Archives of Agriculture and Environmental Science 3(3): 245-251 (2018) https://doi.org/10.26832/24566632.2018.030306

This content is available online at AESA

Archives of Agriculture and Environmental Science

Journal homepage: www.aesacademy.org

ORIGINAL RESEARCH ARTICLE

CrossMark

Impact of nutrient management on the yield performance of some aromatic fine rice (*Oryza sativa* L.) varieties in *Boro* season

Antora Adhikari, Md Abdur Rahman Sarkar, Swapan Kumar Paul^{*} 匝 and Kallyan Kanty Saha

Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, BANGLADESH Corresponding author's E-mail: skpaul@bau.edu.bd

ARTICLE HISTORY

Received: 02 July 2018 Revised received: 07 August 2018 Accepted: 17 August 2018

Keywords

Aromatic fine rice Boro season Integrated nutrient management Yield performance

ABSTRACT

An experiment was conducted at the Agronomy Field Laboratory, Bangladesh Agricultural University, Mymensingh, during November 2016 to April 2017 to study the impact of nutrient management on the performance of aromatic fine rice in Boro season. The experiment comprised three varieties viz., BRRI dhan50, Basmati and BRRI dhan63; and seven nutrient managements viz., poultry manure @ 5 t ha⁻¹, recommended dose of chemical fertilizers (i.e. 250, 126, 120, 100 and 10 kg N-P-K-S-Zn, respectively ha⁻¹), 25% less than recommended dose of chemical fertilizer + poultry manure @ 2.5 t ha⁻¹, 50% less than recommended dose of chemical fertilizer + poultry manure @ 5 t ha⁻¹, vermicompost @ 10 t ha⁻¹, 25% less than recommended dose of chemical fertilizer + vermicompost 5 t ha⁻¹, 50% less than recommended dose of chemical fertilizer + vermicompost @ 10 t ha⁻¹. The experiment was laid out in a randomized complete block design with three replications. The results revealed that variety, nutrient management and their interaction exerted significant influence on yield components and yield of aromatic fine rice in Boro season. The highest grain yield (4.09 t ha⁻¹), straw yield (6.20 t ha⁻¹) and harvest index (39.37%) were obtained in BRRI dhan63 while the lowest grain yield (3.44 t ha⁻¹) and harvest index (36.54%) were found in Basmati. In case of nutrient management, the highest grain yield (4.31 t ha⁻¹) was recorded in recommended dose of chemical fertilizers (i.e. 250, 126, 120, 100 and 10 kg N-P-K-S-Zn, respectively ha⁻¹) which was as good as 25% less than recommended dose of chemical fertilizer + vermicompost @ 5 t ha⁻¹and 25% less than recommended dose of chemical fertilizer + poultry manure @ 2.5 t ha⁻¹ while the lowest one (2.74 t ha^{-1}) was found in vermicompost @ 10 t ha⁻¹. In case of interaction, the highest grain yield ($5.30 \text{ t} \text{ ha}^{-1}$) was obtained in BRRI dhan63 along with 50% less than recommended dose of chemical fertilizer + vermicompost @ 10 t ha⁻¹ while the highest straw yield (7.20 t ha⁻¹) was produced in BRRI dhan63 fertilized with recommended dose of chemical fertilizers (i.e. 250, 126, 120, 100 and 10 kg N-P-K-S-Zn, respectively ha⁻¹). Therefore, it can be concluded that BRRI dhan63 can be grown with 50% less than recommended dose of chemical fertilizer + vermicompost @10 t ha⁻¹ in *Boro* season to obtain the highest grain yield.

©2018 Agriculture and Environmental Science Academy

Citation of this article: Adhikari, A., Sarkar, M.A.R., Paul, S.K. and Saha, K.K. (2018). Impact of nutrient management on the yield performance of some aromatic fine rice (*Oryza sativa* L.) varieties in *Boro* season. *Archives of Agriculture and Environmental Science*, 3(3): 245-251, https://dx.doi.org/10.26832/24566632.2018.030306

