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MOMENT PROPERTIES OF ESTIMATORS FOR AN
EXTREME VALUE REGRESSION MODEL WITH TYPE 2 CENSORING

by

A.A. Haddow and D.H. Young

SUMMARY

An extreme value regression model for grouped data with type 2
censoring is considered. The response variable is taken to have a
type 1 extreme value distribution for smallest values and a standard
linear regression model is assumed for the means. Large sample
approximations to the variances of the maximum likelihood estimators
are derived. The small sample moment properties of the maximum
likelihood estimators are evaluated by simulation for the case of
simple linear regression. The results show that the estimator of
the scale parameter has a strong bias in small samples, particularly
when there is a heavy degree of censoring. Finally, small sample
variance and mean square error efficiences of the best linear unbiased

estimators relative to the maximum likelihood estimators are assessed.
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1. INTRODUCTION

We consider a regression model for grouped data in which there are
g groups of individuals, the ith group containing n; individuals. Let
Yi; be a random variable representing the response for the jth individual

in the ith group. It is assumed that the {Y;;} are independently dis-
tributed and thaty, ,...,Y; have the same type 1 extreme value (EV)

distribution for smallest values with density

fi(y)=lexp L—y—exp u—y , —0<y< 00, (1.1)
0 0 0
We have
1
E(Yij>= M Var(Yij): gnzez (1.2)
fori=1,...,g,j=1,..., n. The individuals in the ith group have
the same values X, ,...,X; for k repressor variates and a linear model

for the mean p. is assumed with
wo=X;p i=1,..g (1.3)

~

where Xi' = (I,Xi],s....,Xik) and B'= (BO,BI,...,Bk) is a vector of

regression coefficients with unknown values.

A common application for the extreme value regression model occurs
in life-testing when the response variable represents the logarithm of
the time to failure. Right censoring of the observations is common in
such cases because of the need for early termination of the investigation.
Several forms of censoring are possible. Here we shall consider type 2
censoring within groups. For the ith group, we suppose that the r;.

smallest observations denoted by Y, <Y, <..<Y,,) are observed,

the remaining n;—r; observations being right censored at the value Y,(r_).

1

The {r;} are fixed integers satisfying 1< r; < n;. We let R = Zri

denote the total number of uncensored observations.

The most commonly used method of estimation for the regression co-
efficient vector B and scale parameter 0 is maximum likelihood, which is
described in section 2. The large sample variances of the maximum like-
lihood estimators are given in section 3, together with the small sample
moment properties as estimated by simulation for the case of simple linear

regression. The results show that the bias of the estimator of the scale



parameter 0 is large when there is a heavy degree of censoring within

the groups, indicating that bias correction will be necessary in
statistical inference procedures for P and 6. With type 2 censoring,

best linear unbiased estimation based on the ordered observations
available within the groups provides an alternative to maximum like-
lihood. The variances of the best linear unbiased estimators are given
in section 5. Finally in section 6 the small sample variance and mean
square error efficiencies of the best linear unbiased estimators
relative to the maximum likelihood estimators are evaluated for the

case of simple linear regression.

2. MAXIMUM LIKELIHOOD ESTIMATION
The likelihood for the ith group is

¢, ={n!/(n -1 ) Hf(ylo) {1-F (ye, "7 (2.1)

where
Fi(Y)=1—exp[—exp{6"l(y— Z(I'E ) —y}], —0<y<oo (2.2)
is the c.d.f. for the ith group. Set

Zy=0"(yiy— XiB ) -y, i=lL..g, j=l..g 2.3)

b

VI = 3 (7 + 1) + (0, =0z, +7)' e, i=1,g, (2.4)

j=1
The log-likelihood L=Z:log£i over all groups is

L=c—Rlogh+> <> Z, -V (2.5)

i =
where C=Zlog{ni!/(ni—ri)!}. using

i

0z __Xis 0y _ (2 +Y) 2.6)
0B, 0’ o0 0 '
we obtain
a—Lze*ZXis(vfm—ri), s=0,1,....,k 2.7

P,



oL
£=e-1 DV 7, -Riy+1) (2.8)
i i j

The likelihood equations are

X VO =Drx,,  s=01,....k (2.9)

VO3 N7 =R(y+1) (2.10)
i i j

where \A/i(a) and Zi(j) denote the values of V* and Z,,, respectively,

evaluated at E :E and 0 =0.

