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ABSTRACT The global market share of electric vehicles (EVs) is on the rise, resulting in a rapid increase
in their charging demand in both spatial and temporal domains. A remedy to shift the extra charging loads
at peak hours to off-peak hours, caused by charging EVs at public charging stations, is an online pricing
strategy. This paper presents a novel combinatorial online pricing strategy that has been established upon a
reward-based model to prevent network instability and power outages. In the proposed solution, the utility
provides incentives to the charging stations for their contributions in the EVs charging load shifting. Then,
a constraint optimization problem is developed to minimize the total charging demand of the EVs during
peak hours. To control the EVs charging demands in supporting utility’s stability and increasing the total
revenue of the charging stations, treated as a multi-agent framework, an online reinforcement learning model
is developed which is based on the combination of an adaptive heuristic critic and recursive least square
algorithm. The effective performance of the proposedmodel is validated through extensive simulation studies
such as qualitative, numerical, and robustness performance assessment tests. The simulation results indicate
significant improvement in the robustness and effectiveness of the proposed solution in terms of utility’s
power saving and charging stations’ profit.

INDEX TERMS Electric vehicles, charging stations, pricing strategy, reinforcement learning.

NOMENCLATURE
Abbreviations
ACO Ant colony optimization.
AHC Adaptive heuristic critic.
BSS Battery storage system.
CDP Coordinated dynamic pricing.
CS Charging station.
EV Electric vehicle.
MDP Markov decision process.
RL Reinforcement learning.
RLS Recursive least square.

Parameters
α EVs load index.
1t Time slot.
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γ(1t−1) Discount factor.
Bl Lower bound of the coefficient of partial charg-

ing.
Bu Upper bound of the coefficient of partial charg-

ing.
σ Coefficient of partial charging.
Ẽ1t Predicted EV load.
ϕx Profit coefficient of pricing strategy x.
ζm+s Service and maintenance cost of CSj.
Ci Charging cost of EVi.
D Total demand of EVs.
E jEV Charging demand of EVs at CSj.
Ej,1t Charging demand of EVs at CSj.
i Index of EVs.
j Index of charging stations.
Pmax Maximum power delivery to CSs.
Pmin Minimum power delivery to CSs.
Pr j1t Charging demand of EVs at CSj.
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Rj,1x Reward coefficient of CSj at 1t .
Revj,1t Revenue function of CSj at 1t .
t time [min].
ts Start of a time interval.
te End of a time interval.

I. INTRODUCTION
ThisWith the fast growing of energy demand and greenhouse
gas emission concerns, adopting electric vehicles (EVs) could
be a great option. With having more EVs on roads, there
is a big need to focus more on establishing fast charging
infrastructures. Many countries around the world have devel-
oped a network of EV charging stations (CSs), often called
EV networks [1]. This infrastructure indeed facilitates the
commuter and driver daily driving life and has a positive
impact on decreasing the driving-based anxieties. However,
simultaneous charging of high number of EVs with the unco-
ordinated charging demands at public CSsmay change signif-
icantly the demand profile of a utility. As more EVs join the
grid to charge their batteries, the more waiting time is added
to the actual road traffic, and hence it will create another
challenge [2], [3]. For addressing this challenge, there is a
need to accommodate smart energy management and control
strategies for CSs to control the EV charging demand during
peak hours. One of the critical roles of such EV networks is
to provide the possibility of charging EVs at off-peak hours
which will prevent the negative impacts of extra EVs being
charged at demand peak hours. Considering the different
research on the impact of EV charging loads on the power
grid [4]–[7] various charging control methods and smart
scheduling of EVs have been investigated [8], [9]. The main
rational behind all these control strategies is to minimize the
peak hour’s demand based on different scheduling techniques
to charge EVs before or after the peak hours. In addition
to these control mechanisms, there have been increasing
research on designing proper demand response techniques to
improve the overall system efficiency [10], [11]. One of the
effective solutions in demand response mechanisms, is con-
trolling demand with the price at different times of the day.
In other words, by using online pricing methods at CSs, EVs
can adjust their charging demands. As an example, [12] has
introduced a price strategy for CSs which aims at minimizing
the total latency of EV users and electricity cost. However, the
charging rate has not been considered in conjunction with any
load management of EV loads during peak hours. Research
documented in [13], [14] have proposed new infrastructures
for CSs with battery storage system (BSS) which consid-
ers hourly electricity price and estimates the EVs’ demand.
However, changing the price at CSs and controlling the EVs’
demand at peak hours were not discussed. Power market is
an important factor in establishing CSs in a city. Similar to
petrol stations, multiple CSs in the same area may belong
to different owners. Therefore, competition between different
CSs is highly probable and should also be considered. In [15],
[16], a competition system has been proposed based on the
game theory in order to maximize the CSs’ profit. However,