INTRODUCTION

Bangladesh is one of the most important rice growing countries of the world. In respect of area and production, Bangladesh ranks fourth among the rice producing countries of the world following China, India and Indonesia (FAO, 2009). About 77.07% of cropped area of Bangladesh is used for rice production, with annual production of 34.71 million ton from 11.42 million ha of land (BBS, 2016). *Boro* rice covers about 41.94% of total rice area in the country (BBS, 2016). Aromatic rice contributes a small portion (10%) but an important subgroup of rice production. Total aromatic rice production is about 0.297 million tons in 2013 from 0.158 million ha of land in Bangladesh. Sarkar et al. (2014) reported that Bangladesh has a bright prospect for export of fine rice thereby earning foreign exchange. The yield of fine rice is lower than that of coarse and medium rice varieties. In recent years, aromatic rice has been introduced to the global market because of its taste, deliciousness and high price to boost up the economic condition of the rice grower in the developing countries like Bangladesh. Because of its natural chemical compounds which give it a distinctive scent or aroma when cooked, aromatic rice commands higher price than nonaromatic rice. The demand of aromatic rice for internal consumption and also for export is increasing day by day. For this reason, farmers are willing to grow aromatic fine rice to obtain higher economic return. So, it is high time to increase the production of aromatic fine rice through increasing the yield per unit area by following proper management system of crop cultures especially through developed variety and nutrient management. In Bangladesh, more than 37 aromatic rice cultivars are grown. Such common cultivars are Kataribhog, Chinigura, Chinisagar, Badshabhog, Rasulbhog, Radhunipagol, Kalizira, Tulshimala, Dulabhog, Basmati, BRRI dhan34, BRRI dhan37, BRRI dhan38, Binadhan-9 and Binadhan-13. Most of the scented rice varieties in Bangladesh are of traditional type, photoperiod sensitive, and cultivated during the Aman season. One variety is recommended for Boro season namely, BRRI dhan50 (Banglamoti) developed by the Bangladesh Rice Research Institute (BRRI) has gained huge popularity among farmers for its fragrance and relatively high productivity. Like other crops, the yield level of rice, the staple food grain of the country, is very low (2.876 t ha⁻¹) (BBS, 2016) compared to other rice growing countries like South Korea and Japan where the average yield is 6.00 and 5.22 t ha⁻¹, respectively (FAO, 2004). The reason for low yields are mainly associated with lack of improved varieties and judicious fertilizer management especially of organic manure like cowdung, vermicompost, poultry manure and/or their integration with inorganic fertilizers. In Bangladesh, nutrient stresses of soils are increasing day by day. The productivity of aromatic fine rice in Bangladesh is very low due mainly to proper nutrient management. The efficient nutrient management increases crop yield and at the same time reduces fertilization cost. Therefore, extensive research works are necessary to find out appropriate variety and optimum rate of poultry manure, vermicompost in combination with inorganic fertilizers to obtain satisfactory yield and quality of fine rice.

MATERIALS AND METHODS

Description of study site

The experiment was conducted at the Agronomy Field Laboratory, Bangladesh Agricultural University, Mymensingh, during November 2016 to April 2017. This experimental site is located at 24°75′ N latitude and 90°50′E longitude having an altitude of 18m. The experimental site belongs to the Sonatala series of Old Brahmaputra Floodplain Agroecological Zone (AEZ-9) having non -calcareous dark grey floodplain soils (UNDP and FAO, 1988).

Experimental design and treatment details

The experiment consisted of three varieties viz. BRRI dhan50, Basmati and BRRI dhan63, and seven nutrient managements viz., poultry manure 5 t ha⁻¹, recommended dose of chemical fertilizers (i.e. 250, 126, 120, 100 and 10 kg N-P-K-S-Zn, respectively ha⁻¹), 25% less than recommended dose of chemical fertilizer + poultry manure @ 2.5 t ha⁻¹,50% less than recommended dose of chemical fertilizer + poultry manure @ 5 t ha⁻¹, vermicompost @ 10 t ha⁻¹, 25% less than recommended dose of chemical fertilizer + vermicompost @ 5 t ha⁻¹, 50% less than recommended dose of chemical fertilizer + vermicompost @ 10 t ha⁻¹. The experiment was laid out in a randomized complete block design with three replications. At the time of final land preparation, respective unit plots were fertilized with different levels of vermicompost, poultry manure according to treatments. The manures were thoroughly mixed with the soil. The amount of nitrogen, phosphorus, potassium, sulphur and zinc required for each unit plot was calculated on ha⁻¹ basis and applied in the form of urea, triple super phosphate, muriate of potash, gypsum and zinc sulphate, respectively. Triple super phosphate, muriate of potash, gypsum and zinc sulphate was applied at final land preparation as per treatment. Urea was applied in three equal splits at 15, 30 and 45 days after transplanting (DAT).

Transplantation of seedlings and collection of data

Thirty-five days old seedlings were uprooted carefully without causing any mechanical injury to the root. Healthy seedlings were transplanted in the well puddled experimental plots on 21 December 2016. Intercultural operations were done for ensuring and maintaining normal growth of the crop when necessary. Prior to harvest five hills (excluding border hills) were selected randomly from each unit plot and uprooted to record data on crop characters and yield components. After sampling, the whole plot was harvested at maturity when 90% of the grains became golden yellow in color. BRRI dhan63 was harvested on 23 April, 2017 and BRRI dhan50 and Basmati were harvested on 30 April 2017. The harvested crops of each plot was separately bundled, properly tagged and then brought to threshing floor. Threshing was done manually. The grains were cleaned and sun dried to 14% moisture content. Straws were also dried properly. Finally grain and straw yields plot⁻¹ were recorded and converted to t ha⁻¹. Harvest index (%) was calculated with the following formula:

Harvest index (%) =
$$\frac{\text{Grain yield}}{\text{Biological yield}} \times 100$$

Statistical analysis of data

Data were analyzed statistically using "Analysis of Variance" technique and differences among treatments means were adjudged by Duncan's Multiple Range Test (DMRT) (Gomez and Gomez, 1984).