The second order derivatives of the log-likelihood are

o°L

=07) X X. VO, s,t =0,1, ...,k 2.11
aBSaBt z 1s“7it N1 ( )
oL =07 X, (V" +V” -1), s=0,1,.k (2.12)
oB,00 i
aZL__ -2 () My _ _
o 072> (VP +2v)=2>" > 7. —R(1+2y)}. (2.13)

1 ]

The solution of the likelihood equations (2.9) and (2.10) can be
found by the Newton-Raphson method using the (k+2)x(k+2) observed

information matrix

o’L o’L  o’L 0L
Bo BB, ByOBy P,
2 2 2 2
1= o°L 51; oL L (2.14)
BB, P, oB,0P,  0P,00
o’L o’L . oL o’L B =P
000B,  00OP, 000,  00° j_p

with the appropriate partial derivatives given by (2.11), (2.12),
(2.13). I,can be simplified slightly using the likelihood equations.
For example, consider the important case of a single regressor variate,

where X' B=p,+B,X;. We then have



ROYrx, X9

1, = 0 ZriXi Zl:Xiz\A/i(O) ZXi\AfiU) (2.15)

i(,p IZXi\}im VO 4R

An alternative method to Newton-Raphson to obtain the ML estimates
was proposed by Roger and Peacock (1982), for implementaton with GLIM.

The justification for their method is as follows. Put

Yo = Yy Ziy =Zy, for j=r,5+l....n (2.16)
and let
1 for j=1,....1,
L= . (2.17)
"0 for  j=r+1,...,n,
From (2.5) the log-likelihood may be written as
g 0
L=c-Rlogf+> {52, -expZ)} (2.18)
=l j=l
Put a=0" and
mlj=exp(ZiU)) , i=1,...., j=1,...,n, (2.19)
We may write
log m;; = ay,; + X{B’ (2.20)
Where
B"' ={—(aoy+7), —aP,....—af, } . (2.21)
From (2.18) we have
g n;
L=c+Rlog (“'Z Z(Bij logm;; —m;;) . (2.22)

i=l =l

Ignoring constants, this expression is equivalent to the log-likelihood



that would be obtained for realised values {3;;} for independent Poisson

random variables with means m; ; satisfying (2,20) and a realised value R
for an independent binomial random variable based on R trials with trial
success probability a. Roger and Peacock give a computer program using

the user defined fitted model facilities in GLIM from which the values
of a and B~ which maximise (2.22) can be found. The required ML estimates

are then given by
0=a", By=(By+v0 ., B.=—0B, s =1,...k. (2.23)
3. MOMENT PROPERTIES OF THE ML ESTIMATORS

The maximum likelihood estimators are asymptotically unbiased with
asymptotic covariance matrix given by the inverse of the expected
information matrix. To obtain the elements in this matrix, we require

expressions for E(Z; ,) and

EY =E{Z8,exp(Z,,)}, a=0,12 (3.1)

where Z; , denotes the jth order statistic in a sample of n observations
from the standard extreme value distribution with p.d.f. f(z) = exp(z-¢°),
—00<Z <.

From order statistic theory, the p.d.f. of Z;, is

gin(2) = m{F( 2)}7{1-F(2)}" 'f(2)

i1

(_]Tll])'z( n* _] llexpiz—(n—j+u+l)e’}. (3.2)

The moment generating function of the distribution of Z;, 1is
M, (0= exp(tz)gjn<z)dz

B \ I't+1)
_(_] l)v(n Z( ) u (n—j+u+1)”" (33)

a d(a)M j,n (t)
Ef, = {—J’ - (3.4)

