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Abstract 
Photovoltaic reverse osmosis water treatment units can be deployed into remote regions to provide 
remote communities with a clean water source without the need for on site electricity supply to 
operate. Optimisation of these units has the potential to maximise the output of purified water and 
to improve the overall effectiveness of the PVRO unit once it has been deployed. The aim of this 
project is to develop a mathematical model for the optimisation of the Muresk PVRO unit. This is 
achieved using a local monitoring system that can log the operational data of the PVRO unit and 
utilising this data to validate and tune a Microsoft Excel based mathematical model of the Muresk 
PVRO unit.  

In this project an ESP32 microcontroller running an Arduino program was used to log the electrical 
and water flow data from the PVRO unit to a ThingSpeak IOT portal and a local SD card. A 
mathematical model of the Muresk PVRO system was developed, and two months of data were 
compared with the data from the monitoring unit to tune and validate the model. With the model 
tuned the mathematical model was used to investigate optimising the PVRO output by adjusting the 
tilt angle of the solar array. By increasing the array tilt from 30 degrees to 45-degrees the daily 
minimum output improved by 9% with a marginal loss of 1% to the annual water output. This 
increases the suitability of the unit to applications where a consistent output of clean water is more 
desired than just maximising the annual output. 
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Glossary of Terms 
 

AC – “Alternating Current” is where electrical current periodically cycles between both directions 

DC – “Direct Current” is where the electrical current flows in a fixed direction 

IOT – “Internet of Things” refers to devices that connect to the internet for the exchange of data 

PV – “Photovoltaic” refers to the conversion of light to electricity 

PVRO – “Photovoltaic Reverse Osmosis” is a solar powered reverse osmosis used to purify water in 
remote locations 

SOC – “State of Charge” is a percentage value representing the amount of available power in the 
battery 

DoD – “Depth of Discharge” is a percentage value representing the amount of power taken from the 
battery 

RO – “Reverse Osmosis” refers to a water purification process utilising a semi-permeable membrane 
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Introduction 

 

The purpose of this project is to first analyse the unit’s operational data through long term 
monitoring. Then using this data, establish a mathematical model of the unit to allow simulation of 
the PVRO unit in a variety of operating conditions, changing the configuration and location to 
determine how the unit performs under these varying conditions. Through simulation we can 
instantly see in detail how the unit would perform under the varied conditions and hence optimise 
the dispatch of these units into different remote areas. 

89Km from Perth just south of Northam is the Muresk Institute, an education and training facility for 
the Western Australian agricultural sector. Through joint work between Murdoch University and 
Moёrk Water Solutions, a small PVRO pilot plant was installed at the Muresk Institute for testing the 
use of these units in the Wheatbelt. The PVRO unit utilises a fixed solar array and a small battery set 
to power a reverse osmosis unit. The reverse osmosis unit takes water from a nearby bore, filters 
and purifies it to produce clean water as an output. These units can be placed in remote locations to 
provide a reliable source of clean water without the need for on-site power. The Muresk PVRO unit 
is used as the basis of the model for this project. 
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Objectives 

 

The aims of this project break down into 5 key areas: 

 Develop a monitoring system to log the operational data of the Muresk PVRO unit. 
 Develop a mathematical model of the Muresk PVRO unit to be used in a simulation of the 

real-world PVRO unit. 
 Utilise the operational data from the monitoring system to tune and validate the 

mathematical model. 
 Utilise the mathematical model to optimise the Muresk PVRO unit through simulations. 
 Utilise the mathematical model to determine how the Muresk PVRO unit would perform in 

varying locations and operating conditions. 
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Literature Review 

 
Background 
Water is an essential resource for any community across the globe. Approximately one quarter of 
the world’s population lacks access to adequate amounts of clean fresh water [1].  This is a challenge 
in remote and developing areas where it is often unviable to implement large-scale water 
decontamination and storage [2].  Small scale desalination (100 m3 /day or less) [3] provides 
flexibility in converting the local lower quality water supplies into a high-quality drinkable water. 
Renewable powered desalination technology such as Photovoltaic reverse osmosis (PVRO) is an 
attractive possibility in decentralized, off-grid communities with brackish water sources. PVRO 
combines an array of photovoltaic (PV) cells powering a reverse osmosis unit to provide a 
consolidated method of water desalination. 

 

Reverse Osmosis 
Reverse osmosis (RO), used in more than 80% of the desalination plants in the world, has become a 
common method of water purification [4]. External pressure is applied to the untreated, high-solute 
water to reverse the natural process of osmosis through a semipermeable membrane [5]. This 
pushes the pure water component of the untreated input water, to the other side through the 
membrane. This results in a purified ‘permeate’ water output and a secondary concentrated waste 
water ‘brine’ output. The potential of reverse osmosis to reject up to 99% of all ionic solids [5], 
allows for a high quality water output, thereby allowing for a wide variety of water input sources 
including seawater and brackish water sources.  
 

 
Figure 1: Basic reverse osmosis process 

 
Utilizing RO as the primary method of purifying water is becoming more popular as the relative costs 
decrease. For coastal communities the most abundant source of water is seawater which is high in 
concentrated salts and impurities but on a small scale, RO feedwater can be improved by utilizing 
“beach wells” [4]. When reverse osmosis is utilized for seawater desalination the technology is 
superior to older thermal desalination methods,“ it is more effective than thermal desalination, with 
lower energy requirements, lower operating temperatures, and lower water production costs” [3]. 
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The process is still very energy intensive and “high energy consumption and potential environmental 
impacts are the main challenges” [3]. For inland communities, alternate brackish water sources are 
often available, but water quality is a major issue and, in many cases, cannot be used for drinking 
without first removing the contaminants.  When brackish water supplies such as rivers or 
groundwater are used, due to the reduced concentration of salts relative to seawater, lower 
pressures are required for the reverse osmosis unit lowering energy costs further.  
 

Remote Solar / Battery System 
Solar energy is a readily available energy source that comprises all energy received by the earth from 
the sun. Photovoltaic (PV) systems contain cells that directly convert sunlight into electricity [6]. PV 
cells typically consist of layers of semi conductive materials. When sunlight shines on the PV cell, the 
photons hitting the upper layer “knocks” electrons into the lower layer causing electricity to flow. PV 
cells have no moving parts and hence incur no operating and low maintenance costs. Utilizing the 
suns energy is a passive renewable energy source.  

Current PV cell technology includes monocrystalline cells, polycrystalline cells and amorphous 
silicon. Monocrystalline cell technology is widely used due to high efficiency of more than 20%. The 
cells consist of large silicon single-crystals which have been doped to form n-type or p-type silicon 
[6]. Polycrystalline cells are traditionally cheaper than monocrystalline cells but with lower 
efficiencies. The cells consist of crystallized silicon in a fixed direction and are cut from a larger block 
[6]. Amorphous silicon is a thin film technology with a relatively low efficiency but requiring fewer 
material to manufacture thus reducing costs. The cells utilize silicon in non-crystalline form in 
disordered structure [6].  

 

 

Figure 2: Solar cell efficiency by technology [7] 

 

Ongoing developments in cell technologies include bifacial cells which allow for the conversion of 
sunlight which is reflected onto the back side of the panel, improving energy yield by 15-20% per 
year over standard cells [8]and perovskite cells showing potential for low cost, high performance 
cells with ”rapid advances in efficiencies of perovskite PV cells from 3.81 % to 23.7 % in just 9 years” 
[9]. Solar PV power has undergone rapid growth in recent years to become a major source of 
renewable energy accounting for 1.7% of global electricity generation [10]. Solar PV has also 
experienced a rapid reduction in cost from $4 per watt in 2007 to $0.35 per watt in 2017 [10].  
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The utilization of solar energy to power the system allows the unit to be placed in remote areas 
where grid electricity may not be available, or grid connection is not feasible. RO relies on a 
continuous energy source for its operation as the RO membrane requires constant pressure to 
maintain permeate flow. As the nature of solar radiation is highly variable, PVRO plants typically 
utilize a battery system as either an energy buffer or for backup. With the inclusion of a battery in 
the system, the batteries have been shown to “perfectly decouple the solar panel and the RO unit” 
[11]. 