RESULTS AND DISCUSSION

Varietal performance

Yield components and yield of aromatic fine rice were significantly influenced by variety (Table 1). BRRI dhan50 produced the highest plant height (69.43 cm), which was statistically identical to Basmati (67.48 cm) and the lowest one (66.30 cm) was found in BRRI dhan63. The variation in plant height among the varieties was probably due to heredity or varietal characters. Similar results were reported elsewhere (Paul et al., 2016; Ray et al., 2015 and Kirttania et al., 2013). The highest number of total tillers hill⁻¹ was produced by Basmati (10.47), which was statistically identical to BRRI dhan50 (10.33) and the lowest one (9.47) was found in BRRI dhan63. Shaha et al. (2014) reported that number of tillers hill⁻¹ was influenced by variety. BRRI dhan50 and Basmati produced the highest and same number of effective tillers (9.00) and statistically identical panicle length (21.29 cm and 21.10 cm, respectively) while the lowest of these parameters were found in BRRI dhan63. Due to varietal characteristics production of effective tillers hill⁻¹ varied significantly (Sarkar et al., 2014). Shaha et al. (2014) reported that panicle length was influenced with variety. Basmati and BRRI dhan63 produced the highest and same number of non-effective tillers (1.47) and the lowest one (1.33) was found in BRRI dhan50. The highest number of grains panicle⁻¹(97.67) and number of total spikelets panicle⁻¹(107.8) was found in BRRI dhan50 while BRRI dhan63 produced the highest number of sterile spikelets panicle ⁻¹ (15.29), 1000-grain weight (20.96 g), grain yield (4.09 t ha⁻¹), straw yield (6.20 t ha⁻¹), biological yield (10.29 t ha⁻¹) and harvest index (39.37%). The lowest grain yield (3.44 t ha⁻¹) and harvest index (36.54%) were found in Basmati and the lowest straw yield (5.78 t ha⁻¹) was found in BRRI dhan50. Significant variation of grain and straw yields among the rice genotypes were reported elsewhere (Pal et al., 2016, Mittra, 2005, Muniruzzaman, 2004 and Hossain et al., 2003).

Effect of nutrient management

Nutrient management exerted significant influence on yield components and yield of fine rice varieties except panicle length and 1000-grain weight (Table 2). The highest plant height (69.00 cm) was produced in 25% less than recommended dose of chemical fertilizer + poultry manure @ 2.5 t ha⁻¹, which was statistically identical to 50% less than recommended dose of chemical fertilizer + vermicompost @ 10 t ha⁻¹ and 25% less than recommended dose of chemical fertilizer + vermicompost @ 5 t ha⁻¹. The highest number of total tillers hill⁻¹ (12.22) was produced in 25% less than recommended dose of chemical fertilizer + vermicompost @ 5 t ha⁻¹ and the lowest one (9.55) was found in poultry manure 5 t ha⁻¹. Similar results were reported by Shaha et al. (2014). The highest number of effective tillers hill⁻¹ (10.56) was produced in 25% less than recommended dose of chemical fertilizer + vermicompost @ 5 t ha⁻¹ while 50% less than recommended dose of chemical fertilizer + vermicompost @ 10 t ha⁻¹ produced the highest non-effective tillers hill⁻¹ (2.00). The highest number of grains panicle (95.11) was produced in 50% less

