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Abstract

We have previously developed a new theory for pressure dependent outflow from the

human eye, and tested the model using experimental data at intraocular pressures above

normal eye pressures. In this paper, we use our model to analyze a hypotensive pressure-

time dataset obtained following application of a Honan balloon. Here we show that the hypo-

tensive pressure-time data can be successfully analyzed using our proposed pressure

dependent outflow model. When the most uncertain initial data point is removed from the

dataset, then parameter estimates are close to our previous parameter estimates, but

clearly parameter estimates are very sensitive to assumptions. We further show that (i) for a

measured intraocular pressure-time curve, the estimated model parameter for whole eye

surface hydraulic conductivity is primarily a function of the ocular rigidity, and (ii) the esti-

mated model parameter that controls the rate of decrease of outflow with increasing pres-

sure is primarily a function of the convexity of the monotonic pressure-time curve. Reducing

parameter uncertainty could be accomplished using new technologies to obtain higher qual-

ity datasets, and by gathering additional data to better define model parameter ranges for

the normal eye. With additional research, we expect the pressure dependent outflow analy-

sis described herein may find applications in the differential diagnosis, prognosis and moni-

toring of the glaucomatous eye.

Introduction

Glaucoma is the most significant cause of irreversible blindness world-wide, with some 70 mil-

lion people affected [1]. While glaucoma is a group of diseases, there is a crucially important

association between the initiation and progression of glaucoma and raised intraocular pressure

(IOP). It is hypothesized that raised IOP can directly lead to optic nerve neuropathy. The only

proven treatment of glaucoma is reduction of IOP [1, 2].

Given the importance of IOP from diagnostic, monitoring and prognostic viewpoints, try-

ing to measure and understand the causes of elevated IOP has attracted considerable attention.
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It is known that IOP is determined by the interplay between net fluid production and pressure

dependent outflow from the eye. Impairment of outflow facility of the eye is believed to be the

primary determinant of raised IOP [3]. Consequently there is considerable clinical interest in

measuring the outflow facility, both to identify a primary risk for glaucoma and to monitor the

response to interventions, such as drug treatments.

Outflow occurs through the trabecular meshwork (the so-called ‘conventional pathway’)

and through the uveoscleral route (the so-called ‘unconventional pathway’) [4]. But it is also

well-documented that pressure dependent and pressure independent outflow also occurs

across the retinal pigmented epithelium and into the choriocapillaris [5–16]. This latter path-

way is often neglected in discussions of eye fluid turnover [2, 4, 17], probably because it is diffi-

cult to measure clinically [18].

In a previous paper we developed a new theoretical model for the analysis of pressure

dependent outflow analysis for the in vivo eye [19], which includes outflow across the retinal

pigment epithelium [16]. To unambiguously develop the pressure dependent outflow theory

requires greater precision in the way outflow facility (C) is defined [20]. Indeed, when outflow

facility is pressure dependent, there are any number of outflow facilities that can be measured

for an eye. For this reason, we introduced a new notation that removes ambiguity about pre-

cisely which outflow facility is being considered or measured. That is, we define two distinct

quantities:

i. a local (or point) estimate of outflow facility, which is the mathematical derivative of the

total pressure dependent outflow with respect to IOP (denoted Cp1 at IOP p1). For example

C15 (where C15 means the derivative of the total pressure dependent outflow with respect to

IOP evaluated at an IOP of 15 mm Hg). This is the tangent to the outflow versus pressure

curve at a specific pressure;

ii. an average of local outflow facility over a pressure range (denoted �Cp2
p1

over a pressure range

p1 to p2). For example �C20
15

(where the overbar denotes average, and �C20
15

means the average

of the local outflow facilities over the IOPs ranging from 15 mm Hg to 20 mm Hg). This is

the slope of the secant line joining two points for the two pressures on an outflow versus

pressure curve.

The clinically measured outflow facility corresponds to the second definition, and repre-

sents an average outflow facility across a pressure range (typically from the initial eye pressure

up to an elevated eye pressure). For completeness, we briefly describe the governing equations

for the pressure-dependent model using this new nomenclature. Employing published experi-

mental data, we then solve the model equations to estimate two key parameters governing out-

flow in the model, namely: (i) the hydraulic outflow conductance for the whole eye, CSL
T (μl/

min/mm Hg), describing membrane outflow properties; and (ii) an exponential decay con-

stant α (mm Hg)-1 for the whole eye, which describes the rate of decrease of local outflow facil-

ity with increasing IOP (mm Hg).

In contrast to our previous paper [19], in this paper we solve the pressure dependent out-

flow equations to make estimates of parameters CSL
T and α at IOPs below the normotensive

pressure. This approach provides another independent dataset to test the robustness of our

previous parameter estimates of CSL
T and α. To do this we employ published experimental data

collected for the purpose of investigating the time course of ocular hypotony following applica-

tion of a ‘Honan intraocular pressure reducer’ [21]—sometimes referred to as a ‘Honan bal-

loon’ [22]. Based on this set of experimental measurements, we again estimate a total pressure

dependent outflow for aged but otherwise healthy in vivo human eyes. Our analysis reveals

some important findings. For example: (i) that for a given IOP-time curve, the parameter CSL
T
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is primarily a function of the ocular rigidity, and (ii) the parameter α is primarily a function of

the shape of the monotonic pressure-time curve.

We begin our analysis by first briefly outlining our pressure dependent outflow theory

required for the analysis, and then describe our strategy to combine computational modeling

and statistical analysis of the Ernest et al.’s experimental data [21], to uncover the most likely

mean pressure time curve following release of the Honan balloon. We use minimization of

variance to estimate the most likely model parameters, and then explore parameter estimation

upon removal of the initial data point, and for given additional constraints on outflow parame-

ters. While our previous analysis [19] was largely based on pressure-time data above normo-

tensive pressures, the analysis reported here is based on pressure-time data below

normotensive pressures. There is reason to suppose that analysis of the data for these two pres-

sure ranges should result in reasonably similar outflow predictions for the human eye. In pro-

ceeding along this investigation path, considerable effort will be given to comparing multiple

data fitting strategies, motivated either by mathematical or experimental limitations.

