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Abstract 
 

Three-dimensional (3D) printing is the manufacturing of objects in a layer-by-layer 

technique, utilising Computer-Aided Design (CAD) software and a variety of engineering 

processes and materials. The recent advancements and increases in the application of 3D 

printing have been substantially attributed to the expiry of earlier patents, resulting in new 

devices and processes. Criminals and organised crime groups are continually seeking new 

methods for the illicit manufacturing of firearms, their components and counterfeit goods, 

and the recent advancements and cost reductions in 3D printing technology has provided 

them with the means. To date, there are no published forensic studies on the assessment of 

the engineering features of metal 3D printing, or the application and development of forensic 

techniques to compare and identify the source printer and generated materials in criminal 

investigations. This review seeks to address this by evaluating the manufacturing and 

engineering features of powder bed fusion-based 3D metal printing and generated materials, 

and how this might assist the forensic community to apply and develop chemical and physical 

methods of forensic analysis.  

Keywords: Forensic analysis, 3D printers, 3D printer engineering features, illicit manufacture, 

counterfeit goods  
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1. Introduction 
 

Three-dimensional (3D) printing involves the manufacturing of objects in an additive 

layer-by-layer technique utilising Computer-Aided Design (CAD) software and a variety of 

engineering processes and materials 1. 3D printing is different from conventional 

manufacturing, which is a subtractive process accomplished through the removal of material 

from a starting object 2. In recent years 3D printing technology has undergone significant 

advancement leading to novel applications using an extended range of materials, and, unlike 

conventional manufacturing, is not limited by the capabilities of the tools used 3. The recent 

advancements have been substantially attributed to the expiry of earlier patents, resulting in 

new devices and processes 3. Applications for 3D printing can be found in the automobile and 

medical industries, and in the aerospace Industry 4.  

3D printing has been used by criminals and criminal organisations in the 

manufacturing of firearms and counterfeit goods 5, 6. This came to the attention of the media 

in 2013, when Defense Distributed announced the ‘first 3D printed’ fully functional polymer 

firearm 7. Further, in 2013, a 3D printed full metal firearm was manufactured by Solid 

Concepts using the direct metal laser sintering (DMLS) process 7. More recently, in October 

2019, homemade 3D printed firearms were used in a neo-Nazi attack on a synagogue in 

Germany 8. Pavlovich 9 noted that in 2019, the Australia Border Force and Australian Federal 

Police (AFP) recorded an increase in attempts to illegally import polymer80 (also referred to 

as ghost guns) firearm components, connected with Outlaw Motorcycle Gangs (OMCG). 

Furthermore, as illicit firearms and firearm components are manufactured from a design file 

that can be obtained from the internet, or self-produced using CAD software, there are no 

serial numbers attached to firearms or firearm components manufactured via metal 3D 

printing, rendering them untraceable with current identification techniques 7  
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The scale of the threat of 3D printing in the manufacture of illicit and counterfeit 

goods was further highlighted in a 2015 Australian parliamentary report 10, in which the 

Victims of Crimes Assistance League argued that the use of 3D printing by criminal groups 

was already being explored. The Australian Federal Police, in the same report, further noted 

that advancements in 3D printing technology would allow for the production of illicit and 

counterfeit objects 10.  

However, illegal activities associated with 3D printing are not limited to the 

production of firearms. Hornick 11 reported that 3D printing technology was already being 

used to produce bank ATM skimmers, handcuff keys and drugs. He also indicated that a 

potential existed to generate counterfeit money. The manufacturing of military-style weapons 

such as IED’s and other explosive devices could easily be achieved, as shown in  

Table 1 12. Given that powder bed fusion (PBF) - based metal 3D printing is the most 

accessible technology, this review aims to evaluate the PBF-based 3D metal printing process 

and materials generated to support the application and development of forensic analytical 

protocols.   

Table 1. Threat risk from high to low of 3D printing being used in the manufacturing of illicit and 
counterfeit goods 6. Adapted from Deloitte Insights. 

Threat 
Th

reat R
isk 

 Homemade firearms Counterfeits IDEs Advanced 
tech/weapons 

State terror  Counterfeits 
could enable 
misattribution. 

Can easily make a 
variety of 
disguised devices. 
 

Possible to build 
advanced devices 
that enable 
misattribution. 
 

Non-state terror  Counterfeits 
could enable 
misattribution. 

Can easily make a 
variety of 
disguised devices. 