Since

dt

we obtain



() 1
Ej’n_(] 1)'( - )'z( v’ Jul (n—j+u+l)’ (3-5)
@ _ 3 \F(Z) logln—j+u+1)
R —)'Z( b (h—j+u+]) G0
g -t z( (] I'(2)-2I' (2)log(n— j+u+1)+log’(n—j+u+1)
G- 1)'( - )' (n—j+u+1)’
(3.7)
Also
M T \log(n j+tu+l)
B2, =M, O =T -5 _)2( 1)"(j il (3.8)
We have
E(V?) = ZE“” +(n; -1,)EY, (3.9)
BV = Z<E§ﬂl +YED )0, —1)(EL, +ES, ) (3.10)

j=1
E(V?) = Z (EP) +2yE{) +y*Ef) + (n,—1)(EY, +2yE") +7’EY)) (3.11)
which may be used to find the expectations of the negative values of
the second derivatives of the log-likelihood given by (2.11), (2.12)
and (2.13). The value of E(Z;) required in (2.13) is given by (3.8)

with n=n,.

In order to examine the moment properties of the ML estimators,
a Monte Carlo simulation study was made for the case of a single
explanatory variable with grouped data, the model without censoring
being

Y, =B, +B X +e; , i=1,... , j=1,...,m (3.12)
where Efg}=0, var {sij}:énzﬁzand the {Y;;} are independently
distributed with p.d.f. for Y;; given by



£(3)= é exp {y—Boe—BIXi . y_exp(y—ﬁoe—ﬁlxi _Yj} (3.13)

Equally spaced values of x were used with x; = i—%(ngl),

i=1,...,g. Equal sample sizes mi = m =5, 10, 20 were used with
g= 5, 10 and equal censoring proportions p = 0.0, 0.20, 0.40, 0.60
were applied in each group. Without loss of generality,the
y-observations were generated putting Bo- Bi;= 0 and 6= 1 in the
regression model. The ML estimates were obtained using a GLIM
program based on the Roger/Peacock method. A run-size of 2000 was
used in each case.

Values of the biases, variances and skewness coefficients of
the ML estimators are shown in tables 1, 2 and 3 for Bo, 1 and 6
respectively. The approximating variances given by the diagonal
elements in the inverse of the expected information matrix are

shown in parentheses. The main findings are as follows.

a) For estimation of By, the bias of the ML estimator was
negligible when no censoring was present. With censoring there
was a negative bias which became more pronounced as the degree of
censoring increased. The large sample variance approximations ob-
tained from the inverse of the information matrix gave good agree-
ment with the simulation variances, although there was a slight
underestimation when there was a heavy degree of censoring. The

skewness coefficients were positive but small in all cases showing
that the distribution of B, was almost symmetrical.

b) For estimation of B;, the biases of the ML estimators were
negligible in all cases. The large sample variance approximations
gave slightly smaller variances than obtained by simulation, but
the differences were generally very small. The skewness coefficients

were all close to zero.

c) For estimation of 0, the negative bias of 0 for the uncensored
case became more pronounced as the degree of censoring increased.
The large sample approximating variances gave higher values than the

simulation variances, particularly when there was heavy censoring.
The skewness coefficients for 0 increased with the degree of censoring,

but in general the skewness was small.
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Table 1

Biases x 107 0'1, variances x 10202 and skewness coefficients of the

ML estimates of the Bo

p Bias Variance Skewness
0.0 0.54 6.918(6.728) 0.028
m=5 0.2 -1.13 7.128(6.790) 0.033
g=5 0.4 -4.46 8.015(7.318) 0.048
0.6 -13.47 11.729(10.021) 0.006
0.0 0.10 3.186(3.364) 0.031
m=10 0.2 -0.68 3.196(3.371) 0.029
g=5 0.4 -2.48 3.553(3.599) 0.047
0.6 -7.38 5.409(5.077) 0.052
0.0 0.53 1.571(1.644) 0.025
m=20 0.2 0.17 1.583(1.565) 0.023
g=5 0.4 -0.72 1.712(1.753) 0.017
0.6 -3.10 2.571(2.588) 0.034
0.0 0.04 3.362(3.364) 0.034
m=5 0.2 -0.71 3.439(3.395) 0.038
g=10 0.4 -2.37 3.815(3.659) 0.036
0.6 -6.40 5.547(5.010) 0.007
0.0 0.08 1.687(1.682) 0.007
m=10 0.2 -0.27 1.706(1.686) 0.006
g=10 0.4 -1.15 1.855(1.799) 0.009
0.6 -3.43 2.807(2.539) 0.017
0.0 0.31 0.756(0.822) 0.027
m=20 0.2 0.15 0.760(0.782) 0.031
g=10 0.4 -0-31 0.834(0.876) 0.032

