
 

Damping-off within natural and disturbed  

kwongan plant communities 

 

 

Christopher James Shaw 

BEnvMgt Murdoch University 

BSc Honours Murdoch University 

 

 
Thesis submitted for the degree of Doctor of Philosophy 

College of Science, Health, Engineering and Education 
Environmental and Conservation Sciences  

Murdoch University 

December 2019 

 



i 
 

Declaration 

I declare that this thesis is my own account of my research and contains as its main content 

work which has not previously been submitted for a degree at any tertiary education 

institution. To the best of my knowledge, all work performed by others, published or 

unpublished, has been acknowledged. 

 

 

_______________________ 

Christopher Shaw 

January 2020 

 

  



ii 
 

Abstract 

Fungal and oomycete damping-off pathogens kill pre- and post-emergent seedlings and can 

regulate the abundance of plant species to help maintain diversity in natural ecosystems. 

However, damping-off pathogens may be detrimental to post-mining ecological restoration, 

a key hurdle in the process is the loss of pre- and post-emergent seedlings. Recently, several 

putatively native Phytophthora species, soil-borne oomycete plant pathogens, have been 

recovered from hyper-diverse kwongan vegetation in southwest Australia and may be 

damping-off pathogens. Damping-off pathogens may contribute to maintaining the diversity 

of natural kwongan plant communities and reduce seedling establishment within ecological 

restoration. Four experiments were designed to identify the distribution and role of 

Phytophthora and other potential damping-off oomycetes in natural and restored kwongan 

plant communities. Putatively native Phytophthora arenaria, introduced P. cinnamomi and 

Pythium irregulare were identified as damping-off pathogens with wide host ranges of 

native kwongan plant species through a glasshouse pathogenicity trial. Fungicide seed coat 

treatments improved seedling emergence for five of the 14 plant species studied in 

ecological restoration field trials, identifying low to moderate levels of pre-emergent 

damping-off caused by oomycetes and fungi. Natural kwongan soils collected from different 

plant species affected seedling emergence and survival in a glasshouse experiment. 

Damping-off caused conspecific negative plant-soil feedback for Jacksonia floribunda and 

Xanthorrhoea sp. Lesueur, a process that contributes to the maintenance of diversity in 

plant communities. Although, the presence and abundance of oomycetes detected using 

metabarcoding from the same natural kwongan soils were not associated with reduced 

seedling emergence or survival. In a regional metabarcoding survey of natural kwongan 

plant communities, the Phytophthora species richness and abundance were far lower than 

previously hypothesised due to the elimination of sources of sampling biases. Plant species 

and host age were strong drivers of the oomycete communities detected at a local scale 

using metabarcoding. These studies provided an insight into the distribution of important 

plant pathogens in a species rich Mediterranean shrubland and identified damping-off 

pathogens could be a mechanism contributing to maintaining the diversity of natural 

kwongan plant communities and low seedling establishment in ecological restoration.   



iii 
 

Table of Contents 

Declaration ....................................................................................................................... i 
Abstract ........................................................................................................................... ii 
Table of Contents ............................................................................................................ iii 
List of publications .......................................................................................................... vii 

Journal articles ............................................................................................................ vii 

Conference presentations ........................................................................................... vii 

Statement of contributors .............................................................................................. viii 
Acknowledgements ......................................................................................................... ix 

Chapter 1: Introduction to regional and local drivers of diversity in southwest Australia 
and kwongan plant communities. ..................................................................................... 1 

Introduction .................................................................................................................. 1 

Southwest Australia ....................................................................................................... 1 

Kwongan plant communities on the Geraldton Sandplain ................................................. 3 

Abiotic influences on kwongan diversity ........................................................................................................ 5 

Biotic influences on kwongan diversity .......................................................................................................... 8 

Native plant pathogens in kwongan plant communities ................................................................................ 9 

Mechanisms for pathogen driven diversity .................................................................... 11 

Seedling establishment in restored kwongan plant communities ................................. 13 

Thesis aims and outline ................................................................................................ 14 

Chapter 2: Putative native Phytophthora species as damping-off pathogens and functional 
plant traits linked to susceptibility .................................................................................. 16 

Abstract ...................................................................................................................... 16 

Introduction ................................................................................................................ 16 

Methods ..................................................................................................................... 20 

Oomycetes used and Inoculum preparation ............................................................................................... 20 

Experiment 1 ................................................................................................................................................ 21 

Experiment 2 ................................................................................................................................................ 22 

Statistical Analysis ........................................................................................................................................ 25 

Results ........................................................................................................................ 27 

Experimental comparison ............................................................................................................................ 27 

Experiment 1: Pre- and post-emergent damping-off................................................................................... 28 

Experiment 2: Pre- and post-emergent damping-off................................................................................... 29 

Re-isolation of oomycete treatments .......................................................................................................... 31 

Seed and plant trait models ......................................................................................................................... 31 



iv 
 

Discussion ................................................................................................................... 35 

Chapter 3: Terrestrial dispersal pathways and environmental predictors of the distribution 
of Phytophthora in kwongan plant communities, a diverse Mediterranean shrubland ..... 40 

Abstract ...................................................................................................................... 40 

Introduction ................................................................................................................ 41 

Methods ..................................................................................................................... 44 

Sample collection and preparation .............................................................................................................. 44 

eDNA extraction and HTS-sequencing ......................................................................................................... 46 

Bioinformatics analysis ................................................................................................................................ 47 

Site variables and predictors of Phytophthora species ................................................................................ 48 

Statistical Analysis ........................................................................................................................................ 49 

Results ........................................................................................................................ 50 

Sequencing throughput and quality control ................................................................................................ 50 

Phytophthora species detected from root eDNA ........................................................................................ 51 

Phytophthora community analysis .............................................................................................................. 53 

Predictors of Phytophthora presence .......................................................................................................... 53 

Discussion ................................................................................................................... 55 

Chapter 4: Damping-off within post-mining ecological restoration and the influence of 
fungicide seed coats on seedling emergence and survival ................................................ 61 

Abstract ...................................................................................................................... 61 

Introduction ................................................................................................................ 61 

Methods ..................................................................................................................... 64 

Site location and description ....................................................................................................................... 64 

Species selection .......................................................................................................................................... 66 

Plot establishment ....................................................................................................................................... 67 

Statistical analysis ........................................................................................................................................ 69 

Results ........................................................................................................................ 70 

Seedling emergence ..................................................................................................................................... 70 

Seedling survival .......................................................................................................................................... 72 

Seedling emergence over time .................................................................................................................... 75 

Post-summer seedling survival .................................................................................................................... 78 

Data validation ............................................................................................................................................. 79 

Isolation of pathogens ................................................................................................................................. 79 

Discussion ................................................................................................................... 80 

Chapter 5: Plant-soil feedback through damping-off and oomycete associations with plant 
species and host age in a diverse Mediterranean shrubland ............................................ 85 

Abstract ...................................................................................................................... 85 



v 
 

Introduction ................................................................................................................ 86 

Methods ..................................................................................................................... 89 

Plant species selection ................................................................................................................................. 90 

Study area and site location......................................................................................................................... 90 

Sample collection ......................................................................................................................................... 91 

Glasshouse Experiment 1 ............................................................................................................................. 92 

Glasshouse Experiment 2 ............................................................................................................................. 93 

Metabarcoding ............................................................................................................................................. 93 

Statistical analyses ....................................................................................................................................... 94 

Results ........................................................................................................................ 97 

Glasshouse Experiment 1 ............................................................................................................................. 97 

Glasshouse Experiment 2 ............................................................................................................................. 98 

Metabarcoding ........................................................................................................................................... 101 

Oomycete alpha diversity .......................................................................................................................... 102 

Oomycete communities ............................................................................................................................. 104 

Discussion ................................................................................................................. 108 

Plant-soil feedback through the pre- and post-emergent damping .......................................................... 109 

Impact of a second plant species on pre- and post-emergent damping-off .............................................. 111 

Effect of plant species on oomycete alpha diversity and community composition .................................. 111 

Host age and oomycete communities ....................................................................................................... 112 

Plant-soil feedback and oomycete communities in kwongan vegetation ................................................. 113 

Chapter 6: General discussion ....................................................................................... 116 

Major Findings .......................................................................................................... 116 

Damping-off in kwongan plant communities ............................................................. 118 

Phytophthora and oomycetes in kwongan plant communities ................................... 122 

Phytophthora arenaria............................................................................................................................... 124 

Management of Phytophthora and damping-off ........................................................ 126 

Future research ......................................................................................................... 128 

Conclusion ................................................................................................................ 130 

Supplementary Material ............................................................................................... 133 

Chapter 2 .................................................................................................................. 133 

Chapter 3 .................................................................................................................. 137 

Chapter 5 .................................................................................................................. 151 

References.................................................................................................................... 156 

 



vi 
 

 



vii 
 

List of publications 

Journal articles 

Chapter 2 under review as: Shaw, C., Dunstan, W., Hardy, G.E.St.J., Burgess, T.I. 2019. 

Putative native Phytophthora species as damping-off pathogens and functional plant traits 

associated with susceptibility. Austral Ecology. 

 

Conference presentations 

Shaw, C., Hardy, G.E.St.J., Burgess, T.I. Damping-off of native southwest Australian plant 

species by Phytophthora and Pythium species. 2017 8th Meeting of IUFRO Working Party 

7.02.09, Phytophthora in Forests and Natural Ecosystems. 19th – 24th March 2017, Sapa, 

Vietnam. Oral presentation. 

Shaw, C. Damping-off of native southwest Australian plant species by Phytophthora and 

Pythium species. 2017 South Coast Phytophthora Dieback Forum. 26 October 2017, Albany, 

Australia. Oral presentation. 

Shaw, C., Dobrowolski, M., Hardy, G.E.St.J., Burgess, T.I. The role of damping-off on the 

survival of seedlings in conspecific and heterospecific soils. 2018. Conference for the 

Ecological Society of Australia (ESA). 26th – 30th November 2018, Brisbane, Australia. Oral 

presentation. 

Shaw, C., Dobrowolski, M., Hardy, G.E.St.J., Burgess, T.I. Phytophthora and damping-off 

within natural and rehabilitated plant communities. 2019. 9th Meeting of IUFRO Working 

Party 7.02.09, Phytophthora in Forests and Natural Ecosystems. 19th – 26th March 2019, 

Sardinia, Italy. Oral presentation. 

 

  



viii 
 

Statement of contributors 

This thesis was co-supervised by Professor Treena Burgess, Professor Giles Hardy, and Dr. 

Mark Dobrowolski. Treena, Giles and Mark contributed in the form of ideas, design and 

editorial assistance. Dr. William Dunstan provided co-supervision to data included in 

Chapter 2 and is a co-author on the manuscript submitted to Austral Ecology. Diane White 

completed molecular laboratory work in Chapter 3 and Chapter 5. Volunteers (listed by 

name in the acknowledgements) provided assistance in the field, glasshouse or laboratory. 

All chapters that have not been submitted to a journal for review will be published in 

collaboration with all my supervisors Treena Burgess, Giles Hardy and Mark Dobrowolski. 

This research was conducted under the Australia Postgraduate Award. This project was 

generously funded by Iluka Ltd. and Tronox Ltd. and most of the chapters could not have 

been completed without their financial support. Lastly, the Holsworth Wildlife Research 

Endowment (2017–2018) funding allowed us to repeat several experiments. 

All research was conducted with the appropriate approval and reported within the chapters. 

 

 

 

 

  



ix 
 

Acknowledgements 

I would like to acknowledge and thank my supervisors Treena Burgess, Giles Hardy and 

Mark Dobrowolski for the support and guidance given to me over the course of my project. 

Your individual strengths have match perfectly and I’ll be forever grateful for the help over 

the past four years. 

Bill Dunstan, who was my honours supervisor and always available to provide practical 

advice, even helping me in the field when I had a broken collarbone. Diane White, who 

taught me many skills in the lab, constantly provided advice and ran my PCRs. Additionally, 

Frances Brigg who helped by running my Illumina sequences. For the editing several 

chapters in a very early draft stage I would like to thank Kay Howard, you really helped me 

get my writing back up to scratch and those early versions were not easy to read. 

Cindy Beckley for helping me with any queries and making my site visits upbeat and easy. 

Thanks to Neil McMulkin and Andrew Horsefall for help getting around site. 

Emma Steel, Lewis Walden, Luca De Prato, Chris Fenner, and Sarah Sapsford for help in the 

field, glasshouse or lab, your assistance and friendship will be remembered for years to 

come. 

I would like to thank Jatin Kala, The Australian Water Availability Project, Tilo Massenbauer, 

Willa Veber, and Emma Dalziell for access to datasets or equipment. 

I would like to thank and acknowledge the support of Iluka and Tronox and the people that 

helped to make this project possible. 

Finally, I would like to thank my partner, Thao. You have shown me a great amount of 

patience and love over the years despite my sometimes-absent mind. I could never have 

done this without you or my family, Kylie, Martin and Ellie. 

 

  



x 
 

 

 

 



1 
 

Chapter 1: Introduction to regional and local drivers of diversity in 

southwest Australia and kwongan plant communities. 

Introduction 

Introduced fungal and oomycete pathogens can have a severe impact on plant species that 

have not evolved a level of resistance. For example, Phytophthora cinnamomi and P. 

ramorum are introduced invasive oomycete plant pathogens and highly destructive to the 

natural vegetation of Australia and the USA, respectively (Shearer et al. 2007, Grünwald et 

al. 2012). Comparatively, the impact of native plant pathogens on the composition of 

natural plant communities may be more subtle but just as influential (Gilbert 2002, Bever et 

al. 2015)). Understanding the range and ecological role of native plant pathogens is 

important in a period of increased anthropogenic disturbance (Lewis and Maslin 2015). As 

plant communities and disturbances change over time understanding the historical 

vegetation and ecology informs management and helps predict the outcome of new 

interactions. Research into the native distribution of plant pathogens is crucial due to past 

and future introductions through international trade (Brasier 2008, Hulbert et al. 2017). The 

ecological role and distribution of native plant pathogens should be studied thoroughly in 

plant communities of southwest Australia, particularly on the Geraldton Sandplain, given 

the floristic diversity (Hopper and Gioia 2004) and the susceptibility of plant species to 

previous introduced pathogens (Shearer et al. 2004). 