than recommended dose of chemical fertilizer + poultry manure @ 5 t ha⁻¹ and the lowest one (91.11) was found in vermicompost @ 10 t ha⁻¹. Combined application of manures and fertilizers increased number of grains panicle⁻¹ was reported elsewhere (Jahan et al., 2017; Sarkar et al., 2016; Parvez et al., 2008 and Rahman et al., 2007). The highest number of total spikelets panicle⁻¹ (107.7) was recorded in 50% less than recommended dose of chemical fertilizer + poultry manure at 5 t ha⁻¹ and the lowest one (99.78) was found in recommended dose of chemical fertilizers (i.e 250, 126, 120, 100 and 10 kg N-P-K-S-Zn, respectively ha⁻¹). The highest number of sterile spikelets panicle⁻¹ (14.33) was produced in poultry manure 5 t ha⁻¹ while the lowest one was found in 50% less than recommended dose of chemical fertilizer + vermicompost @ 10 t ha⁻¹. Recommended dose of chemical fertilizers (i.e. 250, 126, 120, 100 and 10 kg N-P-K-S-Zn, respectively ha⁻¹) produced the highest grain yield (4.31 t ha⁻¹). However, 25% less than recommended dose of chemical fertilizer + poultry manure 2.5 t ha⁻¹ (4.15 t ha⁻¹) and 25% less than recommended dose of chemical fertilizer + vermicompost @ 5 t ha⁻¹ (4.25 t ha⁻¹) were as good as treatment of recommended dose of chemical fertilizers (i.e. 250, 126, 120, 100 and 10 kg N-P-K-S-Zn, respectively ha⁻¹ in respect of grain yield. The lowest grain yield (2.74 t ha⁻¹) was produced in poultry manure @ 5 t ha⁻¹(N₁) (2.87 t ha⁻¹) and vermicompost @ 10 t ha⁻¹. Similar results were reported by Shaha et al. (2014) and Sarkar et al. (2014). The highest straw yield (6.64 t ha⁻¹) was produced in 25% less than recommended dose of chemical fertilizer + poultry manure @ 2.5 t ha^{-1} and the lowest (5.04 t ha^{-1}) was found in vermicompost @ 10 t ha⁻¹ which was at par with poultry manure @ 5 t ha⁻¹ (5.08 t ha⁻¹). Combined application of inorganic fertilizers with organic manures produced the highest straw yield (Jahan et al., 2017). The highest biological yield (10.80 t ha⁻¹) was found in 25% less than recommended dose of chemical fertilizer + poultry manure @ 2.5 t ha⁻¹ which was at par with recommended dose of chemical fertilizers (i.e. 250, 126, 120, 100 and 10 kg N-P-K-S-Zn, respectively ha⁻¹), and 25% less than recommended dose of chemical fertilizer + vermicompost @ 5 t ha⁻¹ while the lowest one (7.79 t ha⁻¹) was recorded in vermicompost @ 10 t ha⁻¹. The highest harvest index was produced by recommended dose of chemical fertilizers (i.e. 250, 126, 120, 100 and 10 kg N-P-K-S-Zn, respectively ha⁻¹) (40.36%) which was at par with 25% less than recommended dose of chemical fertilizer + vermicompost @ 5 t ha⁻¹ (39.91%) and 50% less than recommended dose of chemical fertilizer + vermicompost @ 10 t ha⁻¹ (39.85%) and the lowest one (35.24%) was found in vermicompost @ 10 t ha^{-1} .

Interaction effect of variety and nutrient management

Crop characters, yield components and yield of aromatic fine rice were significantly influenced by the interaction between variety and nutrient management (Table 3). The tallest plant (72.00 cm) was recorded in Basmati fertilized with 25% less than recommended dose of chemical fertilizer + vermicompost @ 5 t ha⁻¹ while BRRI dhan63 fertilized with 50% less than recommended dose of chemical fertilizer + poultry manure @ 5 t ha⁻¹