0.6 -1.67 1.277(1.294) 0.051
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Table 2

Biases x 107 0'1, variances x 102 0% and skewness coefficients of the

ML estimates of ;

P Bia Variance Skewness
0.0 -0.11 2.151(2.000) 0.060
m=5 0.2 -0.13 2.757(2.500) 0.025
g=5 0.4 0.37 3.746(3.334) 0.030
0.6 1.00 5.814(5.000) 0.019
0.0 -0.09 1.061(1.000) 0.001
m=10 0.2 0.03 1.303(1.250) 0.011
g=5 0.4 -0.04 1.799(1.666) 0.003
0.6 -0.08 2.929(2.500) 0.017
0.0 0.04 0.521(0.502) 0.003
m=20 0.2 0.01 0.664(0.624) 0.002
g=5 0.4 0.09 0.869(0.821) 0.006
0.6 0.23 1.316(1.253) 0.002
0.0 -0.03 0.260(0.242) 0.001
m=5 0.2 0.02 0.336(0.303) 0.000
g=10 0.4 -0.05 0.452(0.404) 0.007
0.6 -0.08 0.715(0.606) 0.019
0.0 0.12 0.133(0.121) 0.007
m=10 0.2 0.24 0.158(0.152) 0.015
g=10 0.4 0.19 0.217(0.202) 0.030
0.6 0.15 0.324(0.303) 0.035
0.0 0.04 0.063(0.060) 0.010
m=20 0.2 0.02 0.078(0.076) 0.003
g=10 0.4 -0.05 0.102(0.100) 0.005
0.6 0.00 0.153(0.152) 0.002



11

Table 3

Biases x 107 0'1, variances x 102 0% and skewness coefficients of the

ML estimates of 0

P Bias Variance Skewness
0.0 -5.69 2.433(2.728) 0.093
m=5 0.2 -8.20 3.389(3.834) 0.140
g=5 0.4 -10.97 4.580(5.335) 0.186
0.6 -16.49 6.689(7.803) 0.276
0.0 -2.52 1.208(1.364) 0.005
m=10 0.2 -3.65 1.776(2.008) 0.068
g=5 0.4 -5.27 2.461(2.886) 0.041
0.6 -8.42 3.498(4.392) 0.069
0.0 -1.73 0.584(0.651) 0.011
m=20 0.2 -2.17 0.894(0.765) 0.010
g=5 0.4 -2.87 1.335(1.325) 0.024
0.6 -4.37 2.087(2.523) 0.069
0.0 -2.83 1.275(1.364) 0.085
m=5 0.2 -3.96 1.772(1.917) 0.079
g=10 0.4 -5.34 2.385(2.668) 0.095
0.6 -7.70 3.432(3.902) 0.092
0.0 -1.13 0.612(0.682) 0.018
m=10 0.2 -1.62 0.890(1.004) 0.036
g=10 0.4 -2.36 1.252(1.443) 0.039
0.6 -3.75 1.862(2.196) 0.049
0.0 -0.93 0.303(0.326) 0.009
m=20 0.2 -1.16 0.456(0.397) 0.009
g=10 0.4 -1.53 0.647(0.663) 0.013
0.6 -2.47 1.028(1.261) 0.003
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Since the biases of 0 and [30 become increasingly marked as the

degree of censoring increases, approximations to the biases, denoted

by b,(n,p) and by(n,p) respectively, are required. Preliminary plots

for the biases against p suggested the use of the quadratic models
b; (n,p) =b; (n,0)(1+a,p +a,p*) (3,14)

by (n,p) =b, (n,0)(1+a;p+a,p*) (3.15)

where from Young and Haddow (1985)

1.37946 b, (n,0) = — 0.18340 .