 

Southwest Australia 

The southwest of Australia (SWA) has high plant species richness and diversity. The reported 

regional species richness of SWA varies depending on the sources reviewed and the level of 

the taxonomic classification. Beard et al. (2000) estimated that there are 5710 plant species 

(to the species level and ignoring hybrids) within SWA, of which 3000 (52%) are endemic to 

the region. When subspecies are included, Hopper and Gioia (2004) estimated that there 

are 7380 vascular plant species, of which 49% are endemic to the region. Regardless of the 

taxonomic level assessed, these Mediterranean plant communities are incredibly rich in 

flora and have a high proportion of endemism. Many of the Mediterranean climate regions 
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are host to distinct species rich plant communities that rank amongst the highest in the 

world in terms of regional diversity (Cowling et al. 1996). Of the five Mediterranean climate 

regions, only the Southwestern Cape of South Africa has greater diversity than SWA 

(Cowling et al. 1996). Kwongan and other shrubland plant communities of SWA have greater 

species richness and diversity than woodlands and forests, and this is typical for the majority 

of the Mediterranean climate regions (Cowling et al. 1996, Hopper and Gioia 2004). For 

example, Banksia woodlands in SWA typically have 70–80% of the species richness of 

adjacent kwongan vegetation (George et al. 1979, Brown and Hopkins 1983). 

The old, climatically buffered, infertile landscape (OCBIL) theory is a developing series of 

integrated hypotheses used to explain the evolution, ecology and conservation of 

landscapes (Hopper 2009). The southwest of Australia is one of 12 OCBIL terrestrial 

biodiversity hotspots and six of the seven integrated hypotheses can be used to explain the 

high species richness and diversity of the region (Hopper 2009, Hopper et al. 2016). The 

reduced dispersability, increased local endemism and common rarity of plant species 

contributes to the high richness and diversity (Hopper 2009). The seed of SWA plant species 

have fewer adaptations for long distance dispersal in comparison to young often disturbed, 

fertile landscapes (YODFL) (He et al. 2004, Hopper 2009). This reduced dispersibility should 

encourage local genetic divergence and allopatric speciation, resulting in a rapid increase of 

ancient populations with high levels of interpopulation genetic divergence (Hopper 2009).  

Given that the limited dispersal hypothesis leads to increased local endemism, Hopper 

(2009) states OCBILs should have elevated persistent lineages (Gondwanan Heritage 

Hypothesis) and long lived individuals (Ultimate Self Hypothesis). The Ultimate Self 

Hypothesis describes some taxa have had the chance to produce a genotype that has 

evolved to overcome all environmental challenges and have little need to produce genetic 

variation to cope with and evolve through environmental change (James 2000, Hopper 

2009).  The most diverse Mediterranean OCBILs, the Cape Floristic Region and SWA, have 

had climatically stable histories due to fewer topographic upheavals leading to greater 

species accumulation and persistence (Cowling et al. 2015). The stability of the SWA climate 

has given several lineages the chance to persist to the present day (Coates 2000, Yates et al. 

2007, Hopper 2009, Mucina and Wardell-Johnson 2011). 
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Adaptation to the unique environment of SWA has led to high speciation. The deeply 

weathered and infertile soils of SWA have had a pervasive outcome given the long period of 

time organisms have had to evolve (Hopper 2009, Hopper et al. 2016). Adaptations of 

underground structures are prominent and include cluster roots, dauciform roots, increased 

mutualism with ectomycorrhizal fungi, geophytism, extensive water foraging strategies 

(Hopper 2009, Hopper et al. 2016) and dual mycorrhizal mutualisms (Teste et al. 2020). 

There are a high proportion of carnivorous plant species in the most nutrient impoverished 

soils of SWA. A number of plant species have adapted to become tolerant of saline soils 

associated with palaeoriver systems of SWA (Hopper 2009, Hopper et al. 2016). Additionally, 

the Semiarid Cradle hypothesis results in speciation at the margins of SWA driven by the 

variable climate of semi-arid regions (Hopper et al. 2016).  

Climatic and soil gradients partially explain the regional plant species turnover across SWA. 

Uniform predictors (wet quarter precipitation and radiation seasonality) were the most 

important climate factors explaining deviance in species turnover (Jones et al. 2016). In 

contrast, dry quarterly precipitation predicted abrupt transitions in species turnover and 

suggests tipping points exist where small variations in climate result in large floristic changes 

(Jones et al. 2016). The composition of the plant community was predicted best by changes 

in soil nutrients, in particular phosphorus availability (Jones et al. 2016). Rainfall and soil 

characteristics interact to produce an explanation for the transition of common families and 

ecosystems through space. The transition from Banksia woodland towards kwongan follows 

a declining rainfall gradient. Woodlands cannot be supported below an annual rainfall of 

900mm on deep sands and 625mm on sands with ironstone gravel (Beard 1984, Pignatti and 

Pignatti 1997). The proportion of different life forms often changes in kwongan 

communities depending on rainfall and moisture availability (Brown 1989).  

 

Kwongan plant communities on the Geraldton Sandplain 

Kwongan (or kwongkan) plant communities are primarily heath, shrubland and thicket 

vegetation. They are distributed across the SWA biodiversity hotspot (Hopper and Gioia 

2004, Beard et al. 2013). These plant communities are located on the Geraldton Sandplain, 

Avon Wheatbelt, Coolgardie, Mallee and Esperance Plains IBRA regions in Western Australia 
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(Lamont et al. 1984, Beard et al. 2013) (Figure 1.1). On average, kwongan plant communities 

may receive between 350mm and 1000mm of rainfall annually, depending on their location 

(Pignatti and Pignatti 1997). Kwongan plant communities along the south coast of Western 

Australia receive the highest annual rainfall (Beard 1984). Kwongan plant communities are 

characteristically uniform in structure (Cowling et al. 1996), comprised primarily of shrubs 

below 1m (Hnatiuk and Hopkins 1981), with a sparse over storey (above 2m) and 65 to 95% 

projective foliage cover (Griffin et al. 1983, Beard 1984). The most common plant families, 

Proteaceae, Myrtaceae and Fabaceae contain a large proportion of the recorded plant 

species. Many of the plant families may only be represented by one or a small number of 

species (Hnatiuk and Hopkins 1981, Brown and Hopkins 1983, Griffin et al. 1983, Brown 

1989). Kwongan plant communities are highly diverse and variable at individual community, 

site and regional levels (Lamont et al. 1984, Hopper and Gioia 2004, Zemunik et al. 2016). 

The floristic composition of kwongan plant communities’ changes substantially between the 

regions. 

Characteristically, few individual species dominate in kwongan plant communities on the 

Geraldton Sandplain. Kwongan vegetation in the region contains an estimated 2450 plant 

species (Lamont et al. 1984). Between 80 and 105 plant species have been recorded over 

0.1 ha on lateritic soils (George et al. 1979, Hnatiuk and Hopkins 1981, Griffin et al. 1983, 

Griffin and Hopkins 1985). Within 60m2 plots, the total number of plant species ranged 

between 48–176 from phosphorus rich to the most deficient soils (Zemunik et al. 2016). In 

vegetation surveys undertaken by Griffin et al. (1983) and Brown (1989), half of the 

sampling plots contained fewer than 10% of all recorded plant species and half of all plant 

species occurred once or very infrequently. Studies of homogeneity between closely located 

stands identified few species were shared despite the small distance and few alterations in 

physical factors (Hnatiuk and Hopkins 1981, Griffin et al. 1983, Lamont et al. 1984). Studies 

indicate all kwongan subregions with SWA are diverse and non-uniform plant communities 

(Brown 1989). 
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Figure 1.1: Southwest Australia and plant communities described as kwongan, mixed 

kwongan, and Banksia woodland by (Mucina et al. 2014).  Spatial vegetation data was 

published by Beard et al. (2013). 

 

Abiotic influences on kwongan diversity 

Fire has a temporal effect on the richness of kwongan plant communities on the Geraldton 

Sandplain. A fire will initiate a short window of increased availability of soil nutrients, 

moisture and light, creating gaps for recruitment (Keith et al. 2014). Plant species have 

adapted to persist after fire through soil and canopy stored seed banks, and through above 

and below ground resprouting (Miller and Dixon 2014). Two years post-fire, species richness 

may significantly increase by 4–29% in comparison to the pre-fire community (Herath et al. 
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2009b). The increase in species richness is likely attributable to the recruitment of annual 

plant species that ended their life cycle before the fire event and remained at the site in the 

soil seed bank (Herath et al. 2009b). Species persistence two years after fire is high (88–

96%); however, fire-response influences species recovery as 67–85% of reseeders and 96–

100% of resprouters remain (Herath et al. 2009b). Fire intervals are particularly important to 

maintain diversity in kwongan plant communities. Some plant species die or may suffer local 

extinction if fire intervals are changed (Keith et al. 2014). Short fire intervals prevent plants 

from reaching reproductive maturity, subsequently seed banks are not replaced and 

resprouting capacity is not developed (Miller and Dixon 2014). Long fire intervals can result 

in the decline of seed viability, reduced seed bank input and the increased mortality due to 

resprouting capacity senesces (Miller and Dixon 2014). Short and long fire intervals may 

cause populations to decline through preventing necessary development in juveniles and 

attrition of mature plants, respectively. 

Moisture availability can influence the diversity, richness, composition and structure of 

kwongan plant communities. Plant communities on the lateritic hills of Mt Lesueur are 

distinctive in comparison to those on the same substrate elsewhere (Griffin et al. 1983). 

Slightly higher rainfall, and lower evaporation and temperatures likely result in higher 

moisture availability which is thought to be the factor responsible for the composition of the 

plant community (Griffin et al. 1983). Wetland depressions and wet heath plant 

communities differ in structure, diversity and richness from dry kwongan vegetation types 

(Hnatiuk and Hopkins 1981, Elkington 1988). They typically have lower species richness, 

more sparse vegetation and larger areas of bare ground. Wetter sites have their own 

particular suite of plant species, there are fewer woody shrubs and in mid-September they 

are occupied by various annuals (Elkington 1988).  

Subtle changes in the local topography can lead to complex interactions between plant 

species. Dune height influences the genetic diversity of Banksia attenuata, and the diversity 

of larger shrubs and small trees (He et al. 2008). Tall dunes have deeper sands and store a 

greater volume of ground water. This promotes the survival of all dune restricted species 

during hot and dry summers. Local extinction rates are lower on dune crests and more 

individuals of B. attenuata are supported, leading to increased reproduction and seed sets, 

therefore promoting a greater range of genotypes (He et al. 2008). The abundances of 
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B. attenuata and B. hookeriana are positively correlated as they often share and compete 

for the same niche space due to their similar environmental tolerances (He and Lamont 

2014). Conversely, population allelic richness of the two species is negatively correlated as 

inferior genotypes are likely excluded due to competition at the genotypic level. Plant 

species sharing similar environmental tolerances can co-exist as only inferior genotypes are 

excluded instead of the plant species (He and Lamont 2014). Water availability and niche 

spaces have an important influence on genetic and species diversity.  

Drought may have a similar effect on kwongan plant communities as fire (Hnatiuk and 

Hopkins 1980). Aseasonal drought stress has been reported in a large number of plant 

species after consecutive years of below average rainfall (Hnatiuk and Hopkins 1980). 

Seedling regeneration and resprouting was used by some plant families to overcome the 

conditions. Drought can affect vegetation over large areas. Hnatiuk and Hopkins (1980) 

found sites with greater access to ground water were least affected by drought and the 

sensitivity of plant families varied substantially. Similar to fire, drought contributes to a 

complex patchwork of plant communities across the landscape (Hnatiuk and Hopkins 1980). 

Soil nutrients have a large effect on the diversity and richness of kwongan plant 

communities regionally. The greatest species richness and diversity is found on soils with 

the lowest levels of phosphorus (P) (Cowling et al. 1994, Lambers et al. 2010, Zemunik et al. 

2016). This is common for many kwongan plant communities across SWA. Laliberté et al. 

(2014) reported nutrient and physical properties of the soil explain the difference in the 

diversity and richness between kwongan plant communities along the Jurien Bay 

chronosequence. Soil age, plant species richness and diversity increase with distance from 

the coast (Zemunik et al. 2016). Nitrogen (N) availability increases, total P declines 

continuously to extremely low levels, and soil pH declines with soil age (Turner and Laliberté 

2015). Environmental filtering from the regional species pool was driven by soil acidification, 

which was strongly correlated with declining total P and soil age (Laliberté et al. 2014). 

Many plant species have a poor capacity to acquire P from young alkaline soils as they have 

evolved on old strongly weathered acidic soil (Laliberté et al. 2014). Environmental filtering 

best explained the variation in diversity of plant communities along the strong resource 

gradient compared to local resource heterogeneity, resource partitioning, nutrient 
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stoichiometry or soil fertility ecological theories (Laliberté et al. 2014). Variation in soil 

nutrients are highly influential in shaping kwongan plant communities.  

Historically, kwongan plant communities have been difficult to group or assign 

subclassifications at fine scales (Brown 1989). Recent studies of kwongan shrublands around 

Eneabba in the north and Cooljarloo in the south of the Geraldton Sandplain IBRA region 

have placed vegetation into four and 17 community subclassifications, respectively 

(Tsakalos et al. 2018, Tsakalos et al. 2019). All environmental variables collected from a 

subset of relevés in the study areas explained 18% and 29% of compositional variance at 

Cooljarloo and Eneabba, respectively (Tsakalos et al. 2018, Tsakalos et al. 2019). Soil 

physical and chemical properties non-exclusively explained the greatest amount 

compositional variation in both studies.  

Biotic influences on kwongan diversity 

The functional diversity of below ground nutrient acquisition strategies increases with soil 

age along the Jurien Bay chronosequence (Zemunik et al. 2015). Plant species with non-

mycorrhizal cluster roots (NMCR) are thought to be the most effective at acquiring P the 

main limiting nutrient in the plant communities found on the oldest soils (Lambers et al. 

2015). All nutrient acquisition strategies can be found in the most P deprived soils and the 

most common traits are equally abundant (Zemunik et al. 2015). Each nutrient acquisition 

strategy has trade-offs (Laliberté et al. 2015, Lambers et al. 2018) and suggest that there is 

no single superior strategy for acquiring P. Biological interactions may reduce the 

competitive ability of NMCR plant species and promote coexistence (Laliberté et al. 2015, 

Lambers et al. 2018). 