 Battery storage systems have seen similar growth to that of solar PV systems. The two major battery 
technologies currently in use are Lead-Acid and Lithium-Ion batteries. Lead-Acid batteries are an old 
technology but are still the most common option worldwide for the storage of electricity [12]. Lead 
acid batteries are comparatively large and heavy due to the batteries construction which consists of 
lead plates immersed in an electrolytic solution of sulphuric acid [12]. Variants of the standard 
“flooded” lead acid battery include valve regulated lead acid (VRLA) batteries utilizing a valve to 
regulate the release of hydrogen gas from the cell increasing battery lifespan, absorbed glass mat 
(AGM) which add an internal matting to suspend the electrolyte close to the lead plates allowing for 
deeper cycling and Gel batteries which add silica gel to  the electrolyte causing it to stiffen allowing 
even deeper battery cycling. 

Lithium ion batteries are a more recent battery technology that has seen many recent developments 
which have accelerated since the emergence of the electric vehicle industry. Lithium Ion batteries 
have longer lifespan, higher efficiency, faster charge/discharge capabilities and a lighter more 
compact form factor than lead acid batteries [12]. The downside of the newer technology is the cost 
per watt hour is at least twice that of lead acid batteries, but that is expected to improve 
significantly over the next few years [12]. 

 

Figure 3: Typical Remote Solar Battery System Layout 
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Remote Monitoring of PVRO System 
Data acquisition in modern society is getting easier with the rise smaller cheaper computers that can 
be embedded in just about anything. “From the year 2014, embedded systems and wireless data 
transmission have been increasingly implemented for PV plants and meteorological variables 
monitoring, instead of using commercial dataloggers” [13]. The Internet of Things (IOT) is a system 
incorporating microcontrollers that are connected to the internet either directly through ethernet, 
cellular modems or indirectly through Wi-Fi, Bluetooth or LoRa networks connecting to a central 
“hub” that relays the data to the internet [14]. This internet connection allows these “smart” devices 
to upload information to a cloud server and be controlled over the internet. This allows real time 
monitoring of data and downloading all logged data from any computer connected to the internet. 
This method of collection is a much easier method of data collection over traditional dataloggers 
which require the unit to be directly connected to a computer to access the recorded data especially 
when it comes to remote systems where physical access can be difficult.  Logging methods proposed 
by the IEC standard IEC61724 which covers PV system performance monitoring recommend a 
maximum sampling interval of 1 minute and a maximum recording interval of 15 minutes for 
medium accuracy and 60 minutes for basic accuracy [15].  

IOT systems require some form of microcontroller to process the data from the sensors and forward 
the data to the online IOT platform. There are many microcontrollers capable of doing this, a few 
popular examples include the ESP-series modules, Arduino and Raspberry Pi.  

The most common ESP-series module is the ESP8266, a well-known Wi-Fi solution among hobbyists 
and students [16]. It features integrated Wi-Fi working on common 802.11 b/g/n protocol, 1 MB of 
flash memory, nine general-purpose input/output (GPIO) pins supporting serial-peripheral interface 
(SPI) and inter-IC (I2C) communication protocols [16]. The ESP32 is an upgraded version featuring 
both Wi-Fi and Bluetooth alongside a faster 160Mhz dual-core processor and a wider variety of input 
pins [16].  Arduino offers a vast range of open-source boards with a wide variety of specifications to 
choose from and an active online community for software support [16]. For IoT applications, the 
Arduino Yun features onboard 802.11 b/g/n Wi-Fi, ethernet and micro-SD card slot [16].  

Alternatively, Arduino also offers the Genuino MKR1000, featuring a Li-Po charging circuit and a 
Cryptochip for secure communication [16]. Raspberry Pi is more of a “single-board computer” than a 
microcontroller featuring a quad-core processor, an onboard graphics processing unit, Wi-Fi, 
ethernet, USB ports, micro-SD card slot and a HDMI output [16]. However, additional hardware is 
required for interfacing with analogue inputs and despite a similar supportive online community to 
Arduino, the learning curve can be much steeper [16]. 

With the microcontroller processing the data, this information is then forwarded to an IOT platform.  
“An IoT platform is a complete suite of services that facilitates services like development, 
deployment, maintenance, analytics as well as intelligent decision-making capabilities to an IoT 
application” [17]. Some examples include the Google Cloud Platform running on Google’s 
infrastructure, ThingWorx designed to build and run the connected world and ThingSpeak featuring 
MATLAB data analytics and visualization [17]. Many more IOT platforms exist with a variety of 
features ranging from data visualisation to intelligent control systems. 
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Figure 4: IOT Data Acquisition Layout 

 

Data Acquisition 

The basic data required for monitoring the PVRO system comes from three major components of the 
system, the solar array, the battery and the RO unit. The solar array data consists of the dc current 
and voltage of the solar array providing information on the power input of the system. The battery 
data consists of the battery voltage, current and state of charge (SOC) giving an indication on how 
well the energy storage is being utilized. The key data from the RO unit is the input AC voltage, 
current and the output pure water flow rate giving an indication of the performance of the RO unit. 
Collecting the data required to properly monitor the PVRO system can be achieved in a variety of 
ways split into two main categories, invasive and non-invasive. Invasive techniques involve sensors 
that are placed within the system requiring some modification to the system for correct installation 
and to obtain data, sometimes these techniques have an impact on system performance. Non-
invasive techniques alternatively provide data collection without modification to the existing system 
but can be significantly more expensive.  

For the measurement of electrical current the techniques are well established including shunt 
resistors or magnetic transducers [18]. Shunt resistors are a widespread and inexpensive method but 
are both an invasive technique requiring the shunt to be placed in series with a power conductor 
and suffers an error on accuracy higher than 5% [18]. Alternatively, magnetic transducers such as 
current transformers or hall-effect sensors can be utilised. Current transformers (CT) are used to 
measure AC currents due to the required changing magnetic field to induce a current, this is a non-
invasive method that clamps onto one current carrying conductor causing a smaller proportional 
current to flow through the CT. This current can then flow across a precision resistor to obtain a 
proportional voltage signal [19]. Hall effect sensors unlike CTs can measure both AC and DC currents 
but require an additional integrated circuit (IC) to take measurements. For the measurement of 
voltage, the simple approach is direct measurement which can be considered invasive due to a 
minimal impact on the existing system, for high voltage measurements transformers or voltage 
dividers can be used to step down the voltage to safer, easily measurable levels.  Currently there is 
no commercially available non-invasive sensor that can measure the AC voltage however capacitive 
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coupling, an experimental technique that involves placing a cylindrical conductor around each AC 
conductor shows potential for a low cost, non-invasive solution [18].  

Modern solar battery systems include a maximum power point tracker (MPPT) regulator to 
maximise solar output, an AC inverter to convert the DC power into AC power and usually some 
form of battery monitor for the monitoring and protection of the battery unit. These existing MPPT 
regulators, AC Inverters and if fitted, the battery monitors all can measure their own internal power 
flows. In the case of the Victron units used in the Muresk PVRO system there is an open source serial 
communication interface that by default sends out data every second containing the information 
obtained by the unit [20]. In the case of the MPPT unit this data includes the solar MPPT 
voltage/current, the load voltage/current, the battery voltage/current as well as historical 
information such as daily energy yield and unit operating status [21]. In the case of the AC inverter, 
the data includes input DC voltage/current, output AC voltage/current and other system status 
information [22]. If the battery monitor is fitted, detailed information on the battery can be 
collected, including battery voltage/current, SOC, consumed Ah and a variety of historical data 
including min/max voltage, number of cycles, deepest discharge, previous DoD and amount of 
charged/discharged energy [23]. All this data can be directly interfaced with a microcontroller serial 
port configured to 19200 baud rate [20], providing extensive amounts of system data, while 
remaining completely non-invasive.  

For measuring water flow rate many techniques exist. An example of an invasive method is a turbine 
flow meter which utilizes the water flow to cause a turbine to rotate. A magnetic sensor is used to 
detect the speed the turbine is spinning by outputting a pulse rate proportional to the flow rate. 
Non-invasive methods such as ultrasonic sensors utilizing high frequency waves to detect the 
flowrate have the advantages of simpler installation, no impact on the system and no moving parts 
[24]. 

