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Abstract— Bioacoustic monitoring has become a significant 

research topic for species diversity conservation. Due to the 

development of sensing techniques, acoustic sensors are widely 

deployed in the field to record animal sounds over a large spatial 

and temporal scale.  With large volumes of collected audio data, 

it is essential to develop semi-automatic or automatic techniques 

to analyse the data. This can help ecologists make decisions on 

how to protect and promote the species diversity. This paper 

presents generic features to characterize a range of bird species 

for vocalisation retrieval. In the implementation, audio 

recordings are first converted to spectrograms using short-time 

Fourier transform, then a modified ridge detection method is 

applied to the spectrogram for detecting points of interest. Based 

on the detected points, a new region representation are explored 

for describing various bird vocalisations and a local descriptor 

including temporal entropy, frequency bin entropy and 

histogram of counts of four ridge directions is calculated for each 

sub-region.  To speed up the retrieval process, indexing is carried 

out and the retrieved results are ranked according to similarity 

scores. The experiment results show that our proposed feature 

set can achieve 0.71 in term of retrieval success rate which 

outperforms spectral ridge (0.55) and Mel frequency cepstral 

coefficients (0.36). 

I. INTRODUCTION 

Species diversity is critical to human beings because they 

can provide a variety of services, such as food, living material, 

and recreation. According to a recent Australian Biodiversity 

Strategy, more than 1700 species in Australia are known to be 

threatened and at risk of extinction due to the effects of human 

activities and environmental changes [1]. The conservation of 

species diversity becomes an urgent need.  

A traditional way of species conservation is to conduct a 

survey based on field observation. This approach can achieve 

comprehensive results by conforming to standard protocols. 

However, these surveys are often carried out in a small 

geographic and temporal scale.  An alternative mean is 

acoustic monitoring using sensors, which has been widely 

used in many studies [2-4]. Typically, sensors are placed in a 

wild area to record animal sounds. This method has great 

advantages in collecting data over large spatiotemporal scale. 

The collected sounds can be analysed multiple times and 

assist ecologists in understanding vocal species.  

Acoustic sensors collect large volumes of audio data, which 

requires automated tools for processing. Current algorithms 

for automated animal sound analysis focus on species 

recognition and retrieval. The selection of discriminating 

features is the key to the success of these two tasks. The 

feature-based approach has two benefits: (1) the large amount 

of audio data can be reduced to a compact feature space; and 

(2) the selected features are useful for distinguishing among 

various species. These features can be adaptive for multiple 

class recognition or retrieval.  

 In previous studies of bird song recognition, features are 

often designed for describing a limited number of species or a 

particular type of bird sounds. However, in order to identify 

multiple bird species, a generic feature set is required. In 

addition, most of studies in the context focus on species 

classification [5-8] while few efforts have been put to 

birdsong retrieval in continuous acoustic sensor recordings.      

In this paper, we present a generalised feature 

representation to characterize a wide range of bird species for 

vocalisation retrieval.  The developed features are applied to a 

query-by-example retrieval system over a database of 

birdsong recordings collected in the field. This study makes 

three contributions: (1) a new way to detect a range of bird 

calls from environmental recordings, which is especially good 

for bird vocalisations having block shape structures; (2) a 

novel region representation for characterizing bird 

vocalisations of multiple species, which shows great benefits 

in differentiating short calls from complex calls; and (3) the 

application of developed features to retrieve bird vocalisations 

over continuous acoustic recordings, which is useful for 

detecting bird species’ presence or absence. In addition, 

averaged Mel-frequency cepstral coefficients (MFCCs) and 

the derived statistics (∆MFCC and ∆∆MFCC), which are 

widely used features in audio recognition, are computed for 

comparison. To the best of our knowledge, it is the first time 

that a generic feature set is explored to retrieve a range of bird 

vocalisations in continuous real-world recordings.  

The reminder of the paper is organized as follow. Section II 

reviews related work. Section III discusses a signal detection 

method and a feature representation approach for bird 

vocalisation retrieval. Section IV reports the experimental 

results using our proposed features and baseline features. 

Conclusion is given in Section V.   