the impact of EVs demand on the existing traffic of the grid
at peak hours was not discussed.
The lack of price coordination within an EV network can
lead to a nonuniform distribution of charging loads in hotspot
areas across different CSs [17]. This problem was addressed
in [18] by introducing a coordinated dynamic pricing (CDP)
method to reduce the overlap between the PEV and residen-
tial loads during peak hours. The proposed dynamic pricing
model was considered as a constrained optimization prob-
lem which estimates the EVs demand in response to the
hourly price, distributed by the CSs. The performance of
the proposed model in [18] is compared with the existing
models in the literature and shows a significance improve-
ment in controlling EVs charging demand at peak hours;
however, the profit management of CSs is not incorporated.
It should be noted that, majority of the existing dynamic
pricing approaches are offline and assume perfect knowl-
edge of charging demands during the specific planning time.
Thus, for a reliable and practical approach, dynamic pricing
algorithms must be robust against the uncertainties in future
charging patterns and the users’ preferences [19]. In [20],
[21], reinforcement learning approaches have been proposed
to find an optimal decision pricing for the energy trading
and to predict the pricing of CSs. Likewise, [22] has imple-
mented an optimized demand response framework for EV
aggregators with an assumption that the future hourly elec-
tricity prices are known in a non-causal manner. Markov
decision process (MDP)-based algorithms have been pro-
posed in [21], [23] for the stochastic distributions of future
events impacted by changing prices were proposed. How-
ever, such an approach is not cost-effective. Learning-based
approaches that evolve by learning from data observed in the
previous steps of the evaluation, are potential candidates to
deal with this issue. For example, [24] has adopted a rein-
forcement learning (RL) algorithm for EV charging control
without any a priori knowledge about the next EVs’ arrivals.
Likewise, the RL approach has also been adopted in [25]
for a heuristic day-ahead planning of EV fleet charging.
In [26], a heuristic solution based on a RL approach has
proposed for the real-time fuel saving optimization of EVs.
They introduced a model free algorithm which presented
a better performance with its equivalent fuel economy and
computational speed. Authors of [27] developed an intelligent
optimization approach based on Multi-Modal approximate
dynamic programming for charging/ discharging of EVs at
a grid-connected charging station. They considered contin-
uous state/ action spaces to represent a continuous charge/
discharge process of EVs. However, these studies of RL
implementation, haven’t considered a control strategy for
EVs demands in a network of charging stations.
The RL algorithm is employed in [24], [25] to maximize the
CSs’ profit and control the demand; however, a reward-base
model was not considered for pricing strategy of CSs in order
to contribute in the temporal load shifting of the EV.
In this study, a novel combinatorial online pricing strategy
has been proposed which is based on the RL and Fast adaptive
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heuristic critic (AHC) techniques to control the EVs charging
demands for supporting the utility’s stability and increasing
the CSs’ total revenue. By employing a reward-based pricing
control, EVs charging load can be controlled during peak
period. Moreover, the RL-Fast AHC technique enables the
system to implement a unified adaptive exponential tracking
which can control and filter the updated rewards for different
number of EVs charging in different periods. The main con-
tribution of this paper to the research field can be summarized
as:
• Proposing an online multi-agent framework to control
the EVs’ charging demands for supporting the utility’s
stability and increasing the CS’s total revenue, using a
reward-based model;

• Developing an RL framework, implemented by com-
bining an adaptive filtering method (RLS) and the
AHC-Fast heuristic algorithm to combine the benefits
of the techniques; and

• Formulating an objective function which aims at reduc-
ing the EVs’ charging demand at peak hours, as a con-
strained optimization problem..