Nutrient exchange and facilitation between plant species with different acquisition 

strategies may be a mechanism contributing to the coexistence of kwongan plant species 

(Lambers et al. 2018). Nitrogen transfer occurred between plant species with different 

nutrient acquisition strategies after foliar feeding a donor plant (Teste et al. 2015). Plant 

species with mycorrhizal and NMCR could not fix nitrogen, and the exchange of nutrients 

occurred regardless of root intermingling and the nutrients available in the soil (Teste et al. 

2015). Plant growth may also increase when the nearest neighbours have different nutrient 

acquisition strategies (Teste et al. 2014). Nutrient availability can be facilitated by NMCR 

plant species. The magnesium uptake, height and weight of the arbuscular mycorrhizal plant 
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species, Scholtzia involucrata (Myrtaceae) increased in the presence of Banksia attenuata 

(Muler et al. 2014). Nutrient transfer and facilitation between plant species with contrasting 

nutrient acquisition strategies may be a mechanism that promotes co-existence and the 

maintenance of diversity in kwongan plant communities (Lambers et al. 2018). 

Soil-borne plant pathogens may equalise the competitive ability of plant species with NMCR 

and prevent their dominance in nutrient deficient soils (Laliberté et al. 2015). Plant species 

with NMCR have ephemeral roots without a complete suberised exodermis that are 

particularly susceptible to soil-borne plant pathogens (Lambers et al. 2015, Lambers et al. 

2018). Conversely, other plant species may be protected by their association with 

mycorrhizal fungi (Laliberté et al. 2015, Lambers et al. 2018). Ectomycorrhizal (Myrtaceae) 

and NMCR (Proteaceae) plant species were grown together with and without a mixture of 

putatively native soil-borne plant pathogens (Albornoz et al. 2016). The competitive ability 

of the NMCR plant species was reduced in the presence of plant pathogens, while 

Myrtaceae were not negatively affected by pathogens and ectomycorrhizal colonisation 

increased (Albornoz et al. 2016). The survival and growth of NMCR (and nitrogen-fixing) 

plant species were poorer when grown in natural soils collected from the same plant species 

or nutrient acquisition strategy (Teste et al. 2017). The trade-off between nutrient 

acquisition strategy and susceptibility to soil-borne plant pathogens likely plays an 

important role in promoting co-existence between plant species and the diversity of 

kwongan plant communities. 

Native plant pathogens in kwongan plant communities 

Soil-borne plant pathogens have been detected in kwongan plant communities for several 

decades. Western Australian vegetation has extensively been surveyed for 

Phytophthora cinnamomi after it was first identified by Podger et al. (1965), and the 

introduced invasive plant pathogen was found widely distributed across SWA (Shearer et al. 

2007). The diversity and structure of kwongan vegetation and similar plant communities are 

severely affected by P. cinnamomi (Shearer and Dillon 1996, Bishop et al. 2010, Shearer et 

al. 2012) and 40% of all plant species in SWA are susceptible to the pathogen (Shearer et al. 

2004). Plant communities on the coast are the least affected by P. cinnamomi and disease 

expression is hypothesised to be suppressed by alkaline calcareous soils (Shearer and Crane 

2014). Since 2000, many new Phytophthora species have been identified using molecular 
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detection tools and through surveys of natural vegetation (Hansen et al. 2012, Scott et al. 

2013). In SWA, Phytophthora species were identified from natural plant communities by re-

evaluating isolates found during surveys for P. cinnamomi (Burgess et al. 2009). Several 

Phytophthora species are hypothesised to be native to kwongan vegetation on the 

Geraldton Sandplain and may be influencing the diversity of these plant communities. 

For example, P. arenaria belongs within clade 4 and has been isolated in kwongan plant 

communities since 1986 (Rea et al. 2011). Additionally, clade 6a Phytophthora, such as 

P. cooljarloo, P. kwongonina, P. pseudorosacearum, and P. rosacearum have been detected 

primarily in kwongan plant communities on the Geraldton Sandplain (Burgess et al. 2018c). 

A large metabarcoding survey indicated P. arenaria was distributed throughout Australia, 

and P. rosacearum was present in several states (Burgess et al. 2017b, Burgess et al. 2018b). 

Phytophthora arenaria has been detected from a number of Banksia species in dry 

vegetation (Rea et al. 2011), and clade 6a have been detected in dry and wet kwongan 

vegetation types (Burgess et al. 2018c). Phytophthora arenaria does not cause dieback 

fronts typical of introduced Phytophthora species (Rea et al. 2011). The maximum growth 

temperatures of P. arenaria and clade 6a species are 32.5–37.5oC (Rea et al. 2011, Burgess 

et al. 2018c). These Phytophthora species are all homothallic, they can self-fertilise to 

produce oospores for long-term survival. Homothallism is a beneficial adaptation in stressful 

environments as damaged DNA may be repaired (Bernstein and Bernstein 2010) and allow 

these species to produce survival structures without enduring the cost of locating a second 

mating type (Billiard et al. 2012). The biological characteristics and distribution of 

Phytophthora arenaria and clade 6a suggest these species have adapted to the difficult 

environmental conditions of SWA, and are native to kwongan plant communities on the 

Geraldton Sandplains (Rea et al. 2011, Burgess et al. 2018c).  

Putatively native Phytophthora species may be damping-off pathogens in natural plant 

communities. Damping-off pathogens are responsible for the death of seedlings pre- and 

post-emergence (Agrios 2005). The most common damping-off pathogens are from the 

oomycete genera Pythium and Phytophthora, and the fungal genera Fusarium and 

Rhizoctonia (Tainter and Baker 1996). Simamora et al. (2017) identified P. arenaria and 

closely related P. boodjera as damping-off pathogens of mallee Eucalyptus species. 

Phytophthora and Pythium species are widely recognised damping-off pathogens with a 
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large host range. These oomycete genera are responsible for damping-off in agricultural 

(Hendrix and Campbell 1973, Tainter and Baker 1996, Savita and Nagpal 2012, Matny 2013), 

silvicultural (Heather et al. 1977) and greenhouse industries worldwide (Schroeder et al. 

2013). Damping-off has been reported in the SWA, Pythium species have reduced yields of 

agricultural crops (Li et al. 2014) and Phytophthora species may be responsible for poor 

germination and survival of seed used in mine site restoration (Woodman 1993). 

Additionally, native damping-off plant pathogens are important within natural plant 

communities as they contribute to the maintenance of diversity by promoting co-existence 

between plant species (Bever et al. 2015, Teste et al. 2017). 

 

Mechanisms for pathogen driven diversity 

The interaction between soil microorganisms and plants form the basis of a biotic feedback 

model that was first adapted by Bever (1994). This model offers a general explanation for 

the outcomes and direction of plant-soil interactions driven by abiotic and biotic 

mechanisms (Ehrenfeld et al. 2005). Natural ecosystems experience fluctuations in plant-soil 

interactions, and subtle variations in plant and microbial composition are continuous 

(Bonanomi et al. 2005). Variation in the abundance of a plant species may subsequently 

result in changes to the health, survival and abundance of the plant population mediated by 

the response of the microbial community (Bever 1994). The soil microbial community may 

respond to the increased abundance of a plant species in two distinct ways, either through 

negative or positive feedback (Bever 1994, Bever et al. 1997, Bever 2003). Negative 

feedback restricts the abundance of a plant species by reducing growth and survival within 

the population if numbers increase (Kulmatiski et al. 2008). Whilst, positive feedback 

mechanisms provide support that increases the abundance and health of a plant species. 

Negative feedback is viewed as a mechanism for promoting diversity as it prevents the 

dominance of an individual species and out-competing rarer species (Bever 1994, Bonanomi 

et al. 2005, Mangan et al. 2010, Reinhart 2012). Mature and damping-off plant pathogens 

are drivers of negative plant soil feedback as they respond to changes in abundance and 

reduce the survival and health of plant populations (Gilbert 2002). Relationships between 

plant and soil community may either be detrimental or nourish plant diversity within an 
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ecosystem. Plant-soil feedback categorizes the underlying mechanism determining the 

outcome of the interaction. 

The Janzen-Connell (J-C) hypothesis (Janzen 1970, Connell 1971) accounts for the regular 

spacing of tree species and contributes to the maintenance of diversity for some plant 

communities. The J-C hypothesis describes a high density of specialist natural enemies, such 

as soil-borne plant pathogens beneath a parent due to a reservoir of host tissue supplied by 

seed input or the adult plant that leads to large scale seedling mortality (Gilbert 2002). Both 

seed and pathogen density decreases with distance from the parent, seeds dispersed 

further away from the parent are more likely to establish due to lower pathogen densities 

(Augspurger 1983, Augspurger and Kelly 1984). The J-C effect represents a negative plant-

soil feedback, driven by a negative density or distance dependent relationship (Bever et al. 

2012). If seedling mortality increases disproportionately in response to higher seedling 

density (overcompensating density-dependence), this force will exclude conspecific 

seedlings in close proximity to the parent plant (Freckleton and Lewis 2006). 

Overcompensating density-dependent relationships help maintain the species richness and 

diversity of plant communities by creating openings for uncommon plant species alongside 

heterospecific species, promoting coexistence (Freckleton and Lewis 2006). 

Specific natural enemies are believed to best promote coexistence between plant species 

through negative plant-soil feedback or the J-C effect (Gilbert 2002); although, the 

interaction between a natural virulent plant pathogen and a single host is uncommon 

(Barrett et al. 2009). Generalists or multi-host pathogens may remove other host species 

regardless of their abundance (Bever et al. 2015). However, natural generalist plant 

pathogens may still contribute to coexistence if they affect plant species differently, i.e. the 

fittest hosts experience the largest negative plant-soil feedback (Gilbert 2002, Augspurger 

and Wilkinson 2007). The susceptibility of a heterospecific plant species to the pathogen 

community of another host tends to decrease when phylogenetic distance or functional trait 

dissimilarity increase (Liu et al. 2012a, Schweizer et al. 2013, Liu et al. 2015). Local 

environmental conditions, such as moisture and temperature, will lead to further 

differences in the virulence of a plant pathogen or the host-pathogen interaction (Barrett et 

al. 2009). Hersh et al. (2012) suggest host-specific pathogens may be uncommon and unique 
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fungal compositions or differential effects of generalists, influenced by the plant species and 

environmental conditions, may frequently drive negative plant-soil feedback in seedlings.  

There is substantial evidence to support the J-C hypothesis and negative plant-soil feedback 

in natural plant communities driven by plant pathogens and promoting co-existence (Comita 

et al. 2014, Crawford et al. 2019). Density and distance-dependent mortality has been 

identified in the literature within temperate and tropical plant communities (Comita et al. 

2014). Negative plant-soil feedback has been studied primarily in grassland plant 

communities and appears to be an important force promoting coexistence (Kulmatiski et al. 

2008, Crawford et al. 2019). Plant pathogens are responsible for driving the J-C effect and 

negative plant-soil feedback in natural plant communities (Augspurger 1983, Augspurger 

and Kelly 1984, Mills and Bever 1998, Packer and Clay 2000, 2003, Hood et al. 2004, Bell et 

al. 2006, Bagchi et al. 2010, Mangan et al. 2010, Martin and Canham 2010, Liu et al. 2012a, 

Liu et al. 2012b, Terborgh 2012, Miller et al. 2019). Bagchi et al. (2014) provided direct 

evidence of the J-C hypothesis promoting co-existence, as damping-off pathogens increased 

the diversity of seedling assemblages. However, many studies do not identify the specific 

member of soil microbial community responsible for driving negative feedback and it is 

assumed plant pathogens are responsible (Mordecai 2011, Hodge and Fitter 2013).  

 

Seedling establishment in restored kwongan plant communities 

Post-mining ecological restoration is common on the Geraldton Sandplains and may be 

affected by damping-off. A large proportion of the topsoil stored and broadcast seed is lost 

during the rehabilitation process of kwongan and Banksia woodland plant communities. 

Before mining commences topsoil is stripped and stockpiled, but the viability of the topsoil 

seedbank declines over time (Rokich et al. 2000) and abiotic conditions, such as high soil 

moisture increase seed decay (Pakeman et al. 2012, Golos and Dixon 2014). Topsoil and 

broadcast seed contribute 3% and 1% of total germinable seed of perennial plant species in 

kwongan restoration, respectively (Bellairs and Bell 1993). Although broadcast seed 

increases the species richness of kwongan restoration substantially, mulch harvested from 

the canopy of kwongan vegetation can contribute 96% of germinable seed of perennial 

plant species (Bellairs and Bell 1993). Additionally, Rokich et al. (2002) found broadcast seed 
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had an efficiency of 7% in the restoration of a similar SWA plant community, Banksia 

woodland. Hallett et al. (2014) identified < 1–20% of seedlings emerged across 15 Banksia 

woodland genera, and of the total seed input, < 1–7% of seedlings remained after summer. 

In other biomes, the greatest losses occur between the germination of seed and emergence 

of seedlings (James et al. 2011). The microbial community is responsible for reducing seed 

viability and seedling deaths in natural topsoil (Wagner and Mitschunas 2008, Bever et al. 

2015). Low seedling emergence and survival in kwongan ecological restoration may be 

caused by damping-off pathogens, and seedling establishment is a major hurdle in returning 

plant communities that reflect reference or historic vegetation. 

 

Thesis aims and outline 

The southwest of Australia and kwongan plant communities have high floristic diversity. 

Soil-borne plant and damping-off pathogens can contribute to the maintenance of diversity 

in forest and grassland plant communities through negative feedback mechanisms. Several 

putatively native damping-off pathogens have been detected within kwongan vegetation. 

Previous studies have indicated native plant pathogens may play a role in promoting co-

existence between plant species in kwongan plant communities. Given the ability of some 

Phytophthora and other oomycetes to cause pre- and post-emergent damping-off, these 

pathogens may have a large influence on natural and restored kwongan plant communities. 

Four experiments were designed to further explore the role of damping-off and 

Phytophthora in kwongan plant communities. 

Chapter 2 tested if putatively native and introduced Phytophthora found in kwongan plant 

communities are damping-off pathogens and their native host ranges. 

