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Abstract 
 
 

 

Second generation bioethanol is a renewable energy resource produced from 

lignocellulosic biomass with the potential to reduce reliance on oil-based energy. Sugarcane 

bagasse is an abundant source of lignocellulosic material available for bioethanol 

production. The utilisation of bagasse for biofuel production would be environmentally and 

economically beneficial, however, the lignin polymers restrict polysaccharide degradation 

by hydrolytic enzymes. Pretreatment is currently required to overcome the recalcitrant 

nature of lignin polymers, the cost of which prevents the cost-competitive production of 

bioethanol from lignocellulosic biomass. There is a strong consensus in published literature 

that reducing lignin content can increase glucose liberation during enzymatic hydrolysis of 

both wild type and genetically modified plants, including genetically modified sugarcane. 

Whilst lignin biosynthesis has received increasing research attention in some plant species, 

lignin biosynthesis and its manipulation in sugarcane has been explored only in recent 

publications and remains far from being fully understood. This thesis focuses on 

contributing to the limited knowledge available concerning lignin biosynthesis and 

secondary cell wall deposition in wild type sugarcane and the saccharification potential of 

genetically modified, lignin-reduced sugarcane bagasse through the completion of three 

specific aims.  

 

The first aim was to develop a lignin biosynthesis profile in wild type sugarcane by 

correlating gene expression data with cell wall compositional data in sugarcane internodes. 

The expression levels of nine genes within the lignin biosynthesis pathway (PAL, C4H, C3H, 

4CL, CCoAOMT, F5H, CAD, CCR and COMT) were quantified in five sugarcane stem sections 

of increasing maturity (section A through section E) and in root tissue. Analysis found two 

distinct expression patterns in maturing stem tissue. The first pattern saw highest gene 

expression in section A (youngest tissue), which then decreased as tissue matured (sections 

B – E). This pattern was strongest in PAL and CCR, and less pronounced in 4CL, COMT and 

CAD. In root tissue CAD expression did not differ significantly from any stem section, 

whereas root expression of PAL, CCR, 4CL and COMT was equivalent to that of stem section 

A, but higher than more mature stem sections. The second expression pattern saw little to 

no change in transcription levels of C4H, C3H, CCoAOMT and F5H across the five stem 
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sections. Expression of C3H, CCoAOMT and F5H within root tissue did not differ from any 

stem section whereas the root expression of C4H was approximately 9-fold higher than its 

expression in any stem section. The expression pattern of the nine genes did not appear 

linked with their position within the lignin biosynthesis pathway, suggesting the individual 

role of each gene may influence its expression pattern. Cell wall compositional analysis of 

the five stem sections found total lignin content significantly increased between section A 

(the youngest stem tissue) and section B, but in more mature stem, no differences were 

seen between sections B, C, D and E. There were no differences in glucose, xylose or 

galactose across the five stem sections, although section A had significantly higher levels of 

arabinose than the more mature stem regions. This suggests that the deposition of 

structural carbohydrates occurs early during sugarcane stem formation.  

 

The second aim of this thesis was to increase saccharification of sugarcane bagasse by 

reducing lignin content through the transgenic expression of two maize R2R3 MYB 

transcription factors, ZmMYB31 and ZmMYB42, known to control down-regulation of lignin 

biosynthesis in Arabidopsis. Using maize cDNA as a cloning template, the open reading 

frame (ORF) each MYB gene (MYB31 and MYB42) was cloned to both include and exclude 

adjacent sequences of the 5' and 3' untranslated region (UTR). This resulted in two MYB31 

constructs (MYB31 ORF and MYB31 UTR) and two MYB42 constructs (MYB42 ORF and 

MYB42 UTR). 

 

A total of 33 MYB31 (14 ORF and 19 UTR) and 23 MYB42 (10 ORF and 13 UTR) sugarcane 

plants were confirmed qPCR positive for transgene expression. Analysis of young and 

maturing internodes of glasshouse grown plants found MYB31 exerted greater down-

regulatory control over a higher number of lignin biosynthesis pathway genes than MYB42. 

Surprisingly, only one out of 14 MYB31 plants analysed had significantly less total lignin and 

two additional plants had less acid insoluble lignin, with approximately half of the MYB31 

plants having increased hemicellulose contents. Of the 14 MYB42 plants analysed for cell 

wall composition, six had less total lignin but showed little change to cell wall 

polysaccharide levels. The three plants with the lowest total lignin contents for each MYB 

line underwent enzymatic hydrolysis. Two MYB31 UTR plants and no MYB31 ORF plants 

released a greater amount of glucose after 72 hours of enzymatic hydrolysis, whereas all 

MYB42 ORF and UTR plants performed better than the transgenic controls. Phenotypically 

there were no differences between MYB transgenic sugarcane and transgenic controls for 

height and internode number. Reduced internode diameters were observed in some 
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MYB31 plants but not in MYB42 plants. Juice sugar concentrations were also quantified and 

all plants were found to be comparable with controls except a single MYB31 plant having 

significantly lower levels of sucrose. Improved bagasse digestibility without negatively 

impacting juice sucrose levels increases the economic value of these plants to the 

sugarcane industry.  

 

The third aim of this research was to generate lignin altered transgenic sugarcane with 

improved saccharification by specific RNAi targeting of three lignin biosynthetic pathway 

genes; CCoAOMT, F5H and COMT. In total, 12 CCoAOMT-RNAi, 15 F5H-RNAi and 13 COMT-

RNAi plants were regenerated, with each regenerated transgenic plant harbouring only one 

of the three RNAi cassettes generated. As well as potentially reducing lignin content, 

targeting these genes may also affect the H:G:S lignin monomer ratios, which has been 

linked with changes in biomass digestibility. Initial analysis of sugarcane harbouring RNAi 

cassettes suggested down-regulation of each of the target genes was occurring and analysis 

of glasshouse grown plants found this trend continued during plant development. Gene 

down-regulation was greater in more mature tissue than young tissue and stronger in the 

CCoAOMT and F5H lines than in the COMT line. Little correlation was seen between levels 

of RNAi gene down-regulation and cell wall composition. Across the three transgenic lines 

only one COMT-RNAi plant showed a reduction to lignin content. Unexpectedly, one 

CCoAOMT-RNAi and one F5H-RNAi plant had increased lignin deposition. Across the three 

RNAi lines there was little change to structural carbohydrate levels. After 72 hours of 

enzymatic hydrolysis, the lignin reduced COMT-RNAi plant released significantly higher 

levels of glucose. Additionally, one plant from each RNAi line with no differences to lignin 

content also released significantly more glucose. No phenotypic differences were detected 

between RNAi sugarcane and controls comparing height, internode number and internode 

diameter and all plants had juice sucrose levels equivalent to controls with two F5H-RNAi 

plants having significantly higher levels of sucrose. For plants to be beneficial to the 

sugarcane industry, it is important that sucrose production from lignin altered plants is not 

reduced.  

 

Current knowledge of lignin biosynthesis in monocots is limited, even more so in sugarcane. 

Increasing interest in the production of second generation bioethanol from lignocellulosic 

biomass, such as sugarcane bagasse, has led to an increase in lignin-focused research as 

lignin polymers are a major hurdle to the production of cost-competitive biofuel. The 

knowledge and findings of this thesis into the biosynthesis and deposition of lignin in 
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sugarcane will be beneficial to the production or modification of cultivars with improved 

bioethanol production qualities. Additionally, there are no current reports of transcription 

factors being utilised to reduce the lignin content in transgenic sugarcane and the positive 

results in saccharification after MYB42 expression is of research interest. Furthermore, 

CCoAOMT and F5H have not previously been targeted by RNAi in sugarcane, and the 

combined results with COMT down-regulation suggest there may also be potential in 

further exploration of this avenue of research. The production of second generation 

bioethanol from sugarcane bagasse will have environmental benefits as they will reduce 

reliance on oil-based energy as well as economic benefits to both the Australian, and more 

widely, the global sugarcane industry though product diversification.  
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Chapter 1 
 

Introduction 
 

 

 

1.1 Second generation bioethanol  

 

Escalating demand for oil-based energies is both unsustainable and environmentally 

damaging (Murray and King, 2012). Increased global awareness and concern has stimulated 

research into alternative and renewable energy sources (Borrion et al., 2012; Limayem and 

Ricke, 2012). One attractive option is plant-derived biofuels. Bioethanol, one such biofuel, is 

an energy source produced from the fermentation of plant-derived sugars. The utilisation 

of bioethanol as a sustainable transport fuel will have many environmental and social 

benefits that traditional fossil fuels cannot offer such as lower carbon emissions, improved 

economic stability and reduced reliance on oil from politically unstable countries 

(Goldemberg, 2007; Murray and King, 2012; Yang et al., 2013).  

 

While first generation bioethanol is currently in large-scale production from sugar and corn 

starch, the carbohydrates utilised for fermentation are controversially sourced from the 

edible, high-value portion of crops, contributing to the food versus fuel debate (Yuan et al., 

2008). Second generation bioethanol attempts to overcome this drawback by utilising the 

carbohydrate content of lignocellulosic material, such as sugarcane bagasse or corn stover, 

the lower-valued residual waste material produced during sugar production. An overview of 

the complexities and considerations for economic and environmental viability of second 

generation biofuel production are comprehensively discussed in Borrion et al. (2012) and 

Limayem and Ricke (2012). The most significant challenges include sourcing lignocellulosic 

biomass, optimising different approaches and conditions for pretreatment, hydrolysis and 

fermentation stages and the potential application of biotechnology to these processes.  

 

1.2 Lignocellulosic biomass for biofuels 

 

Lignocellulosic biomass is composed of cellulose, hemicellulose and lignin (Hisano et al., 

2009). Hydrolysis reduces cellulose and hemicellulose to fermentable monosaccharides and 
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as cellulose is the most abundant polymer on earth (Delmer and Haigler, 2002) this 

provides a large, untapped resource for the production of bioethanol. However, utilising 

lignocellulosic biomass is significantly more challenging than first generation bioethanol 

production (Borrion et al., 2012; Vanholme et al., 2010). The recalcitrant nature of the cell 

wall imparted by the presence of lignin polymers incurs a necessary yet costly pretreatment 

step (Benjamin et al., 2013; Chen and Dixon, 2007) which presents a major challenge to the 

production of cost-competitive, commercial scale second generation bioethanol (Benjamin 

et al., 2013; Yang et al., 2013; Yuan et al., 2008). Although lignin is necessary for plant 

development, water transport and defense (Rogers and Campbell, 2004), those same 

properties make it a physical and chemical barrier preventing access of hydrolytic enzymes 

to cellulose (Benjamin et al., 2013; Chen and Dixon, 2007; Zhao et al., 2012). Therefore 

pretreatment of lignocellulosic material to remove lignin is currently a crucial yet costly 

step in the enzymatic conversion of polysaccharides to simple sugars (Yuan et al., 2008). 

 

1.3 Lignin biosynthesis  

 

The evolution of the lignin biosynthesis pathway, part of the much larger phenylpropanoid 

biosynthesis pathway, is one of the key steps allowing plants to occupy terrestrial 

environments (Boerjan et al., 2003; Weng and Chapple, 2010). Lignin biosynthesis and 

deposition provides land plants the structural rigidity to support themselves and the 

hydrophobic nature of xylem lignin polymers allows for efficient water transportation (Ma, 

2007; Weng and Chapple, 2010). Lignin monomers are formed through the 

phenylpropanoid pathway by the deamination of phenylalanine (Figure 1.1; Boerjan et al., 

2003; Liu, 2012). A combination of successive hydroxylation and methylation reactions 

modify the aromatic ring, and esterification and reduction of the external carboxylic group 

result in p-coumaryl, coniferyl and sinapyl monolignols being produced (Boerjan et al., 2003; 

Halpin, 2004; Liu, 2012). Respective polymerisation of these monolignols produces p-

hydroxyphenyl (H), guaiacyl (G) and syringyl (S) phenylpropanoid monomers which 

comprise the lignin polymer (Boerjan et al., 2003).  

 

The genetic regulation of cell wall biosynthesis is complex and well-reviewed (Gray et al., 

2012; Wang and Dixon, 2012) as is the assembly of the lignin polymer (Buanafina, 2009; Liu, 

2012). Many genes identified have multiple levels of regulation and feedback with the 

number of genes identified in cell wall formation and maintenance (or regulation thereof)  
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FIGURE 1.1: The biosynthesis of lignin monomers H, G and S begins with the deamination of 

phenylalanine and requires successive reactions by ten individual enzymes. Abbreviations: 

Phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA 

ligase (4CL), cinnamoyl-CoA reductase (CCR), hydroxycinnamoyl-CoA: shikimate 

hydroxycinnamoyl transferase (HCT), coumarate 3-hydroxylase (C3H), caffeoyl CoA 3-O-

methyltransferase (CCoAOMT), ferulate 5-hydroxylase (F5H), caffeic acid 3-O-

methyltransferase (COMT), cinnamyl alcohol dehydrogenase (CAD), peroxidase (PER), and 

laccase (LAC) (Hisano et al., 2009). Ten genes (PAL, C4H, 4CL, CCR, HCT, C3H, CCoAOMT, 

F5H, COMT and CAD) are considered necessary for the synthesis of p-coumaryl, coniferyl, 

and sinapyl alcohols, or monolignols (Hisano et al., 2009; Weng et al., 2008). Subsequent 

dehydrogenative polymerisation of these monolignols by PER and LAC genes form p-

hydroxyphenyl (H), guaiacyl (G) and syringyl (S) lignin monomers (Hisano et al., 2009; Weng 

et al., 2008). 
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continuing to grow (Zhao and Dixon, 2011). New evidence suggests cell wall formation also 

has an additional level of miRNA regulation (Li and Lu, 2014; Ong and Wickneswari, 2012). 

In contrast, the methods by which lignin monomers are transported to the cell wall for 

polymerisation are currently not well understood (Liu, 2012). 

 

Numerous studies have shown it possible to reduce lignin content in plants through the 

down-regulation of genes in the lignin biosynthetic pathway (reviewed in Li et al., 2008). In 

general, there is a positive correlation between reduction of lignin biosynthetic gene 

transcription levels and an overall reduction of lignin content. It is hypothesised that the 

down-regulation of key genes controlling lignin biosynthesis in sugarcane will reduce the 

rate of lignin deposition, resulting in lignin-reduced sugarcane bagasse. In turn, this is 

expected to reduce the degree of pretreatment required, thus reducing the overall 

bioethanol production costs. It is further hypothesised that the down-regulation of specific 

genes within the lignin biosynthesis pathway could alter the lignin polymer composition by 

changing the H:G:S monomer ratio. Such an outcome may also improve pretreatment 

efficiency and therefore warrants further exploration. Previous research has found an 

increase in fermentable sugars released from the cell wall of plants with reduced lignin 

content (Benjamin et al., 2013; Chen and Dixon, 2007; Sonbol et al., 2009), providing 

further support for this avenue of research. 

 

1.4 Sugarcane bagasse as a source of lignocellulosic biomass 

 

Sugarcane is a C4 perennial grass grown in tropical and sub-tropical climates (Moore, 1987; 

Osabe et al., 2009; Somerville et al., 2010). Sugarcane accumulates and stores high 

concentrations of sucrose in the stem internodes which can be utilised for food or fuel 

production (de Souza et al., 2013; Jung et al., 2012; Osabe et al., 2009). The vast majority of 

the world’s sugar is produced from sugarcane, making it an important and valuable 

commercial crop plant (Jackson, 2013; Suprasanna et al., 2011). Sugarcane grows rapidly 

and generates an abundance of lignocellulosic biomass (de Souza et al., 2014; Lakshmanan 

et al., 2005), which could potentially be utilised for biofuel production (Canilha et al., 2012; 

Yuan et al., 2008). An additional benefit of bagasse is that once harvested, sugarcane is 

transported to a central location (Pandey et al., 2000), thus reducing biomass transport 

costs which could otherwise represent a significant cost in bioethanol production (Hill et al., 

2006). Large scale production of additional commercially valuable products from harvested 

material, such as bioethanol from lignin-reduced bagasse, will add value to a currently 
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underutilised product, thus increasing the sustainability and competitiveness of the global 

sugarcane industry (Lakshmanan et al., 2005), an important contributor to the Australian 

economy (Canegrowers, 2010). 

 

Although traditional breeding techniques have contributed to commercially sought 

improvements in sugarcane (Suprasanna et al., 2011), and reducing lignin content through 

targeted breeding programs is an option as lignin content varies throughout cultivars 

(Benjamin et al., 2014; Masarin et al., 2011), the lengthy timeframe of traditional breeding 

programs limits the development of new sugarcane cultivars with new or improved 

agronomic traits (Suprasanna et al., 2011). When combined with the large and complex 

polyploid genome of sugarcane (Grivet and Arruda, 2001), these unique characteristics 

highlight sugarcane as a suitable candidate for biotechnological improvement (Canilha et al., 

2012; de Souza et al., 2013; Suprasanna et al., 2011). 

 

An alternative to traditionally bred, lignin-reduced sugarcane is the potential development 

of dedicated sugarcane varieties for energy and biofuel production, namely ‘energycane’ 

(Botha and Moore, 2014; Chong and O’Shea, 2012). These new varieties would have 

increased fibre or increased biomass as the focus of breeding, rather than the traditional 

focus of increased sucrose content (Botha and Moore, 2014; Chong and O’Shea, 2012). 

Additionally, energycane could potentially provide biomass year-round, a requirement of 

bioenergy refineries (Botha and Moore, 2014; Chong and O’Shea, 2012), as well as 

contributing to the alleviation of the food versus fuel debate (Yuan et al., 2008).  However, 

energycane breeding programs would still face the same obstacles as breeding for high 

sucrose content (Grivet and Arruda, 2001; Suprasanna et al., 2011). 

 

While sugarcane is an important crop for Australia, the impacts and benefits of second 

generation bioethanol production from sugarcane bagasse will be globally realised. 

Sugarcane currently ranks within the top ten most cultivated crops globally, being grown in 

nearly 200 countries (Botha and Moore, 2014; Suprasanna, et al., 2011), and the harvesting 

of sugarcane generates a greater biomass than any other crop (Jackson, 2013). Brazil is 

currently the largest sugarcane producer in the world, followed by India, China and 

Thailand (Botha and Moore, 2014). In 2010, Brazil harvested 719 million tonnes of 

sugarcane, resulting in 101 million tonnes of bagasse, whereas Australia harvested 32 

million tonnes of sugarcane, resulting in four million tonnes of bagasse (Botha and Moore, 

2014). Based on these figures, it is predicted Brazil could produce between 11.1 - 27.2 
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billion litres of bioethanol from the resulting bagasse, which dwarfs Australia’s predicted 

bioethanol yield of between 0.5 - 1.2 billion litres (Botha and Moore, 2014). Despite these 

figures, the production of second generation bioethanol in Australia will benefit both the 

sugarcane industry and the Australian economy, as well as having a positive influence on 

the reduction of oil-related climate change, with the development of biofuel technology 

having additional economic value.  

 

1.5 Research aims  

 

Lignin biosynthesis has been widely studied in some plant species but it has only recently 

been explored in sugarcane. In brief, four studies have been published concerning gene 

expression patterns in maturing sugarcane, which when combined, provide information on 

eight genes of the lignin biosynthesis pathway (PAL, C4H, C3H, CCoAOMT, HCT, F5H, CAD 

and COMT; Figure 1.1) (Casu et al., 2004; Casu et al., 2007; Kolahi et al., 2013; Papini-Terzi 

et al., 2009). Only one study has been published on the deposition of lignin, cellulose and 

hemicellulose in the secondary cell walls of developing sugarcane (Lingle and Thomson, 

2012) and only two publications of the application of biotechnology to alter lignin 

deposition in genetically modified sugarcane (Jung et al., 2012; Jung et al., 2013). These 

studies are further discussed in Section 2.1. The limited number of publications suggest 

lignin biosynthesis and its manipulation in sugarcane are still far from being fully 

understood. This thesis focuses on decreasing this knowledge gap through the following 

three specific research aims: 

 

1. Development of a lignin biosynthesis profile in sugarcane stem tissue by 

complementing lignin biosynthesis gene expression level data with cell wall 

compositional data in stem internodes of increasing maturity to further the 

understanding of monocot lignin formation. 

 

2. Generation and analysis of transgenic sugarcane expressing two maize R2R3 MYB 

transcription factors known to down-regulate lignin biosynthesis in other plant 

species, with a goal of reducing the overall lignin content and improving 

saccharification after enzymatic hydrolysis. 

 

3. Generation and analysis of transgenic sugarcane expressing RNA interference (RNAi) 

constructs targeting caffeoyl CoA 3-O-methyltransferase (CCoAOMT), ferulate 5-
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hydroxylase (F5H) or caffeic acid 3-O-methyltransferase (COMT) genes of the lignin 

biosynthetic pathway to further explore the potential benefits of altering the H:G:S 

monomer ratio of the lignin polymer for liberation of glucose after enzymatic 

hydrolysis. 

 

The outcomes of this research will contribute to the current knowledge surrounding cell 

wall formation and specifically lignin biosynthesis in sugarcane including the phenotypic 

effects resulting from manipulation of the lignin biosynthesis pathway. 
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Chapter 2 
 

Literature Review 
 

 

 

The multifaceted nature of lignin and its key role in the cell wall has led to an increasing 

volume of lignin-based articles published across a broad spectrum of scientific fields. This 

includes analysis of lignin biosynthesis and layers of regulation; the chemistry of the 

deposited lignin polymer; the extraction of and uses for lignin polymers; and different 

pretreatment approaches to improve biofuel production from lignocellulosic biomass. The 

scope of this literature review is focused on published research relevant to the three aims 

of this thesis outlined in Chapter 1. To briefly reiterate, the papers discussed will contain 

information and findings that contribute to the profiling of lignin monomer biosynthesis 

and deposition of the lignin polymer; regulatory control over lignin biosynthesis by MYB 

transcription factors; alterations to lignin biosynthesis through RNAi targeting of genes 

within the lignin biosynthesis pathway; and the saccharification of lignin altered plants, 

whether by GM or non-GM methods. 

 

2.1 Expression profiles of lignin biosynthesis genes and cell wall    

       development 

 

Expression profiling of the genes involved in an individual pathway is an important aspect 

to gaining insight into plant development. In the case of lignin biosynthesis, a focused 

analysis of the expression patterns of genes within the pathway in tissues of different types 

or of different levels of maturity can provide information into the rate and location of lignin 

deposition. Expression profiles of lignin biosynthesis genes have now been established, or 

can be inferred from results in a number of different plant species and have been used to 

identify homologues of lignin biosynthesis pathway genes, as well as comparing the 

expression levels of lignin biosynthesis genes in different tissues. The compositions of cell 

wall components have also been profiled in a range of plant species; however, an 

expression profile, such as the one proposed in this thesis, which combines lignin 

biosynthesis pathway gene expression levels with cell wall component deposition in 
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sugarcane is not currently available. As interest in developing renewable biofuels from 

lignocellulosic biomass increases, knowledge surrounding lignin formation in sugarcane will 

become increasingly relevant if the bagasse produced by the Australian or global sugarcane 

industry is utilised for the production of second generation bioethanol.  

 

2.1.1 Identification of lignin biosynthesis pathway gene homologues 

 

Koutaniemi et al. (2007) highlighted the most likely lignin biosynthesis gene pathway in 

Norway spruce by comparing transcript levels of homologues of each gene involved in 

lignin biosynthesis between 1 year and 40 year old trees. Shang et al. (2012) employed 

semi-quantitative methods to profile seven PAL homologues in cucumber (Cucumis sativus) 

in seven different tissues. RT-PCR was performed on RNA from each tissue followed by 

agarose gel electrophoresis with imaging software used to measure band intensity (Shang 

et al., 2012). The authors found that some homologues were expressed in all tissues 

whereas other homologues appeared tissue specific (Shang et al., 2012). Overall the highest 

levels of PAL expression were seen in root, stem and female flower tissue, with less 

expression detected in cotyledons, fruit and male flower tissue and the least amount of 

expression detected in leaf tissue.  

 

Shi et al. (2010) identified 95 putative gene sequences in poplar (Populus trichocarpa) 

representing the 10 lignin biosynthesis genes (Figure 1.1) with potential involvement in 

phenylpropanoid biosynthesis. Each biosynthesis gene had between three and 25 

homologues. qPCR quantified the involvement of each homologue of each gene in four 

different tissues: differentiating xylem; differentiating phloem; shoot tip; and fully 

expanded leaf. Of the 10 lignin biosynthesis genes, PAL was the only one whose 

homologues all showed detectable expression in various tissues. Of the nine other genes 

there was a clear pattern of between one and three homologues showing expression in the 

tissues examined with many homologues showing no expression. Although some 

expression could be seen in other tissues, a very clear trend was seen for xylem preferred 

expression. That the majority of homologues showed no detectable expression may be due 

to tissue specifity in a tissue other than those examined; inducible expression not being 

triggered; having unstable transcript; or being pseudogenes (Shi et al., 2010). 
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2.1.2 Profiling of lignin biosynthesis gene expression and lignin deposition in  

          dicotyledonous species  

 

Anterola et al. (2002) measured the expression response of lignin biosynthesis genes in 

Pinus taeda cells suspensions before and after spiking the suspensions with phenylalanine. 

PAL, 4CL, CCoAOMT and CCR had obvious increases in expression levels while CAD had a 

minimal increase in expression and C4H and C3H showed no change in expression levels 

(Anterola et al., 2002). CAD expression was compared with lignin content in Ginkgo biloba 

stem tissue aged 1, 2, 3 and 4 years (Cheng et al., 2013). CAD expression was highest in one 

year old (yo) tissue before decreasing in 2yo and plateauing in the 3yo and 4yo stem tissue 

which correlates with lignin content being lowest in the youngest tissue and steadily rising 

as the stem tissue matured (Cheng et al., 2013). CAD expression detected in roots was 

slightly higher than the highest stem expression levels (in the youngest stem tissue) (Cheng 

et al., 2013).  

 

Next-generation sequencing has also led to identification and profiling of lignin biosynthesis 

gene expression patterns. Firon et al. (2013) sequenced and compared initial storage roots 

(ISR) and fibrous roots (FR) from sweet potato (Ipomea spp; Georgia Jet) as the 

development of ISRs from FRs is a key step for tuber production. Analysis of the read count 

of contigs found that FR had a higher number of reads than ISR for PAL, C4H, 4CL, HCT, 

CCoAOMT, CCR, COMT and CAD. This indicated a higher number of transcripts of lignin 

genes in FR than ISR which correlates with FR containing more lignin than ISR (Firon et al., 

2013). qPCR validation confirmed that the relative expression levels of 4CL, CCoAOMT and 

CAD were lower in ISR when compared with FR (Firon et al., 2013). Chinese fir 

(Cunninghamia lanceolata) has also undergone next-generation sequencing with a focus on 

lignin biosynthesis genes (Huang et al., 2012). Analysis and qPCR validation confirmed that 

PAL, C3H, CCoAOMT, COMT, CCR and CAD showed similar expression patterns with the 

highest expression occurring in xylem, followed by lignifying stem, bark and the least 

expression in non-lignifying stem (Huang et al., 2012). C4H also showed a similar pattern 

but had very low expression levels overall and 4CL had little expression detected in any 

tissues (Huang et al., 2012). 
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2.1.3 Profiling of lignin biosynthesis gene expression and lignin deposition in  

          monocotyledonous species 

 

Ma (2007) specifically examined CCR in two different wheat (Triticum aestivum) cultivars; 

lodging resistant H4564 and lodging sensitive C6001. Stem, leaf and root tissues were 

collected at three different developmental stages, youngest to most mature being 

elongation, heading, and milky. Using semi-quantitative imaging software, Northern Blot 

analysis found CCR expression was highest in stem tissue, lower in leaf tissue and not 

detectable in root tissue (Ma, 2007). During maturation H4564 showed strong CCR 

expression throughout the three developmental stages. C6001 showed strong CCR 

expression in the elongation stage, but only weak expression in the two latter stages (Ma, 

2007). Both cultivars showed a decrease in CCR expression when plants entered heading 

stage before an increase in milky stage (Ma, 2007). The increase in milky stage CCR 

expression was more pronounced for H4564 (a 117% increase over elongation levels) than 

C6001, which only reached 34% of elongation expression levels (Ma, 2007).  

 

When the Klason method was utilised to determine the lignin content in elongation, 

heading and milky stem tissue it was found that lignin content increased with tissue 

maturation however C6001 lignin levels only reached 73% of H4564 levels, which correlates 

with their respective susceptibility and resistance to lodging (Ma, 2007). Acid soluble lignin 

contents decreased with tissue maturation and were similar for both cultivars (Ma, 2007). 

Ma (2007) concluded increased CCR expression may correlate with increased lignin 

deposition, though not in proportion to the expression levels of CCR. Cell wall components 

in developing maize have also been profiled by Jung and Casler (2006). Over a period of 

three months during the growing season, maize plants were sampled 10 times and 

secondary cell wall components were quantified. Lignin content decreased during the first 

eight days before increasing to peak at five weeks and five days, and plateauing thereafter 

(Jung and Casler, 2006). Glucose content increased for five weeks before stabilising 

whereas hemicellulose (xylose and arabinose) content decreased for the first three weeks 

before plateauing (Jung and Casler, 2006).  

  

2.1.4 Expression profiling of lignin biosynthesis genes in sugarcane 

 

The expression profile of lignin biosynthesis in sugarcane is relatively unexplored, however, 

a number of groups have identified the expression profiles of some lignin biosynthesis 
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genes in related studies. Casu et al. (2004) found that PAL, CCoAOMT and COMT expression 

increased in maturing stem (internodes 6-11) of sugarcane when compared to young stem 

(apical meristem and internodes 1-3). Further work by Casu et al. (2007), analysing 

sugarcane gene expression levels in three tissues of different maturity (young stem: 

internodes 1-3; maturing stem: internode 8; and mature stem: internode 20) using the 

Affymetrix GeneChip Sugarcane Genome Array resulted in the identification of 119 

differentially expressed genes. Characterisation of 23 of the 119 genes was performed 

using qPCR with a focus on genes from the cellulose synthase and cellulose synthase-like 

families. Three of the remaining 96 genes were identified as CCoAOMT, HCT and CAD. In 

maturing tissue CCoAOMT and HCT expression was reduced whereas CAD expression 

increased. This may reflect the roles of CCoAOMT and HCT in cell growth and development 

and CAD having an ongoing role in cell wall maintenance (Casu et al., 2007).  

 

A microarray comparison of high Brix and low Brix sugarcane by Papini-Terzi et al. (2009) 

was conducted to assess genes differently expressed between the groups which may 

indicate a role in sucrose accumulation. Among the 117 genes identified as differing in 

expression levels were five lignin genes: F5H, C4H, COMT, PAL and C3H. A comparison of 

immature tissue (internode 1) and mature tissue (internode 9) revealed F5H and COMT 

expression increased with tissue maturity, C4H and C3H showed no difference and PAL 

homologues showed no change or decreased (Papini-Terzi et al., 2009). Kolahi et al. (2013) 

quantified PAL expression in different sugarcane tissues (leaf, sheath, stem internodes 7-8 

and root) at different developmental stages: germination (1-3 months), tillering (3-7 

months), grand growth (7-11 months) and maturation (11-15 months). Roots initially had 

low PAL expression increasing to peak in the tillering stage before steadily decreasing in 

grand growth and again in maturation whereas leaf and sheath showed steady expression 

of PAL over different stages (Kolahi et al., 2013). Stem tissue was not available for 

germination stage. Some PAL expression was detected in the tillering plants with highest 

expression detected in grand growth before reducing slightly in maturation stage.  

 

2.1.5 Cell wall composition profile during sugarcane development 

 

To date, there has only been one paper published which focuses on the deposition of 

lignocellulosic components during sugarcane growth and development. Lingle and 

Thomson (2012) developed a cell wall composition profile in sugarcane by quantifying 

internode composition during two consecutive growing seasons whilst also quantifying 
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juice sugar content (sucrose) of the same internodes for comparison. Two different 

experiments were conducted. The first involved marking internode 1 on 100 sugarcane 

plants (20 plants x five cultivars) and harvesting one plant per cultivar at weeks 1, 2, 3, 4, 6, 

8, 10 and 12 and the second experiment involved harvesting odd-numbered internodes 

between 1 and 11 (inclusively) from four plants of a single cultivar in July and September of 

the same year, and repeated again the following year. Overall findings confirmed different 

cultivars have different cell wall composition, but similar trends in component deposition. 

The rate of lignin deposition was highest in young internode tissue before increasing in 

smaller increments as the plants matured with lignin content continuing to increase as the 

plants developed (Lingle and Thomson, 2012). Cellulose content was lowest in young tissue 

and the rate of deposition peaked between internodes three and five, after which the rate 

of deposition would either plateau or slowly decline (Lingle and Thomson, 2012). 

Hemicellulose content showed the opposite trend to cellulose biosynthesis. Hemicellulose 

content was highest in young tissue and reduced until internode three to five before 

plateauing for remaining plant development (Lingle and Thomson, 2012).  

 

The published research discussed in this section provides the first insights into cell wall 

development across a range of plant species. Although the publications are limited in 

number, there is a general consensus in their findings. Lignin and cellulose content has 

been found to increase during plant development with the rate of deposition being greater 

in early development than more mature tissue (Cheng et al., 2013; Jung and Casler, 2006; 

Lingle and Thomson, 2012; Ma, 2007), whereas hemicellulose content is highest in young 

tissue and decreases as plant tissue matures (Jung and Casler, 2006; Lingle and Thomson, 

2012). Research into the lignin biosynthesis found homologues exist for genes within this 

pathway (Koutaniemi et al., 2007; Shang et al., 2012; Shi et al., 2010) and the levels of gene 

expression was found to be higher in lignifying tissues when compared with tissues that 

undergo little or no lignification (Firon et al., 2013; Huang et al., 2012; Ma, 2007).  

 

Within sugarcane, data has been published on the expression patterns of eight lignin 

biosynthesis genes (Figure 1.1). Five of these eight genes have only been mentioned in a 

single study. In maturing tissue, when compared with younger tissue, HCT expression was 

found to decrease (Casu et al., 2007), CAD (Casu et al., 2007), F5H (Papini-Terzi et al., 2009) 

expression increased, and C3H and C4H show no differences in expression levels (Papini-

Terzi et al., 2009). The expression patterns of three sugarcane lignin pathway genes (PAL, 

CCoAOMT and COMT) have been reported in more than one study, with mixed findings. 
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COMT expression was found to increase in maturing sugarcane stem (Casu et al., 2004; 

Papini-Terzi et al., 2009). Both increased (Casu et al., 2004), and decreased (Casu et al., 

2007) CCoAOMT expression has been reported as sugarcane tissue matures. The expression 

of PAL in maturing sugarcane has been found to increase (Casu et al., 2004; Kolahi et al., 

2013), decrease (Papini-Terzi et al., 2009), or show no change (Papini-Terzi et al., 2009) 

when compared with younger tissue. 

 

While these studies begin to shed light on sugarcane lignin biosynthesis, there is currently 

no literature which has conducted gene expression and lignocellulosic compositional 

analysis on the same tissue samples which would allow for direct comparison. The 

development of an expression profile of lignin formation in sugarcane which combines gene 

expression data with cell wall compositional data will further improve knowledge in this 

area. By providing insight to both spatial and temporal expression of lignin biosynthetic 

genes, the targeting or manipulation of these genes within different tissues can be 

performed with better specificity to obtain the desired plant genotype or phenotype.  

 

 

 2.2 MYB transcription factor regulation of lignin biosynthesis  

 

2.2.1 R2R3 MYB transcription factors 

 

In addition to the genes directly involved in the production of H, G and S monomers, lignin 

biosynthesis has also been found to be regulated by a number of transcription factor 

families, including the MYB family. Transcription factors are sequence-specific DNA-binding 

proteins that regulate gene expression through activation or repression of mRNA 

transcription levels (Riechmann et al., 2000; Xiong et al., 2005). As their regulatory 

influence can range from a single gene to entire biological pathways they are anticipated to 

play a major role in the future of GM crops (Ambawat et al., 2013; Century et al., 2008). 

MYB transcription factors were first identified in the avian myeloblastosis virus 

(Klempnauer et al., 1982) and the first plant MYB gene was isolated from Zea mays (Paz-

Ares et al., 1987). MYB transcription factors now represent one of the largest transcription 

factor families identified in plants (Du et al., 2012b; Wilkins et al., 2009) with known roles in 

both developmental and biochemical pathway regulation (Patzlaff et al., 2003b). A 

thorough review of the diversity of MYB gene functions can be found in Ambawat et al. 

(2013).  
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R2R3 MYB genes are the most common form found in plants, and contain two N-terminal 

DNA binding domains (R2 and R3) consisting of characteristic imperfect repeats of a helix-

turn-helix motif (Patzlaff et al., 2003a) with conserved tryptophan residues (Ogata et al., 

1995; Stracke et al., 2001) that are thought to aid sequence-specific DNA binding 

(Gabrielsen et al., 1991). This binding domain and its target sequence have been well 

characterised (Ogata et al., 1996; Ogata et al., 1995; Ogata et al., 1994; Prouse and 

Campbell, 2012; Prouse and Campbell, 2013). The less conserved C-terminal region is highly 

divergent (Jiang et al., 2004) and is responsible for the regulatory function of the translated 

protein (Bedon et al., 2007; Jiang et al., 2004; Legay et al., 2007; Tamagnone et al., 1998). 

Analysis of conserved motifs within this C-terminal region result in the identification of 

subgroup clusters. The total number of subgroups appears to differ between plant species 

and increases as genomic data sets improve and expand (Du et al., 2012a; Du et al., 2012b). 

The lignin down-regulating R2R3 MYB genes comprise subgroup G4 (Du et al., 2012a; 

Fornalé et al., 2010). Promoters of lignin biosynthetic genes contain conserved AC element 

motifs which act to limit lignification to xylem tissues (Bedon et al., 2007; Patzlaff et al., 

2003b). The MYB R2R3 domain interacts with these AC elements, allowing MYB 

transcription factors to regulate promoter activity of lignin biosynthetic genes (Fornalé et 

al., 2010; Lauvergeat et al., 2002; Patzlaff et al., 2003a; Patzlaff et al., 2003b) thus making 

G4 MYB genes important targets for lignin modification. 

 

2.2.2 MYB gene regulation of lignin biosynthesis 

 

2.2.2.1 MYB gene directed up-regulation of lignin biosynthesis 

 

A number of MYB transcription factors have been shown to promote lignin biosynthesis in 

various plant species through the analysis of gene expression patterns and transgenic 

expression studies (Table 2.1). Plants expressing these MYB transcription factors are 

generally characterised by increased and ectopic lignin deposition combined with increased 

expression of genes within the phenylpropanoid pathway. 

 

Antirrhinum majus AmMYB305 increased reporter gene expression by activating the 

upstream Phaseolus vulgaris PAL promoter sequence in tobacco protoplasts (Sablowski et 

al., 1994). Borevitz et al. (2000) identified an Arabidopsis gene (PAP1) whose 

overexpression resulted in increased lignin and anthocyanin production. Analysis found an 

increase in expression of PAL, but little change in expression levels of COMT and CCoAOMT.  
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TABLE 2.1: Summary of published results of the up-regulation of lignin biosynthesis by MYB genes 

 

MYB Source Expressed in Genes up-
regulated 

Promoter 
activated Lignin content S:G ratio Reference 

AmMYB305 Antirrhinum 
majus 

Nicotiana tabacum 
protoplasts  PAL   (Sablowski et al., 1994) 

AtMYB46 Arabidopsis 
thaliana 

Arabidopsis 
thaliana 

PAL, C4H, CAD, 
C3H, CCoAOMT, 

4CL 

PAL, 
CCoAOMT 

Increased (OE) and 
decreased (DS)  

(Kim et al., 2012; Ko et 
al., 2009; Zhong et al., 

2007) 

AtMYB58 Arabidopsis 
thaliana 

Arabidopsis 
thaliana All except F5H 4CL Increased (OE) and 

decreased (DS/RNAi) Increased (Zhou et al., 2009) 

AtMYB63 Arabidopsis 
thaliana 

Arabidopsis 
thaliana All except F5H 4CL Increased (OE) and 

decreased (DS/RNAi) Increased (Zhou et al., 2009) 

AtMYB83 Arabidopsis 
thaliana 

Arabidopsis 
thaliana 4CL, CCoAOMT  Increased  (McCarthy et al., 2009) 

AtMYB85 Arabidopsis 
thaliana 

Arabidopsis 
thaliana   Increased (OE)  (Zhong et al., 2008) 

AtMYB103 Arabidopsis 
thaliana 

Arabidopsis 
thaliana mutants 

F5H (down-
regulated)  No change Decreased (Öhman et al., 2013) 

PAP1 
(AtMYB75/AtMYB90) 

Arabidopsis 
thaliana 

Arabidopsis 
thaliana; Salvia 

miltiorrhiza 
PAL, C4H, 4CL, CCR  Increased No change 

(Borevitz et al., 2000; 
Kranz et al., 1998; Zhang 

et al., 2010) 

EgMYB2 Eucalyptus gunnii Nicotiana tabacum 
HCT, CCR, CAD, 
C3H, CCoAOMT, 

F5H, COMT 
CCR, CAD  Increased (Goicoechea et al., 2005) 

OsMYB42/85 Oryza sativa Oryza sativa CAD  Increased  (Hirano et al., 2013) 

OsMYB46 Oryza sativa Arabidopsis 
thaliana 4CL  Increased  (Zhong et al., 2011) 

OsMYB55/61 Oryza sativa Oryza sativa CAD CAD Increased  (Hirano et al., 2013) 
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TABLE 2.1: Summary of published results of the up-regulation of lignin biosynthesis by MYB genes (continued) 

 

MYB Source Expressed in Genes up-regulated Promoter 
activated Lignin content S:G ratio Reference 

OsMYB58/63 Oryza sativa Oryza sativa CAD  Increased  (Hirano et al., 2013) 
OsMYB103 Oryza sativa Oryza sativa CAD  Increased  (Hirano et al., 2013) 

PgMYB2 Picea glauca Picea glauca 
compression wood 

4CL, PAL, CAD, 
CCoAOMT  Increased  (Bedon et al., 2007) 

PgMYB4 Picea glauca Picea glauca 
compression wood 

4CL, PAL, CAD, 
CCoAOMT  Increased  (Bedon et al., 2007) 

PgMYB8 Picea glauca Picea glauca 
compression wood 

4CL, PAL, CAD, 
CCoAOMT  Increased  (Bedon et al., 2007) 

PpMYB8 Pinus pinaster Pinus pinaster stem 
protoplasts  PAL   (Craven-Bartle et al., 

2013) 

PtMYB1 Pinus taeda 

Nicotiana tabacum 
NT-1 cells; Picea 
glauca (Moench) 

Voss 

All except F5H (not 
measured) PAL Increased  (Bomal et al., 2008; 

Patzlaff et al., 2003b) 

PtMYB4 Pinus taeda Arabidopsis thaliana; 
Nicotiana tabacum 

C3H, CCoAOMT, 
COMT, CCR, CAD  Increased  (Newman et al., 2004; 

Patzlaff et al., 2003a) 

PtMYB8 Pinus taeda Picea glauca 
(Moench) Voss 

PAL, C4H, 4CL,C3H, 
CCR, CAD, HCT, 

COMT 
 Increased  (Bedon et al., 2007; 

Bomal et al., 2008) 

PtoMYB216 Populus tomentosa Populus tomentosa PAL, 4CL, C3H, CCR  Increased No change (Tian et al., 2013) 

PtrMYB2 Populus 
trichocarpa 

Arabidopsis thaliana: 
plants and leaf 

protoplasts; Populus 
alba x Populus 

tremula 

4CL, CCoAOMT CCoAOMT, 
COMT Increased  (Zhong et al., 2013) 
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TABLE 2.1: Summary of published results of the up-regulation of lignin biosynthesis by MYB genes (continued) 

 

MYB Source Expressed in Genes up-regulated Promoter 
activated Lignin content S:G ratio Reference 

PtrMYB3 Populus 
trichocarpa 

Arabidopsis 
thaliana: plants and 

leaf protoplasts 
4CL, CCoAOMT CCoAOMT, 

COMT Increased  (McCarthy et al., 2010; 
Zhong et al., 2013) 

PtrMYB20 Populus 
trichocarpa 

Arabidopsis 
thaliana: plants and 

leaf protoplasts 
4CL, CCoAOMT CCoAOMT increased  (McCarthy et al., 2010) 

PtrMYB21 Populus 
trichocarpa 

Arabidopsis 
thaliana: plants and 

leaf protoplasts; 
Populus alba x 

Populus tremula 

4CL, CCoAOMT CCoAOMT, 
COMT Increased  (Zhong et al., 2013) 

VvMYB5a Vitis vinifera Nicotiana tabacum C4H    (Deluc et al., 2006) 

ZmMYB46 Zea mays Arabidopsis 
thaliana 4CL  Increased  (Zhong et al., 2011) 

 

OE: Over-expressed 

DS: Dominant suppression 
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The mutant line had increased overall lignin content but no change in the S:G ratio. 

Comparisons against Arabidopsis databases found PAP1 to be identical to AtMYB75 (Kranz et 

al., 1998), with the exception of an earlier termination codon in AtMYB75 resulting from a 

single base pair deletion and to have very close homology to Arabidopsis EST sequence later 

identified to be AtMYB90 (Kranz et al., 1998). 

 

AtPAP1 has since been expressed in Salvia miltiorrhiza to increase the natural production of 

salvianolic acid B (Sal B) (Zhang et al., 2010), a water soluble phenolic acid used in traditional 

Chinese medicine to treat cardiovascular disease (Ho and Hong, 2011). The biosynthesis 

pathway for Sal B shares the genes PAL, C4H and 4CL with the lignin biosynthesis pathway 

(Figure 1.1; Zhang et al., 2010). The increased activation of Sal B biosynthesis by the expression 

of AtPAP1 led to increases in PAL, C4H, 4CL and CCR expression, with a decrease in COMT 

expression (Zhang et al., 2010). This coincided with increases in lignin contents of transgenic 

plants when compared to controls (Zhang et al., 2010). The H monomer content did not change 

between transgenics and controls, however there were increases in S and G monomer contents, 

and in some cases increased S:G ratio (Zhang et al., 2010). 

 

Over-expression of the endogenous MYB genes AtMYB46 (Kim et al., 2012; Ko et al., 2009; 

Zhong et al., 2007), AtMYB58 and AtMYB63 (Zhou et al., 2009) and AtMYB85 (Zhong et al., 

2008), and exogenous poplar PtrMYB3 and PtrMYB20 (McCarthy et al., 2010) and pine PtMYB4 

(Newman et al., 2004) in Arabidopsis all resulted in increased and ectopic lignin deposition 

highlighting their role in lignin biosynthesis. Further study found AtMYB46 was also involved in 

regulating cellulose synthesis as well as lignin biosynthesis (Kim et al., 2013). Ectopic lignin 

deposition was also found in stem tissue of transgenic poplar (Populus tomentosa) after 

isolation and over-expression of endogenous PtoMYB216 (Tian et al., 2013). The increased 

lignin content coincided with changes to the expression patterns of lignin biosynthetic genes. 

PAL, 4CL, C3H and CCR showed increased expression compared to controls whereas F5H had 

decreased expression. No change was observed in expression levels of CCoAOMT, COMT or 

CAD (Tian et al., 2013). 

 

A number of spruce MYB genes PgMYB2, PgMYB4 and PgMYB8 have been identified as being 

preferentially expressed in secondary xylem (Bedon et al., 2007), suggesting a role in secondary 
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cell wall formation. Expression of the closely related Pinus taeda genes PtMYB1 (Patzlaff et al., 

2003b) and PtMYB8 (Bedon et al., 2007) in spruce resulted in increased lignin deposition 

(Bomal et al., 2008). PpMYB8 from Pinus pinaster was transiently over-expressed in pine stem 

protoplasts in the presence of the GUS reporter gene driven by the P. pinaster PAL promoter 

resulting in induced GUS expression through the interaction with the AC element present in the 

PAL promoter sequence, highlighting PpMYB8 as a regulator of PAL expression (Craven-Bartle 

et al., 2013). The expression of grape VvMYB5a (Deluc et al., 2006), pine PtMYB4 (Patzlaff et al., 

2003a) and Eucalyptus EgMYB2 (Goicoechea et al., 2005) in tobacco led to increased levels of 

lignin biosynthesis gene transcription levels as well as increased lignin deposition. Loss of 

function AtMYB103 Arabidopsis had reduced F5H expression which led to a reduction in S 

monomers and an increase in G monomers without changing overall lignin content (Öhman et 

al., 2013). This indicates AtMYB103 is required for expression regulation of F5H (Öhman et al., 

2013).  

 

Similar results have also been found in rice. Hirano et al. (2013) identified 123 transcription 

factors as potentially involved in secondary cell wall regulation in rice. Six transcription factors 

were selected for further analysis to validate the initial findings which included four rice (Oryza 

sativa) MYB genes, namely OsMYB58/63, OsMYB42/85, OsMYB55/61 and OsMYB103 (Hirano et 

al., 2013). The over-expression of each of these genes individually resulted in plants having 

increases in CAD expression and increased lignin contents. Despite these common findings 

phenotypic variations were observed. The height of OsMYB58/63 expressing plants was 

comparable to that of controls while OsMYB42/85 plants were mildly dwarfed and 

OsMYB55/61 and OsMYB103 plants both displayed severe dwarfing of regenerated and 

acclimated plants (Hirano et al., 2013). The OsMYB55/61 gene was found to increase 

expression of a reporter gene driven by the CAD promoter region 7-fold over the control plants 

(Hirano et al., 2013). This highlights the changes in CAD expression and lignin content may be in 

part due to the regulatory influence the MYB genes may exert over lignin biosynthetic pathway 

genes via their promoters. These same rice MYBs were also knocked down via multiple 

strategies (Hirano et al., 2013). OsMYB42/85, OsMYB103 and OsMYB55/61 knockdown lines 

showed less CAD expression with OsMYB103 and OsMYB55/61 knockdown lines also showing a 

reduction in lignin content (Hirano et al., 2013). OsMYB42/85 and OsMYB103 lines were 

severely dwarfed whereas OsMYB55/61 lines displayed a less severe phenotype. OsMYB58/63 
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lines were again comparable to controls in height with no dwarfing observed (Hirano et al., 

2013).  

 

Many MYB genes appear to play redundant roles. In transgenic Arabidopsis, dominant 

repression of AtMYB46 resulted in decreased cell wall deposition and thickness whereas 

AtMYB46 knockout lines showed no phenotypic differences to controls (Zhong et al., 2007). 

Dominant repression of AtMYB46 also repressed the homologues of AtMYB46 whereas 

knockout of AtMYB46 did not, thus their redundancy countered any negative effects potentially 

derived from the knocking out of AtMYB46 (Zhong et al., 2007). Over-expression of AtMYB83, 

one such homologue, caused ectopic lignin deposition, whereas silencing of AtMYB83 did not 

result in any phenotypic differences (McCarthy et al., 2009). When AtMYB46/AtMYB83 double 

knockout Arabidopsis was generated, the plants displayed very stunted growth with little to no 

cell wall thickening in the leaves and roots (McCarthy et al., 2009). These findings suggest that 

AtMYB46 and AtMYB83 act redundantly for the regulation of cell wall deposition. 

 

Functional conservation of MYB transcription factors has been documented across several 

plant species. Homologues of AtMYB46/83 have been cloned from rice (OsMYB46), maize 

(ZmMYB46) (Zhong et al., 2011) and from poplar (PtrMYB2 and PtrMYB21) (Zhong et al., 2013). 

