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Abstract—Fusing data from multiple sensing modalities, e.g.
laser and radar, is a promising approach to achieve resilient
perception in challenging environmental conditions. However, this
may lead to catastrophic fusion in the presence of inconsistent
data, i.e. when the sensors do not detect the same target due to
distinct attenuation properties. It is often difficult to discriminate
consistent from inconsistent data across sensing modalities using
local spatial information alone. In this paper we present a
novel consistency test based on the log marginal likelihood of a
Gaussian process model that evaluates data from range sensors
in a relative manner. A new data point is deemed to be consistent
if the model statistically improves as a result of its fusion. This
approach avoids the need for absolute spatial distance threshold
parameters as required by previous work. We report results
from object reconstruction with both synthetic and experimental
data that demonstrate an improvement in reconstruction quality,
particularly in cases where data points are inconsistent yet
spatially proximal.

I. INTRODUCTION

Advances in autonomous perception have enabled robots to
operate outdoors in important applications such as agriculture,
mining, defence, and autonomous driving. Resilient perception
is necessary to support further advances in situations where
robots must operate for long periods of time in challenging
and variable environmental conditions. One way to achieve
resilient perception is to employ multiple sensing modalities
(MSMs) such as visual and infrared cameras [1], laser and
camera [2], or laser and radar [3], [4].

As a system, the MSM approach can be resilient in cases
that would severely compromise any single sensor acting
alone. However, in some cases distinct sensing modalities
can detect different targets even though they are spatially
aligned. We then say that they provide inconsistent data, or
conflicting data. This situation often leads to catastrophic
fusion [5], where the quality of the representation of an object
or scene obtained using traditional Bayesian data fusion is
actually significantly degraded compared to the representations
obtained using a single source of information [6].

Our recent work in fusing data from laser and radar es-
tablished a consistency test to determine which subset of
sensing data, across multiple sensing modalities, can be fused
safely [6], [7]. This prevented the occurrence of catastrophic
fusion. In this paper we improve on this prior work for
data fusion in an MSM system by introducing an iterative

consistency test that is entirely automatic (no hand-tuned
parameter), and which significantly increases discriminatory
power, particularly when data points from multiple sensors
may appear to be locally consistent yet are inconsistent with
respect to a global model.

The consistency test in our initial work [6], based on
the Mahalanobis distance, provided encouraging results in
avoiding catastrophic fusion in cases such as the presence
of thick dust or smoke, which are often detected by lasers
but not by radars. However, this work had some limitations
and motivates further questions. Because the Mahalanobis dis-
tance essentially measures the “difference of opinion” between
sensors within a local geometric neighbourhood, a threshold
parameter is required in order to decide whether a pair of data
points are consistent (and thus safe to incorporate) or not. We
are interested in avoiding such a parameter. As a result, the
need to choose parameter values for different situations will be
removed and the consistency test will thus be more generally
applicable.

The challenge in developing consistency tests arises due
to differences between sensing modalities in terms of noise
characteristics and resolution. It is thus important to maintain
measures of uncertainty in the fused data. This case is in
contrast to work that assumes homogeneity in these factors [8],
[9], [10]. The specific challenge that we consider in this paper
is how to perform consistency tests accurately while avoiding
local threshold parameters.

In this paper we present a novel approach that uses an
iterative consistency test based on the log-marginal likelihood
of a Gaussian process (GP) model. We choose a single sensing
modality as a reference, and evaluate whether data from
other sensors statistically improve the reference model. This
approach avoids local geometric threshold parameters and can
be more discriminatory because it takes into account the global
model and does not involve absolute distances; the comparison
measures relative improvement of the GP model if the data
point under consideration was to be fused. The assumption to
bias the fusion towards one sensor that is trusted more than
others is reasonable and can occur, for example, in a scenario
with smoke or dust. Radar data are generally more immune
from airborne contaminants than are laser data, but it is still
beneficial to consider laser data where appropriate due to its



higher resolution.
The benefits of this approach can be seen in our results

using both synthetic and experimental data. We evaluated our
algorithm, in comparison to our previous method, in an object
reconstruction task with two distinct range sensors acquiring
3D point clouds. The objects in the synthetic case have parts
made of two different materials, one being transparent for
only one of the sensors, and occluding the perception of the
other sensor. Several scenarios with varying levels of difficulty
are tested. The object in the experimental case is a car in an
outdoor environment obscured by dust. Results show that the
current method, with no hand-tuned parameter, performs at
least as well as the previous method in all cases, and performs
better in challenging cases where it is difficult to discriminate
inconsistent data locally.

This paper is organised as follows. Related work is dis-
cussed in Sec. II. Section III describes the background data-
fusion framework. Section IV then introduces the proposed
method and Sec. V presents its experimental validation. Fi-
nally, Sec. VI concludes and discusses future work.