Method

Theory for the analysis of pressure-volume and pressure-time

measurements

The average pressure dependent outflow facility over a pressure range p1 to p2, denoted �Cp2
p1

, is

the average of the local outflow facilities between pressures p1 and p2. This quantity turns out

to be a well-known ratio of finite differences [23, 24], viz,

�Cp2
p1
¼

1

p2 � p1

Zp2

p1

Cpdp ¼
1

p2 � p1

Zp2

p1

d _Vout

dp
dp ¼

_Voutðp2Þ �
_Voutðp1Þ

p2 � p1

ð1Þ

where _Voutðp2Þ is outflow rate at p2, and similarly for the outflow rate at p1. If the finite differ-

ence is small, then Eq (1) can be employed to approximate Cp1 , for as P2! P1 so �Cp2
p1
! Cp1 .

An incremental volume flow rate into the eye may be held constant until the IOP stabilizes at a

new level above the resting IOP, and the average outflow facility over this pressure range may

then be calculated directly using Eq (1). Very occasionally this technique has been employed

using in vivo human eyes [25].

More often for human eyes, outflow facility is estimated from recordings of a pressure-vol-

ume curve and a pressure-time curve for an individual eye. Direct cannulation of the eye is the

most accurate method. In this approach, one first volumetrically loads the eye with fluid and

records IOP, so measuring the pressure-volume curve for the eye. Then volumetric loading of

the eye is ceased and the change in pressure over time is manometrically measured (obtaining

the ‘pressure-time’ curve) [26, 27]. When pressure-time and pressure-volume data is available,

the outflow facility between the normotensive intraocular pressure (pnt) and some other pres-

sure p (�Cp
nt) may also be calculated using the following equation from Ref [19],

�Cp
nt ¼
�

dDVe
dt jp

p � pnt
¼
� ð

c0
p þ c1Þ

dp
dt jp

p � pnt
ð2Þ

where pnt is the normotensive pressure,
dDVe
dt

�
�
�
p

is the rate of change of the increment of volume

with respect to time at some pressure p. Note that to derive Eq (2), we have used the chain rule

of differentiation (
dDVe
dp

dp
dt ¼

1

Kp
dp
dt) and introduced the pressure-volume constitutive relationship
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for the eye [19],

1

K
¼ c0 þ c1p ð3Þ

where K is known as the ocular rigidity, and c0 and c1 are two experimental estimated con-

stants estimated by fitting the pressure-volume curve. It is apparent that an accurate estimation

of the ocular rigidity is very important for the accurate estimation of average outflow facility

between two IOPs from a pressure-time curve, as the ocular rigidity determines the eye fluid

volume change associated with a pressure change. Rearranging Eq (2) leads to,

dp
dt

�
�
�
�
p

¼ �
�Cp

ntpðp � pntÞ
c0 þ c1p

ð4Þ

which governs the pressure-time response behavior for a human eye system with no external

fluid injection.

Experimental data to be analyzed

Ernest et al. [21] investigated the ‘softening of the eye’ arising from a reduction in IOP, which

can be achieved following application of the ‘Honan intraocular pressure reducer’ (also known

as a Honan balloon). A softened eye is deemed desirable by surgeons prior to eye surgery, for

it is believed that sudden pressure release and associated volume change of the eye that occur

upon cutting into a ‘hard’ eyeball, may potentially displace vitreous humor.

In Ernest et al. [21], 10 subjects waiting for cataract surgery, were examined and their eyes

deemed otherwise healthy [21]. All subjects were 50+ years of age. IOP was measured using a

Goldmann applanation tonometer, and Ernest et al. demonstrated in one individual that they

could achieve a good level of reproducibility over seven tonometer measurements, reporting a

standard error of ± 0.2 mm Hg for the seven measurements. The average initial eye pressure

for the 10 subjects prior to inflating the Honan balloon was reported to be 17.0 ± 1.4 mmHg

[21].

For the duration of the experiment, subjects remained quietly seated in a ‘slit-lamp chair’.

The eye was dilated with one drop of 10% phenylphrine hydrochloride applied once every 5

minutes for 15 minutes. The Honan balloon was placed over closed eyelids and inflated to a

gauge reading of 30, which then remained in place for 30 minutes. The initial reading, desig-

nated time zero, was made within 10 seconds of removing the Honan balloon, and repeated

every 5 minutes thereafter to 35 minutes. The reported mean IOP for the subjects, and stan-

dard deviations of the individual measurements, is reproduced in Fig 1 below [21].

Based on an exponential curve fitted to the data presented in Fig 1, the half-time for pres-

sure recovery was reported by Ernest et al. to be 9.6 minutes [21]. Our exponential curve fitted

to the data in Fig 1 is shown in Fig 2, and the half-life for pressure recovery was found to be 9.8

minutes.

Method of data analysis

To analyze Ernest et al.’s data shown in Fig 1, we have employed a combination of statistical

regression modeling (based on minimizing variance between cubic polynomial and exponen-

tial regression curves and the experimental data) and computational modeling (based on mini-

mizing variance between the theoretical outflow model (i.e. Eq (4)) and the experimental

data). We know from the theoretical model that the outflow parameters depend upon accurate

representations of the time derivative of the pressure-time and the pressure-volume data.

However pressure-volume data was not measured by Ernest et al., so for our estimation of
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outflow parameters using Eq (4) it is necessary for us to estimate the ocular rigidity. To do this

we employ estimates of ocular rigidity measured in similar groups of subjects (i.e. subjects of

similar age also awaiting cataract surgery, and with an otherwise healthy eyes), as reported in

the high quality clinical studies by Dastiridou et al. and Karyotakis et al. [26, 27].

The accurate representation of the time derivative of the mean pressure-time curve is chal-

lenging due to the uncertainty in the measured mean values. This uncertainty arises from both

subject variability and measurement error. One approach to reducing uncertainty is to select a

suitable regression curve to interpolate the experimental data by fitting a smooth curve

through the data points.

Regression analysis involves a trade-off between decreasing the number of parameters in

the regression model and having a comparatively poor model fit to the data points versus

increasing the number of parameters in the regression model and improving the model fit to

the data points. If the regression model has too few parameters, the regression model may be

over-constrained (i.e. the regression curve is not ‘flexible’ enough), which can result in poor

approximation to the time derivative of the pressure. For example, if the regression model is a

Fig 1. Data for the IOP recovery, measured at 5 minute intervals following removal of the Honan balloon [21]. Data points shown equal the mean value of

measurements made on 7 to 10 subjects at each 5 minute interval (mean values shown have been estimated from the graph shown in fig 4 of Ernest et al.).