Allows small groups to 
create more advanced 
weapons that would 
have required a larger 
group of co-
conspirators.  

Criminal 
organisations 

Ability to build 
untraceable small 
firearms. 

Can produce 
counterfeit goods with only a 
small organised group. 
 

  

Individuals Ability to build 
untraceable small 
firearms. 

counterfeits could enable 
misattribution. 
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2. Discussion 
 

Metal 3D printing has undergone significant development in recent years and now has 

the potential to replace many conventional manufacturing practices13. Advancements in the 

types of metal powder used as starting materials, printer reliability, and the ease of sharing 

design files, has facilitated the development of a unique processing method for the possible 

manufacture of illicit and counterfeit goods. Metal 3D printing employs several different 

processes depending on the material and energy source used 14.  These processes and the 

applicability of forensic analytical techniques to distinguish between them will be discussed. 

2.1. Metal 3D printing process 

Powder bed fusion is one of the fastest-growing of the 3D printing technologies 15, 

and is defined by the International Society for Testing and Materials standards 52900 – 15 16 

as a process that selectively fuses regions of a metallic powder using thermal energy. The 

main ‘thermal energy’ processes employed are selective laser melting (SLM), direct metal 

laser sintering, and electron beam melting (EBM) 17. Powder bed fusion printers are priced 

from as little as $6000 to more than $100,000 18, a range that enables organised crime groups 

with either meagre or substantial resources to access them for illicit purposes.  

The PBF printing processes are undertaken either in a partial vacuum or in the 

presence of an inert atmosphere, such as argon or nitrogen gas with a low oxygen content at 

or close to atmospheric pressure 17, 19, 20.  All PBF processes apply thin layers of powder from 

a reservoir to the build platform, using a roller or blade mechanism and are fused in the 

orientation defined by the CAD file.  

2.1.1 Selective laser melting 

Selective laser melting was developed with the capacity to manufacture fully dense 

objects (99.9 to 100% of theoretical density) that have improved mechanical properties, 
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structural strength, stiffness and lighter weight compared to objects manufactured by 

conventional methods 21, 22. The process involves depositing thin layers of very fine metallic 

powder, typically 20 – 100 µm in thickness 17, on a build platform. The powder in each layer 

are fused with a laser beam.  New layers of the metallic powder are then rolled on top of 

previous layers and fused until the final 3D object is built 3 (Figure 1). The interaction of the 

laser source and the metallic powder in the bonding process generates a high-temperature 

gradient through heating and rapid cooling 21. The SLM process allows for the production of 

objects with complex geometries through the use of support structures or scaffolding 3. 

 
Figure 1. SLM process 23 

 

2.1.2 Direct metal laser sintering 

Direct metal laser sintering is another laser-based PBF process used to manufacture 

complex parts directly from CAD models 24. The DMLS process is similar to SLM, except 

solid objects are created by depositing layers of metal particles (each 20 to 60 µm in 

thickness) along an x/y axis using a laser beam, and selectively fusing them without 

completely melting the metal powder 25.  
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2.1.3 Electron beam melting 

Electron beam melting is similar to both SLM and DMLS, except the process uses an 

electron beam in a vacuum chamber to melt the metal particles and fuse each layer 26 (Figure 

2). Electron beam melting uses a layer of metal powder, 50 - 100 µm in thickness, heated to 

an optimum temperature to reduce residual stresses, and to improve mechanical properties 27. 

Debroy et al. describes it as a two-step process; firstly, the prevention of electrostatic 

charging and particle repulsion through light sintering (solidify without liquefaction), 

followed by a fusing pass of the defined build volume 28. 

 
Figure 2. Schematic of the EBM process.29 

2.2. Energy source 

Crucial to a forensic investigation of metal 3D printers, is understanding how the 

energy source interacts with the build environment and the metal powder starting material, 

through laser energy intensity, heat transfer, and processing temperature. The energy source 

and starting material interactions, together with the resultant microstructures, will be 

discussed in the following section. 
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The PBF printers use a high energy source of a focused laser or an electron beam to 

selectively sinter a layer of powdered metal 30. The laser energy used produces a 

photothermal reaction where heat is transferred to the metal material to either sinter or melt 

each layer 31. The energy sources used in metal 3D printing include solid-state and fibre 

lasers 32. The solid-state lasers typically used in SLM are neodymium-doped yttrium 

aluminium garnet (Nd:YAG) lasers, that use rod-shaped crystals that are optically pumped by 

a flash lamp or an 808 nm diode, producing a near-infrared wavelength of 1064nm 31. The 

output power for Nd:YAG lasers ranges between 1 kW and 20 kW, depending on the 

operating mode used 31.  

