, 

replaced or processed to attain like-new condition.  

In a market environment, the remanufacturing process can be carried out by 

Original Equipment Manufacturers (OEMs), manufacturer-approved and non 

manufacturer-approved vendors. The potential benefits of remanufacturing are 

twofold. First, it extends the useful life of a product, thus reducing the demand for 

new products and environmental burden (U.S. EPA 1997, 1998, 2011). Second, it can 

potentially be a profitable economic activity for OEMs, given the residual value 

inherent in the used products and the cost savings from remanufacturing. According to 

Lund (1996), the size and scope of U.S. remanufacturing operations accounts for total 

sales in excess of $53 billion per year with 73,000 companies across over 46 major 

product categories and 480,000 employees. In the 2004 survey “Remanufacturing in 

the UK: a significant contributor to sustainable development?” it was estimated that 

remanufacturing and reuse contributed £5 billion per annum to the UK economy 

(Parker 2004). This survey also found that each year the UK remanufacturing industry 

saves 270,000 tonnes of materials (mostly metals) from recycling or scrapping, and 

employs at least 500,000 people (Parker 2004). 

Despite the potential benefits of remanufacturing, the current literature suggests 

that research has barely begun to investigate market-related issues in the area of 

Closed-Loop Supply Chains (CLSCs) as a whole. Prior production research 

literature has studied various strategic and tactical issues arising in remanufacturing 

systems (e.g. Corbett & Kleindorfer 2001a, 2001b, Tang, Grubbström & Zanoni 2004, 

Nakashima, et al. 2004, Guide & Van Wassenhove 2006a, 2006b, Kleindorfer et al. 
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2005, Grubbström & Tang 2006, Ahn, Lee & Kim 2011). This stream of literature 

tends to be analytical in nature. The need for empirical research to quantify the 

parameters used in analytical models is essential. Measures (e.g. price determinants) 

to extend the economic lives of electronic products are receiving increased attention 

in the field of remanufacturing strategy. However, we have found that the 

investigation of market-related measures is rather limited in the existing production 

research literature. In their recent reviews, Guide & Van Wassenhove (2006a, 2009), 

and Atasu et al. (2008) stressed the need for research exploring empirical studies of 

market factors in CLSCs. Despite the well-designed operational system, a lack of 

understanding of prices and markets poses barriers to the development of the 

remanufacturing industry (Guide & Van Wassenhove 2009, p.16). Guide & Van 

Wassenhove (2009) stress the opportunity for such work to lead industry practice 

since industry has long operated on the basis of common wisdom rather than 

systematic empirical studies. 

Some recent empirical studies on market factors in CLSCs are available. Guide & 

Li (2010) studied cannibalisation based on online auctions for a consumer product and 

a commercial product to determine consumers’ willingness to pay for both new and 

remanufactured products. Ovchinnikov (2011) has studied the pricing and 

remanufacturing strategy of a firm that offers both new and remanufactured versions 

of its products. A model of demand cannibalisation and a behavioural study that 

estimates the fraction of consumers who switch from a new to remanufactured 

product are presented. More recently, Agrawal, Atasu & Ittersum (2012) have 

investigated how the presence of remanufactured products and the identity of the 

remanufacturer influence the perceived value of new products. Through behavioural 

laboratory experiments, in the absence of a third-party remanufacturer the authors 

found that the presence of products remanufactured and sold by OEMs reduces the 

perceived value of new products. Subramanian & Subramanyam (2012) have studied 

market factors, and report that seller reputation significantly explains the price 

differentials between new and remanufactured products. Remanufactured products 
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listed by OEMs or their authorised factories are sold at relatively higher prices. In the 

presence of seller reputation and remanufacturer identity, the authors find that 

stronger warranties are not significantly associated with higher prices paid for 

remanufactured products. 

In this paper, we study the market determinants of price differentials between 

new and remanufactured products by using data on purchases made on eBay UK. 

We consider the Electronics product category, where remanufacturing activities are 

significant and a sufficient number of transactions for both new and corresponding 

remanufactured products can be found. We carry out the empirical analysis by means 

of three linear regression methods: the standard Ordinary Least Square Regression 

(OLSR), Ridge Regression (RR) and Mixed Regression (MR). By applying these 

methods, we are able to control for the presence of collinearity among the 

explanatory variables considered in our dataset. Our empirical results suggest that 

the reputation of vendors, the length of warranties provided for remanufactured 

products, the proxies of demand and supply of the same remanufactured items, the 

lengths of advertisement, the ending time of remanufactured product listings as well 

as the availability of return policies are important determinants of price differentials. 

This study contributes to the remanufacturing industry of Electronics, and 

provides insights into the price determinants for sellers with different identities. We 

find that the seller identity (manufacturer-approved versus non 

manufacturer-approved) is an important market determinant of price differentials. In 

fact, our empirical results are predominantly driven by transactions carried out by non 

manufacturer-approved vendors. In order to compete in the online trading of 

remanufactured electronic products, non manufacturer-approved sellers are urged to 

advance their online market performance. We conclude that the price differentials of 

remanufactured products listed by manufacturer-approved sellers are driven by a 

different set of market determinants that are not available on the eBay market dataset, 

yet require further research attention. 
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The potential for cannibalisation of new product sales by remanufactured versions 

of the same product is a central issue in the continuing development of CLSCs (Guide 

& Li (2010). This is due to the fact that remanufactured products have the same 

functionality as new products. Therefore, as suggested by Buday (1989) and Mason & 

Milne (1994), remanufactured products are likely to incur a significant risk of 

cannibalisation of new product sales. In our study, we do not intend to address the 

cannibalisation issue as our dataset does not capture the essential information to 

understand the potential impact of offering new and remanufactured products at the 

same time. However, the research on the potential for cannibalisation of new product 

sales by remanufactured goods is interesting and deserves further attention. 

The remainder of the paper is organised as follows. Section 2 discusses a number 

of market determinants of price differentials between new and remanufactured 

products. Section 3 describes our datasets and Section 4 sets out the variables 

considered in our empirical analysis. Section 5 reports the results from our 

preliminary analysis. Section 6 introduces the empirical model and the methodologies 

used. Section 7 sets out the empirical results together with a number of robustness 

checks. Section 8 concludes the paper. 

 

2. Market Determinants of Price Differentials between New and 

Remanufactured Products 

 

2.1. Seller Reputation 

In the literature, there are mixed findings for the effect of seller reputation on prices 

paid for used products (Houser & Wooders 2006, Lucking-Reiley et al 2007, Bajari & 

Hortaçsu 2003, Livingston 2005, Eaton 2007, Melnick & Alm 2002). In other words, 

negative (positive) reputation can either have a negative (positive) effect or no impact 

on used product prices. Although remanufactured products differ significantly from 

used products, the aforementioned literature suggests that seller reputation would 

significantly explain price differentials between new and remanufactured products. A 
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seller’s reputation can be measured along two dimensions: positive and negative (see 

Resnick et al. 2006 for a review). On eBay, buyers can provide positive, neutral or 

negative feedback. The counts of each type of feedback together with textual 

comments for the past 12 months are reported. The literature (Houser & Wooders 

2006, Lucking-Reiley et al. 2007, Standifird 2001) suggests that the feedback counts 

can be used as appropriate measures for seller reputation. Thus, we consider the 

number of positive feedback counts as a measure of seller positive reputation. On the 

one hand, Cabral & Hortaçsu (2010) and Resnick & Zeckhauser (2002) show that 

market participants perceive neutral feedback negatively. Thus, we combine the total 

number of neutral and negative feedback counts as a measure of seller negative 

reputation. Subramanian & Subramanyam (2012) report that positive (negative) seller 

reputation for remanufactured products is negatively (positively) associated with price 

differentials. We expect that greater positive seller reputation is associated with lower 

price differentials, while greater negative seller reputation is associated with higher 

price differentials. 