b, (n,0) = — (3.16)

n > n

Least squares fits of the models using the biases obtained by

simulation gave the coefficient estimates

a;= 1.099, ap, =13.800, a,=8.908, a,=-67.700.
The approximating formulae for the biases are therefore

b,(n,p) =—(gn)"'0(1.3794+1.516p +5.24p>) (3.17)

b, (n,p) = (gn) ' 0(0.1834 +1.634p — 12.42p*) (3.18)

Values of the approximate biases of § given by (3.17) are
shown in table 4 together with the simulation estimates. The agree-

ment between the values is satisfactory for all values of p and m.
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Table 4

Values of 10°07'b, given by (i) approximation (3,17), (ii) Simulation

estimate
g=5
m=235 m=10 m=20
p (1) (1) (1) (it) (1) (i1)
0.0 -5.52 -5.69 -2.76 -2.52 -1.38 -1.73
0.2 -7.57 -8.20 -3.78 -3.65 -1.89 -2.17
0.4 -11.30 -10.97 -5.65 -5.27 -2.82 -2.87
0.6 -16.70 -16.49 -8.35 -8.42 -4.18 -4.37
g=10
m=35 m=10 m=20
PG G0 (ii) Q) (if)
0.0 -2.76 -2.83 -1.38 -1.13 -0.69 -0.93
0.2 -3.78 -3.96 -1.89 -1.62 -0.95 -1.16
0.4 -5.65 -5.34 -2.82 -2.36 -1.41 -1.53
0.6 -8.35 -7.70 -4.18 -2.47 -2.09 -2.47
4. Moment Properties Of The Best Linear Unbiased Estimators

Based On The Within Group Order Statistics

With type Il censoring within groups, an alternative to ML esti-
mation is to use best linear unbiased estimation. We outline the
procedure. Full details are given by Young and Haddow (1985).

Let ¢;,,=EX,;) and c¢;; =cov (X,,X;), where X(j) denotes
the j th order statistic in a sample of m from the standardised type 1 EV
distribution with c.d.f. F(x) = l-exp{-exp(x)}, -0 < X < o. Put

1 e1,m Cll,m ClZ,m Clr,m
1 eZ,m CZl,m CZ2,m CZr,m
A = e C = . (4.1)
_1 er,m i _crl m Cr2,m Crrm i
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and let aj (r, m), b; (r, m) denote the elements in the first and second
rows of the 2xr matrix (A'C" A)" A'C”" Write

caz| Vim Vim
ACTA= 0 o (4.2)

Values of the expectations {e;m }, covariances {cjjm }, linear co-

efficients {aj(r,m )}, {bj(r,m)} and the elements V., , V% V©

are given by White (1964) for sample sizes m < 20 and for 2 <r < m.

Putting & =p, +v0, the BLUE's for & and 0 based on the order

statistics Y,;) <Y, <..<Y,, in the ith groups are

i(1)

& = Zaj(ri’mi)Yi(j) ., 9, :ij(ri’mi)Yi(j) (4.3)
j=1 j=1
Pooling the estimates for 6 over all groups, the minimum variance
linear unbiased estimator for 0 is

g ~
= Z W.0, say. (4.4)

Set [i, zéi—yé* and ﬁ* = (f.,....,). Based on the {fi;} the

BLUE of B is
B = X W'X)TXIW R, (4.5)
where
_1 Xll . Xlk_ _Wll Wll ng_
1 X, X W, W, .. W2g
)51: ' : ’ W: . (4-6)
1 X, Xy | W, Wy o W,

and



The variance of 0, is

and the covariance matrix for f 1is
~k

Values of the exact variances (x10% 87 ?)of the BLUE's 0.,

W.. =

15

b=V, VO, -V VO, |

1

20 )

i

var(0,) = 0° Z(l/ Vo )

i

cov(B )= (X, W™ X)"0"

(4.7)

(4.8)

(4.9)

[3*0 and ﬁ*l have been computed using (4.8) and (4.9) for the simple

linear regression model used for the study of the ML

(see section 3). The results are shown in table 5.

Table 5

estimators

Exact variances (x10% 6 %?)of the BLUE's ﬁ*o,ﬁ*l,é* for simple

linear regression with type Il censoring.