More recently, Ytterbium-Doped Optical Fibre (Yb-fibre) lasers have been introduced 

into metal 3D printing. Yb-fibre lasers utilise laser diodes operating at near infrared 

wavelengths of 950-980 nm or 1030-1070 nm, with the shorter wavelength generating a 

smaller more focused beam with a higher quality beam illumination pattern 31. The EBM 

process utilises an electron gun with an operating power output of 60kW and a focus beam 

energy of greater than 100 kW/cm2; electromagnetic lenses control the focus of the beam 26.  

The wavelength, laser energy, pulse duration and the quality of the starting materials 

will affect the melting and solidification process of the metal31 and potentially affect the 

microstructure of the finished product. This is discussed in the next section. 

2.3. Metal Powders 

The typical feedstock (metallic powdered materials) used in PBF-based technologies 

consist of stainless steel, aluminium and nickel-based alloys, and titanium and its alloys 

(Table 2) 3. They are typically chosen because they are lightweight with high tensile strength, 

hardness, and wear resistant compared to those used in conventional manufacturing 3.  The 

specific process performance of the metal powders are defined by their chemical properties 

and physical characteristics including surface morphology, flowability, particle shape and 
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size (typically in the range of 10 – 60 µm) 27, 32 The processing of the various metals is 

dependent upon their differences in laser absorption, surface tension, and viscosity 21. 

Table 2. Standard metal powders used in each of the PBF processes. 

Processes Metal Powders 

 Aluminium 

Alloys 

Stainless Steel Nickel 

Alloys 

Titanium Alloys Cobalt Alloys 

SLM AISi10Mg 

AISi7Mg0.6 

AISi9Cu3 

316L IN625 

IN718 

IN939 

Ti6AI4V CoCr28Mo6 

DLSM AISi10Mg 316L 

17 -4 PH 

IN625 

IN718 

Ti6AI4V 

Ti64 

CoCrMo 

 

EBM    Ti6AI4V ELI 

 Ti Grade 2 

ASTM F75 

CoCr alloy 

 

The metal powders are manufactured using water, gas or plasma atomisation 30 and 

the different methods used in their manufacture generate differences in particle 

morphology, particle size, and chemical composition 33 (Figure 3). These physical and 

chemical characteristics of the metallic powder determine its density and flowability 30. 

Several studies have reported that the morphological properties of the metallic powders can 

influence both the surface roughness and the density of metal 3D-printed objects 34. 

Aboulkhair et al. 35 reported that metal powders showed variability in the morphological 

properties of the powder, and the powder chemical specifications between manufacturers 

morphological properties of the powder, and the powder chemical specifications between 

manufacturers.  
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Figure 3. Powder morphology of stainless-steel powder from two different manufacturing methods. (a) gas atomisation: (b) 
water atomisation. 36 

Furthermore, Rafi et al.37 found that objects manufactured with the SLM process had 

smoother surfaces than those manufactured using the EBM process. Metallic powders with 

highly reflective surfaces, such as aluminium alloys, have high thermal conductivity and a 

capacity to absorb fibre laser energy in the infrared wavelength region 38. The high thermal 

conductivity of aluminium alloy powders reduces thermally-induced stress 33. The surface 

chemistry of metallic powders subsequently affects the ability of the melted powder to flow 

34. Final objects generated from powders with coarse surface textures and irregular particle 

shape, display higher surface roughness 28.  The extent of surface variability between objects 

generated by each of the three metal 3D printing processes is shown in of approximately 

1.06 µm 38. The high thermal conductivity of aluminium alloy powders reduces thermally 

induced stress 33. The surface chemistry of metallic powders subsequently affects the ability 

of the melted powder to flow 34. Powders with coarse surface textures and exhibiting 

irregular particle shape, show higher surface roughness in the final object 28. The extent of 

the surface variability between objects generated by each of the three metal 3D printing 

processes is shown in Figure 4. 
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Figure 4. Differences in surface roughness between objects generated by the  SLM, EBM, and DMLS processes.39, 40 

Microstructure-variation within the metallic powder samples potentially affect the 

characteristics of the printed object 34. Microstructures occur when insufficient energy is 

applied to highly reflective powders, resulting in partial melting and fill defects generated in 

the build layer 38. In the SLM process, when aluminium powders are used, microstructures 

occur due to repeated melting and cooling of the build layers 21. Lam et al. 41 found that in 

the SLM process, tree-like crystal microstructures together with  a network of super-lattice 

microstructures were generated as the melted aluminium powder solidified (Figure 6). 