 

2.2. Seller Identity 

Within the Electronics category, there are two types of sellers listing remanufactured 

products: the manufacturer-approved vendors and non manufacturer-approved sellers. 

These latter sellers professionally restore items to working order, but are not approved 

by the OEMs. According to eBay UK, regardless of the seller identity, all listed 

remanufactured products have been inspected, cleaned, and repaired to full working 

order and are in excellent condition. In the literature, very little has been done to 

examine the consumer preference and the price difference for items sold by 

manufacturer-approved and non manufacturer-approved sellers. Ferrer & 

Swaminathan (2006) assume in their analytical model that consumers have a higher 

preference for remanufactured products offered by manufacturer-approved vendors, 

whereas in Ferguson & Toktay (2006) consumers do not differentiate between 

remanufactured products offered by either manufacturer-approved or unauthorised 
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vendors. However, a buyer may be concerned about the remanufacturing process due 

to the process complexity, technical expertise, equipment and capital investment. 

Subramanian & Subramanyam (2012) find that products remanufactured by 

authorised factories are purchased at relatively higher prices than products 

remanufactured by unauthorised third parties. We expect that products 

remanufactured by manufacturer-approved vendors are associated with lower price 

differentials. 

 

2.3. Remanufactured Product Warranty 

Product warranty is an important element, especially when consumers consider 

purchasing a remanufactured product as a substitute for the corresponding new 

product. Recently, the study of Ovchinnikov (2011) found that both quality-conscious 

(high-end) and price-sensitive (low-end) respondents were more open to considering a 

remanufactured product backed by a strong warranty, in particular if this warranty 

came directly from a manufacturer they know and trust. The analysis of Subramanian 

& Subramanyam (2012) shows that, in the presence of seller reputation and 

remanufacturer identity, stronger warranties are not significantly associated with 

higher prices paid for remanufactured products. We expect that longer (i.e. stronger) 

warranties are associated with higher price differentials. 

 

2.4. Demand and Supply Proxies 

For manufacturer-approved and non manufacturer-approved sellers, there are 

questions about the demand for both new and corresponding remanufactured products. 

Athey & Haile (2002) show that in certain auctions, demand can be identified from 

observing the price and the number of bidders. In eBay, it is possible to obtain the 

information about the number of bidders as well as the number of hit counts (the 

number of times an item has been viewed by potential buyers). Having a good 

understanding of demand for remanufactured products enables producers to set either 

the reserve or buy-it-now prices, and it helps identify what remanufactured products 
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are in demand. Subramanian & Subramanyam (2012) find that a greater quantity of 

remanufactured products available from the seller is associated with a lower price 

differential, and the proxy for product demand is negatively associated with price 

differential. Based on these findings, Subramanian & Subramanyam (2012) suggest 

that buyers may perceive a greater quantity available for a remanufactured product as 

evidence of a well-established seller, and more popular remanufactured products 

should be discounted less. We expect that higher demand proxy is associated with 

lower price differentials, whereas larger quantities available from sellers are 

associated with higher price differentials. 

 

3. Data 

EBay offers a rich set of Application Programme Interfaces (APIs) that allows third 

party vendors to access eBay data and information. The APIs are accessed via 

writing custom software scripts that retrieve information from the online auction site. 

The scripts are written in PHP (Hypertext Preprocessor), a popular server-scripting 

language, while data downloaded is saved in an SQL database, making it possible to 

search and export data easily. The methodology adopted involves three main steps. 

First, we compile all available eBay Electronics subcategories. Next, the application 

uses eBay's APIs to retrieve listings of products for each subcategory. Although it is 

possible to impose filters on the list, we do not apply them as we intend to select 

products randomly within these subcategories. Second, our software iterates around 

the product listings and downloads all the available information provided by eBay. 

In the final step, an export routine outputs the required data in a specified format. 

In this study, we have only considered the product category of Electronics sold 

on eBay UK for three reasons. Firstly, within this category the number of 

remanufacturing activities is significantly higher than in any other eBay UK 

categories. Secondly, electronics was the only product category in which we were 

able to find a sufficient number of transactions for both new and corresponding 

remanufactured products. Finally, methodologically, electronic products (and their 
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titles) tend to be standardised, making it easier to identify products of the same 

model. 

From 18 May to 9 June 2012, we collected a rich transaction-level dataset on new 

and corresponding remanufactured products sold under the eBay UK product category 

of Electronics, across all listing types (both fixed and non-fixed price listings). The 

dataset consists of 352 Electronics product titles. Under each title, there are 

transactions for both new and corresponding remanufactured products. We ensure 

both new and corresponding remanufactured products are exact matches (e.g. same 

product specification: model and version). To compute price differentials (see Section 

4), we ensure that each of the 352 product titles has at least one new product 

transaction and at least one corresponding remanufactured product transaction. Under 

352 product titles, there are 1260 new product transactions and 917 corresponding 

remanufactured product transactions. Thus, our resulting dataset includes a total of 

917 transactions, for which we can extract observations for price differentials and 

related determinants, such as the counts of seller positive and negative feedback, the 

length of seller incumbency, the length of warranty offered, proxies for the quantities 

of products supplied by eBay sellers and demanded by eBay buyers, the seller identity 

(manufacturer-approved and non manufacturer-approved vendors), the length of 

listing and listing end time/day, and the availability of return policies. Across our 

dataset, we ensure no identical sellers, i.e. no sellers who list multiple adverts for the 

same remanufactured product. 

We then partition our dataset into two subsamples. The first encompasses the 

Electronics products remanufactured by manufacturer-approved vendors and consists 

of 481 transactions. The second contains the products remanufactured by non 

manufacturer-approved sellers and consists of 436 transactions. Our aim is to 

investigate whether the pattern of results obtained for the entire dataset still holds 

when the two partitioned datasets are taken into consideration. Section 7 discusses 

these results and insights in more detail. 
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4. Variables 

4.1 Dependent Variable: Price Differentials 

We denote the price differential of a remanufactured product transaction as PDi. We 

compute the price differentials PDi, i = {1, 2, …, 917} as the difference between the 

average price of a new product and the price of the corresponding remanufactured 

product, as a fraction of the average price of the new product, according to the 

formula below: 

100% 
Price Average

Price  Price Average
PD

 New

 i Remanuf New

i 



,

   (1) 

Here, the price of new and corresponding remanufactured products is referred to as 

the sold price plus the postage charge minus selling fees (including insertion fee and 

final value fee). 

In our dataset the above ratio takes mainly positive values with an upper bound at 

1. However, for some specific transactions the ratio assumes negative values. 

Negative values are possible because there may be certain seller- or 

transaction-related dimensions (such as seller reputation) that may lead a 

remanufactured product to be purchased at a higher price than a corresponding new 

product. In the next Section we discuss the set of explanatory variables that we 

believe are good candidates to explain the variability of price differentials. 

 

4.2 Explanatory Variables and Hypotheses 

Seller reputation: For each transaction i, we use the number of positive feedback 

counts (POSREPi) as a measure of seller positive reputation, and the number of 

negative plus neutral feedback counts (NEGREPi) as a measure of seller negative 

reputation. These two measures enable us to test for the following null hypotheses: 

Hypothesis H1a: Greater positive seller reputation is associated with lower price 

differentials.  

Hypothesis H1b: Greater negative seller reputation is associated with higher price 

differentials. 
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Length of seller incumbency: We account for the potential effect of a seller’s length 

of incumbency in eBay on the perceived reputation by customers and, hence, on the 

perceived values of remanufactured products by including INCUMBi as an 

explanatory variable. The length of seller’s incumbency is measured as the number of 

days elapsed from the registration with eBay of sellers to the first day of listing 

products. This makes it possible to test for the following null: 

Hypothesis H2: Longer sellers’ incumbency is associated with lower price 

differentials. 