 



II. RELATED WORK 

For automatic birdsong analysis, signal detection (or 

segmentation) is a necessary step which aims to separate 

signals of interest from background noise. Many approaches 

attempt to achieve the goal based on time-frequency 

representation (spectrogram).   A simple way is to set up an 

intensity threshold to select the sound of interest. Brandes’s 

work [5] shows that most animal calls are frequency 

modulated, which means different species, such as frogs, 

crickets, and birds, make calls in distinct frequency bands, 

therefore, applying an adaptive threshold for each frequency 

band is required. However, Neal et al. [9] point out that this 

threshold method is ineffective in segmenting field recordings 

where multiple sound sources are recorded.  Thus they explore 

a binary classification method to differentiate between bird 

and non-bird events. However, this method requires an 

amount of training data, which is not useful when training 

data is not available.    

There are various features explored for representing bird 

sounds in automated species recognition. Spectral features 

(call bandwidth and spectral flatness) are extracted from 

spectrograms which are derived from the short-time Fourier 

transform (STFT) [7]. MFCC models offer a compact 

parametric representation of birdcalls with broadband 

characteristics and harmonics [10, 11]. However, as pointed 

out by Somervuo et al. [12], cepstral coefficients misrepresent 

important pitch information which is equivalent to magnitudes 

of amplitude in the spectrogram and their suitability for many 

birdcalls is questionable.Since many bird calls consist of tonal 

structures, time-varying sinusoids are modelled from such a 

type of bird call. [13, 14]. Jančovič and Köküer reported that 

sinusoidal models provide a better representation of bird calls 

in field recordings than standard MFCCs widely used in 

speech recognition [15].  

Spectrograms can be viewed as images (despite neither of 

the dimensions being spatial) and a range of image processing 

techniques have been applied to the problem of birdcall 

recognition. Two more recent examples are the MPEG 

angular radial transform [16] and Histograms of Oriented 

Gradients (HOG) [17]. Note that translation invariance (in 

frequency) and rotational invariance are not appropriate for 

characterizing spectral representations of bird calls and 

therefore the relevance of some image processing techniques 

must be questioned. HOG are successfully applied to acoustic 

signals by [19] for the determination of speaker gender in 

speech. HOG features are combined with other acoustic 

features in the bird call classification task of [17] but the 

contribution of the HOG features to the final result is not 

reported.  

The feature extraction approaches presented in the 

reviewed studies are often designed for particular applications. 

Therefore, they are only appropriate for characterizing 

particular type of species, which are useful for species 

classification. In contrast, a retrieval system requires a more 

general method to allow arbitrary queries which may cover a 

wide range of bird species.  

III. METHOD 

A. Datasets 

The dataset in the study is designed to validate the 

effectiveness of the proposed features for a birdcall retrieval 

system. The QUT eco-acoustic research group has collected 

over 24 terabytes of recordings of animal sounds from 

different fields over multiple years using acoustic sensors. In 

particular, this study focuses on the dataset collected from the 

Samford Ecological Research Facility (SERF), an open bush 

land located in 20 kilometers north-west of Brisbane CBD, 

Queensland, Australia.  It contains five days (24 hours, 13th 

to17th of Oct in 2010) × four sites recordings and 

corresponding annotation data. Wimmer et al. [4] report the 

details about how the recordings were collected. We use a 

subset of this dataset for the experiment. 

TABLE I 

 BIRD SPECIES IN THE STUDY 

No. Species Name Common Name Code 

1 Macropygia amboinensis Brown Cuckoo-dove BCD 

2 Cacomantis variolosus Brush Cuckoo BCK 

3 Lichmera indistincta Brown Honeyeater BHE 

4 Burhinus grallarius Bush Stone-curlew BSC 

5 Psophodes olivaceus Eastern Whipbird EWB 

6 Eopsaltria australis Eastern Yellow Robin EYR 

7 Rhipidura albiscapa Grey Fantail GFT 

8 Colluricincla harmonica Grey Shrike-thrush GST 

9 Pachycephala pectorails Golden Whistler GWS 

10 Philemon citreogularis Little Friarbird LFB 

11 Myiagra rubecula Leaden Flycatcher LFC 

12 Meliphaga lewinii Lewins Honeyeater LHE 

13 Oriolus sagittatus Olive-backed Oriole OBO 

14 Pachycephala rufiventris Rufous Whistler RFW 

15 Trichoglossus 

haematodus Rainbow Lorikeet 
RLK 

16 Chrysococcyx Iucidus Shining Bronze-

cuckoo 
SBC 

17 Cacatua galerita Sulphur-crested 

Cockatoo 
SCC 

18 Zosterops laterails Silvereye SVE 

19 Myzonmela sanguinolenta Scarlet Honeyeater 

(call) 
SHE1 

20 Myzonmela sanguinolenta Scarlet Honeyeater 

(song) 