Magnitude of error bars equal to ± 1 standard deviation for individual measurements (standard deviations shown have been estimated from graph in fig 4 of

Ernest et al.). The mean IOP prior to application of Honan balloon equals 17 ± 1.4 mm Hg.

https://doi.org/10.1371/journal.pone.0238146.g001
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traditional two parameter linear regression, the time derivative of the pressure would be a con-

stant value. But the obvious curvature of the pressure-time data shown in Figs 1 and 2 means

that the time derivative of the pressure is not a constant. Therefore a two-parameter linear

regression model is not suitable for our purposes.

Ernest et al. employed a two-parameter exponential regression model, and this yields quite

a good fit to the data (e.g. see Fig 2), so this might be suitable regression model to use here.

However this exponential regression model also only involves two parameters, and the time

derivative of the pressure is not necessarily an exponential curve. To see this, we note that if

the theoretical model is correct, and assuming c1 is zero, then Eq (4) suggests that the time

derivative of the pressure-time curve is actually a product of an exponential function of pres-

sure (�Cp
nt) and a quadratic polynomial in pressure (p(p−pnt)) [19].

We initially focus on a polynomial regression model to represent the pressure-time curve.

If the time derivative is represented by a quadratic polynomial, the pressure-time curve is itself

Fig 2. Exponential ‘recovery curve’ (red) fitted to experimental pressure data (blue), following removal of a Honan balloon [21]. Half-life for recovery t1/2

reported by Ernest et al. to be 9.6 minutes, while we calculate 9.81 minutes (this regression curve and half-life is calculated by directly minimizing the variance

of experimentally measured and regression curve predicted means). We estimate the equation describing the recovery curve to be 17.0–10.1×EXP(-0.0707×t)

mm Hg. Error bars shown in the figure are 95% confidence intervals for the mean data values (i.e. about 2.2 × SEM, which is calculated to be about ± 0.8 mm

Hg initially, rising to ± 1.1 mm Hg at the final data point). The fitted exponential curve is seen to pass within the 95% confidence interval of each mean data

point. We note that the exponential curve shown above looks very similar to that shown in Ernest et al. [21].

https://doi.org/10.1371/journal.pone.0238146.g002
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a cubic polynomial. This led us to considering cubic and higher order polynomial regressions.

However given there is only eight data points collected at five minute intervals over 35 min-

utes, there is a significant danger of overfitting the data as the order of the polynomial

increases. Taking this into account, we chose to initially use a cubic polynomial regression to

model the pressure-time data, which means we use a quadratic polynomial to represent the

time derivative of the pressure. We can see from Fig 2, an exponential can give a reasonably

good fit to the data, so we will also check how an exponential curve performs in regression.

Our modeling strategy is to first directly fit the computational model (based on solving the

ordinary differential equation shown in Eq (4)) to the raw experimental data, choosing the

optimal fit based on minimizing the variance between computational model prediction and

the experimental data. If the theoretical model is an accurate representation of the eye’s out-

flow system, then this may fit the experimental data better than either a cubic polynomial or

an exponential regression. Then postulating the likelihood of a temporary systematic error

associated with the first data point, we then show the computational model variance (i.e. the

sum of squares of residuals) can be improved by removing the experimental data point at time

zero from the optimization process, and that the predicted new intercept at time zero supports

the existence of a temporary systematic error.

Second we fit the cubic polynomial regression model to the raw data, and then fit the

computational model (based on Eq (4)) to this regression. We also do this ‘double fitting’ pro-

cedure for an exponential regression, and then evaluate if this double fitting approach is useful.

This double fitting procedure has the potential advantage of smoothing the raw data before the

computational model fitting, but has the potential disadvantage of introducing two lots of

modeling error.

Both the statistical model regressions and the computational model regressions are com-

puted in Excel, and models are fitted to the data using the GRG non-linear optimization rou-

tine (precision in the optimization solver was set to 1.0×10−6). Optimization is based on

minimizing the ‘standard error of the regression’ (denoted S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

e2=df
q

, where e is the

error and df are the degrees of freedom), and this is applicable to both linear and non-linear

regression models.

We note that ± the two-sided ‘t factor’ for the 95% confidence interval (tα=0.95,df) multiplied

by the standard error of the regression is approximately the 95% confidence interval for the

mean predictions. The cubic polynomial regression model has four fitting parameters includ-

ing the intercept (i.e. 8 data points and 4 degrees of freedom, so the ‘t factor’ (tα=0.95,4) for the

95% confidence interval of a t distribution is about 2.78). The exponential regression model

has two fitting parameters including the intercept (i.e. 8 data points and so 6 degrees of free-

dom, so the ‘t factor’ (tα=0.95,6) for the 95% confidence interval of a t distribution is about 2.45).

The computational model based on Eq (4) has three fitting parameters (the IOP at time zero

(i.e. the intercept), the hydraulic conductance for outflow CSL
T and the exponential decay con-

stant α), and three additional fixed parameters, namely the initial IOP and the ocular rigidity

parameters c0 and c1 (i.e. 8 data points and so 5 degrees of freedom, so the ‘t factor’ (tα=0.95,5)

for the 95% confidence interval of a t distribution is about 2.57).

For the optimization of the standard error of the regression, the computational model fit-

ting parameters can take any value that is greater than zero. The initial IOP is held at the exper-

imentally reported value of 17 mm Hg for all analyses. Ernest et al. did not measure ocular

rigidity, so we consider two mean ocular rigidities reported for two groups of subjects of simi-

lar age and also awaiting cataract surgery, but otherwise healthy eyes): (i) Dastiridou et al. [26]

(c0 equals 45.5 and c1 equals zero) and (ii) Karyotakis et al. [27] (c0 equals 35.3 and c1 equals

zero).
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All simulations were carried out using a Dell PC with an Intel Core i7 3.40-GHz CPU run-

ning Windows 7 Professional. The solution time for optimization of the computational model

and regression model in Excel was typically less than thirty seconds, with the analysis time

being primarily dependent on chosen initial values.

Results

Abbreviations are employed extensively throughout the Results section, so all the abbreviations

employed are collected together in Table 1 for convenience.

For the analysis, w first we took a straightforward approach and simply fitted our pressure

dependent outflow model to the experimental data. In the following Tables, Ernest et al.’s data

set (shown in Fig 1) is labelled ED0, and the computational model fit to the data is labelled

CM0 (and CM0b). The predicted outflow parameter α for the solution CMO is greater than

zero, which means the solution is pressure-dependent. However α has comparatively small

magnitude (α equals 0.027) relative to later analyses (see Table 2).