Furthermore, Rafi et al. 37 reported, that when titanium powder was used in the SLM 

process, martensitic microstructures formed but in the EBM process, the lamellar 

morphology of Widmanstatten/basketweave microstructures was evident (Figure 5). 

 

Figure 5. Titanium powder showing: A)  Widmanstatten microstructure, B) Martensitic microstructure.37, 42   
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Figure 6. Differences in the tree-like microstructure formation of aluminium alloy in a) SLM, b) DMLS 43, 44 

Pore formation may also occur during the atomisation of the metal powders. This 

porosity can originate from the powder or as an outcome of the process. Process-induced 

porosity forms when the energy from the laser is inadequate to completely melt the powder, 

resulting in a lack of fusion of the powder layer. The pores are typically non-spherical, 

uniformly distributed and of varying sizes 30, 45. Taha et al. 46 postulated that pore formation 

could occur between the powder particles or between the build layers while Cherry et al. 45 

reported that pore formation occurred in 316L stainless steel when low laser energy density 

was used in the SLM process 45. Thijs et al. 47 found pore and oxide microstructures in 

aluminium material used in the SLM process as seen in Figure 7.  Cherry et al. 45 also found 

that pore formation occurs in 316L stainless steel when low laser energy density is used in the 

SLM process 45. Abourlkhair at el. 35 further found that during the SLM process balling 

microstructures can form (Figure 8. Balling microstructures formation in aluminium alloys 

during the SLM process. 35). 
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Figure 7. Pore and oxide microstructures in aluminium alloys of the SLM process. 47 

 

Figure 8. Balling microstructures formation in aluminium alloys during the SLM process. 35  

3. Forensic Analysis 
 

To date, there are no published reports which forensically assess, the features 

generated by the different engineering protocols used in metal 3D printing that may facilitate 

the comparison of materials and the identification of the source printer. Because of a lack of 

forensic research on the properties of the powders, the interaction between the powders, the 

printing processes used, and the nature of the microstructures generated, there are significant 

knowledge gaps, that if addressed, may help to establish the provenance of illegally 

manufactured objects.  

The part design, build strategy, and printer hardware has the potential to affect the 

printing parameters. The influence of the laser wavelength and temperature of the build 

chamber determined by the printing parameters affects the porosity of the powder causing 
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pore formation along with part cracking and deformation. The interplay connecting the 

printing parameters are system defined and operator controlled potentially affecting the final 

object. The build chamber atmosphere being argon, nitrogen gas or a vacuum and the quality 

of the powder material result in the interaction between the heat transfer within the printing 

parameters and the powder material possibly affecting the material chemistry. The influence 

of the printing parameters, quality of the powder, and material chemistry further has an 

influence on the rate of cooling after the laser has passed over the material introducing the 

microstructures to the build process (Figure 9).    

Due to the complexity of the interaction between the printing process, the printer 

hardware, and the printing materials, as shown in Figure 9Error! Reference source not 

found., a thorough knowledge of the printing processes, the metal powders and their 

properties, together with the generated microstructures are crucial to the potential 

differentiation between metal 3D printers and the objects produced by them. 



 

18 

 

 
Figure 9. Process flowchart for metal 3D printing Showing how interactions between printer hardware, process, and 

printing materials could affect the final object. Areas in red all have the potential to influence microstructures within the 
final object 48 . Adapted from IEEE Global Specs. 

4. Research focus 
 

Tool mark comparison and impression analyses are standard approaches which can  

assist in the determination of the provenance of conventionally manufactured objects 49.  

Ongoing research is directed at characterising the physical features of 3D printed metal 

material surfaces and their associated microstructures, using low and high-powered 

microscopy, scanning electron microscopy (SEM) coupled with energy-dispersive X-ray 

spectroscopy (EDS). In addition, the analysis of the chemical composition of 3D printed 

material using X-ray diffraction (XRD), and X-ray fluorescence (XRF) to determine if there 

are any significant differences between powders derived from different manufactures. 
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5. Experimental aims and hypothesis 
 

This literature review has identified the current processes used in metal 3D printing, possible 

physical and chemical variations of surface morphology in the metallic powder materials, and 

microstructures within the build layers where it may be possible to identify the printer source 

of the 3D printed object.  