SHE2 

21 Pardalotus striatus Striated Pardalote SPD 

22 Corvus orru Torresian Crow TRC 

23 Melithreptus albogularis White-throated 

Honeyeater 
WTH 

24 Lichenostomus chrysops Yellow-faced 

Honeyeater 
YFH 

 

The queries in this study include a representative range of 

24 bird species and their names are listed in table I. Each 

species has five typical vocalizations as queries, so in total 

there are 120 queries in the query set. The selected bird 

vocalisations show distinctive structures and cover a range of 

call structures defined in the reviewed work [20], example 



spectrograms of call classes are displayed in Fig. 1. In order to 

cover representatives of the selected species from the 20-days’ 

recordings, the query set is chosen from different sites and 

different time. A query here is prepared by manually 

specifying a region which contains a bird vocalisation in the 

spectrogram.   

 
               (a) EYR                             (b) RFW                              (c) BSC          

 
         (d) SCC                             (e) EWB                                 (f) TRC 

Fig. 1. Example spectrograms for each of 6 bird call classes that are (a) 
Eastern Yellow Robin (EYR)(two clicks), (b) Rufous Whistler (RFW)(a 

series of chirping), (c)Bush Stone-curlew (BSC)(a whistle), and (d) Sulphur 

crested-cockatoo (SCC)(shrieks), (e) Eastern whipbird (EBW)(whistle and 
click), and (f) Torresian Crow (TRC)(stack harmonics). 

For the search database, we ensure that recordings in the 

query set are excluded. In the end, we chose one day of 

recordings, on the 13
th

 Oct in north-east of the recording site. 

80 species are present in the recordings. The recordings are 

cut into one-minute segment for simple analysis. Each 

segment is formatted with a sampling rate of 22,050 Hz and 

16-bit resolution. 

B. The flowchart of the retrieval system 

There are five major procedures in the designed retrieval 

system, which is shown in Fig. 2. First, all audio files are 

converted to spectrograms using STFT. Then spectral ridge 

detection is applied to the spectrograms. The detected ridges 

are used to parametrize into feature vectors. Since our system 

aims to process a large amount of audio files, indexing is 

added to improve the retrieval speed. In the end, the system 

retrieves similar bird vocalisations to the query. The detail of 

each procedure is discussed in the following subsections.   

1)  Spectrogram Preparation: Spectrograms are generated 

using STFT with a Hamming window of 512 samples (23ms) 

and 50% window overlap. We denote spectral values by 

𝑋(𝑡, 𝑓),  where t represents a time frame and f indexes a 

discrete frequency bin. These spectral pairs correspond to 

pixels of spectrogram image. Spectral amplitude values are 

converted to decibels (dB) using dB = 20log10(X).  To reduce 

background noise, we apply a noise removal algorithm 

developed by Towsey et al. [21] which calculates a separate 

decibel threshold for each frequency bin assuming an additive 

noise model. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Fig. 2. Flowchart of the retrieval system. 

2)  Spectral Ridge Detection: Most bird calls exhibit 

spectral ridge components that can be seen in Fig. 2. The 

structure tends to show ridge characteristics in terms of the 

intensity values on the spectrogram. Therefore we first 

attempts the ridge detection method designed by Dong et al. 

[22] to identify portions of the spectrogram that show ridge 

characteristics. In this method, ridge pixels are detected by 

convolving each prepared spectrogram with four masks, one 

mask for each ridge direction. Here we employ the set of 

masks for the directions 0, π/4, π/2, and 3π/4 radians. A pixel 

in the spectrogram is assigned a ridge direction corresponding 

to the mask yielding maximum convolution score only if the 

score exceed a threshold of 6.0 dB. 

Through the experiment, we found Dong’s ridge detection 

is not suitable for detecting calls that show shrieks (a block 

shape) .This case is quite common in bird songs collected in 

the wild environment because of echo effect or birdsongs 

themselves. Fig. 1 (a), (b) are bird calls exhibiting shadow due 

to environmental effects. Therefore we modify the ridge 

detection method for our application.  

