
  

 

INTRODUCTION 

 

Vitamin A is an essential vitamin for mammals. Mammals are not 

able to produce carotenoids because of the complete absence of 

the biosynthetic pathway beginning with the synthesis of  

phytoene from GGPP. Dietary β-carotene therefore serves as 

an important precursor for the synthesis of vitamin A. Most 

dietary vitamin A is derived from plant food in the form of pro-

vitamin A, the carotenoids, which are converted to vitamin A in 

the body (Sivakumar, 1998). Dietary β-carotene is converted 

into vitamin A, also known as retinol, by oxidative cleavage of 

the central double bond followed by a reduction of the terminal 

aldehyde.  

Vitamin A plays role in the normal development of humans 

(Bendich, 1993, 1994; West et al., 1989) and in other mammals. 

Furthermore, recent investigations have reported that vitamin 

A quenches free radicals and prevents cellular oxidative  

damage, as well as supporting the human immune system 

(Bendich, 1989, 1993; Ross, 1992). In mammals β-carotene and 

some structurally related compounds have provitamin A charac-

ter. Carotenoids, present in all photosynthetic and many  

non-photosynthetic organisms are a widely distributed class of 
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 Vitamin A deficiency (VAD) is a serious public health problem in South Asia particularly in 

Bangladesh. Indica rice as a major staple in the country completely lacks vitamin A or com-

pounds with provitamin A activity after milling. A combination of transgenes has been intro-

duced enabling biosynthesis of provitamin A in the endosperm of a restorer line using biolistic 

system of transformation. The rice seed-specific glutelin promoter (Gt-1 P) was used to drive 

the expression of phytone synthase (psy), while lycopene b-cyclase (lcy) and phytoenedesatu-

rase (crtI), fused to the transit peptide sequence of the pea-Rubisco small subunit, were driven 

by the constitutive cauliflower mosaic virus promoter (CaMV35s P). Transgenic plants were 

recovered through selection with CaMV35sP driven hph (hygromycinphosphotransferase) 

gene. Molecular analysis demonstrated stable integration and expression of the transgenes. 

The variable segregation pattern in T1 generation indicated single to multiple insertions of the 

transgenes in the genome. This is the first report of the development of a transgenic restorer 

line with carotenogenic pathway into the endosperm for use of hybrid rice improvement. 
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used directly for developing provitamin A enriched hybrids. 

Therefore, this study was undertaken to develop a provitamin A 

enriched restorer (r) line which will directly help to produce 

carotenoid enriched hybrid rice. Through biolistic method of 

gene transformation Phytone synthase (psy), bacterial phytone 

desaturase (crtI), and lycopene cyclase (lcy) genes were intro-

duced into the endosperm of a restorer line to derive the accu-

mulation of β-carotene. This is the initial report to develop a 

transgenic β-carotenoid restorer line, a new tool for improving 

hybrid rice. 

 

MATERIALS AND METHODS 

 

Selection of genotype and plasmid for transformation  

experiments 

 

An elite indica restorer line (BR827R) was selected for transfor-

mation on the basis of its superior grain quality. Altogether 

three different plasmids were used for the co-transformation 

experiments. The vector pBall3 (Figure 2) contained the daffodil 

phytone synthase (psy) gene  (Burkhardt et al., 1997) under  

control of an endosperm-specific Gt1 promoter and a bacterial 

phytone desaturae (crtI) gene fused to a transit peptide  

sequence of a pea-rubisco small subunit (Misawa et al., 1993) to 

direct the expression of this bacterial gene into the plastids by 

constitutive 35S promoter. In order to yield the plasmid pTCL6 

(Figure 2) under control of the 35S promoter and nopaline syn-

thase terminator, lycopene β-cyclase (lcy) cDNA (Al-Babili et al., 

1999) was subcloned from pCyBlue with the KpnI-BamHI site of 

pGL2 (Gritz and Davies, 1983); to the selectable marker gene, 

plasmid pGL2 (Figure 2) containing the selectable marker gene 

hph for hygromycinphosphotransferase under CaMV 35S  

promoter (Datta et al., 1990). 

 

Experimental design for transformation experiments 

Rice immature embryos were used as target explants for co-

transformation (Figure 3) of the above-mentioned vectors using 

the PDS-1000He particle gun. Selection started 16-20 hours 

after bombardment on fresh callus induction medium containing 

40-mg/L hygromycin as described earlier (Figure 3) (Datta et al., 

1998). The putative primary transgenics and the subsequent 

seed progenies were grown in the containment greenhouse of 

IRRI, following a day night temperature regime of 29/22±2 ºC 

and 70-85% relative humidity. A stepwise methodology of rice 

transformation experiment has been given in figure 1. 