This research aims to evaluate the potential to identify differences in metal 3D 

printed objects, through chemical and physical analysis of the metal printing processes and 

printing materials. It is proposed that any differences in metal 3D printed objects will be due 

to the metal printing processes. The differences in the metal printed objects are proposed 

to be the result of microstructures within the layers from the printing process. Accordingly, 

the hypothesis to be tested is: 

Hypothesis 1 

H0:  Physical and chemical analysis will not be able to identify differences between 3D metal 

printed materials. 

H1: Physical and chemical analysis will be able to identify differences between 3D metal 

printed materials. 

6. Experimental design 
 

Analysis of the surface structures of metal 3D printed objects assesses the homogeneity of the 

metal objects with attention to cracks and other imperfections of microscopic nature. In order 

to assess 3D metal objects for the development of forensic methods in the comparison of 

metal 3D printing illicit and counterfeit goods, a simple geometric object will be designed 

using CAD software to be manufactured using both DMLS and SLM printing processes as 

depicted in figure 8.  
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Figure 10. Computer-Aided Design of samples to be obtained from local 3D printing companies, showing the dimensions of 

the printed object. 

Microscopy is commonly used in the 3D printing industry due to its ability to 

quantitatively and qualitatively measure the size, shape, and surface roughness of the metal 

particles 34. The samples obtained will be analysed for any surface structures from the 

printing process that might be present within the layer formation. The analysis will compare 

the surface structure formation between the two different processes as well as within each of 

the DMLS and SLM process. 

6.1. Scanning electron microscopy analysis 

Scanning electron microscopy is an investigative tool that uses a beam of focused 

electrons to produce high magnification images for particle and surface characterisation 50. 

The chemistry of SEM characteristics of metal material is the result of interactions with the 

electron beam and the metal material. The physical analysis of each metal object to identify 

potential printer signatures will be conducted using SEM.  

6.2. Energy Dispersive X-ray Spectroscopy analysis 

Energy-dispersive X-ray spectroscopy analysis is an analytical technique used in 

conjusction with SEM for the elemental analysis or chemical characterization of a sample. 

The EDS analysis can be used to determine the elemental composition of individual points or 

to map out the lateral distribution of elements from the imaged area. 
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6.3. X-ray diffraction analysis 

X-ray diffraction analysis determines the crystal structures of metal materials to 

ascertain which crystalline phase is present in the metal material. Through the examination of 

diffraction peaks, XRD analysis provides a qualitative and semi-quantitative determination of 

crystalline structures of the metal materials 51. Phase identification is typically achieved using 

the International Centre for Diffraction Data 52. The analysis of 3D printed samples for the 

comparison of metal 3D printing of illicit and counterfeit goods will be conducted using 

XRD.  

7. Conclusion 
 

This paper has discussed three of the metal powder bed fusion-based technologies, with the 

aim of identifying potential areas in which metal 3D printing could be used in the 

commission of illicit and counterfeit goods. Particular reference has been made to the illegal 

manufacture manufacturing of firearms and firearm components. The This review identifies a 

current research gap, which if addressed, may allow metal 3D printed materials produced by 

different methods and/or using diverse materials to be identified.  To assist in this aim, the 

physical and chemical features which can be used to distinguish between these variables have 

also been addressed. Research aimed at comparing   the metal materials and processes used 

so as to characterise the physical and chemical variations within 3D-printed metal objects, is 

essential if forensic protocols are to be developed to assist in provenance determination for 

counterfeit and illicit goods.   
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Abstract 
 

Criminals and organised crime groups are continually seeking new and innovative methods, 

and the recent advancements in 3D printing technology, along with the reduction in the cost 

of 3D printers, has provided them with the means for the manufacturing of illicit goods 

including firearms and their components. Powder Bed Fusion is the primary 3D metal 

printing technology with the Direct Metal Laser Sintering or Selective Laser Sintering 

processes using high energy lasers to selectively sinter a layer of powdered metal. To date, 

there are no studies on the assessment of the engineering features of metal 3D printing, to 

support the development of forensic techniques to compare and identify the source printer 

and generated materials in aiding law enforcement in criminal investigations. This research 

aims to evaluate the potential to identify differences in PBF based 3D metal printers and 

generated materials using chemical and physical analysis, for the development of forensic 

methods which can be used by the forensic community.  