The remainder of the paper is organized as follows:
Section 2 introduces the proposed on-line RL model and
the formulated problem. The mathematical model of the
proposed AHC-RLS algorithm is provided in Section 3 fol-
lowed by introducing the hourly-updated reward coefficients.
The performance of the developed technique is evaluated by
numerical simulation studies in Section 4 and this perfor-
mance is compared against other similar existing approaches.
Finally, the main findings of the research are summarized and
highlighted in the last Section.

FIGURE 1. Pictorial representation of the multi-agent EV network model.

II. PROBLEM FORMULATION
A. EV NETWORK SYSTEM MODEL
Figure 1 depicts a pictorial representation of the considered
EV network system model in the context of a multi-agent
framework. In this model, a utility agent is responsible to
distribute electricity to the CSs and to control their charging
demands by following a load-shifting policy, contributed in

this paper. Another agent, related to CSs, is responsible to
propose hourly updated price vectors to EVs.

B. OPTIMIZATION MODEL FOR EVs LOAD SHIFTING
The main goal of this study is to implement a mechanism
for minimizing the EVs’ charging loads at peak hours and
load-shifting to off-peak periods. This problem is formulated
as a constrained optimization problem in the form of:

min
∑

∀j=1,...,n,∀1t∈ts,...,te

σ
j
iE

j
EV1t (1)

subject to :Bl ≤ σ
j
i ≤ Bu (2)∑

∀1t∈ts,...,te

Pr1t j (3)

ts ≤ 1t ≤ te (4)

Pmin ≤ P1t ≤ Pmax (5)

Equation 1 denotes the main objective (i.e., minimizing the
charging demand of EVs at the CS (EEV) during the period of
1t while Equation 2 shows the lower and upper boundaries of
the coefficient of partial charging, that represents the recharg-
ing quantity of EV’s battery at CSs. Equation 3 defines the
price vector of each period at CSs which is the main decision
variable for the objective function (obtained by the proposed
online RL model, introduced in Section 3). The starting and
ending of each interval is shown in 4, while 5 specifies the
boundaries of power delivery at each period for the CSs.

III. ONLINE RL METHOD
The RL is categorized as a machine learning algorithm in
computer science and engineering [28]. The RL focuses on
theories and algorithms of learning to solve the optimal
control problem of MDPs, adopted as sequential decision
processes of real-world applications [29]. Learning predic-
tion and learning control are two required processes in RL.
Learning control estimates the optimal value of a model free
sequential process; and learning prediction can be considered
as a sub-problem of learning control which aims to solve the
policy evaluation problem of a sequential process [20], [30].
In an online RL method, an agent interacts with its environ-
ment in discrete time steps, and can update itself incremen-
tally with each newly time step. The agent can choose an
action from the set of available actions, which is subsequently
sent to the environment [31]. The environment moves to a
new state based on a reward that each agent receives at each
iteration of evaluation, and then the optimal control strategy
is evaluated by the amount of the received rewards. Thus, the
RL enables the design of adaptive controllers that learn online
and propose a solution to users for optimal control problems
in real-time [32].
In this paper, as Figure 2 presents, the utility and CS agents
perform the control strategy on EVs demand at the demand
peak hours. The utility agent as a critic of the system, receives
the hourly feedback from the environment which is defined as
EVs’ demand vector at each interval in the model. The utility
agent is also responsible to determine the hourly reward
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FIGURE 2. Multi-agent control system of the EV network operating under
the RL-AHC algorithm.

coefficients for CSs. In addition to the RLS, the AHC-Fast
critic is used for an actor-critic interaction, in order to improve
the learning-prediction efficiency in the critic [29]. Using
AHC filtering algorithm in the proposed model, the states
of the EV loads can be evaluated at CSs in real-time. This
further enables the calculation of an hourly reward for each
CS. Followed by hourly rewards coefficients from the utility
agent, the CS agent can update the price coefficients for
all CSs using the given reward and by the help of the RLS
algorithm, as seen from Figure 2.