Length of warranty: The duration of warranty could affect the purchasing price of a 

remanufactured product. We control for this effect by including the variable WARRi, 

which captures the length of the warranty in months for each remanufactured product 

transaction. The null that we test is the following: 

Hypothesis H3: Longer warranties are associated with lower price differentials. 

Demand and supply proxies: We expect demand and supply factors to exert, 

respectively, a negative and positive impact on price differentials. We consider the 

number of hit counts plus the number of bid counts placed for each remanufactured 

product transaction as a proxy of demand factors (DEMi), whereas the available 

quantity of the remanufactured product is used as a proxy of supply factors (SUPi). 

In this case the nulls that we test are the following: 

Hypothesis H4: Higher demand proxy is associated with lower price differentials. 

Hypothesis H5: Larger quantities available from sellers are associated with higher 

price differentials. 

Seller identity: We assign MANUFi a value of 1 if the remanufactured product 

transaction is carried out by a manufacturer-approved vendor, and 0 otherwise, so that 

we can test the following null: 

Hypothesis H6: Products remanufactured by manufacturer-approved vendors are 

associated with lower price differentials. 

Duration: The length of advertisement of listed products might have an impact on the 

price paid for a remanufactured product. A possible reason is that longer availability 
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of a product on eBay enables a more careful assessment by potential buyers. 

Accordingly, we control for this pattern by including the explanatory variable 

DURATi, which measures the number of days elapsed since a certain remanufactured 

product is first listed. The null that we test in this case is the following: 

Hypothesis H7: Longer listing durations are associated with lower price differentials. 

Listing end time/day: Prior research has discussed the possibility that the ending time 

of an eBay listing may be associated with the price paid (Lucking-Reiley et al. 2007, 

Simonsohn 2010). One reason is the potentially closer attention paid by buyers during 

weekends or night time (non-working) hours. Accordingly, we control for these 

patterns by considering two dummy indicators: WKNDi, which captures whether the 

listing end time for a remanufactured product transaction was at weekends (Saturday 

or Sunday), and NIGHTi, which captures whether the listing end time for the same 

transaction was during night hours (from 6pm to 6am). We assign WKNDi the value 

of 1 if the ending time of a remanufactured product transaction is at weekends, and 0 

otherwise. We assign NIGHTi the value of 1 if the ending time is between 6pm and 

6am, and 0 otherwise. Thus, the following two nulls are tested: 

Hypothesis H8a: Remanufactured product listings which end at weekends are 

associated with lower price differentials. 

Hypothesis H8b: Remanufactured product listings which end during night hours are 

associated with lower price differentials. 

Return Policy: We assign RETURNi the value of 1 if a remanufactured product can 

be accepted for return by vendors, and 0 otherwise. In this case, the null under 

scrutiny is the following: 

Hypothesis H9: Remanufactured products with a return policy are associated with 

lower price differentials. 

 

5. Preliminary Analysis 

We start our analysis by carrying out some preliminary statistics. The upper panel of 

Table 1 reports the basic statistics for the eleven candidate explanatory variables used 
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in the regression analysis whereas the lower panel sets out the pair wise correlation 

indices together with the relative eigenvalues. These values suggest that the 

explanatory variables are loosely correlated, with the only exception being POSREPi 

and NEGREPi, for which the correlation index is 0.946. (The partial correlation index 

between these two variables calculates to 0.957.) Such a result is also supported by 

the eigenvalues of the design matrix. If all the independent variables in the dataset 

were uncorrelated, all the eleven eigenvalues would be equal to unity. The greater the 

pair wise correlations, the wider the eigenvalue spectrum. In Table 1, the first ten 

eigenvalues account for approximately 99 percent of the total, so that almost all of the 

variation in the eleven independent variables can be represented in ten dimensions 

only. These figures suggest that collinearity might plague empirical estimates 

obtained by applying standard OLSR. In Section 6, we present a brief outline of Ridge 

Regression (RR) and Mixed Regression (MR) methods as statistical tools which can 

be used to mitigate the issue of collinearity. 

Insert Table 1 about here 

The upper panel of Table 2 shows that the mean of price differentials (0.100) as 

defined in Eq. (1) is positive and statistically different from 0. However, the large 

standard deviation (0.281) suggests that it is not rare to have negative differentials for 

specific products. In fact, about 10 percent of observations in our dataset present 

negative price differentials. We then compute the mean and standard deviation of the 

price differentials for the two partitioned datasets previously defined. These results 

are similar to the mean and standard deviation for the full dataset. 

Insert Table 2 about here 

In Fig. 1, we plot the kernel probability distribution of price differentials for the 

two partitioned datasets. The two kernel distributions are characterised by similar 

means but different shapes. Statistical tests for equality in mean, median, variance and 

distributions are then used to investigate whether the price differentials between the 

two partitioned datasets are indeed different. The results reported in the lower panel of 

Table 2 suggest that the null of equality in median (Mann-Whitney test), variance 
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(Levene test) and distributions (Barnett-Eisen and Kolmogorov-Smirnov tests) are 

soundly rejected at standard significance levels. Similarly, the Chow test soundly 

rejects the null of equality between linear regressions fitted to the two partitioned 

subsamples. Ghilagaber (2004) shows the Chow test presents good size and power as 

long as the sample sizes are similar and homoschedasticity is moderate. We note that 

the White tests reported in Tables from 3 to 5 actually suggest weak forms of 

homoschedasticity. All in all, the above results suggest that price differentials for 

items sold by manufacturer-approved and non manufacturer-approved vendors present 

different stochastic properties.  

Insert Fig. 1 about here 

 

6. Empirical Model and Methodology 

In line with previous studies, we allow for the possibility that the relationship between 

price differentials and their determinants set out in Section 4 is nonlinear by using a 

log-log transformation of both the dependent and explanatory variables. For instance, 

as highlighted by Subramanian & Subramanyam (2012), it seems reasonable to expect 

that higher levels of positive (negative) seller reputation are associated with lower 

(higher) price differentials with a diminishing effect. Therefore, we consider the 

following model specification: 

)917..,,1()()()(

)()()ln()ln()(

)ln()ln()ln()1ln(
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



     (2) 

The above log-log specification has two desirable features. First, the 

transformation of the dependent variable is directionally consistent with price 

differentials. Second, the slope coefficients in Eq. (2) can be interpreted as elasticities. 

We carry out empirical estimations of Eq. (2) by using standard heteroschedasticity 

consistent (Eicher-White) OLSR estimators. However, as highlighted in Section 5, the 

presence of collinearity among explanatory variables is a statistical issue that 

potentially impairs OLSR empirical estimates. Multicollinearity, by inflating the 

standard errors of parameter estimates, might reduce the statistical and economic 
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significance of our results. For this reason, we correct the undesirable effects of 

multicollinearity by re-estimating our log-log regression using a Ridge Regression 

(RR) method. In contrast to the standard OLSR estimators, RR methods add a 

constant k to each diagonal element of the cross-product matrix of the explanatory 

variables before it is inverted (see Hoerl, Kennard & Baldwin 1975). While this 

introduces bias into the coefficient estimates, the inflated variances are simultaneously 

reduced. Extensive Monte Carlo simulation experiments support the use of RR when 

the independent variables are highly correlated, and several successful applications of 

ridge analysis have been reported (see Annaert et al 2013). We then carry out 

empirical estimates of Eq. (2) by using a third method based on Theil’s (1971) Mixed 

Regression (MR). The mixed estimation technique is a method of combining sample 

data with prior linear stochastic constraints on the parameters of the model. Its 

principal advantages over standard OLSR are that, under appropriate circumstances, 

MR estimators are superior in Mean Squared Error and it is a valid method for 

mitigating the effects of multicollinearity (see Belsey, Kuh & Welsh 1980). 

 

7. Empirical Results 

7.1. Empirical Results for the Full Dataset: OLSR  

The average value of price differentials in our dataset is 10 percent (see Table 2). 