Key Words: Forensic techniques, 3D printers, 3D printer engineering features, illicit 
manufacture, counterfeit goods 
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1. Introduction 
 

Three dimensional printing has seen applications in the medical and automobile industry, 

aerospace applications, and the fashion industry 1.  However there is an increased possibility 

of 3D printing being used in criminal activities 2. Criminals and organised crime groups are 

continually seeking new and innovative methods, and the recent advancements in 3D 

printing technology, along with the reduction in the cost of 3D printers, has provided 

organised crime groups with the potential to manufacturing of illicit goods. 3D printing uses 

several different processes, depending on the materials used. Metal 3D printing has seen 

significant growth and has the potential to replace many conventional manufacturing 

practices 3. Advancements in the types of metal powder starting materials, printer reliability, 

enhanced metal performance along with the ease of sharing design files have enabled a 

unique processing method for the possible manufacture of illicit and counterfeit goods. 

Metal 3D printing uses several different processes, depending on the material and energy 

source used 4. Powder Bed Fusion (PBF) is one of the fastest-growing of the 3D printing 

technologies 5 and is defined by the International Society for Testing and Materials (ASTM) 

standards 52900 – 15, as a process that uses thermal energy to selectively fuse regions of a 

metallic powder 6. The main PBF processes are Direct Metal Laser Sintering (DMLS), 

Selective Laser Sintering (SLM) 7. Both SLM and DMLS processes can manufacture near 

dense objects, with structural strength, stiffness, that are noticeably lighter weight than 

those manufactured conventionally 8, 9. These processes use high energy lasers to selectively 

sinter a layer of powdered metal 10. The primary processing parameters of PBF based 

technologies are the high energy laser source, and the powdered metal materials 7.  
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Metallic materials used in PBF based technologies typically consist of aluminium alloys, 

stainless steel, titanium and its alloys, and nickel-based alloys 11. The properties of the 

individual powders can be defined through their physical and chemical properties, the 

behaviour of the powder, and the specific process performance of the powder 12. These 

properties include the particle shape, size, surface morphology, and flowability of the 

metallic powders, with typical particle sizes in the range of 10 – 60 µm 13. These metallic 

materials are typically lightweight, with high tensile strength, hardness, and wear resistance 

compared to conventional manufacturing 11.  

Forensic techniques have yet to be applied to the analysis and comparison of different 

metal 3D printers’, through the identification of engineering features and printing material 

composition for the identification of intrinsic (variations of printer hardware imperfections) 

and extrinsic (variations added in the print process) signatures passed on to the printed 

object 2. The forensic examination of physical evidence is used in the discriminating 

comparison of collected crime scene evidence with reference material, as well as the 

classification of evidence samples according to their specific chemical and physical 

properties 14. One powerful tool used in forensic analysis is scanning electron microscopy 

(SEM) and when equipped with energy dispersive X-ray spectrometry (EDX) it can examine 

evidentiary material through simultaneously examining the morphology and the elemental 

composition of object 14.  X-ray diffraction (XRD) is another tool used widely in forensic 

science in the analysis and comparison of crystalline materials from heavy metals to organic 

compounds 15. For metals and alloy analysis, XRD can also be used to determine the phase 

of the metal material 15. 

To date, there are no studies on the assessment of the engineering features of metal 3D 

printing to support the development of forensic techniques to compare and identify the 
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source printer and materials generated. It is proposed that any differences in metal 3D 

printed object will be due to the chemical and physical properties of 3D printing metal 

processes. This research aims to evaluate this through the following objectives.  

➢ To assess the engineering features of metal 3D printing, to support the development 

of forensic techniques to compare materials and identify the source printer. 

➢ To identify suitable techniques that can be used by the forensic community. 

 

2. Materials and Methods 
 

Fourteen aluminium alloy (AlSi10Mg) samples measuring 20 X 12 X 7 mm were produced 

using SLM and DLMS processes. Ten of the samples were fabricated as built without any 

surface finishing and four finished by machining and polishing to supplier’s specification. 

(Figure 1). Additionally, approximately 50mL of the raw AlSi10Mg powder was also obtained 

from both suppliers for characterisation. 