A. AGENT PROPERTIES
The utility agent is responsible to provide power for CSs with
a specified price and monitoring the charging load of the
whole power system; it also calculates power flow or optimal
power flow and power loss of the power system. In the model
of Figure 1, the utility agent plays the controller role, as it
evaluates the expected charging loads of EVs at CSs at each
interval, and sends a reward/ punishment coefficient to the
CS agents to update their price vector. When the CS agent
receives the reward/punishment coefficient, it employs the
CDP and the online reinforcement models to calculate the
price vector for each 1t and then distributes it between all
CSs. The interaction between different agents and EVs charg-
ing request is shown in Figure 3. As seen from this figure,
the CS agent estimates the charging requests from the EVs
in different intervals, and asks utility agent for the required
power. The utility agent sells the electricity based on an
evaluation, which would be a benchmark for controlling the
demand during the peak hours. Then, the CS agent receives a
reward from the utility agent for each interval. It also updates
the price vectors for each1t using the AHC-RLS algorithm.

B. REWARD COEFFICIENT UPDATE
Considering the EVs’ demand curve at each 1t , the reward
function broadcasts a proper coefficient for the proposed
price vector of CSs. Therefore, the reward function of finding

FIGURE 3. Sequence diagram of the proposed model.

the price coefficients is determined by evaluating three input
variables for each1t , the output of the RLS algorithm in the
previous interval in terms of price coefficient of 1t − 1, the
demand index of EVs, and the base price of the provider for
each 1t of a day. The proposed critic network examines an
eligibility function Ej,1t at each interval, which corresponds
to the prediction of cumulative future rewards for the CS
agent. In addition, it provides an internal reinforcement signal
R̂(t) to the action network. The internal reinforcement signal
is obtained based on the difference between the predicted and
actual EVs loads. The eligibility function of the utility agent
at each state is defined as

Ej,1t = αEj,(1t−1) − Ẽ1 (6)

where α is the EVs load coefficient at the interval while
Ẽ1 is the predicted EVs’ demand for the current interval.
Considering the result of the function in the utility agent, the
proposed reward coefficients for the CS agent is formulated
as

Rj,1t =
∑

∀1t=ts,...,te

[γ(1t−1)Ej,1t Ẽ1] (7)

where γ(1t−1) is the discount factor of the critic system and
0 < γ < 1.

C. PROFIT FUNCTION OF CSs IN RESPONSE TO THE
REWARD COEFFICIENT
The proposed online RL-based pricing policy increases the
capability of the CSs to accommodate larger arrival rates at
off-peak hours. In this section, the profit function of CSs
based on the following parameters is presented. Each CS
obtains the revenue from each charged EV with a specific
price at a specific interval. Also, the maintenance and service
costs for each charging process of the EVs needs to be added.
As a result, the CSs profit function can be introduced as

Revj,1t =
i∑

∀1tts,...,te

[σCi − ζm+s] (8)

where at each 1t , σ is the coefficient of partial charging,
Ci indicates the charging cost of each EVi and ζm+s is the
maintenance and service cost of each CS.

Algorithm 1 summarizes the proposed online RL learning
based on AHC. In this algorithm, the function of the reward
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Algorithm 1 Proposed Online RL Model Using AHC

Require Updated price vector Pr j1
Require Learning rate E(j,1t)
Require Reward coefficient vector R(j,1t)
Require Number of EV at CS E jEV
Ensure: Minimum charging demand at peak time (MinE jEV )

1: for E jEV do
2: Rj,1t =

∑
∀1t=ts,...,te[γ(1t−1)Ej,1t Ẽ1]

3: Revj,1t =
∑i
∀1tts,...,te[σCi − ζm+s]

4: Sending rewards to each CS: R(j,1t)
5: Call Equation 1
6: if E jEV doesn’t meet the criteria then
7: while Ej,1t == 1 do
8: Call Pr j1
9: end while
10: end if
11: end for

coefficient update is iteratively called up to provide up-to-
date reward information for each CS, in order to calculate the
updated price vector at each 1t .

TABLE 1. Simulation parameters.

D. PERFORMANCE EVALUATION AND DISCUSSION
To investigate the effectiveness and robustness of the pro-
posed Online RL model-based Fast AHC algorithm, the
Washington City EV network [28], as shown in Figure 4,
is considered as the simulation benchmark model. As pro-
vided in Table 1, a maximum of 20 CSs and 500 EVs are used
in this study. The arrival rate of the EVs at each CS is mod-
elled as a Poisson distribution with a rate of 3∼10 EVs/hour.
Two different rates of charge (dc and ac) are used as rep-
resentative charging options. The hourly charging prices at
the CSs is generated by the discussed model of Section 3.
The purchased electricity price from the utility without any
changes by the proposed model is assumed as 22 to 46
cents/kWh [33], [34]. All computations are performed on a
desktop PC with an Intel i7 3.20 GHz quad-core processor
in MATLAB 2019a. For the qualitative assessment of the
online RL model-based Fast AHC, the average electricity
price is analyzed during a day for CSs and the amount of
electricity saving on the utility side is discussed. Furthermore,
the profit maximization of CSs as well as the probability of
overlap between PEV and residential loads are elaborated.
In the sequel, the convergence assessment of the AHC-RLS
algorithm is also presented and analyzed.