I aDIE T. EIIECI	UI VALIELY UII	cr up criaracte	ers, yreiu corrip					edsoll.						
Variety	Plant height (cm)	Number total till hill ⁻¹	r of Num ers effe tiller	iber of - N ctive shill ⁻¹ fi	Jumber of non- effective 'llers hill ⁻¹	Panicle length (cm)	Numbe of grair panicle	er Numbe Is of total -1 spikelet panicle ²	r Number of sterile s spikelets 1 panicle ⁻¹	1000- grain weight (g)	Grain yield (t ha ⁻¹)	Straw yield (t ha ⁻¹)	Biologi- cal yield (t ha ⁻¹)	Harvest index (%)
BRRI dhan50 (V ₁)	69.43a	10.33;	a 9.1	00a	1.33b	21.29a	97.67;	a 107.8a	10.14b	21.38a	3.60b	5.78c	9.39b	38.39b
Basmati (V ₂)	67.48a	10.47;	a 9.0	00a	1.47a	21.10a	92.81t	o 103.5b	10.67b	18.14b	3.44c	5.94b	9.38b	36.54c
BRRI dhan63(V ₃)	66.30b	9.47b	.8.(00b	1.47a	20.33b	85.280	c 101.0b	15.29a	20.96a	4.09a	6.20a	10.29a	39.37a
Sī	0.766	0.106	0.	103	0.037	0.181	0.753	0.970	0.273	0.160	0.049	0.050	0.097	0.290
Level of significance	* *	*		*	* *	* *	* *	* *	* *	* *	* *	* *	* *	* *
CV (%)	5.32	4.81	5.	.43	11.80	3.97	3.75	4.27	10.38	3.64	6.01	3.77	4.61	3.49
Nutrient management	Plant height (cm)	Number of total tillers hill ⁻¹	Number of effective tillers hill ⁻¹	Number non-effeci	of Pan tive len ⁻¹ (ci	icle Nu iscle 8 geth 8 m) pa	mber of trains t	Number of otal spike- its panicle ¹	Number of sterile spike- lets panicle ⁻¹	1000- grain weight (g)	Grain yield (t ha⁻¹)	Straw yield (t ha ⁻¹)	Biological yield (t ha ⁻¹)	Harvest index (%)
ź	64.56b	9.55c	8.33c	1.22cd	1 20.	.67 91.	89ab	106.2ab	14.33a	20.13	2.87c	5.08d	7.95c	36.15cd
Z2 Z	64.22b	10.80b	8.44c	1 .33c	21.	.22 91	.10b	99.78c	11.89bc	20.08	4.31a	6.37b	10.68a	40.36a
R ₃	69.00a	10.89b	9.33b	1.55 b	20.	.78 93.	22ab	105.7ab	11.33bc	20.33	4.15a	6.64a	10.80a	38.48b
N ₄	64.33b	9.33c	8.22c	1.11 d	20.	.67 95	.11a	107.7a	12.55b	20.17	3.72b	6.43ab	10.15b	36.72c
N_{5}	63.67b	8.22d	7.11d	1.11 d	21.	.22 91.	11bc	102.0bc	10.89c	20.14	2.74c	5.04d	7.79c	35.24d
N ₆	67.11ab	12.22a	10.56a	1.66b	21.	.00 92.	11ab 1	104.3abc	12.33b	20.07	4.25a	6.42ab	10.68a	39.91a
Ν	68.67a	10.67b	8.66c	2.00a	20.	.78 92.	11ab 1	103.0abc	10.89c	20.18	3.92b	5.83c	9.75b	39.85a
$S\bar{x}$	1.17	0.162	0.157	0.056	0.2	277 1	.15	1.48	0.416	0.245	0.075	0.076	0.149	0.422
Level of significance	* *	* *	* *	* *	Z	S	* *	* *	* *	NS	* *	* *	* *	* *
CV (%)	5.32	4.81	5.43	11.80	3.5	97 3	.75	4.27	10.38	3.64	6.01	3.77	4.61	3.49
In a column, fi bility. Poultry ha ⁻¹ (N ₃), 50%	gures with sa manure @ 5 t less than rec	t ha ⁻¹ (N ₁), N-F ommended do	or without lette -K-S-Zn @ 25 ose of chemica	er do not diff 0, 126, 120, 11 fertilizer +	fer significa 100, 10 kg poultry ma themical fea	antly where ha ⁻¹ (recon anure @ 5	eas figures w nmended do t ha ⁻¹ (N ₄), V	vith dissimilar se) (N_2) , 25% 'ermicompost	letter differ sign ess than recomn @ 10 t ha ⁻¹ (N ₅),	ificantly (as pe 1ended dose o 25% less thai	er DMRT) ** of chemical f n recommer	* =Significa fertilizer + nded dose	int at 1% leve poultry man of chemical	l of proba- ure @ 2.5 t fertilizer +
verillicollilav	ווק ווא	6), JU70 IESS LI	ומנו ג בכטווווובווג	מפח מספר טו ר	CURTILICAL IC	יע דוווזפו אי	eriiicuiipus	I (m TOLING VI	V7).					