In AtMYB46/83 double knockout Arabidopsis all four MYB homologues, regardless of plant of 

origin, were able to restore normal function and phenotype to the mutant plant (Zhong et al., 

2011; Zhong et al., 2013). When the cloned MYB homologues were individually over-expressed 

in wild type Arabidopsis these plants were found to display ectopic lignin deposition and 

increased cellulose levels in the cell wall (Zhong et al., 2011; Zhong et al., 2013). PtrMYB3 

(McCarthy et al., 2010) and PtrMYB21 (Zhong et al., 2013) have also been characterised in 

transgenic poplar (Zhong et al., 2013). Dominant repression of either of these genes resulted in 

poplar of reduced height and secondary cell wall thickening whereas over-expression of these 

genes individually increased the lignin content in regenerated plants (Zhong et al., 2013). 

 

2.2.2.2 MYB gene directed down-regulation of lignin biosynthesis 

 

A number of MYB transcription factors have been shown to down-regulate the expression of 

genes within the lignin biosynthesis pathway which in turn correlates strongly with a reduction 
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in lignin deposition during cell wall formation (Table 2.2). The first evidence of R2R3 MYB 

transcription factors down-regulating lignin biosynthesis came after Antirrhinum MYB genes 

AmMYB308 and AmMYB330 were expressed in tobacco (Tamagnone et al., 1998). AmMYB308 

was found to down-regulate expression of lignin genes C4H, 4CL and CAD and AmMYB330 

expressing plants had reduced 4CL expression when compared to wild type controls. 

Phenotypically 48% of AmMYB308 and 29% of AmMYB330 showed slow and stunted growth 

with leaves presenting with general chlorosis with necrotic patches (Tamagnone et al., 1998). 

AmMYB308 plants had reduced S and G units, with an increase in S:G ratio, along with a 17.5% 

decrease in total lignin content of young stem tissue and a 56.5% lignin reduction in mature 

stem tissue (Tamagnone et al., 1998). The lignin composition was not reported for AmMYB330 

plants. 

 

Expression of Eucalyptus EgMYB1 in tobacco resulted in the repression of promoter activity of 

the CCR and CAD genes (Legay et al., 2007). EgMYB1 has since been expressed in Arabidopsis 

and poplar resulting in plants with reduced height and diameter (Legay et al., 2010). Further 

analysis found these plants had significantly less lignin than controls but their S:G monomer 

ratio was unchanged (Legay et al., 2010). Seven and nine different lignin biosynthetic genes had 

reduced expression in poplar and Arabidopsis respectively (Legay et al., 2010). CmMYB1 

isolated from Chrysanthemum morifolium has also been expressed in transgenic Arabidopsis 

(Zhu et al., 2013). It was found that CmMYB1 expression reduced mRNA levels of COMT and 

CAD greatly, and C4H, 4CL, HCT, CCR and F5H to a lesser extent. The lignin content of the 

transgenic plants was reduced, and lignin monomer composition was altered in favour of G 

monomers. 

 

Over-expression of AtMYB4 in tobacco resulted in reduced expression of C4H, 4CL and CAD (Jin 

et al., 2000), while in Arabidopsis, AtMYB4 over-expression reduced C4H and 4CL expression 

(Jin et al., 2000). In both lines PAL, F5H and COMT showed no change in expression levels 

whereas CCoAOMT showed an increase in expression (Jin et al., 2000). In AtMYB4 loss-of-

function Arabidopsis, C4H showed increased levels of expression whereas CCoAOMT showed 

reduced expression (Jin et al., 2000) indicating AtMYB4 may have a more complex relationship 

with lignin biosynthesis than just gene down-regulation. AtMYB4 was also found to repress 

reporter gene expression when driven by AtC4H or At4CL promoters in Arabidopsis protoplasts  
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TABLE 2.2: Summary of published results of the down-regulation of lignin biosynthesis by MYB genes  

MYB Source Expressed in Genes down-
regulated 

Promoter 
repressed Lignin content S:G ratio Reference 

AmMYB308 Antirrhinum majus Nicotiana tabacum C4H, 4CL, CAD  Decreased Increased (Jackson et al., 1991; 
Tamagnone et al., 1998) 

AmMYB330 Antirrhinum majus Nicotiana tabacum 4CL    (Jackson et al., 1991; 
Tamagnone et al., 1998) 

AtMYB4 Arabidopsis thaliana 
Arabidopsis thaliana: 

plants and protoplasts; 
Nicotiana tabacum 

C4H, 4CL, CAD C4H, 4CL   (Jin et al., 2000) 

AtMYB68 Loss-of-function 
Arabidopsis thaliana    Increased  (Feng et al., 2004) 

CmMYB1 Chrysanthemum 
morifolium Arabidopsis thaliana COMT, CAD, C4H, 

4CL, HCT, CCR, F5H  Decreased Reduced (Zhu et al., 2013) 

EgMYB1 Eucalyptus gunnii 
Nicotiana benthamiana; 

Arabidopsis thaliana; 
Populus tremula x P.alba 

All except HCT CCR, CAD Decreased Unchanged (Legay et al., 2007; Legay 
et al., 2010) 

LlMYB1 Leucaena leucocephala Nicotiana tabacum PAL, C4H, 4CL  Decreased  (Omer et al., 2013) 
P1/Ufo1 Zea mays Zea mays CCoAOMT, COMT  Decreased  (Robbins et al., 2013) 

PttMYB21a Populus tremula L. x 
tremuloides Michx      (Karpinska et al., 2004) 

PvMYB4 Panicum virgatum 

Arabidopsis thaliana 
protoplasts; Nicotiana 

tabacum; Panicum 
virgatum 

All ten genes PAL, 
CCoAOMT Decreased Increased (Shen et al., 2012; Shen et 

al., 2013) 

TaMYB4 Triticum aestivum Nicotiana tabacum CAD, CCR  Decreased Increased (Ma et al., 2011) 

ZmMYB31 Zea mays Arabidopsis thaliana 4CL, F5H, COMT, 
C3H COMT Decreased Unchanged (Fornalé et al., 2010; 

Fornalé et al., 2006) 

ZmMYB42 Zea mays Arabidopsis thaliana 4CL, F5H, COMT, 
CAD, PAL, C4H, HCT COMT Decreased Reduced (Fornalé et al., 2006; 

Sonbol et al., 2009) 
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(Jin et al., 2000). Reporter gene expression driven by AtCCoAOMT was unchanged by 

AtMYB4, indicating that its increased expression may not be directly caused by AtMYB4 (Jin 

et al., 2000). The expression of TaMYB4 (from wheat) in transgenic tobacco caused a 

decrease in CAD and CCR expression but not in COMT (Ma et al., 2011). This led to a 

reduction in lignin content with an increase in S:G ratio when compared to controls (Ma et 

al., 2011). Over-expression of Leucaena leucocephala (LlMYB1) in tobacco resulted in 

decreased transcript levels of PAL, C4H and 4CL and plants which were stunted with 

reduced lignin levels (Omer et al., 2013). 

 

The maize pericarp color1 (P1) gene is a MYB transcription factor whose expression can be 

influenced by the dominant modifying factor Unstable factor for orange1 (UFO1) gene 

(Chopra et al., 2003; Robbins et al., 2013). The expression of UFO1 increases the expression 

of P1 (Chopra et al., 2003) but has been associated with unfavourable developmental 

characteristics (Robbins et al., 2013). To explore this further, Robbins et al. (2013) crossed 

transgenic maize plants expressing P1 with maize plants that had either an expressing 

modifier (UFO1 E) or a mutated non-expressing modifier (ufo1 NE) and compared the two 

lines by proteomic analysis. Expression of lignin biosynthetic genes PAL, C4H and CAD was 

increased whereas expression levels of COMT and CCoAOMT was decreased in pericarp 

tissue of P1/UFO1 E plants when compared with P1/ufo1 NE plants. In internode tissue 

P1/UFO1 E plants showed a reduction in COMT protein levels but not in mRNA levels, 

indicating post-transcriptional silencing, which led to a decrease in lignin content when 

compared to P1/ufo1 NE and wild type controls (Robbins et al., 2013). Histochemical 

analysis of the COMT down-regulated P1/UFO1 E plants suggested a reduction in lignin S 

monomers however this was not confirmed with quantitative methods.  

 

Shen et al. (2012) identified a switchgrass (Panicum virgatum) MYB (PvMYB4) with the 

closest homology to AtMYB4. When co-expressed in Arabidopsis protoplasts, PvMYB4 

reduced expression of a reporter gene driven by the AtPAL or AtCCoAOMT promoter 

sequences (Shen et al., 2012). When expressed in stably transformed tobacco, PvMYB4 

lines had stunted stature and reduced lignin content, with an increase in S:G ratio due to a 

greater reduction of G monomers over S monomers. Transgenic switchgrass expressing 

PvMYB4 had reduced height and increased tillering with a reduction in lignin content but no 

change in S:G monomer ratio (Shen et al., 2012; Shen et al., 2013). qPCR analysis of the 

stably transformed PvMYB4 tobacco and switchgrass revealed that mRNA levels of F5H, 
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HCT and CCoAOMT were greatly reduced, with less extreme reduction in expression of the 

remaining seven lignin biosynthetic genes (Shen et al., 2012).  

 

The regulatory roles of some MYB genes have been assumed based on alternative data. An 

AtMYB68 loss-of-function mutant Arabidopsis was found to have increased lignin content in 

the roots suggesting that AtMYB68 would normally act to down-regulate lignin (Feng et al., 

2004). However, this was not confirmed by a gain-of-function experiment. Similarly, the 

down-regulation of PttMYB21a in hybrid aspen resulted in increased levels of CCoAOMT, 

suggesting that PttMYB21a may be a repressor of CCoAOMT expression (Karpinska et al., 

2004). Although it can be proposed that the down-regulation of CCoAOMT by increased 

PttMYB21a expression may lead to repressed lignin biosynthesis, it remains unconfirmed.  

 

2.2.3 ZmMYB31 and ZmMYB42 expression down-regulates lignin biosynthesis 

 

Alignment of animal MYB sequences and the first cloned plant MYB gene (Paz-Ares et al., 

1987) highlighted conserved regions to which primers were designed and six individual MYB 

genes were cloned from a developing flower bud cDNA library of Antirrhinum majus 

(snapdragon) (Jackson et al., 1991). An alignment of these MYB genes highlighted two 

AmMYB genes with conserved R2R3 domains but different C-terminal sequences 

(Tamagnone et al., 1998). It was hypothesised that these two MYB genes (AmMYB308 and 

AmMYB330) would bind the same DNA sequence but have different regulatory effects 

(Tamagnone et al., 1998). Using degenerate primer sequences designed from AmMYB308 

and AmMYB330, Fornalé et al. (2006) identified and cloned five different maize R2R3 MYB 

genes and expressed them in Arabidopsis. Plants expressing ZmMYB31 and ZmMYB42, 

which were found to be closely related to AmMYB308 and AmMYB330, showed an 8-fold 

and 2.1-fold suppression in lignin biosynthesis respectively when corrected for fresh tissue 

weight (Fornalé et al., 2006). Both ZmMYB31 and ZmMYB42 exerted down-regulatory 

control over 4CL, F5H and COMT expression (Fornalé et al., 2010; Fornalé et al., 2006; 

Sonbol et al., 2009). Further research found that ZmMYB31 also down-regulated C3H 

expression but slightly increased CAD expression, whereas ZmMYB42 down-regulated CAD 

expression, as well as PAL, C4H and HCT expression levels (Fornalé et al., 2010; Fornalé et 

al., 2006; Sonbol et al., 2009). A summary of the down-regulatory effects of the AmMYB 

(Tamagnone et al., 1998) and ZmMYB genes (Fornalé et al., 2006) is shown in Table 2.3. 
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TABLE 2.3: Summary of the regulatory effects1 over lignin biosynthesis gene expression 

levels after expression of Antirrhinum MYB genes in tobacco (Tamagnone et al., 1998) and 

Zea mays MYB genes in Arabidopsis (Fornalé et al., 2010; Fornalé et al., 2006; Sonbol et al., 

2009). 

 

 AmMYB308 AmMYB330 ZmMYB31 ZmMYB42 

PAL -   ↓ 

C4H ↓  - ↓ 

4CL ↓ ↓ ↓ ↓ 

HCT    ↓ 

C3H   ↓ - 

CCoAOMT   - - 

CCR    - 

F5H   ↓ ↓ 

COMT   ↓ ↓ 

CAD ↓  ~↑ ↓ 
 

1Arrows represent influence on gene expression levels. A dash represents no change in 

expression levels. A blank cell indicates transcription levels for that gene were not reported.  

 

 

Arabidopsis plants harbouring ZmMYB31 were found to have up to a 70% reduction in 

lignin content (Fornalé et al., 2010). The S:G monomer ratio did not change, but H 

monomers increased four-fold. These changes did not alter the carbohydrate composition 

within the cell wall (Fornalé et al., 2010). These results reflect the general suppression 

activity of ZmMYB31 over the lignin biosynthetic pathway promoters (Fornalé et al., 2010). 

Similar to these results, Arabidopsis expressing ZmMYB42 was found to have a 60% 

reduction in lignin content (Sonbol et al., 2009). ZmMYB42 Arabidopsis plants had a 

reduced S:G ratio, with a 50% reduction of S units, a 70% increase in G units and an increase 

in H monomers. Further analysis found the cellulose content was not altered in the 

ZmMYB42 plants but there was an increase in other cell wall carbohydrates (hemicelluloses) 

(Sonbol et al., 2009). 
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The synchronous down-regulation of several lignin biosynthetic pathway enzymes by MYB 

overexpression is an attractive solution to avoid detrimental metabolic pooling effects that 

may result when an individual gene is targeted (Besseau et al., 2007; Weng et al., 2008) as 

the altered expression of lignin biosynthesis genes will in turn alter the flow of metabolites 

through the lignin biosynthesis pathway (Baxter and Stewart, 2013). Although negative 

phenotypes including slow and stunted growth have been observed in lignin reduced plants 

over-expressing R2R3 MYB transcription factors, (Fornalé et al., 2010; Fornalé et al., 2006; 

Sonbol et al., 2009; Tamagnone et al., 1998), this is not uncommon when lignin content is 

significantly reduced (Vanholme et al., 2010). While the 60% - 70% lignin reduction in these 

studies is severe, a more modest reduction in lignin may still improve cell wall digestibility 

while allowing plants to maintain normal development and growth (Vanholme et al., 2010). 

Modest lignin reductions are achievable through the optimisation of constructs for 

transgenic expression, through promoter choice and the addition of targeting sequences 

(Vanholme et al., 2008). Such optimisations can better control the levels and tissue 

specificity of expression which may help to establish a spectrum of tolerable lignin 

reductions in plants, thus allowing for normal or increased biomass production, with the 

added benefit of enhanced digestibility. 

 

Zea mays MYB31 and MYB42 have been specifically demonstrated to reduce total lignin 

content by down-regulating the lignin biosynthetic pathway in Arabidopsis (Fornalé et al., 

2010; Fornalé et al., 2006; Sonbol et al., 2009). In addition, Fornalé et al. (2006) found that 

MYB31 and MYB42 expression down-regulated the maize COMT promoter (Capellades et 

al., 1996). Arabidopsis expressing either MYB31 or MYB42 were crossed with an 

Arabidopsis line expressing green fluorescent protein (GFP) (Chiu et al., 1996) under the 

control of the maize COMT promoter. The resulting F1 progeny had significant decreases in 

GFP expression which was attributed to the down-regulation of the COMT promoter by the 

maize MYB genes (Fornalé et al., 2006). Research suggests that the lignin biosynthetic 

pathway is conserved to an extent between species (Fornalé et al., 2006; Marita et al., 2003) 

and as sugarcane and maize are genetically closely related (Selman-Housein et al., 1999), 

the success in modifying expression of the maize COMT gene promoter (Fornalé et al., 2006) 

supports the expectation that lignin can be successfully down-regulated in sugarcane 

through the over-expression of the maize transcription factors MYB31 and MYB42. 
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2.3 RNAi targeting of individual lignin biosynthesis genes 

 

2.3.1 RNA silencing 

 

Small non-coding RNA sequences are an integral part of RNA silencing pathways (Frizzi and 

Huang, 2010). Within plants these pathways double as a method of gene regulation 

(Vaucheret, 2006) and as an ‘immune system’ by targeting double stranded RNA (dsRNA) 

which can be indicative of viral infection or transposon activity (Margis et al., 2006; Morel 

et al., 2002). Silencing can occur as transcriptional gene silencing (TGS) by deactivation of 

genomic DNA through methylation (Mette et al., 2000) or as post transcriptional gene 

silencing (PTGS) by mRNA degradation (Hamilton and Baulcombe, 1999). PTGS, commonly 

referred to as RNA interference (RNAi) (Vaucheret, 2006), can be utilised as a powerful 

molecular tool for gene silencing. 

 

Double stranded RNA can originate from converted single stranded RNA (ssRNA) by an RNA 

dependent RNA polymerase (Dalmay et al., 2000), or by inverted repeats forming a dsRNA 

hairpin conformation (Wesley et al., 2003). Both endogenous and exogenous dsRNAs are 

indiscriminately recognised and cleaved by Dicer, an RNase III nuclease (Bernstein et al., 

2001) which produces short interfering RNA (siRNA) fragments of approximately 21 – 25 

nucleotides in length (Hamilton et al., 2002). The siRNAs are specifically methylated by the 

RNA methyltransferase HEN1 (Boutet et al., 2003; Saito et al., 2007) which serves to 

stabilise the siRNA (Li et al., 2005; Yang et al., 2006). RNA helicase (Filipowicz, 2005) 

unwinds the siRNA and one strand is selectively incorporated into an RNA induced silencing 

complex (RISC) (Frizzi and Huang, 2010). AGO1, an argonaute protein is an integral part of 

plant RISCs (Fagard et al., 2000; Morel et al., 2002) allowing it to bind specifically to ssRNA 

complementary to its incorporated siRNA fragment (Hammond et al., 2000). Once the RISC 

is bound, the ssRNA can be cleaved through the activity of Slicer, a ribonuclease 

(Baumberger and Baulcombe, 2005; Tolia and Joshua-Tor, 2007). This silencing signal can 

move systematically throughout the plant (Himber et al., 2003; Mlotshwa et al., 2002), 

allowing for wide-spread suppression of specific gene sequences.  

 

2.3.2 RNA silencing for plant biotechnology 

 

By utilising the RNA silencing pathway in plants, constructs can be designed to produce 

dsRNA complementary to specific genes, thereby directing the plant to silence specific 



  Literature Review                                                                                                                            29 
 

 

genes of interest. Although sense and antisense constructs have been found in the past to 

result in degrees of PTGS (reviewed in Frizzi and Huang, 2010), RNAi constructs designed 

with both sense and complementary antisense gene sequences separated by a spacer 

region (intron) can dramatically increase the levels of gene silencing in transgenic plants 

(Wesley et al., 2004; Wesley et al., 2003). These constructs are commonly referred to as 

hairpin RNA (hpRNA) due to the conformational shape of the corresponding mRNA 

transcript (Wesley et al., 2003). Although a large body of research exists for sense, 

antisense and RNAi targeted gene down-regulation of the lignin biosynthetic pathway in a 

variety of plant species (reviewed in Hisano et al., 2009; Li et al., 2008; and Simmons et al., 

2010) this literature review will specifically focus on the down-regulation of three lignin 

biosynthetic genes: CCoAOMT, F5H and COMT. Osabe et al. (2009) first provided evidence 

for the effectiveness of RNAi silencing in sugarcane by targeting the phytoene desaturase 

(PDS) gene within the β-carotene biosynthesis pathway. Regenerated sugarcane expressing 

the RNAi construct showed near complete loss of PDS mRNA expression (Osabe et al., 2009). 

Two further studies (Jung et al., 2012; Jung et al., 2013) support the effectiveness of RNAi 

mediated gene silencing in sugarcane and provide evidence lignin biosynthesis genes can be 

down-regulated using an RNAi approach. This further highlights RNAi as an attractive tool 

for the manipulation of lignin biosynthetic genes with the intent of reducing lignin content, 

altering the lignin monomer ratio and improving overall bagasse digestibility. 

 

2.3.3 Targeting CCoAOMT, F5H and COMT for RNAi down-regulation 

 

2.3.3.1 Transgenic down-regulation of CCoAOMT 

 

Caffeoyl CoA 3-O-methyltransferase (CCoAOMT) is responsible for the 3' methylation of 

caffeoyl-CoA to produce feruloyl-CoA (Hisano et al., 2009; Raes et al., 2003), a key step in 

the production of G and S lignin monomers (Figure 1.1; Barrière et al., 2004). Only three 

studies in which CCoAOMT has been down-regulated using an RNAi mediated approach 

have been reported (Chen et al., 2006; Li et al., 2013; Wagner et al., 2011). Analysis of 

CCoAOMT RNAi down-regulated alfalfa plants by Chen et al. (2006) and Chen and Dixon 

(2007) found a reduction in total lignin (approximately by 20%) in which G monomers were 

reduced whereas S monomers remained at wild type levels, thus increasing the S:G ratio. 

RNAi down-regulation of CCoAOMT in Pinus radiata reduced the lignin contents of 

transgenics by 5-20% of that of the controls with an increase in the H:G ratio due to 

decreased G-monomers (Wagner et al., 2011). No S:G ratio was available as coniferous 
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gymnosperms, which include Pinus radiata, lack S-type lignin monomers (Wagner et al., 

2011). Similar results were found after RNAi targeting of CCoAOMT expression in transgenic 

maize (Li et al., 2013). Transgenics had an average of 22% reduction in Klason lignin with a 

57% increase in the S:G ratio when compared to wild type controls (Li et al., 2013). Further 

analysis found the transgenic maize had an average increase of 23% in cellulose content but 

no differences in hemicellulose content when compared with controls (Li et al., 2013).  

 

Sense and antisense suppression of CCoAOMT in alfalfa (Guo et al., 2001a; Marita et al., 

2003; Nakashima et al., 2008) support these findings, as do results in other plant species 

engineered for down-regulated CCoAOMT expression. Increased S:G ratios with a 12 – 40% 

reduction in lignin content has been reported in flax (Day et al., 2009), poplar (Meyermans 

et al., 2000; Zhong et al., 2000) and tobacco (Pinҫon et al., 2001; Zhao et al., 2002). Further 

analysis found improved rumen digestibility and increased cellulose content in CCoAOMT 

down-regulated alfalfa (Guo et al., 2001a; Guo et al., 2001b; Marita et al., 2003). Rumen 

digestibility is another indication of cell wall recalcitrance as higher lignin content reduces 

the digestibility and therefore the forage value of crops (Guo et al., 2001b). Mutant 

Arabidopsis deficient in CCoAOMT expression also provide support for the transgenic 

studies (Van Acker et al., 2013). A 21-25% reduction in lignin content was found in ccoaomt 

mutant lines with decreases in G monomers and increases in S monomers leading to an 

overall increase to the S:G ratio (Van Acker et al., 2013). Mutant ccoaomt lines did not show 

any differences in crystalline cellulose content but had increases in rhamnose and galactose 

polysaccharides in the hemicellulose matrix (Van Acker et al., 2013). In general, no 

phenotypic differences were observed between transgenic plants and controls (Day et al., 

2009; Meyermans et al., 2000; Van Acker et al., 2013; Zhao et al., 2002), with the exception 

of one report of reduced plant height (Pinҫon et al., 2001). 

 

Targeting CCoAOMT for down-regulation may also have a secondary effect on the cell wall 

structure itself. CCoAOMT, along with C3H are hypothesised to be important control points 

for cell wall lignification by acting as part of the ferulate production pathway (Barrière et al., 

2004). The feruloyl residues aid in cross-linking within the cell wall and may increase the 

resistance of the cell wall to hydrolysis by adding to its structural stability (Barrière et al., 

2004; Grabber, 2005). Therefore, a plant with reduced or impaired ferulate content or 

cross-linking may be more susceptible to enzymatic hydrolysis due to a lessening in the cell 

wall stability (Buanafina, 2009; Grabber, 2005; Li et al., 2008).  
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2.3.3.2 Transgenic down-regulation of F5H 

 

Ferulate 5-hydroxylase (F5H) is a cytochrome P450-dependent monooxygenase responsible 

for the 5’ hydroxylation of coniferaldehyde and coniferyl alcohol (Hisano et al., 2009; Raes 

et al., 2003). As such it plays a key role in the production of S lignin as the hydroxylation of 

the 5’ position is an essential step in the formation of the syringyl units (Figure 1.1; Weng 

and Chapple, 2010). There is only one report of F5H being down-regulated by RNAi, 

however it was included with COMT as half of a chimeric RNAi construct (Bhinu et al., 2009). 

Regenerated canola plants were found to have up to a 26% reduction in lignin content with 

no apparent phenotypic differences, however it is not known if the altered lignin content is 

caused by reduced expression of F5H, COMT, or a combination of both. Expression of an 

antisense F5H construct in alfalfa (Chen and Dixon, 2007; Chen et al., 2006; Nakashima et 

al., 2008; Reddy et al., 2005) resulted in reduced S monomers and, therefore a decreased 

S:G ratio, but did not reduce the overall lignin content.  

 

In a comparison of two f5h mutant Arabidopsis lines, one had increased lignin content and 

the other had no changes to lignin content (Van Acker et al., 2013). There was no change to 

the H monomer content of the lignin polymer however increases in G monomers (99.3% of 

lignin polymer was composed of G monomers in mutants) and a decrease in S monomers 

(none were detected in mutant lines) led to a decrease in the S:G ratio (Van Acker et al., 

2013). Crystalline cellulose was reduced in both mutant lines however no changes were 

detected in hemicellulose polysaccharides (Van Acker et al., 2013). The f5h mutants did not 

show any phenotypic differences when compared with wild type controls (Van Acker et al., 

2013). 

 

Stewart et al. (2009) analysed transgenic poplar over-expressing the F5H gene. The results 

revealed a drastic increase in S monomers (and therefore in S:G ratio) in transgenic plants 

when compared to controls (from 65% to over 90% of lignin was composed of S units). This 

provides additional support to previous findings of F5H expression positively correlating 

with S monomer concentration (whether increased or decreased) in the lignin polymer. This 

makes F5H an attractive gene target for suppression as the lignin content will potentially 

remain the same with an alteration in the lignin monomer ratios being the major impact of 

the genetic manipulation. 
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2.3.3.3 Transgenic down-regulation of COMT 

 

Caffeic acid 3-O-methyltransferase (COMT) is responsible for the methylation of 5-hydroxy-

coniferaldehyde and 5-hydroxy-coniferyl alcohol into sinapaldehyde and sinapyl alcohol 

(Hisano et al., 2009; Raes et al., 2003) and is therefore essential for the production of S 

lignin units (Figure 1.1; Bonawitz and Chapple, 2010; Weng and Chapple, 2010). RNAi 

suppression of COMT has decreased S units in canola (Bhinu et al., 2009) and alfalfa (Chen 

and Dixon, 2007; Chen et al., 2006) with a lignin reduction of up to 40% (Bhinu et al., 2009). 

Brassica napus harbouring COMT-RNAi constructs were found to have residual COMT 

enzyme activities of 21% - 31% of controls which correlated with 15.67% - 35.09% 

reductions in lignin content of transgenic plants (Oraby and Ramadan, 2014). RNAi 

suppression of COMT expression has also been analysed in switchgrass with total lignin 

reductions of 6.4% - 14.7% and decreases to G and S monomers and to the overall S:G ratio 

(Fu et al., 2011a). Further studies in COMT RNAi switchgrass have found Klason lignin 

reductions of 14% and a decreased S:G ratio (Samuel et al., 2014). Fu et al. (2011a) found 

no changes to cellulose content or crystallinity and Samuel et al. (2014) found slightly 

higher xylose content but did not report if the changes were significant.  

 

Two of the RNAi-COMT switchgrass lines previously generated (Fu et al., 2011a) were field 

acclimatised and analysed over two growing seasons (2011-2012) (Baxter et al., 2014). 

COMT transcript levels in leaf tissue of growing plants was found to be reduced in both 

RNAi lines by up to 97% over the 2011 and 2012 harvest (Baxter et al., 2014). Samples were 

taken mid-season (green tissue) and during end-of-season harvesting (senesced tissue) 

during 2011 and 2012 and analysed for cell wall composition and saccharification potential. 

Total lignin content was reduced in green and senesced tissue in both RNAi lines by 8.4% – 

14.5% over the two growing seasons with S:G reductions seen in all tissues analysed (Baxter 

et al., 2014). No change in cellulose content was seen for either line over either growing 

season though both lines showed increased hemicellulose in 2012 season (Baxter et al., 

2014). The 2011 green tissue released 9% - 11.7% more sugar than controls and senesced 

tissue released 0.0% - 5.6% more sugar with no differences in cellulose crystallinity seen 

(Baxter et al., 2014). In the 2012 harvest both lines had 16% - 18.6% decreases in cellulose 

crystallinity with 14.7% - 18.7% increase in sugar release from green tissue and 32% - 34.2% 

increase in release from senesced tissue (Baxter et al., 2014). 
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COMT expression has also been RNAi targeted (using native COMT sequence) in transgenic 

sugarcane (Jung et al., 2012; Jung et al., 2013), providing the first insights into 

biotechnological mediated lignin down-regulation in sugarcane. In glasshouse grown 

COMT-RNAi sugarcane with approximately 65% - 95% reductions in COMT expression, 

decreases of 3.9% - 13.7% in total lignin were found when compared with controls (Jung et 

al., 2012). These plants had a reduction to the S:G ratio due to a decrease in S monomers 

(Jung et al., 2012). In field conditions, the COMT RNAi sugarcane continued to show greatly 

reduced COMT expression after six months in the field which resulted in reductions in lignin 

content by 5.5% - 12% (Jung et al., 2013). While G monomer content remained unchanged 

in transgenics, S monomer content was reduced, reducing the S:G ratio (Jung et al., 2013). 

Further analysis of two transgenic lines revealed no differences in glucose (indicative of 

cellulose) or arabinose, though one line showed an increase in xylose (Jung et al., 2013).  

 

Sense and antisense constructs have also been employed for COMT down-regulation. 

Overall the results showed lignin reductions of 10 – 31% with reductions in S units 

approaching near total loss in some reports in alfalfa (Guo et al., 2001a; Guo et al., 2001b; 

Marita et al., 2003; Nakashima et al., 2008), poplar (Jouanin et al., 2000), tobacco (Pinҫon 

et al., 2001; Zhao et al., 2002) and maize (He et al., 2003; Piquemal et al., 2002). 

Interestingly, a reduction of S-monomer units was also detected in aspen that had reduced 

levels of COMT (Tsai et al., 1998), but there was no change in total lignin content. 

Reductions of S units reflect the positioning of COMT within the lignin biosynthesis pathway 

(Figure 1.1). COMT down-regulated plants were reported to have relative increases in 

cellulose (Marita et al., 2003) and improved rumen digestibility (Guo et al., 2001b; He et al., 

2003; Piquemal et al., 2002).  

 

Mutant comt Arabidopsis showed no differences in lignin content when compared against 

controls (Van Acker et al., 2013). Further analysis found that the lignin polymer in the 

mutant plants had increased G monomers and reduced S monomers to the extent that the 

lignin polymer was composed of approximately 95% - 98% G monomers (Van Acker et al., 

2013). Both comt mutant lines showed no changes in matrix polysaccharide content, 

though both lines had decreases in crystalline cellulose with one line also showing a 

decrease in xylose and the other an increase in galactose (Van Acker et al., 2013). No 

detrimental phenotypes were reported for any plants having reduced levels of COMT 

expression (Bhinu et al., 2009; Fu et al., 2011a; Jouanin et al., 2000; Oraby and Ramadan, 

2014; Pinҫon et al., 2001; Van Acker et al., 2013; Zhao et al., 2002) except in field-grown 
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sugarcane where lignin reductions of 8% - 12% resulted in reduced biomass (Jung et al., 

2012; Jung et al., 2013). Sugarcane with lignin reductions of 6% or less did not show any 

phenotypic differences or loss of biomass (Jung et al., 2012; Jung et al., 2013). Interestingly, 

one RNAi-COMT switchgrass line analysed by Baxter et al. (2014) showed no phenotypic 

differences in the 2011 season but had increases in tiller height, diameter and total biomass 

yield in 2012 (Baxter et al., 2014). The other RNAi-COMT line had decreases in tiller height, 

diameter and total biomass yield in 2011 but no differences were observed after the 2012 

harvest (Baxter et al., 2014).  

 

2.3.4 Targeting of CCoAOMT, F5H and COMT 

 

CCoAOMT, F5H and COMT have been chosen for down-regulation in sugarcane as their 

location within the lignin biosynthetic pathway suggests that their down-regulation may not 

only reduce overall lignin content, but may also alter the lignin monomer ratio, thereby 

altering the lignin polymer composition. This combination of altered and reduced lignin 

deposition can positively influence plant digestibility (Grabber, 2005; Sonbol et al., 2009). A 

change in the lignin monomer composition can also reduce recalcitrance and improve 

digestibility (Chen and Dixon, 2007; Grabber, 2005; Huntley et al., 2003; Simmons et al., 

2010), potentially through a change in the linkage pattern found throughout the lignin 

polymer (Jackson et al., 2008). Production of more homogeneous lignin polymers would 

reduce the number of different bond types, thus simplifying the lignin polymer and in turn 

reducing the severity of required pretreatment (Weng et al., 2008) without negatively 

affecting plant growth or development (Vanholme et al., 2008).  

 

The degree of lignin polymer cross-linking is determined by the S:G monomer ratio of the 

lignin polymers with an increase in G monomers resulting in a greater degree of cross-

linking (Ferrer et al., 2008). This has led to speculation that a reduction in S monomers 

(with a relative or actual increase in G monomers) will increase biomass recalcitrance 

(Kiyota et al., 2012; Ziebell et al., 2010). Although there is some support that a reduction in 

G monomers (increase in S:G ratio) improves saccharification (Chen and Dixon, 2007; 

Studer et al., 2011; Xu et al., 2011) there are also a number of reports that have found a 

reduction in S units (decrease in S:G ratio) correlates with saccharification improvements 

(Baxter et al., 2014; Chen and Dixon, 2007; Fornalé et al., 2012; Fu et al., 2011a; Fu et al., 

2011b; Jung et al., 2012; Jung et al., 2013; Sonbol et al., 2009). The results suggest that 
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saccharification efficiency may not be solely dependent on lignin content or polymer 

monomer ratio (Fornalé et al., 2010; Fu et al., 2011b; Studer et al., 2011).  

 

Targeting genes early in the lignin biosynthesis pathway can lead to undesirable 

phenotypes (Baucher et al., 2003; Besseau et al., 2007; Coleman et al., 2008; Wagner et al., 

2007); targeting genes later in the pathway is expected to reduce the chance of the 

generated transgenic plants showing undesirable phenotypes (Chen and Dixon, 2007; 

Reddy et al., 2005) though this is not always the case (Prashant et al., 2011; Thévenin et al., 

2011; Wang et al., 2012). As previously discussed, CCoAOMT down-regulation reduced the 

G monomers and F5H and COMT down-regulation reduced the S monomers within the 

lignin polymer, but no decreases in biomass were reported (Chen and Dixon, 2007; Reddy 

et al., 2005). This further supports the selection of these genes for down-regulation in 

sugarcane as high crop productivity is an important requirement by the industry (Hisano et 

al., 2009), so genes that reduce crop biomass, such as HCT and C3H (Chen and Dixon, 2007) 

may not be the most suitable candidates for down-regulation in sugarcane. With the 

discovery of a larger suite of promoters for specific spatial and temporal gene expression in 

sugarcane, additional genes in the lignin biosynthetic pathway may become more attractive 

for misregulation. 

 

2.4 Saccharification improvements through altered lignin composition  

 

2.4.1 Saccharification improvements in non-transgenic lignin modified plants 

 

There are an increasing number of papers finding that a reduction in lignin content, 

whether through classical breeding or biotechnology, correlates strongly with an increase in 

saccharification of structural cell wall carbohydrates. Negative correlations between lignin 

content and saccharification have been found in wild type switchgrass (Shen et al., 2009) 

and poplar (Studer et al., 2011). Arabidopsis lines with mutations in eight lignin biosynthetic 

pathway genes were enzymatically hydrolysed before and after pretreatment (Van Acker et 

al., 2013). Mutant plants for c4h, 4cl, ccoaomt and ccr with reductions in lignin all showed 

increases in cellulose conversion to glucose (Van Acker et al., 2013). Mutant comt and f5h 

plants did not have any differences in lignin content but released more glucose during 

enzymatic hydrolysis without pretreatment (Van Acker et al., 2013). Interestingly, after 

pretreatment only the comt mutants released more glucose; the f5h mutants were 

comparable to wild types (Van Acker et al., 2013). Mutant plants for pal and cad did not 
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show any differences in lignin content and did not yield more glucose than controls after 

enzymatic hydrolysis either before or after pretreatment.  

 

2.4.2 Saccharification improvements after transgenic expression of MYB 

transcription factors 

 

Only two research groups have shown improved yield of fermentable sugars after 

enzymatic hydrolysis in plants with reduced lignin content due to the expression of MYB 

transcription factors. PvMYB4 expression in transgenic switchgrass (Panicum virgatum) 

reduced lignin content and improved saccharification three-fold in transgenic plants 

compared with controls (Shen et al., 2012; Shen et al., 2013). Reductions in Arabidopsis 

lignin content by expression of ZmMYB31 (Fornalé et al., 2010) and ZmMYB42 (Sonbol et al., 

2009) improved enzymatic release of monosaccharides by 14% and 68% respectively when 

compared with controls (Fornalé et al., 2010; Sonbol et al., 2009).  

 

2.4.3 Saccharification improvements after expression of sense/antisense/RNAi 

constructs 

 

Increased glucose yield after enzymatic hydrolysis has been reported in both dicot and 

monocot plants with altered lignin contents resulting from specific down-regulation of 

lignin biosynthetic pathway gene expression levels. Antisense down-regulation of C4H, HCT, 

C3H, CCoAOMT, F5H and COMT in transgenic alfalfa led to all lines except F5H having 

reduced lignin (Chen and Dixon, 2007). In turn, all lines except F5H had improved enzymatic 

hydrolysis efficiency over controls after pretreatment (Chen and Dixon, 2007). Alfalfa with 

antisense down-regulation of CAD and CCR were found to have improved saccharification 

and rumen digestibility (Jackson et al., 2008) and RNAi targeting of CAD improved 

enzymatic hydrolysis release of glucose in switchgrass (Panicum virgatum L.) (Fu et al., 

2011b; Saathoff et al., 2011) and maize (Fornalé et al., 2012).  

 

Interestingly, although CAD RNAi switchgrass lines had significantly reduced lignin content 

(Fu et al., 2011b; Saathoff et al., 2011) CAD RNAi maize did not show reduced total lignin in 

stem tissue, though a decrease in S:G ratio and an increase in H monomers was observed 

(Fornalé et al., 2012). This may be due to the enzyme activity of CAD in the transgenic 

maize being reduced by 66% (Fornalé et al., 2012) whereas the transgenic switchgrass had 

CAD enzyme activity reductions of 61% - 88% (Fu et al., 2011b) and by 70% - 95% in the 
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majority of plants analysed (Saathoff et al., 2011). Sense and antisense down-regulation of 

COMT in tall fescue (Festuca arundinacea Schreb.) also led to improved rumen digestibility 

(Chen et al., 2004). RNAi down-regulation of COMT (Baxter et al., 2014; Fu et al., 2011a) 

and 4CL (Xu et al., 2011) in switchgrass reduced lignin content and improved glucose yield 

after enzymatic hydrolysis (Baxter et al., 2014; Fu et al., 2011a; Xu et al., 2011). Antisense 

targeting of 4CL in poplar reduced lignin content however this did not correlate with an 

increase in sugar released during enzymatic hydrolysis (Voelker et al., 2010).  

 

2.4.4 Saccharification improvements in wild type and transgenic sugarcane 

 

A negative correlation between lignin content and saccharification yield has also been 

observed in both wild type and transgenic sugarcane. 115 non-commercial varieties of 

sugarcane produced by precision or classical breeding were analysed for lignocellulosic 

compositions and saccharification efficiencies (Benjamin et al., 2013). Sugarcane with a low 

lignin content of 14% - 16% released more glucose after enzymatic hydrolysis than the 

varieties with intermediate lignin contents of 18% - 20% however the intermediate plants 

had better agronomic productivity (biomass content) than the low lignin plants (Benjamin 

et al., 2013). Six sugarcane varieties analysed in Benjamin et al. (2013) had cell wall 

composition and saccharification potentials examined over the 2009 and 2011 harvesting 

seasons (Benjamin et al., 2014). Some negative correlations were seen between lignin 

content and glucose liberated after enzymatic hydrolysis in the 2009 harvested material but 

not in 2011 across a range of pretreatment severities (Benjamin et al., 2014). The 2011 

harvested material also saw small increases in lignin content for four of the six varieties 

which the authors suggest contributed to some slight overall decreases in glucose yields 

after hydrolysis (Benjamin et al., 2014). Lower than average rainfall during a period of 

drought in 2010 was considered at least partially responsible for these changes in the 2011 

harvested material (Benjamin et al., 2014).  

 

Masarin et al. (2011) selectively bred low-lignin content sugarcane varieties to assess their 

performance in the production of bioethanol. Each of the 11 new varieties had lignin 

contents of 17% - 21.5% which was significantly less than the controls (Masarin et al., 2011). 

After 72 hours of enzymatic digestion the 11 new varieties and controls segregated into 

three groups. The two varieties with the lowest lignin contents of 16.8% and 18.6% had the 

highest rates of cellulose conversion to glucose, 31% and 25% respectively (Masarin et al., 

2011). Plants with intermediate lignin contents of 18.6% - 20.6%, had intermediate 
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cellulose conversion rates of 19% - 22% and the varieties and controls with higher lignin 

contents of 20.2% - 24.5% had the lowest levels of cellulose conversion of 12% - 14% 

(Masarin et al., 2011). When the new varieties were assessed for agronomic performance 

the results were mixed with no clear relations between lignin content, biomass production 

and sucrose content (Masarin et al., 2011). Interestingly the variety with the lowest lignin 

content had the highest biomass of all varieties and the fourth highest sucrose content 

(Masarin et al., 2011). The variety with the second lowest lignin content had the second 

highest sucrose content but was the penultimate variety in biomass yield (Masarin et al., 

2011).  

 

Transgenic sugarcane with significantly reduced lignin content through RNAi targeting of 

COMT have also been assessed for saccharification performance (Jung et al., 2012; Jung et 

al., 2013). The glasshouse grown transgenic sugarcane lines with lignin reductions of 3.9% - 

13.7% released up to 29% more glucose without pretreatment and 34% more glucose after 

pretreatment than the control plants (Jung et al., 2012). The COMT RNAi sugarcane (Jung et 

al., 2012) were transferred and grown in field conditions for seven months (Jung et al., 

2013). Analysis found a 6% lignin reduction improved glucose release by enzymatic 

hydrolysis by 19% - 23% without phenotypic or agronomic penalties or differences (Jung et 

al., 2013). This is in contrast to sugarcane plants with an 8% - 12% lignin reduction (Jung et 

al., 2013). Though these plants had a 28% - 32% increase in saccharification efficiency over 

controls, the plants also had reduced biomass after harvesting (Jung et al., 2013).  

 

2.5 Summary and implications 

 

Worldwide oil consumption and demand are increasing at an unsustainable rate (Murray 

and King, 2012). This trend has been strongly linked with climate change which has 

influenced increased research into alternative, environmentally friendly energy sources 

(Limayem and Ricke, 2012; Murray and King, 2012; Yang et al., 2013). As well as limiting 

further environmental damage, oil production is also slowing and being a finite resource 

makes finding and developing alternative energy sources imperative and unavoidable 

(Murray and King, 2012). One part of the solution is to increase the energy sourced from 

renewable materials, such as second generation bioethanol from waste plant biomass.  

 

The sugarcane industry produces large amounts of sugarcane bagasse (de Souza et al., 2014; 

Lakshmanan et al., 2005) which is currently underutilised and would be a suitable 
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lignocellulosic source of fermentable sugars for bioethanol production (Canilha et al., 2012; 

Yuan et al., 2008). However the recalcitrant nature of the lignin present in the bagasse 

increases the bioethanol production costs (Benjamin et al., 2013; Chen and Dixon, 2007) to 

levels which would not be economically competitive with oil as an energy source (Benjamin 

et al., 2013; Yang et al., 2013; Yuan et al., 2008). The production costs could be reduced if 

the lignin content of the sugarcane bagasse was reduced.  

 

The complexity of the sugarcane genome, long timeframes for traditional breeding (Grivet 

and Arruda, 2001; Suprasanna et al., 2011), and complex combinations of desired 

commercial traits, such as high sucrose yield and improved cell wall properties for biofuels, 

highlights sugarcane as a strong candidate for biotechnological attention (Canilha et al., 

2012; de Souza et al., 2013; Suprasanna et al., 2011) which is the focus of this thesis. If 

biotechnological approaches can be utilised to reduce the lignin content of sugarcane 

plants, and thus the bagasse, this would be a step towards the production of cost-

competitive second generation bioethanol from this bagasse which would benefit the 

environment, the Australian economy and Australian sugarcane farmers (Canegrowers, 

2010; Lakshmanan et al., 2005), as well as having a wider global impact. 

 

The research described in this thesis aims to increase the limited available knowledge of 

lignin development and modification in sugarcane through the completion of three aims. 

The first aim is the development of a profile of lignin biosynthesis and the deposition of 

secondary cell wall components in sugarcane by complementing lignin biosynthesis gene 

expression level data with cell wall compositional data. This thesis further aims to explore 

the increased release of glucose from sugarcane bagasse genetically modified to have a 

reduced or altered lignin composition. This will contribute to second generation bioethanol 

research using sugarcane bagasse as a source of fermentable monosaccharides. This in turn 

will contribute to the widening body of research aimed at using plant biomass to reduce the 

use and reliance on oil as a source of energy. A negative correlation between lignin content 

and saccharification efficiency has been shown in wild type sugarcane (Benjamin et al., 

2013; Masarin et al., 2011) supporting the hypothesis that genetically modified lignin-

reduced sugarcane will have increased levels of glucose released during enzymatic 

hydrolysis. Two different approaches will be taken to reduce lignin content in sugarcane.  

 

Aim two utilises the transgenic expression of transcription factors to overall reduce the 

expression of multiple lignin biosynthetic genes. Maize transcription factors MYB31 and 
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MYB42 have been previously shown to reduce lignin content in Arabidopsis by down-

regulating the expression of genes within the lignin biosynthesis pathway (Fornalé et al., 

2010; Fornalé et al., 2006; Sonbol et al., 2009) which positively correlated with an increase 

in saccharification after enzymatic hydrolysis (Fornalé et al., 2010; Sonbol et al., 2009). 

Although there are no available reports of MYB31 or MYB42 transcription factors being 

expressed in a monocot species they are expected to function with similar results in 

sugarcane as the MYB genes will be isolated from maize which is closely related to 

sugarcane (Selman-Housein et al., 1999). The expression of these transcription factors in 

sugarcane and the observed effects on lignin biosynthesis and enzymatic hydrolysis 

performance comprises the second aim of this thesis.  

 

Aim three involves RNAi mediated down-regulation of expression levels of specifically 

targeted lignin biosynthesis genes, CCoAOMT, F5H and COMT, to reduce lignin content and 

potentially alter the lignin monomer ratio. As discussed, these genes have been down-

regulated in both dicots and monocots though mutations or sense/antisense/RNAi 

constructs (Section 2.3.3). The findings that a down-regulation in CCoAOMT (Chen and 

Dixon, 2007; Van Acker et al., 2013), F5H (Van Acker et al., 2013) and COMT (Fu et al., 

2011a; Jung et al., 2012; Jung et al., 2013) expression led to improved saccharification 

efficiency supports the hypotheses that the down-regulation of these genes in sugarcane 

will yield improved glucose release by enzymatic hydrolysis. That this has been shown in 

COMT RNAi down-regulated sugarcane (Jung et al., 2012; Jung et al., 2013) offers further 

support that this result can be replicated in an important Australian sugarcane cultivar.  

  

The outcomes of this research will contribute to the development and commercialisation of 

cost-competitive second generation bioethanol from sugarcane bagasse. This will reduce 

the reliance on oil as a source of energy and in turn will have positive benefits for the global 

environment and economy. Sugarcane is an important crop in Australia and the utilisation 

of bagasse will benefit Australian sugarcane farmers as it will add value to what is currently 

considered a waste by-product of sugar production.  
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Chapter 3 
 

General Methods 
 

 

 

3.1 General Statements  

 

3.1.1 Chemicals 
 

All chemicals used through the methods section were purchased from Sigma (MO, USA), 

Merck (NJ, USA) or Univar (WA, USA) unless otherwise noted.  

   

3.1.2 Water 

 

All water used for buffers and washes was ultra-pure Millipore Milli-Q Plus (MA, USA) 

filtered water. All water used for polymerase chain reaction (PCR) and quantitative real-

time polymerase chain reaction (qPCR) reactions, pellet resuspensions and all general 

molecular biology procedures was sterile RNase and DNase free water (Promega, WI, USA). 

 

3.1.3 Buffers 

 

All buffers were made to volume with ultra-pure Millipore Milli-Q Plus (MA, USA) filtered 

water. 

 

TAE buffer: 40mM Tris-acetate, 1mM EDTA 

TPS buffer: 100mM Tris, 1M KCl, 10mM Na2EDTA 

Citrate buffer (50mM): 9.61g/L citric acid, pH 4.8 

Sodium acetate buffer (50mM) with 0.02% (w/v) sodium azide: 4.1g/L sodium acetate, pH  

5.0 with 10mL of 2% (w/v) sodium azide solution/L added 

 

3.1.4 Media 

 

All media used in the methods section are listed in Appendix A. 
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3.1.5 Design and synthesis of oligodeoxyribonucleic acids 

 

All oligodeoxyribonucleic acids (primers) used for PCR and qPCR were designed using 

Primer3 (Rozen and Skaletsky, 2000) and by manual identification. All primers were 

synthesised by Geneworks (SA, AUS) and diluted as appropriate prior to use in PCR or qPCR 

reactions.  

 

3.1.6 Polymerase chain reaction cyclers 

 

All endpoint PCR was performed using a BioRad (CA, USA) DNA Engine Peltier Thermal 

Cycler. All qPCR 100 well gene discs (Qiagen, Limburg, NLD) were run and analysed on a 

Qiagen Rotor-Gene Q (Limburg, NLD). Program information for the different polymerases 

used in this research can be found in Sections 3.5.5 and 3.6.2. 

  

3.1.7 Electrophoresis of nucleic acids 

 

Endpoint PCR products and digested plasmids were electrophoresed through a 1% (product 

≥200bp) or 2% (product ≤200bp) agarose (Bioline, London, UK) TAE gel with the addition of 

SYBR safe DNA gel stain (Life Technologies, CA, USA) at 80V and 120V, respectively, and 

visualised using a G-Box (Syngene, Cambridge, UK). For all agarose gels Molecular Weight 

Marker X (Roche, Basel, CHE) was used a guide for determining the size of electrophoresed 

bands. An equal mix by volume of yellow food colouring (Queen, QLD, AUS), glycerol and 

sucrose (solid) was used as a loading dye for all samples. 

 

3.1.8 Computer software  

 

Vector NTI (Life Technologies, CA, USA) was utilised for the creation and management of all 

cloning sequences, and for viewing sequence chromatographs after BigDye Terminator 

reactions (Life Technologies, CA, USA) and SnapGene Viewer v2.8 (GSL Biotech LLC, IL, USA) 

was used for creating plasmid maps (Appendix E and Appendix J). Sequences obtained after 

BLAST searching (www.ncbi.nlm.nih.gov) were aligned using Multiple Sequence Alignment 

by CLUSTALW (Kyoto University Bioinformatics Centre; www.genome.jp/tools/clustalw). 