FIGURE 4. EV network, Washington Green Highway [28].

FIGURE 5. Average EV charging price during 12:00 to 22:00.

Figure 5 shows the average price in the period of 12:00
to 22:00 based on the developed on-line RL model. As the
figure suggests, by using the new prices, the amount of
electricity price grows up between 15:00 and 17:00. This
trend of pricing proposes a promising controllability of the
EVs’ charging process during peak hours, as the costumers
prefer to charge their EVs before the price increasing and
after peak hours. As the number of EVs in the CSs decreases
at peak hours, the amount of extra stress on the power grid
decreases as well. The figure also indicates the superiority
of the proposed online RL model in the price management
against the well-known CDP model. Figure 6 illustrates the
effect of the developed on-line RL model on the electric-
ity saving of utility during peak hours. In this figure, the
percentage of electricity saving increases if the CSs follow
the strategy proposed by the developed model. The price of
electricity at the CSs is one of the important decision factors
for the EVs drivers, to recharge their batteries at public CSs.
Hence, using the developed model, the EV demand appeared
increases in the CSs before the demand peak hours (as the
electricity price is low), and consequently, the extra loads
at peak hours decreases. As a result, the utility will benefit
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FIGURE 6. Electricity saving of utility by adopting the developed on-line
RL model.

FIGURE 7. Profit maximization of CSs using the online RL model.

from this strategy in both sides of minimizing the cost of
energy and maximizing the stability of the grid. As illustrated
in Figure 7, as more CSs adopt the developed on-line RL
model for their pricing strategy, their profit increases. This
is due to the fact that the developed model updates their
pricing vector based on the received rewards from the utility
at off-peak hours, with cheaper electricity prices for charging.
This consequently encourages more EVs to charge at CSs
during that period. Fig. 8 shows that the online RL model
provides an admissible reliability for the network by mini-
mizing the overlap between EV and residential loads during
different hours of a day. This robust performance is even
more superior than the CDP counterpart. In essence, as more
CSs employ the developed on-line RL model to update their
price vector, the reduced demand peaks are more (because
of moving from uncontrolled charging to a more coordinated
charging system).

Figure 9 shows fluctuations of EV loads index during
12:00 and 22:00. As inferred from the figure, using the devel-
oped online RLmodel, the EV demand decreases during peak
hours and shifts to the off-peak periods. As the proposed price
of electricity by the CSs between 14:00 and 16:00 is low,
the EVs prefers to charge their batteries before peak hours.
Alternatively, they can postpone the charging process to the
evening, after the peak hours, to minimize their cost.

Figure 10 illustrates the average of reward coefficients
for 1,000 training episodes. As can be seen from the
figure, with the increase in the number of EVs, the
reward coefficients change significantly and provide a bet-
ter performance in terms of controlling the EVs’ demand.

FIGURE 8. Probability of overlap between EV and residential loads at
peak hours.

FIGURE 9. EV load index for a given time interval.

FIGURE 10. Average reward coefficient for 1000 training episodes.

Figure 11 provides an illustrative representation of conver-
gence rate of the Fast-AHC critic used in this study. As dis-
cussed in Section 3, the Fast-AHC technique was developed
by utilizing the RLS algorithm to estimate the updated price
vectors at each interval using the hourly rewards coefficients.
Compared to the RLS method itself, the convergence rate of
the proposed Fast-AHC critic is quicker, which is an indica-
tion of the effectiveness for the practical systemmanagement.