Standard t-statistics are used to investigate whether the price differentials are 

significantly greater than zero. The statistic calculates to 10.87 and it provides a 

strong indication of positive price differentials. These results are in line with those 

already found in Guide & Li (2010). A similar pattern of results is obtained when the 

entire dataset is partitioned into the two subsamples: remanufactured products sold 

by manufacturer-approved and non manufacturer-approved vendors. 

Seller reputation: Table 3 column 3 reports standard OLSR empirical estimates of 

Eq. (2) together with a battery of diagnostic tests for homoschedasticity, model 

specification and normality in the residuals. The impacts of both positive and 

negative seller reputation on price differentials have the expected signs. However, 
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only the former explanatory variable is statistically significant. More specifically, we 

find that greater positive seller reputation is significantly associated with lower price 

differentials (α2
 
=-0.028, p-value=0.03), and greater negative seller reputation is 

associated with higher price differentials (α3
 
=0.0167, p-value=0.18). Thus, these 

results provide strong support for the hypothesis H1a whereas for H1b the evidence is 

weaker. Using the OLSR regression estimates and with all the other explanatory 

variables set at their average values, we find that an increase in positive seller 

feedback by 10 percent from the mean is associated with a 1.85 percent decrease in 

price differentials, whereas an increase by 1 standard deviation is associated with a 

71 percent decrease in price differentials. We compare the magnitude of the impacts 

on price differentials of both positive and negative seller reputation. This is a useful 

exercise even though we have already seen that the latter explanatory variable is not 

significant at standard significance levels. Other things being equal, an increase of 

negative seller feedback from its mean by 10 percent and 1 standard deviation is 

associated, respectively, with increases of 1.08 and 133 percent in price differentials. 

Thus, for equal increases in the counts of positive and negative seller feedback of the 

order of 10 percent the impact of positive seller feedback more than offsets that of 

negative so that price differentials narrow. On the other hand, for equal increases of 

the order of 1 standard deviation price differentials widen. All in all, the above 

results suggest that for the UK market the positive seller reputation has a stronger 

impact on price differentials than negative seller reputation. It follows that sellers 

with poor reputation do not have to provide necessarily significant price breaks to 

support their selling of remanufactured products, whereas sellers with a positive 

reputation can benefit from narrower mark-ups. Thus, customer policies are an 

important key element of e-businesses such as eBay. This pattern of results is similar 

to those already obtained by Subramanian
 
& Subramanyam (2012) using data on 

eBay US. 

Length of seller incumbency, length of warranty and seller identity: The empirical 

results suggest that buyers are not willing to pay higher prices for remanufactured 
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products sold by sellers with longer eBay incumbency, for remanufactured products 

covered by longer warranties, or for products remanufactured by 

manufacturer-approved vendors. The estimated parameters α4 (-0.0086), α5 (0.0005) 

and α8 (-0.0272) present the expected sign yet are not statistically significant at 

standard significance levels, so we do not find any support for hypotheses H2, H3 and 

H6 respectively. 

Demand and supply proxies: Empirical results suggest that supply and demand for 

remanufactured products are important determinants of price differentials. In fact, 

we find support for hypothesis H5, that larger quantities of remanufactured products 

available from sellers are associated with higher price differentials (α7
 
= 0.0021, 

p-value=0.07). An increase in the quantities available by 10 percent from the mean is 

associated with a 0.38 percent increase in price differentials, whereas an increase by 

1 standard deviation is associated with an increase of 16.12 percent. The proxy for 

product demand is negatively associated with price differentials (α6=-0.0001, 

p-value=0.08), suggesting that popular remanufactured products are sold at higher 

prices. In other words, higher demand for remanufactured products is associated with 

lower price differentials. We note that an increase in demand by 10 percent is 

associated with a 0.54 percent decrease in price differentials, whereas an increase by 

1 standard deviation is associated with a decrease of 11.86 percent. The above results 

suggest that both hypotheses H4 and H5 hold. 

Listing end time/day and duration: We find that remanufactured product listings that 

end at weekends (Saturday or Sunday) or during night time hours (6pm until 6am) are 

associated with higher price differentials. The former type of listing is strongly 

significant whereas the latter is not (α9
 
=0.1158, p-value=0.01 and α10

 
= 0.0277, 

p-value = 0.29, respectively). This could be attributed to more careful assessments by 

buyers of the competitiveness among products listed and alternative offerings during 

weekends or night time hours. We also control for the impact of the length of advert 

of listed products on price differentials and we find that it is not significant at standard 

significance levels (α11
 
=-0.0021, p-value = 0.19). 
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Return policy: However, buyers are willing to pay a premium for remanufactured 

products with an accepted return policy (α12=-0.089, p-value=0.02). This finding 

supports hypothesis H9. More specifically, we find that the availability of return 

policies is associated with a 46.11 percent decrease in price differentials. 

Insert Table 3 about here 

 

7.2. Empirical Results of the Full Dataset: RR and MR  

Following the empirical results set out in Table 1, we compute two further measures 

of multicollinearity, the Variance Inflation Factor (VIF) and the Maximum Condition 

index. The two measures calculate, respectively, to 13.18 and 55.65 and therefore 

provide further supporting evidence for the presence of multicollinearity. Since the 

lack of statistical significance of explanatory variables such as negative seller 

reputation might be a by-product of multicollinearity, we re-estimate Eq. (2) by using 

RR and MR methodologies, which can deliver empirical estimates while controlling 

for an ill-conditioned information matrix. RR and MR empirical estimates are set out 

in the fourth and fifth column of Table 3.  

More specifically, we carry out RR estimates by introducing a constant parameter 

k in the estimators of α2 and α3, whereas we leave unaffected the remaining cohort of 

parameters characterising Eq. (2). A critical aspect of the application of RR is the 

choice of the parameter k. A simple criterion used in the literature is to construct the 

so-called Ridge Traces, which plot the parameter estimates as functions of k. The 

potential instability in the estimates induced by multicollinearity can be assessed by 

looking at whether large movements in the parameter estimates occur as k increases in 

small increments from zero. It has been suggested that visual judgment of stability can 

be used to select the optimal value of k. Along with the graphical inspection we make 

use of a number of other criteria to estimate the optimal k, as proposed by Hoerl & 

Kennard (1970), Hoerl, Kennard & Baldwin (1975), Lawless & Wang (1976) and 

Kibria (2003). The first three criteria suggest a value of k equal to, respectively, 4.6, 

3.7 and 5.1 whereas the last criterion in Kibria (2003) sets a lower value equal to 0.3. 
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The Ridge Trace reported in Fig. 2 plots the t-ratios for the parameters α2 and α3 and it 

shows that they are relatively stable for values of k larger than 0.7. Thus, we decide to 

report empirical estimates of RR when the parameter k is equal to 0.8. RR estimates of 

Eq. (2) (see Table 3 column 4) are very similar to the OLSR estimates in terms of 

both sign and magnitude of the parameters, with only small differences of the order of 

10ˉ3. 

Insert Fig. 2 about here 

We then re-estimate Eq. (2) by using MR. Empirical estimates are carried out by 

feeding the estimation procedure with priors for the values of parameters taken from 

Subramanian
 
& Subramanyam (2012). The empirical results are set out in the fifth 

column of Table 3. Also in this case, MR estimates are similar to both OLSR and RR 

parameters in terms of sign and magnitude, with marginal differences of the order of 

10ˉ3. The similarity between OLSR, RR and MR estimates suggests that the form of 

multicollinearity which affects both positive and negative seller reputation does not 

seem to induce any significant bias in the empirical estimates of Eq. (2). 