DNA electrophoresed through agarose gel was visualised within a G-Box fluorescent gel 

imaging system (Syngene, Cambridge, UK) and images taken with Genesnap software 

(Syngene, Cambridge, UK). The 100 well gene discs (Qiagen, Limburg, NLD) for qPCR were 
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pipetted out by a CAS1200 precision liquid handling system (Qiagen, Limburg, NLD) using 

Robotics 4 software. The results from qPCR were analysed using the associated Qiagen 

(Limburg, NLD) Rotor-Gene Q software and Microsoft Excel 2010 (WA, USA). All HPLC runs 

were analysed using Waters (MA, USA) Empower Pro software. Statistical analysis of 

experimental results was performed using GraphPad Prism v6.04 (GraphPad Software, CA, 

USA) and Minitab 16 (Minitab, Inc., PA, USA). This thesis was prepared using Microsoft 

Word 2010 (WA, USA).  

  

3.1.9 Statistical analysis of results 

 

Statistical analysis was carried out using either a two-tailed t-test assuming unequal 

variance, p = 0.05, comparing transgenic plants to transgenic controls or a one-way ANOVA 

with Tukey post-hoc analysis, p = 0.05, as appropriate. All data for one-way ANOVA analysis 

satisfied the Brown-Forsythe test for equal variance (GraphPad Software, CA, USA).  

  

3.2 Preparation and transformation of competent Escherichia coli  

 

3.2.1 Preparation of heat shock competent E.coli 

 

Heat shock competent E.coli (XL1 Blue Escherichia coli, Agilent Technologies, CA, USA) 

stocks were generated using the methods published by Inoue et al. (1990) with minor 

modifications. In brief, an aliquot of previously prepared competent XL1 Blue E.coli were 

grown overnight in LB with tetracycline (52.875µM) at 37°C with 200rpm. The following 

morning a 100µL aliquot was subcultured into 4mL LB with tetracycline (53µM) and grown 

at 37°C with 200rpm. After six hours a 500µL aliquot was added to 250mL SOB and grown 

for two nights at 18°C with 200rpm. The cultures were pelleted by centrifugation and 

resuspended in TB with added DMSO (70µL/mL) before 100µL aliquots were snap frozen in 

liquid nitrogen and stored at -80°C.  

 

3.2.2 Heat shock transformation of competent XL1 Blue E.coli 

 

The prepared heat shock competent E.coli were transformed using the method published 

by Inoue et al. (1990) with minor modifications. In brief, 5µL of ligation mixture mixed with 

50µL of competent E.coli was rested on ice for 20 minutes before incubation (42°C for 45 

seconds) to initiate heat shock uptake of the ligated plasmids. After two minutes resting on 
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ice, 950µL of LB was added to the mixture and incubated at 37°C for 1.5 hours with shaking 

(200rpm). A 100µL aliquot of the mixture was then spread onto an LB agar plate with 

appropriate antibiotic. 

 

3.2.3 Preparation of LB agar plates for blue/white selection 

 

LB agar plates prepared for blue/white selection (Vieira and Messing, 1982) contained 

2.4mg isopropyl-β-D-thiogalactopyranoside (IPTG), 1mg 5-bromo-4-chloro-3-indolyl-β-D-

galactoside (x-gal), and the appropriate selection antibiotic. Antibiotic was added to media 

after autoclaving but before pouring into petri dishes. After LB/antibiotic plates had set, 

they were wrapped and stored at 4°C until use. IPTG and x-gal were spread onto individual 

LB/antibiotic petri dishes and allowed to be absorbed at room temperature for 

approximately 1.5 hours before the LB/antibiotic/IPTG/x-gal plates were inoculated with 

heat shock transformed E.coli and incubated at 37°C overnight. White E.coli colonies were 

screened for the plasmid with ligated insert whereas blue colonies were assumed to 

contain empty plasmids.  

 

3.2.4 Subculturing of transformed E.coli colonies for plasmid extraction 

 

After overnight incubation, white E.coli colonies were inoculated into 5ml liquid LB 

containing appropriate antibiotic selection and incubated overnight at 37°C with shaking 

(200rpm). The subcultured colonies then underwent plasmid extractions. Cultures for long 

term storage were mixed 1:1 with 80% glycerol and stored at -80°C. 

 

3.3 Recovery, digestion and sequencing of recombinant plasmids from 

transformed competent E.coli  

 

3.3.1 Extraction of plasmids from transformed E.coli  

 

Plasmids for routine screening were purified from transformed E.coli colonies via alkaline 

lysis (Bimboim and Doly, 1979) following the modifications to the solutions and protocols 

seen in Sambrook and Russell (2001) and Thomas et al. (1988). Briefly, two milliliters of 

inoculated LB (Section 3.2.4) was centrifuged (14,800rpm, 1 minute, room temperature), 

and the resulting pellet was resuspended in 100µL Solution 1. Solution 2 (200µL) was added 
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and mixed gently to lyse cells before the addition of 150µL of Solution 3. Tubes were 

centrifuged (14,800rpm, 3 minutes, room temperature) to pellet gDNA and cellular debris. 

The supernatant was transferred to a fresh tube and the addition of 100% ethanol 

precipitated the pDNA before centrifugation (14,800rpm, 1 minute, room temperature). 

The resulting pDNA pellet was washed with 70% ethanol before air drying (room 

temperature) for five minutes. Purified pDNA pellets were resuspended in 30µL DNase free 

water containing 0.6µg RNase (Roche, Basel, CHE). Plasmids for sequencing, cloning or 

microprojectile bombardment were purified with the Wizard Plus SV Miniprep DNA 

purification system (Promega, WI, USA) following manufacturer’s instructions. 

  

3.3.2 Restriction digests 

 

All restriction digests were performed at the recommended temperature and time 

according to manufacturer’s instructions. All restriction enzymes used were supplied by  

either Roche (Basel, CHE) or New England Biolabs (MA, USA). 

 

3.3.3 BigDye Terminator sequencing of DNA 

 

All sequencing was conducted using BigDye Terminator (Life Technologies, CA, USA) PCR 

reactions and prepared for sequencing using the sodium acetate/EDTA/ethanol clean-up 

methods using manufacturer’s protocol with modifications noted in Griffith University DNA 

sequencing facility (GUDSF) clean-up protocol (GUDSF, 2005). Briefly, 2µL of purified 

plasmid (Wizard Plus SV Miniprep DNA purification system, Promega, WI, USA) was added 

to a solution containing 1µL BigDye, 4µL sequencing buffer, 1µL primer (final concentration 

of 3.2pM) and 12µL water. Upon completion of the sequencing PCR (96°C x 1 minute, then 

30 cycles of: 96°C x 10 seconds, 50°C x 5 seconds, 60°C x 4 minutes) the samples underwent 

a clean-up process. This involved mixing the PCR reaction, 2ul of 3M sodium acetate pH 5.2 

and 2ul of 125mM EDTA pH 8.0 in a 1.5mL microfuge tube before the addition of 50µL 100% 

ethanol to precipitate nucleic acids. After 15 minutes incubation, tubes were centrifuged 

(14,800rpm, 20 minutes, room temperature) and the supernatant was removed. The 

remaining pellet was washed in 70% ethanol and centrifuged (14,800rpm, 5 minutes, room 

temperature) before the supernatant was removed and tubes air dried for one hour. All 

sequencing was performed at either GUDSF (Griffith University, QLD) or CARF (QUT, QLD).  
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3.4 Generation and transformation of sugarcane callus 

 

3.4.1 Generation of sugarcane callus for transformation 

 

Sugarcane callus (KQ228 cultivar) was generated from transverse leaf whorl sections from 

field grown plants (BSES Limited, Meringa, QLD, AUS) starting at 1cm above the meristem. 

Whorls were incubated in the dark on MSC3 media (Bower et al., 1996) at 28°C for 6 weeks. 

All calli was subcultured onto fresh media every 10-12 days throughout the initiation, 

transformation, selection and regeneration periods.  

 

3.4.2 Preparation of gold microcarrier particles for microprojectile bombardment 

 

Preparation of gold microcarrier particles was performed using in-house methods. Briefly, 

250mg of 1µm gold microcarrier particles (BioRad, CA, USA) were vortex mixed for three 

minutes continuously in 1mL 100% ethanol before centrifugation (3000rpm; 5 minutes; 

room temperature). The supernatant was discarded and the process twice repeated. The 

process was again repeated in triplicate, substituting sterile Millipore water for ethanol. 

The pellet was resuspended in 2mL sterile 50% glycerol and 25µL aliquots were taken with 

regular vortex mixing to ensure no settling of the stock gold particles. The aliquots were 

stored at -20°C.  

 

On the day of bombardment, 1µL plasmid (1µg/µL) containing the transgene, 1µL plasmid 

(1µg/µL) containing the selection gene, 5µL spermidine (0.1M) and 25µL CaCl2 (1M) were 

added to an aliquot of gold particles and mixed by vortex 20 seconds per minute for five 

minutes. The reaction was allowed to rest for 10 minutes on ice before 22µL of supernatant 

was removed. The samples were mixed by vortex and 5µL aliquots were used per 

bombardment.  

 

3.4.3 Microprojectile based transformation of sugarcane callus  

 

Prior to transformation, callus generated from leaf whorls was subcultured onto osmotic 

MSC3 media (Bower et al., 1996) and placed in the dark at 28°C for four hours. 

Transformations were performed via particle inflow gun microprojectile bombardment 

(Bower and Birch, 1992) using 1500kPa helium pressure in -90kPa vacuum at a firing 

distance of eight centimetres. Each plate of callus was covered with a stainless steel mesh 
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baffle and bombarded twice, rotating the plate 90° between shots. The co-bombarded 

selection gene plasmid contained a ZmUbi-nptII-nos cassette which codes for the neomycin 

phosphotransferase II (nptII) gene and confers geneticin resistance to callus for selection. 

Untransformed control callus did not undergo any microprojectile bombardment. After 

bombardment, callus was rested on osmotic media for four hours before subculturing onto 

fresh MSC3 media and maintained in the dark at 28°C.  

 

3.4.4 Regeneration of transgenic sugarcane plants  

 

Four days after microprojectile bombardment transformation, the callus was transferred to 

MSC3 media containing 50mg/L G418 disulfate salt solution (a form of geneticin; Roche, 

Basel, CHE) to select for transformed cells and maintained for four weeks in the dark at 

28°C. After this period, callus was transferred to MS media containing 50mg/L G418 

disulfate salt solution and maintained at 25°C with a 16 hour photoperiod for shoot and 

root development. The untransformed control callus was regenerated into wild-type 

sugarcane for control purposes on media without selection antibiotics. After 6 - 8 weeks 

one plant per calli clump (with visible roots) was used for acclimatisation to ensure only 

individual transformation events were analysed. 

 

3.4.5 Acclimatisation and harvest of transgenic sugarcane plants 

 

Tissue culture plantlets selected for acclimatisation were transferred from media to potting 

mix (Searles Real Premium, QLD, AUS) and placed in growth rooms under a 16 hour 

photoperiod at 25°C with watering every second day. Initially plants were covered, with 

periodic uncovering to minimise acclimatisation stress. The cover was permanently 

removed on the fifth day. When the plants reached approximately 30cm in height they 

were transferred to the QUT Carseldine Glasshouse Facility and grown in plastic pots (4.5L, 

19cm height, 19cm diameter) with potting mix (Searles Real Premium, QLD, AUS) and 

Osmocote (Scotts, NSW, AUS) fertiliser pellets at 27°C ± 3°C under natural light. Plants were 

watered to saturation twice per week and fertilised with Aquasol (Yates, NSW, AUS) once 

per month with regular removal of tillers. Potted plants underwent periodic randomised 

position rotation within the glasshouse to minimise positional effects.  

 

When the glasshouse sugarcane plants were harvested, tissue for qPCR analysis was 

immediately stored on dry ice and at -80°C in the laboratory. Tissue for cell wall 
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compositional analysis and enzymatic hydrolysis was stored on ice after harvesting, dried in 

a convection drying oven at 40°C for seven days and stored at room temperature. Tissue for 

juice analysis was stored on dry ice after harvest and at -20°C in the laboratory.  

 

3.5 Nucleic acid extraction and use 

 

3.5.1 DNA extractions from plant samples 

 

All DNA extractions were performed using the Rapid Release method (Thomson and Henry, 

1995). Briefly, samples were ground in 100uL of TPS buffer and incubated for 10 minutes at 

95°C before being washed with chloroform: isoamyl alcohol (24:1) (Sambrook and Russell, 

2001) and centrifuged (14,800rpm, 5 minutes, room temperature). A 1:4 dilution of the 

supernatant was used for subsequent PCR reactions. 

 

3.5.2 RNA extraction from plant samples 

 

RNA was extracted from all tissue samples using Tri Reagent (Sigma-Aldrich, MO, USA) 

following the manufacturers’ protocol using tissue ground under liquid nitrogen. Briefly, 

tissue was incubated at room temperature with Tri Reagent for five minutes before the 

addition of 200µL chloroform. Tubes were vigorously mixed and incubated at room 

temperature for a further five minutes. Reactions were centrifuged (12,000g; 15 minutes; 

4°C) and the supernatant collected and mixed with an equal volume of isopropanol. After 

10 minutes incubation at room temperature reactions were again centrifuged (12,000g; 10 

minutes; 4°C) and the RNA pellet subsequently washed in 75% ethanol before a final 

centrifugation (7500g; 5 minutes; 4°C). The supernatant was removed and the pellet dried 

for 10 minutes before being resuspended in 30µL water and incubated at 60°C for 10 

minutes. The extractions were kept on ice and used for cDNA synthesis immediately or 

stored at -80°C. RNA concentrations were quantified with a Nanodrop 2000 

spectrophotometer (Thermo Fisher Scientific, MA, USA).  

 

3.5.3 DNase digestion of RNA extractions 

 

Extracted RNA (1µg) was digested with RQ1 RNase-free DNase (Promega, WI, USA) 

following manufacturer’s methods with the 37°C incubation being increased to one hour. 
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After digestion the samples were either used immediately for cDNA synthesis or stored at   

-80°C.  

 

3.5.4 First strand cDNA synthesis from DNase digested RNA   

 

DNase-treated RNA was used as a template for first strand cDNA synthesis in the M-MLV 

Reverse Transcription system (Promega, WI, USA) following manufacturer’s instructions. 

Briefly, 0.5µg of DNase-treated RNA was primed for reverse transcription by the addition of 

1µL of 50µM oligo-dT primer (5' TTTTTTTTTTTTTTTTTTVN 3') and 10.75µL water followed by 

incubation at 70°C for five minutes. After quenching the reactions on ice, 1µL M-MLV 

reverse transcriptase (Promega, WI, USA), 5µL M-MLV buffer (Promega, WI, USA), 0.5µL 

RNasin ribonuclease inhibitor (Promega, WI, USA) and 1.25µL nucleotide mix (10µM each) 

(Roche, Basel, CHE) were added. Reactions were incubated at 42°C for 60 minutes then 

70°C for 15 minutes. cDNA was stored at -20°C. Reverse transcriptase negative samples 

were prepared alongside each reverse transcriptase positive samples by replacing reverse 

transcriptase with water. PCR and qPCR screening of the reverse transcriptase negative 

samples would ensure any amplification seen in the reverse transcriptase positive samples 

was due to synthesised cDNA acting as template and not due to any residual contaminating 

gDNA from the RNA extraction.  

 

3.5.5 PCR amplification of products from cDNA and gDNA and recovery after 

electrophoresis 

 

KAPA HiFi DNA polymerase (Kapa Biosystems, MA, USA) was used for amplification of 

templates for cloning purposes using the manufacturer’s instructions. Each reaction 

contained: 1µL pDNA (Wizard Plus SV Miniprep DNA purification system, Promega, WI, 

USA); 1µl KAPA HiFi DNA Polymerase (1U); 4µL 5x Kapa Hifi buffer; 0.6µL 10mM KAPA dNTP 

Mix; 0.6µL 10µM forward primer; 0.6µL 10µM reverse primer; and 12.2µL water. Each 

reaction underwent the following PCR conditions: 95°C x 3 minutes, then 30 cycles of: 98°C 

x 20 seconds, 55°C x 15 seconds, 72°C x 30 seconds, before a final extension of 72°C x 3 

minutes. When necessary, A-tailing was carried out by adding 1µL of Taq DNA polymerase 

(Roche, Basel, CHE) and 1µL nucleotide mix (10µM each) (Roche, Basel, CHE) and incubating 

the reaction at 72°C for 20 minutes. GoTaq Green Master Mix (Promega, WI, USA) was used 

for screening the gDNA of putatively transgenic plants following the manufacturer 

directions. Each reaction contained: 10µL 2x GoTaq Green master mix, 1µL gDNA, 1µL 
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10µM forward primer, 1µL 10µM reverse primer, 7µL water. Each reaction underwent the 

following PCR conditions: 95°C x 2 minutes, then 30 cycles of: 95°C x 30 seconds, 55°C x 30 

seconds, 72°C x 1 minute, before a final extension of 72°C x 5 minutes. After 

electrophoresis bands required for further reactions were excised and DNA recovered using 

the Quantum Prep Freeze ‘N Squeeze DNA gel extraction spin columns (BioRad, CA, USA).  

 

3.6 qPCR primer design and optimisation and run specifications 

 

3.6.1 qPCR primer design  

 

Primers were designed using sequences available from the NCBI database (Table 3.1). Not 

all genes had annotated accessions available and consensus sequences were assembled 

from the sugarcane EST database after BLAST analysis with the equivalent maize gene as a 

reference sequence. Maize was used as sugarcane and maize are genetically closely related 

(Selman-Housein et al., 1999). The final consensus sugarcane sequences were created using 

only sugarcane EST sequences. Both the genes with GenBank accessions and those 

constructed from EST alignments are seen in Appendix B. β-tubulin was used as the 

housekeeping gene (Rodrigues et al., 2009). Amplicons of all lignin biosynthesis genes were 

cloned and two insert-positive E.coli colonies were sequenced to determine primer 

specificity before use in qPCR.  

 

Hydroxycinnamoyl transferase was not included in qPCR analysis as a specific sequence 

could not be confidently identified. Only one published accession for sugarcane 

hydroxycinnamoyl transferase was found (Casu et al., 2007; accession: CA210265). This 

sequence was identified by Casu et al. (2007) to be HCT as the EST sequence (CA210265, 

Vettore et al., 2001) used for the Affymetrix GeneChip Sugarcane Genome Array probe 

corresponded with an entry (EC 2.3.1.99) in the Kyoto Encyclopedia of Genes and Genomes 

(Kanehisa and Goto, 2000) identifying as HCT. When analysed by BLAST, accession 

CA210265 showed very close alignment with Zea mays anthranilate N-benzoyltransferase 

(Soderlund et al., 2009; accession: NM_001153992). This was confirmed by aligning 

CA210265 with the reverse complimentary of the sequence provided in the 

NM_001153992 NCBI accession. This alignment showed 628 out of 785 amino acids (80%) 

aligned between the two sequences across the length of CA210265. Further BLAST 

searching in the sugarcane nucleotide and EST databases of NCBI with alternative HCT 

sequences from maize (Barrière et al., 2007; accessions: AY109546, DR807341) and from  
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TABLE 3.1: qPCR primers designed for the quantification of expression levels of ZmMYB transgenes and lignin biosynthesis pathway genes in stably 

transformed sugarcane 

Amplicon Forward (5'-3') Reverse (5'-3') Size (bp) Maize GenBank Accession/EST 
numbers Sugarcane GenBank Accession/EST numbers 

β-Tubulin1 GGAGGAGTACCCTGACAGAATGA CAGTATCGGAAACCTTTGGTGAT 68  CA222437A 

MYB31 TCTTCCGGCTGGAGGACGAG GTGGCTGTGGCTCTGGCTCTG 80 NM_001112479B  

MYB42 ATCAAGGCCGAGGAGACGG AGAGGTCCAGGTTGAGGTCAG 64 NM_001112539B  

PAL GACATCCTGAAGCTCATGTCG ACCGACGTCTTGATGTTCTCC 92  EF189195C 

C4H GTTCACCGTGTACGGCGACCACT GAAGAAGGGCACCGTCATGATCC 61 AY104175D CA131376; CA146299; CA196076; CA137884; 
CA263105 

4CL CTTCCCGACATCGAGATCAACAAC CTCATCTTCCCGAAGCAGTAGGC 62 AY566301E; AX204868F,G CA184118; CA215779; CA136560; CA176600; 
CA135257 

C3H GTCGACGAGCAGGTCTTCAAAGC CGTGCTCCTCCATGATCTTCAC 73 AY107051D; BT086560H CA262303; CA247763 

CCoAOMT ACCTCATCGCAGACGAGAAGAAC AGCCGCTCGTGGTAGTTGAGGTAG 91 AJ242980I; EU952463J;  
NM_001158013G 

5' end: CA168805; CA071322; CA159865; 
CA180815 
3' end: CA159865; CF575000K; CA279207; 
CA179873 

CCR AGCAGCCGTACAAGTTCTCG GAAGGTTCTTCACCGTGTCG 96  AJ231134L 

F5H GGTTCATCGACAAGATCATCGAC GTCGGGGCTCTTCCCGCGCTTCAC 53 AX204869F,M 
5' end: CA185931; CA134666; CA135938                                          
3' end: CA287472; CA278023; CA253395; 
CA103877 

COMT TACGGGATGACGGCGTTCGAGTAC GTGATGATGACCGAGTGGTTCTT 92  AY365419N; AJ231133L 

CAD ATCAGCTCGTCGTCCAAGAAG ACCGTGTCGATGATGTAGTCC 128  AJ231135L 
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TABLE 3.1: qPCR primers designed for the quantification of expression levels of ZmMYB transgene and lignin biosynthesis pathway genes in stably 

transformed sugarcane (continued) 

 
1 Housekeeping primer sequences from Rodrigues et al. (2009).  

A Vettore et al. (2001). All EST sequences with the prefix ‘CA’ are from the Sugarcane Expressed Sequence Tag project (SUCEST) (Vettore et al., 2001); B 

Fornalé et al. (2006); C Que (2006); D Gardiner et al. (2004); E Sivasankar (2004); F Puigdomenech et al. (2001); G Andersen et al. (2008); H Soderlund et al. 

(2009); I Civardi et al. (1999); J Alexandrov et al. (2009); K Casu et al. (2004); L Selman-Housein et al. (1999); M Chen et al. (2010); N Yang (2003).  

Accessions from Que (2006), Sivasankar (2004) and Yang (2003) all come from unpublished data and were direct submissions to the NCBI database. The 

accessions were found by searching within the NCBI database itself.  
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MAIZEWALL (Guillaumie et al., 2007; accessions : 2478084.2.1_REV, 2619423.2.1), 

Medicago sativa L. (alfalfa) (Shadle et al., 2007; accession AJ507825), Capsicum spp. 

(Mazourek et al., 2009; accession EU616565), Nicotiana benthamiana (Hoffmann et al., 

2004; accession: AJ555865), Coffea arabica (Salmona et al., 2008; accession: AM116757) 

and Triticum aestivum L. (wheat) (Bi et al., 2011; accessions: CK193498, CK199765) did not 

highlight any potential sugarcane HCT sequences. Alignment of these HCT sequences did 

not highlight any conserved regions of sufficient length to design primers (standard or 

degenerate) for potential use in sugarcane. qPCR reactions were optimised to attain 

suitable R2 and PCR efficiency values (Livak and Schmittgen, 2001; Taylor et al., 2011). 

Primers were then validated against the housekeeping primers to ensure comparable rates 

of product amplification (Livak and Schmittgen, 2001; Taylor et al., 2011). qPCR reactions 

utilised GoTaq qPCR Master Mix (Promega, WI, USA) in a 20µL total reaction volume with 

20ng of cDNA template using 10mM forward and reverse primers. 

 

3.6.2 qPCR run specifications 

 

Samples were prepared by a CAS1200 robot (Qiagen, Limburg, NLD) into 100 well gene 

discs (Qiagen, Limburg, NLD), heat sealed with Rotor Disc heat sealing film (Qiagen, 

Limburg, NLD), and run using a Qiagen Rotor-Gene Q (Qiagen, Limburg, NLD) with the 

following cycle: 50°C x 2 minutes; 95°C x 2 minutes, then 40 cycles of: 95°C x 15 seconds, 

55°C x 30 seconds (acquiring); 72°C x 5 seconds (acquiring); 82°C x 5 seconds (acquiring) 

followed by a 10 minute melt curve ramping from 72°C to 99°C raising by 1°C each step. 

Fluorescence was acquired at three different temperatures based on primer optimisation. 

Relative transcript levels were quantified using delta critical threshold values (ΔCt) as 

follows: ΔCt = 2-(Ct gene of interest – Ct housekeeping gene) (Levy et al., 2004).  

 

3.7 Compositional cell wall and enzymatic hydrolysis analyses  

 

3.7.1 Determination of cell wall chemical composition and structure 

 

After harvest, tissue for cell wall compositional analysis was prepared as per Hames et al. 

(2008) using convection oven drying at 40°C. Dried samples were milled with a IKA 

Labortechnik (BW, DE) MFC mill (2mm screen) and packed into Whatman cellulose 

extraction thimbles (GE Healthcare, BUX, UK) for successive overnight soxhlet washes with 
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water and ethanol respectively to remove extractives (Sluiter et al., 2008c). Samples were 

again dried using convection oven drying at 40°C and stored at room temperature. A 

sample of this prepared material was dried overnight in a convection oven set at 105°C and 

used to determine the total solids of the bagasse (Sluiter et al., 2008a).  

 

Lignin, cellulose and hemicellulose were quantified by a modified acid hydrolysis method 

(Sluiter et al., 2008b). Briefly, 0.125g of bagasse was reacted in 1.5mL 72% sulfuric acid for 

one hour at 30°C inside a pressure tube with regular stiring. Following the addition of 42mL 

of water, the reaction was autoclaved at 121°C for one hour before samples were vacuum 

filtrated through a crucible. Acid soluble lignin was determined by UV-Vis 

spectrophotometry and acid insoluble lignin was measured gravimetrically (Sluiter et al., 

2008b). Hydrolysis liquor containing soluble cell wall carbohydrates was analysed using 

High Performance Liquid Chromatography (HPLC) (Sluiter et al., 2008b). A Waters (MA, 

USA) e2695 Separations Module and Showa Denko (Bavaria, DE) Shodex SP-0810 sugar 

column (85°C) with micro-guard de-ashing columns (BioRad, CA, USA) equipped with a 

Waters (MA, USA) 2414 Refractive Index Detector was employed. Samples for HPLC analysis 

were neutralised by addition of CaCO3 (50mg/mL) and syringe filtered through a 0.45µm 

leur lock nylon syringe filter (Banksia, PA, USA) into autosampler vials (Waters, MA, USA). 

20µL of prepared sample was injected for analysis with water (0.2µm filtered and degassed) 

as the eluent (0.5mL/minute) for a run time of 35 minutes. The analysis calculations include 

a step to convert the sugars from their monomeric form (as measured by HPLC) to their 

polymeric form as would be present in the original tissue.  

 

3.7.2 Pretreatment of bagasse for enzymatic hydrolysis 

 

Bagasse was ground to a fine powder using a McCrone micronising mill (IL, USA) with 

ethanol (100%) before undergoing a mild pretreatment. This involved 1% (w/w) sulfuric 

acid being added in a ratio of 10:1 with bagasse followed by autoclaving (130°C for 30 

minutes). Samples were then washed with water (3 x 50mL). The total solids content (%) 

(Sluiter et al., 2008a) was determined before use for enzymatic hydrolysis. This involved 

weighing bagasse before drying the bagasse for 24 hours at 105°C to remove all water 

content and weighing again after drying. The total solids content (%) was calculated from 

the two weights. Non-pretreated bagasse samples were used as a control during enzymatic 

hydrolysis to confirm the effectiveness of pretreatment. Samples then underwent acid 
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hydrolysis as described above (Sluiter et al., 2008b) to quantify lignin, cellulose and 

hemicellulose contents of the pretreated samples.  

 

3.7.3 Microplate enzymatic hydrolysis of bagasse 

 

Enzymatic hydrolysis of transgenic and control bagasse was performed using Accellerase 

1500 (Genencor, CA, USA). Before use the filter paper units (FPU) and protein 

concentrations were determined. The FPU activity of Accellerase 1500 was calculated using 

the methods by Adney and Baker (2008) using 50mM citrate buffer and was determined to 

be 46.8 FPU/mL. The protein content of Accellerase 1500 was determined using a Bradford 

assay (Bradford, 1976) using BioRad (CA, USA) Protein Assay Dye Reagent Concentrate 

following the supplied protocols for microtiter plates and was found to be 22.87 mg/mL 

(±0.38 SEM). Bovine serum albumin (Thermo Fisher Scientific, MA, USA) was used to 

develop a protein standard curve.  

 

Enzymatic hydrolysis was performed in 200µL tubes following published methods (Harrison 

et al., 2013). Briefly, ground bagasse samples were mixed with 50mM sodium acetate + 

0.02% (w/v) sodium azide to a concentration of 1.3% cellulose (w/v) and rotated overnight 

by a Suspension Mixer (Ratek, VIC, AUS) at 4°C. A 2x enzyme master mix was prepared 

containing Accelerase 1500 and Aspergillus niger β-glucosidase (Megazyme, Wicklow, IRE) 

to ensure complete hydrolysis of cellobiose to glucose. The final reaction concentration of 

Accelerase 1500 was 6 FPU (2.93 µg/g cellulose) and β-glucosidase was 50µg/g cellulose. A 

100µL aliquot of the bagasse suspension was mixed with 100µL of the 2x enzyme master 

mix resulting in a final cellulose concentration of 0.65% (w/v). A low FPU in combination 

with the mild pretreatment was considered the best approach to highlight any enzymatic 

performance differences, including subtle differences, due to structural changes in the cell 

walls of transgenic plants when compared to controls (Van Acker et al., 2013).  

 

 Both pretreated and non-treated control bagasse samples were digested in triplicate at 

50°C with rotation (Hybaid Shake ‘n’ Stack Hybridisation Oven, Thermo Fisher Scientific, 

MA, USA) for 72 hours with samples being taken at 0, 6, 12, 24, 48 and 72 hours. Reactions 

were quenched in liquid nitrogen and stored at -80°C. The glucose released in each sample 

was analysed using a D-Glucose Assay (GOPOD Format) (Megazyme, Wicklow, IRE) 

following manufacturer’s instructions and plates were read using a Beckman Coulter 

AD200C Plate Reader (Beckman Coulter, Inc., CA, USA).  
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 3.7.4 Determination of cellulose crystallinity index in bagasse 

 

A sample was taken from the bagasse that had been finely ground in a McCrone (IL, USA) 

micronising mill for enzymatic hydrolysis (Section 3.7.2) and did not undergo any 

pretreatment. This tissue was used to determine cellulose crystallinity index following the 

methods of Segal et al. (1959). X-ray diffraction patterns of cellulose samples were 

recorded with a Bruker (WI, USA) AXS D8 Advance X-ray diffractometer at room 

temperature from 10° to 40° using Cu/Kα1 irradiation (1.54Å) at 40kV and 40mA. The scan 

speed was 15 seconds/step with a step size of 0.05. Crystallinity Index (CI) was obtained 

from the relationship between the intensity of the 002 peak for cellulose I (I002) and the 

minimum dip (Iam) between the 002 and the 101 peaks using the equation: CI(%) = ((I002 – Iam) 

/ I002) x 100 where I002 = intensity at 22.7°A and Iam = 18°A. The divergence slit and anti-

scatter slit were 3.722°. The program XRD commander (Bruker, WI, USA) was used to 

collect and analyse the data from the diffractometer. 

 

3.8 Juice extraction and component quantification 

 

Juice was hot-water extracted from internodes ground under liquid nitrogen following the 

methods of Inman-Bamber et al. (2008) before being stored at -20°C until required for 

analysis. Juice samples were diluted according to ICUMSA method GS7/8/4-24 using lactose 

as an internal standard and quantified using High Performance Ion Chromatography (HPIC). 

A Waters (MA, USA) e2695 Separations Module and Dionex CarboPac PA1 HPLC column 

with guard column (27°C) (Thermo Fisher Scientific, MA, USA) equipped with a Waters (MA, 

USA) 2465 Electrochemical detector was employed. 20µL of prepared sample was injected 

for analysis with 150mM NaOH (0.2µm filtered and degassed) as the eluent (1.0mL/minute) 

for a run time of 15 minutes.  
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Chapter 4 
 

Profiling of Sugarcane Lignin Biosynthesis 
 

 

 

The deposition of the secondary cell wall is an important stage in terrestrial plant 

development (Cosgrove, 2005; Rogers and Campbell, 2004; Weng and Chapple, 2010). This 

involves the ordered deposition of cellulose and hemicellulose polysaccharides followed by 

the impregnation of lignin polymers into this polysaccharide matrix during lignification 

(Bourquin et al., 2002; Plomion et al., 2001; Vogel, 2008). Lignin polymers are composed of 

H, G and S monolignols, which are produced via the lignin biosynthesis pathway (Boerjan et 

al., 2003; Liu, 2012). Lignin biosynthesis is part of the much larger phenylpropanoid 

pathway (Boerjan et al., 2003) and as a result genes within the lignin biosynthesis pathway 

can be multifunctional with additional roles outside of lignin biosynthesis. PAL, C4H and 4CL, 

the enzymes catalysing the first three steps of lignin biosynthesis, are fundamental in the 

biosynthesis of all phenylpropanoids (Bonawitz and Chapple, 2010; Vogt, 2010), and 

CCoAOMT and C3H are also hypothesised to have roles in the ferulate production pathway 

(Barrière et al., 2004; Grabber, 2005). 

 

Due to the importance of lignin in structural stability and water transportation (Ma, 2007; 

Weng and Chapple, 2010) the role and function of each gene within the lignin biosynthesis 

pathway is well established (reviewed in Bonawitz and Chapple, 2010). The more recent 

definition of the relationship between lignin and efficiency of second generation bioethanol 

production has led to increased focus and research into lignin biosynthesis and 

manipulation (Section 2.4), and further realises the possibility of cost-competitive 

bioethanol being produced from lignin-altered sugarcane bagasse. Given the influence 

lignin has on cell wall digestibility, an expression profile that aligns lignin gene expression 

levels with cell wall chemical composition is an important contribution to further current 

understanding of the role gene expression has on lignin biosynthesis and deposition in 

sugarcane. This information will also be applicable for the genetic modification of plants to 

specifically alter lignin characteristics.  
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To date, there has only been minimal gene expression profiling in sugarcane (Casu et al., 

2004; Casu et al., 2007; Kolahi et al., 2013; Papini-Terzi et al., 2009) and only one paper 

analysing lignin deposition during plant maturation (Lingle and Thomson, 2012). The limited 

expression data available for sugarcane suggest that not all lignin biosynthesis genes have 

plateaued expression levels during plant development but instead may have increased or 

decreased expression as tissue matures. RNA levels for CCoAOMT, COMT, CAD and F5H 

have been found to increase with tissue maturity (Casu et al., 2004; Casu et al., 2007; 

Papini-Terzi et al., 2009) and PAL, C4H and C3H showed stable expression during 

maturation (Papini-Terzi et al., 2009). PAL expression has also been found to decrease 

during plant development (Kolahi et al., 2013; Papini-Terzi et al., 2009), as has the 

expression of CCoAOMT and HCT (Casu et al., 2007). Only one paper has explored the 

changes in biomass composition throughout sugarcane development. Lingle and Thomson 

(2012) examined cell wall compositional data for sugarcane and found that lignocellulosic 

composition also varies during plant growth. As plants matured, lignin deposition 

continually increased, whereas hemicellulose levels plateaued and cellulose levels 

decreased after initial increases in younger tissue (Lingle and Thomson, 2012). 

 

A comprehensive and lignin-focussed profile consisting of gene expression and cell wall 

compositional data has not been established in sugarcane and only partial lignin profiles 

have been established or can be inferred from the literature (Cheng et al., 2013; Firon et al., 

2013; Huang et al., 2012; Ma, 2007; Shang et al., 2012; Shi et al., 2010). The availability of 

both gene expression and cell wall compositional data will contribute a useful assessment 

of lignin formation in sugarcane. From a biotechnological viewpoint this work may highlight 

specific genes for targeting to affect rate of lignin deposition. Additionally, the identification 

and cloning of promoters of genes with desirable spatial or temporal expression patterns 

may enable transgene expression to be focused to a specific tissue type or developmental 

stage.  

 

4.1 SPECIFIC METHODS 

 

4.1.1 Generation and harvesting of wild type sugarcane for expression profile    

          development 

 

Wild type sugarcane were generated from callus and acclimatised in growth chambers 

before being transferred to the glasshouse (Section 3.4). It was decided to use tissue 
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culture generated sugarcane grown in a glasshouse so that plant generation and growth 

conditions were controlled throughout plant development. Ten plants were grown for nine 

months before five were randomly selected and destructively harvested for analysis. At this 

stage, plants had between 15 and 16 internodes. Each harvested plant was divided into five 

different sections (A-E) (Table 4.1) to represent increasing tissue maturity, with section A 

being the youngest tissue and section E being the most mature tissue.  

 

All plants were watered to saturation two days before harvesting to avoid results being 

affected by any potential drought related stress response. Harvesting occurred between 

10am and 2pm in a single session to minimise light or circadian related fluctuations in gene 

expression levels (Pan et al., 2009; Rogers et al., 2005). Before dividing the stems into 

sections (Table 4.1), all leaf tissue and sheaths were removed. The length of the stalk was 

measured (internode one to the final internode) to represent plant height, the internodes 

were counted as per van Dillewijn (1952) and diameter of internodes 2, 4, 6, 8, 10, 12 and 

14 was recorded using callipers. For all stem analyses only internode tissue was used. After 

sectioning the stem, the root ball was washed in water to remove potting mix and ten 

buttress roots (Moore, 1987) were collected from each plant for qPCR analysis. Plant roots 

also contain lignin (Bonawitz and Chapple, 2010), though few published lignin expression 

profiles include analysis of root tissue. Roots were included in the development of this 

profile to begin to gain a general understanding of overall lignin biosynthesis in this tissue.  

 

4.1.2 Analysis of harvested material 

 

Each stem section (Table 4.1) was represented by five individually analysed tissue samples 

from five individual plants. Each sample underwent qPCR analysis (Section 3.6) in triplicate 

following cDNA synthesis (Section 3.5) with primers described previously for nine of the ten 

lignin biosynthesis genes (Table 3.1). Root tissue was also analysed by qPCR but cell wall 

composition was not quantified due to limited tissue availability. Cell wall compositional 

analysis was performed in duplicate on all stem tissue. Grubbs’ test for outliers (GraphPad 

Software, CA, USA) was used to confirm no plants analysed had outlying values for height or 

number of internodes. ANOVA analysis with Tukey post-hoc analysis (p = 0.05) was 

employed to assess any statistical differences in internode diameter, gene expression in 

stem sections and roots, as well as any differences in cell wall composition. 
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TABLE 4.1: Tissue harvested for development of lignin biosynthesis profile. Each stem was 

divided into five sections (A-E) with section A representing the youngest tissue and section 

E representing the most mature tissue as well as collecting root tissue. Each section was 

comprised of three internodes for qPCR analysis (Method Section 3.6.2) and cell wall 

compositional analysis (Method Section 3.7.1) 

 

Section Internode 
number Analysis performed 

A 1 qPCR gene expression 
2-3 Cell wall compositional analysis 

B 4 qPCR gene expression 
5-6 Cell wall compositional analysis 

C 7 qPCR gene expression 
8-9 Cell wall compositional analysis 

D 10 qPCR gene expression 
11-12 Cell wall compositional analysis 

E 13 qPCR gene expression 
14-15 Cell wall compositional analysis 

Roots  qPCR gene expression 

 

 

4.2 RESULTS 

 

4.2.1 Phenotypic comparison of harvested plants 

 

The sugarcane plants used in this profiling experiment were regenerated from a single 

batch of callus and grown side-by-side from tissue culture generation until harvest, 

therefore it was expected that they would have similar, though not identical phenotypes. 

There was some variation in height and number of internodes (Table 4.2) though statistical 

analysis did not identify any plants as having outlying values. Nor were any statistically 

significant differences found between plants when internode diameters were compared 

(Table 4.2). As the five plants presented with similar phenotypes they were considered 

suitable for the expression profiling. 

 

4.2.2 qPCR expression profiles of lignin biosynthesis genes 

 

Expression profiles for the nine lignin biosynthesis genes (Table 3.1) were established after 

qPCR analysis of the five stem sections and the root tissue (Figures 4.1, 4.2 and 4.3). The  



Profile of Lignin Biosynthesis                                                                                                          61 
 

 

TABLE 4.2: Phenotypic measurements of five wild type sugarcane plants used for 

developmental profile. Height (cm), number of internodes, and internode diameter (mm) 

were recorded at time of harvest. 

 

WT plant 
number 

Height 
(cm) 

Number of 
internodes 

Internode (IN) diameter (mm) 

IN-2 IN-4 IN-6 IN-8 IN-10 IN-12 IN-14 

1 130 15 11.86 13.78 14.48 14.83 13.90 13.04 11.51 
2 136 16 12.40 13.42 12.71 11.95 11.16 11.41 12.72 
3 138 15 12.17 12.23 13.65 13.73 13.63 12.87 12.55 
4 142 16 11.17 13.34 13.76 13.68 13.39 12.31 10.77 
5 148 16 13.14 14.06 13.43 12.70 11.59 10.81 12.45 

 

 

ΔCt values were normalised against section A (Figures 4.1, 4.2 and 4.3; Appendix C). Values 

were normalised to allow for easier comparison of changes in expression in relation to 

young tissue for each gene. The raw ΔCt values (Appendix C) show that in section A, PAL is 

expressed at levels greater than the other eight lignin biosynthesis genes analysed. 

CCoAOMT, COMT and CCR also had greater expression levels in Section A than CAD, 4CL, 

C4H, F5H and C3H. These trends in expression levels in section A are also seen throughout 

the remaining stem sections and root tissue for each gene (Appendix C). 

 

The genes analysed in stem tissue fell into two categories, those with highest expression in 

section A which then decreased as stem tissue matured (PAL, CCR, 4CL, COMT and CAD) 

(Figure 4.1, Appendix C), and those whose expression showed little change as tissue aged 

(C3H, F5H, C4H and CCoAOMT) (Figure 4.2, Appendix C). The different patterns of 

expression do not appear to fall in a specific pattern based on their position within the 

lignin biosynthesis pathway (Figure 1.1 and Figure 4.3).  

 

Of the group whose expression is highest in section A before decreasing with stem tissue 

maturation (Figure 4.1, Appendix C), this trend is strongest in PAL and CCR, with expression 

in section B decreased by 70% - 80% and by more than 90% in section E. 4CL and COMT are 

less pronounced in this trend with expression dropping approximately 65% from section A 

to section B. Expression of 4CL and COMT decrease 65% - 75% in sections C, D and E when 

compared to expression in section A (Figure 4.1). CAD, the final gene in this group, is the 

least pronounced in this trend. A 40% decrease in expression between section A and 

section B is followed by expression levelling out between 25% and 40% of section A in  
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FIGURE 4.1: Genes showing highest expression in section A (young stem tissue) with 

decreased expression in more mature stem regions. ΔCt expression levels of lignin 

biosynthesis genes from the five stem sections and roots (n = 5 individual plants per tissue 

section) normalised against section A for each individual gene is shown with standard error 

of the mean. Statistical differences are noted by different letters above bars (x, y and z) 

after ANOVA analysis with Tukey post-hoc analysis (p = 0.05).  
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FIGURE 4.2: Genes showing consistent expression across the five stem sections. ΔCt 

expression levels of lignin biosynthesis genes from the five stem sections and roots (n = 5 

individual plants per tissue section) normalised against section A for each individual gene is 

shown with standard error of the mean. Statistical differences are noted by different letters 

above bars (x, y and z) after ANOVA analysis with Tukey post-hoc analysis (p = 0.05).  
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FIGURE 4.3: qPCR expression levels of lignin biosynthesis genes in stem sections A – E and 

root tissue as seen in Figures 4.1 and 4.2 laid out as lignin biosynthesis pathway based on 

Hisano et al. (2009). Expression levels are normalised to section A for each gene. 
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sections C, D and E (Figure 4.1). Of the five genes within this group only PAL and COMT 

show a significant reduction in expression in section B when compared to section A (Figure 

4.1). All five genes have significantly less expression in section C, D and E when compared to 

section A expression levels (Figure 4.1). The second group shows similar expression across 

all five sections of stem tissue analysed (Figure 4.2, Appendix C). C4H, CCoAOMT and F5H all 

show no significant differences in expression levels across the five stem sections. C3H 

shows a significant increase in expression levels between section A and section B before 

stabilising in sections C, D and E (Figure 4.2). 

 

Expression levels of the nine lignin biosynthesis genes being analysed were also established 

in root tissue (Figures 4.1 and 4.2, Appendix C). C3H, CCoAOMT, F5H and CAD expression in 

root tissue was not significantly different to any stem section (A-E) (Figures 4.1 and 4.2). 

Expression of PAL and 4CL in root tissue were not significantly different to section A, but 

were significantly higher than sections B-E (Figure 4.1). CCR and COMT showed a similar 

pattern being not significantly different to sections A or B but significantly higher than 

expression in sections C-E (Figure 4.1). Expression of C4H in root tissue was approximately 

9-fold higher than in any stem section (Figure 4.2). 

 

4.2.3 Cell wall compositional analysis 

 

Secondary cell wall components were quantified in stem sections (Table 4.3). Section A had 

significantly less lignin than the more mature stem internodes, though levels appear to 

stabilise after section B. This significant difference was due to lower acid insoluble lignin in 

section A as there are no significant differences in acid soluble lignin levels across the five 

stem sections (Table 4.3). There were no significant differences across the five sections for 

glucose, xylose or galactose amounts, though galactose represents only a very minor 

component of the cell wall. Section A had significantly more arabinose than the remaining 

sections, though as for galactose, arabinose also only represents a very small proportion of 

the cell wall. All mass balances were within 10% of starting material during cell wall 

compositional analysis. 
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TABLE 4.3: Accumulation of individual cell wall components in stem regions of increasing maturity. The percentage of each component of the total 

composition is shown with the standard error of the mean. Values in bold type are significantly different (ANOVA analysis with Tukey post-hoc analysis, p = 

0.05) to section A for each component. No significant differences were observed between sections B, C, D or E for any component. Each stem section for 

each component was represented by five individual plant samples.  

 

Section Total lignin Acid insoluble lignin Acid soluble lignin Glucose Xylose Galactose Arabinose 

 % +/- % +/- % +/- % +/- % +/- % +/- % +/- 

A 20.76 0.52 15.57 0.48 5.19 0.11 49.26 0.53 20.58 0.35 0.32 0.19 2.28 0.09 

B 22.35 0.27 17.14 0.32 5.21 0.06 47.93 0.50 20.01 0.29 0.00 0.00 1.63 0.05 

C 23.39 0.13 18.29 0.10 5.10 0.08 48.09 0.49 20.36 0.35 0.00 0.00 1.58 0.04 

D 23.24 0.29 18.08 0.33 5.16 0.06 48.00 0.54 20.90 0.27 0.00 0.00 1.58 0.06 

E 22.49 0.24 17.40 0.30 5.09 0.06 47.34 0.18 21.58 0.46 0.10 0.09 1.81 0.12 
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4.3 DISCUSSION    

 

A comparison of lignin biosynthetic gene transcription levels with cell wall composition 

during maturation is not currently available for sugarcane. As discussed, data exist for a 

range of plant species which compare some aspects of this developmental relationship, 

though a focused analysis which combines gene expression levels for the entire lignin 

biosynthesis pathway with lignin, cellulose and hemicellulose deposition in any plant 

species is yet to be published. The aim of this research was to fill this knowledge gap for 

sugarcane, an important crop to the global economy and a potentially important crop for 

second generation bioethanol production (Canilha et al., 2012; Yuan et al., 2008). 

Sugarcane plants with lower lignin contents (wild type and genetically modified) have been 

found to release increased levels of glucose compared with sugarcane plants with higher 

lignin contents (Benjamin et al., 2013; Jung et al., 2012; Jung et al., 2013; Masarin et al., 

2011). Improved understanding of lignin biosynthesis and deposition in sugarcane will be of 

great value when deciding the most appropriate approaches to facilitate the development 

of commercial lines with increased saccharification potential. 

 

4.3.1 Expression profile of lignin biosynthesis pathway genes 

 

The trends in the stem expression data (Figures 4.1 and 4.2) dichotomise the lignin 

biosynthesis genes: expression decreases with tissue age (PAL, CCR, 4CL, COMT and CAD) or 

expression remains constant during maturation (C3H, F5H, C4H and CCoAOMT). The 

position of the genes within the lignin biosynthesis pathway and their expression pattern 

do not appear linked (Figure 4.3) suggesting the function of the gene may influence its 

expression more than its location within the biosynthetic pathway. 

 

4.3.1.1 Gene expression decreases with stem tissue age 

 

The trend of decreased gene expression as tissue matures is most strongly seen in PAL and 

CCR (Figure 1.1). This finding is supported by Papini-Terzi et al. (2009) who found some PAL 

homologues showed decreased expression in maturing sugarcane stem tissue when 

compared to younger tissue, but is in contrast to findings by Casu et al. (2004) and Kolahi et 

al. (2013) that PAL expression in sugarcane increased with stem maturity. Phenylpropanoid 

biosynthesis, which includes lignin biosynthesis, begins after the deamination of 

phenylalanine by PAL (Bonawitz and Chapple, 2010; Ferrer et al., 2008; Halpin, 2004). As 
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PAL catalyses the entry of metabolites into the lignin biosynthesis pathway (Liu, 2012; 

Weng and Chapple, 2010) its high level of expression in younger tissue found in this study 

(Figure 4.1, Appendix C) may represent an initial metabolic flux to provide a burst of 

metabolites for the various phenylpropanoid pathways including lignin biosynthesis. 

 

As opposed to PAL, CCR functions in the final stages of lignin biosynthesis and is considered 

a committed step which is key in the production of H, G and S lignin monomers (Vogt, 2010; 

Weng and Chapple, 2010). Given its positioning in the lignin biosynthesis pathway (Figure 

1.1) CCR may additionally act as a regulating control point for directing the metabolic flux 

into lignin monomer production (Lacombe et al., 1997). As the high expression of PAL in 

young tissue may be to stimulate metabolic flux into phenylpropanoid production, the high 

expression of CCR in young tissue may be to ensure a high level of metabolite commitment 

into lignin biosynthesis, which is fundamentally important for healthy plant development 

(Ma, 2007; Weng and Chapple, 2010).  

 

To a lesser degree 4CL and COMT share the same expression patterns as PAL and CCR. 4CL 

is an essential enzyme in phenylpropanoid biosynthesis (Bonawitz and Chapple, 2010) and 

represents an important branch point where metabolites are directed into lignin 

biosynthesis or alternative phenylpropanoid biosynthesis pathways (Vogt, 2010; Weng and 

Chapple, 2010). Its position allows for direct metabolite contribution into H monomer 

biosynthesis or redirection of metabolites for G or S monomer biosynthesis (Vogt, 2010). 

The high level of 4CL expression in young tissue may reflect its response to the metabolic 

flux into the phenylpropanoid pathway initiated by PAL. 

 

In this study COMT expression was found to decrease with tissue maturity. This is contrary 

to the findings of Casu et al. (2004) and Papini-Terzi et al. (2009) in which COMT expression 

was found to increase as sugarcane stem maturity increased. COMT is the last of two 

enzymes entirely responsible for the production of the S lignin monomer within the lignin 

biosynthesis pathway (Bonawitz and Chapple, 2010; Weng and Chapple, 2010). The 

increased expression of COMT in young tissue in this research may be to ensure S monomer 

production during the availability of the initial metabolic flux. 