Chapter 3 examined the distribution, richness and abundance of Phytophthora in natural 

and disturbed kwongan plant communities on the Geraldton Sandplain using 

metabarcoding. 

Chapter 4 investigated the effect of fungicide seed coats on the seedling emergence and 

survival of kwongan plant species in post-mining ecological restoration. 
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Chapter 5 examined if plant-soil feedback is driven by damping-off for five kwongan plant 

species in a glasshouse experiment. Additionally, the oomycete communities associated 

with roots of mature plants in the field and seedlings harvested from conspecific soils were 

studied. 

Chapter 6 summarised the major findings of the experimental chapters and discusses the 

outcomes related to damping-off disease and plant pathogens in kwongan plant 

communities. Derived from the  

Chapter 6 summarised the major findings of the experimental chapters and incorporated 

results from the current and previous studies to discuss damping-off disease and plant 

pathogens in kwongan plant communities.  
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Chapter 2: Putative native Phytophthora species as damping-off 

pathogens and functional plant traits linked to susceptibility 

Abstract 

Damping-off oomycete and fungal plant pathogens reduce the germination, emergence, and 

survival of seedlings. In agriculture this reduces productivity and is considered a major 

problem; however, in natural ecosystems the impact is more subtle and may be important 

for maintaining the structure and diversity of natural plant communities. The oomycete 

genus Phytophthora is frequently detected in natural plant communities causing disease in 

mature plants, but it is rarely assessed as a damping-off pathogen. Pathogenicity 

experiments were established with eight oomycete treatments, six putatively native 

Phytophthora, the invasive P. cinnamomi, and Pythium irregulare, to determine the 

damping-off host range in selected plant species from a hyper-diverse Mediterranean type 

ecosystem. Additionally, plant and seed traits were analysed to determine if they were 

correlated with susceptibility to pre-emergent damping-off. Phytophthora arenaria was the 

only generalist putatively native damping-off pathogen, causing 13 of 19 plant species to 

experience significantly reduced seedling emergence or survival by 36–98% in its presence. 

Pythium irregulare and the introduced P. cinnamomi caused significant damping-off in 10 

and 11 plant species by 50–90% and 42–88%, respectively. Plant species that were slowest 

to germinate and emerge were the most susceptible to pre-emergence damping-off caused 

by P. arenaria. These results suggest native and invasive Phytophthora may substantially 

influence the structure and diversity of natural plant communities through damping-off. 

While mature plant species are the most common focus in Phytophthora research, our study 

indicates damping-off should be considered to determine the complete impact of these soil-

borne plant pathogens. 

 

Introduction 

Phytophthora and Pythium are closely related genera of oomycetes and many species are 

plant pathogens with global distributions (Thines and Kamoun 2010). In managed 

ecosystems, soil-borne Pythium spp. are regarded primarily as damping-off pathogens 
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(Hendrix and Campbell 1973, Lamichhane et al. 2017). Plant species in agricultural, forestry 

and natural ecosystems can experience damping-off from soil-borne Phytophthora spp. 

(Heather et al. 1977, Camilo-Alves et al. 2013, Matny 2013, Domínguez-Begines et al. 2017). 

Soil-borne damping-off pathogens can kill seedlings pre- and post-emergence, infecting the 

seed, hypocotyl, roots, and stems (Tainter and Baker 1996). For example, Phytophthora 

boodjera reduced seedling emergence of several mallee Eucalyptus species by 100% 

(Simamora et al. 2017). Despite the negative impacts of damping-off pathogens in managed 

systems, they are an integral component of the microbial community in natural plant 

communities (Ehrenfeld et al. 2005). 

Native plant pathogens, including Phytophthora and Pythium species, have increasingly 

been studied in relation to a variety of related mechanisms that maintain biodiversity in 

natural plant communities (Gilbert 2002, Bever et al. 2012). Plant-soil feedback (PSF) 

hypotheses state that pathogens maintain plant community diversity by responding to 

changes in the abundance of different plant species (Bever 2003). There are different 

variations of PSF mechanisms which are governed by the number, relationship and 

specificity of soil microbes (Bever et al. 2012, Bever et al. 2015). Damping-off by Pythium 

spp., for example, has been attributed to negative-feedback that maintains diversity in 

grassland plant communities (Bever 1994, Bever et al. 1997, Mills and Bever 1998). The 

Janzen-Connell hypothesis (JCH) suggests that plant community diversity may be maintained 

by seedling predators, such as pathogens, reducing seedling recruitment in close proximity 

to mature conspecific individuals (Janzen 1970, Connell 1971). The JCH represents a 

negative PSF mechanism where an abundance of host tissue supports seedling predation by 

herbivores and virulent pathogen populations (Comita et al. 2014). For example, native 

Pythium spp. and unknown oomycetes have been identified as the drivers of seedling 

recruitment distributions predicted by the JCH through damping-off in temperate and 

neotropical tree species, respectively (Packer and Clay 2000, 2003, Bell et al. 2006). Few 

Phytophthora spp. have directly been identified as drivers of negative density dependent 

plant-soil feedback, despite evidence for diverse Phytophthora communities in natural 

systems (Hansen et al. 2012). 

Plant functional traits have been used in ecology to identify similar responses across plant 

species to abiotic and biotic factors and the subsequent effect on the ecosystem 
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(Cornelissen et al. 2003). Soft traits, those that are easily quantifiable and relate indirectly to 

specific functional mechanisms, are often used when studying a large number of species or 

sites (Hodgson et al. 1999). The susceptibility of plant species to pathogens and the impact 

on the diversity of plant communities has been studied in relation to the phylogenetic 

distance between plants (Liu et al. 2012a, Parker et al. 2015, Zhu et al. 2015). Often, closely 

related plant species are more likely to be susceptible to the same pathogen (Gilbert and 

Webb 2007). However, functional traits and their relationship to plant defence and the 

influence on PSF has received less attention (Kardol et al. 2013). Trade-offs between 

competitive ability and plant defence can promote coexistence (Laliberté et al. 2015, 

Lambers et al. 2018). Plant species with superior nutrient acquisition strategies can be more 

susceptible to pathogens that equalise this competitive advantage (Albornoz et al. 2016), 

and experience negative feedback mechanisms which promotes coexistence and maintains 

diversity (Teste et al. 2017). Plant functional traits may be important for understanding the 

role of pathogens in diverse natural plant communities. 

Phytophthora spp. have commonly been detected in kwongan (or kwongkan) plant 

communities on the Geraldton Sandplain, and Swan Coastal Plain biogeographic regions 

within southwest Australia (Burgess et al. 2009, Burgess et al. 2017b, Burgess et al. 2018c). 

The impact of the invasive P. cinnamomi on kwongan and similar Banksia woodland plant 

communities is severe (Shearer et al. 2004, Shearer et al. 2007). Several of the Phytophthora 

spp. found in kwongan plant communities are hypothesised to be native to either the 

Geraldton Sandplains bioregion or more broadly Australia (Rea et al. 2011). Putatively native 

Phytophthora spp. that are detected frequently in natural kwongan vegetation, do not 

produce dieback fronts associated with the invasive P. cinnamomi, and their phenotypic 

traits are well suited to harsh environmental conditions (Rea et al. 2011, Burgess et al. 

2018c). Additionally, putatively native Phytophthora were found to reduce growth, root 

health of native hosts, and Eucalyptus seedling emergence and survival (Simamora et al. 

2017, Belhaj et al. 2018). Given the unique plant community in which these Phytophthora 

species are detected and their ability to cause disease in a number of hosts, their impact on 

native kwongan plant species should be further studied. 

Kwongan plant communities are variable at individual, site and regional levels and have high 

species diversity, endemism and turnover (Hnatiuk and Hopkins 1981, Lamont et al. 1984, 
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Beard et al. 2013, Mucina et al. 2014). Several studies have recently been devoted to 

exploring and explaining the diversity across and within kwongan plant communities at 

different spatial scales (Laliberté et al. 2014, Zemunik et al. 2015, 2016, Tsakalos et al. 

2018). Plant-soil feedback mechanisms have been shown to broadly contribute to 

maintaining diversity between plant species with different functional traits (Teste et al. 

2017, Png et al. 2019). It is possible that native oomycete pathogens contribute to the 

maintenance of kwongan diversity (Laliberté et al. 2015, Teste et al. 2017). There are several 

examples of oomycete pathogens driving the Janzen-Connell hypothesis, and density-

dependent seedling mortality through damping-off in other vegetation communities (Packer 

and Clay 2003, Bell et al. 2006). The potential impacts of these pathogens on seedling 

emergence and survival may be important for the success of post-mining rehabilitation and 

horticultural industries. Oomycete plant pathogens are frequently found across the 

southwest of Western Australia (WA) and are managed by mining and horticultural 

industries (Davison et al. 2006, Colquhoun and Kerp 2007). The pathogenicity of some of the 

Phytophthora species have been examined on older seedlings and saplings (Simamora et al. 

2017, Belhaj et al. 2018); however, no studies have determined their pathogenicity as pre- 

and post-emergent damping-off pathogens on a wide range of kwongan hosts. Studying the 

effect of Phytophthora and Pythium spp. on seedlings of hosts native to southwest Australia 

will identify the potential impact the pathogens have on the natural plant communities and 

influence management guidelines in industry. 

This chapter investigates the effect of several putatively native oomycetes on the 

emergence and survival of seedlings from a range of native kwongan hosts. Host specificity 

and susceptibility are important assumptions of the various ecological theories that suggest 

that plant community diversity can be driven by pathogens (Gilbert 2002, Bever et al. 2012). 

This knowledge may be important in future research into the role of these pathogens in 

natural plant communities. Additionally, a range of hosts allows for the study of functional 

traits that may be associated with susceptibility to damping-off. Plant traits allow analysis of 

various properties regardless of species identity which increase the generality of the results. 

These correlations between damping-off susceptibility and plant traits may be a first step in 

providing insights into evolutionary trade-offs, success of regenerative traits in the presence 
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of pathogens and how these may structure plant communities. Our study aimed to answer 

the following questions: 

1) Are putatively native Phytophthora and Pythium species damping-off pathogens of 
native kwongan plant species? 

2) Are there seed or plant traits that indicate susceptibility to damping-off? 

3) How does the host range differ between the Phytophthora and Pythium species 
tested in the experiment? 

 

Methods 

Two experiments were conducted using plant species native to kwongan plant communities 

in southwest Australia. Experiment 1 was a preliminary study and used a variety of 

Phytophthora species and isolates (Table 1) to test the susceptibility of plant species to 

damping-off. Experiment 2 aimed to confirm the results of Experiment 1, test an additional 

oomycete (Pythium irregulare) (Table 1), and perform a statistical analysis to identify traits 

correlated to damping-off susceptibility. 

Oomycetes used and Inoculum preparation 

Phytophthora species selected were isolated communities through soil bating in kwongan 

plant which are native to southwest Australia (Table 2.1). Phytophthora cinnamomi was 

included in the experiment as its invasive and due to its wide distribution across southwest 

Australia. Pythium irregulare has often been isolated from kwongan communities in our 

own preliminary studies, and by Laliberté et al. (2015), and from agricultural systems in WA 

(Li et al. 2014). Phytophthora and Pythium species inocula were grown in a vermiculite 

substrate (1 L vermiculite, 10 g millet seed, 600 mL V8 broth) for five weeks at 20°C in the 

dark (Simamora et al. 2017). Additional sterile vermiculite substrate was prepared in the 

same way for the inoculation of negative control treatments. Trays and punnets used in 

Experiments 1 and 2 were inoculated with the oomycete or negative control treatments at 

1% of the dry sand weight.  
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Table 2.1: The clade, date of isolation, location and the status of Western Australian isolates 
of Phytophthora and Pythium tested in the experiments.  

Isolate1 Identity Clade Date Location Status2 Experiment 

CBS 127950 P. arenaria  4 2009 Eneabba, W.A. Native 1 and 2 

VHS 26806; CBS 138637 P. boodjera 4 2012 Tincurrin, W.A. Native 2 

MP 94-48 P. cinnamomi 7 1994 Willowdale, W.A. Invasive 1 and 2 

HSA 2313 P. cooljarloo 6a 1996 Cooljarloo, W.A. Native 1 

CBS 143062 P. cooljarloo 6a 2008 Cooljarloo, W.A. Native 1 

IMI 329669  P. kwonganina 6a 1986 Cervantes, W.A. Native 1 

HSA 2530 P. pseudorosacearum 6a 1998 Cooljarloo, W.A. Native 1 

VHS 24266 P. pseudorosacearum 6a 2010 Cooljarloo, W.A. Native 1 and 2 

HSA 1658 P. rosacearum  6a 1993 Albany, W.A. Native 1 

HSA 2529 P. rosacearum  6a 1998 Cooljarloo, W.A. Native 1 

MUCC 829 Pythium irregulare n/a 2015 Perth, W.A. Unknown 2 

1 Culture collections were abbreviated: CBS = Centraalbureau voor Schimmelcultures, the Netherlands; HAS = Hart Simpson 
and Associates, Perth, Australia; IMI = CABI Bioscience (Imperial Mycological Institute), UK; MUCC = Murdoch University 
Culture Collection, Perth, Australia; VHS = Vegetation Health Service Collection, Department of Parks and Wildlife, Perth, 
Australia. 
2 The current status of Phytophthora species in Australia designated by Burgess et al. (2017b) or described in Burgess et al. 
(2018c). 

 

Experiment 1  

A range of plant species native to kwongan plant communities were selected for the 

preliminary experiment (Table 2.2). Twenty-one plant species belonging to nine families and 

18 genera were chosen. The plant species were selected for the trial if they met the 

following criteria: availability of seed, poor rehabilitation results based on data provided by 

mineral sands mining companies, high germination rates and are common in the kwongan 

vegetation communities present around Cooljarloo, WA. Several plant species were 

included as they fit most of the selection criteria. A balance between plant species known to 

be susceptible and resistant to P. cinnamomi were selected to test if susceptibility to the 

pathogen was different at early life stages.  