In the bottom panel of Table 3 we compute a battery of diagnostic tests to investigate 

whether the model of Eq. (2) is correctly specified. The F-tests for the null that all the 

explanatory variables are jointly not statistically significant are soundly rejected at the 

1 percent level. Both the White and Goldfeld-Quandt tests fail to reject the null of 

heteroschedasticity at standard significance levels. Similarly, the RESET tests fail to 

reject the null that there are no specification errors. Finally, the Kolmogorov-Smirnov 

(K-S) tests reject the null of normality in the residuals at the 5 percent level. Residuals 

are, in fact, leptokurtic in comparison to the normal distribution. Thus, inference is 

carried out by assuming that the asymptotic properties of OLSR, RR and MR 

estimators hold. Even though the number of observations in our sample is fairly large, 

the finite sample properties of the above estimators might depart from their 

asymptotic properties, potentially leading to incorrect conclusions. We check for this 

possibility in Section 7.5 where we carry out a bootstrap analysis, which shows that 
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such departures are moderate. All in all, the above statistics suggest that the model of 

Eq. (2) is reasonably well specified. 

 

7.3. Empirical Results for the Two Partitioned Datasets: Non 

Manufacturer-Approved Vendors  

The empirical results set out in Section 5 suggest that the price differentials of 

remanufactured products sold by manufacturer-approved and non 

manufacturer-approved vendors are characterised by two different data generation 

processes. Thus, in this Section we investigate whether the pattern of results obtained 

in Table 3 still holds when the entire dataset is partitioned into two subsamples.  

We begin our analysis by re-estimating Eq. (2) for transactions carried out by non 

manufacturer-approved vendors. Standard OLSR, RR and MR estimates together with 

a battery of diagnostic statistics are reported in the third, fourth and fifth column of 

Table 4. Also in this case, the impacts of both positive and negative seller reputation 

on price differentials have the expected signs, with only the former explanatory 

variable statistically significant (α2=-0.0395, p-value=0.04). Thus, greater positive 

reputation is significantly associated with lower price differentials. We find that an 

increase in positive seller feedback by 10 percent from the mean is associated with a 

2.94 percent decrease in price differentials, whereas an increase by 1 standard 

deviation is associated with an 80.39 percent decrease. By comparing the magnitude 

of the impacts on price differentials between positive and negative seller reputation, 

price differentials narrow for equal increases of the order of 10 percent whereas price 

differentials widen for increases of the order of 1 standard deviation.  

All in all, for non manufacturer-approved sellers the results suggest that positive 

seller reputation has a stronger impact on price differentials than negative seller 

reputation does. In addition, our empirical results suggest that buyers are willing to 

pay higher prices for products covered by warranties (α5=-0.0078, p-value=0.03) 

offered by non manufacturer-approved sellers but not for products sold by those 

sellers who have longer eBay incumbency, or for which return policies are available. 



 

22 

 

Thus, for non manufacturer-approved vendors both seller reputation and provision of 

warranties are important determinants of price differentials, whereas both length of 

incumbency and return policy availability play negligible roles. By holding other 

explanatory variables equal to their means, we find that an increase by 10 percent in 

the length of warranty from the mean is associated with a 0.79 percent decrease in 

price differentials, whereas an increase by 1 standard deviation is associated with a 

decrease of 20.39 percent. 

Empirical results suggest that the proxies of supply and demand for 

remanufactured products are important determinants of price differentials. Larger 

available quantities of remanufactured products supplied by non 

manufacturer-approved sellers are associated with higher price differentials (α7
 
= 

0.0052, p-value=0.01) whereas higher demand is associated with lower price 

differentials (α6=-0.0002, p-value=0.04). The impacts of increases in supply and 

demand on price differentials are similar in magnitude to those reported in Section 7.1 

for the unpartitioned dataset. For remanufactured products listed by non 

manufacturer-approved sellers we find that the end of listings during weekend is 

associated with higher price differentials whereas the end of listings during night time 

hours does not play any significant role (α9
 
=0.1078, p-value =0.06 and α10

 
=-0.0205, 

p-value = 0.63, respectively). Unlike previous results, we find that the length of advert 

of listed remanufactured products by non manufacturer-approved sellers is statistically 

significant (α11
 
=-0.0079, p-value=0.01) and is negatively associated with price 

differentials. This last result suggests that longer periods of product listings increase 

the number of bids so that the price of remanufactured products can potentially 

increase.  

Insert Table 4 about here 

 

7.4. Empirical Results of the Two Partitioned Datasets: Manufacturer-Approved 

Vendors  
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We carry out a similar analysis by re-estimating Eq. (2) for the second partitioned 

dataset, which only includes transactions of remanufactured products by 

manufacturer-approved vendors. Empirical estimates are reported in the third, fourth 

and fifth column of Table 5. Surprisingly, we find that the variables that used to be 

significant determinants of price differentials for the full dataset as well as for the 

partitioned dataset of non manufacturer-approved sellers now become not significant 

when the partitioned dataset for manufacturer-approved vendors only is considered. 

Thus, the pattern of results obtained in Table 3 for the aggregate dataset is 

substantially driven by the trading of remanufactured products carried out by non 

manufacturer-approved sellers. It follows that the price differentials of 

manufacturer-approved sellers must be driven by different yet less obvious 

determinants not considered in our set of explanatory variables. Other features of the 

transactions of remanufactured products, such as whether the vendor is a 

well-established/well-known retailer, or the number of sales completed, might play an 

important role in the present context. 

In Table 5, empirical estimates suggest that the availability of return policies is 

associated with a decrease in price differentials. Another important observation 

between the two partitioned datasets is that return policies did not seem to matter for 

the remanufactured products sold by non manufacturer-approved sellers, yet did 

matter for the remanufactured products sold by manufacturer-approved vendors. We 

also find that remanufactured product listings ending at weekends or during night time 

hours are associated with higher price differentials. 

Finally, we re-estimate Eq. (2) on the partitioned datasets by using RR and MR 

methods. Empirical estimates are carried out by setting the parameter k = 0.8 and by 

feeding in the MR estimators with priors taken from the parameter estimates of Table 

3. The criteria previously set out suggest values of k similar to those reported for the 

unpartitioned dataset. Moreover, Ridge Traces show that the parameters α2 and α3 

become relatively stable for values larger than 0.6. Such evidence holds for both the 

partitioned datasets. Ridge Traces and detailed computations of k are not reported to 



 

24 

 

save space but are available from the authors upon request. Empirical results are set 

out in the fourth and fifth column of Tables 4 and 5. Both RR and MR estimates are 

similar to OLSR parameters in terms of signs and magnitudes, with marginal 

differences of the order of 10ˉ3. Thus, when the partitions of the dataset are 

considered, the similarity among OLSR, RR and MR estimates suggests that the 

presence of multicollinearity does not induce any significant bias in the estimation of 

Eq. (2).  

Tables 4 and 5 report the diagnostic statistics for residuals when Eq. (2) is 

estimated on the partitioned datasets. Both the White and Goldfeld-Quandt tests fail to 

reject the null of homoscedasticity at standard significance levels. Similarly, the 

RESET statistics fail to reject the null of no specification errors whereas the F-tests 

reject the null that the explanatory variables are jointly not statistically significant. 

Also in this case, residuals are leptokurtic and K-S tests reject the null of normality at 

the 5 percent level. All in all, the above diagnostic tests suggest that the model of Eq. 

(2) is reasonably well specified when applied to the partitioned datasets.  

Insert Table 5 about here 

 

7.5. Bootstrap Analysis 

The residuals obtained by carrying out OLSR, RR and MR estimates of Eq. (2) on the 

entire as well as partitioned datasets are leptokurtic in comparison to normal 

distributions. Since residuals are not well-behaved, inference is carried out by relying 

on the asymptotic properties of the above estimators. However, the use of asymptotic 

confidence intervals might lead to incorrect conclusions whenever the finite sample 

properties of the OLSR, RR and MR estimators depart from their asymptotic 

properties. Such departures, in turn, occur if  the sample size is not large enough to 

ensure the validity of the asymptotic properties. Thus, we investigate the finite sample 

properties of the above estimators by carrying out a bootstrap analysis of Eq. (2). 