 

The final gene showing a reduction in expression as stem tissue matures was CAD, though 

the trend was not as strong as the previously discussed genes. Consistent with our results, 

Cheng et al. (2013) found CAD expression decreased before plateauing with stem tissue age 
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in Ginkgo biloba, whereas Casu et al. (2007) found CAD expression in sugarcane increased 

with tissue age. CAD represents the final enzyme in the lignin biosynthesis pathway 

catalysing the production of precursor monolignols and committing them to H, G and S 

lignin monomer synthesis (Ferrer et al., 2008; Halpin, 2004; Vogt, 2010). The initial high 

expression of CAD in young tissue may relate to the increased metabolic flux through the 

lignin biosynthesis pathway. The continued production of lignin throughout plant 

development (Rogers and Campbell, 2004) may require CAD to retain a certain level of 

activity which could explain why its expression does not decrease to the levels of PAL, CCR, 

4CL or COMT (Figure 4.1). It was hypothesised that the high expression levels of PAL, CCR, 

4CL, COMT and CAD in young tissue (section A) (Figure 4.1) was to initiate lignin 

biosynthesis in the developing sugarcane internodes. This is supported by the finding that 

lignin content significantly increased in section B, relative to section A (Table 4.3), which 

may be a result of increased lignin biosynthesis gene expression levels in section A.  

 

To reiterate, this research found PAL, COMT and CAD have high expression in young stem 

tissue, which then decreases as the stem tissue matures. This is in contrast to findings in 

sugarcane that PAL (Casu et al., 2004; Kolahi et al., 2013), COMT (Casu et al., 2004; Papini-

Terzi et al., 2009), and CAD (Casu et al., 2007) expression increased with stem maturity. The 

discrepancies between the current and published research may be a result of various 

experimental differences between the current research and published findings. Different 

results may have arisen from the use of different sugarcane cultivars (no published research 

analysed KQ228) or data collection methods as the current profile used qPCR, whereas Casu 

et al. (2004); Casu et al. (2007); and Papini-Terzi et al. (2009) used microarrays to generate 

expression data. Although qPCR is commonly used to validate microarray data, the results 

produced by these two methods do not always correlate well (Dallas et al., 2005; Git et al., 

2010; Morey et al., 2006). This research selected qPCR for quantifying gene expression 

levels as the genes being analysed are from a well-known and studied pathway, the lignin 

biosynthesis pathway, and qPCR allowed for flexibility in primer design to suit the specific 

requirements of this research.  

 

Different growing conditions may also have affected results as the sugarcane studied by 

Kolahi et al. (2013) and Papini-Terzi et al. (2009) was field grown in Iran and Brazil 

respectively. The sugarcane analysed by Casu et al. (2004) and Casu et al. (2007) was field 

grown in Queensland, however, there was a minimum of six years difference between the 

sugarcane harvesting and sampling dates between Casu et al. (2007) and the current 
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research, which may have resulted in different seasonal weather patterns, such as sunlight 

levels, during periods of plant growth. Comparing glasshouse grown sugarcane with the 

field grown sugarcane in the published studies may also introduce differences to growth 

conditions. Within the glasshouse, plants are protected from weather conditions, such as 

wind, and therefore may require less lignin to remaining upright, whereas, the field grown 

sugarcane may require additional lignin content to prevent lodging (Ma, 2007; Weng and 

Chapple, 2010), therefore requiring the genes of the lignin biosynthesis pathway to remain 

active for longer during plant maturation. The glasshouse also acts to protect plants from 

insects, which can wound plant stems and induce lignification (Rogers and Campbell, 2004) 

which is a potential hazard in field grown plants, and may complicate analysis if insect 

wounded plants were used. 

 

4.3.1.2 Gene expression constant throughout stem development 

 

Four genes within the lignin biosynthesis pathway presented with a plateaued expression 

pattern across stem sections of increasing age (Figure 4.2), namely C4H, C3H, F5H and 

CCoAOMT. Papini-Terzi et al. (2009) also found C3H and C4H showed no difference in 

expression levels in young and maturing sugarcane stem, however in their study, 

expression levels of F5H were higher in maturing sugarcane stem when compared to 

younger stem tissue. Other discrepancies with published results include the expression 

levels of CCoAOMT in sugarcane being found to be increased in maturing sugarcane stem 

when compared to younger stem tissue (Casu et al., 2004). However, another study by Casu 

et al. (2007) found in the maturing tissue of sugarcane CCoAOMT expression was reduced 

when compared to young stem tissue. In contrast, our results show expression levels of 

CCoAOMT did not change with stem maturation. Although plants of a similar age and same 

cultivar were analysed, the differences in findings by Casu et al. (2004) and Casu et al. (2007) 

may result from the use of different microarrays, requiring different sample preparation 

and analysis methods. Additional reasons for the discrepancies between current and 

published data have been previously discussed in Section 4.3.1.1.  

 

 C4H, C3H and F5H are cytochrome P450 monooxygenases (Liu, 2012; Weng and Chapple, 

2010). P450 enzymes are versatile catalysts acting as oxygenases by incorporating 

molecular oxygen into reactions (Porter and Coon, 1991) which is a key step in assembling 

complex molecules (Nelson, 2006). As a result, P450 enzymes are involved in many 

different biosynthesis pathways including lignin biosynthesis (Nelson, 2006). C4H catalyses 
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the first aromatic hydroxylation of the phenylpropanoid skeleton after its deamination by 

PAL (Ferrer et al., 2008; Weng and Chapple, 2010). This step (along with the reactions 

catalysed by PAL and 4CL) is one of the three essential steps in phenylpropanoid 

biosynthesis (Bonawitz and Chapple, 2010; Vogt, 2010). The steady expression of C4H 

throughout tissue maturation may aid in continuing to funnel metabolites into the 

phenylpropanoid biosynthesis pathways. F5H, another hydroxylase, is paired with COMT in 

the S monomer branch of the lignin biosynthesis pathway and its expression is necessary 

for the production of S lignin monomers (Weng and Chapple, 2010). The expression pattern 

of F5H may ensure continued flow of metabolites for S lignin monomer production.  

 

C3H, related to C4H, catalyses the second aromatic hydroxylation reaction in the lignin 

biosynthesis pathway (Weng and Chapple, 2010) and is an important hub in controlling 

metabolic flux into G and S lignin monomer synthesis (Barrière et al., 2004). Caffeoyl CoA 3-

O-methyltransferase (CCoAOMT) is responsible for the 3' methylation of caffeoyl-CoA to 

produce feruloyl-CoA (Hisano et al., 2009; Raes et al., 2003), a key step in the production of 

G and S lignin monomers (Figure 1.1) (Barrière et al., 2004). CCoAOMT, along with C3H are 

hypothesised to be important control points for cell wall lignification by acting as part of 

the ferulate production pathway (Barrière et al., 2004). The feruloyl residues aid in cross-

linking within the cell wall and may increase the resistance of the cell wall to hydrolysis by 

adding to its structural stability (Barrière et al., 2004; Bonawitz and Chapple, 2010; Grabber, 

2005). The steady expression of CCoAOMT and C3H within the maturing sugarcane stem 

may reflect their continued requirement for feruloyl residue production for ongoing cell 

wall lignification and not just their role in lignin monomer biosynthesis.  

 

4.3.1.3 Gene expression levels in root tissue 

 

Lignin is present in root tissue to aid in water and nutrient transport through its 

hydrophobic properties (Bonawitz and Chapple, 2010), but is not often examined during the 

development of lignin expression profiles. One reason for this may be that the majority of 

lignin research focuses on lignin in light of pulping or biofuels, in which case, the stem or 

stalk of the plant is the tissue of interest, rather than the roots. Firon et al. (2013), Ma 

(2007), Kolahi et al. (2013) and Cheng et al. (2013) represent the only reports in current 

literature that report lignin gene expression levels in root tissue and only Firon et al. (2013) 

examined the expression of more than one lignin biosynthesis gene. Cheng et al. (2013) 

found CAD expression in Ginkgo biloba roots to be slightly higher than the expression levels 
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in young stem tissue, similar to the expression of CAD found in the current study. PAL 

expression was detected in sugarcane roots of a similar age to this research and was 

comparable to PAL expression levels in young stem tissue (Kolahi et al., 2013) which also 

supports the current findings. Firon et al. (2013) detected the expression of PAL, C4H, 4CL, 

CCoAOMT, CCR, COMT and CAD in sweet potato root. The same genes were also found to 

be expressed in sugarcane roots in this research. In contrast to the current research, Ma 

(2007) was unable to detect CCR expression in the root tissue of wheat. Although this 

research only determined lignin biosynthesis gene expression levels in combined root tissue 

representing all developmental stages, and therefore is not a complete expression profile 

within this tissue, these results do provide an insight into the expression levels in sugarcane 

roots after growing for nine months in a glasshouse. A more comprehensive profile of lignin 

gene expression patterns in root tissue may involve dividing the root into different 

developmental stages before analysis.  

 

There are no significant differences in expression levels between root tissue and the five 

stem sections (A-E) for C3H, CCoAOMT, F5H and CAD (Figures 4.1 and 4.2). Interestingly 

C3H, CCoAOMT and F5H are all in the group with plateaued gene expression during 

development and may highlight the promoters of these three genes as potential 

biotechnological tools to drive continuous and even expression of transgenes in sugarcane 

stem and root tissue. Further research would be required to assess the expression of C3H, 

CCoAOMT, F5H and CAD during different stages of root development, as well as in 

additional tissues, such as leaves. Expression of PAL, 4CL, CCR and COMT in root tissue was 

not significantly different to section A (youngest stem sample) but was significantly higher 

than expression in more mature stem tissues (Figure 4.1). The only gene with an 

unexpected level of expression was C4H which had approximately 9-fold higher expression 

in roots than in any stem section (Figure 4.2). Although no literature was found which could 

shed light on this finding, this result does suggest that the promoter of C4H may be useful 

for root preferential expression of transgenes in sugarcane, however, further analysis, 

including the functionality of this promoter in additional tissue types, such as leaves, would 

need to be assessed.  

 

4.3.2 Cell wall compositional changes during sugarcane stem maturation 

 

The composition of the cell wall changes as a plant matures as a result of secondary cell 

wall deposition. After cell elongation has ceased, the secondary cell wall is formed 
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(Cosgrove, 2005; Rogers and Campbell, 2004; Weng and Chapple, 2010) which involves the 

initial deposition of cellulose and hemicellulose, followed by the lignification of this 

polysaccharide matrix (Bourquin et al., 2002; Plomion et al., 2001; Vogel, 2008). Within 

sugarcane, rapid elongation of young internode cells precedes cell wall thickening, including 

lignification, which is indicative of internode maturation (Casu et al., 2007). As the 

internode diameters (Table 4.2) were not significantly different this would suggest cell 

expansion had already occurred before samples were collected. No significant differences 

were seen in glucose, xylose or galactose levels throughout sections (Table 4.3) indicating 

that the deposition of structural carbohydrates into the secondary cell wall had also 

occurred before harvesting of samples. Although arabinose decreased with stem maturity, 

the maximum difference in levels only accounted for 0.7% of the secondary cell wall 

content (Table 4.3). The significant increase in lignin content between section A and section 

B (Table 4.3) may reflect the order of the formation of the secondary cell wall. As lignin is 

incorporated after polysaccharide deposition, the secondary cell walls in section A may 

have been under construction when harvested, compared to mature cell walls in sections B 

through E. Polysaccharide components had been fully deposited but lignin deposition was 

ongoing. Results suggest the lignin deposition was complete by section B as lignin content 

plateaued and no differences were detected between sections B, C, D and E (Table 4.3). 

 

In the youngest tissue (section A) there was significantly less lignin than sections B – E 

(Table 4.3). Cheng et al. (2013), Ma (2007) and Jung and Casler (2006) also found that lignin 

content increased with tissue maturity in Ginkgo biloba, wheat and maize. However unlike 

the current study in which lignin content plateaued, Cheng et al. (2013) found that lignin 

content in Ginkgo biloba continued to increase with stem maturity. The literature also 

presents some different patterns of lignification than that seen in the current study. Ma 

(2007) found acid soluble lignin content in wheat decreased as stem tissue matured 

however this study found acid soluble lignin content to be stable throughout stem 

maturation. Acid insoluble lignin is precipitated during acid hydrolysis, whereas acid soluble 

lignin tends to be composed of low molecular weight phenolic compounds derived from 

lignin and is not precipitated from the hydrolysis solution (Schwartz and Lawoko, 2010; 

Yasuda et al., 2001). Before increasing and plateauing, Jung and Casler (2006) initially found 

maize lignin content decreased, which was not seen in this research.  

 

Two different experiments by Lingle and Thomson (2012) involved either sampling a 

marked sugarcane internode over a period of 12 weeks as it matures from being internode 
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1 to approximately internode 13, or, harvesting odd-numbered sugarcane internodes 

between 1 and 11 (inclusively) at single time points in July and September of the same year. 

The first experiment found lignin content increased continuously over time, whilst the 

second experiment found lignin content was highest in internode 1 but significantly 

decreased in internode 3 before slowly increasing again with tissue age to approximately 75% 

of the initial content of internode 1 (Lingle and Thomson, 2012). As a possible explanation 

for this pattern of lignification, Lingle and Thomson (2012) cited findings by Jung and Casler 

(2006). Young maize tissue is comprised of a higher percentage of lignified protoxylem 

vessels than more mature tissue, which initially results in a high lignin content in young 

tissue (Jung and Casler, 2006). The development of non-lignified tissues dilute the initial 

lignin concentration, causing a decrease in lignin content, before increasing as the lignified 

secondary cell wall is deposited (Jung and Casler, 2006). When comparing patterns of lignin 

deposition, neither experiment by Lingle and Thomson (2012) support the current findings 

in which lignin significantly increased in section B, relative to section A, before plateauing.  

 

The significant increase in lignin content in section B (Table 4.3) may be a result of the 

increased metabolic flux detected at the gene expression level in section A (Figures 4.1 and 

4.2). As the expression levels of five of the lignin biosynthesis genes decrease with tissue 

maturity (Figure 4.1) so too may the rate of lignin biosynthesis and deposition resulting in 

no significant increases or decreases in lignin content in more mature stem sections (Table 

4.3). The cell wall compositional results in this current study represent the proportions (%) 

of bagasse dry weight that the cell wall component accounts for, and not the actual 

amounts (Table 4.3). This presents another alternative explanation as to the plateauing of 

cell wall components after section B in this study (Table 4.3) when compared with 

increasing lignin content in maturing tissue seen in published studies (Cheng et al., 2013; 

Lingle and Thomson, 2012; Ma, 2007; Jung and Casler, 2006). A possibility exists that both 

lignin and the structural carbohydrates are increasing in the maturing internodes in 

proportion to each other, while the water content of the maturing stem decreases. 

Therefore, while lignin content is increasing, the percentage each cell wall component 

accounts for in dried bagasse does not change, hence the plateauing of components after 

section B (Table 4.3). 

 

Apart from lignin content, there is little change in the composition of cell wall 

carbohydrates throughout stem development as glucose and xylose levels do not change 

significantly across the five sections analysed (Table 4.3). This is in contrast to published 
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findings in sugarcane (Lingle and Thomson, 2012) and maize (Jung and Casler, 2006). Both 

experiments by Lingle and Thomson (2012) found cellulose peaked in week three 

(Experiment 1) and in internode five (Experiment 2) before slowly declining or plateauing as 

tissue matured whereas hemicellulose was highest in young tissue in both experiments 

before reducing and plateauing as tissue matured (Lingle and Thomson, 2012). The 

decrease in cellulose and hemicellulose coincided with an increase in sucrose concentration, 

which may be due to the carbon which was originally partitioned for structural 

polysaccharides instead being used in sucrose production (Lingle and Thomson, 2012). Jung 

and Casler (2006) found similar results in maize in which glucose content increased as tissue 

matured before plateauing, and hemicellulose (xylose and arabinose) decreased as tissue 

matured before also plateauing. Jung and Casler (2006) found the decrease in xylose and 

arabinose coincided with an increase in ferulates, and suggested that the ferulates may be 

replacing the xylose and arabinose within the cell wall, hence their decrease during tissue 

maturation.  

 

The disparity between the current results and those of Lingle and Thomson (2012) for lignin, 

cellulose and hemicellulose deposition may be due to a number of factors. Although the 

internodes harvested were similar (internodes 1-13 and 1-11 in Experiments 1 and 2 

respectively (Lingle and Thomson, 2012), and internodes 2-15 in the current research (Table 

4.1)), there are two main differences between the current research and Lingle and 

Thomson (2012). The first is that Lingle and Thomson (2012) analysed North American 

cultivars whereas this research focused on an Australian cultivar. The second is Lingle and 

Thomson (2012) sampled field grown sugarcane whereas this experiment used glasshouse 

grown sugarcane. Lingle and Thomson (2012) found a significant difference in lignin content 

between the July and September harvests in 2009 but not in 2008, and suggested the 

environment may have a greater influence on lignin content than growth stage. If correct, 

the glasshouse environment may affect lignin content differently to field conditions and 

may have influenced the differences in lignin deposition found in this research and 

published findings. An experiment comparing glasshouse and field conditions on growth 

and development would be necessary to confirm this hypothesis.  

 

4.3.3 Limitations and future research  

 

When the results found in this study are compared with the current literature there are 

some published results that support the current findings (Cheng et al., 2013; Jung and 
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Casler, 2006; Kolahi et al., 2013; Papini-Terzi et al., 2009) and others that have found 

differing patterns of gene expression and cell wall deposition (Casu et al., 2004; Casu et al., 

2007; Jung and Casler, 2006; Lingle and Thomson, 2012; Papini-Terzi et al., 2009). Because 

biosynthesis pathways for phenylpropanoid production, including lignin, undergo complex 

regulation (reviewed in Gray et al., 2012) measuring gene expression levels in static 

intervals (harvesting then freezing tissue) may not fully elucidate the complexity of lignin 

gene expression. It is also likely that different plant species will have different lignin 

biosynthesis expression patterns, which may also contribute to differences between 

current findings and published findings in the literature. 

 

Another potential limitation of this research can be summarised by the experiment by Bi et 

al. (2011) in which 32 gene homologues representing the ten lignin biosynthesis genes in 

wheat were assessed for their roles in lignin production during plant development and 

when challenged with pathogens. This research aimed to highlight homologues specifically 

involved in lignin biosynthesis during plant growth as potential targets for down-regulation 

to decrease lignin content without increasing pathogen susceptibility. Bi et al. (2011) found 

that different homologues express at different levels during the different conditions and to 

compare homologue gene expression levels with lignin deposition would be very difficult. 

Given the complexity of the sugarcane genome (Grivet and Arruda, 2001) it would not be 

surprising if homologues exist for sugarcane lignin biosynthesis genes. As the complete 

sugarcane genome for cultivar KQ228 is not currently available it was not possible to design 

qPCR primers to bind all homologues or particular homologues so it is currently unknown if 

the results in this experiment are a reflection of individual genes or groups of gene 

homologues. The steps taken when designing primers are outlined in Section 3.6.1. One 

potential solution that was unavailable due to time restrictions would be to design multiple 

sets of qPCR primers per lignin biosynthesis gene and confirm if a similar expression pattern 

is observed. Another option would be to sequence the cloned qPCR amplicons for each 

gene and examine sequences for mixed transcripts. Although amplicons were sequenced 

during primer design (Section 3.6.1) to determine primer specificity, only two E.coli colonies 

were sequenced per amplicon. This was considered too few colonies to make any 

conclusions concerning the potential for gene homologues.  

 

In addition, the glasshouse used to grow the sugarcane for this profile did not have 

adequate ceiling height to allow the plants to grow to their full height. The plants were 

grown as tall as possible without the ceiling interfering with their growth. It is expected the 
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results are still reflective of full height plants and given that the expression patterns of the 

biosynthesis genes and the levels of secondary cell wall components had stabilised after 

Section B, the usefulness of additional data that could be obtained is not clear. Using setts 

or mature field grown plants would be an alternative solution. It was decided to use 

sugarcane generated by tissue culture and grown in a glasshouse with controlled conditions 

so that plant origins and growth conditions were comparable, the same of which may not 

be true for field grown plants or the setts grown from these plants. In addition, glasshouse 

experiments allowed for control of watering and fertilisation regimes as well as exclusion of 

biotic and abiotic damage. Further research may involve comparing tissue culture 

generated and field grown plants to determine if tissue cultured sugarcane grown in 

glasshouse conditions is comparable with field conditions. Additional research may also 

examine enzyme activity levels of lignin biosynthesis genes as an extra set of data linking 

gene expression levels with the deposition of secondary cell wall components. Gene 

expression and enzyme activity levels of cellulose and hemicellulose biosynthesis pathways 

would provide additional information into the production of structural polysaccharides 

during plant development and maturation. 
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Chapter 5 
 

MYB gene expression in sugarcane 
 

 

 

MYB transcription factors have a wide spectrum of regulatory influences over metabolism 

and development including the regulation of the lignin biosynthetic pathway (Ambawat et 

al., 2013; Fornalé et al., 2010). Many MYB genes have been identified with up-regulatory 

roles in lignin deposition (Table 2.1) and a modest number of MYB genes with down-

regulatory influences have also been identified (Table 2.2). Of the MYB genes from the 

latter category two were further analysed in this research: ZmMYB31 and ZmMYB42.  

 

Previous research identified the maize ZmMYB31 and ZmMYB42 transcription factors 

(Fornalé et al., 2006) using degenerate primers designed from Antirrhinum majus MYB 

genes AmMYB308 and AmMYB330, which had previously been shown to have down-

regulatory influence over lignin biosynthesis when expressed in tobacco (Tamagnone et al., 

1998). It was hypothesised that the maize MYB genes would also negatively influence lignin 

deposition (Fornalé et al., 2006).  

 

When ZmMYB31 and ZmMYB42 were independently expressed in transgenic Arabidopsis 

they were found to reduce the expression of genes within the lignin biosynthesis pathway 

which led to significant decreases in the lignin content of the transgenic Arabidopsis 

(Fornalé et al., 2010; Fornalé et al., 2006; Sonbol et al., 2009). During enzymatic hydrolysis 

the reduced lignin content allowed for a greater release of fermentable sugars from the 

ZmMYB31 and ZmMYB42 expressing plants when compared to controls (Fornalé et al., 

2010; Sonbol et al., 2009), thus improving the bioethanol potential of these plants. Recent 

research found the over-expression of PvMYB4 in switchgrass reduced lignin content 

through the down-regulation of lignin biosynthesis genes which increased the 

saccharification of these plants three-fold (Shen et al., 2012; Shen et al., 2013). 

Phylogenetic analysis of PvMYB4 found it was most closely related to ZmMYB31, ZmMYB42 

and ZmMYB38 than the other MYB transcription factors comprising subgroup G4 (Du et al., 

2012a; Fornalé et al., 2010). This further highlights the potential of MYB transcription 

factors in the production of second generation bioethanol.  
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If the expression of ZmMYB31 and ZmMYB42 in sugarcane emulates the findings of Sonbol 

et al. (2009) and Fornalé et al. (2010) and improves saccharification, then this characteristic 

would benefit the production of second generation bioethanol from, and increase the 

monetary value of sugarcane bagasse. The assessment of this possibility required the 

completion of a number of specific aims:   

 

1) Clone MYB31 and MYB42 genes from maize and construct plasmids for the 

transformation and regeneration of sugarcane plants harbouring and expressing 

either ZmMYB31 or ZmMYB42 

2) Assess any regulatory effects the expression of ZmMYB31 or ZmMYB42 may have 

on the expression levels of genes within the lignin biosynthesis pathway 

3) Quantify secondary cell wall components (lignin, cellulose and hemicellulose) in 

sugarcane plants showing down-regulation of lignin biosynthesis pathway genes 

4) Perform enzymatic hydrolysis on plants with reduced lignin contents to determine 

if this increases the release of fermentable glucose monomers 

5) Assess whether juice sucrose levels are influenced by the expression of ZmMYB31 

or ZmMYB42  

 

 

5.1 SPECIFIC METHODS  

 

5.1.1 Generation of constructs harbouring maize MYB genes 

 

5.1.1.1 Maize embryo rescue 

 

Kernels were excised from an ear of corn (Zea mays) purchased at local markets. After 

surface sterilisation, the embryos were excised using aseptic techniques and germinated in 

liquid MS regeneration media at 27°C with a 16 hour photoperiod. Leaf and shoot tissue 

was harvested after two weeks of growth and used for the cloning of the MYB transcription 

factors (MYB31 and MYB42). 

 

5.1.1.2 PCR amplification and cloning of ZmMYB31 and ZmMYB42 

 

RNA extracted from combined maize leaf and stem tissues was used for cDNA synthesis. 

Primers were designed from available sequence information to amplify MYB31 and MYB42 
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genes from the maize cDNA (Table 5.1). Two amplicons were cloned for each MYB gene to 

either include or exclude adjacent sequence of the 5' and 3' untranslated regions (UTR) as 

there is evidence that retaining these sequences can regulate and improve gene expression 

(Hughes, 2006; Mignone et al., 2002; Pesole et al., 2001; Sharma and Sharma, 2009; Wilkie 

et al., 2003). ‘MYB UTR’ refers to DNA with the inclusion of untranslated regions and ‘MYB 

ORF’ refers to the open reading frame only. MYB31 UTR and MYB42 UTR had 128bp and 

64bp of 5' UTR and 251bp and 32bp of 3' UTR respectively (Mignone et al., 2002). 

 

 

TABLE 5.1: Primers designed from GenBank accessions for PCR amplification of ZmMYB31 

and ZmMYB42 genes from maize cDNA.  

 

Amplicon Accession Forward (5'-3') Reverse (5'-3') Size 
(bp) 

MYB31 
ORF NM_001112479 ATGGGGAGGTCGCCGTGCTG TCATTTCATCTCGAGGCTTCT 819 

MYB31 
UTR NM_001112479 ACAGCAGCAGCAACAACAAC TGGCGATGGTGATTACAGAG 1198 

MYB42 
ORF NM_001112539 ATGGGGCGGTCGCCGTGCTGC TCACTTCATCTCCAGGCCTCT 780 

MYB42 
UTR NM_001112539 ACTCGCTGCCTTCTCAAATC GGAGAAGAAAGGACGTGTGG 876 

 

  

The resulting PCR products were A-tailed and cloned into the pGEM-T Easy Vector System 

(Promega, WI, USA). These plasmids were transformed into XL1 Blue E. coli and white 

colonies screened for the insert (Table 5.1) by restriction digest and agarose gel 

electrophoresis. The pGEM-T Easy Vector System plasmids (Promega, WI, USA) were 

purified from positive colonies and subsequently sequenced. Inserts (Table 5.1) were 

subcloned into the SmaI site of the existing alkaline phosphatase (Roche, Basel, CHE) 

treated ZmUbi-iUbi-nos/pBlueScript (Agilent Technologies, CA, USA) entry vector containing 

the maize Ubiquitin promoter (Ubi) and intron (iUbi) (Christensen and Quail, 1996; 

Christensen et al., 1992) and the nopaline synthase (nos) terminator (Bevan et al., 1983a), 

resulting in four ZmUbi-iUbi-MYB-nos/pBS constructs. Sequences for the maize Ubiquitin 

promoter (Ubi) and intron (iUbi) and the nopaline synthase (nos) terminator are seen in 

Appendix D. A vector map for MYB expression plasmids is seen in Appendix E. All cloning 

junctions have been sequenced as above.  
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5.1.2 Generation of transgenic sugarcane with MYB gene constructs 

 

5.1.2.1 Transformation of callus with ZmUbi-iUbi-MYB-nos/pBS constructs 

 

Callus was co-bombarded with individual ZmUbi-iUbi-MYB-nos/pBS constructs and ZmUbi-

nptII-nos/pUC19. Neomycin phosphotransferase II (nptII) confers G418 disulfate salt (Roche, 

Basel, CHE) resistance to callus for selection (Bevan et al., 1983b; Colbére-Garapin et al., 

1981). Transformation control callus was co-bombarded with one microgram ZmUbi-GFP-

nos/pUC19 constructs with one microgram of ZmUbi-nptII-nos/pUC19 to confirm that the 

resistance gene (nptII) did not affect lignin biosynthetic genes. GFP is the gene encoding the 

green fluorescence protein isolated from Aequorea victoria (Chalfie et al., 1994; Chiu et al., 

1996; Prasher et al., 1992). GFP was included in the bombardment of transgenic control 

callus as the detection of transient GFP expression in callus provided an indication that the 

microprojectile bombardment conditions had not adversely affected the expression 

cassettes. Untransformed control (wild type) callus did not undergo microprojectile 

bombardment and would allow for further analysis and comparisons of the effects of the 

MYB transcription factors over the lignin biosynthesis pathway. Regeneration of callus was 

carried out as previously described, after which individual events were transferred to 

growth chambers for continued development.  

 

5.1.2.2 Screening regenerated events for transgene presence and expression 

 

Individual leaves were excised from MYB-transformed sugarcane and controls two to four 

weeks after acclimatisation in the growth chamber for gDNA screening for the presence of 

the MYB gene cassette. All samples underwent Rapid Release gDNA extractions before 

endpoint PCR. Primers were designed to bind within the 3' end of the Ubi promoter and 5' 

end of the MYB coding sequence of the gene of interest. This determined both the 

presence of the MYB gene as well as the general integrity of the expression cassette. At six 

weeks after acclimatisation, endpoint PCR positive plants for the MYB transgene cassette 

had leaf tissue sampled for RNA extraction, cDNA synthesis and qPCR quantification of 

ZmMYB31 or ZmMYB42 transcript level as well as the expression of nine lignin biosynthesis 

pathway genes (Table 3.1). Genomic DNA and cDNA extracts from wild type and GFP plants 

were included as controls and water replaced DNA in no template controls for both 

endpoint and qPCR reactions respectively. Primers used for both endpoint and qPCR are 

seen in Table 5.2.  
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TABLE 5.2: Primers designed from GenBank accessions for leaf gDNA screening for 

ZmMYB31 and ZmMYB42 gene cassettes and qPCR quantification of MYB gene expression 

in young and maturing internodes.  

 

 Amplicon Forward (5'-3') Reverse (5'-3') Size (bp) 

gD
N

A 
sc

re
en

in
g MYB31ORF GCGGTCGTTCATTCGTTCTA GATCAGGGACCACTTGTTGC 699 

MYB31UTR GCGGTCGTTCATTCGTTCTA GATCAGGGACCACTTGTTGC 827 

MYB42ORF GCGGTCGTTCATTCGTTCTA GATGAGCGACCACTTGTTCC 699 

MYB42UTR GCGGTCGTTCATTCGTTCTA GATGAGCGACCACTTGTTCC 763 

     

qP
CR

 q
ua

nt
ifi

ca
tio

n MYB31ORF TCTTCCGGCTGGAGGACGAG GTGGCTGTGGCTCTGGCTCTG 80 

MYB31UTR TCTTCCGGCTGGAGGACGAG GTGGCTGTGGCTCTGGCTCTG 80 

MYB42ORF ATCAAGGCCGAGGAGACGG AGAGGTCCAGGTTGAGGTCAG 64 

MYB42UTR ATCAAGGCCGAGGAGACGG AGAGGTCCAGGTTGAGGTCAG 64 

 

 

5.1.2.3 Glasshouse acclimatisation and harvesting of qPCR positive plants 

 

Events harbouring the MYB gene and having detectable levels of MYB gene expression were 

transferred to the glasshouse and grown for nine months before being destructively 

harvested for analysis. Growing tissue culture generated sugarcane under glasshouse 

conditions allowed for plant generation and growth conditions to be controlled throughout 

plant development, and therefore, any changes in lignin biosynthesis could be attributed to 

the MYB transgenes and not to the growing environment, which would not be possible in 

field conditions. All plants were watered to saturation two days before harvesting to avoid 

results being affected by any potential drought related stress response. Harvesting 

occurred between 10am and 5pm and occurred over four consecutive days. Longer 

harvesting hours than previously used (Section 4.1.1) were required to harvest all plants 

over as few days as possible. Before measuring and cutting, all leaf tissue and sheaths were 

removed, and the internodes were counted as per van Dillewijn (1952). The length of the 

stalk was measured (internode 1 to the final internode), the number of internodes was 

counted and the diameter of internodes 2, 4, 6, 8, 10, 12 and 14 was recorded. Average 

internode length was calculated by dividing height by total number of internodes. For all 
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analyses only internode tissue was used. The internodes collected for each assay can been 

seen in Table 5.3, alongside the General Methods Chapter sections with the associated 

protocols. These internodes were selected after discussion with the supervisory team and 

based on required biomass for each proposed experiment.  

 

  

TABLE 5.3: Internodes harvested for MYB sugarcane analyses.  

 

Internode 
number Analysis conducted Method section with protocol 

1 qPCR gene expression analysis in 
young tissue 3.6.2 

7 qPCR gene expression analysis in 
maturing tissue 3.6.2 

8-10 Cell wall and enzymatic hydrolysis 
analysis 3.7 

14 Juice analysis 3.8 

 

 

5.1.3 Selection of plants and order of analyses 

 

Analyses on glasshouse harvested sugarcane plants were performed in a predetermined 

order. Initially cDNA was extracted from the internodes harvested for young and maturing 

stem for qPCR analysis. Seven individual plants per MYB construct (28 MYB plants in total) 

were selected for this analysis based on these plants having the greatest number of lignin 

biosynthesis genes down-regulated after initial qPCR analysis of leaf tissue. qPCR was also 

carried out on nine wild type and three GFP control plants. These same plants also 

underwent acid hydrolysis to quantify their cell wall composition. Although analyses of 

subsequent sugarcane generations would provide information into the stability of MYB 

transgene expression, it was decided to analyse the initial regenerated sugarcane as the 

timeframe of this research and the lengthy timeframe of analysing multiple sugarcane 

generations were not compatible. Additionally, the space available at Carseldine glasshouse 

was insufficient for the growth of multiple sugarcane generations and therefore analysing 

the first generation of sugarcane was considered to be the best approach for this research.  
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Enzymatic hydrolysis was performed on three plants per MYB line with four wild type and 

three GFP transgenic control plants over 72 hours with sampling at six different time points 

after pretreatment of bagasse. The three MYB plants per line were selected based on 

having the lowest lignin contents after compositional analysis. The four wild type controls 

were selected at random and all GFP control plants were used. A random selection of plants 

with sufficient tissue also underwent enzymatic hydrolysis without pretreatment 

beforehand. A comparison of the results with and without pretreatment allowed the 

effectiveness of the pretreatment method selected to be assessed. Quantification of juice 

sugar components was performed on the plants selected for enzymatic hydrolysis only.  

 

Statistical analysis involved either a two-tailed t-test assuming unequal variance, p = 0.05, 

or a one-way ANOVA with Tukey post-hoc analysis, p = 0.05, as appropriate, comparing 

transgenic plants to transgenic controls. As phenotypic measurements could only be made 

once per transgenic plant, the number of standard deviations (z scores) for each MYB plant 

measurement were calculated against the GFP transgenic controls. Measurements were 

considered different to controls if a z score greater than 2 or -2 was calculated. 

 

 

5.2 RESULTS 

 

5.2.1 Amplification and cloning of ZmMYB31 and ZmMYB42 

 

5.2.1.1 DNA and amino acid alignments of the cloned and published sequences of 

ZmMYB31 ORF and ZmMYB31 UTR 

 

The cloned MYB31 ORF and MYB31 UTR nucleotide sequences showed 100% identical 

matches over the coding sequence. When this coding sequence was aligned with the 

published sequence (Fornalé et al., 2006) there was 100% alignment within the sequence 

coding for the R2 domain and a single base pair difference was seen in the R3 domain. 

Alignment of the translated amino acid sequences showed this to be a silent mutation. 

Downstream of the R2 and R3 domains there were three additional SNPs which were also 

found to be silent mutations after translation and an in-frame deletion of nine nucleotides 

in the cloned sequences, resulted in the deletion of three amino acids within the C-

terminus end of the translated protein. Within the nucleotide sequence of the cloned 

MYB31 5' UTR there were two consecutive SNPs and a single SNP when aligned with the 
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published sequence. Within the 3' UTR there were two insertional mutations and two 

individual SNPs when compared to the published sequence. Nucleotide and amino acid 

alignments are seen in Appendix F.  

 

5.2.1.2 DNA and amino acid alignments of the cloned and published sequences of 

ZmMYB42 ORF and ZmMYB42 UTR 

 

The cloned MYB42 ORF and MYB42 UTR nucleotide sequences showed complete alignment 

except for a single SNP within the coding region of the R3 domain. This SNP was found to be 

a silent mutation and the translated amino acid sequences of the cloned MYB42 sequences 

aligned 100%. The cloned MYB42 ORF and UTR nucleotide sequences showed one and two 

SNPs respectively within the R3 domain when compared against the published nucleotide 

sequence (Fornalé et al., 2006). Both SNPs were found to be silent mutations as the R2 and 

R3 domains showed 100% alignment when the cloned and published nucleotide sequences 

are translated into amino acids and aligned. Downstream of the R2 and R3 nucleotide 

coding sequences there were six SNPs and three consecutive in-frame base pairs deletions 

seen in the cloned MYB42 sequences when compared with the published sequence. After 

amino acid alignment, three SNPs were found to be silent mutations and the remaining 

three resulted in amino acid substitute mutations. The missing base pairs resulted in the 

deletion of a single amino acid in the C-terminus of the translated protein. The cloned 5' 

and 3' MYB42 UTR nucleotide sequences aligned 100% with the published sequence. 

Nucleotide and amino acid alignments are seen in Appendix F. 

 

5.2.2 Regeneration and analysis of stably transformed sugarcane plants 

harbouring maize MYB genes 

 

The four MYB constructs were successfully bombarded into sugarcane callus, along with the 

control construct (ZmUbi-GFP-nos/pUC19). Total plants regenerated can be seen in Table 

5.4. Each plant regenerated was considered an independent transgenic event as only one 

plant per callus piece was subcultured during tissue culture. Endpoint PCR screening of leaf 

tissue gDNA identified sugarcane plants containing the MYB gene of interest. Three wild 

type and three GFP controls plants were used as controls during endpoint PCR screening, 

with no MYB gene cassettes detected in any control. Endpoint PCR confirmed incorporation 

of the ZmUbi-GFP-nos/pUC19 cassette into gDNA of transgenic controls. Endpoint PCR 

positive plants underwent qPCR screening of leaf tissue cDNA to confirm the number of  
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TABLE 5.4: Total number of MYB sugarcane analysed at each stage of analysis. This includes 

total plants regenerated after microprojectile bombardment; plants identified as MYB 

transgene positive after endpoint PCR screening of leaf gDNA (shown as positive 

plants/total number of plants analysed); plants positively expressing the MYB transgene 

after qPCR screening of leaf cDNA (shown as positive plants/total number of plants 

analysed). The number of plants analysed post maturation and harvest is also shown.  

 

Plant Total plants 
regenerated 

Initial 
leaf 
PCR  

Initial 
leaf 

qPCR  

Harvested 
plants 
qPCR 

Cell 
wall 

analysis 

Enzymatic 
hydrolysis 

Juice 
analysis 

WT 20 3 6 9 4 4 3 

GFP 11 3 5 3 3 3 3 

MYB 31 
ORF 17 17/17 14/17 7 3 3 3 

MYB 31 
UTR 36 30/36 19/30 7 3 3 3 

MYB 42 
ORF 30 26/30 10/26 7 3 3 3 

MYB 42 
UTR 38 36/38 13/36 7 3 3 3 

 

 

transgenic events showing MYB transgene expression (Table 5.4). All plants showing MYB 

transgene expression also had the expression levels of nine lignin biosynthesis genes 

quantified. The control plants showed no ZmMYB transgene expression for either MYB31 or 

MYB42. The qPCR positive MYB expressing plants and controls were transferred to the 

glasshouse for further growth and maturation. During acclimatisation, only three GFP 

controls survived and were able to be harvested for subsequent analyses (Table 5.4). 

 

5.2.3 qPCR analysis of lignin biosynthesis pathway genes in MYB expressing 

sugarcane  

 

qPCR analysis was performed on cDNA synthesised from young and maturing sugarcane 

internodes for each control and transgenic plant. Seven individual plants for each MYB 

construct were analysed. They were selected as they had the highest number of lignin 

biosynthesis genes being down-regulated after the initial qPCR analysis of leaf tissue 

(Appendix G). The MYB expressing plants were run alongside nine randomly selected wild 

type and three GFP control plants. This was to assess the down-regulatory effect the 
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expression of the MYB genes may be having in young tissue and in more developed tissue. 

It also allowed comparison of MYB transgene expression levels in different tissues to assess 

if any transgene silencing was occurring. 

 

The majority of MYB31 and MYB42 (Figure 5.1) plants continued to express the MYB 

transgene in both young and maturing internode tissue, although the levels of expression 

for some plants, MYB31 UTR11 and MYB42 UTR16 for example, are very low. Of the plants 

that did not show detectable levels of MYB expression it appears that this was only in 

young tissue and MYB transgene expression was detectable in maturing tissue of the same 

plants. There also appeared to be a trend of increased MYB transgene expression in 

maturing tissue when compared with young tissue. No transgene expression was detected 

in any tissue of any control plant. After confirming the MYB transgene was still being 

expressed in each plant, expression levels of the lignin biosynthesis genes were quantified 

by qPCR from the same cDNA samples (Appendix G). A summary of the regulatory effects 

that each MYB construct had over the lignin biosynthesis pathway can be seen in Table 5.5. 

The lignin gene expression levels in MYB31 and MYB42 expressing plants analysed by 

enzymatic hydrolysis are presented (Figure 5.2) as a representative sample of the total 

number of plants analysed (Appendix G). 

 

The up- and down-regulatory trends discussed are overall impressions. Although it appears 

some genes are down-regulated by MYB31 and MYB42, these trends are not consistently 

supported by statistical analysis (Figure 5.2). For example, C3H appears to be down-

regulated by both MYB genes, but no statistical differences were found (Figure 5.2). This 

was considered to be due to the large variation in expression levels amongst the UKN 

control group. The overall trends suggest that ZmMYB31 down-regulated more genes than 

ZmMYB42 when constitutively expressed in sugarcane (Table 5.5, Figure 5.2, Appendix G). 

Plants expressing MYB31 had a down-regulatory pattern which is spread across genes that 

are both early and late in the lignin biosynthesis pathway (Figure 1.1), whereas MYB42 

expression appeared to down-regulate the early pathway genes more so than the later 

pathway genes (Table 5.5). In common, both MYB genes down-regulated C4H and C3H and 

showed an increase in CAD expression. Although not seen in MYB31 plants, MYB42 plants 

also showed increases in CCoAOMT, CCR and COMT expression. As well as down-regulating 

more genes of the lignin biosynthesis pathway overall, MYB31 also appeared to be more 

consistent in gene regulation across the three different tissue types when compared to 

MYB42. 
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FIGURE 5.1: ΔCt values showing standard error of the mean of (A) ZmMYB31 and (B) 

ZmMYB42 expression in the MYB transformed sugarcane plants after qPCR analysis of 

young and maturing internode tissues post-harvest. Each sample underwent qPCR in 

triplicate. Plants are listed in ascending total lignin content for each line. WT n = 9; GFP n = 

3; n = individually analysed plants. Statistics were not performed on this data as there was 

no MYB expression detected in controls.  
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TABLE 5.5: Summary of the general trends and regulatory effects1 of ZmMYB31 and 

ZmMYB42 over lignin biosynthesis gene expression levels after expression in Arabidopsis 

(Fornalé et al., 2010; Fornalé et al., 2006; Sonbol et al., 2009) and the current results in 

sugarcane2. 

Lignin 

gene 

Published 

ZmMYB31 
ZmMYB31 sugarcane 

Published 

ZmMYB42 
ZmMYB42 sugarcane 

  leaf y m  leaf y m 

PAL  ↓ - ↓ ↓ ↓ ↑ ~↓ 

C4H - ↓ ↓ ↓ ↓ ↓ ↓ ↓ 

C3H ↓ ↓ ↓ ↓ - ↓ ↓ ↓ 

4CL ↓ ↓ ↓ ~↓ ↓ ↑ ~↓ ~↓ 

HCT     ↓    

CCoAOMT - ↓ ~↓ ↓ - ~↓ ~↑ ~↑ 

F5H ↓ ~↓ ↓ ↓ ↓ ~↓ ~↓ ~↓ 

CAD ~↑ ↓ ~↑ ~↑ ↓ ↓ ↑ ↑ 

CCR  ↓ ↓ ~↓ - ~↓ ~↑ ~↑ 

COMT ↓ ↓ ↓ ~↓ ↓ ↓ ~↑ ~↓ 
 

1 Arrows represent influence on gene expression levels (up or down regulated) compared 

against wild type and GFP control plants. A dash represents no change in expression levels. 

A blank cell indicates transcription levels for that gene were not quantified or reported. y = 

young stem tissue, m = maturing stem tissue. ~ represents a slight but not obvious 

trend of increased/decreased expression.  

 
2 The findings provide an overall impression of the up or down-regulation of gene 

expression for each MYB gene. For each construct (when compared to controls) there are 

MYB transgenics with decreased expression, no change or increased expression for each 

lignin gene. The results for each individual plant can be seen in Appendix G. 
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FIGURE 5.2: ΔCt expression of lignin biosynthesis genes (showing standard error of the 

mean) in sugarcane expressing ZmMYB31 or ZmMYB42 normalised against GFP controls 

after qPCR analysis for PAL (A); C4H (B); and C3H (C). Leaf (blue), young (red) and maturing 

(green) refers to gene expression levels in leaf tissue, young internode tissue and maturing 

internode tissue respectively. MYB plants statistically different to GFP controls after a two-

tailed t-test assuming unequal variance, p = 0.05, are shown by a coloured asterisk 

respective to tissue type. WT n = 9; GFP n = 3; n = individually analysed plants.  
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FIGURE 5.2 (continued): ΔCt expression of lignin biosynthesis genes (showing standard 

error of the mean) in sugarcane expressing ZmMYB31 or ZmMYB42 normalised against GFP 

controls after qPCR analysis for 4CL (D); CCoAOMT (E); and F5H (F). Leaf (blue), young (red) 

and maturing (green) refers to gene expression levels in leaf tissue, young internode tissue 

and maturing internode tissue respectively. MYB plants statistically different to GFP 

controls after a two-tailed t-test assuming unequal variance, p = 0.05, are shown by a 

coloured asterisk respective to tissue type. WT n = 9; GFP n = 3; n = individually analysed 

plants.  
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FIGURE 5.2 (continued): ΔCt expression of lignin biosynthesis genes (showing standard 

error of the mean) in sugarcane expressing ZmMYB31 or ZmMYB42 normalised against GFP 

controls after qPCR analysis for CAD (G); CCR (H); and COMT (I). Leaf (blue), young (red) and 

maturing (green) refers to gene expression levels in leaf tissue, young internode tissue and 

maturing internode tissue respectively. MYB plants statistically different to GFP controls 

after a two-tailed t-test assuming unequal variance, p = 0.05, are shown by a coloured 

asterisk respective to tissue type. WT n = 9; GFP n = 3; n = individually analysed plants. 
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The lignin gene expression results for MYB31 aligned with the published results more 

closely than the MYB42 expression results (Table 5.5). 

 

5.2.4 Cell wall compositional analysis of MYB transgenic sugarcane 

 

Cell wall compositional analysis was performed on the same plants that underwent stem 

qPCR analysis (seven MYB plants per line and nine wild type and three GFP controls, Table 

5.4). This involved determination of acid soluble and acid insoluble lignin content as well as 

cellulose (glucose) and hemicellulose (xylose, galactose and arabinose) content. The 

percentage of lignin, cellulose and hemicellulose in the cell wall for MYB31 and MYB42 

plants are seen in Table 5.6 and Table 5.7, respectively. For each MYB line the plants are 

listed in ascending order based on total lignin content. For all components there were no 

significant differences seen between wild type and GFP controls. After analysis all mass 

balances were within 10% of starting material. 

 

5.2.4.1 Cell wall composition of MYB31 expressing sugarcane 

 

Of the MYB31 expressing sugarcane only MYB31 UTR 27 showed a significant decrease in 

total lignin content (Table 5.6). This same plant also had significantly decreased acid soluble 

lignin whilst having significantly increased glucose and xylose. Two other MYB31 UTR plants 

showed a significant decrease in acid insoluble lignin and a significant increase in xylose 

(Table 5.6). Of the MYB31 ORF plants, none showed significant decreases in total lignin or 

acid insoluble lignin, with only MYB31 ORF 2 showing a decrease in acid soluble lignin. 

Approximately half the MYB31 plants (ORF and UTR) had significantly increased xylose and 

galactose (Table 5.6). There were no plants with a significant decrease in any structural 

carbohydrates. Overall, MYB31 expression appeared to have little impact on lignin and 

glucose levels but increased the synthesis of structural hemicelluloses.  

 

5.2.4.2 Cell wall composition of MYB42 expressing sugarcane 

 

Three MYB42 ORF plants analysed (14, 16 and 23) showed a significant decrease in total 

lignin content which was the result of significant decreases in acid insoluble lignin, as there 

were no changes to acid soluble lignin in these three plants (Table 5.7). MYB42 ORF 21, 16 

and 11 were the only plants to show significant changes to acid soluble lignin, glucose and 

xylose respectively (Table 5.7). Three MYB42 UTR plants analysed (28, 6 and 32) also  
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TABLE 5.6: MYB31 sugarcane cell wall composition. The percentage of each component of the total composition is shown with the standard error of the 

mean. Samples significantly different to the GFP controls after a two-tailed t-test assuming unequal variance, p = 0.05, are shown in bold. WT n = 9; GFP n = 

3; n = individually analysed plants. Plants are listed in ascending total lignin content for each line.  

  Total lignin Acid insoluble lignin Acid soluble lignin Glucose Xylose Galactose Arabinose 

  % +/- % +/- % +/- % +/- % +/- % +/- % +/- 
Wild type n=9 23.61 0.24 18.18 0.26 5.44 0.07 46.95 0.34 20.30 0.28 0.33 0.16 1.94 0.11 

GFP n=3 23.37 0.39 17.92 0.38 5.45 0.10 47.17 0.45 20.23 0.28 0.10 0.08 1.69 0.22 

MYB31 ORF 13 21.74 0.15 16.49 0.09 5.25 0.18 48.77 0.33 20.27 0.17 0.00 0.00 1.49 0.06 
 11 22.23 0.15 16.60 0.17 5.64 0.11 45.45 0.41 22.05 0.15 1.24 0.02 2.95 0.03 
 2 22.50 0.04 17.61 0.09 4.89 0.07 47.79 0.30 20.83 0.13 1.05 0.02 2.21 0.04 
 7 23.07 0.30 17.61 0.22 5.45 0.12 46.74 0.61 22.11 0.17 0.00 0.00 2.24 0.06 
 1 23.08 0.29 17.86 0.24 5.22 0.14 45.08 0.18 23.14 0.18 0.98 0.01 2.24 0.03 
 8 23.88 0.40 18.47 0.40 5.41 0.04 46.01 0.82 21.34 0.37 1.24 0.05 2.71 0.07 
 9 24.97 0.47 19.72 0.40 5.25 0.11 46.88 0.56 20.88 0.39 1.07 0.05 2.28 0.03 

MYB31 UTR 27 21.03 0.19 16.29 0.14 4.74 0.05 51.76 0.51 24.27 0.23 0.00 0.00 2.19 0.05 
 2 21.18 0.18 15.63 0.12 5.55 0.12 45.63 0.41 22.03 0.32 1.33 0.02 3.02 0.05 
 18 21.48 0.19 15.57 0.18 5.91 0.08 47.40 0.36 22.11 0.26 1.28 0.00 2.71 0.06 
 11 22.25 0.07 17.10 0.09 5.16 0.14 46.05 0.14 22.44 0.08 1.06 0.05 2.58 0.03 
 12 22.40 0.16 17.01 0.04 5.39 0.15 47.12 0.31 20.56 0.14 0.00 0.00 2.06 0.02 

 7 22.79 0.11 17.13 0.06 5.66 0.15 45.38 0.17 20.15 0.15 0.32 0.26 1.92 0.05 

 20 22.86 0.07 17.47 0.05 5.40 0.12 47.60 0.15 21.38 0.13 0.00 0.00 1.84 0.08 
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TABLE 5.7: MYB42 sugarcane cell wall composition. The percentage of each component of the total composition is shown with the standard error of the 

mean. Samples significantly different to the GFP controls after a two-tailed t-test assuming unequal variance, p = 0.05, are shown in bold. WT n = 9; GFP n = 

3; n = individually analysed plants. Plants are listed in ascending total lignin content for each line. 