Next we fit the experimental data set ED0 to a cubic polynomial regression curve, and this

prediction is labelled PM0 (see Table 3). We then fit the computational model to the regression

curve PM0, obtaining a prediction labelled PCM0 (and PCM0b) (see Table 2). This ‘double fit-

ting’ procedure is explored to assess its usefulness. After fitting the computational model to the

cubic polynomial regression curve, we see that the predicted outflow parameters for the

computational model solution PCM0 (and PCM0b) are again pressure-dependent, but now

the parameter values have increased somewhat (i.e. CSL
T is increased by 12% to 0.47 μl/min/

mm Hg, α by 30% to 0.035 mm Hg-1 and the predicted outflow is increased by 4% to 4.7 μl/

min; see Table 2).

We next reasoned that the first measured data point is likely to be least accurate, because that

measurement was taken within 10 seconds of removing the Honan balloon after having been in

place for 30 minutes. We first observe that the measurement is not taken at time zero, and even

a short delay may potentially lead to a significant error when the systems state is adjusting very

quickly. Immediately following removal of the Honan balloon it seems likely the IOP would be

increasing, which suggests the actual initial IOP may be lower than that measured.

Table 1. Abbreviations: Abbreviations as shown in the table assume the ocular rigidity is C0 equals 45.5. Abbrevi-

ations for ocular rigidity C0 equals 35.3 have a ‘b’ added to those abbreviation (e.g. CMOb).

Data Abbreviation

Original data set ED0

Original data set with first data point removed ED1

The ED1 data set with first data point replaced by the CM1 model prediction ED1�

Model fit to the data sets

Computational model fit to ED0 CM0

Computational model fit to ED1 CM1

Polynomial regression curve fit to ED0 PM0

Exponential regression curve fit to ED0 EM0

Polynomial regression curve fit to ED1 PM1

Exponential regression curve fit to ED1 EM1

Computational model fit to PMO predictions PCM0

Computational model fit to PM1 predictions PCM1

Computational model fit to EM0 predictions ECM0

Computational model fit to EM1 predictions ECM1

https://doi.org/10.1371/journal.pone.0238146.t001
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Further we expect that, following removal of the Honan balloon, eye physiology would be

temporarily abnormal. For example, there may be a short-term reactive hyperemia within the

orbit (e.g. associated with the choroidal vasculature increasing volume upon pressure release),

and/or there may be short-term adjustments in interstitial fluid volumes within the orbit (e.g.

fluid being squeezed into eye tissues when the anterior, posterior and vitreous chambers at ele-

vated IOP may reverse flow direction upon pressure release of the Honan balloon), and/or per-

haps there is temporary abnormal autonomic activity, all which may directly or indirectly

impact measured IOP. In addition, measurement using the Goldmann applanation tonometer

within a 10 second time limit would no doubt have been challenging, and probably contrib-

uted to comparatively more measurement error, at least for the initial time point (though we

note the standard deviation of for the initial data point is not increased relative to other data

points with 10 measurements, suggesting measurement error remains significantly less than

subject to subject variability). In conclusion, these biologically plausible reasons raise suspicion

that the first experimental data point may be significantly less accurate than measurements at

later times. Therefore, we then proceed to model the original data set with this initial measure-

ment excluded from the model fitting process (this data set is referred to as the ‘reduced data

set’, and labelled ED1 (see Table 3).

Following the same procedure as for the complete data set, we first fit the computational

model to the reduced data set labelled ED1 (the computational model prediction is labelled

CM1 in Table 2). We immediately observe that the optimal parameters and outflow have

Table 2. Outflows and parameter solutions (to Eq 4) predicted by the computational model (denoted CM and PCM), for two ocular rigidities. CMO is computa-

tional model fitted to data ED0. PCM0 is the computational model fitted to the cubic polynomial regression on ED0. CM1 is computational model fitted to ED1. PCM1 is

computational model fitted to cubic polynomial regression on ED1. ECM1 is computational model fitted to exponential regression on ED1.

CM0 CM0b PCM0 PCM0b CM1 CM1b PCM1 PCM1b ECM1 ECM1b

c0 45.5 35.3 45.5 35.3 45.5 35.3 45.5 35.3 45.5 35.3

CSL
T 0.42 0.33 0.47 0.37 1.51 1.17 2.15 1.67 3.27 2.53

α
mmHg-1

0.027 0.027 0.035 0.035 0.11 0.11 0.14 0.14 0.16 0.16

Outflow

μl/min

4.5 3.5 4.7 3.7 7.6 5.9 9.0 7.0 11.0 8.5

https://doi.org/10.1371/journal.pone.0238146.t002

Table 3. Time variation of mean IOP predictions predicted by cubic polynomial regression model fitted to various data sets (denoted PM), and exponential regres-

sion model (denoted EM).

Time n ED0 PM0 EM0 ED1 PM1 EM1

Expt data prediction prediction Expt data prediction prediction

0 10 7.3 7.15 6.91 removed 5.89 5.52

5 10 9.3 9.70 9.92 9.3 9.36 9.31

10 10 12 11.75 12.02 12 11.83 11.85

15 10 13.4 13.33 13.50 13.4 13.51 13.55

20 10 14.6 14.55 14.55 14.6 14.61 14.69

25 8 15.3 15.45 15.28 15.3 15.36 15.46

30 8 16.1 16.10 15.79 16 15.97 15.97

35 7 16.6 16.57 16.15 16.6 16.65 16.31

The data sets are: EDO, the original data; ED1, the original data with the initial time point removed. PM0 is cubic polynomial regression model fitted to data set ED0,

PM1 is the cubic polynomial fitted to data set ED1, and EM1 is an exponential regression model fitted to data set ED1. The number of subjects contributing to the

calculated mean at each time point (n) is shown in the second column.

https://doi.org/10.1371/journal.pone.0238146.t003
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increased significantly again (i.e. CSL
T is increased by a further 320% to 1.51 μl/min/ mm Hg, α

by a further 310% to 0.11 mm Hg-1 and the predicted outflow by 160% to 7.6 μl/min; see

Table 2).

At this stage we can gain insight into the appropriateness of removing the first data point

from the computational model fitting procedure. To do this we calculate the variances for each

data point in the complete data set (EDO) relative to computational model predictions CM1

(see variances under column labelled Var CM1-ED0; see Table 4).

This analysis reveals that 83% (0.9/1.08) of the total variance (total variance being the sum

of the variances for all 8 data points) is now explained by the first data point, while the other

seven data points explain the remaining 17% (i.e. average 2.5% per data point). This degree of

focusing of variance on a single data point is not nearly so marked if repeated after removal of

other single data points (e.g. the variance explained if the second data point is removed is

60%). This suggests that the initial data measurement is consistent with an imputed systematic

error of around 1.0 mm Hg, based upon fitting the computation model to the ED1 data set

(CM1) (i.e. 7.3 mm Hg (EDO) minus 6.4 mm Hg (CM1 prediction); see Table 5).