Seedling emergence and survival of 21 plant species were tested with nine isolates of 

Phytophthora and a negative control (Table 2.1). River sand was steam sterilised twice at 

98°C in hessian bags for two hours on consecutive days. The river sand was given 24 hours 

to cool before being mixed with inoculum and placed in free draining seedling trays (350 × 

295 × 50 mm, 5,162 ml) produced by Garden City Plastics 

(https://www.gardencityplastics.com). The plant species were sown into four replicates of 

https://www.gardencityplastics.com/
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each Phytophthora isolate. Each plant species was then sown in rows containing 30 seeds. 

Rows were spaced at 25 mm intervals and the order of the plant species within the replicate 

was randomly allocated. The experiment was run between the 10th of April and the 12th of 

August 2014. The mean minimum and maximum glasshouse temperatures ranged from 

12°C and 25°C, respectively. The trays were hand watered with de-ionised water every other 

day to run-off. The emergence and death of seedlings were monitored daily for 38 days and 

then weekly until the conclusion of the experiment. Seedlings were recorded as emergent 

when both cotyledons were visible above the soil surface and then marked with a wooden 

toothpick to indicate when a death had occurred for a specific seedling. 

Table 2.2: Southwest Australian kwongan plant species selected for the damping-off 
susceptibility preliminary trial, Experiment 1. The selection criteria and plant species trait 
information is displayed. 

Family Species Common 
species 

Treatment1 P. cinnamomi 
Susceptibility2 

Rehabilitation 
germination 

Individual 
seed (mg)3 

Casuarinaceae Allocasuarina humilis Yes None Conflicting Poor 2.4 
Dasypogonaceae Dasypogon obliquifolius Yes None Unknown Poor 7.7 
Ericaceae Astroloma xerophyllum Yes Sm Susceptible Good 26.3 
Fabaceae Gompholobium tomentosum Yes HW, S Resistant Unknown 1.7 
Iridaceae Patersonia occidentalis Yes Sm Conflicting Poor 3.3 
Loranthaceae Nuytsia floribunda Yes None Resistant Poor 27.0 
Myrtaceae Calothamnus quadrifidus No None Resistant Good 0.1 
Myrtaceae Calytrix flavescens Yes Sm Resistant Poor 2.0 
Myrtaceae Eucalyptus todtiana Yes None Susceptible Poor 10.0 
Myrtaceae Eremaea pauciflora Yes Sm Unknown Good 1.1 
Myrtaceae Hypocalymma angustifolium No Sm Resistant Good 1.0 
Myrtaceae Leptospermum erubescens No Sm Resistant Average 0.4 
Myrtaceae Melaleuca brevifolia Yes None Unknown Unknown 0.4 
Myrtaceae Melaleuca seriata Yes None Resistant Good 0.4 
Proteaceae Banksia attenuata  Yes None Susceptible Poor 90.9 
Proteaceae Banksia telmatiaea Yes None Susceptible Poor 16.7 
Proteaceae Hakea trifurcata Yes None Susceptible  Poor 12.7 
Proteaceae Petrophile brevifolia Yes Sm Unknown Poor 3.7 
Proteaceae Peterophile linearis Yes Sm Susceptible Bad 4.5 
Proteaceae Stirlingia latifolia Yes None Susceptible Poor 11.8 
Asphodelaceae Xanthorrhoea preissii Yes Sm Susceptible Poor 18.2 
1 Pre-germination treatments as outlined in Sweedman and Merritt (2006); HW, Hot Water; S, Scarify; and Sm, Smoke 
Water.  
2 P. cinnamomi susceptibility was determined using O'Gara et al. (2005b). 
3 Individual seed mass 

 

Experiment 2 

The plant species selected are native to the southwest of Australia and are found in 

kwongan plant communities. The selection criteria were altered to broaden the scope of the 

study to identify if functional traits reflected susceptibility and 30 plant species were 

selected to provide sufficient data. The 30 species of plants (Table 2.3) were selected from 
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three dominant plant families, Fabaceae, Myrtaceae and Proteaceae (Zemunik et al. 2016). 

Species were selected based on seed availability, previous viability tests, importance in 

rehabilitation in the region, abundant in natural communities, and seed and plant traits. 

Seed mass, seed storage mechanism, nutrient acquisition strategy, symbiotic association 

with nitrogen fixing bacteria, response to fire and mature plant size were considered and 

balanced as evenly as possible when selecting plant species for the experiment (Table 2.3; 

Table S2.1). Traits selected for the analysis were related to recruitment or hypothesised to 

affect mature plant species susceptibility to soil-borne plant pathogens (Lambers et al. 

2018). Germination treatments were undertaken as outlined in Sweedman and Merritt 

(2006).  

The emergence and survival of 30 plant species was monitored in five oomycete treatments 

and a negative control. Given that Phytophthora kwonganina, P. cooljarloo, and 

P. rosacearum (HSA 2529) did not significantly reduce the emergence and survival of any 

plant species in Experiment 1 (Table 2.4), they were replaced with Phytophthora boodjera 

and Pythium irregulare in Experiment 2 (Table 2.1). Seedling emergence and deaths were 

recorded to determine host susceptibility to the oomycete treatments compared to the 

negative control (Table 2.1). Seedlings were recorded as emergent when both cotyledons 

were visible above the soil surface and then marked with a wooden toothpick to indicate 

when a death had occurred for a specific seedling. The experiment ran between the 23rd of 

October 2016 and the 21st of March 2017. Experiment 2 was conducted in an evaporatively 

cooled glasshouse, temperatures ranged from 17–30°C. Each treatment (6) and plant 

species (30) combination were replicated 10 times (1800 punnet cells). Each replicate 

consisted of three free draining 10 cell punnets (345 × 144 × 80 mm) produced by Garden 

City Plastics (https://www.gardencityplastics.com). Punnets with individual cells replaced 

seedling trays used in Experiment 1 to avoid potential interactions between different plant 

species and their effects on inoculum levels. River sand was steam sterilized twice in the 

punnets at 98°C for two hours on consecutive days and allowed to cool before inoculation. 

Vermiculite inoculum was mixed into the sterile river sand before sowing. Then ten seed of 

each plant species were sown into a single punnet cell (70 × 70 × 80 mm, 250 ml). Seeds 

were sown using a tool to produce a consistent pattern and hole depth. The position of the 

plant species within the replicates were randomly chosen. Replicates were arranged in a 

https://www.gardencityplastics.com/
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randomised block design in the glasshouse and moved every 10 days. The punnets were 

hand watered with de-ionised water every other day to run-off. The presence of the 

Phytophthora treatments was confirmed by removing dead seedlings from the cell and 

plating the roots on amended NARH agar (Simamora et al. 2018). Pythium irregulare was 

isolated using NARH agar with the hymexazol removed as it suppresses Pythium spp. (Tsao 

1983, Kato et al. 1990). At the end of the experiment all punnets were baited, as described 

by O’Brien et al. (2009), to confirm the presence and survival of the Phytophthora and 

Pythium species. 

 

Table 2.3: Southwest Australian kwongan plant species selected to test their susceptibility 
to damping-off by soil-borne oomycetes in Experiment 2. Columns contain information 
about the different plant and seed traits selected to be analysed in a pre-emergent 
susceptibility model. 

Family Species Treatment1 Primary 
NS2 

Secondary 
NS 

N-fixing Seed 
Storage 

Fire 
Response 

Individual 
seed (mg)3 

Fabaceae Acacia pulchella HW, S AM None Yes Soil Death 4.3 

Fabaceae Bossiaea eriocarpa HW, S AM Cluster Yes Soil Death 2.1 
Fabaceae Daviesia nudiflora HW, S Cluster AM Yes Soil Resprouter 23.9 
Fabaceae Gastrolobium spinosum HW ECM AM Yes Soil Death 8 
Fabaceae Gompholobium knightianum HW, S AM ECM Yes Soil Death 2.2 
Fabaceae Gompholobium tomentosum HW, S AM ECM Yes Soil Death 1.3 
Fabaceae Jacksonia floribunda HW, S AM ECM Yes Soil Resprouter 7.6 
Fabaceae Jacksonia sternbergiana HW, S AM Cluster Yes Soil Death 9.8 
Fabaceae Kennedia prostrata HW, S AM Cluster Yes Soil Death 36.3 
Fabaceae Viminaria juncea None Cluster AM Yes Soil Death 6 
Myrtaceae Beaufortia elegans None ECM AM No Canopy Death 0.5 
Myrtaceae Calothamnus hirsutus None ECM None No Canopy Resprouter 0.04 
Myrtaceae Calytrix flavescens Sm AM None No Soil Death 1.7 
Myrtaceae Eremaea asterocarpa None ECM AM No Canopy Resprouter 1.3 
Myrtaceae Eucalyptus todtiana None ECM AM No Canopy Resprouter 8.2 
Myrtaceae Hypocalymma angustifolium Sm AM ECM No Soil Resprouter 0.32 
Myrtaceae Leptospermum erubescens None ECM None No Canopy Resprouter 0.04 
Myrtaceae Melaleuca seriata None ECM AM No Canopy Resprouter 0.04 
Myrtaceae Scholtzia laxiflora None AM None No Soil Resprouter 1.1 
Myrtaceae Verticordia densiflora Sm AM None No Soil Resprouter 2.5 
Proteaceae Banksia attenuata None Cluster None No Canopy Resprouter 103.7 
Proteaceae Banksia telmatiaea None Cluster None No Canopy Death 18.5 
Proteaceae Conospermum stoechadis Sm Cluster None No Soil Resprouter 5.1 
Proteaceae Grevillea eriostachya Sm Cluster None No Soil Resprouter 23.2 
Proteaceae Grevillea shuttleworthiana Sm Cluster None No Soil Resprouter 3.1 
Proteaceae Hakea costata None Cluster None No Canopy Death 8.9 
Proteaceae Hakea trifurcata None Cluster None No Canopy Death 16.3 
Proteaceae Lambertia multiflora None Cluster None No Soil Resprouter 26.3 
Proteaceae Petrophile drummondii Sm Cluster None No Canopy Death 11.7 
Proteaceae Stirlingia latifolia None Cluster None No Soil Resprouter 14.1 

1 Pre-germination treatments as outlined in Sweedman and Merritt (2006);  HW, Hot Water; S, Scarify; and Sm, Smoke 
Water.  
2 NS, Nutrient acquisition strategy. AM, arbuscular mycorrhizal fungi; Cluster, non-mycorrhizal cluster roots; and ECM, 
ectomycorrhizal fungi. 
3 Individual seed mass 
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Statistical Analysis 

A One-Way Analysis of Variance (ANOVA), and Welch ANOVA were used to determine if 

there was a significant difference in the seedling emergence and survival between the 

oomycete treatments and the negative control for each plant species in Experiments 1 and 

2. A Welch ANOVA was performed when assumptions of homogeneity of variance were 

violated (Welch 1951). The number of emergent and alive seedlings at the end of the 

experiments were used as the response variables. Seedling survival, or the number of alive 

seedlings at the end of both experiments indicated the overall impact of pre- and post-

emergent damping-off. The effect of pre- and post-emergent damping off could not 

properly be separated, seedling deaths of the total emergent seedlings strongly violated 

statistical assumptions, likely due to the variable seedling emergence between treatments. 

However, post-emergent damping-off effects were indicated when the impact of the 

oomycete treatments either became significant or remained significant with a substantial 

drop in seedling survival. Additionally, an analysis was conducted determine the consistency 

of results for plant species and treatments used in Experiment 1 and Experiment 2. Each 

plant species and measurement (emergence and survival) were analysed individually. The 

seedling emergence and survival relative effect sizes (oomycete treatment / negative 

control) were calculated and used as response variables in two-way ANOVAs with 

experiment and oomycete treatment as predictors. A Levene’s test, Bartlett’s test, and 

assessment of fitted values vs residuals were used to evaluate homoscedasticity, and to 

determine normality a Shapiro-Wilk test, observed frequency histograms, and Q-Q plots 

were performed. Leniency was given when assessing normality as the treatments were not 

always normally distributed for each plant species, especially in Experiment 1 due to low 

replication. Although, it was assumed ANOVA tests are robust enough to handle moderate 

normality violations (Schminder et al. 2010, Blanca et al. 2017). Tukey and Games-Howell 

post-hoc analyses with P adjusted values were performed on parametric and non-

parametric ANOVA tests, respectively. The analysis was carried out with R (R Core Team 

2018), using the “car” (Fox and Weisberg 2019), “graphics”, “emmeans” (Lenth 2018), 

“stats”, and “userfriendlyscience” (Peters 2018) packages.  

To determine if there were any plant or seed traits that were more likely to indicate 

susceptibility to pre-emergent damping-off pathogens, a Binomial Generalized Linear Mixed 
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Model (GLMM) was performed. Individual models were constructed for the P. arenaria and 

Py. irregulare treatments as they were virulent damping-off pathogens. The number of 

emergent seedlings and non-emergent seedlings were used as the binomial response 

variable and 11 soft (i.e. easily quantifiable) functional traits were identified as predictors a 

priori. Fixed covariates consisted of primary nutrient acquisition strategy (categorical with 

three levels), secondary nutrient acquisition strategy (categorical with four levels), plant 

family (categorical with three levels), seed mass (continuous), symbiotic relationship with 

nitrogen fixing bacteria (categorical with two levels), the fire response of the plant 

(categorical with two levels), seed storage mechanism (categorical with two levels), mean 

control germination time (continuous), germination treatment (categorical with three 

levels), mature plant minimum height (continuous) and mature plant maximum height 

(continuous). The negative control treatment was additionally added to the model as an 

interaction term to indicate if there were any significant changes caused by the oomycete 

treatment. Plant species was used as a random intercept within the model to account for 

the inherent differences in base line seed viability. In addition, group and replicate were 

included separately to account for the dependency structure in the randomised block 

design. All continuous covariates were standardised before fitting the model. The data-

exploration protocol followed was described by Zuur et al. (2010). Collinearity was 

determined by assessing GVIF1(2/df) values, graphical representation of the data structure 

and by calculating appropriate correlation coefficients. Fixed factors were removed 

sequentially if GVIF1(2/df) and/or correlation coefficients values were greater than two and 

0.6, respectively (Dormann et al. 2013). The models were validated by calculating a 

dispersion statistic, plotting the residuals versus fitted values, and residuals versus each 

covariate included and removed from the model (Zuur and Ieno 2016). A Tukey p-adjusted 

post-hoc analysis averaged across the other fixed factors was performed on the categorical 

factors in the model. Model selection was carried out by following the protocol outlined in 

Zuur et al. (2009). The standardised estimates and their standard errors, Z and P values were 

reported. Graphical representations of the models were constructed using the fitted mean 

and 95% confidence intervals averaged across other covariates within the optimal model. All 

statistical analysis were performed in R (R Core Team 2018), using the dplyr (Wickham et al. 