0.0
*0 0.2

0.4
0.6

=

0.0
0.2

0.4
0.6

>

*1

0.0

0.4
0.6

m=>5
6.523
6.637

7.931
18.392

2.314
2918

5.294
17.892

3.333
5.076

8.336
17.901

g=>5

m=10
3.244
3.276

3.696
6.563

1.133
1.341

2.144
5.593

1.432
2.150

3.315
5.951

m=20
1.616
1.628

1.797
2.900

0.559
0.647

0.981
2.320

0.663
0.997

1.502
2.547

m =5
3.262
3.318

3.966
9.196

0.281
0.354

0.642
2.169

1.667
2.538

4.168
8.951

g=10
m =10
1.622
1.638

1.848
3.281

0.137
0.163

0.260
0.678

0.716
1.075

1.658
2.975

m=20
0.808
0.814

0.899
1.450

0.068
0.078

0.119
0.281

0.331
0.498

0.751
1.273
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5. Small Sample Efficiency Results

We let

Jova®) g _varB) ok (5.1)
var(0.) var(B.,)
denote the variance efficiencies of the BLUE's relative to the ML

estimators. The corresponding mean square error efficiencies are

denoted by

) me) 52

E - n ) r J B
» mse(0.) ’ mse(f.,)

Values of the small sample efficiencies have been estimated
for the extreme value simple linear regression model described in
section 3, and are shown in table 6. The exact variances and mean
square errors of the BLUE's are equal and given in table 5. The
small sample variances and mean square errors for the ML estimates
were based on the simulation estimates given in tables 1, 2 and 3

for the biases and variances.

The general findings are as follows

a) For estimation of By, the efficiency of BLUE relative to ML
is high and changes only marginally for 0 < p < 0.4. At the
highest level of censoring (p = 0.6), the efficiency drops
markedly.

b) For estimation of B, the differences between the variance and
mean square error efficiencies are negligible. The efficiencies
increase marginally as p changes from 0.00 to 0.20, but higher

values of p lead to marked decreases in the efficiencies.

c) For estimation of 0, the mean square error efficiency of BLUE
relative to ML is appreciably higher than the variance efficiency,
particularly at the higher levels of censoring. Both variance

and mean square error efficiencies decrease rapidly when p is large
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Table 6

Variance and mean square error efficiencies of BLUE's relative to

ML estimators for extreme value simple linear regression with censoring

P EIO E20 Ell E21 Ele EZG
0.0 1.06 1.06 0.93 0.93 0.73 0.83
m=5 0.2 1.07 1.08 0.95 0.95 0.67 0.80
g=5 04 1.01 1.04 0.71 0.71 0.55 0.69
0.6 0.64 0.74 0.33 0.33 0.37 0.53
0.0 0.98 0.98 0.94 0.94 0.84 0.90
m=10 0.2 0.98 0.98 0.97 0.97 0.83 0.89
g=5 04 0.96 0.98 0.84 0.84 0.74 0.83
0.6 0.82 0.91 0.52 0.52 0.59 0.71
0.0 0.97 0.97 0.93 0.93 0.88 0.93
m=20 0.2 0.97 0.97 1.03 1.03 0.90 0.94
g=5 04 0.95 0.96 0.89 0.89 0.89 0.94
0.6 0.89 0.92 0.57 0.57 0.82 0.90
0.0 1.03 1.03 0.92 0.92 0.77 0.82
m=5 0.2 1.04 1.05 0.93 0.93 0.70 0.76
g=10 0.4 0.96 0.98 0.70 0.70 0.57 0.64
0.6 0.60 0.65 0.33 0.33 0.38 0.45
0.0 1.04 1.04 0.97 0.98 0.86 0.87
m=10 0.2 1.04 1.04 0.97 0.98 0.83 0.85
g=10 0.4 1.00 1.01 0.83 0.84 0.76 0.79
0.6 0.86 0.89 0.48 0.48 0.63 0.68
0.0 0.94 0.94 0.92 0.92 0.91 0.94
m=20 0.2 0.93 0.93 1.00 1.00 0.92 0.94
g=10 0.4 0.93 0.93 0.86 0.86 0.86 0.89

0.6 0.88 0.90 0.54 0.54 0.81 0.86
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