II. RELATED WORK

The fusion of data acquired by multiple sensing modalities
has been implemented in multiple domains. Examples include:
fusing data from laser and radar [9], tactile and laser [11],
[12], and ultrasonic and laser [13]. In this context it is typi-
cally assumed that physically aligned sensors detect the same
target when pointed in the same direction [8], [9]. However,
this assumption can lead to catastrophic fusion. Therefore, a
consistency test is necessary to perform data fusion [6] when
using distinct sensing modalities.

Approaches to consistency testing include blind source
separation (BSS) methods [14] and dependency test meth-
ods [15]. With BSS methods, it is still necessary to resolve
ambiguities and there are several restrictions on the mixing
matrix structure. Dependency test methods must define the
size or number of expected clusters, which is usually un-
known. Although both methods can separate different sources
from mixed measures, they do not natively build continuous
representations or represent uncertainties with respect to the
estimates, which are accounted for in our proposed method.

Robust data fusion approaches have been implemented in
the context of Gaussian processes. A GP with a t-test prior
has been used to avoid spurious data that affects the quality of
continuous representations [16]. Our problem has been posed
in a slightly different way. Rather than applying an outlier
rejection to the data from a single sensing modality as is done
in [16], we focus on analysing data from multiple sensing
modalities by comparing models created with the GPs. In our
problem, information from multiple modalities is given (i.e.
we know the source of the data) and the goal is to detect
when the data from two sensing modalities are consistent in
order to perform robust data fusion.

Mixtures of Gaussian processes [17], [18] have also been
proposed to compare heterogeneous models. However, the
focus of application is different. In [17] and [18], the objective

is to determine the trajectories of multiple targets, whereas in
this work we want to estimate object or scene representations
by fusing data from multiple sensing modalities.

In [6] we proposed a framework using Gaussian processes
to estimate continuous surfaces with uncertainties from 3D
data provided by distinct sensing modalities. The method
compares two surfaces built from 3D points provided by each
sensing modality individually, by applying a �2 test to the
Mahalanobis distance between two distributions representing
the two surfaces. The main drawback of this method is that a
manually predefined threshold is required to determine when
data are consistent or inconsistent, which leads to a lack of
adaptability to new situations. In addition, the comparison of
points from the two surfaces is achieved without any insight
into the potential effect that fusing points from a distinct
modality would have on the model. In this paper we propose an
entirely automatic method, with no hand-tuned parameter, that
takes data from one sensing modality and evaluates whether
or not to fuse with points from a distinct sensing modality.
This evaluation is based on the estimated impact that this
addition will have on the model. If adding this point improves
the model, it is considered consistent and fused. Otherwise it
is declared inconsistent and set aside.

III. BACKGROUND

A. Continuous Representations using Gaussian processes
In this work, we need to build continuous representations of

objects or environments from data acquired by each sensing
modality available. To that end we use GPs due to their ability
to learn spatial correlations between noisy data in a non-
parametric Bayesian fashion [19]. Assuming a single sensing
modality i, the inputs of the GP are given by the vector
Xi = [xiT

1 , ...,xiT
n ]T , where x

iT

k 2 Rd, 8k is one input point,
d is the dimension of each input point, and n is the number of
training points. In this work d is usually equal to 1 (for range
measurements in a plane), 2 (e.g. for an elevation map), or 3
for full 3D points, as in the experiments in Sec. V. The target
data are given by Y i = [yi

1, ..., y
i
n]T , where yi

k 2 R, 8k.
For example, in the classical 2D example of elevation maps,
yk would be the elevation at a position xk in 2D space [20].
The GP provides a continuous representation of the output
function f represented by the mean estimates f̄⇤

i
(x⇤) with

uncertainties Vi(f⇤(x⇤)) which can be queried at any location
x⇤ 2 Rd. The predicted distribution is given by:

P(f i
⇤(x⇤) | Xi, Y i, ✓i, x⇤) = N (f̄⇤

i
,Vi[f⇤]), (1)

where ✓i are hyper-parameters. The mean f̄ i
⇤ and variance

Vi[f⇤] at x⇤ given the measured data Xi are:

f̄ i
⇤ = k(x⇤, X

i)
T
(K + �i

2I)�1Y i (2)

Vi[f⇤] = k(x⇤,x⇤) � k(x⇤, X
i)

T
(K + �2

i I)�1k(x⇤, X
i)(3)

where K is a covariance matrix and �2
i is the variance of

the noise in the observed data. The hyper-parameters are
✓i = {⌃i, `i, �i}, where `i is the length-scale of the data, and
⌃2

i is the signal variance. Note that �i can be learnt along



with the other GP hyper-parameters. The optimisation of the
hyper-parameters ✓i is done by maximising the log-marginal
likelihood of the targets Y i given the training inputs Xi. This
log-marginal likelihood is given by:

LML(Y i) = �1

2
Y iTA�1Y i � 1

2
ln |A|� n

2
ln 2⇡, (4)

where we denote LML(Y i) , ln p(Y i|Xi, ✓i) and
A = K + �i

2I , for simplicity. The Cholesky decomposition
is used to obtain the predictors (f̄⇤ and V[f⇤]) and the
log-marginal likelihood [19].