 

Modelling PVRO System 
Modelling of any PV system requires local weather data, particularly the solar irradiance data, as 
well as the efficiency of all electrical components. The calculation of energy produced by the PV 
array depends on the time step of the weather data used, hence weather data with finer steps 
would allow for more accurate simulation with finer steps [25]. Historical weather data is averaged 
and used to predict probable future weather data. Solar output is dependent on irradiance which 
can be converted to hourly data using the equation in figure 5. Temperature data can be utilized to 
estimate the PV cell temperature and apply a correction factor obtained from the manufacturer’s 
datasheet (figure 6).  There are many more detailed mathematical models for predicting the solar 
irradiance output of solar offering higher accuracy, but these methods greatly complicate the 
mathematical model and require additional unknown variables creating potential sources of error. 

The MPPT and inverter efficiency vary depending on the load they are working at. This information 
may be obtained from the manufacturer’s datasheet as an efficiency curve in terms of input power 
and rated power [25]. If unavailable, this is estimated. Battery charging and discharging losses must 
also be considered, but this information is usually unavailable from datasheets and must be 
estimated. 
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For the modelling of PVRO systems which include battery storage, a method of estimating the 
batteries SOC must be utilized. Many methods exist for determining the battery SOC, including 
discharge test, voltage-based examination, coulomb counting, Kalman filtering and neural network 
[26]. Voltage based monitoring uses the batteries terminal voltage to estimate the battery SOC, it is 
a simple method, but requires the battery be disconnected from the load or “rested” for a period 
before taking a reading. This method may not be very accurate but can be improved by measuring 
temperature and applying a compensation factor. Coulomb counting involves measuring the battery 
current and integrating it over time, this method suffers from the SOC “drifting” over time and must 
be calibrated/reset periodically [26]. This method allows real time SOC without disconnecting the 
battery from the load.  

The RO unit is the main load in the system, but some systems have auxiliary loads such as lighting or 
cooling fans. The RO unit power draw comes mostly from the high pressure feed pump plus a 
smaller power draw from the feed pump. The pump shaft power can be determined by the feed flow 
rate, the pump pressure and the pump efficiency [27]. In the case of Muresk PVRO unit there is plans 
for an external mixing unit that draws a significant amount of power from the system. To accurately 
model battery levels this load plus all auxiliary loads must be considered in the model.  

 

 

Figure 7: Simplified model block diagram of PV battery system simulation 
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𝐻𝐻𝐻𝐻𝑡𝑡  =  𝐼𝐼𝐼𝐼𝐼𝐼(sin 𝜎𝜎 sin𝜑𝜑 + cos𝜎𝜎 cos𝜑𝜑 cos𝜔𝜔) 

𝐻𝐻𝐻𝐻𝑡𝑡 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐻𝐻𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝑡𝑡𝐻𝐻 𝐼𝐼𝑠𝑠𝐼𝐼𝑠𝑠𝐼𝐼𝐼𝐼𝑡𝑡 

𝜎𝜎 = Declination Angle (degrees) 

𝜑𝜑 = 𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝐻𝐻𝑡𝑡 (degrees) 

Isc = Solar constant (𝑊𝑊𝑊𝑊−2) 

𝜔𝜔 = 𝐻𝐻𝐼𝐼𝑠𝑠𝐼𝐼 𝐼𝐼𝐼𝐼𝑎𝑎𝑡𝑡𝑡𝑡 (degrees) = 15(12 − 𝐼𝐼) 

t = true solar time (hours) 

 Figure 5: Solar irradiation hourly calculation formulae [28] 

𝑃𝑃𝐼𝐼𝑠𝑠𝐼𝐼 = 𝑃𝑃𝐼𝐼𝐼𝐼 ∗ 𝐸𝐸𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝑐𝑐 

Peffective = Pnominal - (Ptc * T) 

P = Power (W) 

Ptc = Solar power temperature coefficient (W/℃) 

T = temperature (℃) 

 

Figure 6: Power efficiency and temperature compensation formulae 
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Utilizing the input irradiance data, the resultant solar input power can be calculated and hence all 
subsequent energy flows. Accounting for all energy flows, and the efficiencies of individual 
components the resultant time the unit is active can be determined and hence the permeate water 
output can be calculated. The resultant system can then be represented by a mathematical model 
that can be calculated through a MATLAB program or iteratively through a Microsoft Excel 
spreadsheet providing interval data for all parameters. Once significant amounts of data have been 
obtained from the data monitoring of the Muresk PVRO unit this data can then be compared to the 
simulated model to both verify and improve the accuracy of the model. 
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Methods 
 

This project can be broken down initially into two main parts; the data acquisition stage and the 
modelling stage. The data acquisition stage requires setting up a monitoring system on the remote 
PVRO system. The initial priority is to set up the monitoring unit to maximise the amount of logged 
data available for later use. Once this is done data logging will run in the background while the 
second stage of the project, the modelling stage, is being worked on. In this stage a theoretical 
model is established to simulate how the unit is expected to run. Once these two stages are 
complete the final stage of the project is to combine the data from the monitoring stage into the 
theoretical model to increase the accuracy of the model and to increase the usability of the model. 

 

Data Acquisition Stage 

Development - Overview 

The monitoring system must be capable of measuring the key parameters of the PVRO system. In 
the Muresk PVRO system these are the solar power, battery power, inverter power and the RO 
input/output flowrates. To achieve the monitoring of these systems, a microcontroller-based system 
was chosen to better integrate into the unit than a standard datalogger and to add some flexibility 
to accessing the data. Already being familiar with microcontroller programming and interface circuit 
design made this method more favourable. 
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To determine compatibility of the monitoring system, the components of the Muresk PVRO unit 
needed to be analysed. The Muresk PVRO unit consisted of 500L/hr RO unit powered by 4.3kW of 
solar panels and a 48V 100Ah lead acid battery system. Inside the unit the electrical system 
consisted of a Victron MPPT solar regulator, a Battery Management System (BMS) and an Inverter 
which fed 240V AC power to the RO unit and a cooling fan. The Victron MPPT and BMS units on 
further investigation were both compatible with Victron’s VE.Direct protocol, providing serial output 
of all internal data. The RO unit power was fed through a single AC cable. The water inlet and outlet 
pipes used 25mm BSP threaded fittings on the inlet and outlets. 

 

 

 

Figure 8: Muresk PVRO Unit, Exterior (left), RO Unit (middle), Power Board (right) 

MPPT Regulator 

48V DC 240V PV DC 

BMS 

Figure 9:PVRO Basic Electrical Layout 
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Development - Sensors 

For measuring the DC voltages and currents the existing VE.Direct data could be utilized or external 
current and voltage sensors could be utilised. The VE.Direct data was used as it was both the 
simplest method to obtain the data and the least invasive. The low sample rate isn’t an issue due to 
the long measurement period and the mV accuracy enough for this application. 

 SAMPLE RATE ACCURACY DIFFICULTY INVASIVE 
VE.DIRECT DATA 1S mV Low Low 
EXTERNAL SENSOR BOARD <1mS uV Moderate High 

Figure 10: DC voltage measurement method comparison 

 

For measuring the AC voltage and currents the only option available was to implement some 
external sensors due to the Inverter not being VE.Direct compatible. The chosen method was to use 
current clamps on the AC cables to obtain current and to assume a fixed voltage of 240V. This 
method is very simple in comparison and safer than trying to measure AC voltages. The voltage 
divider with current shunt method would require more interface circuitry and be much more 
invasive than the current shunt method 

 V/I SAFETY ACCURACY DIFFICULTY INVASIVE 
CURRENT TRANSFORMER  I High High Low Low 
VOLTAGE DIVIDER + SHUNT V+I Low High High High 

Figure 11: AC voltage and current measurement method comparison 

 

For measuring the water flowrates, a variety of flow sensors were capable of being fit to the RO unit. 
The key differences between the potential options listed were the complexity of the method and 
implementation as well as the cost of the sensor type. The chosen flow sensor was a paddle turbine 
flow meter being the simplest and cheapest option to implement. 

 ACCURACY COST DIFFICULTY INVASIVE 
PADDLE TURBINE  Moderate Low Low Moderate 
ROTOR TURBINE Moderate Moderate Low Moderate 
ULTRASONIC High High High Low 

Figure 12: Flow sensor measurement method comparison 

Development - Data 

For recording and accessing the recorded data it was decided this system should utilize independent 
and redundant data recording systems to ensure the reliability of the system. These being an online 
IOT data portal and a local SD card as backup.  