To address the problems with shriek calls, scale factor (σ) is 

considered to modify the previous ridge detection. σ is 

designed to compress the spectrogram along time and 

frequency directions so that ridges can stand out for the shriek 

calls. We test the values of σ, 0.0, 0.125, 0.25, 0.5, and 

determine 0.25 is the optimum to implement the spectrogram 

compression to derive ridges. An example of spectrogram 

compression can be seen in Fig. 3 (c) and (d). The derived 

ridges then add to the original ridges obtained in the 

uncompressed spectrogram, see Fig. 3. (e).     

3)  Feature Extraction:  A query is a section of audio with 

arbitrary duration and frequency bounds, represented as a 

rectangular section of spectrogram. Examples are shown in 

Fig. 1.  

Spectral ridge detection 

Feature extraction 

Indexing 

Retrieval 

Spectrogram preparation 



                                    

              (a)                                                               (b)   

                                              

              (c)                       (d)                                    (e) 

Fig.3. Ridge detection results on different scales of spectrograms (a) Noise-

reduced spectrogram of an Eastern Whipbird call containing a shadow; (b) 

ridge detection on original spectrogram (c) time compressed spectrogram. (d) 
ridge detection on time-compressed spectrogram. (e) restored-scale 

spectrogram. The duration of the call is 2 seconds. The call ranges from 

1700~7500 Hz. The vertical ridges appearing above 8000 Hz are detected due 
to MP3 artefacts. 

To capture local variations in bird calls, we develop a 

normalized block descriptor.  A bird call is divided into a grid 

of non-overlapping square blocks of size 11 × 11, termed as 

regions. The size of bird call can be arbitrary and the number 

of 11x11 regions generated depends on the size. Finally the 

call is characterized as the vector of all region features within 

the call. 

 

     

     

     

     

     

     

     

     

Fig.4. Region representation of spectral ridge features for a simplified Scarlet 
Honeyeater call. 

For a Scarlet Honeyeater call (a rectangle with grey shading), it is divided 

into 18 regions, each of which is shown as a square in the figure. Each square 

has an index which refers to a 6-dim feature set derived from ridges inside the 

square. The squares surrounding the call belong to a buffer zone.  

 As pointed out by Arganat [23], short calls can cause an 

issue during the identification of multiple species because they 

lack of distinct properties compared to complex calls. The 

query set in the study contains many short calls which might 

be confused with large calls. To avoid this problem, we add a 

buffer zone to the actual bird call, which is shown in Fig. 4. In 

the buffer zone, each region should contain no ridges. When 

ridges are found in the buffer zone of candidate instance, the 

similarity score decreases due to mismatching regions 

happened in buffer zones.   

To describe each region, we calculate a six dimensional 

feature vector: 1. temporal entropy (1-D); 2. frequency bin 

entropy (1-D); 3. a histogram of four ridge directions (4-D);  

1.Temporal entropy (Ht): The ridge magnitudes are 

summed frame-wise over all frames in the region and the N 

values are normalized to unit sum. HT is calculated as:  

        𝐻𝑡 = − ∑ 𝑝𝑖𝑙𝑜𝑔2𝑝𝑖 Where 𝑖 ∈ [1, 𝑁]              (1)  

2. Frequency bin entropy (Hf): Similar to the calculation of 

Ht except that the ridge magnitudes are summed bin-wise over 

all bins in the region. Ht and Hf can describe the spatial 

distribution of spectral ridges in a region.  

3. Histogram of counts of four ridge directions (HoRC4): to 

further describe the local property of each region, we 

calculated a histogram of four ridge directions that is inspired 

by Histogram of Oriented Gradient [18]. Here a four-

dimensional vector is derived from the counts of region cells 

belonging to ridges having direction 0, π/4, π/2 and 3π/4 

rather than the magnitude used by Dalal and Triggs [18]. The 

histogram values are normalized to [0,1]. Whereas the entropy 

features describe the spatial distribution of ridge cells within a 

region, this feature describes the distribution of ridge 

directions.  

4)  Indexing:  Indexing here is to pre-calculate features for 

speeding up the matching process on a large audio collection. 

An audio file (Di) in the search database is represented by a 

set of regions (r). The matrix of spectrogram for Di is divided 

into overlapping regions along time frames. This operation 

allows the variations of bird calls in frames. Here the shift for 

neighbouring regions is chosen as half of the region size, 5 

frames. So Di = {𝑟1, 𝑟2, 𝑟3, …  𝑟𝑚} (m = the total number of 

regions in Di). In this step, a region can be parametrized as 𝑛 

=  {𝑓, 𝑡, 𝑓𝑐} where f refers to the low frequency bin index, t is 

start frame index, and fc is the 6-d features. The generated 

index for each Di is stored into a csv file and the index item is 

distributed as a matrix.    