E. EFFICIENCY IMPROVEMENT
One of the main challenges for the conventional RL meth-
ods is their slow convergence rate, particularly in the cases
that the learning data set is not rich enough or hard to be
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FIGURE 11. Convergence rate of Fast-AHC in load shifting process.

generated [22]. This drawback, directly impacting the learn-
ing prediction, can be addressed by developing an adaptive
critic signal. For the proposed online RL model, at each itera-
tion of updating the price vector in the CS agent and obtaining
the reward coefficient from the utility agent, the policy of
the actor will change adaptively with respect to the number
of EVs in the system. Table 2 summarizes the improvement
of using the online RL model over the existing CDP model
which could significantly reduce the overlap between the EV
and residential loads during peak hours. As Table 2 indicates,
after comparing the results between the developed on-line RL
model and the CDP a better performance is achieved in terms
of decreasing overlap probability and EVs load index during
peak hours (indicated by Improvement (%) in Table 2).

TABLE 2. Summarized simulation results.

F. ROBUSTNESS ASSESSMENT
To examine the robustness of the proposed online RL model,
its performance is evaluated against a different benchmark
problem introduced in [17]. The benchmark problem is a
mixed-integer nonlinear programming problem and aims
to minimize the electricity demand of CSs, as given by
(6)-(9) [17]. Figure 12 compares the computational time of
the developed online RL and CDP model in reaching an opti-
mal solution under the benchmark problem of [17]. As seen
from this figure, at the initial training stage, the developed
model shows a slightly weaker performance compared to the
CDP, as it is undergoing trials and errors. However, after
experiencing more iterations, the developed model adapts to
the learning environment. This adaptation not only considers
the current reward but also updates the future rewards. This
results in improving the performance by learning from the

FIGURE 12. Robustness assessment based on the computational time
and model complexity.

environment. In contrast, the CDP model has a low learning
capability and an increase in the complexity of the problem
requires more iterations before converging to an optimal
solution, and thus, presents a higher computational time as
well. It should be noted that the developed model has advan-
tages in computation and is more suitable for online learning
compared to the existing reinforcement learning algorithms.
The effectiveness of the developed model is analyzed and
verified by learning prediction of Markov chains with a wide
range of parameter settings [22]. Although it requires more
computation at each iteration for the online updates of the
proposed system, the developed model is more efficient than
the AHC itself. Assuming, K is the number of states for
updating the reward coefficient in the proposed multi-agent
control system of Figure 2, the computation time decreases to
O(K 2) using the developed model, that is another indication
of the robustness and effectiveness of the proposed algorithm
in practice.

TABLE 3. Numerical comparison of profit performance of different
pricing strategies.

G. PROFIT PERFORMANCE IN DIFFERENT PRICING
STRATEGIES
Table 3 compares the profit coefficients of three different
pricing strategies, namely static pricing [8], CDP [17], and
the developed online RL model. The static pricing strategy
follows a fixed-pattern for the adaptation of EVs charging at
CSs. Fixed-pricing or static pricing strategy adopts a com-
petition strategy between different CSs with different cost
parameters. Therefore, EV demands don’t change with the
price information as it follows a fix pattern at different time
slots of a day. On the other hand, in the CDP model, the
EVs demand estimated in response to charging prices at
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various CSs uses a rule-based heuristic solution to address
the dynamic pricing challenge in real-time. By doing so, the
CDP model motivates more EVs before peak hours to charge
at CSs, and it consequently increases the revenue of CSs as
well. Finally, a significant increase is observed in the profit
coefficient after a time elapse because the profit function
of the proposed model updates their pricing vector based
on the received rewards from the utility at off-peak hours
with cheaper electricity prices. This consequently results in
encouraging more EVs to charge at CSs during that time
period.

IV. CONCLUSION
This paper introduced an EV load-shifting mechanism based
on an online RL model in a multi-agent system frame-
work. The new online RL model is developed based on the
AHC-Fast critic and RLS as adaptive filtering algorithms.
The proposed model, first evaluates and monitors the EVs’
charging demand at the CSs from the utility agent; then the CS
agent received rewards, calculates the updated price vector of
charging stations at each interval. This enables the network to
propose cheaper prices before peak hours to encourage more
EVs to recharge their battery at those intervals, instead of
demand peak hours. The effectiveness and robustness of the
proposed online RL model were verified through extensive
simulation studies. The results of simulations indicate the
significant contribution of the proposed model in in decreas-
ing extra demand of EVs charging at peak hours, and hence,
increasing the profit of the CSs.
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