More specifically, we construct artificial datasets by bootstrapping pairs from our 

original dataset of 917 observations. For each bootstrapped dataset we carry out 
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OLSR, RR and MR estimates of Eq. (2). We then repeat the above empirical exercise 

1,999 times so that we obtain the empirical distributions of the related parameters.  

Such empirical distributions resemble the related normal densities, suggesting 

moderate departures of OLSR, RR and MR estimators from their asymptotic 

properties. However, K-S statistics applied to the empirical distributions of the 

parameters α1, α2, α5, α6, α7 and α11 reject the null of normality at the 5 percent level. 

Given the above evidence, bootstrapped confidence intervals would be a better tool 

than asymptotic intervals to carry out statistical inference. The above empirical 

distributions are therefore used to construct bootstrapped Bias Corrected (BC) 

confidence intervals (see DiCiccio & Efron 1996). Such confidence intervals for 

OLSR, RR and MR are set out in Table 3. For purposes of comparison, we also 

compute the bootstrap percentile intervals as well as the asymptotic intervals. (The 

bootstrapped empirical distributions as well as the percentile and asymptotic intervals 

are not reported to save space but are available from the authors upon request). The 

BC intervals differ only slightly from the percentile intervals as the average bootstrap 

coefficients are similar to the corresponding point estimates reported in Table 3. This 

result suggests that there is little, if any, bias in the estimates of the parameters of Eq. 

(2). the BC confidence intervals are, in general, slightly narrower than asymptotic 

intervals, suggesting that the asymptotic standard errors set out in Table 3 are biased 

upward. All in all, the bootstrap analysis provides a pattern of results very similar to 

that obtained by applying asymptotic OLSR, RR and MR estimators. The only 

difference between bootstrap and asymptotic analysis relates to the parameter α6, 

which now becomes not significant at the 10 percent level. 

We then carry out the same bootstrap exercises for the two partitioned datasets. 

The BC confidence intervals are reported in Tables 4 and 5. Also in this case, the 

bootstrap analysis provides strong support for the pattern of results based on the 

asymptotic properties of OLSR, RR and MR estimators. All in all, the above results 

suggest that the finite sample properties of the OLSR, RR and MR estimators tend to 

depart from their asymptotic properties. However, such departures appear negligible 
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and the asymptotic properties of the above estimators remain a reasonable 

approximation of their finite sample properties. 

 

7.6. Robustness Checks 

In this Section we carry out two different empirical exercises. Firstly, we investigate 

how the model of Eq. (2) compares to other competing specifications of the 

relationship between price differentials and the determinants previously considered. 

Secondly, we investigate the robustness of the estimates of Eq. (2) to small 

modifications in the datasets used, as well as to change in the method followed, to 

compute the covariance matrices. 

We begin our analysis by testing whether the log-log model of Eq. (2) is 

preferable to two alternatives specifications, where the dependent variables PDi and 

–ln(1-PDi) are regressed against the set of explanatory variables as defined in Section 

4. We refer to the first alternative as the additive model and to the second as the 

log-lin model. More specifically, we use the PE statistics to test for the null that the 

additive model is not preferable to Eq. (2), and vice versa (see MacKinnon, White & 

Davidson (1983)). The comparison between the log-log and log-lin model is carried 

out by means of both the J and JA statistics. These last are used to test for the null that 

the log-lin model is not preferable to Eq. (2), and vice versa (see Davidson & 

MacKinnon (1981)).  

The PE tests cannot reject either the null that the log-log is not better than the 

additive model or vice versa. As a result, both these specifications appear to be 

appropriate to explain the relationship between price differentials and their 

determinants. However, when the White, the Goldfeld-Quandt and the RESET tests 

are applied to the residuals generated by the additive model, both the null of 

homoschedasticity and correct functional form are rejected at the 1 percent level. This 

last result suggests that the log-log model of Eq. (2) should be preferred to the 

additive model.  
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We then use both the J and JA tests to evaluate whether Eq. (2) is preferred to the 

log-lin specification, and vice versa. On the one hand, both the statistics reject the null 

that Eq. (2) is not better than the log-lin model at the 5 and 10 percent level 

respectively. On the other hand, the null that the log-lin specification is not better than 

Eq. (2) cannot be rejected at standard significance levels. All in all, the PE, J and JA 

statistics suggest that the log-log specification of Eq. (2) should be preferred to both 

the additive and log-linear models. When the above tests are applied to the partitioned 

datasets we obtain a very similar pattern of results. 

We then carry out a number of robustness checks for the OLSR, RR and MR 

empirical estimates previously obtained. We initially re-estimate Eq. (2) by using an 

alternative heteroschedasticity consistent estimator of the covariance matrix proposed 

by Davidson and MacKinnon (1993). Secondly, we carry out empirical estimates of 

Eq. (2), where the dependent variable is restricted to assume positive values only. By 

dropping the transactions for which the dependent variable is negative we reduce the 

number of observations from 917 to 649. Thirdly, we conduct a similar estimation 

exercise on a restricted dataset in which POSREPi assumes values within its mean 

plus/minus three times its standard deviation. In this case, the number of observations 

available drops to 770. The above exercises enable us to investigate whether the 

pattern of results previously obtained are driven by the presence of negative price 

differentials or outliers in the measure of positive reputation. Fourthly, we replace in 

Eq. (2) the separate positive and negative reputation measures with a single reputation 

score calculated as the difference between the two. All in all, the empirical results 

obtained suggest that the sign, magnitude and statistical significance of the estimated 

parameters are consistent with those set out in Tables from 3 to 5. Finally, we 

supplement Eq. (2) with squared values of positive feedback counts as well as with 

interactions among this last variable, negative feedback counts and seller identity. 

Empirical estimates suggest that all these terms are not statistically significant. The 

above empirical exercises are then repeated for the two partitioned datasets and we get 
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results very similar to those obtained for the full sample. (Please note the above 

empirical results are not reported but are available from the authors upon request.) 

 

8. Conclusions 

We studied the market determinants of price differentials between new and 

corresponding remanufactured products in Electronics by using data on purchases 

made on eBay UK. We carried out the empirical analysis by using Ordinary Least 

Squares Regression, Ridge Regression (RR) and Mixed Regression (MR) methods to 

deal with the statistical issue of collinearity among explanatory variables. Our 

empirical results suggest that seller positive reputation, the length of warranties, the 

proxies of demand and supply of remanufactured products, the duration and end day 

of product listings as well as the availability of return policies are important market 

determinants of price differentials. More specifically, we find that seller identity (i.e. 

manufacturer-approved or non manufacturer-approved vendors) plays an important 

role, as our empirical results are predominantly driven by transactions carried out by 

non manufacturer-approved vendors. We can conclude that the price differentials of 

remanufactured products listed by manufacturer-approved sellers must be driven by 

a different set of determinants not available in our dataset. This leads to an 

interesting area of further study to investigate these less obvious market 

determinants for remanufactured product transactions carried out by 

manufacturer-approved vendors. 
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Table headings and figure captions 

 

Table 1  Descriptive statistics and correlation indices 

 

Table 2  Price differentials: basic statistics 

 

Table 3  Linear regressions for log transformation of price differentials 

 

Table 4  Linear regressions for log transformation of price differentials sorted 

according to indicator variable MANUFi=0. 

 

Table 5  Linear regressions for log transformation of price differentials sorted 

according to indicator variable MANUFi=1. 

 

Figure 1  Empirical probability distribution functions of price differentials for 

manufacturer-approved sellers (solid line) and non 

manufacturer-approved sellers (dotted line) 

 

Figure 2  Ridge Trace for the t-ratios of parameters α2 (ln(POSREPi) solid line) 

and α3 (ln(NEGREPi) dotted line) estimated on the unpartitioned dataset. 