5)  Retrieval: When searching for potential candidates, the 

query grid is applied to the generated indexing. The search 

results in approximately 100 matching regions from each one-

minute recording in the database.  Such an amount of 

candidates are determined by a filtering step that aims to 

eliminate the regions in which 50% of the candidate sub-

regions underlying the query grid do not contain ridges.  

Similarity matching is achieved by using K-NN (K = 1) 

which means we only count the individual highest neighbour 

when determining retrieved calls. Here a similarity score for 

each candidate is obtained by calculating the overall similarity 

(S) between a query call and a candidate region. S is derived 

using weighted average score calculated from corresponding 

regions within the regions.  Since empty regions lead to bias 

to the score, we give less weight (0.2) for them but more 



weight (0.8) to ridge regions. Consider the size of query 

would affect the score, therefore, the final score is computed 

through dividing by maximum score for the exact match. 

The retrieved candidate instances are ranked by similarity 

score. The highest similarity score is 1.0, which means exact 

match. In fact, exact match seldom happen due to complexity 

of birdcalls in field recordings.  

IV. EXPERIMENT 

In the experiment, MFCCs, ∆MFCC, and ∆∆MFCC are 

used as the baseline for feature comparison. The method for 

MFCCs extraction is a modified version of an algorithm 

developed by Lee et al. [24]. According to the time domain 

boundary of a bird call region, MFCCs are first extracted from 

each frame of the acoustic event. Then, the averaged MFCCs 

of all frames within the bird call are calculated as (2). 

                  𝑓𝑚 =
∑ 𝑐𝑚

𝑖𝐾
𝑖=1

𝐾
,   𝑚 ∈ [0, 𝐿 − 1]                   (2) 

where  𝑓𝑚 is the 𝑚𝑡ℎ MFCCs, 𝐾 is the number of frames for 

one event, 𝐶𝑚
𝑖  is DCT result of each filtered amplitude 

spectrum. L is the number of feature vector for each frame, 

and here it is 13. The final feature is represented by the 

normalised 𝑀𝐹𝐶𝐶𝑠, which is shown in (3).  

 𝑀𝐹𝐶𝐶𝑠 =
𝑓𝑚−𝑓𝑚

𝑚𝑖𝑛

𝑓𝑚
𝑚𝑎𝑥−𝑓𝑚

𝑚𝑖𝑛                                 (3) 

To further explore the performance of our spectral ridge 

features (termed as ISR), ∆MFCCs and ∆∆MFCCs (parameters 

commonly used in automatic speech recognition) as well as 

the spectral ridge features (SR) derived from original ridge 

detection and region representation without a buffer zone are 

also computed for comparison. 

To evaluate the retrieval performance, the success rate is 

calculated, which reflects how many queries obtain correct 

retrieval within top rank. Notice GFT and SBC are not present 

in the recording, so the total query count calculated here is 

110 rather than 120. From Table II, we find that spectral ridge 

methods, both SR and ISR, perform better than MFCCs based 

features. Among these feature sets, our improved spectral 

ridge (ISR) method achieves best result which yields correct 

retrievals for 71% of all queries within top five. The spectral 

ridge method obtains 55%. In contrast, MFCCs features obtain 

lower rate (around 35%), this illustrates they are not suitable 

for detecting birdcalls in field recordings. The three MFCCs 

features perform better for detecting broadband calls, e.g. RLK, 

TRC and SCC. But they show poor performance in other 

birdcalls. One reason is that they capture information in the 

whole frequency band within an interval of bird call such that 

it is sensitive to noise and insufficient to find similar calls 

when overlapping calls happen in time. In addition, we find 

that there is little difference among MFCCs, ∆MFCCs and 

∆∆MFCCs. This reports that MFCCs is not suitable for 

representing bird calls.  

To examine the performance for detecting species, the 

average accuracy within top five for four feature sets is 

computed and shown in table III.  Since we have five queries 

for each species, the accuracy value can be 0.0, 0.2, 0.4, 0.6, 

0.8 or 1.0. When accuracy is 1.0, it means that all queries 

obtain correct retrievals. 