 

Polymerase chain reaction (PCR) and southern blot analysis 

Genomic DNA was isolated from 1-month-old plants using the 

micro prep method and 50-100 ng of template DNA was used 

for PCR analysis with gene-specific primers (Table 1) as  

described earlier (Baisakh et al., 2001).  Plant genomic DNA was 

extracted from the freshly harvested leaves of transgenic and 

non-transgenic control plants for southern analysis, following 

the modified CTAB method (Murray and Thomson, 1980). Ten 

micrograms of DNA were digested overnight with EcoRI-HindIII 
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natural pigments containing 40 carbon arms. Carotenoid  

biosynthesis represents one intracellularly specialized branch of 

general isoprenoid metabolism in plants. Whereas sesqui- and 

triterpenoids are produced in the cytoplasm, mono-, di- and 

tetraterpinoids are synthesized in plastids (Kleinig, 1989).  

These pigments are well known as essential components of the 

photosynthetic apparatus. Carotenoids are also produced in the 

chloroplast of flowers and fruits, where they serve as visual  

attractants of insects and animals to facilitate pollination and 

seed dispersal. In some cases, such as maize and potato, carote-

noids also can be formed in the amyloplasts of plant storage 

tissues. 

It has been established that four enzymes in plants, i.e. phytone 

synthase, phytone desaturase, ζ-carotene desaturase, and  

lycopene cyclase to complete the pathway toward β-carotene 

(provitmain A) biosynthesis from GGPP (for review see Britton, 

1988; Cunningham and Grantt, 1998; Sandmann, 1994, 2001). 

The first step in carotenoid biosynthesis is the condensation of 

two molecules of GGPP to produce phytone by the enzyme phy-

tone synthese (PSY). PSY is firmly associated with the chromo-

plast membrane in its active form (Schledz et al., 1996). Compar-

ing to plants, anoxygenic photosynthetic bacteria,  

non-photosynthetic bacteria and carotenoid-synthesizing fungi 

do not possess a distinct phytone desaturase (PDS) and ζ-

carotene desaturase (ZDS) to catalyse the conversion of phy-

tone to lycopene. In non-photosynthetic-bacteria, phytone is 

converted to all-trans lycopene by a single enzyme phytone 

desaturase (CRTI). In order to  cyclaze of lycopene two different 

lycopene cyclase specific α- and ε-ionone end-groups of LCY 

marks a branching point in the pathway where one branch leads 

to α-carotene and its oxygenated derived lutein, while the other 

forms β-carotene and the derived xanthophylls, such as zeaxan-

thin, antheraxanthin, violaxanthin and neoxanthin (for review 

see Hirschberg, 2001). The genes necessary for these enzymes 

have been isolated and their function elucidated from a variety 

of fungi, bacteria and plants (Al-Babili et al., 1999; Armstrong et 

al., 1990; Misawa et al., 1993; Buckner et al., 1993; Hundle et al., 

1991; Misawa et al., 1990; Scolnik and Bartley, 1994, 1996; To 

et al., 1994). 

Conventional interventions (supplementation, fortification, 

food based diversification etc) have been helpful in defeating 

VAD but were not sufficiently effective. Plant breeding to alter, 

modify or introduce this biosynthetic machinery into the target 

tissues in rice has been impossible as of now, as no endosperm 

active carotenoid-biosynthetic genes have found thus far in the 

available rice gene pool (Tan et al., 2005). Therefore recombi-

nant DNA technology and plant biotechnology, with above-

mentioned molecular tools in hand, represents an alternative 

method to combat VAD. Moreover it may represent a sustaina-

ble strategy (Zimmerman and Hurrel, 2002).  

Golden Rice as published (Ye et al., 2000) demonstrates the  

feasibility of the scientific approach but does not yet represent a 

product. The carotenogenic pathway introduced earlier in the 

endosperm of various indica rice cultivars well established in 

different developing countries (Datta et al., 2003) cannot be 
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for psy and lcy, BamHI for crtI and run in 1% TAE-agarose gel. 

Southern membrane transfer, hybridization and exposure were 

done as previously described (Datta et al., 1998). PCR-amplified 

fragments of the three genes were radiolabelled with (α-32P)-

dCTP and used as hybridization probes. 

RESULTS AND DISCUSSION 

 

Assessment of T0 transformants 

Out of the eight independent bombardments (600 IE each) of 

BR827R, a small number of T0 transgenic plants (46) produced, 

three independently transformed lines SBR827R7, SBR827R11 

and SB827R12 were recovered and presented in the study. The 

insertion of the genes in the genome was primarily checked by 

PCR analysis (Figure 4) and then confirmed by southern blot 

analysis (Figure 5). The 1.5 kb and 1.6 kb size bands confirmed 

the integration of psy and crtI gene respectively (Figure 5). 

When the blot was hybridized with 1.5 kb psy probe the three 

lines showed expected size band (Figure 5). In case of crtI gene, 

hybridization occurred in the high molecular weight regions in 

lane 1 (Figure 5) containing not expected size DNA of crtI gene, 

suggesting rearrangement of the transgene. Two of them con-

tained a fragment of the expected size that suggests a correct 

and intact integration of the crtI cDNA (Figure 5). Peter 

Burkhardt (1996) also reported while the plants were co trans-

formed with plasmids pCPsyH and pCPdsH, both higher and 

expected size was observed. However, two transformants were 

fertile and one line SBR827R12 was sterile. Between the two 

fertile lines SB827R7 produced sufficient seeds and the other 

line SB827R11 produced very few seeds. 