Fitting the regression curves also imputes a significant systematic error associated with the

first data point, demonstrating that this observation is not specific to the computational

model. For example, when data ED1 is regressed using a cubic polynomial, 94% of the variance

to ED0 is focused on the first data point, and the imputed systematic error is somewhat larger

at around 1.4 mm Hg (i.e. 7.3 mm Hg (EDO) minus 5.9 mm Hg (PM1)). If data set ED1 is

regressed using an exponential curve (see EM1 in Table 3), 95% of the variance to ED0 is

focused on the first data point, and the imputed systematic error is around 1.8 mm Hg (i.e. 7.3

mm Hg (EDO) minus 5.5 mm Hg (EM1)). While the computational model estimates for the

95% confidence interval of the pressure at time zero just overlap with the 95% confidence

interval of the measured experimental mean pressure at time zero (see Table 5), the cubic poly-

nomial regressions and exponential regressions are not, which taken together support the

hypothesis that there is a systematic error in the initial experimental data point.

Next we fit data set ED1 to a cubic polynomial regression (PM1), and then in a second step

we fit the computational model to the PM1 regression curve. This prediction is labelled PCM1

in Tables 2, 4 and 6. We see that the predicted outflow parameters for the computational

model are again pressure-dependent, but their values have now increased further (i.e. CSL
T is

Table 4. Variance (denoted Var; square of the residual) between optimized solution and data set.

Time

(min)

Var

CM0-ED0

Var

PM0-ED0

Var

PCM0-PM0

Var

CM1-ED1

Var

CM1-ED0

Var

PM1-ED1

Var

PM1-ED0

Var

EM1-ED1

Var

PCM1-PM1

Var

ECM1-EM1

0 0.0067 0.022 0.0041 NA 0.90 NA 2.16 NA 0.0012 0.00020

5 0.073 0.16 0.013 0.0045 0.0045 0.0028 0.0043 0.0034 0.0062 0.0021

10 0.088 0.065 0.00058 0.047 0.047 0.023 0.00025 0.030 0.00015 0.00069

15 0.00011 0.0038 0.0056 0.013 0.013 0.014 0.00091 0.0097 0.0018 0.0011

20 0.0030 0.0025 0.0087 0.0089 0.0089 1.5E-10 0.0080 0.00089 0.0089 0.00014

25 0.042 0.022 0.0015 0.034 0.034 0.00057 0.016 0.0092 0.013 8.8E-05

30 0.0013 0.00 0.0032 0.0091 0.0091 0.0058 0.00099 0.0074 0.00022 0.00054

35 0.033 0.0011 0.028 0.064 0.064 0.0011 0.11 0.11 0.11 0.00087

Sum Var 0.25 0.28 0.064 0.18 1.08 0.048 2.30 0.17 0.14 0.0056

S 0.22 0.27 0.11 0.19 0.52 0.11 0.67 0.17 0.17 0.034

The data sets are: EDO, the original data; ED1, the reduced data set is the original data with the initial time point removed. S denotes standard error of the regression.

https://doi.org/10.1371/journal.pone.0238146.t004
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increased by a further 142% to 2.15 μl/min/mm Hg, α by a further 127% to 0.14 mm Hg-1 and

the predicted outflow is increased by 118% to 9.0 μl/min; see Table 2).

We can now explore the behavior of the model as constraints are put on the optimization

process. For this investigation, we use data set ED1�, which is reduced data set ED1 with the

initial data point replaced by the prediction by analysis CM1 (ED1� represents our ‘best esti-

mate’ data set).

Using data set ED1� (see Table 7) to optimize the computational model, fixing α and ocular

rigidity, and then allow CSL
T and the IOP at time zero to be the two optimization variables.

From this, we can examine how the variance and predicted outflow varies with α (see Table 7).

This is of interest because we found using both Dastridou et al. [26] and Karyotakis et al. [27]

data sets that the mean value for α was around 0.07 between 20 mm Hg and 40 mm Hg, and so

one might expect a similar value for α could be extrapolated to lower pressures.

Examining Table 7, we see that for an ocular rigidity of c0 equals 35.3 and α equals 0.07,

then CSL
T is predicted to be 0.65 and the predicted outflow is 4.7 μl/min. For c0 equals 45.5

and α equals 0.07, then CSL
T is predicted to be 0.84 and the predicted outflow is 6.1 μl/min.

We observe these two estimates are reasonably close to the previous estimates made Smith

et al. [19] (e.g. outflow equals about 6.3 μl/min) and Smith et al. (2019) (outflow equals

6.0 μl/min).

Table 5. Estimated mean intercepts when models are fitted to the reduced data set ED1.

Expts and Model

Type

Mean estimate of intercept (mm Hg) SEM or S (mm Hg) tα=0.95,4 95% confidence interval for prediction�mean ± tα=0.95
�(SEM or S)

Experimental 7.3 0.39 2.2 6.4–8.2

CM1 6.4 0.19 2.6 5.9–6.9

PM1 5.9 0.11 2.8 5.6–6.2

EM1 5.5 0.17 2.5 5.1–5.9

CM1 is computational model fitted to ED1; PM1 is the cubic polynomial fitted to data set ED1, and; EM1 is an exponential regression model fitted to data set ED1.

https://doi.org/10.1371/journal.pone.0238146.t005

Table 6. For ocular rigidity C0 equal to 45.5, the time variation of mean IOP predictions (based on the Eq 4), predicted by the computational model fitted to various

data sets.