In this work the input data are points acquired by range
sensors and we focus on cases where each observation x

is in 1D or 3D. In the 1D case we can use a Gaussian
Beam Process (GBP) [21]. This method allows for a fully
predictive model of range measurements f i

⇤(x⇤) to be built
from only a few recorded range scans Y i and bearing angles
Xi. For the 3D case (d = 3) we use Gaussian Process Implicit
Surfaces (GPIS) [22]. In this paper the experimental validation
is focussed on the 3D case.

GPIS is a framework that models the surfaces of objects
with complex geometry. In this framework, the input points
Xi can be given as 3D point clouds, and the target values Y i

are the values of an implicit function f . In our implementation,
the implicit surface of a 3D object is represented by a 0-level
set function f defined such that f(x) represents the signed
distance between x and the surface of the object [23]. The
values of f(x) are positive for points inside the surface, and
negative for points outside. The estimation of the surface is
done by considering the observation of points on the surface
(f(x) = 0), which are usually the direct observations given by
the range sensors, as well as some points inside and outside,
also called constraints. GPIS follows the same formulation
as described in Eq. (1), where the mean and variance are
computed using Eqs. (2) and (3). 3D surface points and
corresponding variances are then computed for zero values of
f̄⇤ in Eq. (2) and Eq. (3) by querying points in a pre-defined
region that covers the area of the observed object. The surface
of an object of interest is reconstructed by computing the zero
contour of f̄⇤.

B. Gaussian Process Data Fusion

For simplicity let us assume that we have observation
data gathered by two sensing modalities i and j, denoted
(Xi, Y i) 2 Rni⇥d ⇥ Rni and (Xj , Y j) 2 Rnj⇥d ⇥ Rnj .
In [9] we described a method to fuse consistent data from
different sensing modalities using Gaussian Process Data
Fusion (GPDF). The inputs of GPDF can be composed from
the raw data of each sensing modality, e.g. X = [Xi, Xj ] and
Y = [Y i, Y j ]. Alternatively the inputs can be samples from
continuous representations of data from each sensing modality
e.g. X = [Si, Sj ], where Sk =

�
f̄ i(x⇤),V(f i(x⇤))

 
, and a

set of target values Y = [xi
⇤,x

j
⇤]. The variances are integrated

to the GPDF as fixed noise parameters. The result of the fusion
is a continuous representation with corresponding uncertainties
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Fig. 1. The process of robust multiple-modality sensor data fusion presented
in prior work [6]. This process takes data from sensing modality j, Sj , as a
baseline and determines which subset Sj

c of data from modality i is consistent
with Sj by applying a consistency test (CT) using the Mahalanobis distance.
GPDF then fuses Sj with Sj

c . This results in a robust fused model GXij and a
representation �MCT that can be sampled as appropriate for any application.

expressed in f̄⇤ and V[f⇤] respectively:

f̄⇤ = k⇤
T (K + G)�1Y (5)

V[f⇤] = k(x⇤,x⇤) � k⇤
T (K + G)�1k⇤ (6)

where G is a non-fixed noise matrix:

G =


�i

2(Xi)Ini 0
0 �j

2(Xj)Inj

�
(7)

As in [9] we integrate different noise models into the GP
by implementing an input-dependent noise process following
Eqs. (5) and (6). Both noise parameters can be specified, e.g.
based on a predefined model, or they can be learnt along with
the other hyper-parameters.

Note that in the original formulation of the method (in [9])
we assumed that the sensing modalities did not provide any
conflicting data, i.e. that the two range sensors (a laser and a
radar) always detected the same targets when pointing in the
same direction. This was an appropriate assumption for the
experiments conducted in [9]. However, in robotics there are
many cases where this assumption is invalid, which led to the
introduction of a consistency test in our GPDF framework.

C. GPDF with Consistency Test

In [6], we proposed a framework to perform robust data
fusion that considers the difference of perception between
different sensing modalities by introducing a consistency test
applied on the sensor data in a GPDF framework. Consider
that we start from data given by modality j. Given there may
be conflicting data between the two sensing modalities, we
need to determine which subset of data acquired by modality
i should be fused with the data from modality j. The process
is illustrated in Fig. 1.

First, the method uses a GPIS to generate a continuous
representation model GXi using data from sensing modality
i only: [Xi, Y i]. We then sample points Si from the surface,
which come in the form of points where the estimated mean
f̄⇤ = 0 (the estimated distance to the surface), with a
corresponding variance. A continuous representation GXj is
also generated from the data of modality j, using another
GPIS. The corresponding surface is Sj . A consistency test
then evaluates if the sampled points Si are consistent with the
GXj model. Points that pass this test are saved in the subset of
consistent data Si

c while points that fail the test are considered



as inconsistent data, saved in Si
◆ . We then use GPDF to fuse

the data in Si
c with samples from GXj . This produces a final

model GXij and a corresponding surface �MCT .
In this prior work, the consistency test was formulated

within a hypothesis testing framework. Consider the point
currently tested to be x⇤. The hypothesis (H) was that x⇤
is located on Si but not on Sj . To test our hypothesis we
compared the two distributions expressed using Eq. (1) for
modalities i and j, respectively. We used the Mahalanobis
distance (D(x⇤)) to express the distance between the two
distributions at x⇤. Considering that given H , D2 has a �2

density with one degree of freedom, the validity of our hypoth-
esis was subjected to a �2 acceptance test. Our hypothesis was
thus tested using the following criteria:

H : D2 > �2
1�t↵ . (8)

Therefore, we considered that x⇤ was on surface Si but not on
Sj if Eq. (8) was true. We used a significance level t↵ = 0.05,
which gave us 95% probability concentration region of D2.