à . . ticfic 4 viald of i ald c à ÷. 40 +0 Tahla 1 Effa

_

248

Interaction (Variety × nutrient management)	Plant height (cm)	Number of tillers hill ⁻¹	Number of effective tillers hill ⁻¹	Number of non-effective tillers hill ⁻¹	Panicle length (cm)	Number of grains panicle ⁻¹	Total spikelets panicle ⁻¹	Sterile spikelets panicle ⁻¹	1000- grain weight (g)	Grain yield (t ha ⁻¹)	Straw yield (t ha ⁻¹)	Biological yield (t ha ⁻¹)	Harvest Index (%)
$V_1 \times N_1$	69.00abcd	9.00fg	8.000ef	1.00d	21.33	97.00cd	107.3 bc	10.33gh	21.50	2.98hij	4.78h	7.76gh	38.40def
$V_1 \times N_2$	65.67abcde	8.66fg	7.330f	1.33c	21.00	93.00cdef	104.3 bcd	11.33efg	21.23	4.50bc	6.43d	10.93b	41.16abc
$V_1 \times N_3$	71.00abc	11.00bc	9.670bc	1.33c	20.67	94.67cde	105.0 bcd	10.33gh	21.40	4.03de	6.97abc	11.00b	36.65fg
$V_1 \times N_4$	71.00abc	11.67ab	10.33ab	1.33c	21.00	108.0a	118.3 a	10.33gh	21.40	3.37fgh	6.73bcd	10.10c	33.33h
$V_1 \times N_5$	70.00abc	9.00fg	8.000ef	1.00d	22.33	97.00bcd	106.0 bc	9.00gh	21.43	2.97hij	4.93gh	7.90fgh	37.58ef
$V_1 \times N_6$	70.33abc	12.0a	10.67a	1.33c	21.67	103.0ab	112.3 ab	9.66gh	21.17	4.07de	5.77e	9.83cd	41.35ab
$V_1 \times N_7$	69.00abcd	11.00bc	9.000cd	2.00a	21.00	91.00defg	101.0 cde	10.00gh	21.50	3.30fgh	4.90gh	8.20fgh	40.24bcd
$V_2 \times N_1$	64.67cdef	10.33cd	9.000cd	1.33c	20.33	91.33defg	104.3 bcd	13.00def	18.17	2.80ij	5.60ef	8.40efg	33.33h
$V_2 \times N_2$	68.00abcd	12.3a	10.67a	1.67b	22.33	89.67efg	99.67 cde	10.00gh	18.40	3.67ef	5.48ef	9.15de	40.08bcde
$V_2 \times N_3$	71.67ab	10.00de	8.670de	1.33c	21.33	99.00bc	107.3 bc	8.33h	18.47	4.03de	6.33d	10.36bc	38.89bcdef
$V_2 \times N_4$	65.00bcdef	9.33ef	8.330de	1.00d	21.00	91.33defg	104.7 bcd	13.33cde	17.90	3.53fg	6.90abc	10.43bc	33.87h
$V_2 \times N_5$	63.00defgh	8.67fg	7.330f	1.33c	21.00	94.00cdef	103.0 cde	9.00gh	17.90	2.57j	4.90h	7.470h	34.38gh
$V_2 \times N_6$	72.00a	12.3a	10.67a	1.67b	21.00	90.33defg	101.3 cde	11.00fg	18.00	4.33cd	6.87abc	11.20b	38.68cdef
$V_2 \times N_7$	68.00abcd	10.33cd	8.330de	2.00a	20.67	94.00cdef	104.0 bcd	10.00gh	18.13	3.17ghi	5.50ef	8.670ef	36.55fg
$V_3 \times N_1$	60.00efgh	9.33ef	8.000ef	1.33c	20.33	87.33fgh	107.0 bc	19.67a	20.73	2.83ij	4.87h	7.69gh	36.74fg
$V_3 \times N_2$	59.00efgh	8.33g	7.330f	1.00d	20.33	81.00h	95.33e	14.33bcd	20.60	4.77b	7.20a	11.97a	39.84bcde
$V_3 \times N_3$	64.33cdefg	11.67ab	9.670bc	2.00a	20.33	86.00gh	104.7 bcd	15.33bc	21.13	4.40bcd	6.63cd	11.03b	39.88bcde
$V_3 \times N_4$	57.00h	7.00h	6.000g	1.00d	20.00	86.00gh	100.0 cde	14.00cd	21.20	4.27cd	5.67ef	9.93c	42.95a
$V_3 \times N_5$	58.00gh	7.00h	6.000g	1.00d	20.33	82.33h	97.00 de	14.67bcd	21.10	2.70j	5.30fg	8.00fgh	33.75h
$V_3 \times N_6$	59.00fgh	12.33a	10.33ab	2.00a	20.33	83.00h	99.33 cde	16.33b	21.03	4.37bcd	6.63cd	11.00b	39.71bcde
$V_3 \times N_7$	69.00abcd	10.67cd	8.670de	2.00a	20.67	91.33defg	104.0 bcd	12.67def	20.90	5.30a	7.10ab	12.40a	42.74a
$S\bar{x}$	2.02	0.281	0.272	0.097	0.479	1.99	2.57	0.721	0.424	0.129	0.130	0.258	0.766
Level of sig.	* *	*	* *	* *	NS	*	*	*	NS	* *	* *	*	* *
CV (%)	5.32	4.81	5.43	11.80	3.97	3.75	4.27	10.38	3.64	6.01	3.77	4.61	3.49
In a column, figures v 5% level of probabilit than recommended d than recommended d	vith same letter :y, NS = Not sign lose of chemical ose of chemical	(s) or withou nificant, BRRI fertilizer + p fertilizer + ve	t letter do not c dhan50 (V ₁), B oultry manure :rmicompost @ [liffer significantly asmati (V2) and BF @ 2.5 t ha ⁻¹ (N ₃), 5(5 t ha ⁻¹ (N ₄). 50% le	whereas fig 3RI dhan63 3% less thai ss than reco	ures with dissin (V₃) Poultry ma ∩ recommendec	nilar letter diff nure @ 5 t ha ⁻ l dose of chem of chemical fe	fer significant ¹ (N₁), N-P-K∹ nical fertilizer ≘rtilizer + verr	ly (as per DMRT) S-Zn @ 250, 126 + poultry manur nicompost @ 101	 ** =Significal , 120, 100, 10 e @ 5 t ha⁻¹(N t ha⁻¹(N). 	nt at 1% leve) kg ha ⁻¹ (recc 14), Vermicom	l of probability, mmended dos npost @ 10 t ha	* =Significant at e) (N ₂), 25% less ⁻¹ (N ₅), 25% less

Table 3. Interaction effects of variety and nutrient management on crop characters, yield components and yield of aromatic fine rice in Boro season.