Time ED0 CM0 PCM0 ECM0 ED1 CM1 PCM1 ECM1 ED1�

Expt data prediction prediction prediction Expt data prediction prediction prediction Adjusted expt data

0 7.3 7.22 7.21 6.92 removed 6.35 5.92 5.72 6.35

5 9.3 9.57 9.60 9.89 9.3 9.37 9.28 9.32 9.3

10 12 11.70 11.72 12.03 12 11.78 11.82 11.85 12

15 13.4 13.41 13.40 13.52 13.4 13.51 13.55 13.53 13.4

20 14.6 14.66 14.63 14.56 14.6 14.69 14.71 14.64 14.6

25 15.3 15.51 15.46 15.27 15.3 15.48 15.48 15.39 15.3

30 16.1 16.06 16.02 15.78 16 16.00 15.98 15.89 16.1

35 16.6 16.42 16.38 16.13 16.6 16.35 16.32 16.24 16.6

The data sets are: EDO, the original data; ED1, is the reduced data set, that is the original data with the initial time point removed; ED1� is the ED1 data set with the first

data point replaced by the CM1 model prediction. CMO is computational model fitted to data ED0. PCM0 is the computational model fitted to the cubic polynomial

regression on ED0. CM1 is computational model fitted to ED1. PCM1 is computational model fitted to cubic polynomial regression on ED1. ECM1 is computational

model fitted to exponential regression on ED1.

https://doi.org/10.1371/journal.pone.0238146.t006
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Discussion

When we developed the pressure dependent outflow model for the human eye, we explained

that the model for the whole eye represented all the outflow pathways from the eye (i.e. the

main outflow pathways being the trabecular pathway, the uveoscleral pathway, and the reti-

nal pigment epithelium pathway) [19]. A ‘generalized model’ for the human eye that is the

‘sum of the individual outflow pathways’, is considerably more complex to parameterize, as

each pathway has its own set of three parameters (i.e. 9 parameters rather than 3 parameters

employed in [19]). The degree of model parameterization required for such a generalized

model is well beyond the available data to test it. Consequently, we reduced the number of

parameters in our pressure dependent outflow model for the human eye, reducing it to the

smallest number of parameters possible (i.e. 3 parameters). In other words, we have effec-

tively treated the individual outflow pathways as having similar pressure dependent model-

ing parameters, which are the same as the average pressure dependent outflow parameters

for the whole eye.

We also pointed out that the uveoscleral pathway probably has significantly different parame-

ters to the trabecular and retinal pigment epithelial pathways [19], because this pathway is said to

be ‘pressure independent’ above about 10 mm Hg, but pressure dependent below this pressure

[20] (e.g. we have previously estimated that perhaps α equals 0.25 for the uveoscleral pathway

[19]). In other words depending on the magnitude of flow through uveoscleral pathway, if the

IOP is ‘pushed down’ well below 10 mm Hg, there may be comparatively a very rapid decrease in

pressure-dependent flow through the uveoscleral pathway, which may significantly influence

computational model parameter estimates. Given the estimated size of α for the uveoscleral path-

way, for IOP below about 10 mm Hg, one would expect this would bias the estimated pressure-

dependent outflow parameters for the whole eye towards larger α values. These observations sug-

gest that the homogenized computational model described in Smith and Gardiner [19], is proba-

bly best suited to analyzing data for the human eye at IOPs greater than about 10 mm Hg. This

reasoning would suggest that the computational outflow model employed here is probably best

tested from around 10 mm Hg and up to the normotensive pressure at 17 mm Hg (note that the

first data point 7.3 mm Hg and the second data point is 9.3 mm Hg). By this reasoning, at least

the first data point should be excluded in the fitting process, as it is likely to be at a pressure

where the computational model is expected to be less accurate, at least for the pressure dependent

outflow model in its current form. The second data point is probably sufficiently close to 10 mm

Table 7. For ocular rigidity C0 equals 45.5 (or 35.3) and fixed α, optimized CSL
T solutions (based on Eq 4) and outflows predicted by the computational model fitted

to data set ED1�.

c0 = 45.5

α 0.0 0.04 0.07 0.075 0.08 0.10 0.15

S 0.35 0.27 0.22 0.21 0.21 0.19 0.23

CSL
T 0.32 0.55 0.84 0.90 0.96 1.27 2.52

outflow 4.5 5.2 6.1 6.2 6.4 7.1 8.7

c0 = 35.3

α 0.0 0.04 0.07 0.075 0.08 0.10 0.15

S 0.35 0.27 0.22 0.21 0.21 0.19 0.23

CSL
T 0.24 0.43 0.65 0.70 0.75 0.99 1.96

outflow 3.4 4.1 4.7 4.8 5.0 5.5 7.3

S denotes standard error of the regression. Note: pressure-time curves for C0 equals 45.5 and α equal 0.075 and 0.15 are shown in Fig 3.

https://doi.org/10.1371/journal.pone.0238146.t007
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for the model accuracy to be considered satisfactory (i.e. the error associated with this is probably

of similar magnitude to measurement error).

In the results section, by quite separate reasoning, we chose to fit the computational model

to a reduced data set (ED1), based on excluding the first data point. Interestingly, fitting the

computational model to the reduced data set is consistent with the abovementioned limita-

tions of the whole eye model (as further described in [19]), but in the Results section we did

this for two main reasons: (i) the difficulty of obtaining measurements at time zero without

incurring some delay in measurement, and (ii) following removal of the Honan Balloon after

30 minutes of application, it is reasonable to suppose the eye would temporarily be in a com-

paratively abnormal state.

So for these two main reasons, we chose to give most weight to the computational

model predictions found by fitting the ED1 data set. Optimization of model parameters

suggests that for c0 equals 45.5, CSL
T is about 1.5 μl/min/mm Hg, α is 0.11 and the outflow is

7.6 μl/min. For c0 equals 35.3, CSL
T is about 1.2 μl/min/mm Hg, α is 0.11 and the outflow is

5.9 μl/min. Importantly, these estimates are reasonably close to the estimates reported by

Smith et al. [19]; viz, (i) for c0 equals 45.5, CSL
T is about 1.6 μl/min/mm Hg, α is 0.07 and the

outflow is 10.9 μl/min (based on Dastiridou et al.’s data [26]) and (ii) for c0 equals 35.3, CSL
T

is about 1.0 μl/min/mm Hg, α is 0.07 and the is outflow 6.3 μl/min (based on Karyotakis

et al.’s data [27]).

During the analysis, we came to realize some features that provide valuable insights into

fitting procedures. First and perhaps most importantly, we found when fitting the computa-

tional model that: (i) for a given intraocular pressure-time curve, the parameter CSL
T is

almost entirely a function of the ocular rigidity, and (ii)α is almost entirely a function of the

shape (or curvature) of the monotonic pressure-time curve between two pressures. For

example, we note that as α increases, so the initial curvature of a monotonically increasing

pressure-time curve also increases (see Fig 3). These observations were made when c1 equals

zero, but they appear to be a good approximation if c1 takes a value of say 0.2 (i.e. a non-

zero value for c1 in the ocular rigidity only confers a comparatively small function depen-

dence on the other parameter). Practically this means that for conventional manometric

testing of the eye, accurately defining the shape of the pressure-time curve is crucially

important for identifying model parameter α, while accurately identifying the ocular rigid-

ity is crucially important for defining model parameter CSL
T . These observations serve to

highlight the importance of accurately measuring both the ocular rigidity and the pressure-

time curve if one is to accurately estimate the total outflow at the normotensive pressure.