2018), effects (Fox 2003), emmeans (Lenth 2018), ggplot2 (Wickham 2016),  ICC (Wolak et 



27 
 

al. 2012), lme4 (Bates et al. 2014), MuMIn (Barton 2018), psych (Revelle 2018), and 

questionr (Barnier et al. 2018) packages. 

 

Results 

Experimental comparison 

The results of Experiments 1 and 2 were consistent despite small differences in the effect 

size of several isolates on seedling emergence and survival (Figure 2.1). Although six plant 

species were included in both experiments, two species (Eucalyptus todtiana and Melaleuca 

seriata) had substantially different seed viability and the data were discarded when 

assessing the consistency of the results between the experiments. Isolates from three 

Phytophthora species used in both experiments were considered for the comparison. The 

relative effect size of the P. arenaria and P. pseudorosacearum treatments on the 

emergence and survival of seedlings was consistent in both experiments (P > 0.05, Figure 

2.1). A significant (P ≤ 0.05) difference between the results of the experiments was 

produced by P. cinnamomi. The seedling emergence effect size of Banksia attenuata and 

Banksia telmatiaea in the P. cinnamomi treatment was significantly (P ≤ 0.05) different 

between experiments. However, the seedling survival relative effect size was not significant 

(P > 0.05) different between experiments for all four of the species tested in the P. 

cinnamomi treatment.  
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Figure 2.1: The mean effect size relative to the control treatments (Phytophthora  
treatment/control treatment × 100) and the 95% confidence interval of seedling emergence 
and survival. Four plant species and three Phytophthora species, P. arenaria (P. a.), 
P. cinnamomi (P. c.) and P. pseudorosacearum (P. p.) were included in Experiments 1 and 2, 
and used to compare the results between experiments. Experiments and measurements are 
differentiated by shape and colour; Experiment 1 (black), Experiment 2 (white), seedling 
emergence (diamond) and seedling survival (circle). 
 

Experiment 1: Pre- and post-emergent damping-off 

Seed viability varied and 14 of the 21 plant species selected germinated adequately to 

analyse the data (Table 2.4). This preliminary experiment indicated that Phytophthora spp. 

significantly reduced the emergence and survival of seed and seedlings. Phytophthora 

cinnamomi had the largest host range of the Phytophthora spp. selected, significantly 

effecting either the germination and/or survival of seven plant species (P ≤ 0.05) (Table 2.4).  

Phytophthora arenaria significantly affected five plant species (P ≤ 0.05), all of which were 
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similarly susceptible to P. cinnamomi (Table 2.4). Phytophthora rosacearum I (HAS 1658) 

and P. pseudorosacearum (VHS 24266) were the only other Phytophthora spp. to 

significantly affect the emergence and survival of seedlings (P ≤ 0.05), reducing the 

germination and survival of Banksia attenuata and Melaleuca seriata, respectively. The two 

isolates of P. pseudorosacearum produced similar results except for the emergence and 

survival of Melaleuca seriata as HSA 2530 had no significant effect (Table S2.2). The isolates 

of P. cooljarloo, P. kwonganina and P. rosacearum (HSA2529) did not significantly reduce 

the seedling emergence or survival of any plant species (Table S2.2). 

 

Table 2.4: The mean percentage of emergent and surviving seedlings sown into soils 
inoculated with Phytophthora species relative to the negative control treatment. Only plant 
species with adequate seedling emergence for analysis in Experiment 1 are displayed. 
Significant (P < 0.05) post-hoc adjusted P-values between the treatment and the negative 
control are displayed in bold and grey cells. Data for several isolates of Phytophthora species 
(P. cooljarloo, P. kwonganina, P. rosacearum and P. pseudorosacearum) are not presented 
as they had no significant impact on seedling emergence or survival. 
 Phytophthora Treatment 

 P. arenaria P. cinnamomi P. rosacearum P.  pseudorosacearum 

 CBS127950 MP 94-48 HSA1658 VHS24266 

Plant species Emergence Survival Emergence Survival Emergence Survival Emergence Survival 

Allocasuarina humilis 14 2 9 5 67 62 93 83 

Banksia attenuata 26 6 6 0 64 57 65 85 

Banksia telmatiaea 55 44 33 8 83 81 89 96 

Calothamnus quadrifidus  56 18 19 9 115 118 70 45 

Eremaea pauciflora 58 5 30 16 153 113 142 150 

Eucalyptus todtiana 25 10 108 0 100 120 117 100 

Gompholobium tomentosum 65 38 23 21 67 73 106 100 

Hypocalymma angustifolium 83 0 33 0 283 700 17 50 

Hakea trifurcata 88 83 90 80 82 78 100 99 

Leptospermum erubescens 35 20 26 27 178 233 35 27 

Melaleuca brevifolia 21 18 17 0 104 129 29 29 

Melaleuca seriata 52 15 27 1 100 74 36 35 

Patersonia occidentalis 84 81 56 56 81 77 96 91 

Xanthorrhoea preissii 129 121 40 8 78 75 125 142 

 

Experiment 2: Pre- and post-emergent damping-off 

Seed viability varied, 19 of the 30 plant species germinated adequately to analyse their data 

(Table 2.5). The oomycete treatments had a varied effect on seedling emergence of the 

species tested (plant species × oomycete treatment interaction, F72, 807 = 2.265, P ≤ 0.001; 

Table 2.5). Phytophthora arenaria (CBS 127950), P. cinnamomi (MP 94-48), and 

Py. irregulare (IK 1) had a significant (P ≤ 0.05) negative effect on the seedling emergence on 

11, 6, and 10 plant species, respectively (Table 2.5). However, P. boodjera (VHS 26806) and 



30 
 

P. pseudorosacearum (VHS 24266) treatments only negatively affected the seedling 

emergence of two and one plant species, respectively.  

The P. cinnamomi treatment significantly (P ≤ 0.05) reduced seedling emergence and 

survival of six and 11 plant species relative to the negative control, respectively. This 

indicated along with differences in effect size that P. cinnamomi may be a more virulent 

post-emergent than pre-emergent damping-off pathogen. In contrast, across the plant 

species seedling survival was only marginally lower than seedling emergence in the 

Py. irregulare treatment (Table 2.5). Phytophthora arenaria treatments substantially 

reduced the number of seedlings for most of the plant species that experienced pre-

emergent damping-off (Table 2.5). The seedling survival of plant species affected by 

P. arenaria, P. cinnamomi and Py. irregulare were reduced by 36–98%, 42–88% and 50–90%, 

respectively. Additionally, Banksia telmatiaea and Jacksonia sternbergiana in several 

oomycete treatments had significantly (P ≤ 0.05) lower numbers of surviving seedlings 

compared to controls, whilst neither had significantly lower seedling emergence.  

Banksia attenuata seedling emergence was significantly (P ≤ 0.05) reduced by all the 

oomycete treatments (Table 2.5). The survival of Banksia attenuata seedlings was not 

affected by P. pseudorosacearum and Py. irregulare, and a small number of deaths in the 

negative control treatments increased the P-values above the significance threshold. The 

seedling emergence of Banksia telmatiaea, Grevillea eriostachya, Hakea costata and Hakea 

trifurcata were not significantly (P ≥ 0.05) impacted by any of the oomycete treatments. 

Phytophthora arenaria, P. cinnamomi and Py. irregulare reduced the survival of 7–8 of the 

10 Fabaceae plant species. Myrtaceae plant species were all negatively affected by the 

oomycete treatments. The seedling emergence and survival of Eucalyptus todtiana and 

Calothamnus hirsutus were each significantly reduced by three treatments. 
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Table 2.5: The mean percentage of emergent and surviving seedlings sown into soils 
inoculated with oomycete treatments relative to the negative control. Only plant species 
with adequate seedling emergence for analysis in Experiment 1 are displayed. Significant 
(P < 0.05) post-hoc adjusted P-values between the treatment and the negative control are 
displayed in bold and grey cells. 

 Oomycete Treatment 

 

P. arenaria 
CBS127950 

P. boodjera 
VHS26806 

P. cinnamomi 
MP 94-48 

P. pseudorosacearum 
VHS24266 

Py. irregulare 
MUCC 829 

Plant Species Emergence Survival Emergence Survival Emergence Survival Emergence Survival Emergence Survival 

Acacia pulchella 42 26 94 92 59 53 89 87 85 84 
Bossiaea eriocarpa 33 33 63 58 65 54 83 83 44 42 
Daviesia nudiflora 44 29 76 74 79 58 74 72 11 10 
Gastrolobium spinosum 49 17 84 84 58 33 87 86 51 50 
Gompholobium knightianum 24 10 70 66 80 64 82 82 72 66 
Gompholobium tomentosum 35 16 93 91 54 25 89 91 26 18 
Jacksonia floribunda 66 29 86 83 44 14 96 96 42 38 
Jacksonia sternbergiana 66 22 74 67 70 33 62 62 43 38 
Kennedia prostrata 82 82 90 92 95 78 85 87 36 20 
Viminaria juncea 59 52 66 66 28 17 79 79 24 24 
Calothamnus hirsutus 32 21 91 88 62 44 86 86 32 17 
Eucalyptus todtiana 50 21 23 2 64 29 96 94 30 27 
Melaleuca seriata 48 45 97 94 26 23 94 90 26 19 
Banksia attenuata 28 2 40 16 60 12 62 65 46 42 
Banksia telmatiaea 71 64 65 62 83 44 102 105 87 62 
Grevillea eriostachya 91 91 126 122 78 13 117 117 87 65 
Hakea costata 97 97 99 99 88 84 97 97 108 107 
Hakea trifurcata 91 93 95 97 91 79 94 93 74 74 
Lambertia multiflora 60 38 90 90 61 13 99 87 93 89 

 

Re-isolation of oomycete treatments 

There were no Phytophthora or Pythium spp. isolated from the roots of dead seedlings in 

the negative control treatments across Experiments 1 and 2. Individual Phytophthora and 

Pythium spp. were routinely isolated from their respective treatments. Additionally, baiting 

soils from the punnets indicated there was no cross contamination. The dead root and stem 

tissue of 20 plant species were harvested at intervals throughout Experiment 2. The 

corresponding oomycete treatment was isolated from 60.5% of the 208 total dead seedling 

samples collected. Often an isolate could not be recovered directly due to the small amount 

of suitable tissue harvested after extensive pathogen damage. In contrast, all of the 

Phytophthora and Pythium spp. were recovered from the corresponding treatment through 

baiting at the end of the experiments.  

Seed and plant trait models 

Data exploration revealed no outliers. Several categorical covariates were unbalanced and 

this data in conjunction with collinearity testing justified their removal from the model. 

Model selection and validation tests additionally confirmed family, germination treatment 

and minimum mature plant species height were the best covariates to remove. Both models 
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fitted values and residuals were graphically checked and indicated they were valid. The 

P. arenaria and Py. irregulare models were under-dispersed, with dispersal statistics of 0.63 

and 0.52, respectively. Due to the under-dispersion, P-values are likely to be slightly 

conservative (higher). 

The optimal model indicated mean germination time was a significant (P = 0.03) indicator of 

seedling emergence success when soils were inoculated with P. arenaria (Table 2.6; Figure 

2.2A). Plant species that took longer to germinate experienced higher levels of damping-off. 

Germination time was not collinear with any of the other fixed factors. Seedling emergence 

in response to germination time, nutrient acquisition strategy, and fire response changed 

significantly (P ≤ 0.001) between the negative control and P. arenaria treatments (Table 2.6; 

Figure 2.2A–C). Significant interaction terms indicated the relationship between levels 

varied between the negative control and P. arenaria treatments, not that levels significantly 

varied within an oomycete treatment. The differences between the categories of primary 

nutrient acquisition strategy were largely driven by the decreased susceptibility of cluster 

root plant species to damping-off caused by P. arenaria, relative to arbuscular mycorrhizal 

and ectomycorrhizal plant species. The differences between fire response were increased by 

the susceptibility of resprouting plant species to P. arenaria damping-off. 

Primary nutrient acquisition strategy was collinear with family (correlation coefficient 

V = 0.79, P < 0.0001), members of the Fabaceae family were the only arbuscular mycorrhizal 

plant species, and Proteaceae plant species have cluster roots (Table 2.3). Fire response was 

not collinear with any of the covariates. The collinear fixed factors were removed from the 

model. Therefore, the result indicating primary nutrient strategy changed significantly 

between negative control and P. arenaria treatments reflects that family would predict the 

same response in the model. The P. arenaria model marginal R2 and conditional R2 were 

0.13 and 0.35, respectively.  

The optimal Py. irregulare model indicated that none of the single terms (functional traits) 

were significant (Table 2.6). Tukey post-hoc p-adjusted values averaged across the other 

terms in the model specified there was only a significant (P < 0.0001) difference between 

the negative control and Py. irregulare treatment. No other fixed factor was a significant 

indicator of seedling emergence. The interaction term suggests that the relationship 

between levels within plant species that form symbiotic relationships with N-fixing bacteria, 
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primary nutrient acquisition strategy and fire response were significantly different between 

the negative control and the Py. irregulare treatments (Table 2.6; Figure 2.3A–C). Significant 

interaction terms indicated the relationship between levels varied between the negative 

control and Py. Irregulare treatments, not that levels significantly varied within an oomycete 

treatment. The increased difference between plant species with and without N-fixing 

bacteria associations in the Py. irregulare treatment was driven by the lower seedling 

emergence of N-fixing plant species (Figure 2.3A). N-fixing plant species were collinear with 

family (correlation coefficient V = 0.89, P < 0.0001), germination treatment (correlation 

coefficient V = 0.79, P < 0.0001) and seed storage strategy (correlation coefficient V = 0.72, P 

< 0.0001). N-fixing plant species were members of Fabaceae, required a hot water 

germination treatment and store seed in the soil (Table 2.3). The variation in relationship 

between levels of primary nutrient acquisition strategy was driven by the lower seedling 

emergence of ECM plant species in the Py. irregulare treatment. Primary nutrient 

acquisition strategy was collinear with family. Similar to the P. arenaria model, resprouting 

plant species were more susceptible to damping-off by Py. irregulare and increased the 

difference between treatments. The Py. irregulare model marginal R2 and conditional R2 

were 0.14 and 0.41, respectively. 