In [6] we demonstrated the approach with data acquired
by a laser (modality i) and a radar (modality j) in scenarios
where the object (or scene) of interest is partly covered with
a material that is detected by modality i but is transparent for
modality j. An example of this scenario in field robotics is the
presence of thick dust in the air, which is often detected by a
laser but not by a radar, whose waves penetrate through. In this
case, the inconsistent points Si

◆ correspond to the detection of
dust by the radar. Using this proposed process, we were able to
reconstruct a car surrounded by a significant amount of dust,
by fusing radar data with consistent data from the laser.

IV. GPDF WITH LOG-MARGINAL-LIKELIHOOD
CONSISTENCY TEST

The main drawback of the previous method is that a
manually predefined threshold is required to determine how to
separate the consistent data from the inconsistent data. Conse-
quently, the method does not adapt well to different situations
and scenarios, especially when the frontier separating the two
types of data is very fine. In addition, all input points are
tested before any fusion is executed, ignoring the actual impact
that adding points from another modality will have on the
fused model. In this paper, we propose to make the decision
of whether to add points from the second sensing modality
based on the likely impact it will have on the fused model. If
adding a point leads to an improvement of the model (in terms
of data fit) then the point is considered as consistent and is
kept for fusion.

Our proposed method is based on an iterative evaluation of
the log-marginal likelihood (LML) of the data. It incorporates
a trade-off between model fit, model complexity and the
number of points used. This trade-off is achieved by iteratively
updating the model GXj with sampled points from GXi. Each
sampled point from modality i is accepted in the model (i.e.
accepted for fusion) if the LML of the model with the added
point is greater than the LML without the point. The output of

GPi
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LML
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GPj
Xj

GXj
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iLMLCT
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�  iLMLCT

Fig. 2. GPDF with iLMLCT. k random samples taken from the model
GXi are tested for consistency with GXj prior to fusion. If adding a
sample improves the model then the point is fused and the model GXup

is updated accordingly. This improvement is tested using a log-marginal
likelihood criteria. This process is repeated to test all k samples. The output of
the process is the fused model GXup, from which a continuous representation
�iLMLMCT can be sampled as appropriate for any application.

Algorithm 1: Iterative LML Consistency Test Algorithm
Input: GXi, GXj , Xj , Y j

Output: GXup, Si
◆ , S

i
c

Parameters: �i, �j , k, K, L
1 [Xi⇤, Y i⇤] = sample(GXi, Ni)
2 [Xup, Y up] = [Xj , Y j ]
3 GXup = GXj

4 for p = 1 : k do
5 Y j+ = Y up [ Y i⇤(p)

6 Xj+ = Xup [ Xi⇤(p)

7 K⇤ = KUpdate(K, Xj+(p))

8 if LML(Y j+) > LML(Y up) then
9 [L, GXup] = GXUpdate(GXup, K⇤, �j , �i, L)

10 Y up = Y j+

11 Xup = Xj+

12 Si
c = Si

c [ [Xi⇤(p), Y i⇤(p)]
13 K = K⇤

14 else
15 Si

◆ = Si
◆ [ [Xi⇤(p), Y i⇤(p)]

this process is a fused model (GXup) that incorporates only
the consistent data from modality i into the model GXj .

A. Iterative Consistency Test using LML
The proposed process of iterative log-marginal likelihood

consistency (iLMLCT) test is illustrated in Fig. 2 and Al-
gorithm 1. Similarly to the process described above in
Sec. III-C, we start with a GPIS model built from data from
modality j only, and consider which part of the data from
modality i should be integrated in a fused model. First a model
GXi is built from the modality i data only, which provides
a continuous representation, and also the sensor data noise
characteristics. Ni samples ([Xi⇤, Y i⇤]) are then randomly
taken from GXi (on the surface at f = 0 in the 3D case).
In practice, in this paper we used Ni = 2 ni, where ni is the
number of input points from modality i, i.e. the size of Xi.
Then, for each sample, one by one, we evaluate the potential
impact the addition of this sample would have on the model.
This is tested by comparing the log-marginal likelihood of



the current model LML(Y up) (from Eq. (4)) with the log-
marginal likelihood after adding the new point, LML(Y j+):

LML(Y j+) = �1

2
Y j+

T
B⇤�1Y j+� 1

2
ln |B⇤|� n + 1

2
ln 2⇡,

(9)
where Y j+ = Y up [ Y i⇤(p) is the new set of targets, and
B⇤ = K⇤ + diag(�2

j , ..., �
2
j , �

2
i ). K⇤ is the updated covari-

ance matrix, and is obtained by augmenting K with the
covariance values between the new point Xi⇤(p) 2 Rd and
the set Xj (see in Line 7 of Algorithm 1).