TABLE II  

SUCCESS RATE FOR VARIOUS FEATURES 

Success 

Rate(N) 

MFCCs ∆MFCCs ∆∆MFCCs SR ISR 

Top 1 0.20 0.20 0.19 0.27 0.39 

Top 3 0.32 0.31 0.22 0.43 0.56 

Top 5 0.33 0.36 0.35 0.55 0.71 

 

To determine the species presence or absence, a threshold (t) 

is set for similarity score (s). If s is lower than t, it indicates 

that the querying species is absent.  When t = 0.5, The 

retrieval results demonstrate that the improved spectral ridge 

(SR+C, and SR+C+B) and spectral ridge (SR) can detect the 

majority of species (21) presence except for LFC, GFT, and 

SBC. LFC is actually record in the search database but the 

calls have many variations, which cause retrieval errors given 

the queries. In contrast, Both MFCCs and ∆MFCCs identify 

14 bird species but ∆∆MFCCs find 15 species. These results 

show that ISR achieves best performance in detecting species 

in the database.  

TABLE III  

AVERAGE ACCURACY AT TOP FIVE FOR 24 BIRD SPECIES IN THE STUDY (- 

INDICATING SPECIES NOT EXISTING IN THE DATABASE) 

Species  Accuracy (C = 5) 

∆MFCCs SR SR+C SR+C+B 

BCD 0.0 0.4 0.4 0.8 

BCK 0.0 0.2 0.2 0.6 

BHE 0.2 0.2 0.2 0.2 

BSC 0.0 0.2 0.2 0.8 

EWB 0.2 1.0 1.0 1.0 

EYR 0.0 0.8 0.8 0.8 

GFT - - - - 

GST 0.0 0.8 0.8 0.8 

GWS 0.0 0.6 1.0 1.0 

LFB 0.4 0.2 0.2 0.6 

LFC 0.0 0.0 0.0 0.0 

LHE 1.0 1.0 1.0 1.0 

OBO 0.2 0.2 0.2 0.2 

RFW 0.6 0.8 0.8 0.8 

RLK 1.0 0.2 0.6 0.6 

SBC - - - - 

SCC 0.6 0.2 1.0 1.0 

SVE 0.2 0.4 0.4 0.4 

SHE1 0.8 1.0 1.0 1.0 

SHE2 0.6 1.0 1.0 1.0 

SPD 0.6 1.0 1.0 1.0 

TRC 1.0 1.0 1.0 1.0 

WTH 0.0 0.2 0.4 0.4 

YFH 0.4 0.6 0.6 0.6 

Average 0.36 0.55 0.63 0.71 

SR obtains poor performance in detecting the shriek 

structures, such as SCC and WTH. Compression process can 

address the problem as the average accuracy for these species 

is higher than the ones obtained by SR, see the bold values in 

the column of SR + C (refers to compression). Another 



drawback in SR is dealing with short calls, like BCD and BSC, 

as they are easily confused with large patterns of bird calls. 

BCD tends to be confused with noise and TRC. BSC 

particularly confuses with EWB as both of them contain 

whistle (a horizontal line in the spectrogram). The spectral 

ridge method (SR) combining with compression (C) and 

buffer (B) zone can address the situation, which is reflected in 

the last column of Table III.  

The most difficulty for our modified method applying to 

birdcall retrieval in field recording is the variations in bird 

calls, like OBO and LFC. They are found either in birdcalls 

themselves or background sounds.  This demonstrates that 

different individual species may produce different calls or 

their calls may be captured differently by acoustic sensors. 

Another issue is the confusion with untargeted species.    

V. CONCLUSION 

This paper presents spectral ridge features for bird call 

retrieval over continuous recordings collected in natural 

environment. The proposed features work well in 

characterizing a wide range of bird species. The experimental 

results demonstrate that they perform better than SR and 

MFCCs features. As discussed in the experiment section, 

MFCCs are not appropriate for describing most birdcalls 

because they are sensitive to the background sounds. In terms 

of dealing with field recordings, the developed feature 

representation has great suitability to differentiate short calls 

with large patterns of bird songs using a buffer zone.  Another 

advantage is that our proposed features can detect calls that 

are made simultaneously. The presented birdcall retrieval 

system can assist ecologists in discovering the presence or 

absence of species at a particular site.  

Environmental acoustic data is difficult to analyse due to 

their complexity and varieties in bird species. One limitation 

of the developed features is that they are not sufficient for 

dealing with calls overlapping in frequency. In the future, 

approaches that address the limitation will be explored. 
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