 

Evaluation of T1 progeny  

Β-carotenoid positive T1 progeny from both transformants were 

identified by southern blot analysis. Results of southern blot 

analysis of the progeny from both transformants are shown in 

Figure 5. In the progeny lines of SBR827R-7 showed (Figure 6) 

same integration pattern of 1.5-kb size psy gene like T0 line and 

genomic DNA was digested with EcoR1/HinDIII restriction  

enzyme. Out of 14 progeny lines of SBR827R-7, 9 lines were 

positive with expected size psy DNA. When the same blot was 

reprobed with crtI gene (PCR originated) all the psy positive 

lines showed integration of crtI gene in the genome (Figure 4). 

The banding pattern in T1 was same as previously shown in T0 

(Figure 5) not expected size in all SBR827R-7 progeny lines. In 

case of SBR827R-11, two lines were positive but one showed 

rearranged banding pattern (Figure 4). In T0, SBR827R-11 gave 

expected size 1.6 kb sized crtI (Figure 5), but in case of T1 some 

rearrangement may be occurred. Between two positive lines 

one showed expected size SBR827R11-4, 1.6-kb crtI but 
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Table 1. General features of selected plasmids for transformation experiments. 

Plasmid  
Target gene (s)/ 

sequence (s) 
Primer sequences Specific features Source 

pBaal3 Psy and Crt 1 

PsyF: TGGTGGTTGCGATATTACGA,  
psy R: ACCTTCCCAGTGAACACGTC  

CrtI F: GGTCGGGCTTATGTCTACGA, 
    crtI R: ATACGGTCGCGCGTAGTTTTGG 

  

Phytoene synthase 
and Carotene  

desaturase 
   

 Datta et al. 
(2003) 

pTCL6 Lcy 
Lcy F: CCAATCCCCAGAACCCTAAT, 
lcy R: CTCGCTACCATGTAACCCGT 

Lycopene cyclase 

pGL2 hph   
Selectable marker 

gene 
Datta et al. 

(1990) 

Figure 1. Stepwise rice transformation experiment. 

Figure 2. Partial map of the plasmids: a. pBaal3 containing psy and 
crtI, b. pTCL6 containing lcy and c. pGL2 with hph. 
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SBR827R11-2 showed comparatively upper band means high 

molecular weight of the transgene (Figure 6). The different 

banding pattern in SB827R11 indicates that a rearrangement of 

the transgene may occur in successive generations. This may be 

due to deletion, addition or translocation of the transgene. 

However, further study on this aspect is needed. Multiple  
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generations and additional progeny analysis may provide useful 

information regarding such rearrangements. Goto et al. (1993) 

showed differences in banding patterns among T2 progenies of 

transgenic rice plants. Nayak et al. (1997) also reported  

different southern patterns among progenies of specific  

transformation event they analyzed.  

   a        b   

Figure 3. Generation of transgenic rice plant by particle bombardment 
mediated transformation; a. circular arrangement of IE; b. Resistant calli in 
selection medium; c. Regenerated plantlet; d. Plantlet in rooting medium; e. 
In yoshida’s solution. 

Figure 5. Southern blots showing the integration of a) psy, b) crtI in the primary transgenics of restorer line BR827R(EcoRI/HinDIII-digested PBaal3 
forpsyand BamHI forcrtI). Ten µg of genomic DNA were digested overnight, electrophoresed in 1% TAE-agarose gel, southern blotted and hybridized with 
(32p) dCTP-labelled probes ofpsy and crtI (PCR-generated). Lanes 1.SBRR7, 2.SBRR10, 3.SBRR11, 4. SBRR12, 5.SBRR13, 6.SBRR14, 7.SBRR15, 8. SBRR16, 
9.SBRR17 and 10.SBRR18. b. blank, NC-negative control, PC-positive control. 

Figure 4. PCR analysis showing amplification of 1.5 kb size band of psy 
gene in the primary transgenics. Lane 1, plasmid control; lane 2, blank; lane 
3, non-transformed control plant; lane 4, 5, 6 three individual  
transformants; lane 7, blank; and M, 1 kb DNA molecular marker.  

   c        d   

   e 

1.5 kb psy 



107 

 

S. Rehana et al. /Arch. Agr. Environ. Sci., 3(2): 103-108 (2018) 

Conclusion 

 

This investigation concluded that a restorer (r) line BR827R for 

hybrid rice production was used to explore the potential for 

transformation of Indica rice adapted in Bangladesh. Rice imma-

ture embryos were transformed with pBaal3, pTCL6 and pGL2 

using the particle gun transformation system. The transgenic 

plants were confirmed by PCR and Southern Blot analysis. Hy-

bridization with psy, crtI , lcy and hph probes suggested the inte-

gration of the respective genes in the genome of the transgenic 

BR827R plants.   
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