The online data portal will have the interval data uploaded, stored online and be easily accessible 
from anywhere. The disadvantage of an online platform is the uploading of the data relies on a local 
internet connection that may have outages.  

Meanwhile the local SD card, having the disadvantage of requiring physical site access to access the 
data is also the simplest and most reliable way to record the data collected by the microcontroller.  

An alternate option that was considered on top of the other systems was a microcontroller-based 
FTP server for accessing the data stored on the SD card. While this did solve the accessibility issues 
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of a simple SD card it would increase the bandwidth usage of the system and is unnecessary if the 
data portal is available. Similarly emailing the data periodically did allow an alternate method of 
retrieving the data it was less user friendly than the IOT portal while being less reliable than the SD 
card. 

 

 RELIABILITY COST DIFFICULTY USER FRIENDLY 
SD CARD  High Low Low Low 
IOT PORTAL Moderate None Low High 
FTP SERVER High Low High Low 
EMAIL DATA Moderate None Moderate Low 

Figure 13: Data recording method comparison 

Connecting the data acquisition system to the online data portal requires an internet connection of 
some sort. Options available range from directly connecting to a local WiFi or Ethernet network, 
indirectly connecting to an existing internet connection via LoRa network or connecting directly to 
the internet via a cellular modem.  

For this system there is no local WiFi or Ethernet connection available although there is an existing 
LoRa network at Muresk. Despite this a cellular modem was chosen instead to retain some 
independence of the data acquisition system and to improve the reliability of the system. 

 AVAILABLE COST DIFFICULTY RELIABILITY 
LOCAL WIFI/ETHERNET  NA None Low Moderate 
LORA NETWORK Distant None Moderate Low 
CELLULAR NETWORK Yes Low Low Moderate 

Figure 14: Internet connection method comparison 

With the internet connection set up the data is then sent to an online data portal. Fortunately, there 
are many different online IOT platforms capable of doing this. For this system the ThingSpeak 
platform was chosen due to it being free to use (with feature limitations), having friendly visual ways 
to present the data and integrating MATLAB analytics, allowing for processing the data. 

 

Development - Platform 

The platform for running the monitoring unit is what ties all components together and must be 
compatible with all every component chosen. Several options for monitoring the PVRO unit, 
including using the existing TrinaSolar system, a Raspberry Pi or Arduino based IOT monitoring 
system and a basic datalogger, can also be utilized for short term data collection. 

Firstly the TrinaSolar system can directly interface with the existing TrinaSolar components used in 
the PVRO units solar battery system. The MPPT regulator, inverter and battery monitor all have 
smart electrical monitoring capability and only require a GX series control board for connecting all 
systems together. Unfortunately the Trinasolar GSM modem may not work in Australia due to 
Telstra and Optus decommissioning their GSM networks in 2016 and 2017, respectively. The other 
major issue with this method is the inability to add additional sensors such as flowrate sensors. 

The next option is a Raspberry Pi based IOT system. The Raspberry Pi is a powerful microcontroller 
with wide programming options capable of IOT functionality. Raspberry Pi boards typically include 
WiFi and Bluetooth connectivity as well as a range of GPIO pins and compatible protocols. The main 
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drawback of this platform is the steep programming learning curve. Previous experience in this 
platform would be required for fast development of the monitoring unit. 

Then there is Arduino, a simpler alternative to Raspberry Pi with a wider variety of compatible 
boards. Arduino isn’t as powerful as Raspberry Pi, but still capable of IOT functionality. The ESP32 
board is a relatively powerful microcontroller, which includes WiFi and Bluetooth capability and 
variety of ports such as I2C for sensor connection. 

Finally an off the shelf datalogger, which is a purpose built unit typically suited for temporary 
monitoring and data collection. There are a wide variety of units available and compatibility with a 
wide variety of sensors are available some higher end models allowing for remote access to the data. 
Unfortunately, compatibility with the VE.Direct protocol isn’t available which would require many 
additional sensors to replace the VE.Direct data. 

It was chosen to go with the ESP32 microcontroller as a DIY IOT solution. Utilizing the Arduino 
platform allows for easy programming of the monitoring unit and great flexibility of the program to 
suit the needs of the monitoring system. An ESP32 was chosen as this board includes Bluetooth and 
WiFi connectivity, giving flexibility in retrieving the data. Using a WiFi Hotspot modem as an internet 
connection, the recorded data can be uploaded to an IOT server at 15-minute intervals providing 
remote access to the data. Bluetooth can allow for additional Arduino boards to be connected 
wirelessly providing an opportunity in expanding the boards capabilities. The ESP32 board has a 
range of compatible input options. The key for this project are the 30GPIO pins, the 12bit ADC, 
multiple UART ports and SPI interface. 

 

 

Chosen Method - The DIY Monitoring Unit: 

The final system was a DIY monitoring unit built around the ESP32 microcontroller. A hotspot 
modem provides internet connectivity to the ESP32 unit through it’s WiFi connection. The 
ThingSpeak platform is the main data portal, allowing remote monitoring and download of the 
recorded data. A local SD card is added as a backup data storage in the event there is an issue with 
either ThingSpeak or the hotspot modem. The VE.Direct protocol feeds all data from the BMS and 
MPPT regulator to the ESP32 unit via its UART ports. A logic level converter was added to allow the 
ESP-32 compatibility with both 3.3V and 5V systems. A current transformer and interface circuitry 
measure the AC current out of the inverter to the system. Two paddle wheel type flow sensors 
measure the permeate and feed flow rates and feed proportional frequency pulses to the ESP2 
through interface circuitry. The entire monitoring system is powered via a wide input buck regulator 
that is fed from the PVRO battery. 

 

 

 

 

 

Parts List: 
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ESP-32 Dev Module  Hotspot Modem  
 

 

1” Flow Meters 
(FS400A) 

 

Hologram SIM 
Card 

 
100A Current 
Transformer 

 

Waterproof Project 
Case 

 
Micro SD Card 
Module 

 

10A 60V-5V Buck 
Converter 

 

SD Card 

 

Logic Level Shifter 

 

Capacitors/Resistors  PCB/Cable/Misc  
Figure 15: Key parts list of PVRO monitoring system 
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Chosen Method - Setting Up The Monitoring System 

Assembly of the unit began with building the PCB, a prototype PCB with predrilled and tinned holes 
was chosen as the base of the unit. This method of construction offers a balance between the 
flexibility of breadboard and the reliability of a prefabricated, purpose-built PCB. From there the 
header pin sockets for connection of the ESP-32 module were soldered to the centre of the board 
and screw terminals at the outer edges for external connections. The buck converter, logic level 
shifter, micro SD card module and miscellaneous interface circuitry were installed on the PCB, near 
their relevant connection points to the ESP-32.  

The buck converter output was set to 5V and connected to the Vin pins of the ESP-32, with a power 
cable connected to the buck convert input pins for the external power source. The logic level 
converter low side was connected to two of the hardware UART ports of the ESP-32 and two GPIO 
pins for software UART inputs, the high side was connected to the screw terminals. An adaptor cable 
connects two sets of these screw terminals to the MPPT and BMS units through their respective 
VE.Direct ports. The remaining two screw terminal sets remain open as spare data inputs for future 
expansion.  

The micro SD card module was connected to one of the ESP-32 SPI interfaces and a formatted micro 
SD card installed. The flow meters are connected via screw terminals to the interface circuitry 
through to the ESP-32 GPIO pins. The current sensor is connected via screw terminals to different 
interface circuitry through to an ESP-32 ADC pin. The hotspot modem is powered by a female USB 
Type-A cable connected to the 5V buck converter output. 

A program was developed to interface all components and perform the datalogging process. The 
basic operation of this program is to read all the input data for 15-minutes and average the data. The 
unit then connects to the WiFi modem, uploads the data to the ThingSpeak portal, saves a copy of 
the data to the SD card and repeats. 