Values of the statistics reported on the vertical axis and values of k on 

the horizontal axis. 
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Table 1 Descriptive statistics and correlation indices 

 POSREP NEGREP INCUMB WARR SUP DEMAND MANUF DURAT WKND NIGHT RETURN 

Mean 9803 57 1635 1.615 2.534 70.460 0.525 8.231 0.300 0.486 0.555 

Std Error 51628 573 1231 3.703 10.034 171.600 0.500 14.429 0.458 0.571 0.497 

Min 0 0 13 0 1 0 0 1 0 0 0 

Max 815446 9904 4932 24 213 2614 1 192 1 8 1 

Observations 917 917 917 917 917 917 917 917 917 917 917 

            

POSREP 1.000           

NEGREP 0.946 1.000          

INCUMB 0.227 0.132 1.000         

WARR 0.163 0.029 0.126 1.000        

SUP 0.119 0.045 0.025 0.121 1.000       

DEM -0.016 -0.007 0.057 0.004 0.335 1.000      

MANUF 0.082 0.059 0.097 0.080 0.004 -0.055 1.000     

DURAT 0.040 -0.005 0.106 0.071 0.313 0.154 0.085 1.000    

WKND 0.008 0.031 0.114 -0.044 -0.024 0.076 -0.049 0.038 1.000   

NIGHT -0.039 -0.023 -0.019 -0.060 -0.057 -0.044 -0.034 -0.093 0.051 1.000  

RETURN 0.167 0.087 0.178 0.341 0.126 0.070 -0.141 0.193 -0.037 -0.083 1.000 

            

Eigenvalues 2.198 1.647 1.219 1.121 1.088 0.95 0.813 0.794 0.608 0.52 0.039 

Notes:  

Descriptive statistics for the explanatory variables included in Eq. (2) (see Section 6). 
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Table 2 Price differentials: basic statistics 

 

 Price Differentials Price Differentials Price Differentials 

 

Include both  

manufacturer-approved 

and non 

manufacturer-approved 

vendors 

(MANUFi = 1) 

Only include  

manufacturer-approved 

vendors 

 

(MANUFi = 0) 

Only include non 

manufacturer-approved 

vendors 

 

Mean 0.100 0.094 0.109 

SD 0.281 0.251 0.312 

t-stat1 10.87 8.198 7.303 

 (0.000) (0.000) (0.000) 

Observations 917 481 436 

Equality Mean2 -0.595 

 (0.302) 

Equality Median3 -1.864 

 (0.031) 

Equality Variance4 18.38 

 (0.000) 

Equality Distrib5 27.22 

 (0.000) 

K-S Test6 0.111 

 (0.000) 

Chow Test7 34.42 

 (0.000) 

Notes:  

1. t-statistics for the null of population mean equals to 0. 

2. 2-sample t-statistics for the null of equality in mean. P-value in parentheses. 

3. Mann-Whitney Test for the null of equality in median. P-value in parentheses. 

4. Levene test for the null of equality in variance. P-value in parentheses.  

5. Barnett & Eisen (1982) test for the null of equality in distribution. P-value in parentheses. 

6. Kolmogorov-Smirnov Test for the null of equality in distribution. P-value in parentheses. 

7. Chow Test for the null of equality between two sets of coefficients in two linear regression models. P-value is in parenthesis. Test 

is computed by fitting Eq. (2) to the two partitioned datasets. 
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Table 3 Linear regressions for log transformation of price differentials 

Explanatory 

Variable 
Parameter 

Log-Normal 

Regression 
Ridge Regression Mixed regression 

POSREP (ln) α2 -0.028** -0.028** -0.028** 

  (0.0128) (0.0128) (0.0128) 

  [-0.0526; -0.0100] [-0.0517; -0.0085] [-0.0511; -0.0067] 

NEGREP (ln) α3 0.0167 0.0166 0.0167 

  (0.0125) (0.0125) (0.0125) 

  [-0.0030; 0.0388] [-0.0038; 0.0374] [-0.0042; 0.0378] 

INCUMB (ln) α4 -0.0086 -0.0087 -0.0086 

  (0.0231) (0.0231) (0.0231) 

  [-0.0469; 0.0288] [-0.0478; 0.0274] [-0.0493; 0.0281] 

WARR α5 0.0005 0.0005 0.0005 

  (0.0036) (0.0036) (0.0036) 

  [-0.0039; 0.0085] [-0.0043; 0.0077] [-0.0041; 0.0091] 

DEM (ln) α6 -0.0001* -0.0001* -0.0001* 

  (0.00006) (0.00006) (0.00006) 

  [-0.0001; 0.0002] [-0.0002; 0.0001] [-0.0002; 6x10-6] 

SUP (ln) α7 0.0021* 0.0021* 0.0021* 

  (0.0012) (0.0012) (0.0012) 

  [0.0004; 0.0041] [0.0017; 0.0038] [0.0008; 0.0042] 

MANUF α8 -0.0272 -0.0272 -0.0272 

  (0.0336) (0.0336) (0.0336) 

  [-0.0871; 0.0279] [-0.0808; 0.0330] [-0.0800; 0.0308] 

WKND α9 0.1158** 0.1157** 0.1157** 

  (0.0451) (0.0451) (0.0450) 

  [0.0510; 0.1989] [0.0488; 0.1964] [0.0438; 0.1966] 

NIGHT α10 0.0277 0.0277 0.0277 

  (0.0261) (0.0261) (0.0261) 

  [-0.0128; 0.0973] [-0.0140; 0.0958] [-0.008; 0.0971] 

DURAT α11 -0.0021 -0.0021 -0.0021 

  (0.0016) (0.0016) (0.0016) 

  [-0.0047; 0.0005] [-0.0048; 0.0003] [-0.0047; 0.0004] 

RETURN α12 -0.0893** -0.0894** -0.0893** 

  (0.0393) (0.0393) (0.0393) 

  [-0.1508; -0.0215] [-0.1545; -0.0229] [-0.1470; -0.0176] 

Intercept α1 0.4234*** 0.4234*** 0.4244*** 

  (0.1471) (0.1470) (0.1471) 

  [0.1887; 0.6714] [0.1767; 0.6679] [0.1917; 0.6788] 

Model Fit1  37.35 37.35 40.78 

  (0.000) (0.000) (0.000) 

White Heter2  64.63 64.66 64.37 

  (0.175) (0.174) (0.181) 

G-Q Heter3  0.911 0.911 1.091 
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  (0.836) (0.835) (0.163) 

RESET Test4  2.564 2.565 2.563 

  (0.078) (0.078) (0.078) 

K-S Test5  0.19 0.19 0.19 

  (0.030) (0.030) (0.030) 

R²  0.166 0.166 0.166 

Observations  917 917 917 

Notes: dependent variable defined as -ln(1-PDi) where PDi is the price differential for observation i. 

* (**) [***] Significant at 10 (5) [1] percent. Standard deviations of parameter estimates in parentheses. 

Bias corrected confidence internals based on 1,999 bootstrap in squared brackets. 

Ridge regression estimated with parameter k=0.8. 

Mixed regression estimated with priors taken from Subramanian and Subramanyam (2012). 

1 F-test for the null that all the regressions are jointly not statistically significant. P-value in parentheses. 

2 White test for the null of homoschedasticity. P-value in parentheses. 

3 Goldfeld-Quandt test for the null of homoschedasticity (data sorted by MANUF). P-value in parentheses. 

4 RESET test for the null of no specification errors. P-value in parentheses. 

5 Kolmogorov-Smirnov test for the null of normality. Critical value at 5 percent in parentheses. 
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Table 4 Linear regressions for log transformation of price differentials sorted 

according to indicator variable MANUFi=0. 