  Total lignin Acid insoluble lignin Acid soluble lignin Glucose Xylose Galactose Arabinose 

  % +/- % +/- % +/- % +/- % +/- % +/- % +/- 

Wild type n=9 23.61 0.24 18.18 0.26 5.44 0.07 46.95 0.34 20.30 0.28 0.33 0.16 1.94 0.11 

GFP n=3 23.37 0.39 17.92 0.38 5.45 0.10 47.17 0.45 20.23 0.28 0.10 0.08 1.69 0.22 

MYB42 ORF 14 18.51 0.13 12.84 0.07 5.67 0.20 49.24 0.14 21.28 0.22 1.08 0.02 2.63 0.04 

 16 20.86 0.05 15.25 0.01 5.61 0.04 49.62 0.38 20.81 0.08 0.32 0.26 2.14 0.03 
 23 21.58 0.22 15.85 0.25 5.73 0.06 47.86 0.18 19.60 0.34 0.30 0.24 2.17 0.05 
 11 22.05 0.09 16.94 0.12 5.11 0.07 47.92 0.38 22.67 0.24 0.98 0.02 2.08 0.02 
 18 22.38 0.10 16.76 0.09 5.62 0.01 48.69 0.55 19.90 0.09 0.00 0.00 1.96 0.02 
 21 22.47 0.14 17.74 0.07 4.73 0.15 48.85 1.12 21.82 0.38 0.00 0.00 1.21 0.08 

 26 22.99 0.09 17.68 0.01 5.30 0.10 46.61 0.33 21.61 0.22 1.10 0.06 2.50 0.06 

MYB42 UTR 28 19.42 0.29 13.78 0.34 5.64 0.05 50.55 0.13 21.78 0.48 0.63 0.26 2.60 0.04 

 6 20.21 0.03 14.40 0.06 5.81 0.08 46.41 0.16 23.28 0.14 1.15 0.04 3.03 0.01 

 32 20.91 0.24 15.46 0.14 5.45 0.14 47.83 0.29 21.53 0.11 0.28 0.23 1.96 0.05 
 30 21.51 0.30 15.29 0.19 6.21 0.20 49.12 0.28 23.94 0.23 1.21 0.02 2.63 0.03 

 15 22.57 0.10 16.73 0.08 5.84 0.06 47.10 0.31 21.59 0.22 0.00 0.00 1.72 0.07 

 26 23.48 0.11 18.36 0.07 5.12 0.08 47.41 0.45 23.58 0.28 0.00 0.00 1.67 0.03 

 16 24.15 0.21 18.98 0.14 5.17 0.08 47.06 0.31 20.89 0.18 0.00 0.00 1.41 0.04 
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showed a significant decrease in total lignin content as a result of significant decreases in 

acid insoluble lignin, as there were no changes to acid soluble lignin in these three plants 

(Table 5.7). Additionally, MYB42 UTR 30 also showed a decrease to acid insoluble lignin, but 

not to total lignin (Table 5.7). MYB42 UTR 28 was the only plant with increased glucose 

content, with three additional plants having increased xylose content (Table 5.7). There 

were MYB42 ORF and UTR plants with increases to galactose and arabinose content, 

though overall, the changes to structural carbohydrates were not specific to the plants with 

changes to lignin content. 

 

5.2.5 Enzymatic hydrolysis of MYB and control bagasse samples 

 

The three MYB plants with the largest decrease in lignin composition were selected to 

undergo enzymatic hydrolysis. Enzymatic hydrolysis was performed on three plants per 

MYB line, four wild type and three GFP transgenic control plants (Table 5.4). Hydrolysis was 

carried out for 72 hours with sampling at six different time points. A random selection of 

both MYB and control plants had non-pretreated bagasse hydrolysed alongside pretreated 

bagasse with both samples originating from the same stock. In all cases, pretreated samples 

showed a significant improvement in glucose released over untreated samples (Figure 5.3) 

which supported the effectiveness of the pretreatment method used. All figures and tables 

list MYB plants in ascending order of original total lignin content for each line. There were 

no significant differences in glucose release between the wild type and GFP control plants 

across the six time points.  

 

When compared to GFP controls, only two of the six MYB31 plants showed a significant 

increase in glucose release after 72 hours whereas all six MYB42 expressing plants released 

significantly more glucose than the GFP controls (Figure 5.4). It also appeared that the 

MYB42 plants outperformed the MYB31 plants as all the MYB42 plants released more 

glucose than four of the six MYB31 plants, and two MYB42 plants released significantly 

more glucose than all the MYB31 plants (Figure 5.4). No statistical differences between wild 

type and GFP controls were seen.  

 

The final amount of glucose released by each plant was also plotted against the 

compositional data from the pretreated and non-pretreated plants used for enzymatic 

hydrolysis. Strong correlations were not observed between glucose released after 72 hours 

of enzymatic hydrolysis and the amount of residual components (total lignin, acid insoluble  
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FIGURE 5.3: Total glucose concentration (mg/mL) in enzymatic hydrolysis solution per gram 

of untreated (UT) and pretreated (PT) bagasse (g bagasse) after 72 hours incubation 

showing standard error of the mean. The UT and PT results were compared for each plant 

individually using a two-tailed t-test assuming unequal variance, p = 0.05 with an asterisk 

indicating a statistical difference. 

 

 
 

FIGURE 5.4: Total glucose concentration (mg/mL) in enzymatic hydrolysis solution per gram 

of bagasse (g bagasse) after 72 hours incubation showing standard error of the mean. 

Different letters above bars (a-f) indicate significant differences after a one-way ANOVA 

with Tukey post-hoc analysis, p = 0.05. WT n = 3; GFP n = 3, n = individually analysed plants.  
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lignin, acid soluble lignin, total carbohydrates, glucose or xylose) remaining after the 

pretreatment of the bagasse samples (data not shown). When the glucose released after 72 

hours of enzymatic hydrolysis was plotted against the cell wall components for untreated 

bagasse samples negative correlations were observed for total lignin (R2 = -0.675) and acid 

insoluble lignin (R2 = -0.718) (Figure 5.5), but strong correlations were not observed for acid 

soluble lignin, total carbohydrates, glucose or xylose (data not shown). 

 

As previously described, the glucose concentration was measured at six time points over 

the 72 hour incubation period (Table 5.8). There was a trend for the plants that had 

significantly higher release of glucose at the 72 hour time point also having significantly 

higher glucose released at earlier time points. Significantly higher glucose released at 

earlier time points by the MYB sugarcane is indicative of these plants showing an increased 

rate of cellulose conversion to glucose (Figure 5.6 and Figure 5.7). Four MYB42 plants 

showed significantly higher rates of glucose conversion as early as the six hour time point 

and continued to release significantly more glucose at each of the later time points (Table 

5.8). The plants with significantly more glucose released after 72 hours all show signs of 

increased rate of glucose conversion by the 12 hour time point (Table 5.8). 

 

5.2.6 Cellulose crystallinity index of MYB bagasse 

 

The tissue requirements of pretreatment for enzymatic hydrolysis left enough bagasse only 

for six control plants and five MYB plants to undergo determination of cellulose crystallinity 

index (Appendix H). Statistical analysis was not performed as the limited number of samples 

would not provide reliable results. The ranges of crystallinity were 46.96% - 51.81% for 

control plants and 45.56% - 47.50% for MYB expressing plants (Appendix H). 

 

 5.2.7 Sucrose content of juice extracted from MYB plants and controls 

 

Plants that underwent enzymatic hydrolysis were also assessed for sucrose content of 

extracted juice (Table 5.4) to determine if changes in lignin content or structure had 

affected juice composition and quantity as carbon partitioned for cell wall synthesis may 

affect the flux of carbon directed to sucrose formation (Papini-Terzi et al., 2009). This is a 

key determinant of plant quality in the sugarcane industry. Overall only MYB31 UTR 2 

showed a significant decrease in sucrose content when compared against the GFP control 

plants (Figure 5.8). All other plants were consistent with controls (Figure 5.8). Glucose and  
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FIGURE 5.5: R2 values between total lignin (A); and acid insoluble lignin (B) of non-treated 

bagasse and glucose released into enzymatic hydrolysis solution (mg/mL) per gram (g) 

bagasse after 72 hours of enzymatic hydrolysis.  

A 
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TABLE 5.8: Glucose released into enzymatic hydrolysis solution (mg/mL) per gram (g) of bagasse measured at six time points over 72 hours. The glucose 

released is shown with standard error of the mean. Samples significantly different to the GFP control group after a two-tailed t-test assuming unequal 

variance, p = 0.05, are shown in bold. WT n = 3; GFP n = 3, n = individually analysed plants. 

  
0 hrs 6 hrs 12 hrs 24 hrs 48 hrs 72 hrs 

  
mg/mL +/- mg/mL +/- mg/mL +/- mg/mL +/- mg/mL +/- mg/mL +/- 

CONTROLS WT 0.92 0.05 26.17 0.40 32.89 0.86 39.77 0.55 43.55 0.76 46.02 1.70 

 
GFP 1.02 0.09 24.61 1.31 29.79 0.69 36.18 1.15 40.65 0.85 40.97 0.83 

MYB31 ORF 13 1.07 0.07 25.72 0.20 31.38 0.12 34.94 0.65 38.06 0.72 38.47 0.93 

 
11 1.09 0.00 26.39 0.22 31.51 0.21 37.63 1.04 36.99 0.31 39.76 0.29 

 
2 0.97 0.07 23.85 0.43 27.83 0.95 30.80 0.70 37.91 1.77 37.56 0.45 

MYB31 UTR 27 0.87 0.07 23.03 0.13 28.44 0.70 32.83 0.38 35.38 0.67 37.71 0.42 

 
2 1.07 0.11 29.84 0.26 38.52 0.62 43.01 0.85 48.86 0.82 50.96 0.13 

 
18 1.22 0.08 29.23 0.10 35.86 0.42 42.57 0.16 46.90 0.77 49.48 0.69 

MYB42 ORF 14 1.57 0.06 34.29 0.15 41.06 0.41 47.41 0.35 53.89 1.49 58.43 1.71 

 
16 1.38 0.02 34.80 0.10 43.31 0.36 47.79 0.22 51.92 0.89 53.58 0.46 

 
23 1.42 0.02 33.18 0.69 43.03 1.23 44.61 0.59 52.14 3.23 51.76 0.70 

MYB42 UTR 28 0.77 0.05 31.44 0.19 39.43 0.62 44.71 0.51 48.65 0.28 51.49 1.00 

 
6 1.15 0.02 33.01 0.55 42.89 0.45 49.95 1.70 54.11 0.90 57.53 1.70 

 
32 0.79 0.09 27.49 0.09 36.54 0.13 42.03 0.28 48.03 0.34 52.51 0.33 
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FIGURE 5.6: Total glucose concentration in enzymatic hydrolysis solution (mg/mL) per gram 

(g) of bagasse showing standard error of the mean measured at six time points over a 

period of 72 hours incubation for MYB31 ORF plants (A); and MYB31 UTR plants (B) using 

values from Table 5.8. WT n = 3; GFP n = 3, n = individually analysed plants. 
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FIGURE 5.7: Total glucose concentration in enzymatic hydrolysis solution (mg/mL) per gram 

(g) of bagasse showing standard error of the mean measured at six time points over a 

period of 72 hours incubation for MYB42 ORF plants (A); and MYB42 UTR plants (B) using 

values from Table 5.8. WT n = 3; GFP n = 3, n = individually analysed plants. 
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FIGURE 5.8: Sucrose content (%/fresh weight) of extracted juice of MYB sugarcane plants 

selected for enzymatic hydrolysis (showing standard error of the mean). An asterisk 

indicates a significant difference to GFP controls after a two-tailed t-test assuming unequal 

variance, p = 0.05. WT n = 4; GFP n = 3, n = individually analysed plants. 

 

 

fructose were assessed, but not detected using this method. MYB31 ORF 2 did not have 

sufficient tissue for juice analysis. 

 

5.2.8 Phenotypic measurements of MYB plants 

 

Phenotypic measurements were taken at the time of harvest. Plant height, number of 

internodes, internode diameter and average internode length were recorded and 

calculated (Appendix I). A z score was calculated based on the average results of the GFP 

transgenic control plants and any MYB plant with a z score greater than 2 or -2, indicating 

the result was more than two standard deviations from the control group result, were 

considered different to controls. Overall, there were very few MYB31 or MYB42 plants with 

different heights or total internode numbers. MYB31 ORF 7 was taller than controls and 

MYB42 UTR 30 was shorter, and MYB31 ORF 2 was the only plant with a different number 

of internodes (Appendix I). Approximately half of MYB31 ORF and UTR plants had smaller 

average internode diameters, and the majority of MYB31 plants had greater average length 
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of internodes (Appendix I). Of the MYB42 plants, two had increased internode diameters 

and four had decreased diameters. Similar results were seen for internode length as four 

MYB42 plants had increased internode length and two had decreased length (Appendix I). 

No differences were seen between wild type and GFP controls for height, total number of 

internodes or average internode diameter, however, wild type plants did have longer 

average internode length than GFP controls (Appendix I). 

 

 

5.3 DISCUSSION  

 

ZmMYB31 and ZmMYB42 were successfully cloned from germinated maize embryos and 

inserted in the genome of regenerated sugarcane plants (Table 5.4). There was 100% 

alignment of the amino acid sequences of the R2 and R3 domains, necessary for 

functionality, between the cloned MYB31 and MYB42 genes (Appendix F) and the published 

sequences (Fornalé et al., 2006). The R2R3 domains of MYB transcription factors bind to 

conserved AC elements within the promoters of lignin biosynthetic genes, allowing for 

regulation of gene expression levels (Fornalé et al., 2010; Lauvergeat et al., 2002; Patzlaff et 

al., 2003a; Patzlaff et al., 2003b). There were some differences in amino acid sequence 

within the C-terminal end of the translated MYB31 and MYB42 proteins and also in the 

nucleotide sequences of the 5' and 3' UTR sequences between cloned and published 

MYB31 sequences (Appendix F).  

 

These differences were considered to be due to varietal differences in corn used for cloning 

purposes and did not appear to negatively affect the expression of the MYB genes (Figure 

5.1) nor in turn their overall ability to down-regulate the expression of genes within the 

lignin biosynthesis pathway (Table 5.5; Figure 5.2; Appendix G). As the C-terminal region is 

responsible for the regulatory function of the translated protein (Bedon et al., 2007; Jiang 

et al., 2004; Legay et al., 2007; Tamagnone et al., 1998), it is possible that the amino acid 

differences may have had a more subtle influence on the functionality of the translated 

MYB proteins. This may have contributed to the differences seen in lignin biosynthesis gene 

down-regulation in this study and published studies (Table 5.5; Fornalé et al., 2010; Fornalé 

et al., 2006; Sonbol et al., 2009). Furthermore, very little transgene silencing was observed 

for MYB31 or MYB42 (Figure 5.1), which is a known occurrence in transgenic sugarcane 
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(Mudge et al., 2009). This may be in part due to the functionality of the maize Ubiquitin 

promoter in transgenic sugarcane (Mudge et al., 2009; Osabe et al., 2009).  

 

As described, the ORFs of MYB31 and MYB42 were cloned with and without adjacent 

sections of the 5' and 3' UTR. Evidence exists that the inclusion of UTR sequences can 

improve gene expression (Hughes, 2006; Mignone et al., 2002; Pesole et al., 2001; Sharma 

and Sharma, 2009; Wilkie et al., 2003), and it was found that the constructs containing UTR 

sequences for both MYB31 and MYB42 had more PCR and qPCR positive plants than their 

ORF counterpart (Table 5.4); however, these differences in plant numbers were only slight. 

Retaining or omitting the UTR sequences did not appear to affect the level of down-

regulation of lignin biosynthesis genes (Appendix G), deposition of cell wall components 

(Table 5.6 and Table 5.7), juice sucrose levels (Figure 5.8), or plant phenotype (Appendix I) 

in plants expressing MYB31 or MYB42. As the combination of ZmUbi-iUbi promoter 

sequences results in high transgene expression in monocot species (Christensen and Quail, 

1996), it is possible that any impact the UTR sequences may have had was masked. The 

utilisation of alternative promoter sequences with varying strength for transgene 

expression may highlight subtle differences between constructs that have the UTR 

sequences retained and omitted.  

 

All MYB42 ORF and MYB42 UTR plants analysed released significantly more glucose, 

indicating the UTR sequences did not contribute any additional benefits to the enzymatic 

hydrolysis of bagasse (Table 5.8). Including the UTR sequences did result in an increase in 

MYB31 expressing plants which released significantly more glucose after enzymatic 

hydrolysis. Of the three MYB31 ORF plants analysed, none released significantly more 

glucose whereas two of the three MYB31 UTR plants analysed did (Table 5.8). The increase 

in glucose released by MYB31 UTR plants over MYB31 ORF plants suggests that it may be 

beneficial to include these sequences when transforming sugarcane for second generation 

bioethanol production. If this avenue of research were pursued, it would also be optimal to 

clone the UTR sequences in their entirety to confirm if their addition has any obvious 

benefits. It is also possible that the UTR sequences affected the translation levels of the 

MYB genes, which could be determined if additional research also included measuring 

protein content.  

 

Both MYB31 and MYB42 have previously been found to down-regulate multiple genes 

within the lignin biosynthesis pathway (Fornalé et al., 2010; Fornalé et al., 2006; Sonbol et 
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al., 2009), and this down-regulatory control was also observed in this study. When 

compared with published data, the current results for MYB31 match more closely than for 

MYB42 (Table 5.5; Fornalé et al., 2010; Fornalé et al., 2006; Sonbol et al., 2009). MYB31 

appears to down-regulate all genes analysed except CAD whereas MYB42’s regulatory 

effects are more subtle and while approximately half of the genes analysed appear to be 

down-regulated, interestingly, half appear to be up-regulated (Table 5.5). The genes down-

regulated by MYB42 generally appear earlier in the biosynthesis pathway and the genes up-

regulated function later in the pathway. Previous research has found different MYB genes 

target different genes within the lignin biosynthesis pathway with a general consensus that 

at least one gene early in the biosynthesis pathway is targeted (Table 2.2; Fornalé et al., 

2006; Jin et al., 2000; Omer et al., 2013; Shen et al., 2012; Tamagnone et al., 1998; Zhu et 

al., 2013). The current results for MYB31 and MYB42 fit within this general pattern. The 

down-regulatory effects of MYB31 also appear more consistent across the three tissue 

types analysed than MYB42 (Table 5.5). These results suggested that MYB31 would reduce 

lignin content in sugarcane to a greater extent than MYB42. There was no correlation 

between the expression levels of MYB31 (Figure 5.1) and MYB42 (Figure 5.1) with the 

degree of down-regulation (Appendix G) as higher levels of MYB expression did not 

necessarily lead to greater reductions in lignin biosynthesis gene expression levels. 

 

Once it was determined that both MYB genes were exerting down-regulatory control over 

the lignin biosynthesis gene pathway the next step was to determine if this translated into a 

reduction of lignin in the composition of the secondary cell wall. Previous research shows a 

strong correlation between reduction of lignin gene expression by MYB genes and 

reduction in lignin content (Table 2.2; Fornalé et al., 2010; Omer et al., 2013; Shen et al., 

2012; Sonbol et al., 2009; Zhu et al., 2013). 

 

 Of the 14 MYB31 expressing sugarcane analysed (Table 5.6) only MYB31 UTR 27 had a 

significant decrease in total lignin by 10%. Within this line, MYB31 UTR 2 and MYB31 UTR 

18 had 13% reductions in acid insoluble lignin but not total lignin. This is far from the 8-fold 

(Fornalé et al., 2006) and 70% (Fornalé et al., 2010) decreases in lignin content previously 

reported in Arabidopsis after the transgenic expression of MYB31. This difference may be 

due the expression of this transcription factor in different plant species using different 

promoters and terminators. Alternatively, as discussed in Section 4.3.3, sugarcane has a 

large and complex polyploid genome (Grivet and Arruda, 2001) which increases the 

likelyhood of gene homologues, including of lignin biosynthesis pathway genes. If by chance 
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MYB31 was only able to down-regulate a number of these potential homologues, the 

decreased expression may have been compensated for by unregulated homologues, 

therefore reducing the overall effect of MYB31 expression on lignin biosynthesis. Although 

MYB31 plants showed down-regulated expression of many lignin biosynthesis genes (Figure 

5.2, Appendix G), it was not known if qPCR primers were amplifying all potential lignin gene 

homologues (Section 4.3.3), therefore a possibility exists that the compensatory expression 

of unregulated homologues went undetected. Approximately half of the MYB31 expressing 

sugarcane plants (ORF and UTR) had significantly increased xylose and galactose (Table 5.6) 

whereas Fornalé et al. (2010) reported no changes in the structural carbohydrate 

composition of lignin reduced Arabidopsis. Within sugarcane, MYB31 expression appears to 

have little impact on lignin and glucose levels but increases the synthesis of hemicelluloses. 

 

Six sugarcane plants expressing MYB42 (three ORF plants and three UTR plants) showed a 

significant decrease in total lignin content between 8% – 21% (Table 5.7) whereas previous 

research found Arabidopsis plants expressing MYB42 had greater reductions in lignin 

content of 2.1 fold (Fornalé et al., 2006) and by 60% (Sonbol et al., 2009). Two sugarcane 

plants had significant increases in glucose content whereas no changes in cellulose content 

were found in MYB42 expressing Arabidopsis (Sonbol et al., 2009). Hemicelluloses were 

increased in Arabidopsis (Sonbol et al., 2009) as they were in several MYB42 expressing 

sugarcane plants (Table 5.7). These changes in carbohydrate content did not correlate with 

changes to lignin content within the MYB42 sugarcane (Table 5.7).  

 

The cell wall compositional analysis was unexpected after the expression data of the lignin 

biosynthesis pathway was examined. This data strongly suggested that the MYB31 

expressing lines would show greater reductions in lignin content than the MYB42 lines 

based on the number of lignin biosynthesis pathway genes down-regulated (Table 5.5; 

Appendix G). This hypothesis is also supported by previous research which found MYB31 

expressing Arabidopsis had less lignin than their MYB42 counterparts (Fornalé et al., 2010; 

Fornalé et al., 2006). The current results do not support this hypothesis as only one MYB31 

expressing plant had a reduction in lignin of 10% whereas six MYB42 expressing plants had 

lignin reductions of 8%-21%. These results suggest that within sugarcane, MYB42 affects 

the deposition rates of lignin whereas MYB31 increases the hemicellulose content within 

secondary cell walls but has little effect on lignin production.  
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The findings also suggest that transcription levels may not necessarily reflect translation 

levels of lignin biosynthesis genes. Additionally, the rates of protein turnover by the 

translated lignin biosynthesis enzymes in the MYB31 and MYB42 expressing plants are 

unknown. It is possible that the genes with higher expression levels in young internode 

tissue (Table 5.5, Appendix G) have gene products that may persist in maturing tissue, 

allowing for continued lignin biosynthesis without the need for continued high expression 

of the lignin biosynthesis gene. Although the genes of the lignin biosynthesis pathway have 

been well characterised (Section 1.3), a full understanding of metabolic flux through the 

pathway remains to be established, making it difficult to predict the outcomes of modifying 

the expression levels of lignin biosynthesis pathway genes. Assaying the enzyme activity of 

translated lignin biosynthesis genes, or the concentration of enzyme product throughout 

the stem, would provide a clearer picture of the down-regulatory effects of MYB expression 

over these genes, but was beyond the scope of the current study.  

 

Reduced lignin content in sugarcane has previously led to improved saccharification 

(Benjamin et al., 2013; Benjamin et al., 2014; Jung et al., 2012; Jung et al., 2013; Masarin et 

al., 2011) as has the expression of MYB31 and MYB42 in Arabidopsis (Fornalé et al., 2010; 

Sonbol et al., 2009). The expression of PvMYB4 in transgenic switchgrass is the only report 

of a monocot species having improved saccharification resulting from the expression of a 

MYB gene (Shen et al., 2012; Shen et al., 2013). This is the first report of MYB31 and MYB42 

being expressed in a monocot species, and the first report of MYB transcription factors 

being expressed in sugarcane to alter lignin biosynthesis for improved biofuel production. 

In this study the three plants with the least amount of total lignin from each line were 

assessed for enzymatic hydrolysis performance against controls over a period of 72 hours.  

 

When the final glucose released after 72 hours of enzymatic hydrolysis is compared (Figure 

5.4) it is clear that the MYB42 lines performed better than the MYB31 lines and the controls. 

All six MYB42 plants hydrolysed released significantly more glucose than the transgenic 

controls after 72 hours (Figure 5.4). These plants also had a faster rate of glucose 

conversion than controls (Figure 5.7). The composition analysis found all six of these plants 

had significant reductions in total lignin as a result of reductions in acid insoluble lignin 

(Table 5.7). In contrast to these results, no MYB31 ORF plants and two MYB31 UTR plants 

had higher levels of glucose released than controls.  
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It has been observed that GFP expression can influence the expression of endogenous 

genes in transgenic plants (pers. comm. M. Bateson) and therefore the genes involved in 

the synthesis and deposition of cell wall components could potentially have been affected 

in the GFP controls plants. It was decided to compare MYB plants to transgenic control 

plants, as unlike wild type plants, they have undergone the same regeneration stresses and 

conditions as MYB transgenic plants. Therefore differences detected in MYB plants when 

compared with transgenic controls can be attributed to MYB expression and not the 

process of generating transgenic plants. Future research may include an additional control 

line expressing only the ZmUbi-nptII-nos cassette (Section 5.1.2.1) to remove any influence 

the expression of GFP may have. If MYB plants were compared against wild type controls 

instead, then this would have yielded a different set of results. For example, if the glucose 

released after 72 hours of enzymatic hydrolysis by MYB and wild type plants are compared, 

the number of MYB plants that released significantly more glucose is reduced (Figure 5.4). 

All three MYB31 ORF plants and MYB31 UTR 27 released significantly less glucose than wild 

types, and MYB31 UTR 2 and 18 were comparable to wild types (they released higher levels 

of glucose than GFP controls) (Figure 5.4). MYB42 ORF 14 and 16, and MYB42 UTR 6 and 32 

released significantly more glucose than wild type controls. While the total number of MYB 

plants that released significantly higher levels of glucose is reduced when comparing 

against wild type controls, the trend of MYB42 plants performing better than MYB31 plants 

is still clear (Figure 5.4). 

 

The MYB31 ORF results are not surprising as no MYB31 ORF plants had reductions in lignin 

(Table 5.6). Interestingly MYB31 UTR27 had significantly less total lignin but did not release 

significantly more glucose whereas MYB31 UTR 2 and MYB31 UTR 18 did not have 

significantly less total lignin but did release significantly more glucose (Table 5.6, Figure 5.4), 

which is likely due to the significant reductions in acid insoluble lignin in these two plants 

(Table 5.6). The rate of glucose conversion in the MYB31 plants reflects the results at 72 

hours, with only MYB31 UTR 2 and MYB31 UTR 18 outperforming the transgenic controls 

(Figure 5.6). Similar to the enzymatically hydrolysed MYB42 plants (Table 5.8), MYB31 UTR 

2 and MYB31 UTR 18 did have significantly less acid insoluble lignin (Table 5.6). The finding 

that all plants (MYB31 and MYB42) with significant reductions in acid insoluble lignin 

content performed significantly better than transgenic controls after enzymatic hydrolysis 

suggests that it may be this cell wall component, and not total lignin or acid soluble lignin 

content that is an influencing factor on enzymatic hydrolysis performance. Decreases in 

acid insoluble lignin has also been reported alongside improvements in saccharification in 
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switchgrass (Xu et al., 2011), maize (Fornalé et al., 2012) and Arabidopsis (Fornalé et al., 

2010; Sonbol et al., 2009). 

  

Previous research with MYB31 and MYB42 found that the expression of MYB42 in 

Arabidopsis improved enzymatic hydrolysis by 68% (Sonbol et al., 2009) compared with an 

increase of 14% after the expression of MYB31 (Fornalé et al., 2010). The current results 

found that MYB42 lines outperformed MYB31 lines which support the previous findings. A 

direct comparison of current and published results is not possible as the published papers 

used a different enzyme cocktail mix for hydrolysis and did not report the FPU or protein 

levels as well as not reporting all the conditions used during hydrolysis. 

 

Due to limited bagasse available for enzymatic hydrolysis analysis, the enzymatic hydrolysis 

section of this study utilised one pretreatment condition (1% (w/w) sulfuric acid) and 

subsequently a single digestive enzyme cocktail mix at one concentration (6 FPU 

Accellerase 1500 with the addition of β-glucosidase) as described in Section 3.7.3. Of the 

different pretreatments available, acid pretreatment was selected as this would not change 

the lignin content of bagasse as it disrupts the hemicellulose content of lignocellulosic 

biomass and exposes the cellulose to hydrolytic enzymes (Schell et al., 2003; Silverstein et 

al., 2007), thus better elucidating any digestive differences between bagasse samples with 

differences in lignin content. Accellerase 1500 was selected as it was available in the CTCB 

laboratories, and had previously been used to successfully hydrolyse bagasse (pers. comm. 

Z. Zhang). A low FPU concentration was used to again better elucidate any differences in 

bagasse digestibility. It would be expected that the use of different pretreatment conditions 

combined with varying cocktail mixes and concentrations would produce different results, 

which is an aspect future research may explore through the use of larger sample numbers, 

thus increasing the amount of available bagase. For example, if an alkaline pretreatment 

was used, which removes lignin as opposed to hemicellulose (Silverstein et al., 2007), it 

would be expected that transgenics and wild types would release similar amounts of 

glucose as the glucose contents between controls and transgenics do not overly differ 

(Table 5.6 and Table 5.7). Additionally, if an increased concentration of Accellerase 1500 

was used, it would be expected that total glucose yields would be higher, but the rates of 

glucose conversion would still remain similar to those found in the current research (Figure 

5.6 and Figure 5.7). 
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For transgenic sugarcane expressing MYB genes to be beneficial to and accepted by the 

global sugarcane industry it is important that any change to cell wall composition is not 

detrimental to the phenotype of the sugarcane nor to the juice sucrose levels which is the 

cornerstone of the sugarcane industry. Overall, the majority of phenotypic differences were 

in internode diameter and length for both MYB31 and MYB42 plants, with few differences 

seen in plant height or total number of internodes (Appendix I). The differences in 

phenotypic measurements were spread throughout the MYB plants which underwent 

compositional analysis (Table 5.6 and Table 5.7) and were no more or less prevalent in the 

plants with significantly reduced lignin contents or altered polysaccharide contents 

(Appendix I). Previous research has reported decreased growth rates and dwarfed 

phenotypes after MYB directed lignin reductions in poplar and Arabidopsis (Legay et al., 

2010), tobacco (Omer et al., 2013; Shen et al., 2012; Tamagnone et al., 1998) and 

switchgrass (Shen et al., 2012; Shen et al., 2013). Reduced height was also observed in 

Arabidopsis expressing ZmMYB31 and ZmMYB42 (Fornalé et al., 2010; Fornalé et al., 2006; 

Sonbol et al., 2009). These findings are not supported overall by the current findings as no 

MYB plant with significant reductions in lignin (Table 5.6 and Table 5.7) showed a difference 

in plant height (Appendix I).  

 

The MYB31 (Fornalé et al., 2010) and MYB42 (Sonbol et al., 2009) expressing Arabidopsis 

with reduced height had severe lignin reductions of up to 70% and 60% respectively. 

Vanholme et al. (2010) suggested that more modest lignin reductions may not result in 

these detrimental phenotypes which may help explain the current findings. Of the six 

MYB31 plants that underwent enzymatic hydrolysis (Table 5.8) only one plant had a 

decrease in total lignin and two plants in acid insoluble lignin of 10% and 13% respectively 

(Table 5.6). This is better highlighed by the MYB42 plants in this study. All the MYB42 plants 

analysed via enzymatic hydrolysis (Table 5.8) had significant reductions in lignin content 

(Table 5.7) but were not different in height to controls (Appendix I). As the greatest lignin 

reduction of the MYB42 plants was 21% in MYB42 ORF 14, these reductions in lignin 

content are modest when compared with the 60% - 70% previously reported (Fornalé et al., 

2010; Sonbol et al., 2009) and may help explain why the MYB31 and MYB42 lignin reduced 

plants in this research did not show any height differences. Some of these lignin reduced 

plants did show differences in average internode diameter and length which may be 

attributed to the changes in cell wall composition. 
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5.3.1 Concluding remarks 

 

Transcription factors are increasingly gaining research attention due to their wide-ranging 

regulatory effects and they are predicted to play a key role in the future of GM crops 

(Ambawat et al., 2013; Century et al., 2008). This prediction is supported by the positive 

finding that MYB31 and MYB42 expression can improve the saccharification potential of 

Arabidopsis, a model dicot plant species, and is further supported by current findings. The 

research presented in this thesis is the first known report of MYB31 and MYB42 being 

expressed in sugarcane, a commercially relevant monocot species important to the 

Australian economy. Previous research found MYB31 and MYB42 were able to reduce lignin 

deposition and subsequently increase saccharification in transgenic Arabidopsis through 

the down-regulation of genes within the lignin biosynthesis pathway (Fornalé et al., 2010; 

Sonbol et al., 2009,) and these findings were replicated in the current study. Although there 

are no published reports of MYB31 or MYB42 being expressed in a monocot species, it was 

hypothesised that similar results would be achievable in sugarcane as the MYB genes are 

cloned from maize, which is genetically closely related to sugarcane (Selman-Housein et al., 

1999). Improved saccharification of lignin reduced switchgrass expressing PvMYB4 (Shen et 

al., 2012; Shen et al., 2013) also provided support for the replication of this result in 

sugarcane expressing MYB31 and MYB42. Within the MYB subgroup G4, MYB genes with 

down-regulatory control over lignin biosynthesis (Du et al., 2012a; Fornalé et al., 2010), 

PvMYB4 is most closely related to ZmMYB31 and ZmMYB42 (Shen et al., 2012; Shen et al., 

2013). Additionally, both MYB31 and MYB42 have previously been shown to suppress the 

maize COMT gene promoter (Fornalé et al., 2006), a gene within the lignin biosynthesis 

pathway.  

 

Effects on gene expression within the lignin biosynthesis pathway of MYB42 expressing 

plants was limited and unexpectedly led to sugarcane plants with greater reductions in 

lignin than any plant within the MYB31 expressing lines. Although the expression levels of 

the lignin biosynthesis genes suggest otherwise, it may be that MYB42 expressing plants 

have lower enzyme activity levels of lignin biosynthesis genes than MYB31 expressing 

plants, hence having lower levels of lignin deposition. Determination of enzyme activity 

levels of the lignin biosynthesis pathway genes may provide a better understanding of the 

effects of MYB31 and MYB42 on translation levels. Additionally, the inclusion of additional 

stem regions in qPCR analysis would provide a more detailed analysis of lignin gene 
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expression levels as the two stem internodes analysed (internodes 1 and 7) may not be 

representitive of the effects of MYB31 and MYB42 expression.  

 

Other limitations include that only one plant for each transgenic event was analysed. While 

multiplying and analysing multiple clones of each transgenic event would provide more 

robust data, glasshouse space and time were limited. The current research did provide an 

overall impression on the functionality of MYB31 and MYB42 in sugarcane which was the 

general aim of this research project. Further research involving the expression of MYB31 

and MYB42 in sugarcane would require analysing an increased number of plants to confirm 

the findings of this study, and field trials to confirm no negative effects on growth or 

sucrose production outside of glasshouse conditions, as well as the stability of MYB gene 

expression in transgenic sugarcane. 

 

Although MYB31 seemed promising as a means to reduce lignin content as it was able to 

down-regulate many genes within the lignin biosynthesis pathway, the results found that 

this down-regulation did not carry over to cell wall synthesis with only a limited number of 

MYB31 sugarcane having reductions in lignin content. In turn this led to a limited number of 

MYB31 plants having improved saccharification. Alternatively, MYB42 expression in 

sugarcane better met the aims of this research with six MYB42 plants analysed having 

decreased lignin content, which led to increased glucose release by enzymatic hydrolysis 

with no reduction to juice sucrose levels and minimal phenotypic effects. This research 

highlights MYB42 as a transcription factor of interest for improving the production of 

second generation bioethanol from sugarcane bagasse. 
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Chapter 6 
 

RNAi targeting of sugarcane lignin 
biosynthesis genes 

 
 

 

The down-regulation of genes within the lignin biosynthesis pathway has been shown to be 

an effective way of reducing lignin content and improving the digestibility of plants for 

biofuel production (Hisano et al., 2009; Li et al., 2008). Targeting multiple genes within the 

pathway, for example by the expression of transcription factors, could potentially lead to 

indiscriminate down-regulation of multiple genes within this pathway (Table 2.2). While this 

may reduce lignin content, targeting specific genes for down-regulation may have a more 

controlled effect with additional benefits. For example, there are genes within the later 

stages of the lignin biosynthesis pathway with roles in the synthesis of specific monomers 

(Figure 1.1). By down-regulating these genes it may be possible to specifically alter the 

synthesis of specific lignin monomers, namely G and S (Figure 1.1). Reducing the ratio of 

these monomers may reduce the number of different bond types thus simplifying the 

deposited lignin polymer and potentially increase the release of fermentable sugars during 

enzymatic hydrolysis (Buanafina, 2009; Grabber, 2005; Li et al., 2008). Published research 

has found correlations between reduced S monomers and increased saccharification 

(Baxter et al., 2014; Chen and Dixon, 2007; Fornalé et al., 2012; Fu et al., 2011a; Fu et al., 

2011b; Jung et al., 2012; Jung et al., 2013; Sonbol et al., 2009) which supports the 

purposeful alteration of the lignin monomer ratio. 

 

This research focused on the RNAi targeting and down-regulation of caffeoyl CoA 3-O-

methyltransferase (CCoAOMT), ferulate 5-hydroxylase (F5H) and caffeic acid 3-O-

methyltransferase (COMT) as their positions in the lignin biosynthesis pathway would 

potentially reduce the G and S monomers available for lignin polymer formation (Figure 

1.1). As they are positioned later in the biosynthesis pathway this may help reduce the 

chance of detrimental phenotypes (Chen and Dixon, 2007; Reddy et al., 2005) which can 

occur when genes early in the pathway are down-regulated (Baucher et al., 2003; Besseau 

et al., 2007; Coleman et al., 2008; Wagner et al., 2007). RNAi has previously been shown as 

an effective method of gene down-regulation in sugarcane (Osabe et al., 2009), including 
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the down-regulation of COMT, one of the genes focused upon in this current research (Jung 

et al., 2012; Jung et al., 2013).  

 

CCoAOMT is a key enzyme in the synthesis of G and S monomers (Figure 1.1) (Barrière et al., 

2004). CCoAOMT has previously been down-regulated by 5% - 22% after RNAi expression in 

alfalfa (Chen and Dixon, 2007; Chen et al., 2006), Pinus radiata (Wagner et al., 2011) and 

maize (Li et al., 2013). In all reports there was a decrease in G monomers in the lignin 

polymer. Sense and antisense suppression of CCoAOMT expression has produced similar 

results in alfalfa (Guo et al., 2001a; Marita et al., 2003; Nakashima et al., 2008), flax (Day et 

al., 2009), poplar (Meyermans et al., 2000; Zhong et al., 2000) and tobacco (Pinҫon et al., 

2001; Zhao et al., 2002). Reduced CCoAOMT expression increased the efficiency of 

enzymatic hydrolysis in alfalfa (Chen and Dixon, 2007) and Arabidopsis (Van Acker et al., 

2013), as well as improving rumen digestibility of alfalfa (Guo et al., 2001a; Guo et al., 

2001b; Marita et al., 2003). CCoAOMT may also be involved in the production of ferulate 

residues which aid in cross-linking cell wall components contributing to structural stability 

and therefore the recalcitrant nature of cell walls to enzymatic hydrolysis (Barrière et al., 

2004; Grabber, 2005). A reduction in CCoAOMT activity may in turn reduce the production 

of ferulates, resulting in reduced cross-linkages in the cell wall, increased susceptibility of 

the cell wall to enzymatic degradation, and improved saccharification (Buanafina, 2009; 

Grabber, 2005; Li et al., 2008).  

 

F5H performs a necessary step in the production of the S lignin monomer (Figure 1.1) 

(Weng and Chapple, 2010). A decrease or increase in F5H expression has been found to 

reduce or increase, respectively, the S monomer presence accordingly in alfalfa (Chen and 

Dixon, 2007; Chen et al., 2006; Nakashima et al., 2008; Reddy et al., 2005), poplar (Stewart 

et al., 2009) and Arabidopsis (Van Acker et al., 2013). A decrease in F5H expression did not 

reduce lignin content in alfalfa (Chen and Dixon, 2007; Chen et al., 2006; Nakashima et al., 

2008; Reddy et al., 2005) or Arabidopsis (Van Acker et al., 2013). These findings suggests 

that the down-regulation of F5H may simplify the lignin polymer by reducing S monomers 

which may improve the effectiveness of enzymatic hydrolysis without reducing lignin 

content, potentially avoiding detrimental phenotypes which can result from reductions in 

lignin content.  

 

Alongside F5H, COMT is the other key gene in the production of S lignin monomers (Figure 

1.1) (Bonawitz and Chapple, 2010; Weng and Chapple, 2010). The RNAi approach has been 
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used to down-regulate COMT expression in canola (Bhinu et al., 2009), alfalfa (Chen and 

Dixon, 2007; Chen et al., 2006), switchgrass (Baxter et al., 2014; Fu et al., 2011a; Samuel et 

al., 2014) and sugarcane (Jung et al., 2012; Jung et al., 2013). A decrease in S monomers as 

well as an overall decrease in total lignin content was reported in all studies. Similar results 

have been found after sense or antisense down-regulation of COMT in alfalfa (Guo et al., 

2001a; Guo et al., 2001b; Marita et al., 2003; Nakashima et al., 2008), poplar (Jouanin et al., 

2000), tobacco (Pinҫon et al., 2001; Zhao et al., 2002) and maize (He et al., 2003; Piquemal 

et al., 2002). Down-regulation of COMT expression improved enzymatic hydrolysis in alfalfa 

(Chen and Dixon, 2007), Arabidopsis (Van Acker et al., 2013), switchgrass (Baxter et al., 

2014; Fu et al., 2011a) and sugarcane (Jung et al., 2012; Jung et al., 2013) as well as 

increasing rumen digestibility of alfalfa (Guo et al., 2001b), maize (He et al., 2003; Piquemal 

et al., 2002) and tall fescue (Chen et al., 2004). 

 

There are currently no published reports of enzymatic hydrolysis being performed on a 

monocot species reduced in CCoAOMT or F5H expression. This research will provide insight 

into this area. If the down-regulation of CCoAOMT or F5H expression improves the yield of 

fermentable monosaccharides from sugarcane bagasse then this opens new opportunities 

for the sugarcane industry to diversify income sources by increasing the value of bagasse. 

The finding that RNAi reduction of COMT expression in sugarcane improves saccharification 

(Jung et al., 2012; Jung et al., 2013) is strong support that the current research will find a 

similar result in an important Australian commercial cultivar. The production of second 

generation bioethanol from this currently underutilised source of lignocellulosic sugars will 

also have long-term environmental and economic benefits. This research consisted of 

specific aims to determine if the down-regulation of these genes can improve 

saccharification of bagasse: 

 

1) Clone sequences of CCoAOMT, F5H and COMT genes from sugarcane and construct 

RNAi plasmids for the transformation and regeneration of RNAi expressing 

sugarcane plants  

2) Assess the expression levels of CCoAOMT, F5H and COMT to determine if the 

expression of these genes is reduced in their respective transgenic lines 

3) Quantify secondary cell wall components (lignin, cellulose and hemicellulose) in 

sugarcane plants showing down-regulation of their RNAi-targeted gene 

4) Perform enzymatic hydrolysis on plants with reduced lignin contents to determine 

if this increases the release of fermentable glucose monomers 
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5) Determine if the RNAi down-regulation of CCoAOMT, F5H or COMT affects juice 

sucrose levels and therefore the production of edible sugar from these plants. 

 

 

6.1 SPECIFIC METHODS  

 

6.1.1 Generation of RNAi constructs targeting CCoAOMT, F5H and COMT  

 

6.1.1.1 Identification of sugarcane CCoAOMT, F5H and COMT coding sequences 

 

Caffeoyl CoA 3-O-methyltransferase (CCoAOMT) and ferulate 5-hydroxylase (F5H) 

sugarcane sequences were not available as GenBank entries. Consensus sequences were 

developed by using available maize accessions and BLAST searching the sugarcane EST 

database for sequences with very high homology. These sugarcane EST sequences were 

aligned to create consensus sugarcane coding sequences for CCoAOMT and F5H of 774 and 

888bp in length respectively. A GenBank search identified a sugarcane caffeic acid 3-O-

methyltransferase (COMT) sequence with its 1089bp coding region annotated. These 

sequences are seen in Appendix B.  

 

6.1.1.2 PCR amplification of sugarcane lignin biosynthetic gene fragments 

 

Primers were designed to amplify a sequence of approximately 400bp from CCoAOMT, F5H 

and COMT for use as the RNAi target sequence. Each forward primer included a SmaI site at 

the 5' end for use in subsequent cloning steps (Table 6.1). The PCR reactions utilised Kapa 

HiFi DNA polymerase (Kapa Biosystems, MA, USA) for product amplification. CCoAOMT and 

COMT fragments were amplified from a cDNA template and the F5H fragment was 

amplified from genomic DNA. The gDNA and cDNA templates both originated from the 

KQ228 sugarcane cultivar. The sequence amplified for each gene is underlined in Appendix 

B. The PCR products were ligated into pGEM-T Easy (Promega, WI, USA) and colonies 

determined to contain each required amplicon were sequenced (BigDye Terminator 3.1, 

Life Technologies, CA, USA).  
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TABLE 6.1: Primers used for PCR fragment amplification of sugarcane CCoAOMT, F5H and 

COMT gene sequences for RNAi vector construction. Primers introduce a SmaI restriction 

site at 5' end of PCR fragment (underlined). Sequences amplified are underlined in 

Appendix B. 

Amplicon Forward (5'-3') Reverse (5'-3') Size 
(bp) 

CCoAOMT CCCGGGGACCTCTACCAGTACATCCTGGAC CGTCCACGAAGACGAAGTCGAAC 415 

F5H CCCGGGCTCAAGTGCGTCATCAAGGAGAC AAGATGTCGCCCATGTCCAGCTC 401 

COMT CCCGGGCACGGACCCGCGCTTCAACCGC CAGCACGCACTCGACGACGATC 406 

 

 

6.1.1.3 Generation of RNAi constructs 

 

The pGEM-T Easy plasmids with sense fragments were digested with SpeI and PstI to 

linearise the plasmid downstream of the 3' end of the insert. Antisense fragments were 

digested out of the pGEM-T Easy backbone with SphI and PstI. A synthetic intron (syntron; 

pers.comm. B. Dugdale, Appendix J) was isolated from a pGEM-T Easy plasmid (previously 

generated, pers. comm. B. Williams) with SpeI and SphI. Using a functional intron, such as 

the syntron, as a spacer can increase the silencing effects of RNAi constructs (Wesley et al., 

2004). Previous research incorporating the syntron into transgene constructs has found an 

enhancement of transgene expression and efficient intron splicing (pers. comm. B. Dugdale) 

and was thus considered suitable as an RNAi spacer sequence. 

 

A tri-ligation of the three fragments using T4 DNA ligase (Roche, Basel, CHE) resulted in a 

sense-syntron-antisense cassette flanked by SmaI sites in pGEM-T Easy. Integrity of this 

cassette was confirmed by multiple restriction digests. The cassette was isolated from 

pGEM-T Easy after digestion with SmaI and ligated into the SmaI site of an existing 

pBluescript (Agilent Technologies, CA, USA) entry vector locating the cassette between a 

maize Ubiquitin (Ubi) promoter and intron (iUbi) (Christensen and Quail, 1996; Christensen 

et al., 1992) and the nopaline synthase (nos) terminator (Bevan et al., 1983a) (Appendix D). 

The three ZmUbi-iUbi-sense/syntron/antisense-nos/pBS RNAi vectors (Appendix J) were 

confirmed by restriction digest followed by sequencing of the backbone/insert cloning 

junctions.  
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6.1.2 Transformation of callus with ZmUbi-iUbi-RNAi-nos/pBS constructs 

 

Callus was co-bombarded with individual RNAi/pBS constructs and ZmUbi-iUbi-nptII-

nos/pUC19. The neomycin phosphotransferase II (nptII) gene confers G418 disulfate salt 

(Roche, Basel, CHE) resistance to callus for selection (Bevan et al., 1983b; Colbére-Garapin 

et al., 1981). Transformation control callus was bombarded with ZmUbi-nptII-nos/pUC19 

only and hereon the regenerated plants are referred to as UKN controls. Although MYB 

transgenic controls were co-bombarded with GFP and UKN plasmids (Section 5.1.2.1), it 

was decided not to use the GFP plasmid for the microprojectile bombardment of RNAi 

transgenic control callus as the GFP controls in the MYB experiment (Chapter 5) had very 

poor survival rates during glasshouse acclimatisation, with only three plants out of eleven 

acclimatised surviving (Table 5.4). Untransformed control (wild type) callus did not undergo 

microprojectile bombardment and would allow for further analysis and comparisons of the 

effects of RNAi gene down-regulation over the lignin biosynthesis pathway. After plant 

regeneration from callus, individual events were transferred to growth chambers for 

continued development. Each plant regenerated was considered an independent transgenic 

event as only one plant per callus piece was subcultured during tissue culture. 

 

6.1.3 Screening regenerated events for RNAi/pBS construct expression  

 

Regenerated sugarcane plants were screened by qPCR as endpoint PCR screening for the 

RNAi cassette from gDNA provided unreliable results due to the inability of numerous Taq 

polymerases to reliably amplify any section of the hairpin sequence (data not shown). The 

RNAi cassette was considered to be stably integrated and functioning in all regenerated 

plants with reduced mRNA expression of the RNAi targeted gene when compared to wild 

type and transgenic controls after qPCR quantification of expression levels. ZmUbi-nptII-

nos/pUC19 cassette was confirmed by endpoint PCR to be present in gDNA of transgenic 

controls. 

 

For initial qPCR screening RNA was extracted from leaf tissue of three week old 

acclimatised sugarcane plants regenerated from callus. cDNA was synthesised and used in 

qPCR analysis. The qPCR primers (Table 6.2) were designed to amplify regions of the gene 

not included in the RNAi targeted sequence (underlined in Appendix B) to avoid any 

amplification of the expressed RNAi construct sequence. Transgenic plants representing a  
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TABLE 6.2: Primers designed for screening of CCoAOMT, F5H and COMT RNAi/pBS 

regenerated events and qPCR quantification of targeted gene expression levels. 