Setting up the ThingSpeak portal was relatively straightforward, with four “channels” created for 
receiving the monitoring unit data. The first channel is dedicated to the VE.Direct data, the relevant 
PV and battery data is sent to this channel with 48hr graphs displaying the data. The second channel 
is dedicated to the two flow sensors and the current sensor with similar graphs set to display the 
data. The remaining two channels were set to display the data received from the monitoring units’ 
spare inputs. The relevant “channel keys” were added to the ESP-32 program to allow 
communication between the monitoring unit and the ThingSpeak portal.  
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Physical installation of the unit involved mounting the PCB inside the waterproof case and mounting 
it near the electrical installation inside the PVRO unit container. The VE.Direct adaptor cables were 
connected to the PCB through to the MPPT module and BMS module VE.Direct ports. The flow 
sensors were installed inline with the RO permeate output and RO input pipes, with the sensor 
cables connected to the PCB screw terminals. The current transformer was installed onto the active 
AC cable behind the 240V AC outlet and then connected to the PCB via screw termianls. Finally, the 
power cable from the buck converter input was connected to the PVRO unit battery. 

 

 

 

 

Figure 16: Setting up ThingSpeak Portal with 48hr data graphs 

Figure 17: Assembled and installed ESP-32 based monitoring 
unit 
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Mathematical Modelling 
Modelling of the PVRO system begins with defining the extent of the model and the basic 
breakdown of how the model is to function. All aspects of the model must be initially defined to 
determine how the model is expected to function. With the model defined a series of mathematical 
equations must be developed to describe the behaviour of the model. This includes the input data, 
the output data and the behaviour within the PVRO unit. With the mathematical model defined the 
unit can then be simulated and tested to determine whether the behaviour follows the behaviour of 
the real world PVRO system. 

 

Mathematical Modelling - The Simplified Model 

For the modelling of the PVRO unit the basic system is broken down into its base components. The 
PV array, the MPPT regulator, the battery, the inverter and the RO unit. This simplifies the modelling 
process as each component will have its own set of parameters that can be used to simulate the 
components contribution to the system. This breakdown of components is to be referred to as “The 
Simplified Model”. 

The PV array is on a fixed tilt and orientation wherein all cabling, soiling and tolerances are 
summarized into a single “percentage loss” value, the cell temperature derating is to be follow the 
ambient temperature and the derating factor and the panel power output is to be directly 
proportional to the global irradiance. The MPPT regulator is to have a fixed efficiency rating wherein 
the output is directly proportional to the input of the regulator from the PV array, the MPPT has a 
small idle drain that contributes to the idle power drain.  

The battery energy flows similarly are assumed to have a fixed charge/discharge efficiency to 
account for any losses from the charging or discharging of the lead acid battery with the BMS 
contributing a small amount to the idle power drain. The inverter is assumed to have a fixed 
efficiency value and a significant idle drain that is to be added to the idle power drain.  

The MPPT regulator, battery and inverter share a common DC bus and due to the short, heavy duty 
cable connecting them the DC voltage is assumed to be equal. In the simplified model of the 
electrical system MPPT regulator injects current into the DC bus, the Inverter draws current from the 
difference is to be either drawn from or injected from the battery as it charges or discharges. 

 The RO unit is assumed to be in either a running or idle state. In the running the state the unit is to 
be maintaining a fixed power draw while processing water at a fixed rate. In the idle state the unit is 
considered to have a smaller idle power drain from the control system in addition to the MPPT, BMS, 
inverter and other auxiliary power drains. The unit switches between the running and idle states 
depending on the battery SOC. If the battery goes above a “High” threshold it starts running and if 
the battery falls below a “Low” threshold the unit stops running and sits in an idle state.  

The unit runs through a flushing sequence once it is told to shut down, this would add additional 
complexity to the simplified model of the system and hence is ignored as the simplified model only 
considers the unit to be either “running” or “idle”. 
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Mathematical Modelling - Overview 

Mathematical modelling of the PVRO system utilizes an iterative calculation method wherein the 
continuous operation of the unit is broken down into discrete 15-minute intervals. The model 
consists of input data which drives the model, the weather data is the only external input to the 
model and then a series of fixed input parameters allow adjustments of the model behaviour. This 
input data is fed into a series of equations that represent the PVRO system and the resultant output 
is the expected behaviour of the PVRO unit including the expected volume output of permeate 
water. 

 

Mathematical Modelling - Inputs 

The input weather data must be 15-minute interval data across a standard year and this data must 
be local to where the PVRO unit is expected to operate. This can be achieved in two ways, either 
directly through a weather station that has recorded 15-minute interval data or indirectly through 
applying daily recorded values and a standard 15-minute solar profile.  

Directly obtaining 15-minute interval data for any given site is difficult without a dedicated local 
weather station but would provide the most accurate data for the mathematical model. The 
alternate approach is indirectly as it is more common for a given site to instead have daily irradiance 
values and then to assume a fixed standard solar profile such as a sine curve to convert the daily 
irradiance values into 15-minute interval data for the mathematical model. In either case it is 
preferable that the weather data is based on a ten to twenty-five year average to remove any 
unusual weather data that may be present within a single year of data. 

The fixed input parameters are the key to the specific PVRO unit that is being modelled and are 
expected to change for different PVRO unit configurations. These key parameters are broken down 
into PV array, the MPPT regulator, the battery, the inverter and the RO unit. The PV array 
parameters are the rated solar capacity, the array tilt and array azimuth. The MPPT regulator 
parameters are the MPPT efficiency and the max current, MPPT voltage is assumed to equal the 
battery voltage. The battery parameters are the battery voltage, capacity and efficiency values. The 
inverter parameters are the inverter efficiency, which is assumed to be a fixed value rather than an 
efficiency curve and the inverter rating is assumed to always be greater than the load rating. The RO 
unit parameters are the running power, idle power, permeate output flowrate and the battery SOC 
high-low setpoints for switching the unit on or off. The RO unit is assumed to have fixed running 
power and permeate output flow rates regardless of water quality.  

 

Mathematical Modelling - Equations 

The energy calculations are based on the coulomb counting method where the current flows are 
calculated and used as the base for net energy flow over the 15-minute intervals. The equations use 
a discrete iterative method where values from the previous iteration to calculate each subsequent 
value. Each of the base components from the simplified model has its own set of energy equations 
that contribute to the simulation of the system.  

The PV array equation inputs the weather data and the PV input parameters to calculate the 
effective array output in Watts. The equation utilises daily insolation data and the reference PV 
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profile to determine the effective irradiance at each interval. This is multiplied by the array rated 
power and the losses to output the output PV power for that interval. 

𝑃𝑃𝑃𝑃 𝑃𝑃𝐼𝐼𝑃𝑃𝑡𝑡𝐼𝐼𝑡𝑡 = 𝐷𝐷𝐼𝐼𝐼𝐼𝑡𝑡𝑐𝑐 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ∗  𝑃𝑃𝑃𝑃 𝑃𝑃𝐼𝐼𝐼𝐼𝑠𝑠𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝐴𝐴𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐 𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎 ∗ (1 − 𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼) 

 

The MPPT equations use the PV array output, the battery voltage and the MPPT input parameters to 
calculate the available current output of the MPPT regulator in Amps. 

𝑀𝑀𝑃𝑃𝑃𝑃𝑀𝑀 𝐶𝐶𝑠𝑠𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝑡𝑡 = 𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 ∗ 𝑀𝑀𝑃𝑃𝑃𝑃𝑀𝑀 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸
𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸 𝑃𝑃𝑃𝑃𝑉𝑉𝑡𝑡𝐵𝐵𝑉𝑉𝑃𝑃𝑡𝑡

,𝑀𝑀𝑃𝑃𝑃𝑃𝑀𝑀 𝐶𝐶𝑠𝑠𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝑡𝑡 ≤ 𝑀𝑀𝑃𝑃𝑃𝑃𝑀𝑀 𝑀𝑀𝐼𝐼𝑀𝑀 𝐶𝐶𝑠𝑠𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼  

 

The Battery equations use the MPPT output current, the inverter input current and the battery input 
parameters to calculate the net battery current in amps. The net battery current is then used to 
calculate the battery SOC which is in turn used to calculate the new battery voltage in Volts. 

𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝑐𝑐 𝐶𝐶𝑠𝑠𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝑡𝑡 = (𝑀𝑀𝑃𝑃𝑃𝑃𝑀𝑀 𝐶𝐶𝑠𝑠𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝑡𝑡 −  𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼 𝐶𝐶𝑠𝑠𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝑡𝑡) ∗ 𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝑐𝑐 𝐸𝐸𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝑐𝑐 

𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝑐𝑐 𝑆𝑆𝑆𝑆𝐶𝐶𝑡𝑡 = �
𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝑐𝑐 𝐶𝐶𝑠𝑠𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝑡𝑡
𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝑐𝑐 𝐶𝐶𝐼𝐼𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐

� +  𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝑐𝑐 𝑆𝑆𝑆𝑆𝐶𝐶𝑡𝑡−1, 0 ≤ 𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝑐𝑐 𝑆𝑆𝑆𝑆𝐶𝐶𝑡𝑡 ≤ 1 

𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝑐𝑐 𝑃𝑃𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝑎𝑎𝑡𝑡𝑡𝑡 = (0.85 + (𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝑐𝑐 𝑆𝑆𝑆𝑆𝐶𝐶𝑡𝑡−1 ∗ 0.275) ∗ 𝑅𝑅𝐼𝐼𝐼𝐼𝑡𝑡𝐻𝐻 𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝑐𝑐 𝑃𝑃𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝑎𝑎𝑡𝑡 

 

The Inverter equations use the load power, the previous battery voltage and the Inverter input 
parameters to calculate the inverter input current in Amps.  

𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼 𝐶𝐶𝑠𝑠𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝑡𝑡 =
𝐿𝐿𝐼𝐼𝐼𝐼𝐻𝐻 𝑃𝑃𝐼𝐼𝑃𝑃𝑡𝑡𝐼𝐼𝑡𝑡

𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝑐𝑐 𝑃𝑃𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝑎𝑎𝑡𝑡𝑡𝑡 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼 𝐸𝐸𝑠𝑠𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝑐𝑐
 

 

The RO equations use the battery SOC and the previous running state to determine the current 
running state, emulating the on/off decision behaviour of the battery monitor unit. Once the current 
running state is determined the input parameters define the current load power in Watts. To 
determine the net permeate water output the operating hours of the unit are summed and 
multiplied by the input parameter for permeate output flowrate to get the total water output in 
litres. 

𝐼𝐼𝑠𝑠(𝑅𝑅𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1 == 𝑀𝑀𝐼𝐼𝑠𝑠𝑡𝑡 & 𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝑐𝑐 𝑆𝑆𝑆𝑆𝐶𝐶𝑡𝑡−1 < 𝑆𝑆𝑠𝑠𝑠𝑠 𝑆𝑆𝑡𝑡𝐼𝐼𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) ,𝑅𝑅𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡 = 𝐹𝐹𝐼𝐼𝑡𝑡𝐼𝐼𝑡𝑡 

𝐼𝐼𝑠𝑠(𝑅𝑅𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1 == 𝐹𝐹𝐼𝐼𝑡𝑡𝐼𝐼𝑡𝑡 & 𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝑐𝑐 𝑆𝑆𝑆𝑆𝐶𝐶𝑡𝑡−1 > 𝑆𝑆𝐼𝐼 𝑆𝑆𝑡𝑡𝐼𝐼𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) ,𝑅𝑅𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡 = 𝑀𝑀𝐼𝐼𝑠𝑠𝑡𝑡 

𝐼𝐼𝑠𝑠(𝑅𝑅𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡 == 𝑀𝑀𝐼𝐼𝑠𝑠𝑡𝑡 ) , 𝐿𝐿𝐼𝐼𝐼𝐼𝐻𝐻 𝑃𝑃𝐼𝐼𝑃𝑃𝑡𝑡𝐼𝐼𝑡𝑡 = 𝑅𝑅𝑆𝑆 𝑅𝑅𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎 𝑃𝑃𝐼𝐼𝑃𝑃𝑡𝑡𝐼𝐼 

𝐼𝐼𝑠𝑠(𝑅𝑅𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡 == 𝐹𝐹𝐼𝐼𝑡𝑡𝐼𝐼𝑡𝑡 ) , 𝐿𝐿𝐼𝐼𝐼𝐼𝐻𝐻 𝑃𝑃𝐼𝐼𝑃𝑃𝑡𝑡𝐼𝐼𝑡𝑡 = 𝑅𝑅𝑆𝑆 𝐼𝐼𝐻𝐻𝑡𝑡𝑡𝑡 𝑃𝑃𝐼𝐼𝑃𝑃𝑡𝑡𝐼𝐼 

𝐼𝐼𝑠𝑠(𝑅𝑅𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡 == 𝑀𝑀𝐼𝐼𝑠𝑠𝑡𝑡) ,  𝑃𝑃𝑡𝑡𝐼𝐼𝑊𝑊𝑡𝑡𝐼𝐼𝐼𝐼𝑡𝑡 𝑆𝑆𝑠𝑠𝐼𝐼𝐶𝐶𝑠𝑠𝐼𝐼𝑡𝑡 = 𝑅𝑅𝐼𝐼𝐼𝐼𝑡𝑡𝐻𝐻 𝑆𝑆𝑠𝑠𝐼𝐼𝐶𝐶𝑠𝑠𝐼𝐼 

The equations become interdependent with calculations for current values of one equation 
depending on the previous values from the other equations. This becomes a reasonably accurate 
emulation of the real-world system as all components within the PVRO system are also 
interdependent and have an influence on the PVRO unit behaviour. 
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Mathematical Modelling - Simulation 

Microsoft Excel is used to handle the iterative calculations wherein a year of operational data is 
produced from localised weather data and the set of fixed input parameters. All the fixed input 
parameters are accessible from an “Input Parameters” sheet to allow easy access to these variables 
and quick alterations to be made.  

The weather data is input across two sheets, one for the 15-minute profile data and one for the 
monthly data values. This data is later used to calculate the 15-minute weather data for the 
simulated year.  

The equations are implemented within each 15-minute interval to calculate the operational data of 
the unit at that specific time. The model does this for every 15-minute interval across a year with 
each month separated into its own data sheet for easy navigation of the raw data.  

The raw data is summarised within a “Output Data” sheet with each month data summarised and a 
typical operational day is shown in a graph. The goal of the PVRO system is to produce clean 
permeate water output hence the key output parameter highlighted is the total volume of water for 
each month and the total for the year. 

Initially the model must be compared with the real-world system to determine the models accuracy 
and to compensate for any errors obtained. To accommodate this the data obtained from the PVRO 
unit monitoring system is collected.  

A large volume of data is required with the unit running to obtain a reasonable snapshot of the unit 
operation and to overcome any atypical operation of the unit that may arise through abnormal 
weather or external influences. This data can then be placed alongside the simulated data for the 
same time period for easy comparison between the simulated and real-world systems.  

 

Mathematical Modelling - Analysis 

With the comparison complete and any necessary compensation made to the model the simulation 
can then be utilised to predict how the unit would behave in alternate configurations or scenarios. 
By altering the fixed input parameters and monitoring the output data it is easy to see the effects of 
changing one of the components such as the PV array size or the battery size to determine the 
effects on the PVRO unit net permeate output. By replacing the weather data with weather data 
from an alternate location it can be determined how the same unit would perform in various 
locations. By replacing all the RO unit input parameters, different size RO unit performance could be 
estimated to some degree. 
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Results 
 

The results of this project are split into the two stages of the project, the preliminary and the refined 
results. In the preliminary results section, the simulated data is relying on the base assumptions for 
the input parameters of the Excel simulation. These results are then compared with the data from 
the PVRO monitoring system to compare the simulation with real world system. In the refined 
results section, the simulation is using the comparison from the preliminary results with the 
measured data to fine tune the input parameters. With the input parameters adjusted the refined 
results are compared with the real-world system to assess the performance of the mathematical 
model. 

 

Preliminary 

Preliminary – Simulated Data 

Preliminary simulation data required some of the input parameters to be assumed while the 
remaining data was collected from the relevant datasheets. For the solar array, the panel rating was 
known to be 370W, number of panels in the array is 12 and array tilt were known as 30-degrees 
beforehand. Similarly, the 48V 100Ah AGM information was added to the input parameters with the 
battery efficiency assumed based on similar batteries [28]. The MPPT regulator and AC Inverter 
information was collected from their appropriate datasheets including ratings and max efficiency 
[29] [30]. The PVRO unit is rated for 500L/hr, the running load power, idle load power and setpoints 
were estimated based on information from Moёrk water solutions. A summary listing the 
preliminary input parameters used is shown in the table below. 