We note here that the total outflow also depends on a third model parameter,pT (the no out-

flow pressure), which is taken as our best estimate throughout this paper to be 3 mm Hg, as

found and discussed in Smith et al. [19]).

Next we observe that the ‘double fitting’ procedure resulted in a comparatively worse fit

compared to directly fitting the computational model. For example, compare the standard

error of 0.22 mm Hg for the computational model (CM0) fit to the raw data (ED0) (see

Table 5) versus the standard error 0.29 mm Hg (i.e.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:272 þ 0:112
p

, see Table 5) for the fitting

of a cubic polynomial regression (PM0) followed by the computational model fit to the raw

data (PCM0)). For the computational model directly fitted to the data, this results in a 95%

confidence interval for the predicted mean to be about 0.48 mm Hg, versus a 95% confidence

interval of about 0.64 mm Hg for the predicted mean for the double fitting procedure. We

note a similar trend of additional total variance in later double-fitting procedures, so we con-

clude the double fitting procedure is probably sub-optimal compared to directly fitting the

computational model to the experimental data.
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We estimated the initial data point by fitting the computational model to the reduced data

set (ED1), the intercept being the initial data point. Using this method, the predicted initial

data point is about 1.0 mm Hg lower than the measured IOP. Consideration of variance of the

prediction relative to the original data set (ED0) showed that the majority of the variance is

focused on the first data point. This observation, together with similar conclusions being

drawn for cubic polynomial and exponential regression curves, and being cognizant of the dif-

ficulty of obtaining a measurement at time zero, the biological plausibility of a temporarily

abnormal and rapidly changing physiological state immediately following removal the Honan

balloon (which had been in place for 30 minutes), all together build a case for the first data

point having a systematic error.

There is no doubt the computational model parameters predicted are very sensitive to small

changes in the data set, meaning that all findings made in this paper must be regarded as provi-

sional. For example, compare model parameter estimates fitted to raw data set ED0 with the

model parameters fitted to the adjusted data set ED1� (i.e. which have only about 1 mm Hg dif-

ference in the first data point; see Table 5). The parameter α changes from 0.11 (ED1� data) to

Fig 3. Comparison of computational model fits to data set ED1� (purple asterisks) (C0 equals 45.5). Computational model fits optimized to α equals 0.0 (green

line), 0.10 (red line) and 0.15 (blue line). We note that to accurately estimate α, one needs to be able to discriminate between these three computational model curve

fits, which have very different parameters (see Table 5).

https://doi.org/10.1371/journal.pone.0238146.g003
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about 0.03 (ED0 data set), and CSL
T from about 1.25 to 0.37, while the predicted outflow reduces

from 7.6 μl/min to 4.5 μl/min. In other words, the sensitivity of α to uncertainty in the first

data point is approximately (in units of mm Hg-2),

Da

Dpt¼0

¼
ð0:11 � 0:027Þ

0:95
¼ 0:087 ð5Þ

Further evidence of sensitivity to parameter estimation is the effect of initial smoothing

using a cubic regression curve, shown in Table 2 (i.e. α increases from 0.027 to about 0.035,

CSL
T from 0.42 to 0.47 and outflow from 4.5 μl/min to 4.7 μl/min). It is clear that small changes

in the data points lead to very different optimized parameter estimations, so we now consider

the difficulty of accurately inferring outflow parameters from the pressure-time curve.

The reported standard deviation (s) of the individual sample measurements is shown Fig 1

(which ranges between 1.3 to 1.7 mm Hg). The standard error of the mean (SEM) is
ffiffiffiffiffiffiffi
s=n

p
,

so ± 2 × SEM is around 0.8 mm Hg, as shown in Fig 2). After fitting the computational model

to the raw data (EDO), we find the standard error of the regression is 0.22, so the 95% confi-

dence interval for the regression prediction of the mean is about 0.44 mm Hg. This implies

that the uncertainty of each predicted mean data point after fitting the computational model’s

curve is about one half the uncertainty of each mean value assessed individually.

After fitting the cubic polynomial regression to the raw data (EDO), we find the standard

error of the regression is 0.27, so the 95% confidence interval for the regression prediction of

the mean is about 0.54 mm Hg. We can then fit the regression predictions to the computa-

tional model (PCM0), and we find an additional standard error of the regression about 0.11,

so the 95% confidence interval for the regression prediction of the mean is about 0.22 mm Hg

(see Table 5). However the total standard error of the two regressions is about 0.29, so the 95%

confidence interval for the regression prediction of the mean is about 0.58 mm Hg. In this

example, the double fitting procedure has resulted in a worse fit compared to directly fitting

the computational model (compare 0.44 mm Hg for the computational model fit to the raw

data versus 0.58 mm Hg for the cubic regression followed by the computational model fit).

Based on this evidence, we conclude the double fitting procedure is sub-optimal compared to

directly fitting the computational model to the data.

The difficulty of accurately estimating computational model parameters from pressure-vol-

ume and pressure-time curves can be conveniently illustrated by fitting the computational

model subject to constraints. Fig 3 shows plots of the best fit computational model curves to

the data set ED1� (Table 6), assuming the outflow parameter alpha (α) is fixed to just three val-

ues 0.15, 0.10 and 0.0. For α equals 0.10, the ‘mean absolute error’ between the ED1� data

points and the computational model predictions at each data time point is 0.13 mm Hg, and

the standard error for the computational model is 0.19 mm Hg, meaning the 95% confidence

interval for the prediction of a mean is about 0.38 mm Hg.

If we now consider α equals 0.0 (which in effect means the outflow hydraulic conductivity

for the eye (CSL
T ) is constant, and so pressure independent), the mean absolute error between

the ED1� data points and the computational model predictions at each data time point is only

0.22 mm Hg (about double 0.11 mm Hg found for α equals 0.1, but nevertheless still small). In

other words, to fix the outflow parameters accurately, the standard error of the mean for a

group of subjects needs to be much less than 0.22 mm Hg. What is apparent from Fig 3 is that

to discriminate between these three solutions accurately requires that the standard error for

the measurement be at least less than 0.05 mm Hg. Achieving such accurate estimates is not

straightforward, and generally means invasive eye techniques are required.
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Using manometric measurement (i.e. a 21 gauge needle with pressure transducer is placed

into the anterior chamber of the eye,), Dastridou et al. [26] and Karyotakis et al. [27] employed

a needle pressure sensor that had an accuracy of ± 0.13 mm Hg and a resolution of 0.05 mm

Hg (converting resolution to a standard deviation equivalent, the ‘resolution uncertainty’ of

the pressure sensor is 0:05=
ffiffiffi
3
p
¼ 0:03 mm Hg). However the IOP is not constant in vivo.