Amplicon Forward (5'-3') Reverse (5'-3') Size (bp) 

CCoAOMT ACCTCATCGCAGACGAGAAGAAC AGCCGCTCGTGGTAGTTGAGGTAG 91 

F5H GGTTCATCGACAAGATCATCGAC GTCGGGGCTCTTCCCGCGCTTCAC 53 

COMT TACGGGATGACGGCGTTCGAGTAC GTGATGATGACCGAGTGGTTCTT 92 

 

 

spectrum of expression levels of the RNAi targeted gene and control plants were 

transferred to the glasshouse.  

 

6.1.4 Glasshouse growth and harvesting of RNAi sugarcane  

 

Transgenic plants and controls were grown in the glasshouse for nine months before being 

destructively harvested for analysis. Growing tissue culture generated sugarcane under 

glasshouse conditions allowed for plant generation and growth conditions to be controlled 

throughout plant development, and therefore, any changes in lignin biosynthesis could be 

attributed to the RNAi constructs and not to the growing environment, which would not be 

possible in field conditions. All plants were watered to saturation two days before being 

destructively harvested to avoid results being affected by any potential drought related 

stress response. Harvesting occurred between 10am and 5pm over three consecutive days. 

Before measuring and cutting, all leaf tissue and sheaths were removed, and the internodes 

were counted as per van Dillewijn (1952). The length of the stalk was measured (internode 

1 to the final internode); and the number of internodes and the diameter of internodes 2, 4, 

6, 8, 10, 12 and 14 were recorded. Average internode length was calculated by dividing 

height by total number of internodes. For all analyses only internode tissue was used. The 

internodes collected for each assay can been seen in Table 6.3, alongside the General 

Methods Chapter sections with the associated protocols. 
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TABLE 6.3: Internodes harvested from glasshouse grown RNAi sugarcane for analysis  

Internode 
number Analysis conducted Method section with protocol 

1 qPCR gene expression analysis in 
young tissue 3.6.2 

7-10 Cell wall and enzymatic hydrolysis 
analysis 3.7 

11 qPCR gene expression analysis in 
maturing tissue 3.6.2 

12-13 Juice analysis 3.8 

 

 

6.1.5 Selection of plants and order of post-harvest analyses  

 

The analyses conducted on the harvested sugarcane were performed in a predetermined 

order. As discussed in Section 5.1.3, initial regenerated sugarcane were analysed due to the 

timeframe and space constraints. Initially cDNA was extracted from the internodes 

harvested for young and maturing stem for qPCR analysis. RNAi plants were selected based 

on the lowest expression levels of the targeted lignin biosynthesis gene after initial qPCR 

results performed on leaf tissue. To determine the specificity of each RNAi construct, the 

expression levels of a closely related gene was also quantified: COMT in CCoAOMT RNAi 

plants; C3H in F5H RNAi plants; and CCoAOMT in COMT RNAi plants. CCoAOMT and COMT 

are both O-methyltransferases (Zhang et al., 2012) and F5H and C3H are both hydroxylases 

within the P450 gene family (Liu, 2012). All primer sequences are available in Table 3.1.  

 

After post-harvest qPCR analysis, four plants per RNAi line were selected for compositional 

analysis to quantify cell wall lignin and carbohydrate content. These plants were selected 

based on having the lowest expression levels of their targeted lignin biosynthesis gene in 

maturing internode tissue. Following compositional analysis, three plants per RNAi line 

along with randomly selected wild type and UKN controls were pretreated before 

undergoing enzymatic hydrolysis for 72 hours with six sampling time points. The 

effectiveness of the pretreatment was assessed by enzymatic hydrolysis of untreated 

bagasse for a random selection of plants. These selected plants had their initial bagasse 

stock divided with one portion being pretreated and the other portion not undergoing any 

pretreatment. Both bagasse portions were then enzymatically hydrolysed concurrently. 

Quantification of juice sugar components was also performed on the plants selected for 
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enzymatic hydrolysis. Plant numbers analysed at each stage are outlined in Table 6.4. All 

RNAi plants were compared statistically against the UKN control plants. 

 

Statistical analysis involved either a two-tailed t-test assuming unequal variance, p = 0.05, 

or a one-way ANOVA with Tukey post-hoc analysis, p = 0.05, as appropriate, comparing 

transgenic plants to transgenic controls. As phenotypic measurements could only be made 

once per transgenic plant, the number of standard deviations (z scores) for each RNAi plant 

measurement were calculated against the UKN transgenic controls. Measurements were 

considered different to controls if a z score greater than 2 or -2 was calculated. 

 

 

TABLE 6.4: Total number of RNAi sugarcane plants analysed at each stage of analysis 

 

Plant Initial leaf 
qPCR 

Harvested 
plants qPCR  

Cell wall 
composition 

Enzymatic 
hydrolysis 

Juice 
analysis 

WT 5 7 7 3 3 

UKN 5 6 6 3 3 

CCoAOMT RNAi 12 9 4 3 3 
F5H RNAi 15 9 4 3 3 

COMT RNAi 13 8 4 3 3 
 

 

6.2 RESULTS 

 

6.2.1 Amplification and cloning 

   

Using GenBank, sugarcane COMT was already available and consensus sequences were 

identified and assembled for sugarcane CCoAOMT and F5H. BLAST searching with these 

consensus sequences showed homology between the sugarcane gene sequences and 

sequences of these genes in other plant species, which supported the identity of the 

selected sugarcane sequences. Primers were designed to amplify approximately 400bp 

fragments from these consensus sequences for use in RNAi construct design as previously 

described. There was a minimum of 98% homology between the nucleotide sequence of 

the cloned fragments and the original sugarcane consensus sequences for CCoAOMT, F5H 

and COMT. The differences in nucleotide sequence were attributed to natural variation 
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between sugarcane cultivars. As the RNAi target sequences were approximately 400bp long, 

a 2% difference in base pair sequence was not expected to affect the silencing specificity of 

the RNAi constructs. 

 

6.2.2 Regeneration, acclimatisation and qPCR screening of sugarcane plants  

 

Plants were successfully regenerated for each RNAi construct and for the control lines after 

microprojectile bombardment. However, for unclear reasons, the rate of plant regeneration 

was lower than expected. MYB transformations (Section 5.1.2) had a regeneration rate of 

0.96 plants per bombarded plate (130 plants from 135 plates, including transgenic controls) 

whereas the RNAi transformations had a regeneration rate of 0.40 plants per bombarded 

plate (49 plants from 123 plates, including transgenic controls). There was no apparent 

difference in wild type regeneration between MYB and RNAi transformations. mRNA 

transcript level was quantified in three week old leaf samples after qPCR with results 

suggesting that some plants were showing reduced expression levels of their respective 

RNAi targeted gene (Figure 6.1, Appendix K). Due to the low regeneration rate, all qPCR 

screened plants acclimatised were transferred to the glasshouse, and subsequently 

harvested. 

 

6.2.3 qPCR analysis of harvested RNAi sugarcane 

 

As lignin biosynthesis occurs most prevalently in the plant stem, qPCR was performed on 

cDNA synthesised from RNA extracted from young and maturing internode tissue. The 

plants from each RNAi line selected for analysis (Table 6.4) had the lowest expression levels 

of their respective targeted lignin biosynthetic gene in leaf tissue after initial qPCR analysis 

of leaf tissue (Appendix K). Expression levels of RNAi targeted genes in plants that 

underwent compositional analysis are seen in Figure 6.1 and all results are seen in 

Appendix K. The results in Figure 6.1 are representative of the overall trends seen in 

Appendix K. CCoAOMT and F5H RNAi plants both showed the greatest reduction of 

targeted gene expression in maturing tissue with little to no down-regulation observed in 

leaf or young internode tissue. Although CCoAOMT and F5H appear to be down-regulated 

in maturing tissue in the respective RNAi plants, statistical analysis did not find any 

significant reductions in maturing tissue (Figure 6.1). This was considered to be a result of 

the large variations in levels of expression in the UKN control plants. COMT RNAi plants 

showed little down-regulation of COMT expression in leaf, young or maturing tissues  
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FIGURE 6.1: qPCR quantified expression (showing standard error of the mean) of RNAi 

targeted genes in leaf (blue), young (red) and maturing (green) internode tissue for plants 

that underwent cell wall compositional analysis normalised against UKN transgenic controls. 

RNAi plants statistically different to UKN controls after a two-tailed t-test assuming unequal 

variance, p = 0.05, are shown by a coloured asterisk respective to tissue type. WT n = 7; 

UKN n = 6; with n = individual plants analysed. Plants are listed in ascending order of total 

lignin content. (A) CCoAOMT expression in CCoAOMT RNAi targeted plants; (B) F5H 

expression in F5H RNAi targeted plants; (C) COMT expression in COMT RNAi targeted plants. 
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(Figure 6.1, Appendix K). In maturing tissue only two COMT RNAi plants (COMT-4 and COMT 

-10) showed a reduction in COMT expression of 21% - 32%. The remaining COMT RNAi 

plants had expression levels higher than controls including COMT-2 with a 4-fold increase in 

COMT expression in maturing tissue (Figure 6.1). In contrast the CCoAOMT RNAi plants that 

underwent compositional analysis (Figure 6.1) had reductions to CCoAOMT expression of 

83% - 97%. F5H RNAi plants had mixed reductions in F5H expression of 4% - 84% (Figure 

6.1). 

 

The specificity of each RNAi construct was assessed by qPCR quantification in young and 

maturing internode tissue of another lignin biosynthesis gene of the same gene family: 

COMT expression for CCoAOMT RNAi targeted plants; C3H for F5H RNAi plants; and 

CCoAOMT for COMT RNAi plants. Overall the CCoAOMT, F5H and COMT RNAi sugarcane 

plants did not show reduced expression of COMT, C3H and CCoAOMT, respectively 

(Appendix L). This result supported the level of RNAi construct specificity aimed for when 

primers were originally designed for cloning of target sequences.  

 

6.2.4 Cell wall compositional analysis of RNAi transgenic sugarcane 

 

Four plants per line which showed the greatest reduction in the expression of the RNAi 

targeted gene in the maturing internode tissue were selected for cell wall compositional 

analysis (Table 6.4, Figure 6.1, Appendix K). The majority of the RNAi plants across the three 

construct lines had total lignin contents similar to that of controls (Table 6.5). The only 

exceptions were CCoAOMT-9 and F5H-1 having significant increases to total lignin and 

COMT-2 having significantly reduced lignin (Table 6.5). In all cases this was due to changes 

in the acid insoluble content of these plants. There were no CCoAOMT or F5H plants with 

reduced lignin and no COMT plants with increased lignin content.  

 

There were also a number of changes to structural carbohydrate content found in RNAi 

lines (Table 6.5). CCoAOMT-9, -10 and -5 had significantly reduced arabinose, glucose and 

xylose contents respectively. F5H-1 and -4 had reduced arabinose and F5H-2 showed 

reductions in glucose, xylose and arabinose. The only COMT plant with a change to 

carbohydrate content was COMT-10 with reduced arabinose. Overall there was little 

change to glucose and xylose contents with nearly half of all RNAi plants showing reduced 

arabinose content. Galactose was not detected in any samples (controls and transgenics) in 

this study. There were no differences found when comparing wild type plants with UKN
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TABLE 6.5: Cell wall composition of CCoAOMT, F5H and COMT RNAi sugarcane plants. The percentage of each component of the total composition is shown 

with the standard error of the mean. Samples significantly different to the UKN transgenic controls after a two-tailed t-test assuming unequal variance, p = 

0.05, are shown in bold. Plants are listed in ascending order of total lignin content. WT n = 7; UKN n = 6; with n = individual plants analysed. 

 

  Total lignin Acid insoluble lignin Acid soluble lignin Glucose Xylose Galactose Arabinose 

  % +/- % +/- % +/- % +/- % +/- % +/- % +/- 

WT n=7 22.09 0.27 17.50 0.26 4.59 0.03 50.55 0.46 22.72 0.26 0.0 0.0 1.81 0.06 

UKN n=6 21.65 0.38 17.13 0.38 4.53 0.09 49.83 0.55 23.53 0.25 0.0 0.0 2.03 0.08 

CCoAOMT RNAi 11 21.40 0.20 16.83 0.14 4.57 0.07 52.04 0.91 23.43 0.50 0.0 0.0 1.92 0.04 

 5 22.51 0.16 17.97 0.20 4.54 0.06 50.04 1.01 20.37 0.42 0.0 0.0 1.65 0.13 

 10 22.61 0.17 18.07 0.13 4.55 0.08 47.90 0.35 23.37 0.17 0.0 0.0 2.07 0.01 

 9 23.05 0.08 18.48 0.02 4.58 0.09 49.14 0.78 22.76 0.44 0.0 0.0 1.68 0.06 

F5H RNAi 4 22.02 0.10 17.56 0.07 4.45 0.11 49.38 0.96 21.81 0.49 0.0 0.0 1.60 0.01 

 2 22.61 0.25 17.97 0.19 4.65 0.07 47.31 0.27 22.37 0.16 0.0 0.0 1.73 0.03 

 7 22.72 0.07 18.07 0.08 4.65 0.02 48.92 1.14 21.96 0.45 0.0 0.0 1.76 0.07 

 1 24.74 0.25 20.58 0.16 4.16 0.09 49.55 0.59 23.00 0.28 0.0 0.0 1.54 0.02 

COMT RNAi 2 19.59 0.06 15.01 0.06 4.58 0.09 51.07 0.92 23.10 0.45 0.0 0.0 1.87 0.04 

 10 21.06 0.15 16.62 0.02 4.45 0.14 51.56 1.19 23.04 0.51 0.0 0.0 1.63 0.02 

 3 21.85 0.04 17.13 0.17 4.72 0.14 49.64 0.99 24.10 0.46 0.0 0.0 1.82 0.01 

 4 22.08 0.08 17.41 0.06 4.67 0.06 48.82 0.20 23.31 0.18 0.0 0.0 1.96 0.09 
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controls for any cell wall component analysed. Throughout the cell wall compositional 

analysis all mass balances were within 10% of starting material. 

 

6.2.5 Enzymatic hydrolysis of RNAi and control bagasse samples 

 

Enzymatic hydrolysis was performed on the three CCoAOMT and F5H plants with the 

highest lignin contents. As no plant had significantly less lignin (Table 6.5), it was decided to 

assess the plants with highest lignin content as any change in the monomer ratio that 

benefits saccharification may be more pronounced using these plants. As COMT-2 showed 

significantly reduced lignin (Table 6.5) it was decided to analyse the three COMT RNAi 

plants with the least amount of lignin. Three wild type and three UKN plants were selected 

at random to act as controls. The enzymatic hydrolysis data is presented as glucose 

released into the hydrolysis solution (mg/mL) per gram (g) of bagasse. Untreated and 

pretreated bagasse from randomly selected samples was hydrolysed to confirm the 

effectiveness of the pretreatment step. In all cases, pretreated samples showed a 

significant increase in glucose released (Figure 6.2) which supported the effectiveness of 

the pretreatment method used. All figures and tables list RNAi plants in ascending order of 

original total lignin content for each line. 

 

The final amount of glucose released by each plant after 72 hours of enzymatic hydrolysis is 

seen in Figure 6.3. There was a significant difference (p = 0.044) between controls at this 

time point with the wild type controls releasing significantly more glucose than the UKN 

transgenic controls. When compared with transgenic controls each RNAi line had at least 

one plant release significantly more glucose than controls. CCoAOMT-5, F5H-2, COMT-2 and 

COMT-3 all released significantly more glucose and interestingly CCoAOMT-9 released 

significantly less (Figure 6.3). The remaining plants in each line were comparable with UKN 

control plants. There was little positive correlation between glucose in the cell wall of 

pretreated bagasse and glucose released after 72 hours enzymatic hydrolysis (R2 = 0.384). 

 

There was no correlation between the remaining cell wall components and glucose 

released after 72 hours enzymatic hydrolysis for pretreated bagasse (data not shown). For 

untreated bagasse, weak negative correlations were seen between total lignin (R2 = -0.375) 

and acid insoluble lignin (R2 = -0.5714) with glucose released after 72 hours of hydrolysis. 

No correlations were seen for the remaining cell wall components of untreated bagasse 

(data not shown). 
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FIGURE 6.2: Total glucose concentration (mg/mL) in enzymatic hydrolysis solution per gram 

of untreated (UT) and pretreated (PT) bagasse (g bagasse) after 72 hours incubation 

showing standard error of the mean. The UT and PT results were compared for each plant 

individually using a two-tailed t-test assuming unequal variance, p = 0.05 with an asterisk 

indicating a statistical difference.  

 

 

Over the course of 72 hours, enzymatic hydrolysis reactions were sampled at 0, 6, 12, 24, 

48, and 72 hour time points (Table 6.6 and Figure 6.4). Although no significant differences 

were seen between the WT and UKN controls over the initial time points the WT controls 

released significantly more glucose than the UKN controls at the 24 hour and 72 hour time 

point. There were no clear reasons why this occurred. All four RNAi plants (CCoAOMT-5, 

F5H-2, COMT-2 and COMT-3) that released significantly more glucose after 72 hours of 

enzymatic hydrolysis (Figure 6.3) showed significant levels of glucose being released for 

earlier time points (Table 6.6) indicating an increased rate of glucose conversion (Figure 6.4). 

Furthermore, after the 48 hour time point the glucose released by the WT and UKN 

controls plateaus whereas the glucose released by these four RNAi plants does not appear 

to have started plateauing (Figure 6.4). One plant (CCoAOMT-9) released significantly less 

glucose than the UKN controls at each time point (Table 6.6) thus significantly reducing its 

rate of glucose conversion (Figure 6.4). F5H-7 was the only plant that had a significant 

difference in glucose release (6 hour time point) which did not differ significantly to UKN 

controls after 72 hours (Table 6.6). 
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FIGURE 6.3: Total glucose concentration (mg/mL) in enzymatic hydrolysis solution per gram 

of bagasse (g bagasse) after 72 hours incubation showing standard error of the mean. 

Different letters above bars (a-h) indicate significant differences after one-way ANOVA with 

Tukey post-hoc analysis (p = 0.05). WT n = 3; UKN n = 3, with n = individual plants analysed. 

Plants for each RNAi line are listed in ascending order of total lignin content.  

 

 

6.2.6 Cellulose crystallinity index of RNAi bagasse 

 

The tissue requirements of pretreatment for enzymatic hydrolysis left enough bagasse only 

for some samples to undergo determination of cellulose crystallinity index (Appendix M). 

Statistical analysis was not performed as the limited number of samples (two control plants 

and four RNAi plants) would not provide reliable results. The ranges of cellulose crystallinity 

were 48.21% - 53.51% for control plants and 53.89% - 57.86% for the three RNAi lines 

(Appendix M). 
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TABLE 6.6: Glucose released in enzymatic hydrolysis solution (mg/mL) per gram of bagasse measured at six time points for CCoAOMT, F5H and COMT RNAi 

plants. The glucose released is shown with the standard error of the mean. Samples significantly different to UKN controls after a two-tailed t-test assuming 

unequal variance, p = 0.05 are shown in bold. WT n = 3; UKN n = 3, with n = individual plants analysed. Plants for each line are listed in ascending order of 

total lignin content. 

  
0 hrs 6 hrs 12 hrs 24 hrs 48 hrs 72 hrs 

  
mg/mL +/- mg/mL +/- mg/mL +/- mg/mL +/- mg/mL +/- mg/mL +/- 

CONTROLS WT 0.0 0.0 30.31 1.35 35.03 1.18 39.78 0.86 46.33 1.81 45.46 1.38 

 
UKN 0.0 0.0 24.69 0.56 31.38 1.03 35.50 0.68 38.86 1.04 38.58 0.96 

CCoAOMT-RNAi 5 0.0 0.0 31.46 0.19 38.94 1.79 43.42 0.18 48.21 0.26 49.39 0.13 

 
10 0.0 0.0 25.67 1.18 28.45 0.32 32.01 0.63 37.82 1.13 40.59 1.34 

 
9 0.0 0.0 18.57 0.05 23.90 1.42 26.51 0.16 29.60 0.36 31.06 0.39 

F5H-RNAi 2 0.0 0.0 32.38 0.29 38.06 0.35 45.39 0.51 50.92 0.13 52.68 0.40 

 
7 0.0 0.0 27.53 0.36 36.06 2.89 37.30 0.85 41.83 0.18 42.27 0.38 

 
1 0.0 0.0 22.36 0.24 31.68 4.29 32.07 0.67 35.32 0.37 36.14 0.34 

COMT-RNAi 2 0.0 0.0 32.52 0.33 44.16 3.11 47.31 0.85 54.79 0.79 58.16 0.59 

 
10 0.0 0.0 24.87 0.23 30.75 0.30 37.04 0.56 41.27 0.05 43.05 0.32 

 
3 0.0 0.0 26.75 0.58 33.69 0.28 40.80 0.62 45.50 0.37 47.57 0.94 
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FIGURE 6.4: Total glucose concentration in enzymatic hydrolysis solution (showing standard 

error of the mean) measured at six time points over a period of 72 hours incubation based 

on weight of bagasse hydrolysed (mg/mL/g bagasse) for CCoAOMT RNAi (A); F5H RNAi (B); 

and COMT RNAi (C). WT n = 3; UKN n = 3, with n = individual plants analysed. Values with 

statistical analysis are seen in Table 6.6. 

0

10

20

30

40

50

60

0 6 12 24 48 72

Timepoint (hrs)

gl
uc

os
e 

re
le

as
ed

 (m
g/

m
L)

 
WT

UKN

CCoAOMT 5

CCoAOMT 10

 CCoAOMT9

0

10

20

30

40

50

60

0 6 12 24 48 72

Timepoint (hrs)

gl
uc

os
e 

re
le

as
ed

 (m
g/

m
L)

 

WT

UKN

F5H 2

F5H 7

F5H 1

0

10

20

30

40

50

60

70

0 6 12 24 48 72

Timepoint (hrs)

gl
uc

os
e 

re
le

as
ed

 (m
g/

m
L)

 

WT

UKN

COMT 2

COMT 10

COMT 3

A 

B 

C 



RNAi targeting of CCoAOMT, F5H and COMT                                                                            132 
 

 

6.2.7 Sucrose content of juice extracted from RNAi plants and controls 

 

The control and RNAi plants assessed for enzymatic hydrolysis were also assessed for 

sucrose content of extracted juice (Table 6.4) to determine if the changes in lignin content 

or structure had affected juice composition and quantity as carbon partitioned for cell wall 

synthesis may affect the flux of carbon directed to sucrose formation (Papini-Terzi et al., 

2009). Two F5H RNAi plants (1 and 7) showed a significant increase in sucrose levels when 

compared to UKN controls (Figure 6.5). All other plants were consistent with controls Figure 

6.5). Although CCoAOMT-9 and COMT-2 have elevated levels of sucrose, they are not 

significant (p values of 0.054 and 0.275 respectively). Statistical analysis was performed 

twice to confirm these results. Glucose and fructose were assessed, but not detected using 

this method. 

 

 

 

 
 

FIGURE 6.5: Sucrose content (%/fresh weight) of extracted juice of RNAi sugarcane plants 

selected for enzymatic hydrolysis showing standard error of the mean. RNAi plants 

statistically different to UKN controls after a two-tailed t-test assuming unequal variance, p 

= 0.05, are shown by an asterisk WT n = 3; UKN n = 3, with n = individual plants analysed. 
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6.2.8 Phenotypic measurements of RNAi plants 

 

Phenotypic measurements were taken at the time of harvest. The height of the stalk, 

number of internodes, internode diameter and average internode length were recorded 

and calculated (Appendix N). A z score was calculated based on the average results of the 

UKN transgenic control plants and any RNAi plant with a z score greater than 2 or -2, 

indicating the result was more than two standard deviations from the control group result, 

were considered different to controls. Overall, there were few phenotypic differences 

detected between RNAi plants and controls. CCoAOMT-5 was the only plant shorter than 

controls with no plants have heights greater than controls (Appendix N). F5H-4 had a 

greater number of internodes and COMT-4 and COMT-3 had increased internode diameters 

(Appendix N). One plant from each RNAi line, CCoAOMT-5, F5H-4 and COMT-2, showed 

decreases in average internode length (Appendix N). No correlations were apparent 

between changes in cell wall composition (Table 6.5) and phenotypes (Appendix N). 

 

 

6.3 DISCUSSION 

 

The overall aim of this research was to improve the enzymatic digestibility of bagasse from 

a commercial Australian sugarcane cultivar by altering lignin deposition. These alterations 

were achieved by employing RNAi to specifically target and reduce the expression of three 

lignin biosynthesis genes: CCoAOMT, F5H and COMT. Previous research has found the 

down-regulation of these genes can alter the lignin polymer as well as reducing the overall 

deposition of lignin which has led to improved saccharification and rumen digestibility in 

both dicot and monocot species, including sugarcane. 

 

6.3.1 Analysis of CCoAOMT-RNAi sugarcane 

 

Within the lignin biosynthesis pathway, CCoAOMT is involved in the synthesis of G and S 

monomers (Figure 1.1) (Barrière et al., 2004). CCoAOMT RNAi plants selected for 

compositional analysis showed reduced levels of CCoAOMT by 83% - 97% in maturing tissue 

(Figure 6.1). However, despite this down-regulation, no plants were found to have 

decreased lignin content (Table 6.5), and alternatively, CCoAOMT-9 showed significant 

increases in lignin content (Table 6.5). In young stem tissue, CCoAOMT expression was less 

reduced (0% - 46%) than in maturing stem (Figure 6.1) which may provide a reason for this 
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unexpected result. Lignin polymers may have been synthesised and deposited in younger 

tissue during higher CCoAOMT expression, and therefore, the reduction in CCoAOMT 

expression in maturing tissue may come too late to influence lignin content in the stem.  

 

Additionally, the rates of protein turnover by the translated CCoAOMT enzymes in the 

CCoAOMT-RNAi plants are unknown. It is possible that the expression of CCoAOMT 

enzymes in young internode tissue (Figure 6.1) may have resulted in gene products 

persisting in maturing tissue, thus allowing for continued lignin biosynthesis without the 

need for continued high expression of CCoAOMT. Although the genes of the lignin 

biosynthesis pathway have been well characterised (Section 1.3), a full understanding of 

metabolic flux through the pathway remains to be established, making it difficult to predict 

the outcomes of targeting the expression levels of individual lignin biosynthesis pathway 

genes. Another factor that may have influenced the lignin content of the CCoAOMT plants 

is that any down-regulation of CCoAOMT may have been compensated for by an increase in 

expression levels of other genes within the lignin biosynthesis pathway, and thus the 

overall level of lignin biosynthesis may have not been reduced. COMT expression was 

quantified in the CCoAOMT-RNAi plants to determine RNAi construct specificity (Sections 

6.1.5 and 6.2.3). The results suggest that COMT expression may have been increased in 

CCoAOMT-RNAi plants, especially in plants CCoAOMT-5 and CCoAOMT-10 (Appendix L). 

Quantification of all genes of the lignin biosynthesis pathway would provide a clearer 

picture as to the compensatory effect of non-targeted genes, however, this represented a 

significant amount of work and time which was not feasible given the timeframe and scope 

of the current research.  

 

A reduction in lignin content after down-regulation of CCoAOMT is well documented, and 

the finding that CCoAOMT-9 had a significant increase in lignin content with the remaining 

three plants having lignin contents comparable with controls is contrary to our hypothesis. 

RNAi targeting of CCoAOMT reduced lignin content by 5% - 22% in alfalfa (Chen and Dixon, 

2007; Chen et al., 2006), Pinus radiata (Wagner et al., 2011), and in maize (Li et al., 2013). 

Similarly, lignin reductions of 12% - 40% were found after sense and antisense down-

regulation of CCoAOMT in alfalfa (Marita et al., 2003), flax (Day et al., 2009), poplar 

(Meyermans et al., 2000; Zhong et al., 2000) and tobacco (Pinҫon et al., 2001; Zhao et al., 

2002) as well as in mutant ccoaomt Arabidopsis lines (Van Acker et al., 2013). No literature 

was found reporting a significant increase in lignin content after RNAi targeting of lignin 

biosynthesis pathway gene CCoAOMT.  
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There were reported increases in cellulose content after CCoAOMT down-regulation in 

maize (Li et al., 2013) and alfalfa (Marita et al., 2003) which was not seen in this research 

with CCoAOMT-10 showing a decrease in glucose levels and the remaining three plants 

showing no changes (Table 6.5). Except for CCoAOMT-5 and CCoaOMT-9 having reduced 

xylose and arabinose respectively (Table 6.5) there were no other changes in hemicellulose 

content of CCoAOMT-RNAi plants which is supported by findings by Li et al. (2013) in maize. 

After 72 hours of enzymatic hydrolysis, CCoAOMT-9 was the only plant of the three RNAi 

lines to release significantly less glucose than controls (Table 6.6), which may be a result of 

a significant increase in lignin content in this plant (Table 6.5). Previous research found 

reduced expression of CCoAOMT improves saccharification in Arabidopsis (Van Acker et al., 

2013) and alfalfa (Chen and Dixon, 2007). Although no differences in lignin content were 

detected in CCoAOMT-5 (Table 6.5), this plant released 28% more glucose than the UKN 

control after 72 hours (Table 6.6) supporting the published research.  

 

CCoAOMT is involved in the synthesis of G and S monomers (Figure 1.1) (Barrière et al., 

2004), and previous RNAi targeting of CCoAOMT has effected the G:S ratio in the deposited 

lignin polymer (Chen and Dixon, 2007; Chen et al., 2006; Li et al., 2013; Wagner et al., 2011). 

Changing this monomer ratio may reduce lignin recalcitrance during saccharification by 

reducing the number of different monomer bond types within the deposited lignin polymer 

(Buanafina, 2009; Grabber, 2005; Li et al., 2008). As discussed, lignin content was not 

reduced in any CCoAOMT-RNAi plant (Table 6.5) perhaps as a result of CCoAOMT activity in 

young tissue during lignin synthesis. Of the CCoAOMT-RNAi plants analysed, only 

CCoAOMT-5 showed a reduction in CCoAOMT expression in young stem tissue (46%) 

(Figure 6.1). While this reduction may not have been great enough to reduce lignin content, 

it may have been enough to effect the G:S monomer ratio. To accept this hypothesis, first 

the monomer ratio of the lignin polymer in CCoAOMT-5 would need to be determined (see 

Section 6.3.6). 

 

An unexpected finding occurred when the enzymatic hydrolysis results of the wild type and 

transgenic UKN controls were compared. Although there appeared to be little difference in 

expression levels of CCoAOMT, F5H, C3H and COMT (Figure 6.1, Appendix K, Appendix L) 

and no significant differences in cell wall composition (Table 6.5) between controls, the wild 

type plants released more glucose than the UKN controls at each time point and 

significantly more glucose at the 24 hour and 72 hour time points (Table 6.6). The reason 

for these differences was not obvious and no published literature was found which 
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reported a similar finding, though cell wall compositional analysis of poplar found wild 

types differed significantly from transgenic controls expressing the β-glucuronidase 

reporter gene (Jefferson, 1987; Jefferson et al., 1987) (H. Coleman, unpublished data). 

Performing analysis with a higher number of controls, or analysing plants of a subsequent 

generation may help determine if this finding is repeatable. Further research to determine 

if the ZmUbi-nptII-nos/pUC19 (UKN control plasmid) affects saccharification would also 

potentially provide further insight into this finding.  

 

6.3.2 Analysis of F5H-RNAi sugarcane 

 

F5H is a later gene in the lignin biosynthesis pathway (Figure 1.1) and is a key enzyme in the 

synthesis of the S monomer (Weng and Chapple, 2010). The F5H-RNAi sugarcane analysed 

had minimal to no reductions of F5H expression in leaf and young internode tissue yet 

three of the four plants had reductions of 71% - 84% in F5H expression in the maturing 

stem (Figure 6.1). Despite this down-regulation of F5H in maturing tissue, no plants were 

found to have decreased lignin content (Table 6.5). This is similar to the CCoAOMT-RNAi 

findings, and as previously discussed (Section 6.3.1), F5H was not down-regulated in young 

stem tissue (Figure 6.1) which may have allowed lignin to be synthesised and deposited 

before F5H expression is reduced in more mature stem tissue. Not knowing if the F5H 

enzyme product synthesised in young tissue persists in maturing tissue, as well as the 

metabolic flux being difficult to predict after targeted gene down-regulation may also 

contribute to this finding (discussed in Section 6.3.1). As previously discussed (Section 6.3.1), 

the decreases in F5H expression in the F5H-RNAi plants may have been compensated for by 

other genes within the lignin biosynthesis pathway. In maturing internode tissue, C3H 

expression is approximately double that of controls for the plants analysed (Appendix L). 

 

As for CCoAOMT-9, F5H-1 also showed a significant increase in lignin content (Table 6.5). 

No literature was found reporting a significant increase in lignin content after RNAi 

targeting of F5H, however Van Acker et al. (2013) did report an increase in lignin content in 

an f5h mutant Arabidopsis. The remaining F5H-RNAi plants with no changes to lignin 

content support published findings that a reduction in F5H expression in alfalfa (Chen and 

Dixon, 2007; Chen et al., 2006; Nakashima et al., 2008; Reddy et al., 2005) and Arabidopsis 

(Van Acker et al., 2013) did not lead to plants with decreased lignin content.  
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Additionally, Van Acker et al. (2013) found no detectable changes in hemicellulose 

polysaccharides in the mutant f5h Arabidopsis. Three of the four F5H-RNAi plants had 

decreases in arabinose content (Table 6.5), which although significant accounted for less 

than 0.5% difference in cell wall composition. Only F5H-2 had reduced levels of glucose and 

xylose (Table 6.5) with the remaining F5H-RNAi plants showing no change to glucose or 

xylose levels. Although having no change in lignin content (Table 6.5), F5H-2 released 36.5% 

more glucose than the UKN control after 72 hours (Table 6.6), which as previously discussed 

(Section 6.3.1), may be due to changes in G:S monomer ratio due to the role of F5H in S 

monomer synthesis (Figure 1.1). This improvement in glucose release supports previous 

findings that reduced expression of F5H improves saccharification in Arabidopsis (Van Acker 

et al., 2013), although given that only one plant in the F5H-RNAi line released significantly 

more glucose, the finding by Chen and Dixon (2007) that F5H down-regulation did not 

improve enzymatic hydrolysis is also supported. 

 

6.3.3 Analysis of COMT-RNAi sugarcane 

 

Alongside F5H, COMT is another key enzyme involved in the synthesis of S monomers 

(Figure 1.1) (Bonawitz and Chapple, 2010; Weng and Chapple, 2010). There is no overall 

trend in the expression levels of COMT in the COMT-RNAi plants. COMT-2 had a 59% 

decrease in COMT expression in leaf tissue, little change in young internode tissue and a 4-

fold increase in COMT expression in maturing tissue (Figure 6.1). COMT-10 had a 2.3 and 

1.8-fold increase in COMT expression in leaf and young internode tissue respectively, but 

then showed a 21% decrease in expression in maturing tissue (Figure 6.1). Expression in 

COMT-4 showed a similar trend to COMT-10 in that COMT expression in young internode 

tissue was 3.8-fold higher than controls before decreasing 32% below control expression 

levels in maturing tissue. COMT-3 did not show any change to expression levels across the 

three tissue types (Figure 6.1).  

 

In this study no COMT RNAi plants showed a decrease in COMT expression in young 

internode tissue (internode 1). Jung et al. (2012) and Jung et al. (2013) found decreases of 

67% - 97% and 80% - 92% of COMT expression in internode three of COMT-RNAi sugarcane 

respectively. Although decreases in COMT expression were found in maturing internodes 

(internode 11) of 21% (COMT-10) and 32% (COMT-4) these decreases are minimal when 

compared with published results (Jung et al., 2012; Jung et al., 2013). Both the published 

studies and this study used the same COMT accession for primer design (AJ231133) and 
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there was approximately 250bp overlap between the RNAi target sequence used in this 

study and in the published studies (Jung et al., 2012; Jung et al., 2013). The sequence 

targeted by Jung et al. (2012) and Jung et al. (2013) is further upstream than the sequence 

targeted in this research, resulting in different sequences of the SAM-binding pocket (Jung 

et al., 2012; Louie et al., 2010) being targeted by the non-overlapping regions, which may 

have increased the effectiveness of the Jung et al. (2012) COMT-RNAi construct. It has been 

found that secondary structure of the siRNA target site of the mRNA transcript can strongly 

influence the silencing efficiency of the siRNA (Bohula et al., 2003; Luo and Chang, 2004) 

and may explain the differences between this study and the results of Jung et al. (2012). 

Additionally, the differences in COMT down-regulation may also be attributed to Jung et al. 

(2012) and Jung et al. (2013) using the OsC4H promoter, Pn4CL spacer intron and the CaMV 

35S terminator as opposed to the ZmUbi promoter, syntron spacer intron and nos 

terminator used in this current research.  

 

COMT-2 was the only plant across the three RNAi lines with a significant reduction in total 

lignin content (Table 6.5). Although COMT-10 and COMT-4 had reduced COMT expression 

in maturing stem, they had expression levels higher than controls in young tissue (Figure 

6.1), which, as previously discussed in Section 6.3.1, may have allowed for lignin polymer 

synthesis and deposition to occur before the reduction of COMT expression. The 9.5% 

decrease in lignin content in COMT-2 is within the range of lignin reductions previously 

reported by RNAi targeting of COMT. Jung et al. (2012) found lignin reductions of 3.9% - 

13.7% in glasshouse grown sugarcane and 5.5% - 12% reductions in field grown sugarcane 

(Jung et al., 2013). RNAi targeting of COMT reduced lignin content by 6.4% - 14.7% in 

switchgrass (Baxter et al., 2014; Fu et al., 2011a; Samuel et al., 2014). Other research has 

reported greater reductions of lignin content of 20% in alfalfa (Chen et al., 2006), 35% in 

Brassica napus (Oraby and Ramadan, 2014) and 40% in canola (Bhinu et al., 2009).  

 

The finding that COMT-2 had significantly reduced lignin was unexpected given that COMT-

2 had a 4-fold increase of COMT expression in maturing tissue and COMT expression in 

young stem was equivalent to that of controls (Figure 6.1). No clear reason was found that 

explained this finding and no literature was found that reported an increase in expression 

of an RNAi targeted gene. Fu et al. (2011a) found an approximate 90% decrease in COMT 

expression led to a 70% reduction in COMT enzyme activity level and a maximum reduction 

in lignin content of 14.7%. Similarly, Chen et al. (2006) found an approximate 40% - 80% 

reduction of COMT enzyme activity led to lignin reductions of 20%. These studies highlight 
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that a reduction in COMT transcription does not lead to an equal reduction in translation 

which in turn does not reduce lignin deposition by an equivalent percentage. Additionally, 

Jung et al. (2012) reported 65% - 95% (approximate) reductions of COMT expression in 

COMT-RNAi sugarcane with 3.9% - 13.7% reductions in lignin and Jung et al. (2013) found 

5.5% - 12% less lignin in COMT-RNAi sugarcane with COMT expression reduced by 80% - 

92%. Although these studies did not report an increase in COMT expression, they do 

support the present research that COMT expression levels may not clearly reflect changes 

to lignin deposition. Additionally, not knowing if the COMT enzyme product synthesised in 

young tissue persists in maturing tissue, as well as the metabolic flux being difficult to 

predict after targeted gene down-regulation may also contribute to perplexing nature of 

this finding (discussed in Section 6.3.1). As previously discussed (Section 6.3.1), any changes 

in COMT expression in the COMT-RNAi plants may have been compensated for by other 

genes within the lignin biosynthesis pathway. In all plants analysed, CCoAOMT expression 

was higher in both young and maturing internode tissue when compared with controls 

(Appendix L). 

 

There were no changes in glucose levels in the cell wall of COMT-RNAi plants which 

supports the findings in sugarcane (Jung et al., 2013) and switchgrass (Baxter et al., 2014; 

Fu et al., 2011a). Samuel et al. (2014) and Jung et al. (2013) reported higher xylose content 

in COMT reduced RNAi switchgrass and sugarcane respectively whereas the only change in 

hemicellulose content in this study was a decrease in arabinose in COMT-10 (Table 6.5). 

Jung et al. (2013) reported no changes in arabinose, though given that arabinose only 

accounts for a very small percentage of the cell wall it was considered unlikely that the 

0.4% reduction in COMT-10 (Table 6.5) would have any noticeable effect on plant 

phenotype or saccharification potential. During enzymatic hydrolysis, both COMT-2 and 

COMT-3 released significantly more glucose after 72 hours (Figure 6.3) This is supported by 

the findings of published research that alfalfa (Chen and Dixon, 2007), switchgrass (Baxter 

et al., 2014; Fu et al., 2011a) and sugarcane (Jung et al., 2012; Jung et al., 2013) with 

reduced lignin content due to COMT down-regulation have increased glucose yields after 

enzymatic hydrolysis. After pretreatment, Jung et al. (2012) found glucose released by the 

glasshouse-grown COMT-RNAi sugarcane improved by up to 34% and field-grown RNAi-

COMT sugarcane released up to 32% more glucose (Jung et al., 2013). This research found 

COMT-2 and COMT-3 released 51% and 23% more glucose respectively than UKN controls 

after 72 hours (Figure 6.3, Table 6.6). COMT-2 was the only plant with a significant 

reduction in total lignin content (Table 6.5) which may explain the 51% increase in glucose 
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release. The improved glucose release by COMT-3, which had a lignin content equivalent to 

that of the controls (Table 6.5), may again be explained by a potential change to the G:S 

monomer ratio (Section 6.3.1) due to the role of COMT in the lignin biosynthesis pathway 

(Figure 1.1). The improvement in saccharification after COMT reduction is an encouraging 

result for the application of RNAi to the KQ228 sugarcane cultivar. 

 

6.3.4 Juice sucrose levels of RNAi sugarcane 

 

For lignin reduced sugarcane to remain commercially viable it is important that the 

alterations to cell wall composition do not produce detrimental phenotypes nor affect the 

juice sucrose content of the sugarcane as the carbon flux directed for sucrose synthesis 

may be affected by the partitioning of carbon for cell wall synthesis (Papini-Terzi et al., 

2009). The plants that underwent enzymatic hydrolysis were also assessed for juice sugar 

content (Figure 6.5). All CCoAOMT and COMT RNAi plants had sucrose levels comparable 

with controls (Figure 6.5). This partially supports the findings of Jung et al. (2013) in which 

two COMT-RNAi sugarcane plants had soluble solids (Brix) levels comparable with controls 

and two plants had significant reductions. Brix is a measurement of soluble solids in 

extracted juice and an estimate of sucrose levels (Jung et al., 2013; Papini-Terzi et al., 

2009). Two of the F5H-RNAi plants in this study, F5H-7 and F5H-1, had significant increases 

in sucrose levels (Figure 6.5). This is the opposite finding of Papini-Terzi et al. (2009) in 

which F5H expression was reduced in high brix sugarcane when compared with low brix 

sugarcane. The finding that F5H-1 and F5H-7 had significantly increased sucrose levels is of 

great commercial interest as this would add significant monetary value to these sugarcane 

plants (pers. comm. I. O’Hara). An increased number of plants analysed and field trials 

would be necessary to confirm if this a potential avenue to increase economic value of 

sugarcane, or an anomaly. Papini-Terzi et al. (2009) did find COMT and PAL were up-

regulated in high brix plants and additionally that PAL expression was inducible by sucrose. 

This led Papini-Terzi et al. (2009) to suggest increased sucrose may induce lignin 

biosynthesis which could explain the significant increase in lignin in F5H-1 (Table 6.5) due to 

the significant increase in sucrose (Figure 6.5). The research by Papini-Terzi et al. (2009) 

suggests a link between lignin biosynthesis and sucrose content, which may also be an 

avenue of future research if manipulations to lignin biosynthesis can also influence sucrose 

content.  
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6.3.5 Phenotypic effects of RNAi targeting of CCoAOMT, F5H and COMT  

 
After nine months of growth in glasshouse conditions there were few phenotypic 

differences in the CCoAOMT, F5H and COMT-RNAi lines and the control plants (Appendix N). 

This is generally supported by published literature. No phenotypic differences were 

observed in CCoAOMT down-regulated plants (Day et al., 2009; Meyermans et al., 2000; 

Van Acker et al., 2013; Zhao et al., 2002), F5H down-regulated plants (Van Acker et al., 2013) 

or in COMT down-regulated plants (Bhinu et al., 2009; Fu et al., 2011a; Jouanin et al., 2000; 

Jung et al., 2012; Pinҫon et al., 2001; Van Acker et al., 2013; Zhao et al., 2002). Jung et al. 

(2013) found phenotypic differences in COMT-RNAi sugarcane with lignin reductions of 8% - 

12% but not in plants with lignin reductions of 6% or less. The only plant in the current 

study with a significant reduction in lignin content (COMT-2) had a lignin reduction of 9.5% 

(Table 6.5). While the height of COMT-2 was less than that of the controls, this difference 

was found to be less than two standard deviations, so was not considered different to 

controls (Appendix N).  

 

6.3.6 NMR analysis of H:G:S monomer ratio in RNAi sugarcane bagasse 

Interestingly, although CCoAOMT-5, F5H-2 and COMT-3 released significantly more glucose 

after enzymatic hydrolysis (Table 6.6), compositional analysis of these three plants did not 

show any significant differences in their lignin content (Table 6.5). Additionally, F5H-2 had 

significant reductions in all structural carbohydrates (Table 6.5). Improved glucose release 

without change to lignin content supports the hypothesis that targeting these genes for 

down-regulation may also change the G and S monomer ratio of the lignin polymer. 

Previous research has suggested changes in the ratio of these monomers in plants may 

simplify the bond-types in the lignin polymer and subsequently decreasing its recalcitrance 

to enzymatic digestion (Buanafina, 2009; Grabber, 2005; Jackson et al., 2008; Li et al., 2008; 

Sonbol et al., 2009). Due to limited tissue available, Nuclear Magnetic Resonance (NMR) 

was employed to assess the monomer ratio in the bagasse used in this research.  

After tissue had been ground in the McCrone micronising mill in preparation for enzymatic 

hydrolysis, a sample was set aside for NMR analysis. This sample had not undergone any 

pretreatment. Ground tissue was mixed with either DMSO-d6 (Kim et al., 2008) or 4:1 mix 

of DMSO-d6 /pyridine-d5 (Kim and Ralph, 2010) to measure the H:G:S ratio using gel-state 

NMR. After multiple attempts with optimisation to tissue preparation and NMR settings, 

the spectra obtained were not comparable with that of the published results (Kim and 
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Ralph, 2010; Kim et al., 2008). The most likely reason for this is the NMR machine and 

probe were not suitable for gel-state samples (pers. comm. M. Wellard). Gel-state NMR was 

selected as it requires less tissue and preparation than solid-state NMR of extracted lignin 

polymers. As no gel-state NMR machine with a suitable probe was available at Queensland 

University of Technology, it was decided to send the samples to Syracuse University where 

a suitable NMR machine is available. At the time of this thesis submission tissue 

preparation and NMR conditions were being optimised and the monomer ratios were not 

yet available.  

 

6.3.7 Concluding remarks 

 

This research employed RNAi to specifically down-regulate the expression of CCoAOMT, 

F5H and COMT, three genes within the lignin biosynthesis pathway, with the aim of altering 

lignin deposition and improving the release of glucose after enzymatic hydrolysis for second 

generation bioethanol production. Recent publications involving RNAi down-regulation of 

COMT in sugarcane found increases in glucose yields after enzymatic hydrolysis (Jung et al., 

2012; Jung et al., 2013) positively supports the replication of these results in an important 

Australian sugarcane cultivar. Currently, there is no published data involving the specific 

down-regulation of CCoAOMT or F5H in sugarcane.  

 

The overall results of this research support the hypothesis that the down-regulation of 

these genes can improve saccharification potential of the sugarcane bagasse. One plant 

from each of the CCoAOMT and F5H-RNAi lines and two plants from the COMT-RNAi line 

released significantly more glucose after enzymatic hydrolysis. The reasons for this 

improved glucose release was not clear. Of the four plants, only COMT-2 had a significant 

reduction in lignin, which has previously been shown to improve saccharification (Jung et al., 

2012; Jung et al., 2013), although, this plant did not show a decrease in COMT expression. 

CCoAOMT-5 and F5H-2 did show reduced expression of their respective targeted gene but 

no changes to lignin content. The final plant with improved saccharification, COMT-3, did 

not show any down-regulation to COMT expression nor any changes to lignin content. 

Altering the lignin monomer composition can reduce recalcitrance to enzymatic 

degradation (Chen and Dixon, 2007; Grabber, 2005; Huntley et al., 2003; Simmons et al., 

2010), and as CCoAOMT-5, F5H-2 and COMT-3 did not have reduced lignin content but 

released significantly more glucose, this supports the hypothesis that targeting CCoAOMT, 

F5H and COMT could influence the monomer ratio of the deposited lignin polymer based 
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on their positions in the lignin biosynthesis pathway. NMR is currently underway to provide 

data that can confirm if the monomer ratio has changed in these plants.  

 

As previously mentioned (Section 6.2.2), there was a low rate of RNAi transgenic plant 

regeneration (0.40 plants per microbombarded plate) when compared with MYB 

regeneration rates (0.96 plants per microbombarded plate) and as discussed (Sections 6.3.1, 

6.3.2 and 6.3.3), the RNAi constructs in this research do not appear as efficient at gene 

down-regulation or reducing lignin content when compared with published studies. It is 

possible that the RNAi constructs developed in this study were efficient, but reduced 

targeted gene expression levels to a point that the plants were not able to regenerate. If 

this was the reason for low regeneration rates, it would have been expected that the UKN 

transgenic controls would have regenerated in greater numbers, however the rate was the 

same for the RNAi transgenics, which does not support this hypothesis. 

 

Finding no decreases in sucrose juice levels and few detrimental phenotypic traits is further 

support for the introduction of RNAi technology into the Australian sugarcane industry. 

Although the findings that RNAi targeting of CCoAOMT, F5H and COMT can improve 

saccharification is a positive result, further research should involve larger sample sizes of 

transgenic plants to confirm these findings are replicable as well as field testing to ensure 

the changes to cell wall composition are stable. Jung et al. (2013) found COMT-RNAi plants 

had stable reductions of lignin in field settings which is encouraging for the current research. 

The production of sugarcane bagasse more amenable to enzymatic hydrolysis through the 

down-regulated in CCoAOMT, F5H and COMT has the potential to increase product 

diversification of the global sugarcane industry. The production of bioethanol from lignin-

altered bagasse will increase the value of sugarcane bagasse and benefit farmers and the 

wider global economy as well as having positive environmental impacts by reducing the use 

of non-renewable energy sources.  
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Chapter 7 
 

General Discussion 
 

 

 

As oil use is increasing at a rate unsustainable for the environment and unmatchable by 

current levels of oil production, a major shift away from oil as a source of energy is 

unavoidable (Murray and King, 2012). Increased research into renewable energy has 

highlighted second generation bioethanol, which can be produced from waste 

lignocellulosic biomass, as an alternative energy option to oil (Borrion et al., 2012; Limayem 

and Ricke, 2012). The hurdle presented by the recalcitrant nature of lignin polymers, one of 

the three main constituents of lignocellulosic biomass, to the cost-competitive production 

of second generation bioethanol is well established (Benjamin et al., 2013; Chen and Dixon, 

2007; Yang et al., 2013). The findings presented in this thesis, through the completion of 

three specific aims, contribute to and expand current knowledge of lignin biosynthesis and 

manipulation in sugarcane towards the production of economically viable second 

generation bioethanol which will have global, as well as local, economic and environmental 

benefits. 