 

Table 2.6: Estimated regression parameters, standard error, Z values and P values for the 
optimal P. arenaria and Py. irregulare Binomial GLMMs. The seedling emergence of 19 plant 
species within oomycete treatments was modelled against seed and plant traits and the 
negative control treatment. 
Model Fixed Effects Estimate Std. Error Z Value P Value Sig1 

Phytophthora Intercept 0.050 0.425 0.118 0.906  
arenaria Treatment: Control 0.495 0.195 2.539 0.011 * 
 Primary Nutrient: AM -0.580 0.506 -1.144 0.252  
 Primary Nutrient: ECM -0.828 0.590 -1.402 0.161  
 Fire Response: Resprouter -0.965 0.524 -1.842 0.065  
 Mean Germination Time -0.530 0.245 -2.166 0.030 * 
 Treatment × Primary Nutrient: AM 0.916 0.236 3.882 < 0.001 *** 
 Treatment × Primary Nutrient: ECM 0.993 0.271 3.672 < 0.001 *** 
 Treatment × Fire Response 0.799 0.241 3.312 0.001 *** 
 Treatment × Germination Time 0.426 0.113 3.769 < 0.001 *** 

Pythium Intercept 0.130 0.500 0.261 0.794  
irregulare Treatment: Control 0.253 0.234 1.084 0.278  
 Primary Nutrient: AM -0.063 0.663 -0.096 0.924  
 Primary Nutrient: ECM -0.670 0.655 -1.023 0.306  
 N-Fix: 1 -0.866 0.603 -1.436 0.151  
 Fire Response: Resprouter -0.989 0.556 -1.778 0.075  
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Model Fixed Effects Estimate Std. Error Z Value P Value Sig1 

 Treatment × Primary Nutrient: AM 0.258 0.310 0.832 0.406  
 Treatment × Primary Nutrient: ECM 0.947 0.307 3.082 0.002 ** 
 Treatment × N-Fix 1.243 0.282 4.411 < 0.001 *** 
 Treatment × Fire Response 0.947 0.263 3.603 < 0.001 *** 
1 Asterisks indicate the different levels of significance, * P ≤ 0.05, ** P ≤ 0.01, and *** P ≤ 0.001. 

 

 
Figure 2.2: The mean seedling emergence percentage with 95% confidence intervals for the 
fixed factors extracted from the P. arenaria treatment model. The seedling emergence of 
functional traits are displayed in response to the control and P. arenaria treatments. 
A. Mean germination time (days) with raw data points, B. primary nutrient acqusition 
strategy, and C. fire response. Fitted values for each of the fixed factors are avaeraged 
across other covariates in the model. Homogenous subsets (P > 0.05) are represented by 
letters. 
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Figure 2.3: The mean seedling emergence percentage with 95% confidence intervals for the 
fixed factors extracted from the Py. irregulare treatment model. The seedling emergence of 
functional traits are displayed in response to the control and Py. irregulare treatments. A. 
Plant species with N-fixing bacteria association, B. primary nutrient aqusition strategy, and C. 
fire response. Fitted values for each of the fixed factors are avaraged across other covariates 
in the model. Homogenous subsets (P > 0.05) are represented by letters. 
 

Discussion 

For the first time putatively native Phytophthora were shown to be damping-off pathogens 

of plant species found within a diverse Mediterranean plant community. Additionally, and 

not unexpectedly, the well-known invasive pathogen P. cinnamomi and the common 

Pythium irregulare were damping off pathogens. Very few of the plant and seed functional 

traits correlated with increased susceptibility to damping-off. Slower germination time was 

the only functional trait directly correlated with susceptibility to P. arenaria pre-emergent 

damping-off, and traits did not predict susceptibility to Py. irregulare. The host range of the 

Phytophthora species studied differed substantially. Phytophthora arenaria, P. cinnamomi 

and Py. irregulare were virulent and generalist damping-off pathogens, and the remaining 
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Phytophthora species negatively impacted two or fewer plant species. These Phytophthora 

species may play a substantial role in shaping the diversity of natural plant communities. 

Not all putatively native Phytophthora species were damping-off pathogens and host range 

varied substantially. The findings were consistent with studies of P. arenaria and 

P. boodjera. Simamora et al. (2017) previously found P. arenaria and P. boodjera as 

damping-off pathogens of Eucalyptus species, and they also reduced the growth and health 

of native hosts (Belhaj et al. 2018). In another study, a mix of a number of putatively native 

Phytophthora species reduced the competitive ability of Proteacea plant species (Albornoz 

et al. 2016). The least pathogenic Phytophthora species, P. cooljarloo, P. kwongonina, 

P. pseudorosacearum, and P. rosacearum are separated by a small phylogenetic distance 

and represent a cluster within Phytophthora phylogenetic clade 6 (Burgess et al. 2018c). The 

small phylogenetic distance between the clade 6 Phytophthora species may reflect their 

similar pathogenicity observed in the present study. These clade 6 Phytophthora species 

appear to have a greater impact on root health of young seedlings compared to seedling 

emergence and survival (Belhaj et al. 2018). The impact of Py. irregulare on native kwongan 

hosts was consistent with studies from managed systems, where the pathogen caused 

damping-off disease in a large number of plant species (Bahramisharif et al. 2013, Weiland 

et al. 2013, Li et al. 2016, Infante et al. 2018).  

Only one of the plant functional traits examined was associated with susceptibility to pre-

emergent damping-off pathogens. Plant species which took longer to germinate were more 

susceptible to P. arenaria as a pre-emergent damping-off; however, no traits were related 

to Py. irregulare susceptibility. This may indicate that if P. arenaria is native to the plant 

community, it could have evolved to target specific plant species that remain dormant for 

longer or are slower to emerge. Rapid germination is a defence strategy employed to avoid 

pathogens as increased exposure leads to greater disease symptoms (Dalling et al. 2011). 

The interaction term between the oomycete treatment and several functional traits was 

significant, such as Fabaceae, resprouters or ECM plant species, and suggested that 

susceptibility may vary between the levels of these functional trait groups. The functional 

trait models only analysed seedling pre-emergence because it is likely that mechanisms for 

the post-emergent infection of seedling tissues can be different to that of pre-emergent 

seed (Hering et al. 1987).  For example, several plant species used in Experiment 1 and 2 
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experienced reduced seedling emergence; however, successfully emergent seedlings were 

not affected by post-emergent damping-off, and vice-versa. The models identified 

functional traits that may indicate susceptibility to pre-emergent damping-off pathogens 

and may potentially influence the structure of plant communities in which the pathogens 

are found. 

The oomycete species tested in this study appear to be a mix of potentially host specific and 

generalist plant pathogens. Plant pathogen host specificity plays an important role in plant-

soil feedback and maintaining the diversity of plant communities (Mordecai 2011, Bever et 

al. 2015). It is difficult to determine the exact host specificity of P. pseudorosacearum and 

P. boodjera due to the limited number of plant species tested compared to the 2450 

estimated to be present in the kwongan plant community (Lamont et al. 1984). Host specific 

pathogens maintain diversity by regulating the abundance of single plant species, 

alternatively, cross species infection or spill over by a multi-host pathogen can exclude a less 

competitive susceptible plant species (Gilbert 2002). Phytophthora arenaria and 

Py. irregulare appear to show a broad host range indicating they are generalist pathogens. 

Generalist plant pathogens must impact hosts differentially, competitive plant species 

should be more affected in order to contribute to coexistence between hosts (Bever et al. 

2015). Most plant species affected by P. arenaria experienced similar losses of seedlings, 

while Py. irregulare showed varied impacts. Generalist pathogens can still lead to plant 

species coexistence if they have density-dependent distributions, mature species 

association and/or vector specific transmissions (Bever et al. 2015). Abiotic and biotic 

conditions can change the susceptibility of seedlings by increasing their health and 

decreasing the virulence of pathogens (Bell et al. 1995, Garbeva et al. 2004, Dalling et al. 

2011, Scarlett et al. 2013, Liang et al. 2015). Therefore, the putatively native generalist plant 

pathogens need to be examined in a wider variety of environmental conditions to further 

define their impacts on the diversity of natural plant communities. 

Invasive plant pathogens can reduce the diversity of natural plant communities through 

damping-off. This study confirmed P. cinnamomi reduces the number of seedlings for 

several native species. P. cinnamomi has previously been noted as an invasive damping-off 

pathogen in managed and unmanaged plant communities (Heather et al. 1977, Domínguez-

Begines et al. 2017).  Seedling susceptibility to P. cinnamomi was not consistent with the 
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response of mature plant species. For example, Acacia pulchella and Gompholobium 

tomentosum are regarded as resistant mature plant species, but were susceptible to 

damping-off. Invasive plant pathogens may remove resistant mature plant species over 

longer periods of time through damping-off. In contrast there were plant species, such as 

Hakea costata and Hakea trifurcata, known to be susceptible at mature life stages that were 

resistant to damping-off (O'Gara et al. 2005b). This is consistent with previous research in 

plant communities where the recruitment of susceptible mature plant species would still 

occur after the infestation of a site (Shearer and Dillon 1996, McDougall et al. 2002, Weste 

2003). Susceptible plant species may still occur on P. cinnamomi infested sites if they 

mature quickly and produce large quantities of seed prior to death, allowing some 

individuals survive until maturity to reproduce (Rockel et al. 1982). Seedling recruitment 

occurs after fires in Australian plant communities (Gill 1981), and P. cinnamomi appears to 

be active in the post fire environment (Moore et al. 2015). Invasive damping-off pathogens 

may remove seed and seedlings from the post fire environment; however, no studies to 

date have compared seedling regeneration in burnt and unburnt P. cinnamomi infested 

sites. The available plant species lists and estimates of community susceptibility, such as 

Shearer et al. (2004) and O'Gara et al. (2005b), may need to be further developed to include 

species susceptible to P. cinnamomi damping-off.  Understanding the impact invasive 

pathogens have on seedling establishment in natural ecosystems may provide insight into 

the long-term effects on plant communities and novel management strategies. 

The experiments confidently identified the pathogenicity of the oomycete treatments in 

glasshouse conditions. The results for plant and Phytophthora species compared between 

experiments were consistent, and the relative effect sizes of the few treatments that 

differed, only varied slightly. The results of plant species and oomycete treatments used 

only in Experiment 2, are reliable due to the consistency between experiments and the large 

number of replications. However, a single isolate of each species was included to ensure as 

many plant species in the trial as possible. Isolates of the same Phytophthora spp. can show 

varying levels of pathogenicity (Linde et al. 1999). Results from Experiment 1 showed that 

isolates of P. cooljarloo and P. pseudorosacearum showed very similar pathogenicity. 

Experiments that have previously included multiple isolates of P. arenaria showed very few 

differences in damping-off pathogenicity (Simamora et al. 2017); however, small to 
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moderate differences between isolates have been reported in saplings (Rea et al. 2011, 

Belhaj et al. 2018). Examining the virulence of these pathogens in natural field conditions 

will likely be more informative with regards to the role they play in these plant 

communities.  

The Phytophthora and Pythium damping-off pathogens identified can have a negative 

impact on industries that rely on the recruitment of native seedlings. Given the wide spread 

distributions of P. arenaria, P. boodjera, P. cinnamomi and Py. irregulare in Australia 

(Burgess et al. 2017a, Burgess et al. 2017b), these pathogens may pose a serious risk. 

Species of Phytophthora and Pythium can regularly be isolated from nursery plants (Hardy 

and Sivasithamparam 1988, Davison et al. 2006, Bienapfl and Balci 2014) and have caused 

damping-off disease (Simamora et al. 2017). Additionally, post-mining restoration could be 

impacted by these damping-off pathogens. Return of plant species in post-mining 

restoration from topsoil stored and broadcast seed may be low (Bellairs and Bell 1993, 

Hallett et al. 2014). These Phytophthora and Pythium species are distributed in kwongan 

plant communities (Rea et al. 2011, Laliberté et al. 2015, Burgess et al. 2017b). However, 

few studies have identified pathogens or quantified their impact in ecological restoration. 

Given the potential impact of these pathogens on the recruitment of native plant species 

there should be further investigation into their natural range and strict hygiene should 

implemented when dealing with the spread of these pathogens. 
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Chapter 3: Terrestrial dispersal pathways and environmental 

predictors of the distribution of Phytophthora in kwongan plant 

communities, a diverse Mediterranean shrubland 

Abstract 

Anthropogenic activities and the environment strongly influence the distribution of plant 

pathogens in natural plant communities. Native and invasive soil-borne plant pathogens can 

have a large impact on the composition of plant communities. Several recently described 

Phytophthora species are hypothesised to be native to diverse Mediterranean shrubland of 

southwest Australia. Although, little is known about the abundance, richness, and factors 

influencing the distribution of Phytophthora in these plant communities. A metabarcoding 

survey of plant roots collected from disturbed roadsides and natural kwongan vegetation 

was undertaken to determine the influence of pathogen dispersal pathways and 

environmental factors on the presence of Phytophthora species. Sources of common 

sampling biases and potential cross contamination were removed from the collection 

strategy and laboratory processing procedure to help set an accurate baseline of 

Phytophthora found in natural kwongan vegetation. Seven Phytophthora species were 

detected from 21.5% of the sample points located within the survey region. There was little 

difference in the composition of the Phytophthora community between disturbed roadsides 

and natural vegetation. Mean summer rainfall was the only significant predictor of 

Phytophthora presence; however, there was minimal variation in this variable across the 

survey region and it was strongly collinear with longitude or the distance from the coast. 