Indeed there exists a very obvious ocular pulse amplitude (OPA) [26], driven by vascular com-

pliance and the pressure oscillation associated with systole and diastole of the heart, as well as a

longer period pressure variation due to volume changes of the lungs (and heart rate) associated

with breathing (the variation in heart rate with breathing is known as ‘sinus arrhythmia’) [28].

For the control group, OPA is reported by Dastiridou et al. to be 2.26 ± 0.63 mm Hg at 15

mm Hg, which increases by 0.066 ± 0.043 mm Hg for each mm rise in IOP, so the OPA at 40

mm Hg is 4.04 ± 1.03 mm Hg [26]. The pressure sensor employed by Dastridou et al. [26] and

Karyotakis et al. [27] has a sampling rate of 200 Hz and a resolution of 0.05 mm Hg, and so the

pressure sensor records the OPA variation easily. Consequently the raw data needs to be

smoothed—we note that for intraocular pressure measured using a Goldmann applanation

tonometer, the apparatus itself acts as a very low pass filter, smoothing the data. Karyotakis

et al. explain that they smoothed the pressure-time recording by fitting an exponential curve to

the raw pressure-time curve (the results of an exponentially decreasing curve fit to one sub-

ject’s pressure-time data curve is shown in figure 1 of Karyotakis et al. [27]).

Using this instrumentation and 19 subjects, Karyotakis et al. were able to measure the pres-

sure-time curve and the pressure-volume curves for each individual, and find the interquartile

range (i.e. middle 50% of measurements) for the local outflow facility (see Table 2 in [27]).

Based on these interquartile range measurements, and assuming CSL
T equals one (which is close

that reported by Karyotakis et al. [27]) we estimate the range for α is then about 0.06 to 0.09.

Alternatively, if α is held constant at the mean value of 0.07, we estimate CSL
T ranges between

about 0.7 and 1.3. Of course, some combination of αand CSL
T in these ranges may also be rea-

sonably accurate solutions.

In this context, we further observe that if additional information is known about the ‘nor-

mal range’ for computational model parameter values, and this information can be formulated

as a constraint on the computational model’s expected parameter range, this can greatly assist

parameter estimation from a given pressure-time data set. For example, if the constraint is

known that the surface hydraulic conductance (CSL
T ) for a normal human eye is greater than

say, 0.5 μl/min/mm Hg, then upon fitting a regression curve with α equal to 0.0, it is clear that

the optimal regression curve subject to this constraint is not a very good fit at all to Ernest

et al.’s pressure-time curve (see Fig 4).

If for example, we now assume that for normal aged eyes that CSL
T ranges between about 0.7

and 1.3, we may seek as range for α that optimally fits Ernest et al.’s data (i.e. ED0 (or, in brack-

ets, Ernest’s et al.’s modified data set ED1�)). If we do this, we find the expect range for α is

0.063 (0.058) to 0.11 (0.10). The expected range of outflow rates is between 5.4 μl/min (5.7 μl/

min) and 7.4 μl/min (7.3 μl/min). We note both these ranges for α includes 0.07, which is

approximately the mean value reported by Karyotakis et al., while the range for outflow rates

include 6.0 to 6.3 μl/min, the expected values reported by Smith et al. [19] and Smith et al.

(2019).

We observe that the accuracy of model parameter estimation is improved by continuous

pressure measurement, more accurate IOP measurement (i.e. better pressure resolution),

larger pressure changes, and longer periods of recording. Providing the eye tissues are not

damaged by the pressure change, repeated measurements would also improve the accuracy of

the curve fit.
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Taking this analysis forward, we mention there are emerging technologies for injecting

or withdrawing fluid from the eye at a constant rate, while rapidly establishing a steady state

IOP [29, 30]. This means constant flow tests can now be done much more quickly than was

possible previously, which may make it much more feasible to do studies on animal and

human eyes. If several accurate constant flow tests were done in the human eye (perhaps

two tests below and two tests above normotensive pressure), it would be possible to analyze

the data (e.g. using Eq (1)), and so estimate the outflow parameter a from the ratios of the

outflows at different pressures, and then together with data on the magnitude of the out-

flows, estimate the parameter CSL
T .

Our outflow model may improve: (i) the interpretation of outflow measurements (which

the present study expands), (ii) the interpretation of measured drug effects on fluid flow in the

eye [16], and (iii) vitreal transport modeling, including the distribution of drugs within the vit-

reous humor following intravitreal injection [16]. Each of these has clinical implications, and

we note that a discussion of the clinical implications can be found in the recent paper by Smith

et al. [16].

Fig 4. Comparison of computational model fits to data set ED1� (orange asterisks) (C0 equals 45.5). Computational model fits optimized to α equals 0.15

(blue) and α equals 0.0, subject to the constraint that CSL
T is greater than say 0.5 μl/min/mm Hg (red).

https://doi.org/10.1371/journal.pone.0238146.g004
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Conclusion

In this paper we have tested the pressure dependent outflow model formulated in Smith et al.

[19] using a pressure-time experimental data at IOPs below the normotensive pressure in the

human eye [21]. We chose to omit the first data point from the computational model fit, as it

seems likely the experimental measurement at time zero is less accurate than measurements at

subsequent times for a variety of reasons described above. Using this reduced experimental

data set, the computational model parameters estimated by optimization of variance were α
equals 0.11, CSL

T lies in the range 1.2 to 1.5 and outflow is in the range 5.9 μl/min to 7.6 μl/min.

Though these estimates are reasonably close to the estimates made previously by Smith et al.

[19], it is important to note that the estimates are very sensitive to small changes in the experi-

mental data. This means very accurate pressure measurement are required to construct accu-

rate pressure-volume and pressure-time curves, which are essential for accurate computational

model parameter estimation by the method described here. We observe that the accuracy of

parameter estimation is improved by continuous pressure measurement, larger pressure

changes, and longer periods of recording. Providing the eye tissues are not damaged by the

pressure change, repeated measurements are expected to also improve the accuracy of model

parameter estimation.
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