 

The first aim of this thesis was to develop a profile of lignin biosynthesis in sugarcane stem 

internodes of increasing maturity by comparing expression patterns of lignin biosynthetic 

pathway genes with the deposition of lignin. Structural carbohydrate deposition was also 

examined to further knowledge of the development of sugarcane secondary cell walls. 

Currently there is little information available concerning lignin biosynthesis and deposition 

in sugarcane and no known published reports in any plant species which correlate lignin 

biosynthesis pathway gene expression levels with the deposition rates of lignin within the 

secondary cell wall. Given the importance of lignin to the cost-competitive production of 

second generation bioethanol, knowledge surrounding the gene expression patterns during 

lignin biosynthesis and deposition gained from this research project will aid in 

biotechnological approaches to lignin manipulation.  

 

The expression of lignin biosynthesis genes showed two different patterns in maturing 

tissue. Genes either had highest expression in young tissue which decreased as tissue 
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matured, or expression levels remained similar throughout stem maturation. In terms of 

quantification of secondary cell wall components in internodes of increasing maturity, the 

youngest internode tissue had less lignin than the more mature sections, before a 

significant increase in lignin deposition resulted in a lignin content that was stable 

throughout remaining stem sections. Alternatively, the carbohydrate content did not 

change throughout stem maturation. These findings provide insight into this process and 

suggest that the synthesis and deposition of cell wall lignin is complete early in internode 

development and is preceded by high levels of lignin biosynthesis pathway gene expression 

levels in younger tissue. If lignin biosynthesis genes are being targeted to reduce lignin 

content in sugarcane, it may be most effective to use a promoter which is functional in very 

young tissue when the lignin biosynthesis pathway is transcriptionally most active. The high 

expression levels of C4H in root tissue in comparison with stem tissue expression was an 

unexpected finding that may also have biotechnological applications in root preferred 

expression in sugarcane.  

 

As discussed in Section 4.3, there were some differences in results between published 

studies and the current research, with one main difference being the use of glasshouse 

versus field grown sugarcane plants. All results presented in this thesis are on greenhouse 

grown plants, and results would need to be confirmed using field grown plants. Further 

work into lignin biosynthesis and deposition in sugarcane should involve a comparison 

between these two growing environments as this may be an influencing factor on plant 

development. This information would be of interest for the wider research community as it 

would provide insight into the relatability glasshouse-based studies have with field grown 

plants. The gene expression patterns and cell wall deposition rates found in the first aim of 

this thesis will aid with targeted manipulation of the lignin biosynthesis pathway for 

improved bioethanol production. Although changes to lignin biosynthesis gene expression 

may be possible through traditional breeding, the genetic complexity of sugarcane, and the 

time required by traditional breeding to development and improve sugarcane cultivars, 

makes the application of biotechnology to sugarcane an attractive alternative (Canilha et 

al., 2012; de Souza et al., 2013; Suprasanna et al., 2011). This concept was explored in the 

second and third aims of this thesis through the genetic manipulation of sugarcane lignin 

biosynthesis using biotechnological approaches. 

 

The second aim of this thesis was to improve saccharification of sugarcane bagasse by 

reducing the lignin content in the bagasse through the generation of transgenic sugarcane 
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expressing maize MYB transcription factors. The involvement of MYB transcription factors 

in the future of GM crops has been predicted (Ambawat, et al., 2013; Century et al., 2008) 

and the increasing number of MYB genes being identified as having various levels of 

regulatory control over the lignin biosynthesis pathway (Table 2.1 and Table 2.2) increases 

the likelihood of the involvement of MYBs in the development of lignin-altered crops for 

second generation biofuel production. Previous research expressing MYB transcription 

factors found improved saccharification in switchgrass (Shen et al., 2012; Shen et al., 2013) 

and Arabidopsis (Fornalé et al., 2010; Sonbol et al., 2009) and the results of this thesis in 

sugarcane contributes to these positive results. 

 

The current findings represent the first known report of MYB31 and MYB42 being 

expressed in a monocot species and the first report of MYB transcription factors being over-

expressed in sugarcane to improve biofuel production through the down-regulation of 

lignin biosynthetic genes. Increased production and use of biofuels will have environmental 

benefits, in addition to increasing the economic value of bagasse for the sugarcane industry 

by adding a secondary product in the production of sugar. For this aim, MYB31 and MYB42 

were cloned and transformed into sugarcane. Transgenic plants were assessed for any 

regulatory effects these transcription factors may have over genes within the lignin 

biosynthesis pathway and subsequently, it was determined if this down-regulation resulted 

in alterations in the deposition of secondary cell wall components. Enzymatic hydrolysis 

was performed on a selection of MYB expressing sugarcane to determine if changes in 

secondary cell wall composition increased the release of glucose monomers. Finally, the 

plants assessed by enzymatic hydrolysis also had juice sucrose levels quantified to 

determine that changes in lignin biosynthesis did not negatively affect this important aspect 

of sugarcane growth.  

 

ZmMYB31 and ZmMYB42 were successfully incorporated into the genome of sugarcane. 

Analysis of the transgenic plants found an overall trend of MYB31 down-regulating more 

genes within the lignin biosynthesis pathway than MYB42. Surprisingly, this down-

regulation did not correlate well with decreases in lignin content. Despite MYB31 showing 

the greater tendency for gene down-regulation, only one MYB31 expressing plant had a 

decrease in total lignin, with an additional two plants showing decreases to acid insoluble 

lignin contents. In contrast, six MYB42 expressing sugarcane showed significant decreases 

to total lignin content. A small number of MYB42 expressing plants had increased structural 

carbohydrate content, whereas approximately half of MYB31 plants had increased 
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hemicellulose contents. Further analysis on a selection of plants found that the changes in 

lignin content improved saccharification as two of the six MYB31 plants, and all six MYB42 

plants analysed had significantly increased glucose yields after enzymatic hydrolysis. Overall 

the MYB42 plants outperformed the MYB31 plants not just in the number of plants with 

improved saccharification, but also in the amount of glucose released. For sugarcane plants 

with improved digestibility to be accepted by the sugarcane industry it is important that 

any changes to cell wall composition do not negatively affect the juice sucrose content of 

the sugarcane plants. The finding that only a single MYB31 plant had a reduction to sucrose 

content, with the remaining MYB31 plants, and all MYB42 plants, having sucrose levels 

equivalent to controls is a positive finding.  

 

The overall objective of the second aim was to assess if the over-expression of MYB31 or 

MYB42 in sugarcane would improve saccharification through the down regulation of lignin 

biosynthesis. The objective was successfully achieved with the overall results suggesting 

that MYB42 was more effective than MYB31 at reducing lignin content of sugarcane 

bagasse, and subsequently improving the glucose yield after enzymatic hydrolysis. 

Importantly, that there was little detrimental effect on phenotype or juice sucrose levels 

further supports MYB42 as a potential candidate in the future of sugarcane biotechnology 

and the production of second generation bioethanol. Further research would involve field 

trials to determine the improvements found in the current research are replicable in field 

grown plants. 

 

The third research aim of this thesis was to improve the digestibility of sugarcane bagasse 

through the expression of RNAi constructs targeting genes involved in lignin biosynthesis. 

This alternative biotechnological approach to lignin alteration in sugarcane was presented 

in this thesis as the blanket down-regulation of genes within the lignin biosynthesis 

pathway by transcription factors, such as MYBs, may have complex outcomes difficult to 

predict or control. Specifically targeting genes for down-regulation via transgenic 

expression of RNAi cassettes may allow for a more controlled outcome to the lignin 

polymer and its deposition rate. The application of this technology to sugarcane is 

supported by recent publications in which an RNAi construct targeting COMT, a gene within 

the lignin biosynthesis pathway, was expressed in sugarcane and resulted in a reduction to 

lignin content and improved glucose release after enzymatic hydrolysis (Jung et al., 2012; 

Jung et al., 2013)., This aim focused specifically on the RNAi down-regulation of CCoAOMT, 

F5H and COMT genes of the lignin biosynthesis pathway as the literature suggests that 
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targeting these genes may change the H:G:S monomer ratio, as well as the deposition rate, 

of lignin polymers which may further improve the bioethanol yield from this biomass. There 

are currently no published reports of enzymatic hydrolysis being performed on a monocot 

species reduced in CCoAOMT or F5H expression. This research will provide insight into this 

area, as well as confirming if the published results in COMT-RNAi sugarcane can be 

replicated in an important commercial Australian sugarcane cultivar.  

 

This research objective required the completion of five specific aims. Initially sequences of 

CCoAOMT, F5H and COMT were cloned and used in the construction of RNAi vectors, which 

were subsequently used in the transformation and regeneration of transgenic sugarcane. 

The expression levels of CCoAOMT, F5H and COMT were assessed in transgenic sugarcane 

to confirm that these genes were being down-regulated by their respective RNAi vector 

prior to secondary cell wall composition being quantified. A selection of these plants 

underwent enzymatic hydrolysis to determine any improvements to glucose release 

resulting from the targeting of specific lignin biosynthesis genes. The final aim was 

quantifying juice sucrose levels to confirm the down-regulation of CCoAOMT, F5H or COMT 

did not negatively affect potential sucrose production from these plants.  

 

qPCR analysis of regenerated plants after transformation with RNAi vectors yielded mixed 

results. It appeared that CCoAOMT and F5H expression was being reduced in maturing 

internodes, but not in younger internode tissue, whereas COMT expression levels were 

either comparable to controls or unexpectedly increased in young and maturing stem 

tissue. These changes in expression levels were not reflected in the cell wall compositions 

as only a single COMT-RNAi plant showed a reduction in lignin content and two plants (one 

CCoAOMT-RNAi and one F5H-RNAi) had increased lignin contents. Overall there was little 

change to cellulose and hemicellulose levels across the CCoAOMT, F5H or COMT RNAi 

plants. As expected, the COMT-RNAi plant with reduced lignin content released more 

glucose after enzymatic hydrolysis, though less expectedly, three additional plants with no 

change to lignin content also had higher glucose yields than controls. One possible reason 

for this finding is that these plants, while not having a reduction to total lignin content, had 

a different H:G:S monomer ratio due to the roles of CCoAOMT, F5H and COMT in the lignin 

biosynthesis pathway. NMR is currently being optimised to assess this possibility, and if 

results can confirm a change in the H:G:S monomer ratio of the lignin polymers in RNAi 

plants with improved saccharification but no change to lignin content, then this may 

contribute to a new avenue of research. Additionally, two F5H-RNAi plants had increased 
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levels of juice sucrose, with the remaining RNAi plants analysed having levels comparable to 

controls.  

 

The results in this study are not as conclusive as those of Jung et al. (2012) and Jung et al. 

(2013) but do provide some positive outcomes in terms of improved saccharification of 

bagasse, as well as representing the first report of CCoAOMT and F5H being targeted by 

RNAi in sugarcane, and COMT being targeted in the Australian cultivar KQ228. The current 

results also suggest a number of avenues for further research. Firstly, a larger sample size 

would be required to assess the repeatability that RNAi targeting of CCoAOMT and F5H can 

improve saccharification of bagasse without reducing lignin content, and thus potentially 

avoiding any detrimental phenotypes associated with decreased lignin. Additionally, NMR 

results will also provide information on the H:G:S monomer ratios, and if they are found to 

be different in the transgenic RNAi plants with improved digestibility, this is another 

possible option to reduce lignin polymer recalcitrance in sugarcane. The finding that field 

grown COMT-RNAi sugarcane released higher levels of glucose after enzymatic hydrolysis 

(Jung et al., 2013) is strong support that RNAi technology can be applied to field-grown 

Australian cultivars with similar results, but remains to be assessed.  

 

The overall aim of these research projects was to explore lignin biosynthesis in sugarcane 

with a view to alter the deposition of lignin polymers for improved enzymatic digestion. 

This was successfully achieved as the expression patterns of nine of the lignin biosynthesis 

pathway genes were determined, and this is the first known study to align these expression 

patterns with lignin deposition. Additionally, it was confirmed that biotechnology, in the 

form of MYB transcription factors and RNAi vectors, could be applied to a commercial 

Australian sugarcane cultivar to improve the digestion of bagasse, an important 

advancement towards decreasing the production costs of second generation bioethanol. In 

common, future research for the three research projects presented in this thesis includes 

analysis of field grown plants. This represents a large, but necessary step towards the 

realisation of GM sugarcane being grown for the dual purposes of sucrose and biofuel 

production. Assessing the repeatability of the results presented in this thesis through the 

analysis of a larger sample size of glasshouse grown plants beforehand would be a 

recommended step before taking this research to field trials.  

 

The results presented in this thesis increase the understanding of lignin biosynthesis and 

deposition in sugarcane and will be of value when deciding the most appropriate 
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approaches to facilitate the development of commercial sugarcane cultivars with increased 

saccharification potential of their bagasse. Sugarcane bagasse is a currently underutilised 

source of fermentable lignocellulosic sugars, the use of which for bioethanol production 

can economically benefit sugarcane farmers, and increase the sustainability of the 

sugarcane industry, by adding value to a waste biomass product (Canilha et al., 2012; 

Lakshmanan et al., 2005). Additionally, any research and development into biofuel 

technology conducted in Australia will potentially have a very large global appeal due to the 

majority of sugarcane being grown in other countries, especially Brazil, India, China and 

Thailand (Botha and Moore, 2014) and the majority of bioethanol currently being produced 

in the USA and Brazil (Chong and O’Shea, 2012). The commercialisation of renewable 

energy will also have environmental benefits by reducing oil use and reliance (Murray and 

King, 2012; Yang et al., 2013). For lignin reduced GM crops to become commercially viable 

and accepted by the farming community, they require levels of fitness equivalent to that of 

current wild type plants (Baxter and Stewart, 2013; Eudes et al., 2014), since it is 

established that reducing lignin content can have detrimental effects on plant growth and 

development (Bonawitz and Chapple, 2013). The results presented in this thesis found 

increases in saccharification in both MYB and RNAi expressing plants with phenotypes 

generally comparable to controls. This is a positive finding and supports Jung et al. (2012) 

and Jung et al. (2013) that the application of biotechnology to produce lignin reduced 

sugarcane is a step forward for the production of cost competitive second generation 

bioethanol from bagasse. 
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APPENDIX A: Media recipes 

Lysozyme Broth (LB) liquid: 1% (w/v) bacto-tryptone, 0.5% (w/v) bacto yeast extract, 0.5% 

(w/v) NaCl, pH 7 – 7.5 (NaOH) (Bertani, 1951; Miller, 1972). 

Lysozyme Broth (LB) solid: LB Liquid with 15g/L agar added.  

Murashige and Skoog basal medium (MS) liquid: MS medium with vitamins 

(PhytoTechnology Laboratories, KS, USA), 2% sucrose (w/v), pH 5.7 (KOH) (Murashige and 

Skoog, 1962). 

Murashige and Skoog basal medium (MS) semi-solid: MS liquid with 8g/L agar added. 

MSC3 medium semi-solid: MS liquid, 2% sucrose (w/v), 0.05% casein hydrolysate (w/v), 10% 

coconut water (v/v), 3mg/L 2,4-dichlorophenoxy acetic acid (2,4-D) (w/v), 8g/L agar, pH 5.7 

(KOH) (Bower et al., 1996).  

MSC3 osmotic medium semi-solid: MSC3 medium semi-solid, 0.2M mannitol, 0.2M sorbitol 

(Bower et al., 1996).  

SOB medium liquid: 2% tryptone (w/v), 0.5% yeast extract (w/v), 10mM NaCl, 2.5mM KCl, 

10mM MgCl2, 10mM MgSO4, pH 6.7 – 7.0 (Hanahan, 1983). 

Transformation buffer (TB) liquid: 10mM Pipes, 15mM CaCl2, 250mM KCl, pH 6.7 (KOH), 

55mM MnCl2 (Inoue et al., 1990). 

MS regeneration media liquid: MS liquid, 0.2% myo-inositol (w/v). 
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APPENDIX B: Sugarcane accession sequences and constructed EST consensus sequences (5' 

- 3') for qPCR primer design (Table 3.1) 

 

The CCoAOMT, F5H and COMT sequences amplified for RNAi construct design are 

underlined. 

 

Phenylalanine ammonia lyase (PAL) 

ATGGCGGGCAACGGCGCCATCGTGGAGAGCGACCCGCTGAACTGGGGCGCGGCGGCAGCGGAGC

TGGCGGGGAGCCACCTGGACGAGGTGAAGCGCATGGTGGCGCAGGCCCGGCAGCCCGTGGTGAA

GATCGAGGGCTCCACGCTCCGCGTCGGCCAGGTGGCCGCCGTCGCCGCCGCCAAGGACGCGTCGG

GCGTCGCCGTCGAGCTCGACGAGGAGGCCCGCCCCCGCGTCAAGGCCAGCAGCGAGTGGATCCTC

GACTGCATCGCCCACGGCGGCGACATCTACGGCGTCACCACCGGCTTCGGCGGCACCTCCCACCGC

CGCACCAAGGACGGGCCCGCTCTCCAGGTCGAGCTGCTCAGGCATCTCAACGCCGGAATCTTCGGC

ACCGGCAGCGATGGCCACACGCTGCCGTCGGAGGTCGTCCGCGCGGCGATGCTGGTGCGCATCAA

CACCCTCCTCCAGGGCTACTCGGGCATCCGCTTCGAGATCCTGGAGGCCATCACCAAGCTGCTCAAC

ACCGGGGTCAGCCCGTGCCTGCCGCTCCGGGGCACCATCACCGCGTCGGGCGACCTCGTCCCGCTC

TCCTACATCGCCGGCCTCATCACGGGCCGCCCCAACGCGCAGGCCACCACCGTCGACGGGAGGAAG

GTGGACGCCGCCGAGGCGTTCAAGATCGCCGGCATCGAGGGCGGCTTCTTCAAGCTCAACCCCAA

GGAAGGTCTCGCCATCGTCAACGGCACCTCCGTGGGCTCCGCGCTCGCGGCCACCGTGATGTACGA

CGCCAACGTCCTCACCGTCCTGTCCGAGGTCCTGTCCGCCGTCTTCTGCGAGGTGATGAACGGCAA

GCCCGAGTACACCGACCACCTCACCCACAAGCTCAAGCACCACCCGGGGTCCATCGAGGCCGCCGC

CATCATGGAGCACATCCTGGACGGCAGCGCCTTCATGAAGCACGCCAAGAAGGTGAACGAGCTGG

ACCCGCTGCTCAAGCCCAAGCAGGACAGGTACGCGCTCCGCACGTCGCCGCAGTGGCTGGGCCCCC

AGATCGAGGTCATCCGCGCCGCCACCAAGTCCATCGAGCGCGAGGTCAACTCCGTCAACGACAACC

CGGTCATCGACGTCCACCGTGGCAAGGCGCTGCACGGCGGCAACTTCCAGGGCACGCCCATCGGC

GTGTCCATGGACAACGCTCGCCTCGCCATCGCCAACATCGGCAAGCTCATGTTCGCGCAGTTCTCGG

AGCTGGTCAACGAGTTCTACAACAACGGGCTCACCTCCAACCTGGCCGGCAGCCGCAACCCCAGCC

TGGACTACGGCTTCAAGGGCACGGAGATCGCCATGGCCTCCTACTGCTCTGAGCTGCAGTACCTGG

GCAACCCCATCACCAACCACGTNCAGAGCGCGGAGCAGCACAACCAGGACGTCAACTCCCTCGGCC

TCGTCTCCGCCAGGAAGACCGCCGAGGCCATCGACATCCTGAAGCTCATGTCGTCCACCTACATCGT

GGCGCTGTGCCAGGCCATCGACCTGCGCCACCTCGAGGAGAACATCAAGACGTCGGTGAAGAACA

CGGTGACCCAGGTGGCGAAGAAGGTGCTGACCATGAACCCGTCGGGCGACCTCTCCAGCGCGCGC

TTCAGCGAGAAGGAGCTCATCACCGCCATCGACCGCGAGGGCGTGTTCACCTACGCGGAGGACCC

GGCCAGCGGCAGCCTGCCGCTGATGCAGAAGCTGCGCTCCGTGCTGGTGGACCACGCCCTCAGCA

GCGGCGACGCGGGAACGGGAGCCCTCCGTGTTCTCCAAGATCACCAATTTCGAGGAGGAGCTCCG
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CGCGGGGCTGGCCCGGGAGGTGGAAGGCGCCCCGCTTCGCCGTGGGCCGAGGGCACCGCCCCCG

GGCGAAACCGGAACTGGGACAGCCGGTCGTTCCCGCTGTACCGCTTCGTCCGCGAGGAGCTCGGC

TGCGTGTTCCTGACCGGCGAGAAGCTCAAGTCCCCCGGCGAGGAGTGCACCAAGGTGTTCAACGG

CATCAGCCAGGGCAAGCTCGTCGACCCCATGCTCGAGTGCCTCAAGGAGTGGGACGGCAAGCCGC

TGCCCATCAACGTCGTCAACTAA 

 

Cinnamate 4-hydroxylase (C4H)  

ATGGACCTCGTGCTCCTGGAGAAGGCCCTTCTGGGCCTGTTCGCGGCGGCGGTGGTGGCCATCGCC

GTCGCAAAGCTGACCGGCAAGCGGTACCGCCTCCCTCCCGGCCCGCCAGGCGCCCCCGTGGTGGG

CAACTGGCTACAGGTCGGCGACGACCTGAACCACCGCAACCTGATGGCCCTCGCGAAGCGGTTCG

GCGACATCTTCCTCCTGCGCATGGGCGTGCGCAACCTGGTGGTGGTCTCGACCCCCGAGCTCGCCA

AGGAGGTGCTCCACACGCAGGGCGTGGAGTTCGGGTCCCGCACCGCAACGTCGTCTTCGACATCTT

CACGGGGAAGGGCCAGGACATGGTGTTCACCGTGTACGGCGACCACTGGCGCAAGATGCGGCGG

ATCATGACGGTGCCCTTCTTCACCAACAAGGTGGTCGCGCAGAACCGCGCCGGGTGGGAGGAGGA

GGCCCGCCTCGTGGTGGAGGACGTGCGGCGGGACCCCAGGGCCGCCGCCGAGGGCGTCGTGATC

CGGAAGCG 

 

Coumarate 3-hydroxylase (C3H) 

AGCGGTTCGTGAACGCGGCCGGCGAGCTGGACGAGCAAGGGCGCGAGTTCAAGGGGATCGTTCA

CAACGGCATCAAGATCGGCGCGTCCCTCTCCATCGCGCAGCACATCCCGTGGCTGCGGTGGCTGGC

CCCCGTCGACGAGCAGGTCTTCAAAGCCCACGGCGAACGGCGCGACCGCCTCACCGTGAAGATCAT

GGAGGAGCACGCCAAGGCCCTCAAGCAGCGCGGCGCCCAGCAGCATTTCGTCGACGCGCTCTTCA

CTCTCAGGGACAAGTACGACCTCAGCGACGACACCGTCATAGGCCTCCTCTGGGACATGATCACCG

CCGGCACAGACACGACGGTGATCTCGGTGGAGTGGGCAATGGCGGAGCTGCTGAGGAACCCCAG

GGTGCAGGAGAAGCTGCAGGAGGAGCTGGACCACGTCGTCGGCCGCGAC 

 

4-coumarate-CoA ligase (4CL) 

ATGGGTTCCGTGGACACGGCGGTCGCGGTGCCGGTGCCGGTGGCGGAGCCGGCGGCGGAGGAGA

AGGCCGTGGTGTTCCGGTCCAAGCTTCCCGACATCGAGATCAACAACAGCCAGTCGCTGCACGCCT

ACTGCTTCGGGAAGATGAGCGAGGTGGCGGACCGCGCCTGCCTCATCGACGGGCAGACCGGCGCG

TCGTACACGTACGCGGAGGTGGAGTCCCTGTCCCGCCGCGCCGCGTCGGGCCTGCGCGCCATGGG

CGTGGGCAAGGGCGACGTGGTGATGAACCTGCTCCGCAACTGCCCCGAGTTCGCCTTCACCTTCCT

GGGCGCGGCCCGGCTGGGCGCCGCCACCACCACGGCCAACCCGTTCTACACCCCGCACGAGATCCA

CCGCCAGGCGGAGGCGGCCGGCGCCAAGCTCATCGTCACCGAGGCCTGCGCCGTGGAGAAGGTG

CGCGAGTTCGCGGCG 
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Caffeoyl CoA 3-O-methyltransferase (CCoAOMT) 

ATGGCCACCACGGCGACCGAGGCGGCCAAGGCCGCGCCGGCGGAGCAGGCCAACGGCGAGCAGA

AGACGCGCCACTCCGAGGTCGGCCACAAGAGCCTGCTCAAGAGCGACGACCTCTACCAGTACATCC

TGGACACGAGCGTGTACCCGCGGGAGCCGGAGAGCATGAAGGAGCTCCGCGAGATCACCGCCAA

GCACCCATGGAACCTGATGACGACCTCCGCCGACGAGGGCCAGTTCCTCAACATGCTCATCAAGCT

CATCGGCGCCAAGAAGACCATGGAGATCGGCGTCTACACCGGCTACTCCCTCCTCGCCACCGCGCT

CGCTCTCCCGGAGGACGGCACGATCTTGGCCATGGACATCAACCGCGAGAACTACGAGCTGGGCCT

GCCCTGCATCGAGAAGGCCGGCGTCGCCCACAAGATCGACTTCCGCGAGGGCCCCGCGCTCCCCGT

CCTCGACGACCTCATCGCAGACGAGAAGAACCACGGGTCGTTCGACTTCGTCTTCGTGGACGCCGA

CAAGGACAACTACCTCAACTACCACGAGCGGCTGCTCAAGCTGGTGAAGCTGGGGGGCCTCATCG

GCTACGACAACACGCTGTGGAACGGCTCCGTCGTGCTCCCCGACGACGCCCCCATGCGCAAGTACA

TCCGCTTCTACCGCGACTTCGTGCTCGTCCTCAACAAGGCGCTCGCCGCCGACGAGCGCGTCGAGAT

CTGCCAGCTCCCCGTCGGCGACGGCGTCACCCTCTGCCGCCGCGTCAAGTGA 

 

Ferulate 5-hydroxylase (F5H) 

ATGGACCTGCAGGGGATCAACCGCCGCCTCCGCGCCGCCCGGTCCGCGCTGGACCGGTTCATCGAC

AAGATCATCGACGAGCACGTGAAGCGCGGGAAGAGCCCCGACGACGCCGACGCCGACATGGTCG

ACGACATGCTCGCCTTCTTCGCCGAGGCCAAGCCGCCCAAGAAGGGGCCCGCCGCCGCCGCGGAC

GGTGACGACCTGCACAACACCCTCCGGCTCACGCGCGACAATATCAAGGCTATCATCATGGACGTG

ATGTTTGGCGGGACGGAGACGGTGGCGTCGGCGATCGAGTGGGCGATGTCGGAGATGATGCACA

GCCCCGACGACCTCCGCCGCGTGCAGCAGGAGCTCGCCGACGTCGTGGGCCTGGACCGGAACGTG

AACGAGTCGGACCTGGACAAGCTCCCCTTCCTCAAGTGCGTCATCAAGGAGACGCTCCGGCTGCAC

CCGCCGATCCCGCTGCTCCTCCACGAGACCGCCGACGACTGCGTCGTGGGCGGCTACTCCGTGCCC

AAGGGCTCCCGCGTCATGATCAACGTGTGGGCCATCGGCCGCCACCGCGGGTCCTGGAAGGACGC

CGACGTGTTCCGGCCGTCCAGGTTCACGCCCGAGGGCGAGGCCGCGGGGCTCGACTTCAAGGGCG

GCTGCTTCGAGTTCCTGCCCTTCGGCTCCGGCCGCCGGTCCTGCCCCGGCACGGCGCTGGGCCTGT

ACGCGCTGGAGCTCGCCGTCGCCCAGCTCGCGCACGGCTTCAACTGGTCGCTGCCCGACGGGATGA

AGCCGTCGGAGCTGGACATGGGCGACATCTTCGGCCTCACCGCGCCACGCGCCACAAGGCTCTACG

CCGTGCCCACGCCCCGGCTCAACTGCCCCTTGTACTGA 

 

Cinnamyl alcohol dehydrogenase (CAD) 

ATGGGGAGCCTGGCGTCCGAGAGGAAGGTGGTCGGGTGGGCCGCCAGGGACGCCACCGGACACC

TCGCCCCCTACACCTACACCCTCAGGAGCACAGGCCCTGAAGATGTGGTGGTGAAGGTGCTCTACT

GTGGGATCTGCCACACAGACATCCACCAGGCCAAGAACCACCTCGGGGCTTCAAAGTACCCCATGG

TCCCTGGGCACGAAGTGGTCGGTGAGGTGGTGGAAGTCGGGCCCGAAGTGACCAAGTACGGCGTC
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GGCGACGTGGTAGGCGTCGGGGTGATCGTCGGGTGCTGCCGCGAGTGCAAACCCTGCAAGGCCAA

CGTTGAGCAGTACTGCAACAAGAAGATCTGGTCCTACAACGATGTCTACACTGACGGCCGGCCCAC

GCAGGGCGGCTTCGCCTCCACCATGGTCGTCGACCAGAAGTTTGTGATGAAGATCCCGGCGGGTCT

GGCGCCGGAGCAAGCGGCGCCGCTGCTGTGCGCGGGCGTTACGGTGTACAGCCCGCTGAAAGCCT

TTGGGCTGACGACCCCGGGCCTCCGTGGCGCGATCCTGGGCCTCGGCGGCGTGGGCCACATGGGC

GTGAAGGTGGCCAAGGCCATGGGCCACCACGTGACGGTGATCAGCTCGTCGTCCAAGAAGCGCGC

GGAGGCGATGGACCACCTGGGCGCGGACGCGTACCTGGTGAGCTCGGACGCGGCGGCCATGGCG

GCGGCCGCCGACTCGCTGGACTACATCATCGACACGGTGCCCGTGCACCACCCGCTGGAGCCCTAC

CTGGCGCTGCTGAAGCTGGACGGCAAGCACGTTCTGCTGGGCGTCATCGGCGAGCCCCTCAGCTTC

GTGTCCCCAATGGTGATGCTGGGGCGGAAGGCCATCACGGGGAGCTTCATCGGCAGCATCGACGA

GACCGCCGAGGTGCTCCAGTTCTGCGTCGACAAGGGGCTCACCTCCCAGATCGAGGTGGTCAAGAT

GGGGTACGTGAACGAGGCGCTGGATCGGCTGGAGCGCAACGACGTCCGCTACCGCTTCGTCGTCG

ACGTCGCCGGCAGCAACGTCGAGGAGGTGGCGGCCGATGCGCCGAGCAACTGA 

 

Cinnamoyl-CoA reductase (CCR) 

ATGACCGTCGTCGACGCCGTGTCCACTGATGCCGCCGGCGCCCCTGCAGCCGCCGCGGCACCGGTG

CAGCAGCCCGGGAACGGGCAGACCGTGTGCGTCACCGGTGCGGCCGGGTACATCGCCTCGTGGCT

CGTCAAGCTGCTGCTCGAGAAGGGATACACTGTCAAGGGAACAGTCAGGAACCCAGATGACCCGA

AGAACGCGCACCTCAAGGCGCTGGACGGCGCCGCCGAGCGGCTGATCCTCTGCAAGGCCGACCTC

CTGGACTACGACGCCATCTGCCGCGCCGTGCAGGGCTGCCATGGCGTCTTCCACACCGCCTCCCCG

GTCACCGACGACCCGGAGCAAATGGTGGAGCCGGCGGTGCGCGGCACGGAGTACGTGATCAACG

CGGCGGCGGAGGCCGGCACGGTGCGGCGGGTGGTGTTCACGTCCTCCATCGGCGCGGTGACCATG

GACCCCAGCCGCGGGCCCGACGTCGTGGTCGACGAGTCGTGCTGGAGCGACCTCGAGTTCTGCAA

GAAAACCAGGAACTGGTACTGCTACGGCAAGGCGGTGGCGGAGCAGGCGGCGTGGGACGCGGCC

CGGCAGCGCGGCGTGGACCTGGTGGTGGTGAACCCGGTGCTGGTGGTGGGCCCGCTGCTGCAGCC

GACGGTGAACGCCAGCATCGCGCACGTGGTCAAGTACCTGGACGGCTCCGCGCGCACCTTCGCCAA

CGCCGTGCAGGCGTACGTGGACGTCCGCGACGTCGCCGACGCGCACCTCCGCGTCTTCGAGAGCCC

GCGCGCGTCCGGCCGATACCTCTGCGCCGAGCGCGTCCTCCACCGCGAGGACGTCGTCCGCATCCT

CGCCAAGCTCTTCCCCGAGTACCCCGTCCCCACCAGGTGCTCCGACGAGGTGAACCCGCGGAAGCA

GCCGTACAAGTTCTCGAACCAGAAGCTCCGGGACCTGGGCCTGGAGTTCCGGCCGGTGAGCCAGT

CGCTGTACGACACGGTGAAGAACCTTCAGGAGAAGGGCCACCTGCCGGTGCTCGGAGAGCAGACG

ACGGAGGCCGACGACAAGGAGGCGGCCCCCGCCGCCGCCGAGCTGCAGCAGGGAGGAATCGCCA

TCCGTGCGTAA 
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Caffeic acid 3-O-methyltransferase (COMT) 

ATGGGCTCGACCGCCGAGGACGTGGCCGCGGTGGCGGACGAGGAGGCGTGCATGTACGCGATGC

AGCTGGCGTCGGCGTCCATCCTGCCCATGACGCTGAAGAACGCGCTGGAGCTGGGCCTGCTGGAG

GTGCTGCAGGCGGAGGCGCCTGCGGGGAAGGCGCTGGCGCCCGAGGAGGTGGTGGCGCGGCTG

CCCGTGGCGCCCACCAATCCCGACGCGGCGGACATGGTGGACCGCATGCTCCGCCTCCTCGCCTCC

TACGACGTCGTCAAGTGCCAGATGGAGGACAAGGACGGCAAGTACGAGCGGCGGTACTCCGCCGC

CCCCGTCGGCAAGTGGCTCACCCCCAACGAGGACGGCGTCTCCATGGCCGCGCTCACGCTCATGAA

CCAGGACAAGGTCCTCATGGAGAGCTGGTACTACCTCAAGGACGCGGTGCTTGACGGCGGCATCC

CGTTCAACAAGGCGTACGGGATGACGGCGTTCGAGTACCACGGCACGGACCCGCGCTTCAACCGC

GTGTTCAACGAGGGCATGAAGAACCACTCGGTCATCATCACCAAGAAGCTCCTCGAGTTCTACACG

GGCTTCGAGGGCGTCTCCACGCTCGTCGACGTGGGCGGCGGCATCGGCGCCACCCTGCACGCCATC

ACCTCGCACCACCCGCAGATCAAGGGCATCAACTTCGACCTCCCCCACGTGATCTCCGAGGCGCCGC

CGTTCCCCGGCGTGCAGCACGTCGGCGGGGACATGTTCAAGTCGGTGCCGGCGGGCGACGCCATC

CTCATGAAGTGGATCCTCCACGACTGGAGCGACGCGCACTGCGCCACGCTGCTCAAGAACTGCTAC

GACGCGCTGCCGGAGAACGGCAAGGTGATCGTCGTCGAGTGCGTGCTGCCGGTGAACACCGAGGC

CGTCCCGAAGGCGCAGGGCGTGTTCCACGTCGACATGATCATGCTCGCGCATAACCCCGGCGGCAG

GGAGCGGTACGAGCGGGAGTTCCACGACCTCGCCAAGGGCGCCGGGTTCTCCGGGTTCAAGGCCA

CCTACATCTACGCCAACGCCTGGGCCATCGAGTTCATCAAGTAA 
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APPENDIX C: qPCR ΔCt values of lignin biosynthesis genes in sugarcane stem sections and roots for expression profile 

 

TABLE C.1: Normalised ΔCt values of lignin biosynthesis genes showing standard error of the mean. qPCR analysis was performed on lignin biosynthesis gene 

expression levels in five stem sections (A-E) and roots (n = 5 per tissue section per gene). Data was normalised against section A for each individual gene.  

 

Gene section A section B section C section D section E Roots 

 
ΔCt (norm.) +/- ΔCt (norm.) +/- ΔCt (norm.) +/- ΔCt (norm.) +/- ΔCt (norm.) +/- ΔCt (norm.) +/- 

PAL 1.00 0.16 0.22 0.06 0.08 0.02 0.06 0.02 0.04 0.01 1.00 0.08 
C4H 1.00 0.12 1.21 0.09 1.03 0.05 1.14 0.09 1.31 0.11 8.97 0.57 
C3H 1.00 0.10 2.33 0.50 1.66 0.20 1.33 0.09 1.53 0.22 1.69 0.10 
4CL 1.00 0.27 0.36 0.04 0.29 0.04 0.37 0.07 0.33 0.03 1.68 0.18 
CCoAOMT 1.00 0.18 0.65 0.11 0.81 0.13 0.73 0.13 0.84 0.12 0.72 0.03 
F5H 1.00 0.28 1.83 0.23 1.18 0.28 1.32 0.45 1.30 0.30 1.22 0.16 
CAD 1.00 0.23 0.58 0.10 0.25 0.06 0.27 0.08 0.39 0.07 0.64 0.10 
CCR 1.00 0.23 0.28 0.07 0.16 0.04 0.15 0.05 0.09 0.03 0.78 0.06 
COMT 1.00 0.19 0.37 0.07 0.25 0.04 0.24 0.03 0.25 0.04 0.62 0.04 
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TABLE C.2: ΔCt values of lignin biosynthesis genes showing standard error of the mean. qPCR analysis was performed on lignin biosynthesis gene expression 

levels in five stem sections (A-E) and roots (n = 5 per tissue section per gene). Results represent raw data before normalisation.  

 

Gene section A section B section C section D section E Roots 
  ΔCt +/- ΔCt +/- ΔCt +/- ΔCt +/- ΔCt +/- ΔCt +/- 
PAL 97.57 15.63 21.11 5.81 8.00 1.73 6.05 1.56 3.46 1.01 97.56 7.50 
C4H 0.21 0.03 0.26 0.02 0.22 0.01 0.24 0.02 0.28 0.02 1.90 0.12 
C3H 0.08 0.01 0.19 0.04 0.14 0.02 0.11 0.01 0.13 0.02 0.14 0.01 
4CL 0.31 0.09 0.11 0.01 0.09 0.01 0.12 0.02 0.11 0.01 0.53 0.06 
CCoAOMT 33.79 6.08 21.89 3.83 27.45 4.32 24.81 4.38 28.50 4.07 24.30 1.17 
F5H 0.17 0.05 0.32 0.04 0.20 0.05 0.23 0.08 0.22 0.05 0.21 0.03 
CAD 1.66 0.38 0.97 0.16 0.42 0.10 0.45 0.13 0.64 0.12 1.06 0.16 
CCR 14.68 3.37 4.11 1.02 2.41 0.55 2.19 0.73 1.30 0.47 11.50 0.92 
COMT 24.79 4.78 9.08 1.85 6.16 0.95 5.96 2.09 6.59 0.82 15.31 0.96 
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APPENDIX D: Sequences of maize Ubiquitin promoter (Ubi) and 5' UTR intron (iUbi) 

(Christensen and Quail, 1996; Christensen et al., 1992) and the nopaline synthase (nos) 

terminator (Bevan et al., 1983a) of expression vectors used in this research. 

 

Sequences of maize Ubiquitin promoter (Ubi) and 5' UTR intron (iUbi) underlined (5' - 3') 

CTGCAGTGCAGCGTGACCCGGTCGTGCCCCTCTCTAGAGATAATGAGCATTGCATGTCTAAGTTATA

AAAAATTACCACATATTTTTTTTGTCACACTTGTTTGAAGTGCAGTTTATCTATCTTTATACATATATTT

AAACTTTACTCTACGAATAATATAATCTATAGTACTACAATAATATCAGTGTTTTAGAGAATCATATA

AATGAACAGTTAGACATGGTCTAAAGGACAATTGAGTATTTTGACAACAGGACTCTACAGTTTTATC

TTTTTAGTGTGCATGTGTTCTCCTTTTTTTTTGCAAATAGCTTCACCTATATAATACTTCATCCATTTTA

TTAGTACATCCATTTAGGGTTTAGGGTTAATGGTTTTTATAGACTAATTTTTTTAGTACATCTATTTTA

TTCTATTTTAGCCTCTAAATTAAGAAAACTAAAACTCTATTTTAGTTTTTTTATTTAATAATTTAGATAT

AAAATAGAATAAAATAAAGTGACTAAAAATTAAACAAATACCCTTTAAGAAATTAAAAAAACTAAG

GAAACATTTTTCTTGTTTCGAGTAGATAATGCCAGCCTGTTAAACGCCGTCGACGAGTCTAACGGAC

ACCAACCAGCGAACCAGCAGCGTCGCGTCGGGCCAAGCGAAGCAGACGGCACGGCATCTCTGTCG

CTGCCTCTGGACCCCTCTCGAGAGTTCCGCTCCACCGTTGGACTTGCTCCGCTGTCGGCATCCAGAA

ATTGCGTGGCGGAGCGGCAGACGTGAGCCGGCACGGCAGGCGGCCTCCTCCTCCTCTCACGGCAC

CGGCAGCTACGGGGGATTCCTTTCCCACCGCTCCTTCGCTTTCCCTTCCTCGCCCGCCGTAATAAATA

GACACCCCCTCCACACCCTCTTTCCCCAACCTCGTGTTGTTCGGAGCGCACACACACACAACCAGATC

TCCCCCAAATCCACCCGTCGGCACCTCCGCTTCAAGGTACGCCGCTCGTCCTCCCCCCCCCCCCCTCT

CTACCTTCTCTAGATCGGCGTTCCGGTCCATGGTTAGGGCCCGGTAGTTCTACTTCTGTTCATGTTTG

TGTTAGATCCGTGTTTGTGTTAGATCCGTGCTGCTAGCGTTCGTACACGGATGCGACCTGTACGTCA

GACACGTTCTGATTGCTAACTTGCCAGTGTTTCTCTTTGGGGAATCCTGGGATGGCTCTAGCCGTTC

CGCAGACGGGATCGATTTCATGATTTTTTTTGTTTCGTTGCATAGGGTTTGGTTTGCCCTTTTCCTTTA

TTTCAATATATGCCGTGCACTTGTTTGTCGGGTCATCTTTTCATGCTTTTTTTTGTCTTGGTTGTGATG

ATGTGGTCTGGTTGGGCGGTCGTTCTAGATCGGAGTAGAATTCTGTTTCAAACTACCTGGTGGATTT

ATTAATTTTGGATCTGTATGTGTGTGCCATACATATTCATAGTTACGAATTGAAGATGATGGATGGA

AATATCGATCTAGGATAGGTATACATGTTGATGCGGGTTTTACTGATGCATATACAGAGATGCTTTT

TGTTCGCTTGGTTGTGATGATGTGGTGTGGTTGGGCGGTCGTTCATTCGTTCTAGATCGGAGTAGA

ATACTGTTTCAAACTACCTGGTGTATTTATTAATTTTGGAACTGTATGTGTGTGTCATACATCTTCATA

GTTACGAGTTTAAGATGGATGGAAATATCGATCTAGGATAGGTATACATGTTGATGTGGGTTTTACT

GATGCATATACATGATGGCATATGCAGCATCTATTCATATGCTCTAACCTTGAGTACCTATCTATTAT

AATAAACAAGTATGTTTTATAATTATTTTGATCTTGATATACTTGGATGATGGCATATGCAGCAGCTA

TATGTGGATTTTTTTAGCCCTGCCTTCATACGCTATTTATTTGCTTGGTACTGTTTCTTTTGTCGATGC

TCACCCTGTTGTTTGGTGTTACTTCTGCA 
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Sequence of the nopaline synthase (nos) terminator (5' - 3') 

ATCGTTCAAACATTTGGCAATAAAGTTTCTTAAGATTGAATCCTGTTGCCGGTCTTGCGATGATTATC

ATATAATTTCTGTTGAATTACGTTAAGCATGTAATAATTAACATGTAATGCATGACGTTATTTATGAG

ATGGGTTTTTATGATTAGAGTCCCGCAATTATACATTTAATACGCGATAGAAAACAAAATATAGCGC

GCAAACTAGGATAAATTATCGCGCGCGGTGTCATCTATGTTACTAGATC 
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APPENDIX E: Generic MYB expression vector map (ZmUbi-iUbi-MYB-nos/pBS) showing 

positions of maize Ubiquitin promoter (Ubi) and 5' UTR intron (iUbi) (Christensen and Quail, 

1996; Christensen et al., 1992) and the nopaline synthase (nos) terminator (Bevan et al., 

1983a). Individual MYB31 and MYB42 ORF and UTR sequences are seen in Appendix F and 

were cloned into the Zm MYB gene insert site of this expression vector. 
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APPENDIX F: Nucleotide and amino acid alignments of MYB31 and MYB42 

Alignments of published (Fornalé et al., 2006) and cloned nucleotide and amino acid 

sequences (ORF and UTR) for ZmMYB31 (NM_001112479) and ZmMYB42 (NM_001112539). 

Alignments were made using the Kyoto University Bioinformatics Center website 

(http://www.genome.jp/tools-bin/clustalw) and amino acid translations were made using 

the ORF region of each MYB nucleotide sequences and Vector NTI software. The start and 

stop codons are underlined in nucleotide sequence alignments with the 5' and 3' UTR 

regions being upstream and downstream of the start and stop codons respectively. The R2 

and R3 motifs in each sequence are underlined with light grey and dark grey shading 

respectively.  