249

produced the shortest one (57.00 cm). The highest number of total tillers hill⁻¹ (12.33) was obtained in BRRI dhan63 fertilized with 25% less than recommended dose of chemical fertilizer + vermicompost @ 5 t ha⁻¹ which was similar to BRRI dhan50 fertilized with recommended dose of chemical fertilizers (i.e. 250, 126, 120, 100 and 10 kg N-P-K-S-Zn) and Basmati along with 25% less than recommended dose of chemical fertilizer + vermicompost @ 5 t ha⁻¹, BRRI dhan50 fertilized with 50% less than recommended dose of chemical fertilizer + vermicompost @ 10 t ha⁻¹, Basmati fertilized with 50% less than recommended dose of chemical fertilizer + vermicompost 10 t ha⁻¹, BRRI dhan63 fertilized with 25% less than recommended dose of chemical fertilizer + poultry manure 2.5 t ha⁻¹, BRRI dhan63 fertilized with 25% less than recommended dose of chemical fertilizer + vermicompost @ 5 t ha⁻¹ and BRRI dhan63 fertilized with 50% less than recommended dose of chemical fertilizer + vermicompost @ 10 t ha⁻¹ produced the highest (2.00) number of non-effective tillers hill⁻¹). The highest number of grains panicle⁻¹(108.0) and number of total spikelets panicle⁻¹(118.3) were recorded in BRRI dhan50 fertilized with 50% less than recommended dose of chemical fertilizer + poultry manure @ 5 t ha⁻¹. BRRI dhan63 with poultry manure @ 5 t ha⁻¹ produced the highest number of sterile spikelets panicle⁻¹ (19.67) while Basmati along with 25% less than recommended dose of chemical fertilizer + poultry manure @ 2.5 t ha⁻¹ produced the lowest one (8.33). The highest grain yield (5.30 t ha⁻¹) was recorded in BRRI dhan63 fertilized with 50% less than recommended dose of chemical fertilizer + vermicompost @ 10 t ha⁻¹ while the highest straw yield (7.20 t ha⁻¹) was produced in BRRI dhan63 fertilized with recommended dose of chemical fertilizers (i.e. 250, 126, 120, 100 and 10 kg N-P-K-S-Zn, respectively ha⁻¹). BRRI dhan63 fertilized with 50% less than recommended dose of chemical fertilizer + vermicompost @ 10 t ha⁻¹ also produced the highest biological yield (12.40 t ha⁻¹) which was at par with BRRI dhan63 fertilized with recommended dose of chemical fertilizers (i.e. 250, 126, 120, 100 and 10 kg N-P-K-S-Zn, respectively ha⁻¹). BRRI dhan63 fertilized with 50% less than recommended dose of chemical fertilizer + poultry manure @ 5 t ha⁻¹ produced the highest harvest index (42.95%) which was statistically identical with BRRI dhan63 fertilized with 50% less than recommended dose of chemical fertilizer + vermicompost @ 10 t ha⁻¹ and (42.74%). Sarkar et al. (2014) reported similar trend in case of harvest index.

Conclusion

The results of this investigation revealed that the highest grain and straw yields were obtained in BRRI dhan63. Application of recommended dose of chemical fertilizers (i.e. 250, 126, 120, 100 and 10 kg N-P-K-S-Zn, respectively ha⁻¹) produced the highest grain yield (4.31 t ha⁻¹) which was at par with 25% less than recommended dose of chemical fertilizer + vermicompost @ 5 t ha⁻¹ and 25% less than recommended dose of chemical fertilizer + poultry manure @ 2.5 t ha⁻¹ while the lowest one (2.74 t ha⁻¹) was found in vermicompost @ 10 t ha⁻¹. BRRI dhan63 fertilized with 50% less than recommended dose of chemical fertilizer + vermicompost @ 10 t ha⁻¹ produced the highest grain yield while the highest straw yield (7.20 t ha⁻¹) was produced in BRRI dhan63 fertilized with recommended dose of chemical fertilizers (i.e. 250, 126, 120, 100 and 10 kg N-P-K-S-Zn, respectively ha⁻¹). Therefore, it can be concluded that BRRI dhan63 can be grown with 50% less than recommended dose of chemical fertilizer + vermicompost @10 t ha⁻¹ in *Boro* season to obtain the highest grain yield.