Solar Capacity 4440 Watts 
Panel Tilt 30 Degrees 
Longitude 31.7 Degrees 
MPPT Max Current 70 Amps 
Battery Capacity 100 Amp-Hours 
Battery Voltage 48 Volts 
On Setpoint 90% SOC 
Off Setpoint 75% SOC 
RO Unit Running Power 2500 W 
RO Unit Idle Power 50 W 
Permeate Output Flowrate 500 L/hr 
Solar Losses 5% 
MPPT Efficiency (peak) 99% 
Inverter Efficiency (peak) 95% 
Battery Efficiency 97% 

Table 1: PVRO Simulation Preliminary Input Parameters 

The output data from the simulation was collected for two sample months, March and May. Each 
month had the operation data averaged and summarised into a typical operational day. The two 
graphs below represent this operational data for the preliminary simulated PVRO system for the 
months of March and May. 
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Figure 18: March Preliminary Siulated Results Graph 

In the preliminary simulated results for the month of March, the graph illustrates the typical daily 
operational data for the simulated PVRO system. First looking at the solar array input power the 
power quickly picks up in the morning until the battery SOC hits 100% where the input solar power 
cuts back as once the battery is charged the solar array is directly powering the RO unit load power. 
The simulated load power follows the expected behaviour, drawing a small idle power overnight 
until in the morning the battery SOC rises above the ON threshold and the unit powers up, drawing 
the full RO unit running load power.  The permeate flow profile mimics the on off behaviour of the 
with the expected 500L/hr while running and stopping when the unit is idle. The battery SOC drops 
gradually overnight as the idle power drains the battery but quickly rises to 100% once the morning 
solar power picks up and the battery is charged. 

 

 

Figure 19: May Preliminary Simulated Results Graph 



28 | P a g e  
 

The graph for the preliminary simulated May operational data shows almost identical behaviour to 
that of the preliminary simulated March graph. The one minor difference between the two is the 
May graph has less operational hours than the March data. The simulated PVRO unit takes longer to 
start-up in the morning due to less solar power being available. This is expected as the solar power 
availability in the winter months is less than the autumn months. Both simulated graphs 
demonstrate the PVRO simulation is outputting the expected ‘ideal’ PVRO system behaviour. 

 

Preliminary – Monitoring Data 

The data from the monitoring system was collected and analysed. Two months of data were 
collected as sample data for the system, March and May. Some data points for these two months 
were missing, to remedy this the results were interpolated using the adjacent data to fill in the gaps 
making it easier to compare the data with the simulated data. For each of the two months the 
operational data was then averaged and summarised into a typical operational day. The two graphs 
below represent this operational data for the monitored Muresk PVRO unit. 

 

 

Figure 20: March Preliminary Measured Results Graph 

In the measured results from the PVRO system for March, the graph represents what the real-world 
operational data for the system on an average day in March. The measured solar shows the utilised 
solar power is operating as expected, picking up in the morning, then backing off when the battery 
SOC approaches 100%. The solar power is less stable than in the simulated results, most likely due to 
minor variations in the available solar energy from cloud activity. This variation seems to have an 
impact on the measured load power with instability in the average load power appearing when the 
unit switches on and off due to some sample days experiencing high variations in cloud cover. The 
variation in load power is reflected in the permeate flow with the average data showing instability in 
the output from the unit switching on/off on some of the sample days. One notable difference is the 
permeate output appears higher than the simulated data graph, this could be due to the unit 
performing higher than expectations or the flow meters not being calibrated correctly. Also the 
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battery SOC appears to peak just below 100%, this could be due to the averaging of the data picking 
up sample days where the solar power is insufficient and lowering the average. 

 

 

Figure 21: May Preliminary Measured Results Graph 

The graph for the measured May PVRO system operational data has similar behaviour to that of the 
March graph but shows more instability indicating there were more days where the cloud cover was 
impacting the operation of the unit. This is expected as the further into winter it is typical to have 
less available solar and higher chances of cloudy days. The measured solar power shows both these 
aspects with general instability, a later peak in power in the morning and faster drop-off in the 
afternoon. The RO unit load power and permeate flow shows this behaviour as well but to a lesser 
degree with the battery soaking up some of these changes but the unit’s average operation time 
appears to be reduced from March. 

 

Preliminary – Comparison 

Tuning of the excel model requires several key parameters to be compared and adjustments made in 
order to compensate for the variances between the measured data and the simulated data. The RO 
idle load power and running load power can be directly adjusted by setting their corresponding input 
parameters to match the measured RO power data. The next key parameter is the input solar power 
which is measured by summing the total kWh from an average day for each month. Adjustments are 
made by modifying the solar losses input parameter. The final key parameter is the daily permeate 
which is the total output of product water from the RO unit for an average day from each month. 

 
 

Idle Load (W) Running Load (W) Solar Daily (kWh) Daily Permeate (L) 
Measured 50.1 2457.4 23.1 5470.9 
Simulated 50.0 2500.0 29.8 5445.3 
Error % -0.1% 1.7% 28.9% -0.5% 

Table 2: March preliminary model comparison of key parameters 
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First looking at the key parameter comparison for the month of March, most parameters from the 
simulated data appear to closely follow their corresponding measured data parameters. The idle 
load was measured by averaging the load power during the night when the unit was idle, this shows 
an error of just 0.1% indicating the initial idle load parameter of 50W was very close. Similarly the 
running load which was measured by averaging the load power during the day while the unit was 
running, showing an error of just 1.7% also very close to the initial running load parameter of 
2500W. The solar daily kWh parameter shows a significantly higher error of 28.9% above the 
measured value, indicating the simulation is overstating the available solar energy. The daily 
permeate volume shows a surprisingly low error of 0.5% despite the significant error in the solar 
daily kWh parameter. 

 
 

Idle Load (W) Running Load (W) Solar Daily (kWh) Daily Permeate (L) 
Measured 49.8 2264.6 18.8 3484.0 
Simulated 50.0 2500.0 29.4 5390.6 
Error % 0.4% 10.4% 56.9% 54.7% 

Table 3: May preliminary model comparison of key parameters 

Then looking at the key parameter comparison for the month of May, there seems to be significantly 
higher errors in the key parameters than the month of March. The idle load parameter is reasonably 
close with only 0.4% error, but the running load parameter has an increased error of 10.4% 
indicating the simulation is overstating the power consumption of the RO unit. The solar daily kWh 
value shows even higher error than the month of March with an error of 56.9% more than the 
measured value, the model is significantly overstating the available solar daily energy. The daily 
permeate also shows a significant error of 54.7% more than the measured value, some of this error 
could be linked to the running load power and solar daily kWh errors. 

To reduce the errors seen between the simulated and measured key parameters the simulation 
input parameters need to be adjusted. The errors from the two months are averaged then used to 
adjust the simulation input parameters. Since the solar daily kWh parameter is influence by the two 
load power parameters and the daily permeate parameter is influenced by all three parameters the 
parameters will need to be adjusted sequentially to minimise the final errors. These adjusted values 
were then used in the final simulation for the detailed analysis of the model. 

 

Refined Results 

Refined Results – Adjusted Model 

The refined results use the adjusted parameters from the preliminary model comparison. During the 
tuning process there was significant errors with the solar daily kWh and the daily permeate output. 
The model appears to be overstating the available solar energy and hence the solar losses were set 
to 20% in attempt to compensate. The daily permeate showed similar error but only for the May 
preliminary simulated data, the March preliminary simulated date was much closer and hence was 
decided to keep the default permeate flowrate parameter the same. The adjusted simulation input 
parameters are shown in the table below: 
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Solar Capacity 4440 Watts 
Panel Tilt 30 Degrees 
Longitude 31.7 Degrees 
MPPT Max Current 70 Amps 
Battery Capacity 100 Amp-Hours 
Battery Voltage 48 Volts 
On Setpoint 90% SOC 
Off Setpoint 75% SOC 
RO Unit Running Power 2361.0 W 
RO Unit Idle Power 49.9 W 
Permeate Output Flowrate 507.5 L/hr 
Solar Losses 20% 
MPPT Efficiency (peak) 99% 
Inverter Efficiency (peak) 95% 
Battery Efficiency 97% 

Figure 22: PVRO Simulation Refined Input Parameters 

Minor adjustments were made to the RO unit idle power consumption and the RO unit running 
power consumption parameters to reduce the overall errors. The solar losses was increased to 
compensate for the simulation overstating the available solar energy. Due to the large variations 
between the preliminary March and May key parameters it is not expected that these changes will 
improve the errors for both months. 