If LML(Y j+) > LML(Y up) then the new point is consid-
ered as consistent, therefore, it is added to the subset Si

c and
will be fused in the model. Thus, the set of points Xup, Y up

and model GXup including the Cholesky factor L and co-
variance K, will be updated by adding the new observation.
Updating the model (see details below in Section IV-B) is
done by using the function GXUpdate which approximates
the inversion of an updated K⇤ by computing a Cholesky
factor L0.

On the other hand, if the LML with the added point is
lower, then the point is considered inconsistent, therefore, it
is added to Si

◆ and is not labelled for fusion in the model.
The process is repeated for each of the Ni samples taken
from modality i. Once the process is completed, we have
an improved continuous model GXup that is the result of
the fusion of data from modality j with the full subset of
consistent data from modality j. The model can then be
sampled as needed by the application, for example to generate
a surface �up in the 3D case.

B. Updating the Model with New Points
Since this method requires updating our GP model iter-

atively, and building a new GP model is computationally
expensive, it is important to perform this operation in an
efficient way. We use the Cholesky decomposition to reduce
the computational cost from O(n3) to O(n2) [24] when
incorporating a new point (x⇤) into a covariance matrix K.
This is calculated as shown in Eq. (10) and (11), where
K3,3 = k(x⇤,x⇤) and c3 is the solution of the linear system
Lc3 = k1,2, where c3 = [a b]T :

M =

"
K1,1 K1,2

K1,2 K2,2

#
, L =

"
C1,1 C1,2

0 C2,2

#
(10)

L0 =

2

64

C1,1 C1,2 a

0 C2,2 b

0 0 chol(K3,3 � cT3 c3)

3

75 (11)

The mean estimates f̄⇤ and variances V[f⇤] are computed
using the new Cholesky factor L:

f̄⇤ = KT
⇤ ↵, (12)

V[f⇤] =
L0

K⇤
, (13)

where ↵ = LT \(L0\Y up). This process is repeated for each
of the Ni sampled points from GXi that need to be added to
the model.

V. EXPERIMENTAL VALIDATION

We evaluated the ability of the approach to generate accurate
reconstructions of the surfaces of objects in the environment
by fusing data acquired by two distinct sensing modalities.
Both sensors have been spatially aligned a priori, and in all
experiments the targets detected by the sensors are static in
the form of 3D point clouds. We first evaluated the proposed
approach using synthetic data of objects scanned by virtual
sensors (Sec. V-B), then using real experimental data of
objects scanned by sensors on-board an outdoor mobile robot
(Sec. V-C). In this section, we first describe the metrics used
to analyse the results, then we describe and analyse the results
obtained using simulated and experimental data.

A. Performance Metric
To evaluate the performance of the proposed robust Data Fu-

sion approach, in the experimental results below we compute
the accuracy of the fused continuous representations obtained
after robust fusion and compare them with the method in prior
work and with the reconstructions achieved with only one type
of sensing modality. To calculate the error between a set of
samples from an estimated surface S⇤ and a ground-truth (GT)
surface (e.g a CAD model), SGT , we compute the root-mean-
squared error (RMSE) of the Euclidean distance between each
point X⇤(p) on S⇤ and the closest point on SGT . Naming this
distance dist(X⇤(p)) and considering N sample points gives:

RMSE =
NX

p=1

p
dist2(X⇤(p))

N
. (14)

In the experiments below we use N = 10, 000 samples.

B. Simulated Objects Test case
We first validated the ability of the approach to accurately

reconstruct the surface of 3D objects (d = 3) by using
synthetic data and setting up different challenging scenarios, in
particular due to the presence of a material that is transparent
for one sensor but not for the other. We show that the method
can accurately reconstruct the surface of the objects even when
they are partially covered by this transparent material.

1) Testing Conditions: Synthetic objects were scanned by
two virtual sensors namely i = L (virtual laser) and j = R

(virtual radar), with XL 2 RnL⇥d and L 2 XRnR⇥d. We
considered objects composed of two different materials, '1

and '2. In this context, sensor L is able to reliably detect
both '1 and '2. However, the material '1 is transparent for
R, which is only able to detect '2. For these simulations, CAD
models of the objects made of '2 were used as ground truth.