ACKNOWLEDGEMENTS

The financial assistance of the Ministry of Science and Technology, Govt. of the People's Republic of Bangladesh (39.00.0000.09.02.69.16-17/BS-49/63) to carry out the research work is thankfully acknowledged.

Open Access: This is open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

REFERENCES

- BBS, Bangladesh Bureau of Statistics (2016). The Yearbook of Agricultural Statistics of Bangladesh. Stat., Stat. Div., Minis. Plan., Govt. People's Repub., Bangladesh, Dhaka.pp.56-65.
- FAO, Food and Agricultural Organization (2009). Production Year Book. Food and Agric. Organ. of the United Nations, Rome. 45: 72-73.
- FAO, Food and Agriculture Organization (2004). FAO Indices of Food and Agricultural Production. Food Agric. Org., Italy. pp. 16-19.
- Gomez, K.A. and Gomez, A.A. (1984). Statistical Procedures for Agricultural Research. Int. Rice Res. Inst., John Wiley and Sons. New York, Chichester, Brisbane, Toronto, Singapore. p. 680.
- Hossain, M.S., Mamun, A.A., Basak, R., Newaj, M.N. and Anam, M.K. (2003). Effect of cultivar and spacing on weed infestation and performance of transplant *aman* rice in Bangladesh. *Pakistan Journal of Agronomy*, 2(3): 169-178.
- Jahan, S., Sarkar, M.A.R. and Paul, S.K. (2017). Effect of plant spacing and fertilizer management on the yield performance of BRRI dhan39 under Old Brahmaputra Floodplain Soil. *Madras Agricultural Journal*, 104 (1-3): 37-40.
- Kirttania, B., Sarkar, M.A.R., Paul, S.K. and Islam, M.S. (2013). Morpho-physiological attributes of transplant *Aman* rice as influenced by variety, age of tiller seedlings and nitrogen management. *Journal of Agroforestry and Environment*, 7(2): 149-154.
- Mittra, C.K. (2005). Effect of different levels of nitrogen on the yield performance and nitrogen use efficiency of five advance lines of rice in *Boro* season. MS Thesis, Dept. of Soil Science. Bangladesh Agril. Univ., Mymensingh. pp. 49.
- Muniruzzaman, M. (2004). Screening and selection of advanced line of rice on the basis of nitrogen use efficiency. MS Thesis, Dept. of Soil Science. Bangladesh Agricultural

University, Mymensingh.pp.51.

- Pal, S., Paul, S.K., Sarkar, M.A.R. and Gupta, D.R. (2016). Response on yield and protein content of fine aromatic rice varieties to integrated use of cowdung and inorganic fertilizers. *Journal of Crop and Weed*, 12(1): 01-06.
- Parvez, M.S., Islam, M.R., Begum, M.S., Rahman, M.S. and Abedin Miah, M.J. (2008). Integrated use of manure and fertilizers for maximizing the yield of BRRI dhan30. *Journal of Bangladesh Society of Agricultural Science and Technology*, 5 (1&2): 257-260.
- Paul, S.K., Islam, M.S., Sarkar, M.A.R., Das, K.R. and Islam, S.M.M. (2016). Impact of variety and level of nitrogen on the growth performance of HYV transplant *Aman* rice. *Progressive Agriculture*, 27: 32-38.
- Rahman, M.H., Khatun, M.M., Mamun, M.A.A., Islam, M.Z. and Islam, M.R. (2007). Effect of number of seedling hill⁻¹ and nitrogen level on growth and yield of BRRI dhan32. *Journal of Soil and Nutrition*, 1(2):01-07.
- Ray, S., Sarkar, M.A.R., Paul, S.K., Islam, A.K.M.M. and Yeasmin, S.

(2015). Variation of Growth, Yield and Protein Content of Transplant *Aman* Rice by Three Agronomic Practices. *Agricultural and Biological Sciences Journal*, 1(4) 167-176.

- Sarkar, S.K., Sarkar, M.A.R., Islam, N. and Paul, S.K. (2014). Yield and quality of aromatic fine rice as affected by variety and nutrient management. *Journal of the Bangladesh Agricultural University*, 12(2): 279-284.
- Sarkar, S.K., Sarkar, M.A.R., Islam, N. and Paul, S.K. (2016). Morpho-physiological attributes of three HYV aromatic fine rice varieties as affected by integrated nutrient management. *Journal of Agroforestry and Environment*, 10 (1): 57-61.
- Shaha, U., Bhuiya, M.S.U. and Paul, S.K. (2014). Integrated use of cowdung and inorganic fertilizer on the performance of modern varieties of transplant Aman rice. Journal of Agroforestry and Environment, 8(2): 81-84.
- UNDP and FAO (1988). Land Resources Appraisal of Bangladesh for Agricultural Development, Report No. 2. Agro-ecological Regions of Bangladesh. United Nations Dev. Prog. And Food and Agric. Organ. pp. 212-221.