The system used to produce the SLM samples was an SLM 280 HL equipped with 400W fibre 

laser, with a wavelength of 1070nm in an argon inert gas atmosphere. The aluminium 

powder used to produce the seven SLM samples has the chemical composition shown in 

Table 1, and particle size was 20-63µm and spherical shape as provided by the manufacture. 

The SLM samples were produced at 30µm layer resolution with an average surface 

roughness of 5-5.5 Ra [µm]. The seven DMLS samples manufactured on a ProX320 system 

equipped with a 500W fibre laser at a wavelength of 1070nm in an argon gas atmosphere. 

The aluminium powder used in the ProX320 has the chemical composition as provided by 

the manufacture is shown in Table 1.  
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Figure 11. CAD file design and as-built object of all fifteen samples. 

Table 3. Chemical composition of the AlSi10Mg alloy starting powder as specified from the manufactures of the two 
different 3D printers (wt. %) 

 AL Si Mg Cu Fe Mn Zn Ti Ni Pb SN 

SLM280 HL Bal 9 - 11 0.2 - 0.45 0.05 0.55 0.45 0.10 0.15 0.05 0.05 0.05 

ProX320 Bal 9 - 11 0.2 - 0.45 0.10 0.55 0.35 0.10 0.15 0.05 0.05 0.05 

 

2.1 Analysis 

2.1.1 Optical microscopy 

The surface homogeneity of the as-built and finished samples was compared for surface 

structures by optical microscopy, using a Nikon SMZ18 Stereomicroscope fitted with an x1 

objective, x10 eyepieces, and a 60mm working distance. Initial surface observations of the 

ten as-built samples were made with 10µm and 20µm magnification. The final analysis for 

the layer width was taken from fifteen random measurements on all ten SLM and DMLS 

samples at 50µm magnification. Analysis of any differences between the fifteen 

measurements taken on all samples was conducted in R Studio. Surface observations of the 

four finished samples were made with 0.75µm magnification. 

2.1.2 Scanning electron microscopy 

The characterisation of the interior microstructures in the as-built samples was 

accomplished by sectioning all the samples along the XY and Z axis’s, followed by polishing 

with FlexOvit 1200 grit and etched using a Nital solution of 5% Nitric Acid in 100% ethanol. 
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The prepared samples were examined by scanning electron microscopy, using a JEOL JSM-

6000 with EDS for chemical composition analysis.  

2.1.3 X-ray diffraction 

Peak analysis was performed on both the as-built samples and raw AlSi10Mg powder. The 

as-built samples were prepared by removing approximately 20g of powder from the DMLS 

and SLM samples, and the raw AlSi10Mg powder was supplied by the manufacturer. X-ray 

diffraction analysis was accomplished using a GBC EMMA X-ray diffractometer with settings 

of 35KV/28mA, with a scanning speed of 2°/minute with reflections in the 2ϴ range of 40 - 

80°.  

3. Results and Discussion 
 

The analysis of 3D printed objects was undertaken using current forensic methods such as 

optical microscopy, SEM, and XRD. The potential of these forensic methods in the 

comparison of 3D objects to identify the source printer is currently unknown.  

3.1 Optical microscopy  

The initial optical microscopy observations of the surface homogeneity of the as-built SLM 

and DMLS within samples showed surface to be the same between each sample. The 

comparison of the surface homogeneity between the SLM and DLMS process indicates that 

the DMLS samples have a slightly less rough surface than the SLM samples, along with pore 

formation in both SLM and DMLS samples as seen in figure 3. 
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Figure 2. Surface roughness of DMLS and SLM samples at 2000µm. 

The finished DMLS and SLM samples were further analysed by optical microscopy for 

engineering microstructures and pore formation. both the hand and machine polishing are 

shown to have no distinguishing features other than minor etching from the polishing 

process (Figure 4). 

 

 
Figure 3. Optical microscopy showing the surface of SLM and DMLS hand and machine polished samples. 

 

The fifteen random measurements of the manufacturing layering as-built samples (not 

polished) were plotted to determine any variance between the SLM and DMLS processes. 
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Figure 5 shows that both the SLM and DMLS as-built aluminium objects have similar mean 

variances. The DMLS process does have three outliers while the SLM process has one 

outlier, possibly due to measurement error.  

 
Figure 4. Layer measurements by optical microscopy analysis on SLM and DMLS samples. 
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Figure 5. Box plot showing the mean-variance between the SLM and DMLS processes. 