Explanatory Variable Parameter 
Log-Normal 

Regression 
Ridge Regression Mixed regression 

POSREP (ln) α2 -0.0395** -0.0394** -0.0395** 

  (0.0197) (0.0196) (0.0196) 

  [-0.0728; -0.0092] [-0.0779; -0.0108] [-0.0753; -0.0097] 

NEGREP (ln) α3 0.0179 0.0179 0.0179 

  (0.0206) (0.0206) (0.0206) 

  [-0.0155; 0.0531] [-0.0158; 0.0532] [-0.0157; 0.0538] 

INCUMB (ln) α4 -0.0017 -0.0018 -0.0018 

  (0.0329) (0.0328) (0.0329) 

  [-0.0566; 0.0499] [-0.0586; 0.0511] [-0.0575; 0.0523] 

WARR α5 -0.0078** -0.0078** -0.0078** 

  (0.0035) (0.0035) (0.0035) 

  [-0.0139; -0.0018] [-0.0142; -0.0017] [-0.0141; -0.0019] 

DEM (ln) α6 -0.0002** -0.0002** -0.0018** 

  (0.00009) (0.00009) (0.00009) 

  [-0.0004; -0.00001] [-0.0004; -0.00003] [-0.0004; -0.00003] 

SUP (ln) α7 0.0052*** 0.0051*** 0.0052*** 

  (0.0019) (0.0019) (0.0019) 

  [0.0028; 0.0099] [0.0022; 0.0099] [0.0028; 0.0098] 

MANUF α8 - - - 

  (-) (-) (-) 

     

WKND α9 0.1078* 0.1078* 0.1079* 

  (0.0581) (0.0581) (0.0579) 

  [0.0150; 0.2106] [0.0159; 0.2129] [0.0194; 0.2096] 

NIGHT α10 -0.0205 -0.0205 -0.0204 

  (0.0432) (0.0434) (0.0431) 

  [-0.0928; 0.0630] [-0.0873; 0.0642] [-0.0939; 0.0614] 

DURAT α11 -0.0079*** -0.0079*** -0.0078*** 

  (0.0029) (0.0030) (0.0030) 

  [-0.0149; -0.0039] [-0.0150; -0.0040] [-0.0152; -0.0040] 

RETURN α12 -0.0632 -0.0633 -0.0632 

  (0.0594) (0.0594) (0.0595) 

  [-0.1622; 0.0379] [-0.1568; 0.0434] [-0.1546; 0.0371] 

Intercept α1 0.5002** 0.5002** 0.5002** 

  (0.2184) (0.2181) (0.2183) 

  [0.1646; 0.8723] [0.1630; 0.8878] [0.1599; 0.8672] 

Model Fit1  30.93 30.93 30.94 

  (0.000) (0.000) (0.000) 

White Heter2  56.37 56.37 56.37 

  (0.164) (0.164) (0.164) 
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RESET Test3  1.372 1.372 1.372 

  (0.254) (0.254) (0.291) 

K-S Test4  0.155 0.155 0.155 

  (0.043) (0.043) (0.043) 

R²  0.21 0.21 0.21 

Observations  436 436 436 

Notes: dependent variable defined as -ln(1-PDi) where PDi is the price differential for observation i. 

* (**) [***] Significant at 10 (5) [1] percent. Standard deviations of parameter estimates in parentheses. 

Bias corrected confidence internals based on 1,999 bootstrap in squared brackets. 

Ridge regression estimated with parameter k=0.8. 

Mixed regression estimated with priors taken from empirical estimates of Table 3. 

1 F-test for the null that all the regressions are jointly not statistically significant. P-value in parentheses. 

2 White test for the null of homoschedasticity. P-value in parentheses. 

3 RESET test for the null of no specification errors. P-value in parentheses. 

4 Kolmogorov-Smirnov test for the null of normality. Critical value at 5 percent parentheses. 
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Table 5 Linear regressions for log transformation of price differentials sorted 

according to indicator variable MANUFi=1. 

Explanatory Variable Parameter 
Log-Normal Regression 

(SD in parenthesis) 

Ridge Regression (SD in 

parenthesis) 

Mixed regression (SD in 

parenthesis) 

POSREP (ln) α2 -0.0188 -0.0188 -0.0188 

  (0.0172) (0.0171) (0.0171) 

  [-0.0536; 0.0065] [-0.0500; 0.0075] [-0.0508; 0.0099] 

NEGREP (ln) α3 0.0121 0.0121 0.0121 

  (0.0159) (0.0159) (0.0160) 

  [-0.0144; 0.0413] [-0.0163; 0.0397] [-0.0165; 0.0403] 

INCUMB (ln) α4 -0.0133 -0.0133 -0.0133 

  (0.0315) (0.0315) (0.0315) 

  [-0.0696; 0.0373] [-0.0705; 0.0359] [-0.0753; 0.0346] 

WARR α5 0.0036 0.0036 0.0036 

  (0.0056) (0.0056) (0.0056) 

  [-0.0041; 0.0164] [-0.0035; 0.0173] [-0.0036; 0.0178] 

DEM (ln) α6 -0.00006 -0.00006 -0.00006 

  (0.0001) (0.0001) (0.0001) 

  [-0.0003; 0.0001] [-0.0003; 0.0001] [-0.0003; 0.0001] 

SUP (ln) α7 0.0015 0.0014 0.0015 

  (0.0016) (0.0016) (0.0019) 

  [-0.0010; 0.0059] [-0.0008; 0.0061] [-0.0011; 0.0066] 

MANUF α8 - - - 

  (-) (-) (-) 

     

WKND α9 0.129* 0.129* 0.1289* 

  (0.0688) (0.0688) (0.0687) 

  [0.0306; 0.2596] [0.0325; 0.2688] [0.0317; 0.2725] 

NIGHT α10 0.0606* 0.0606* 0.0606* 

  (0.0348) (0.0348) (0.0347) 

  [0.0118; 0.1689] [0.0136; 0.1682] [0.0106; 0.1753] 

DURAT α11 -0.001 -0.0009 -0.001 

  (0.0016) (0.0016) (0.0016) 

  [-0.0042; 0.0012] [-0.0038; 0.0015] [-0.0041; 0.0015] 

RETURN α12 -0.1059** -0.1059** -0.1059** 

  (0.0524) (0.0524) (0.0524) 

  [-0.1850; -0.0161] [-0.1882; -0.0105] [-0.1945; -0.0103] 

Intercept α1 0.3513* 0.3511* 0.3513* 

  (0.1909) (0.1909) (0.1908) 

  [0.0508; 0.6905] [0.0517; 0.6947] [0.0726; 0.7371] 

Model Fit1  21.02 21.02 21.04 

  (0.021) (0.021) (0.021) 

White Heter2  49.61 49.61 49.62 

  (0.644) (0.644) (0.642) 
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RESET Test3  2.8 2.028 2.026 

  (0.063) (0.132) (0.133) 

K-S Test4  0.219 0.220 0.225 

  (0.040) (0.040) (0.040) 

R²  0.144 0.144 0.144 

Observations  481 481 481 

Notes: dependent variable defined as -ln(1-PDi) where PDi is the price differential for observation i. 

* (**) [***] Significant at 10 (5) [1] percent. Standard deviations of parameter estimates in parentheses. 

Bias corrected confidence internals based on 1,999 bootstrap in squared brackets. 

Ridge regression estimated with parameter k=0.8  

Mixed regression estimated with priors taken from empirical estimates of Table 3. 

1 F-test for the null that all the regressions are jointly not statistically significant. P-value in parentheses. 

2 White test for the null of homoschedasticity. P-value in parentheses. 

3 RESET test for the null of no specification errors. P-value in parentheses. 

4 Kolmogorov-Smirnov test for the null of normality. Critical value at 5 percent in parentheses. 
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Figure 1 Empirical probability distribution functions of price differentials for 

manufacturer-approved sellers (solid line) and non manufacturer-approved sellers 

(dotted line) 
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Figure 2 Ridge Trace for the t-ratios of parameters α2 (ln(POSREPt) solid line) and α3 

(ln(NEGREPt) dotted line) estimated on the unpartitioned dataset. Values of the 

statistics reported on the vertical axis and values of k on the horizontal axis. 