 
Idle Load (W) Running Load (W) Solar Daily (kWh) Daily Permeate (L) 

Measured 50.1 2457.4 23.1 5470.9 
Simulated 49.9 2361.0 27.9 5471.0 
Error % -0.3% -3.9% 20.7% 0.0% 

Figure 23: March refined model comparison of key parameters 

Looking at the March adjusted model key parameters, the errors appear to be like the preliminary 
March key parameters. The RO idle load power and the RO running load power errors have been 
marginally increased due to the changes. The solar daily kWh has been improved but still significant 
error remains with the simulated data overstating the available solar power. The daily permeate 
output changes eliminated the error. 

 
 

Idle Load (W) Running Load (W) Solar Daily (kWh) Daily Permeate (L) 
Measured 49.8 2264.6 18.8 3484.0 
Simulated 49.9 2361.0 27.3 5368.4 
Error % 0.2% 4.3% 45.8% 54.1% 

Figure 24: May refined model comparison of key parameters 

The May adjusted model key parameters all show improvements from the preliminary May key 
parameters. There is improvement in the RO idle and running load parameters with the errors 
approximately half what they were in the preliminary data. The solar daily kWh parameter has 
improved marginally but still significantly overstating the available solar energy. The daily permeate 
output also shows almost no improvement, still overstating the permeate output. 

From this it is apparent that deeper analysis, comparing the modelled data with the monitoring data 
is required to improve the model further.  
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Refined Results – Simulation Output 

Using the model to simulate this system over the course of a year gives important insights into how 
the system behaves throughout the year. This data is summarized into three graphs showing the 
solar utilization of the system, the monthly min/max battery SOC and the average daily water 
production. The irradiation data for 2019 was added to the simulation to see how the PVRO unit 
would behave across the sample year. 

 

 

 

Figure 25: 30-degree tilt average daily solar utilisation graph 

 

The average daily solar utilization shows how much power the PVRO unit is consuming vs the 
available solar energy for an average day for each month of the year. This data can be used to 
determine how the array size and tilt can be adjusted to maximise the solar utilization for every 
month across the year. In the sample year the array is showing an excess of solar energy in the 
summer months and a shortage of the winter months. The net solar utilization for the sample year 
with the standard configuration is 7494kWh. 
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Figure 26: 45-degree tilt average daily solar utilisation graph 

 

By simply adjusting the array tilt from 30 degrees to 45 shows an increase in the winter utilization 
with minimal impact on the utilization during the summer months. The net solar utilization for the 
year has reduced slightly to 7413kWh but has improved the consistency of the utilization throughout 
the year. Potentially increasing the tilt angle further and increasing the solar array size could 
improve the solar utilization throughout the year. 

 

Figure 27: Refined results monthly min/max battery SOC graph 

 

Next the monthly min/max battery SOC gives an insight into how hard the battery is working. If the 
max battery SOC dips below 100% it indicates the solar array is insufficient to fully charge the 
battery during the day and may be undersized. Looking at the sample year there is a slight dip in 
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June indicating the battery was not fully charged during that month and the solar array may be 
undersized. Similarly the min battery SOC indicates the lowest SOC the battery got to, if this drops 
too low the system my unexpectedly shut down and require manual restart. In the sample data the 
SOC never drops below 50% so the battery is sufficiently sized to handle the overnight idle loads 
safely. 

 

Figure 28: 30-degree tilt average daily water production graph 

Finally, the average daily water production shows what the PVRO unit would typically produce on an 
average day for each month. This is the key performance for the data as it indicates how much water 
the unit can produce throughout the year. In the sample year the unit follows a similar trend to the 
solar utilization, with significantly higher production in the summer months than the winter months. 
There appears to be due to the lack of solar energy in the winter months limiting the operation 
hours of the PVRO unit. Under the standard configuration the unit would produce 1,451,576L of 
permeate water for the sample year 
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Figure 29: 45-degree average daily water production graph 

 

If we again change the array tilt from 30 degrees to 45 degrees, we see a significant increase in 
water production in water production in the winter months and a minor drop in production in the 
winter months. The net water production for the sample year is now 1,435,971L, a minor drop in 
total output but the unit’s performance across the year is more consistent under this configuration. 
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Discussion 
 

Looking at the variations in errors seen between the May and March data, it is apparent there are 
still significant errors in the model. This may be due to the variations in the conditions between the 
two sample months. However, coupled with the significant error in the solar data it is more likely an 
error in the mathematical model. There are also limitations in the accuracy of the monitoring data 
that may be contributing to the errors seen. These includes the flow sensors and AC current sensors 
being uncalibrated. More data and a deeper analysis are required to find the source of this error and 
to improve the accuracy of the mathematical model. Additional sensors for the monitoring system 
would also aid in finding the source of errors. including irradiance sensors to allow direct validation 
of the solar data.  Otherwise the model demonstrates it’s potential, matching the typical behaviour 
of the Muresk PVRO unit.  

The key output of the simulation is the permeate water production. Knowing how much water the 
unit would produce on different days of the year and the net output of the year helps match the 
PVRO unit to its target application. Changing the tilt of the array to a steeper angle for example 
improves the consistency of the output throughout the year, which is important where a minimum 
daily output is required. In contrast keeping a shallower angle is better for maximising the total 
annual output of the unit. In this regard the true optimisation is more dependant on the intended 
purpose of the PVRO unit than a single output metric.  
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Conclusion 
 

In this project a monitoring system has been successfully developed to log the operational data of 
the Muresk PVRO unit utilizing an Arduino based monitoring system and an IOT portal. From this 
data a basic mathematical model was developed and implemented using Microsoft Excel.  

The validation and tuning of the model were partially achieved with a model that follows the base 
behaviour of the unit, but with limited accuracy. To better validate the simulation of the solar 
component a local irradiance and temperature sensor would provide greater insights and allow for a 
more direct comparison of the model against the monitored data. Similarly adding additional 
sensors to monitor the AC power draw and calibration of the water flow sensors would increase the 
accuracy of the model by removing uncertainties in the measured data and provide a better baseline 
for comparison. The model itself could also incorporate the PVRO units flushing behaviour by real-
time monitoring of the unit during a typical cycle, this would improve the model by allowing for the 
additional power load drawn during this time, rather than ignoring this behaviour.  

This project demonstrates the potential for optimisation through the mathematical model. By 
adjusting parameters under a virtual environment, effects of individual changes can be assessed 
prior to making changes in the real world PVRO system. For the model to become more accurate and 
more useful it requires further improvements through more extensive data acquisition and analysis. 
Currently the project is relying on two months of data to calibrate the model. The variance between 
the two months demonstrates the insufficiency of this data. More data throughout the year would 
allow for a better average and a better profile for the summer and winter months to validate the 
varying seasonal behaviour.   

Once the behaviour for the pilot PVRO unit is sufficiently modelled and validated, the opportunity to 
expand this simulation to other PVRO units of different scales is possible. Additionally, by altering 
the climate data, the PVRO unit can be tested in alternate locations across the world. Potential 
improvements could be made and analysed in locations which have less available solar resource or 
situations which require higher permeate outputs for certain times of the year. 

The analysis and optimisation through mathematical modelling for the Muresk farm photovoltaic 
reverse osmosis treatment plant project has demonstrated that potential, future work on this 
project could lead to further insights into the behaviour of this system and the potential for future 
optimisation and applications. 
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Recommendations 
Future improvements can be made to this project to ensure higher accuracy of both the monitoring 
system and the mathematical model. Tuning of the flow sensors and current sensors will ensure all 
the accuracy obtained be the monitoring system. Adding additional sensors in the form of a local 
weather station would provide more data and coupled with long term data acquisition, would give 
the necessary information required to properly tune and validate the mathematical model.  

The mathematical model should be properly tuned using extended monitoring data. The model 
needs to be improved by improving the accuracy of the solar data including finding the source of the 
overstating error and improving the solar profile to properly account for summer winter variations. 
Accuracy can be further improved by adding the RO flushing sequence into the simulation to account 
for the power loss during this cycle. 
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