2) Space-Bunny Results: In the first test scenario we use
data from the Stanford-bunny [25] in different conditions.
To analyse the difference of perception during data fusion
we tested two different scenarios where the Stanford-bunny
is equipped with different sizes of a helmet that is partially
covering the top of the bunny. We assume that the Stanford-
bunny is made of '2, with a spherical helmet made of '1,
i.e. transparent for modality R (virtual radar). The considered



(a) GT (b) GT
(wireframe)

(c) Laser data (d) Radar data

(e) SL (f) � (g) �MCT (h) �iLMLCT
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p

V[f⇤]), in m

Fig. 3. Stanford Bunny Results. Both sensing modalities consistently observe
the same object. (a) Ground truth: the Stanford Bunny, made of material '2
(in red). (b) Wireframe representation. 3D point clouds from the simulated
scans are shown in (c) for sensor L (nL = 330 points) and (d) for sensor R
(nR = 166 points). (e-h) show reconstructions using GPIS, coloured by
uncertainties, from blue to red, where red is the highest level of uncertainty
(see (i)). (e) GPIS reconstruction using only data from sensor L. (f)
GPIS reconstruction using GPISDF without consistency test. (g) GPISDF
reconstruction with consistency test using Mahalanobis Distance (MCT). (h)
GPISDF reconstruction after consistency test with LML.

TABLE I
RMSE OF GPIS OF STANFORD-BUNNY (IN M)

RMSE ± std. dev.
SL 0.017 ± 0.014
SR 0.049 ± 0.034
� 0.016 ± 0.012
�MCT 0.017 ± 0.013
�iLML 0.017 ± 0.013

% inconsistent points
MCT 3%
iLMLCT 2%

noise level was taken as �L = 0.03m for sensor L and as
�R = 0.1m for sensor R. We call this object the Space Bunny.
The bunny fits in a box of dimensions 1.4 ⇥ 1.5 ⇥ 0.6 m3.

To get some initial insight into the performance of the
the consistency test methods we first tested a control case
where the bunny has no helmet, hence there is no significant
difference of perception between the sensors (see Fig. 3).
Because both sensing modalities are able to detect materials
'2, the method should find that all points from both sensing
modalities are consistent. Any point found to be inconsistent
would represent a false alarm. Table I quantifies the results
obtained for the Stanford-Bunny in terms of RMSE and
standard deviation (std. dev.) of the error over the N samples,
as defined in Sec. V-A. The GT is the full-resolution surface
representation of the bunny. Results for laser reconstruction
SL, radar reconstruction SR, fusion without consistency test
�, fusion with Mahalanobis distance consistency test (MCT)
�MCT and fusion with LML test �iLML, are compared.

TABLE II
RMSE OF GPIS OF

SPACE-BUNNY WITH BIG
HELMET (IN M)

RMSE ± std. dev.
SL 0.102 ± 0.152
SR 0.049 ± 0.036
� 0.165 ± 0.164
�MCT 0.017 ± 0.024
�iLML 0.017 ± 0.020

% inconsistent points
MCT 38%
iLMLCT 39%

TABLE III
RMSE OF GPIS OF

SPACE-BUNNY WITH SMALL
HELMET (IN M)

RMSE ± std. dev.
SL 0.074 ± 0.079
SR 0.049 ± 0.036
� 0.073 ± 0.080
�MCT 0.030 ± 0.019
�iLML 0.029 ± 0.019

% inconsistent points
MCT 23%
iLMLCT 27%

We can see that the accuracy obtained by the fusion methods
with consistency test is comparable with the regular fusion
without the test, which confirms that almost all points were
found consistent. The table also shows that, as expected, only
a very small fraction of L points (2%) were found inconsistent
and excluded from the fusion points by the iLML test.

Fig. 4 shows the Space Bunny. We considered two scenarios,
by varying the dimensions of the helmet. The first case
shown in Fig. 4 is the Space-Bunny-Big-Helmet (a-h), where
the helmet covers the whole top of the bunny. This object
fits in a box of dimensions 1.5 ⇥ 1.8 ⇥ 0.8m3. The second
scenario is Space-Bunny-Small-Helmet (i-p). It is even more
challenging, with a smaller helmet that does not cover the ears
completely, and also intersects with the head of the bunny.
The Space-Bunny-Small-Helmet fits in a box of dimensions
1.4 ⇥ 1.5 ⇥ 0.7m3.

Table II shows the RMSE results for the Space-Bunny-
Big-Helmet. The objective is to accurately reconstruct the
bunny itself, despite the presence of the helmet. Therefore,
the ground-truth surface in this case was that of the bunny
alone. We can see that the fusion methods with consistency
test are again nearly three times as accurate as what could be
achieved with the virtual radar data alone (RMSE = 0.017m
vs. 0.049m), and 10 times more accurate than the fusion that
integrates all points from both sensing modalities (i.e. without
consistency test). Note that the results obtained with the MCT
and the new iLML method are comparable, but the uncertainty
is slightly lower with the latter. To reach those results, both
methods excluded a significant percentage of the L points from
fusion (close to 40%), as they were found to be inconsistent.

Table III shows the RMSE results for the Space-Bunny-
Small-Helmet. Again both fusion methods with consistency
tests produce an accurate representation of the surface of the
bunny, but in this more challenging situation, the new iLML
method performs better, with slightly lower RMSE, and this
was obtained without hand-tuning any threshold. To reach
those results, the new method excluded more inconsistent
points from fusion than the previous method (27% vs. 23%).