* = identical match,   : = conserved substitutions,   . = semi-conserved substitution 

 

 

MYB31 nucleotide sequence alignment 

MYB31_ORF       ------------------------------------------------------------ 
MYB31_UTR       ------------ACAGCAGCAACAACAACAACAACCTCCACTGCCGCAACCCACCGAGAG 
NM_001112479    GCATCGCACCTCACAGCAGCAGCAACAACAACAACCTCCACTGCCGCAACCCACCGAGAG 
                            ********* ************************************** 
 
MYB31_ORF       ------------------------------------------------------------ 
MYB31_UTR       GCGAGACCGGCGGCGGCAAAAGGACGATACAAAAGCAGCCAGGGTTGCTGGCAACAGCGT 
NM_001112479    GCGAGACCGGCGGCGGCAAAAGGACGATACAAAAGCAGCCAGGGTTGCTGGCAACAGCGT 
                ************************************************************ 
 
MYB31_ORF       --------------------ATGGGGAGGTCGCCGTGCTGCGAGAAGGCGCACACCAACA 
MYB31_UTR       CGGTCGCCCGCCCGCTCGCCATGGGGAGGTCGCCGTGCTGCGAGAAGGCGCACACCAACA 
NM_001112479    CGGTCGCCCGCCCGTACGCCATGGGGAGGTCGCCGTGCTGCGAGAAGGCGCACACCAACA 
                **************  ******************************************** 
 
MYB31_ORF       AGGGCGCGTGGACCAAGGAGGAGGACGAGCGCCTGGTCGCGCACATCAGGGCGCACGGCG 
MYB31_UTR       AGGGCGCGTGGACCAAGGAGGAGGACGAGCGCCTGGTCGCGCACATCAGGGCGCACGGCG 
NM_001112479    AGGGCGCGTGGACCAAGGAGGAGGACGAGCGCCTGGTCGCGCACATCAGGGCGCACGGCG 
                ************************************************************ 
 
MYB31_ORF       AGGGGTGCTGGCGCTCGCTGCCCAAGGCCGCCGGCCTCCTGCGCTGCGGCAAGAGCTGCC 
MYB31_UTR       AGGGGTGCTGGCGCTCGCTGCCCAAGGCCGCCGGCCTCCTGCGCTGCGGCAAGAGCTGCC 
NM_001112479    AGGGGTGCTGGCGCTCGCTGCCCAAGGCCGCCGGCCTCCTGCGCTGCGGCAAGAGCTGCC 
                ************************************************************ 
 
MYB31_ORF       GCCTCCGCTGGATCAACTACCTCCGCCCCGACCTCAAGCGCGGCAACTTCACGGAGGAGG 
MYB31_UTR       GCCTCCGCTGGATCAACTACCTCCGCCCCGACCTCAAGCGCGGCAACTTCACGGAGGAGG 
NM_001112479    GCCTCCGCTGGATCAACTACCTCCGCCCCGACCTCAAGCGCGGCAACTTCACGGAGGAAG 
                ********************************************************** * 
 
MYB31_ORF       AGGACGAGCTCATCGTCAAGCTGCACAGCGTCCTCGGCAACAAGTGGTCCCTGATCGCCG 
MYB31_UTR       AGGACGAGCTCATCGTCAAGCTGCACAGCGTCCTCGGCAACAAGTGGTCCCTGATCGCCG 
NM_001112479    AGGACGAGCTCATCGTCAAGCTGCACAGCGTCCTCGGCAACAAGTGGTCCCTGATCGCCG 
                ************************************************************ 
 
MYB31_ORF       GAAGGCTGCCCGGCAGGACGGACAACGAGATCAAGAACTACTGGAACACGCACATCCGGA 
MYB31_UTR       GAAGGCTGCCCGGCAGGACGGACAACGAGATCAAGAACTACTGGAACACGCACATCCGGA 
NM_001112479    GAAGGCTGCCCGGCAGGACGGACAACGAGATCAAGAACTACTGGAACACGCACATCCGGA 
                ************************************************************ 
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MYB31_ORF       GGAAGCTGCTGAGCAGGGGGATCGACCCGGTGACGCACCGCCCGGTCACGGAGCACCACG 
MYB31_UTR       GGAAGCTGCTGAGCAGGGGGATCGACCCGGTGACGCACCGCCCGGTCACGGAGCACCACG 
NM_001112479    GGAAGCTGCTGAGCAGGGGGATCGACCCGGTGACGCACCGCCCGGTCACGGAGCACCACG 
                ************************************************************ 
 
MYB31_ORF       CGTCCAACATCACCATATCGTTCGAGACGGAGGTGGCCGCCGCCGCCCGTGATGATAAGA 
MYB31_UTR       CGTCCAACATCACCATATCGTTCGAGACGGAGGTGGCCGCCGCCGCCCGTGATGATAAGA 
NM_001112479    CGTCCAACATCACCATATCGTTCGAGACGGAAGTGGCCGCCGCTGCCCGTGATGATAAGA 
                ******************************* *********** **************** 
 
MYB31_ORF       AGGGCGCCGTCTTCCGGCTGGAGGACGAGGAG---------CGCAACAAGGCGACGATGG 
MYB31_UTR       AGGGCGCCGTCTTCCGGCTGGAGGACGAGGAG---------CGCAACAAGGCGACGATGG 
NM_001112479    AGGGCGCCGTCTTCCGGTTGGAGGACGAGGAGGAGGAGGAGCGCAACAAGGCGACGATGG 
                ***************** **************         ******************* 
 
MYB31_ORF       TCGTCGGCCGCGACCGGCAGAGCCAGAGCCACAGCCACAGCCACCCCGCCGGCGAGTGGG 
MYB31_UTR       TCGTCGGCCGCGACCGGCAGAGCCAGAGCCACAGCCACAGCCACCCCGCCGGCGAGTGGG 
NM_001112479    TCGTCGGCCGCGACCGGCAGAGCCAGAGCCACAGCCACAGCCACCCCGCCGGCGAGTGGG 
                ************************************************************ 
 
MYB31_ORF       GCCAGGGGAAGAGGCCGCTCAAGTGCCCCGACCTCAACCTGGACCTCTGCATCAGCCCGC 
MYB31_UTR       GCCAGGGGAAGAGGCCGCTCAAGTGCCCCGACCTCAACCTGGACCTCTGCATCAGCCCGC 
NM_001112479    GCCAGGGGAAGAGGCCGCTCAAGTGCCCCGACCTCAACCTGGACCTCTGCATCAGCCCGC 
                ************************************************************ 
 
MYB31_ORF       CGTGCCAGGAGGAGGAGGAGATGGAGGAGGCTGCGATGAGAGTGAGACCGGCGGTGAAGC 
MYB31_UTR       CGTGCCAGGAGGAGGAGGAGATGGAGGAGGCTGCGATGAGAGTGAGACCGGCGGTGAAGC 
NM_001112479    CGTGCCAGGAGGAGGAGGAGATGGAGGAGGCTGCGATGAGAGTGAGACCGGCGGTGAAGC 
                ************************************************************ 
 
MYB31_ORF       GGGAGGCCGGGCTCTGCTTCGGCTGCAGCCTGGGGCTCCCCAGGACCGCGGACTGCAAGT 
MYB31_UTR       GGGAGGCCGGGCTCTGCTTCGGCTGCAGCCTGGGGCTCCCCAGGACCGCGGACTGCAAGT 
NM_001112479    GGGAGGCCGGGCTCTGCTTCGGCTGCAGCCTGGGGCTCCCCAGGACCGCGGACTGCAAGT 
                ************************************************************ 
 
MYB31_ORF       GCAGCAGCAGCAGCTTCCTCGGGCTCAGGACCGCCATGCTCGACTTCAGAAGCCTCGAGA 
MYB31_UTR       GCAGCAGCAGCAGCTTCCTCGGGCTCAGGACCGCCATGCTCGACTTCAGAAGCCTCGAGA 
NM_001112479    GCAGCAGCAGCAGCTTCCTCGGGCTCAGGACCGCCATGCTCGACTTCAGAAGCCTCGAGA 
                ************************************************************ 
 
MYB31_ORF       TGAAATGA---------------------------------------------------- 
MYB31_UTR       TGAAATGAGCGCGCTTCTACCCTCTCTGTGTAGCTTCTCCCCCCCGTCGTCCTCGTTTTT 
NM_001112479    TGAAATGAGCGCGCTTCT-CCCTCTCTGTGTAGCTTCTCCCCCCCGTCGTCCTCGTTTTT 
                ****************** ***************************************** 
 
MYB31_ORF       ------------------------------------------------------------ 
MYB31_UTR       GTTTTGCCACACCTCACATGGATGATGAATTGATGATACGTGGTTGGTTAGTTTTTTCGT 
NM_001112479    GTTTTGCCACACCTCACATGGATGATGAATTGATGATACGTGGTTGGTTAGTTTTTTCGT 
                ************************************************************ 
 
MYB31_ORF       ------------------------------------------------------------ 
MYB31_UTR       AGGTGAAAAATACGCGATGGTGAGCGAGTGAAAGAGAGATTTTGTGCCCTGGGTCCTCCT 
NM_001112479    AGGTGAAAAATACGCGATGGTGAGCGCGTGAAAGAGAGATTTTG-GCCCTGGGTCCTCCT 
                ************************** ***************** *************** 
 
MYB31_ORF       ------------------------------------------------------------ 
MYB31_UTR       CCCTGCTCTCTCGTGGTGCCCCATTGCGCCTCCTCTGTCCCCCCTCTCTCTCTCTGTATC 
NM_001112479    CCGTGCTCTCTCGTGGTGCCCCATTGCGCCTCCTCTGTCCCCCCTCTCTCTCTCTGTATC 
                ** ********************************************************* 
 
MYB31_ORF       ------------------------------------------------------------ 
MYB31_UTR       TCTGTAATCACCATCGCCA----------------------------------------- 
NM_001112479    TCTGTAATCACCATCGCCAAATGATCATGGGGGGCAATATAATATAATACATGCTGCTAA 
                ******************* 
 
MYB31_ORF       ------ 
MYB31_UTR       ------ 
NM_001112479    TGCTAT 
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                        MYB31 amino acid sequence alignment 

MYB31_ORF       MGRSPCCEKAHTNKGAWTKEEDERLVAHIRAHGEGCWRSLPKAAGLLRCGKSCRLRWINY 
MYB31_UTR       MGRSPCCEKAHTNKGAWTKEEDERLVAHIRAHGEGCWRSLPKAAGLLRCGKSCRLRWINY 
NM_001112479    MGRSPCCEKAHTNKGAWTKEEDERLVAHIRAHGEGCWRSLPKAAGLLRCGKSCRLRWINY 
                ************************************************************ 
 
MYB31_ORF       LRPDLKRGNFTEEEDELIVKLHSVLGNKWSLIAGRLPGRTDNEIKNYWNTHIRRKLLSRG 
MYB31_UTR       LRPDLKRGNFTEEEDELIVKLHSVLGNKWSLIAGRLPGRTDNEIKNYWNTHIRRKLLSRG 
NM_001112479    LRPDLKRGNFTEEEDELIVKLHSVLGNKWSLIAGRLPGRTDNEIKNYWNTHIRRKLLSRG 
                ************************************************************ 
 
MYB31_ORF       IDPVTHRPVTEHHASNITISFETEVAAAARDDKKGAVFRLEDEE---RNKATMVVGRDRQ 
MYB31_UTR       IDPVTHRPVTEHHASNITISFETEVAAAARDDKKGAVFRLEDEE---RNKATMVVGRDRQ 
NM_001112479    IDPVTHRPVTEHHASNITISFETEVAAAARDDKKGAVFRLEDEEEEERNKATMVVGRDRQ 
                ********************************************   ************* 
 
MYB31_ORF       SQSHSHSHPAGEWGQGKRPLKCPDLNLDLCISPPCQEEEEMEEAAMRVRPAVKREAGLCF 
MYB31_UTR       SQSHSHSHPAGEWGQGKRPLKCPDLNLDLCISPPCQEEEEMEEAAMRVRPAVKREAGLCF 
NM_001112479    SQSHSHSHPAGEWGQGKRPLKCPDLNLDLCISPPCQEEEEMEEAAMRVRPAVKREAGLCF 
                ************************************************************ 
 
MYB31_ORF       GCSLGLPRTADCKCSSSSFLGLRTAMLDFRSLEMK 
MYB31_UTR       GCSLGLPRTADCKCSSSSFLGLRTAMLDFRSLEMK 
NM_001112479    GCSLGLPRTADCKCSSSSFLGLRTAMLDFRSLEMK 
                *********************************** 
 

 

 

 

MYB42 nucleotide sequence alignment 

MYB42_ORF       ------------------------------------------------------------ 
MYB42_UTR       --------------------------------------ACTCGCTGCCTTCTCAAATCCA 
NM_001112539    CGGGCGCAGGAATTCGGCACGAGGGGAAACCCGCGCCCACTCGCTGCCTTCTCAAATCCA 
                                                      **********************                                                             
 
MYB42_ORF       ------------------------------------------ATGGGGCGGTCGCCGTGC 
MYB42_UTR       AACGCGAAGTAGCAACAAGCAAAAGCCCAGATCGATAATACGATGGGGCGGTCGCCGTGC 
NM_001112539    AACGCGAAGTAGCAACAAGCAAAAGCCCAGATCGATAATACGATGGGGCGGTCGCCGTGC 
                ************************************************************ 
 
MYB42_ORF       TGCGAGAAGGCGCACACCAACAGGGGCGCGTGGACCAAGGAGGAGGACGAGCGGCTGGTG 
MYB42_UTR       TGCGAGAAGGCGCACACCAACAGGGGCGCGTGGACCAAGGAGGAGGACGAGCGGCTGGTG 
NM_001112539    TGCGAGAAGGCGCACACCAACAGGGGCGCGTGGACCAAGGAGGAGGACGAGCGGCTGGTG 
                ************************************************************ 
 
MYB42_ORF       GCCTACGTCCGCGCGCACGGCGAAGGGTGCTGGCGCTCGCTGCCCAGGGCGGCGGGCCTG 
MYB42_UTR       GCCTACGTCCGCGCGCACGGCGAAGGGTGCTGGCGCTCGCTGCCCAGGGCGGCGGGCCTG 
NM_001112539    GCCTACGTCCGCGCGCACGGCGAAGGGTGCTGGCGCTCGCTGCCCAGGGCGGCGGGCCTG 
                ************************************************************ 
 
MYB42_ORF       CTGCGCTGCGGCAAGAGCTGCCGCCTGCGCTGGATCAACTACCTCCGCCCGGACCTCAAG 
MYB42_UTR       CTGCGCTGCGGCAAGAGCTGCCGCCTGCGCTGGATCAACTACCTCCGCCCGGACCTCAAG 
NM_001112539    CTGCGCTGCGGCAAGAGCTGCCGCCTGCGCTGGATCAACTACCTCCGCCCGGACCTCAAG 
                ************************************************************ 
 
MYB42_ORF       CGAGGCAACTTCACCGCCGACGAGGACGACCTCATCGTCAAGCTGCACAGCCTGCTCGGG 
MYB42_UTR       CGCGGCAACTTCACCGCCGACGAGGACGACCTCATCGTCAAGCTGCACAGCCTGCTCGGG 
NM_001112539    CGAGGCAACTTCACCGCCGACGAGGACGACCTCATCGTCAAGCTGCACAGCCTCCTCGGG 
                ** ************************************************** ****** 
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MYB42_ORF       AACAAGTGGTCGCTCATCGCCGCGCGGCTCCCGGGGCGGACGGACAACGAGATCAAGAAC 
MYB42_UTR       AACAAGTGGTCGCTCATCGCCGCGCGGCTCCCGGGGCGGACGGACAACGAGATCAAGAAC 
NM_001112539    AACAAGTGGTCGCTCATCGCCGCGCGGCTCCCGGGGCGGACGGACAACGAGATCAAGAAC 
                ************************************************************ 
 
MYB42_ORF       TACTGGAACACGCACATCCGGCGCAAGCTGCTGTGCAGCGGCATCGACCCCGTCACGCAC 
MYB42_UTR       TACTGGAACACGCACATCCGGCGCAAGCTGCTGTGCAGCGGCATCGACCCCGTCACGCAC 
NM_001112539    TACTGGAACACGCACATCCGGCGCAAGCTGCTGGGCAGCGGCATCGACCCCGTCACGCAC 
                ********************************* ************************** 
 
MYB42_ORF       CGCCGTGTCGCGGGTGGCGCCGCGACCACCATCTCGTTCCAGCCCAGCCCCAACTCCGCC 
MYB42_UTR       CGCCGTGTCGCGGGTGGCGCCGCGACCACCATCTCGTTCCAGCCCAGCCCCAACTCCGCC 
NM_001112539    CGCCGCGTCGCGGGGGGCGCCGCGACCACCATCTCGTTCCAGCCCAGCCCCAACTCCGCC 
                ***** ******** ********************************************* 
 
MYB42_ORF       GCCGCCGCCGCC---GCAGAAGCAGCAGCGCAGGCGCCGATCAAGGCCGAGGAGACGGCG 
MYB42_UTR       GCCGCCGCCGCC---GCAGAAGCAGCAGCGCAGGCGCCGATCAAGGCCGAGGAGACGGCG 
NM_001112539    GCCGCCGCCGCCGCCGCAGAAACAGCAGCGCAGGCGCCGATCAAGGCCGAGGAGACGGCG 
                ************   ****** ************************************** 
 
MYB42_ORF       GGCGTCAAGGCGCCCAGGTGCCCTGACCTCAACCTGGACCTCTGCATCAGCCCGCCGTGC 
MYB42_UTR       GGCGTCAAGGCGCCCAGGTGCCCTGACCTCAACCTGGACCTCTGCATCAGCCCGCCGTGC 
NM_001112539    GCCGTCAAGGCGCCCAGGTGCCCCGACCTCAACCTGGACCTCTGCATCAGCCCGCCGTGC 
                * ********************* ************************************ 
 
MYB42_ORF       CAGCATGAGGACGACGGCGAGGAGGAGGACGAGGAGCTGGACCTCAAGCCCGCCTTCGTC 
MYB42_UTR       CAGCATGAGGACGACGGCGAGGAGGAGGACGAGGAGCTGGACCTCAAGCCCGCCTTCGTC 
NM_001112539    CAGCATGAGGACGACGGCGAGGAGGAGGACGAGGAGCTGGACCTCAAGCCCGCCTTCGTC 
                ************************************************************ 
 
MYB42_ORF       AAGCGGGAGGCGCTGCAGGCCGGCCACGGCCACGGCCACGGCCTCTGCCTCGGCTGCGGC 
MYB42_UTR       AAGCGGGAGGCGCTGCAGGCCGGCCACGGCCACGGCCACGGCCTCTGCCTCGGCTGCGGC 
NM_001112539    AAGCGGGAGGCGCTGCAGGCCGGCCACGGCCACGGCCACGGCCTCTGCCTCGGCTGCGGC 
                ************************************************************ 
 
MYB42_ORF       CTGGGCGGACAGAAGGGAGCGGCCGGGTGCAGCTGCAGCAACGGCCACCACTTCCTGGGG 
MYB42_UTR       CTGGGCGGACAGAAGGGAGCGGCCGGGTGCAGCTGCAGCAACGGCCACCACTTCCTGGGG 
NM_001112539    CTGGGCGGACAGAAGGGAGCGGCCGGGTGCAGCTGCAGCAACGGCCACCACTTCCTGGGG 
                ************************************************************ 
 
MYB42_ORF       CTCAGGACCAGCGTGCTCGACTTCAGAGGCCTGGAGATGAAGTGA--------------- 
MYB42_UTR       CTCAGGACCAGCGTGCTCGACTTCAGAGGCCTGGAGATGAAGTGAACGAAACGAAGCCCA 
NM_001112539    CTCAGGACCAGCGTGCTCGACTTCAGAGGCCTGGAGATGAAGTGAACGAAACGAAGCCCA 
                ************************************************************ 
 
MYB42_ORF       ------------------------------------------------------------ 
MYB42_UTR       CACGTCCTTTCTTCTCC------------------------------------------- 
NM_001112539    CACGTCCTTTCTTCTCCTTTTGTTGTCGGTTGTAGTCTTGGCTTGTTGGATTTGGATAGA 
                ***************** 
 
MYB42_ORF       ------------------------------------------------------------ 
MYB42_UTR       ------------------------------------------------------------ 
NM_001112539    GCTAGTTGGTTACTAGTTGTTAGTTAGAAGATAGTGCAGGATGATCACTAGCTACTGGCT 
                                                                             
 
MYB42_ORF       ------------------------------------------------------------ 
MYB42_UTR       ------------------------------------------------------------ 
NM_001112539    ACCTCAACAGTACAGTAGCTGCTCCCTTCTCTTCCATTCTATGTAAAAAAGAAACAAAAA 
                                                                               
 
MYB42_ORF       ------------------------------------------------- 
MYB42_UTR       ------------------------------------------------- 
NM_001112539    TACTTATAAGGTGTTTGGGTTGAGAAATGAACTAGTCTATTATCTTTTC 
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MYB42 amino acid sequence alignment 

MYB42_ORF       MGRSPCCEKAHTNRGAWTKEEDERLVAYVRAHGEGCWRSLPRAAGLLRCGKSCRLRWINY 
MYB42_UTR       MGRSPCCEKAHTNRGAWTKEEDERLVAYVRAHGEGCWRSLPRAAGLLRCGKSCRLRWINY 
NM_001112539    MGRSPCCEKAHTNRGAWTKEEDERLVAYVRAHGEGCWRSLPRAAGLLRCGKSCRLRWINY 
                ************************************************************ 
 
MYB42_ORF       LRPDLKRGNFTADEDDLIVKLHSLLGNKWSLIAARLPGRTDNEIKNYWNTHIRRKLLCSG 
MYB42_UTR       LRPDLKRGNFTADEDDLIVKLHSLLGNKWSLIAARLPGRTDNEIKNYWNTHIRRKLLCSG 
NM_001112539    LRPDLKRGNFTADEDDLIVKLHSLLGNKWSLIAARLPGRTDNEIKNYWNTHIRRKLLGSG 
                ********************************************************* ** 
 
MYB42_ORF       IDPVTHRRVAGGAATTISFQPSPNSAAAAA-AEAAAQAPIKAEETAGVKAPRCPDLNLDL 
MYB42_UTR       IDPVTHRRVAGGAATTISFQPSPNSAAAAA-AEAAAQAPIKAEETAGVKAPRCPDLNLDL 
NM_001112539    IDPVTHRRVAGGAATTISFQPSPNSAAAAAAAETAAQAPIKAEETAAVKAPRCPDLNLDL 
                ****************************** **:************.************* 
 
MYB42_ORF       CISPPCQHEDDGEEEDEELDLKPAFVKREALQAGHGHGHGLCLGCGLGGQKGAAGCSCSN 
MYB42_UTR       CISPPCQHEDDGEEEDEELDLKPAFVKREALQAGHGHGHGLCLGCGLGGQKGAAGCSCSN 
NM_001112539    CISPPCQHEDDGEEEDEELDLKPAFVKREALQAGHGHGHGLCLGCGLGGQKGAAGCSCSN 
                ************************************************************ 
 
MYB42_ORF       GHHFLGLRTSVLDFRGLEMK 
MYB42_UTR       GHHFLGLRTSVLDFRGLEMK 
NM_001112539    GHHFLGLRTSVLDFRGLEMK 
                ******************** 
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APPENDIX G: Expression levels of lignin biosynthesis genes in sugarcane after MYB31 and MYB42 expression 

TABLE G.1: Normalised lignin biosynthesis genes ΔCt values for MYB expressing plants that underwent cell wall compositional analysis. Values normalised 

against average GFP ΔCt value for each gene. Values represent initial expression screening of leaf tissue and post-harvest expression results from young 

internode tissue and maturing internode tissue (Table 5.3). NE: Normalised expression with standard error of the mean shown. 

  PAL C4H C3H 

  leaf young maturing leaf young maturing leaf young maturing 

  NE +/- NE +/- NE +/- NE +/- NE +/- NE +/- NE +/- NE +/- NE +/- 

WT n=9 2.27 1.02 1.78 0.25 1.05 0.20 0.94 0.33 0.24 0.09 0.61 0.10 0.47 0.11 0.16 0.04 0.18 0.01 

GFP n=3 1.00 0.34 1.00 0.16 1.00 0.53 1.00 0.06 1.00 0.46 1.00 0.24 1.00 0.30 1.00 0.38 1.00 0.57 

MYB31 ORF 13 0.34 0.04 0.34 0.00 0.40 0.00 0.48 0.01 0.04 0.00 0.17 0.01 0.19 0.02 0.46 0.03 0.33 0.02 

 11 0.23 0.00 0.96 0.07 0.55 0.01 0.51 0.01 0.11 0.00 0.18 0.00 0.08 0.01 0.29 0.01 0.13 0.00 

 2 0.08 0.03 0.08 0.00 0.01 0.00 0.37 0.02 0.37 0.00 0.34 0.01 0.22 0.02 0.40 0.02 0.15 0.01 

 7 0.03 0.01 0.93 0.01 0.63 0.00 0.12 0.01 0.06 0.00 0.16 0.00 0.23 0.02 0.20 0.01 0.06 0.00 

 1 0.27 0.01 2.68 0.03 0.66 0.01 0.39 0.02 0.21 0.00 0.23 0.01 0.49 0.05 0.04 0.00 0.07 0.00 

 8 0.33 0.05 0.20 0.00 0.54 0.00 0.28 0.03 0.04 0.00 0.21 0.01 0.37 0.04 0.04 0.00 0.22 0.01 

 9 0.85 0.02 2.34 0.02 0.60 0.05 0.53 0.23 0.07 0.00 0.30 0.00 0.77 0.06 0.16 0.01 0.27 0.03 

MYB31 UTR 27 0.63 0.01 0.30 0.00 0.21 0.00 0.41 0.01 0.03 0.00 0.14 0.01 0.04 0.00 0.05 0.00 0.19 0.01 

 2 0.33 0.07 0.63 0.00 0.60 0.02 0.35 0.02 0.04 0.00 0.12 0.00 0.21 0.05 0.04 0.00 0.32 0.01 

 18 0.53 0.02 1.08 0.01 0.23 0.00 0.36 0.02 0.06 0.00 0.12 0.00 0.06 0.00 0.23 0.01 0.08 0.00 

 11 0.73 0.01 1.08 0.00 1.94 0.01 0.28 0.07 0.09 0.00 0.35 0.01 0.11 0.00 0.15 0.00 0.11 0.01 

 12 0.80 0.02 1.02 0.00 0.64 0.01 0.50 0.06 0.06 0.00 0.20 0.01 0.04 0.00 0.15 0.02 0.08 0.00 

 7 0.55 0.03 8.02 0.61 0.69 0.02 0.40 0.03 0.25 0.01 0.46 0.01 0.22 0.01 0.29 0.01 0.42 0.02 

 20 0.45 0.02 5.94 0.06 2.02 0.06 0.44 0.01 0.34 0.02 0.64 0.01 0.13 0.01 0.40 0.02 0.39 0.01 
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TABLE G.1: Normalised lignin biosynthesis genes ΔCt values for MYB expressing plants that underwent cell wall compositional analysis (continued) 

 

  4CL CCoAOMT F5H 

  leaf young maturing leaf young maturing leaf young maturing 

  NE +/- NE +/- NE +/- NE +/- NE +/- NE +/- NE +/- NE +/- NE +/- 

WT n=9 0.76 0.18 1.22 0.45 1.22 0.25 0.53 0.09 1.22 0.26 1.34 0.12 0.98 0.19 0.72 0.20 0.83 0.15 

GFP n=3 1.00 0.18 1.00 0.08 1.00 0.33 1.00 0.14 1.00 0.13 1.00 0.26 1.00 0.16 1.00 0.25 1.00 0.36 

MYB31 ORF 13 0.51 0.02 0.16 0.01 0.41 0.01 0.29 0.01 0.37 0.01 1.22 0.01 0.57 0.05 0.07 0.00 0.32 0.01 

 11 0.40 0.02 0.32 0.02 0.39 0.01 0.26 0.00 0.48 0.01 0.76 0.00 0.38 0.02 0.18 0.00 0.47 0.00 

 2 0.47 0.01 0.15 0.01 0.03 0.00 0.40 0.02 1.13 0.03 0.22 0.01 0.83 0.01 0.15 0.00 0.07 0.00 

 7 0.14 0.01 0.44 0.01 0.88 0.02 0.20 0.02 0.75 0.02 0.69 0.00 0.43 0.05 0.29 0.01 0.48 0.00 

 1 0.39 0.02 1.57 0.03 0.48 0.02 0.37 0.00 1.71 0.06 0.74 0.02 0.82 0.02 1.01 0.01 0.51 0.00 

 8 0.25 0.02 0.31 0.01 0.41 0.01 0.26 0.01 0.24 0.01 0.87 0.01 0.91 0.06 0.11 0.00 0.56 0.01 

 9 0.67 0.04 0.61 0.03 0.65 0.05 1.00 0.03 1.08 0.08 0.89 0.00 1.02 0.10 0.38 0.00 0.40 0.00 

MYB31 UTR 27 1.52 0.05 0.27 0.00 0.13 0.01 0.65 0.01 0.28 0.01 0.59 0.01 0.40 0.02 0.13 0.00 0.20 0.01 

 2 1.05 0.05 0.74 0.04 0.53 0.02 0.26 0.01 0.42 0.01 0.57 0.01 1.30 0.11 0.11 0.00 0.25 0.00 

 18 0.83 0.02 0.36 0.01 0.31 0.00 0.35 0.02 0.59 0.00 0.28 0.00 0.44 0.01 0.22 0.00 0.34 0.00 

 11 0.52 0.03 0.56 0.01 1.54 0.04 0.30 0.02 0.61 0.02 0.84 0.01 0.79 0.02 0.36 0.01 1.17 0.04 

 12 0.62 0.02 0.43 0.02 1.55 0.02 0.24 0.02 0.63 0.01 0.67 0.03 0.42 0.01 0.38 0.01 0.40 0.00 

 7 0.78 0.04 1.54 0.03 1.26 0.02 0.36 0.01 2.16 0.04 1.28 0.03 1.01 0.07 2.25 0.10 1.68 0.02 

 20 0.88 0.07 3.27 0.26 5.42 0.08 0.48 0.00 4.47 0.11 2.67 0.03 0.89 0.03 4.18 0.08 4.35 0.04 
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TABLE G.1: Normalised lignin biosynthesis genes ΔCt values for MYB expressing plants that underwent cell wall compositional analysis (continued) 

 

  CAD CCR COMT 

  leaf young maturing leaf young maturing leaf young maturing 

  NE +/- NE +/- NE +/- NE +/- NE +/- NE +/- NE +/- NE +/- NE +/- 

WT n=9 0.48 0.11 0.58 0.23 0.73 0.30 1.05 0.21 1.04 0.21 1.30 0.20 0.60 0.07 1.68 0.28 1.83 0.36 

GFP n=3 1.00 0.15 1.00 0.12 1.00 0.32 1.00 0.18 1.00 0.13 1.00 0.38 1.00 0.23 1.00 0.08 1.00 0.35 

MYB31 ORF 13 0.52 0.04 0.52 0.03 1.13 0.08 0.19 0.01 0.32 0.00 0.82 0.01 0.25 0.03 0.50 0.00 0.82 0.01 

 11 0.47 0.02 0.64 0.02 0.60 0.03 0.15 0.00 0.50 0.03 0.64 0.01 0.19 0.04 0.54 0.00 0.89 0.07 

 2 0.37 0.03 0.98 0.02 0.16 0.01 0.31 0.01 0.03 0.00 0.00 0.00 0.28 0.08 0.16 0.00 0.02 0.00 

 7 0.19 0.01 1.20 0.09 1.22 0.11 0.14 0.01 0.71 0.01 1.17 0.07 0.09 0.03 0.47 0.01 0.81 0.01 

 1 0.47 0.04 2.53 0.19 1.36 0.10 0.24 0.02 1.01 0.01 0.82 0.01 0.41 0.11 0.95 0.10 0.46 0.00 

 8 0.28 0.03 0.52 0.02 1.93 0.02 0.26 0.02 0.29 0.00 1.15 0.00 0.21 0.07 0.33 0.03 0.79 0.08 

 9 0.12 0.03 2.55 0.09 1.13 0.07 0.85 0.08 1.06 0.01 0.99 0.01 0.58 0.10 1.00 0.01 0.88 0.00 

MYB31 UTR 27 0.97 0.08 0.48 0.04 0.50 0.03 0.61 0.01 0.26 0.00 0.33 0.02 0.21 0.05 0.37 0.01 0.26 0.00 

 2 0.14 0.01 0.61 0.02 1.51 0.07 0.33 0.05 0.46 0.04 1.03 0.06 0.50 0.12 0.49 0.01 0.78 0.00 

 18 0.77 0.01 1.32 0.07 0.78 0.02 0.41 0.02 0.77 0.01 0.35 0.01 0.17 0.05 0.88 0.01 0.56 0.00 

 11 0.77 0.02 1.94 0.05 2.44 0.06 0.42 0.01 0.47 0.04 1.25 0.08 0.58 0.07 1.00 0.01 1.57 0.01 

 12 0.65 0.02 1.15 0.01 1.14 0.07 0.31 0.02 0.79 0.06 1.03 0.02 0.38 0.07 0.79 0.01 1.12 0.01 

 7 0.43 0.03 5.40 0.26 3.36 0.09 0.94 0.07 1.58 0.01 1.25 0.01 0.24 0.08 3.20 0.48 1.76 0.01 

 20 0.97 0.04 6.39 0.17 6.67 0.25 0.69 0.01 3.04 0.02 5.47 0.38 0.46 0.07 4.39 0.04 3.35 0.31 
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TABLE G.1: Normalised lignin biosynthesis genes ΔCt values for MYB expressing plants that underwent cell wall compositional analysis (continued) 

 

  PAL C4H C3H 

  leaf young maturing leaf young maturing leaf young maturing 

  NE +/- NE +/- NE +/- NE +/- NE +/- NE +/- NE +/- NE +/- NE +/- 

WT n=9 2.27 1.02 1.78 0.25 1.05 0.20 0.94 0.33 0.24 0.09 0.61 0.10 0.47 0.11 0.16 0.04 0.18 0.01 

GFP n=3 1.00 0.34 1.00 0.16 1.00 0.53 1.00 0.06 1.00 0.46 1.00 0.24 1.00 0.30 1.00 0.38 1.00 0.57 

MYB42 ORF 14 0.76 0.10 1.31 0.01 0.09 0.00 0.24 0.08 0.06 0.00 0.07 0.01 0.23 0.01 0.20 0.02 0.45 0.02 

 16 0.61 0.01 0.85 0.01 1.28 0.02 0.20 0.00 0.04 0.01 0.44 0.03 0.13 0.02 0.56 0.05 0.27 0.01 

 23 0.34 0.01 1.41 0.01 0.73 0.02 0.18 0.00 0.18 0.01 0.42 0.01 0.08 0.01 0.36 0.03 0.30 0.02 

 11 0.64 0.01 3.31 0.03 0.17 0.02 0.69 0.02 0.42 0.01 0.24 0.01 0.13 0.01 0.14 0.00 0.11 0.00 

 18 0.41 0.04 1.91 0.01 1.14 0.01 0.64 0.01 0.33 0.03 0.29 0.02 0.37 0.01 0.46 0.01 0.52 0.01 

 21 0.65 0.01 2.46 0.01 1.00 0.01 0.87 0.11 0.21 0.00 0.48 0.04 0.26 0.04 0.26 0.00 0.35 0.02 

 26 1.06 0.10 1.94 0.17 1.07 0.01 0.65 0.09 0.15 0.00 0.29 0.01 0.21 0.03 0.12 0.00 0.12 0.00 

MYB42 UTR 28 0.22 0.01 2.65 0.02 0.94 0.01 0.47 0.03 0.14 0.01 0.27 0.01 0.12 0.01 0.39 0.01 0.29 0.02 

 6 0.09 0.03 0.40 0.00 0.53 0.00 0.11 0.00 0.09 0.00 0.30 0.01 0.14 0.01 0.75 0.04 0.25 0.02 

 32 0.82 0.09 3.88 0.06 0.55 0.03 0.39 0.07 0.30 0.02 0.18 0.00 0.34 0.02 0.13 0.01 0.08 0.00 

 30 0.32 0.04 2.34 0.04 0.40 0.01 0.29 0.02 0.18 0.01 0.30 0.00 0.16 0.00 0.39 0.02 0.18 0.00 

 15 0.72 0.01 6.26 0.61 0.79 0.05 0.30 0.01 0.35 0.03 0.30 0.02 0.17 0.01 0.17 0.00 0.15 0.01 

 26 0.70 0.10 1.55 0.02 2.28 0.03 0.47 0.02 0.05 0.00 0.16 0.00 0.15 0.02 0.06 0.00 0.14 0.00 

 16 0.46 0.01 0.87 0.01 1.73 0.02 0.56 0.01 0.05 0.00 0.63 0.02 0.23 0.03 0.15 0.01 0.15 0.01 
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TABLE G.1: Normalised lignin biosynthesis genes ΔCt values for MYB expressing plants that underwent cell wall compositional analysis (continued) 

 

  4CL CCoAOMT F5H 

  leaf young maturing leaf young maturing leaf young maturing 

  NE +/- NE +/- NE +/- NE +/- NE +/- NE +/- NE +/- NE +/- NE +/- 

WT n=9 0.76 0.18 1.22 0.45 1.22 0.25 0.53 0.09 1.22 0.26 1.34 0.12 0.98 0.19 0.72 0.20 0.83 0.15 

GFP n=3 1.00 0.18 1.00 0.08 1.00 0.33 1.00 0.14 1.00 0.13 1.00 0.26 1.00 0.16 1.00 0.25 1.00 0.36 

MYB42 ORF 14 2.61 0.06 0.25 0.01 0.18 0.01 1.27 0.02 1.05 0.01 0.43 0.01 3.57 0.34 0.27 0.01 0.31 0.01 

 16 1.50 0.04 0.41 0.05 0.17 0.01 0.72 0.05 0.52 0.01 1.02 0.02 0.71 0.05 0.34 0.02 0.24 0.00 

 23 2.06 0.07 0.39 0.03 0.41 0.01 0.73 0.00 1.42 0.03 1.41 0.03 0.37 0.04 0.32 0.01 0.42 0.01 

 11 5.95 2.55 0.28 0.03 0.29 0.01 2.87 0.01 0.75 0.03 0.47 0.01 0.39 0.04 1.35 0.03 1.01 0.03 

 18 3.45 0.08 0.41 0.01 0.90 0.03 0.61 0.03 0.96 0.01 1.90 0.01 0.77 0.10 0.47 0.02 0.91 0.04 

 21 2.36 0.05 1.00 0.02 1.21 0.02 1.01 0.01 2.06 0.04 1.21 0.01 0.84 0.12 0.32 0.01 1.46 0.01 

 26 1.93 0.13 1.46 0.07 0.69 0.01 0.90 0.01 0.74 0.01 0.61 0.01 0.42 0.07 0.42 0.01 0.57 0.01 

MYB42 UTR 28 3.06 0.12 0.82 0.08 0.34 0.03 0.47 0.03 1.72 0.18 1.06 0.02 3.84 0.59 0.56 0.02 0.45 0.00 

 6 0.80 0.02 0.71 0.03 0.53 0.02 0.54 0.00 0.39 0.03 0.93 0.02 0.86 0.04 0.59 0.01 0.34 0.00 

 32 6.69 0.03 0.57 0.04 0.20 0.01 1.50 0.05 3.30 0.09 1.09 0.02 2.11 0.23 1.35 0.07 1.06 0.01 

 30 2.46 0.21 1.45 0.10 0.11 0.01 0.69 0.00 1.61 0.02 0.49 0.01 0.48 0.07 0.63 0.01 0.21 0.01 

 15 1.38 0.02 1.72 0.14 1.14 0.03 0.90 0.03 2.32 0.11 0.87 0.01 0.43 0.01 2.11 0.02 1.29 0.01 

 26 3.15 0.27 0.39 0.02 1.15 0.07 0.61 0.06 0.67 0.03 1.21 0.03 5.39 0.30 0.60 0.03 1.99 0.02 

 16 1.54 0.15 0.36 0.01 2.14 0.08 1.11 0.02 0.61 0.02 1.65 0.08 0.50 0.02 0.25 0.00 1.61 0.03 
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TABLE G.1: Normalised lignin biosynthesis genes ΔCt values for MYB expressing plants that underwent cell wall compositional analysis (continued) 

 

  CAD CCR COMT 

  leaf young maturing leaf young maturing leaf young maturing 

  NE +/- NE +/- NE +/- NE +/- NE +/- NE +/- NE +/- NE +/- NE +/- 

WT n=9 0.48 0.11 0.58 0.23 0.73 0.30 1.05 0.21 1.04 0.21 1.30 0.20 0.60 0.07 1.68 0.28 1.83 0.36 

GFP n=3 1.00 0.15 1.00 0.12 1.00 0.32 1.00 0.18 1.00 0.13 1.00 0.38 1.00 0.23 1.00 0.08 1.00 0.35 

MYB42 ORF 14 0.87 0.16 1.06 0.03 0.33 0.01 1.24 0.01 0.73 0.00 0.30 0.01 0.13 0.02 0.79 0.01 0.20 0.00 

 16 0.48 0.03 0.86 0.03 0.75 0.05 0.56 0.02 0.43 0.00 0.87 0.01 0.18 0.04 0.68 0.00 0.96 0.01 

 23 0.39 0.02 1.28 0.02 1.39 0.02 0.89 0.03 0.90 0.02 1.24 0.02 0.28 0.06 0.96 0.00 0.97 0.01 

 11 0.93 0.08 3.16 0.15 1.17 0.08 1.70 0.06 0.60 0.03 0.30 0.00 0.52 0.11 1.61 0.18 0.41 0.06 

 18 0.28 0.03 2.30 0.12 1.93 0.11 0.76 0.02 1.59 0.09 1.71 0.03 0.41 0.08 1.51 0.03 0.99 0.01 

 21 0.40 0.04 2.39 0.11 1.79 0.17 0.93 0.11 1.00 0.02 0.74 0.01 0.53 0.14 1.82 0.01 1.11 0.10 

 26 0.24 0.01 2.70 0.14 1.61 0.07 1.54 0.09 1.21 0.08 1.55 0.01 0.65 0.13 1.33 0.02 0.97 0.00 

MYB42 UTR 28 0.07 0.02 1.19 0.07 1.74 0.16 0.89 0.06 0.62 0.01 0.99 0.01 0.21 0.05 1.02 0.01 1.99 0.01 

 6 0.17 0.01 0.80 0.07 0.87 0.10 0.28 0.01 0.35 0.00 1.22 0.07 0.18 0.05 0.54 0.00 0.72 0.00 

 32 0.12 0.01 2.82 0.03 0.92 0.06 1.70 0.19 2.04 0.22 0.35 0.01 0.23 0.02 1.33 0.01 0.44 0.01 

 30 0.13 0.01 1.14 0.03 0.61 0.01 0.50 0.02 1.27 0.02 0.39 0.03 0.73 0.31 1.03 0.01 0.45 0.00 

 15 0.57 0.05 4.31 0.18 1.99 0.06 0.96 0.01 2.63 0.01 1.17 0.02 0.33 0.11 2.48 0.01 1.10 0.00 

 26 0.13 0.05 2.12 0.14 2.70 0.16 0.93 0.04 0.75 0.01 1.55 0.01 0.30 0.05 0.83 0.00 1.24 0.11 

 16 0.56 0.03 2.06 0.14 3.19 0.15 1.10 0.10 0.37 0.03 2.48 0.06 0.40 0.07 0.55 0.05 1.39 0.02 
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APPENDIX H: Cellulose crystallinity index of MYB bagasse 

 

Plant Crystallinity Index (%) 
WT 90 50.41 
WT 113 51.81 
WT 130 46.96 
WT 134 49.40 

GFP 8 49.03 
GFP 10 51.49 

MYB31 ORF 27 45.56 
 11 47.50 

MYB 31 UTR 18 45.60 
MYB42 ORF 23 47.41 
MYB42 UTR 32 45.97 
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APPENDIX I: Phenotypic measurements of MYB31 and MYB42 expressing sugarcane 

TABLE I.1: Phenotypic measurements of MYB31 ORF and UTR expressing sugarcane. Overall averages for wild type (WT) (n = 9 individual plants) and GFP (n 

= 3 individual plants) control measurements are presented with standard deviation. Z scores represent the number of standard deviations each MYB plant 

measurement is from the GFP control average, with z scores greater than 2 or -2 highlighted in bold font. Plants are listed in ascending order of total lignin 

content. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plant Height (cm) Total number of 
internodes 

Average internode 
diameter (mm) 

Average internode  
length (cm) 

 
WT 145.89 ± 15.08 14.22 ± 1.62 14.36 ± 1.16 10.29 ± 0.79 

 
GFP 129 ± 24.26 15 ± 2.16 14.11 ± 0.85 8.56 ± 0.60 

   
z score 

 
z score 

 
z score 

 
z score 

MYB31 ORF  13 114 -0.62 14 -0.46 12.29 -2.15 8.14 -0.70 

 
11 132 0.12 13 -0.93 13.64 -0.56 10.15 2.63 

 
2 100 -1.20 10 -2.31 12.13 -2.34 10.00 2.38 

 
7 205 3.13 15 0.00 14.05 -0.08 13.67 8.45 

 
1 140 0.45 14 -0.46 10.18 -4.64 10.00 2.38 

 
8 158 1.20 14 -0.46 12.59 -1.80 11.29 4.51 

 
9 159 1.24 15 0.00 11.48 -3.10 10.60 3.37 

   
z score 

 
z score 

 
z score 

 
z score 

MYB31 UTR 27 140 0.45 16 0.46 10.63 -4.11 8.75 0.31 

 
2 128 -0.04 13 -0.93 12.15 -2.32 9.85 2.12 

 
18 131 0.08 13 -0.93 13.86 -0.30 10.08 2.51 

 
11 160 1.28 15 0.00 12.90 -1.43 10.67 3.48 

 
12 147 0.74 14 -0.46 11.98 -2.52 10.50 3.21 

 
7 136 0.29 15 0.00 14.91 0.94 9.07 0.83 

 
20 108 -0.87 15 0.00 13.20 -1.08 7.20 -2.26 
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TABLE I.2: Phenotypic measurements of MYB42 ORF and UTR expressing sugarcane. Overall averages for wild type (WT) (n = 9 individual plants) and GFP (n 

= 3 individual plants) control measurements are presented with standard deviation. Z scores represent the number of standard deviations each MYB plant 

measurement is from the GFP control average, with z scores greater than 2 or -2 highlighted in bold font. Plants are listed in ascending order of total lignin 

content. 

Plant Height (cm) Total number of 
internodes 

Average internode 
diameter (mm) 

Average internode  
length (cm) 

 
WT 145.89 ± 15.08 14.22 ± 1.62 14.36 ± 1.16 10.29 ± 0.79 

 
GFP 129 ± 24.26 15 ± 2.16 14.11 ± 0.85 8.56 ± 0.60 

   
z score 

 
z score 

 
z score 

 
z score 

MYB42 ORF 14 162 1.36 17 0.93 12.77 -1.58 9.53 1.60 

 
16 130 0.04 17 0.93 16.15 2.40 7.65 -1.52 

 
23 134 0.21 15 0.00 14.00 -0.13 8.93 0.61 

 
11 138 0.37 15 0.00 10.97 -3.70 9.20 1.05 

 
18 124 -0.21 14 -0.46 12.27 -2.17 8.86 0.49 

 
21 163 1.40 16 0.46 12.67 -1.70 10.19 2.69 

 
26 145 0.66 13 -0.93 14.56 0.52 11.15 4.29 

   
z score 

 
z score 

 
z score 

 
z score 

MYB42 UTR 28 92 -1.52 12 -1.39 14.07 -0.05 7.67 -1.49 

 
6 109 -0.82 15 0.00 11.73 -2.81 7.27 -2.15 

 
32 137 0.33 14 -0.46 15.04 1.09 9.79 2.02 

 
30 71 -2.39 11 -1.85 12.25 -2.20 6.45 -3.50 

 
15 147 0.74 15 0.00 16.10 2.34 9.80 2.05 

 
26 174 1.85 18 1.39 14.52 0.48 9.67 1.83 

 
16 162 1.36 17 0.93 12.72 -1.64 9.53 1.60 
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APPENDIX J: Generic RNAi expression vector map (ZmUbi-iUbi-sense/syntron/antisense-

nos/pBS) showing positions of maize Ubiquitin promoter (Ubi) and 5' UTR intron (iUbi) 

(Christensen and Quail, 1996; Christensen et al., 1992), syntron and the nopaline synthase 

(nos) terminator (Bevan et al., 1983a). Individual sense and antisense sequences for 

CCoAOMT, F5H and COMT are underlined in Appendix B and were cloned into the sense 

and antisense sites of the expression vector respectively.  

 

Sequence of synthetic intron (syntron) (5' - 3') 

CTGCAAGAAAACAAAATAAAAAATAAAAAGTTAGATTTAAATGGCGCGCCGATCGAGAATTCAACA

GATCGAATTAATTAAATAAAAAATAAAAATCTTAC 
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APPENDIX K: Normalised qPCR ΔCt quantified gene expression levels of RNAi targeted 

lignin biosynthetic genes. Values represent initial screening of leaf tissue and post-harvest 

expression results from young internode tissue and maturing internode tissue. All data 

normalised against UKN transgenic controls with standard error of the mean shown. Plants 

are listed in ascending order of expression in maturing internode tissue then ascending 

order of expression in leaf tissue of plants not selected for further analysis. NE: Normalised 

expression   

 

TABLE K.1: Normalised qPCR expression levels for CCoAOMT in CCoAOMT-RNAi targeted 

plants  

 

  Leaf  Young  Maturing 
Plant  NE +/-  NE +/-  NE +/- 

WT  1.41 0.18  1.14 0.22  1.15 0.33 
UKN  1.00 0.10  1.00 0.14  1.00 0.37 

CCoAOMT   9 1.03 0.01  0.98 0.02  0.03 0.00 
 10 0.31 0.00  0.98 0.01  0.09 0.00 
 5 0.20 0.00  0.54 0.01  0.14 0.00 
 11 0.95 0.02  1.00 0.01  0.17 0.00 
 1 1.44 0.17  1.05 0.02  0.30 0.01 
 13 1.69 0.06  1.07 0.03  0.39 0.00 
 7 0.69 0.01  1.02 0.03  1.53 0.10 
 2 0.63 0.01  0.55 0.02  1.76 0.03 
 8 0.56 0.02  1.73 0.04  1.89 0.03 
 6 0.48 0.01       
 12 0.57 0.01       
 4 3.13 0.01       
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TABLE K.2: Normalised qPCR expression levels for F5H in F5H-RNAi targeted plants 

 

  Leaf  Young  Maturing 
Plant  NE +/-  NE +/-  NE +/- 

WT  1.70 0.61  1.33 0.37  0.78 0.22 
UKN  1.00 0.10  1.00 0.14  1.00 0.35 
F5H 7 0.76 0.05  5.40 0.81  0.16 0.00 

 2 1.23 0.20  0.83 0.02  0.17 0.00 
 4 0.74 0.03  0.85 0.01  0.29 0.04 
 1 1.06 0.08  0.84 0.01  0.96 0.01 
 13 0.79 0.12  0.74 0.04  1.12 0.06 
 3 0.72 0.03  0.77 0.04  1.23 0.02 
 14 1.29 0.05  1.33 0.02  1.98 0.04 
 6 0.93 0.14  1.35 0.02  2.18 0.02 
 8 0.57 0.09  1.77 0.07  4.75 0.05 
 10 0.37 0.02       
 11 0.52 0.05       
 9 0.86 0.04       
 15 0.90 0.11       
 12 0.95 0.12       
 5 1.41 0.05       

 

 

TABLE K.3: Normalised qPCR expression levels for COMT in COMT-RNAi targeted plants 

 

  Leaf  Young  Maturing 
Plant  NE +/-  NE +/-  NE +/- 

WT  1.49 0.09  1.35 0.54  0.98 0.32 
UKN  1.00 0.10  1.00 0.41  1.00 0.46 

COMT 4 1.37 0.02  3.82 0.12  0.68 0.01 
 10 2.33 0.13  1.80 0.03  0.79 0.03 
 3 1.19 0.05  0.88 0.01  1.26 0.02 
 2 0.41 0.06  0.98 0.02  4.01 0.11 
 13 3.00 0.07  14.06 0.48  4.23 0.12 
 8 2.09 0.12  2.25 0.03  5.27 0.17 
 14 2.92 0.06  7.72 0.17  6.59 0.11 
 7 1.61 0.06  4.40 0.08  10.90 0.07 
 6 0.49 0.06       
 11 3.04 0.13       
 5 3.45 0.14       
 12 3.89 0.10       
 1 5.04 0.14       
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APPENDIX L: Normalised ΔCt expression levels of genes related to RNAi targeted lignin 

biosynthetic genes to assess specificity of RNAi vectors. Values represent post-harvest 

expression results from young internode tissue and maturing internode tissue. All data 

normalised against UKN transgenic controls with standard error of the mean shown. Plants 

are listed in ascending order of expression of the targeted RNAi gene in maturing internode 

(Appendix K). NE: Normalised expression 

 

TABLE L.1: Normalised qPCR expression levels for COMT in CCoAOMT-RNAi targeted plants  

 

  Young tissue  Maturing tissue 
Plant  NE +/-  NE +/- 

WT  1.35 0.54  0.98 0.32 
UKN  1.00 0.41  1.00 0.46 

CCoAOMT 9 0.58 0.02  0.74 0.02 
 10 1.60 0.04  3.49 0.06 
 5 5.82 0.13  7.18 0.21 
 11 4.99 0.09  0.83 0.02 
 1 3.31 0.06  1.90 0.02 
 13 3.09 0.02  3.42 0.12 
 7 0.52 0.01  7.84 0.13 
 2 0.95 0.01  7.87 0.06 
 8 6.52 0.09  4.09 0.16 

 

 

 

TABLE L.2: Normalised qPCR expression levels for C3H in F5H-RNAi targeted plants  

 

  Young tissue  Maturing tissue 
Plant  NE +/-  NE +/- 

WT  1.33 0.28  0.91 0.08 
UKN  1.00 0.22  1.00 0.15 
F5H 7 0.70 0.03  1.73 0.02 

 2 1.15 0.05  1.64 0.07 
 4 0.75 0.02  1.20 0.01 
 1 1.41 0.03  2.42 0.24 
 13 1.64 0.02  1.95 0.09 
 3 0.73 0.06  1.56 0.06 
 14 0.42 0.02  1.65 0.13 
 6 1.04 0.01  1.94 0.11 
 8 0.96 0.01  4.18 0.16 
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TABLE L.3: Normalised qPCR expression levels for CCoAOMT in COMT-RNAi targeted plants  

 

  Young tissue  Maturing tissue 
Plant  NE +/-  NE +/- 

WT  1.14 0.22  1.15 0.33 
UKN  1.00 0.14  1.00 0.37 

COMT 4 1.92 0.14  1.39 0.04 
 10 4.58 0.03  3.56 0.22 
 3 2.85 0.02  7.49 0.51 
 2 5.17 0.16  11.62 0.93 
 13 6.97 0.25  1.30 0.02 
 8 1.09 0.01  1.67 0.03 
 14 5.01 0.39  3.69 0.28 
 7 4.24 0.31  1.45 0.00 
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APPENDIX M: Cellulose crystallinity index of RNAi bagasse 

 

Plant Crystallinity Index (%) 
WT 23 48.21 

UKN 4 53.51 
CCoAOMT 9 53.89 

 10 57.86 
F5H 2 55.62 

COMT 10 54.71 
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APPENDIX N 

TABLE N.1: Phenotypic measurements of CCoAOMT, F5H and COMT-RNAi sugarcane. Overall averages for wild type (WT) (n = 7 individual plants) and UKN 

(n = 6 individual plants) control measurements are presented with standard deviation. Z scores represent the number of standard deviations each RNAi 

plant measurement is from the UKN control average, with z scores greater than 2 or -2 highlighted in bold font. Plants are listed in ascending order of total 

lignin content. 

 

Plant Height (cm) Total number of 
internodes 

Average internode 
diameter (mm) 

Average internode  
length (cm) 

 
WT 170.29 ± 10.47 20.43 ± 1.05 12.56 ± 0.49 8.35 ± 0.48 

 
UKN 155.17 ± 28.23 19.67 ± 1.89 12.48 ± 0.94 7.89 ± 1.20 

  
 z score  z score  z score  z score 

CCoAOMT 11 163 0.28 21 0.71 12.36 -0.13 7.76 -0.10 

 
5 80 -2.66 20 0.18 10.68 -1.92 4.00 -3.23 

 
10 150 -0.18 18 -0.88 12.95 0.50 8.33 0.37 

 
9 105 -1.78 17 -1.41 12.61 0.14 6.18 -1.42 

F5H 4 131 -0.86 24 2.30 11.36 -1.19 5.46 -2.02 

 
2 130 -0.89 18 -0.88 13.07 0.62 7.22 -0.55 

 
7 104 -1.81 16 -1.94 11.65 -0.89 6.50 -1.15 

 
1 151 -0.15 22 1.24 11.80 -0.72 6.86 -0.85 

COMT 2 107 -1.71 22 1.24 11.75 -0.78 4.86 -2.51 

 
10 113 -1.49 16 -1.94 13.49 1.07 7.06 -0.68 

 
3 172 0.60 20 0.18 14.36 2.00 8.60 0.59 

 
4 139 -0.57 19 -0.35 14.41 2.04 7.32 -0.47 
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