A two-way ANOVA was performed on the surface layer features to determine if there is a 

statistically significant difference in the homogeneity between the SLM and DMLS layering 

process. Table 2 shows a p-value (0.53) which is greater than 0.05, therefore equal variance 

can be assumed, and there is no statistical difference between the surface layer features of 

the SLM and DMLS processes. 

The surface layer features were further analysed to determine if there is a statistical 

difference in the as-built samples generated using the same process. From table 2, the p-

value (0.05) shows that there is no statistical difference in the surface homogeneity of 

aluminium objects printed by the same process.  

Table 4. Two-ANOVA of between and within SLM and DMLS samples 

 Df  Sum Sq Mean Sq F value Pr(>F)   

Process 1 99 98.9 0.397 0.5297 

Sample No 4 2413 603.3 2.421 0.0511 

Residuals 144 35884 249.2   

 

The optical microscopy comparison of as-built aluminium objects manufactured with the 

SLM and DMLS 3D printing processes showed that the surface homogeneity of the samples 

generated by the same process and between the two processes to be similar with the two 

way ANOVA showing no difference in the surface features and layering process. It can, 
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therefore, be concluded that the optical microscopy method used in the forensic analysis 

could not distinguish between the objects produced by SLM or DMLS 3D printing process. 

3.2 Scanning electron microscopy 

The surface of the DMLS and SLM as-built samples were etched to observe their 

microstructures. Figure 6 shows the SEM images of the surface features viewed in the XY 

orientation. Both the SLM and DMLS samples show possible cellular dendrite formation in 

figure 6. The comparison of the surface microstructures shows random circular or irregularly 

shaped pores in both sets of samples.  The DMLS samples showed slightly larger pore 

formation Figure 6.  

 
Figure 6. SEM of SLM and DMLS aluminium microstructures. 

Scanning electron microscopy can be a valuable forensic method for the analysis and 

comparison of materials, through the examination of microstructures present on the found 

object.  After etching the SLM and DMLS as-built samples, the surface microstructures were 

seen to be similar in structure pattern. There was no discernible pattern seen in the pore 

formation in both sets of samples. The crisscrossing pattern seen in figure 6 possibly 

indicates the presence of surface fracture channelling as noted by Asgari 57. From the results 
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observed, it can be concluded that the SEM method of analysis can not discern any 

differences between as-built SLM and DMLS 3D printed objects. 

3.3 X-ray diffraction 

X-ray diffraction analysis was performed on the SLM and DMLS as-built samples and raw 

powder materials. Analysis of the powder peak profile from the four powder samples is 

shown in figure 8.  

The XRD comparison of the SLM and DMLS as-built and raw powder identified the major 

aluminium (Al) with Silicon (Si) constituents only, as seen in figure 8. The intensity of the Si 

peak is comparably lower than the AL peaks in all the samples due to the relative weight 

percentage. The Al peak intensity between the DMLS as-built and raw powder can be seen 

as relatively similar (92.6 – 93.2%), where the peak intensity between the SLM as-built and 

raw powder shows a slight variation (98.5 – 89.9%) figure 8. XRD characterisation of 

crystalline structures using the Rietveld refinement technique can be determined as being 

cubic for all four powder samples. 
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Figure 7. XRD phase pattern, showing miller indices of SLM and DMLS as-built and raw powder. 

The peak profile observed by XRD analysis of both the raw and as-built powder showed no 

difference between the AlSi10Mg powder used by the two manufacturing companies. The 

phase analysis of the raw starting material shows aluminium and silicon in both samples 

with the same indices values; however, the DMLS raw powder did have a higher peak 

intensity that the SLM raw powder. From the XRD results, it can be concluded that XRD 

analysis is not suitable to differentiate between different AlSi10Mg raw starting material. 

4. Conclusion 
 

The experimental techniques used in this research, to evaluate the potential to identify 

differences in Aluminium alloy object manufactured by the SLM and DMLS 3D printing did 

not demonstrate statistical differences between them.  
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Although the current research has shown no differences between the SLM and DMLS 

printing processes, it is recommended that further research into the comparison of the 

physical and chemical characterisation of other metal 3D printing processes and materials 

for the possible identification of the source printer. Further research is needed to evaluate 

both the SLM and DMLS printing processes for the development of potential new forensic 

methods for the characterisation of SLM and DMLS printed objects. 
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