3) Knot-Oval Results: In the second test scenario we con-
sider the task of reconstructing the surface of a knot made
of '2 despite the presence of a polygonal ellipsoid made
of '1, i.e. transparent for sensor L, and with noisier data:



(a) Object (full) (b) Object (wire-
frame)

(c) Laser data (d) Radar data

(e) SL (f) SR (g) �MCT (h) �iLMLCT

(i) Object (full) (j) Object (wire-
frame)

(k) Laser data (l) Radar data

(m) SL (n) SR (o) �MCT (p) �iLMLCT

Fig. 4. Variants of the Space-Bunny object. (a) and (i): The synthetic object
composed of a spherical helmet made of material '1 (in blue) on top of the
Stanford bunny, made of material '2 (in red, GT). (b) and (j): Wireframe
representation, showing the part of the Bunny occluded by the helmet. 3D
point clouds from the simulated scans are shown in (c) (482 points) and
in (k) (251 points) for sensor L, and in (d) and (l) for sensor R (166
points). (e-h) and (m-p) show reconstructions using GPIS, coloured by
uncertainties, from blue to red, where red is the highest level of uncertainty.
(e) and (m): GPIS reconstruction using only data from sensor L. (f) and
(n): GPIS reconstruction using only data from sensor R. (g) and (o):
GPISDF reconstruction with MCT. (h) and (p): GPISDF reconstruction
after consistency test with LML.

�L = 0.06m and �R = 0.25m. In the first case considered,
the ellipsoid covers the knot entirely, see Fig. 5(a-e). As a
result, modality R only perceives the knot while sensor L only
perceives the ellipsoid around it. This means that effectively
all sensor L data points are inconsistent with sensor R data
points. We name this object Knot-Big-Oval. The object fits in
a box of dimensions 2.99 ⇥ 3.36 ⇥ 2.35 m3. Table IV reports
the quantified results for the surface reconstructions shown
in Fig. 5(f-h). The RMSEs show that the reconstruction of
the knot by the method using the MCT test is worse than
the surface reconstructed with radar data only (SR), while the
surface obtained with the new test iLML is almost as accurate
as SR. This is most likely due to the fact the MCT method only

(a) Object (full) (b) GT (c) Object (wire-
frame)

(d) Laser Data

(e) Radar Data (f) SR (g) �MCT (h) �iLMLCT

(i) Object (full) (j) GT (k) Object
(wireframe)

(l) Laser Data

(m) Radar Data (n) SR (o) �MCT (p) �iLMLCT

Fig. 5. Knot-Oval Results. (a) and (i): Full objects, including a polygonal
ellipsoid made of material '1 (in blue). (b) and (j): The object to reconstruct:
knot made of material '2 (in red, GT). (c) and (k): Wireframe representation
of the full object. 3D point clouds are shown in: (d) (nL = 282 points) and
(k) for (nL = 343 points) for L data, and (e) and (m) for R data (nR = 85
points in both cases). (f-h) and (n-p): Reconstructions using GPIS, coloured
by uncertainties, from blue to red, as shown in the colour bar. (f) and (n):
GPIS reconstruction using only data from Sensor R. (g) and (o): GPISDF
reconstruction using MCT. (h) and (p): GPISDF reconstruction using iLML.

TABLE IV
RMSE OF GPIS OF

KNOT-BIG-OVAL (IN M)

RMSE ± std. dev.
SR 0.055 ± 0.051
�MCT 0.069 ± 0.065
�iLML 0.058 ± 0.054

% inconsistent points
MCT 92%
iLMLCT 97%

TABLE V
RMSE OF GPIS OF

KNOT-SMALL-OVAL (IN M)

RMSE ± std. dev.
SR 0.055 ± 0.051
�MCT 0.089 ± 0.086
�iLML 0.037 ± 0.039

% inconsistent points
MCT 78%
iLMLCT 76%

rejected 92% vs. 97% for iLML. In some places the ellipsoid’s
surface is very close to the knot’s, making the consistency test
challenging, especially for MCT considering the high level of
noise in the R data.

The second case is even more challenging: the polygonal



Fig. 6. The UGV equipped with laser and radar sensors used in this work.

ellipsoid is slightly smaller and its surface intersects with
the knot in many places, see Fig. 5(i-l). Modality R still
perceives the knot only, while sensor L perceives the ellipsoid
and a few sections of the knot (Fig. 5(i)). We name this
object Knot-Small-Oval. Table V quantifies the accuracy of the
surface reconstructions shown in Fig. 5(n-p). Once again the
reconstruction of the knot when using the MCT test is worse
than SR. On the other hand, the RMSEs obtained indicate that
the surface obtained with iLML is significantly more accurate
than SR. Although the shape of SR looks reasonably accurate
in Fig. 5(n), the knot is actually too thin compared with the
ground truth and �iLML.

C. Real-World Experiments
1) Experimental Setup: We also tested the proposed ap-

proaches using real experimental data extracted from the
datasets in [26], which were collected using an unmanned
ground vehicle (UGV) (see Fig. 6) equipped with two range
scanners (laser and mm-wave radar) and a cm-accuracy 6-DOF
dGPS/INS localisation unit. The laser was a 2D Sick LMS291,
with a 180� field of view (FOV), 0.25� angular resolution
and a range resolution of 0.01m. The mm-wave radar was
a 94GHz Frequency Modulated Continuous Wave (FMCW)
radar. Its field of view (FOV) is 360�, but it was restricted to
the front view in these experiments, to be comparable with the
laser. The radar’s angular resolution is 2� and range resolution
is 0.2m. The two sensors were roughly aligned at a fixed tilt
angle, and then calibrated to determine the actual transforma-
tion between them. To acquire the 3D data, the platform was
driven around a rural environment, scanning objects multiple
times from multiple perspectives from distances varying from
2m up to 30m. Dust was introduced into the scene, affecting
the perception of the laser scanner, which consistently detected
airborne dust particles.

2) Data Preparation: Laser and radar data were pre-
processed as described in [9]. The result is a set of 3D
points per scan, similar to the data provided by a multi-echo
laser sensor. Laser and radar raw scans were then cropped
to only keep data where the two sensors’ FOVs overlap.
Laser and radar points were then transformed into a common
global navigation frame. This transformation was obtained by
combining the output of a prior extrinsic sensor calibration
(using the technique in [27]) with the localisation of the UGV.

Fig. 7. The UGV (left) observing the car (right) surrounded by dust.

The object of interest was then manually segmented from the
full point cloud obtained with each sensing modality.

3) Experimental Results: We followed the proposed pro-
cess to perform a robust GPIS data fusion, where individual
laser and radar surfaces (SL and SR, respectively) were first
generated and then subjected to the proposed consistency test.
Since we operated in environments with airborne dust, in these
experiments we considered the radar as the baseline sensing
modality (i.e. modality j in the algorithm described in Sec. IV)
and we used the consistency test to determine which points
from the laser should be fused into the model.

A car covered with airborne dust was scanned by our UGV
(see Fig. 7). The car’s surface was then reconstructed using
GPIS for each sensing modality, and using our proposed
method. Figs. 8(a) and 8(b) show the raw data acquired by
the laser and radar, respectively. Fig. 8(d) shows that GPISDF
without consistency testing generates an unrecognisable shape,
and has high uncertainty levels. This is because many dust
points were fused together with points from the car. On
the other hand, the proposed GPIS robust data fusion (see
Fig. 8(f)) was able to recover the basic shape of the car,
without the inconsistent data from the dust, and also to
dramatically reduce the uncertainty levels of the estimates.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new data fusion method
based on Gaussian Processes that is appropriate for data pro-
vided by distinct sensing modalities. The method introduces
a non-parametric data consistency test based on the iterative
evaluation of the log-marginal likelihood of the data. We
provided experimental analysis comparing the results of 3D
surface reconstructions with other algorithms including single-
modality reconstructions and our previous method based on
the Mahalanobis distance. The proposed method showed a sub-
stantial improvement in the accuracy of surface representations
and a reduction of uncertainty, especially in challenging cases
when conflicting data between different sensing modalities
were spatially close to each other.

In future work, we consider building highly accurate
ground-truth of objects scanned by UGVs in the field to further
evaluate the impact of this method in field robotics scenarii.
We will also extend the experimental analysis by using other
performance metrics such as the negative log probability



(a) Raw laser data. (b) Raw radar data.

(c) Radar Reconstruction (SR) (d) Data fusion without Consistency
Test (�).

(e) �MCT (f) �iLMLCT

Fig. 8. Experimental results. Estimation of the surface of a car covered with
dust, as shown in Fig. 7. Surface reconstructions are coloured by uncertainties,
from blue to red, where red is the highest level of uncertainty. (a) Raw laser
data. (b) Raw radar data. (c) GPIS Radar Reconstruction surface estimate.
The reconstructed car fits in a box of dimensions 3.25⇥ 1.89⇥ 5.02m3.
(d) GPISDF surface estimate without consistency test, showing parts
of the car and the dust cloud, The reconstructed car fits in a box of
dimensions 4.49⇥ 2.32⇥ 6.93m3. (e) Surface reconstruction obtained with
the GPISDF with the MCT method. (f) Surface reconstruction obtained with
the GPISDF with the proposed iLMLCT method.

(NLP), which takes prediction variance into account [19]. One
of the limitations of the proposed method is that covariance
matrix updates will be more computationally expensive as
more points are added to the reference model. We could
reduce the number of initial points to be tested by performing
a preliminary consistency test such as suggested in prior
work [6], with a very tolerant criteria. Another improvement
can be obtained by using sparse approximations [28]. Finally,
although the results in this paper were obtained using two
sensing modalities, the framework could also be used for
situations with a larger number of sensing modalities.
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