The low abundance and richness of Phytophthora spp. compared to previous studies was 

likely the result of removing sources of sampling bias and careful sample processing 

procedures. The establishment of soil-borne pathogens in roadside vegetation may be a key 

factor limiting the transmission of Phytophthora into natural plant communities. These 

results have ramifications for the monitoring of plant diseases and understanding the 

movement and presence of Phytophthora. 
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Introduction  

Phytophthora species are primarily soil-borne plant pathogens and these oomycetes are 

frequently detected within natural plant communities. Until recently, little was known about 

the occurrence and diversity of Phytophthora species within natural ecosystems; however, 

several plant disease epidemics caused by these pathogens triggered the sampling of 

natural plant communities (Hansen et al. 2012). Metabarcoding surveys of natural plant 

communities reveal high species richness and diversity (Burgess et al. 2017b, Redondo et al. 

2017, Bose et al. 2018). A lack of accurate surveys before widespread anthropogenic 

disturbance makes it difficult to distinguish between native and introduced Phytophthora 

species in natural plant communities. The introduced or native status of many Phytophthora 

species can be approximated based on indirect indicators. For example, invasive pathogens 

generally lack genetic variability due to few introduction or establishment events. However, 

many Phytophthora species reproduce asexually and subsequently have less genetic 

variability (Hansen et al. 2012). The physical characteristics of native Phytophthora species 

should match the environmental conditions (Rea et al. 2011), and multiple putative native 

species detected from the same plant community may be closely phylogenetically related 

(Burgess et al. 2018c). Phytophthora native to a region tend not to be commonly detected 

from natural vegetation on other continents (Jung et al. 2016) nor have many associations 

with agricultural or nursery industries (Burgess et al. 2017b, Redondo et al. 2017). Surveys 

of natural plant communities worldwide are critical to determine the native range 

Phytophthora species due to their global distributions. 

Anthropogenic pathways disperse Phytophthora species within landscapes and to new 

regions. The movement of soil and plant stock during exploration, colonisation in the early 

20th century potentially introduced many Phytophthora species to new regions of the world 

(Brasier 2008, Scott et al. 2013). Despite modern biosecurity, nursery trade of ornamental 

plants is still a common source for the introduction of plant pathogens into urban 

environments (Hulbert et al. 2017). Infected plant stock may introduce pathogens into 

agricultural and forestry land uses, or identify native Phytophthora species through the 

movement and monitoring of exotic host plant species (Wingfield et al. 2015, Hulbert et al. 

2017). Phytophthora may become established within disturbed vegetation, such as urban 

nature reserves, ecological restoration and amenity spaces through the out-planting of 
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infested nursery stock (Barber et al. 2013, Jung et al. 2016, Simamora et al. 2018). Urban 

and agricultural environments become a dispersal source for Phytophthora species if the 

pathogens become established amongst susceptible hosts (Lombaert et al. 2010). 

Introduced plant pathogens are spread into and within natural environments through the 

accidental movement of infested soil by earth moving machinery (Podger 1972, Colquhoun 

and Hardy 2000), vehicles (Jules et al. 2002) and shoes and equipment along recreational 

trails (Jules et al. 2002, Davidson et al. 2005, Cushman and Meentemeyer 2008). Once 

established on the edge or inside protected areas, Phytophthora species may move into 

plant communities via hyphal growth within the roots of susceptible hosts, surface and 

subsurface water flows, erosion and animal vectors (Ristaino and Gumpertz 2000). 

Anthropogenic dispersal pathways are the primary dispersal mechanism for many 

Phytophthora species into natural plant communities. 

Climate and edaphic conditions play a key role in the establishment of Phytophthora species 

throughout the landscape. Temperature and moisture influence the reproduction, growth 

and survival of Phytophthora species (Erwin and Ribeiro 1996, Hardham and Blackman 

2018). For example, the distribution of the destructive and invasive P. cinnamomi in 

Australia is primarily constrained by soil moisture driven by precipitation (Burgess et al. 

2017a). Edaphic factors (e.g. pH) may limit disease expression and the establishment of 

Phytophthora (Alabouvette et al. 1996, Shearer and Crane 2014, Burgess et al. 2017a). 

Environmental filtering can determine if Phytophthora species survive along climate 

gradients in the landscape (Redondo et al. 2018); however, dispersal limitation and 

competitive exclusion also influence their establishment (Kraft et al. 2015, Cadotte and 

Tucker 2017). Some Phytophthora functional traits have been correlated with the 

establishment of invasive species and the presence of species in harsh cold and dry 

environments (Redondo et al. 2017, 2018). Within Australian natural plant communities, 

mean precipitation of the warmest quarter and mean temperature of the wettest quarter 

were the strongest climate predictors of Phytophthora community structure (Burgess et al. 

2018b).  

Phytophthora species are frequently detected in kwongan plant communities on the 

Geraldton Sandplain Biogeographic region in the southwest of Australia. In a recent 

metabarcoding survey, a total of 27 Phytophthora phylotypes were detected from a small 
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number of niche water gaining kwongan sites (Burgess et al. 2017b, Table S3.4). 

Phytophthora arenaria, P. cooljarloo, P. kwongonina and P. pseudorosacearum were first 

detected through baiting methods from kwongan vegetation and are hypothesised to be 

native to this plant community (Rea et al. 2011, Burgess et al. 2017b, Burgess et al. 2018c). 

The phenotypic traits, such as thick-walled oospores, homothallism, and tolerance to high 

temperatures of these Phytophthora species found in kwongan plant communities may be 

adaptations to the hot and dry Mediterranean summers of this region (Rea et al. 2011, 

Burgess et al. 2018c). Sample collection within the kwongan plant communities has 

favoured symptomatic vegetation located within disturbed roadside plant communities 

(Burgess et al. 2017a, Figure S3.1) and this bias has been identified in past surveys of 

P. cinnamomi and may skew the frequency of detection (Podger et al. 1990). Phytophthora 

cinnamomi has been the most commonly detected species (Burgess et al. 2017a) and 

substantially reduces the species richness, diversity and structure of kwongan plant 

communities (Wills 1993, Shearer et al. 2007, Barrett and Rathbone 2018). However, native 

oomycetes and Phytophthora are now hypothesised to drive plant-soil feedback 

mechanisms and contribute to the maintenance of the diversity of kwongan plant 

communities (Albornoz et al. 2016, Teste et al. 2017, Lambers et al. 2018). The distribution 

and abundance of several Phytophthora species that may shape the structure and diversity 

of kwongan plant communities are not fully quantified. 

Protected areas of kwongan plant communities offer an opportunity to compare the 

Phytophthora species associated with dispersal pathways and natural vegetation in a 

Mediterranean climate. The closest city, Perth Western Australia (WA), has high 

Phytophthora species richness within urban nature reserves and amenity spaces (Barber et 

al. 2013, Khdiar 2018), and may act as a source for new infestations at protected areas in 

the region. Climate and edaphic factors appear to play a role in the structure of 

Phytophthora communities and the distribution of species in southwest Australia. Biases in 

the sampling of Phytophthora (Table S3.4), limitations of baiting detection methodologies 

(Davison and Tay 2005, O’Brien et al. 2009), and a narrow range of previous metabarcoding 

surveys have made it difficult to accurately determine the abundance, richness and status of 

Phytophthora species. Comparing the Phytophthora communities associated with dispersal 

pathways and natural vegetation may identify recent introductions and clarify the status of 
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putatively native species found within the region. This will benefit land managers as they 

can implement management and hygiene procedures to stop the further spread of 

potentially invasive Phytophthora species through the landscape. Furthermore, determining 

the abundance of native Phytophthora as opposed to just their presence in an area, may 

more accurately reflect their potential influence on the diversity of natural plant 

communities. 

Using eDNA and metabarcoding to detect Phytophthora species, this study aimed to answer 

the following questions: 

1. What is the species richness and abundance of Phytophthora in kwongan plant 

communities? 

2. How does the Phytophthora richness, abundance and community structure change 

between natural plant communities and disturbed vegetation alongside dispersal 

pathways? 

3. What influence do environmental factors have on the presence of Phytophthora 

species within the study region? 

 

Methods 

Sample collection and preparation 

All of the sites (n = 20) were located in kwongan and Banksia woodland plant communities 

north of Perth, WA (Figure 3.1, Table S3.1). The region has a Mediterranean climate, 

nutrient deficient soils, and high floristic diversity and endemism (Hopper and Gioia 2004, 

Zemunik et al. 2016). The Department of Conservation, Biodiversity and Attractions (DCBA) 

approved a permit for the collection of root samples from protected areas under their 

management (CE005666). Main Roads Western Australia (MRWA) and local shires permitted 

sampling within roadside reserves. Sites and subsites were selected using aerial images prior 

to field visits to avoid sampling biases. The Dieback Information Delivery and Management 

System (DIDMS), an online Phytophthora sampling location database, was used to select 

areas previously not sampled for Phytophthora species 

(https://didms.gaiaresources.com.au).  
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At each site, root samples were collected from plants at disturbed and natural vegetation 

subsites. Disturbed subsites were located within 15 m of road edges where anthropogenic 

actives may have distributed Phytophthora species, such as unsealed and sealed roads, 

vehicle tracks, fire breaks, and walking trails. Whilst natural vegetation sites were more than 

150m from roads and tracks, and displayed no signs of invasive Phytophthora dieback 

disease fronts. Aerial images and historic tracks recorded by Crook et al. (1982) were 

examined for disturbance in natural vegetation to reduce the likelihood of a miss-classified 

natural vegetation subsite.  

The sites were sampled in July 2018. Root samples (n = 200) were collected from 20 sites, of 

the 10 samples collected at each site, five were taken at each of the disturbed and natural 

subsites. It was important to not bulk root samples, as the abundance of Phytophthora 

species at each site was important information with respect to understanding their potential 

role in the ecosystem. At individual sites, the disturbed and natural subsites shared similar 

plant communities. The plant communities could vary substantially between sites because 

of the distances travelled. Plant species were selected from a mix of families and life-forms 

(tree, shrub, grasses, and herbs) but were all common around the sampling point and within 

the community. Individual plants sampled were healthy and unhealthy. Sample points 

within a subsite were separated by 50 m, and approximately 20 g of fine roots (diameter < 5 

mm) were collected from the rhizosphere of five plant species within a 5 m radius of a 

sample point and combined (100 g fresh weight). While all effort was made to collect from 

an individual, due to the density of roots within the rhizosphere, the collection of root 

material from other plant species likely occurred. Additionally, the variation inherent in the 

plant community and distance between points made it difficult to constantly sample the 

same five plant species at each sampling point.  

Prior to processing and after collection, root samples were stored in paper bags for a 

maximum for ten days at room temperature (17°C ± 2). Root samples were air dried in a 

35°C temperature-controlled room for an hour, shaken within the bag, and then washed to 

remove the remaining soil. Roots were cleaned with water in disposable containers and 

processed in a laboratory that had never contained Phytophthora or soil samples. Cleaned 

roots were mixed, a sub-sample of 30 g was separated and then stored frozen at -20°C. Each 

of the frozen root sub-samples were then cut into a homogenous mixture using a disposable 
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razor blade within a plastic Petri dish, 50 mg of root material was transferred to a bead tube 

for grinding and then stored at -20°C. 

 

 

Figure 3.1: The location and distribution of sampling sites in Western Australia.The sites 
are located within the region highlighted in red on the inset map of Western Australia. 

 

eDNA extraction and HTS-sequencing 

DNA was extracted using the DNeasy® PowerPlant® Pro Kit by Qiagen according to the 

manufacturer’s protocol. Final elutions used 60 µL of TE buffer. Each batch of extractions 

contained a negative control. A single batch of Phytophthora eDNA extractions were 

previously performed in the laboratory, reducing the risk of cross contamination compared 

to high traffic laboratories. Disposable utensils or equipment that had never previously been 
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used for Phytophthora eDNA extraction were used. All DNA was stored at -20°C. All actions 

were carried out as described in the Illumina protocol (Illumina Demonstrated Protocols: 

16S Metagenomic Sequencing Library Preparation). ITS 18s rRNA gene sequences (~250 bp) 

were amplified by a nested PCR. The first PCR used Phytophthora specific primers 18h2f and 

5.8RBis. The first round PCR tubes contained 12.5 μl of PCR buffer KAPA HiFi HotStart 

ReadyMix (KAPA Biosystems), 8 μl of PCR grade water, 1 μM of each primer and 2.5 μl of 

genomic DNA. A second nested PCR used ITS6 and 5.8S-IR primers (Català et al. 2015) with 

Illumina MiSeq adapter sequences attached to the 5’ end. The second round of PCR tubes 

contained 1 μl of PCR product. PCR cycling conditions were 94°C for 2 min, 30 cycles of 95°C 

for 20 s, 60°C for 25 s and 72°C for 1 min before a final 72°C for 7 min and holding at 4°C. 

First round PCR was conducted in duplicate and second round RCR products were combined 

based on intensity of bands on 2% agarose gels. Extraction negatives were run first to test 

for contamination. Negative PCR controls were checked and discarded if bands were 

visualised.  

Amplicon library preparation was performed according to recommended protocols (Illumina 

Demonstrated Protocol: 16S Metagenomic Sequencing Library Preparation). Uniquely 

indexed libraries were pooled for the sequencing run, which was performed on an 

Illumina MiSeq using 500-cycle V2 chemistry (250 bp paired-end reads) following the 

manufacturer’s recommendations. 

Bioinformatics analysis 

Paired-end reads were imported and relabelled in Geneious Prime 2019.0.4 

(https://www.geneious.com). Forward and reverse reads were merged using USEARCH 

v11.0.667 (Edgar 2010). Merged pairs < 175 bp, > 500 bp, > 10 miss matches, > 1% expected 

errors were discarded in the merging or quality filtering process. To prevent mismatches, 

the forward and reverse ends of the sequences were trimmed by 53 and 23 bp, respectively. 

Chimeras were discarded from the dataset. The reads were clustered with the UNOISE 

algorithm into zero-radius operational taxonomic units (ZOTUs) (Edgar and Flyvbjerg 2015). 

Individual sequences were assigned a ZOTU, and a ZOTU table was created with USEARCH 

v11.0.667. 

To assign species names, ZOTUs were first imported into Geneious Prime and consensus 

sequences were aligned. Phylotypes were first matched to a species through an internal 
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blast search of a local reference database containing described, designated but undescribed 

taxa, and phylotypes previously detected only through metabarcoding surveys. Additionally, 

a GenBank database search was conducted for phylotypes that were not identified through 

the first curated search. Phylogenetic analyses within clades were performed using 

confirmed sequences of Phytophthora species with Geneious tree builder. Any phylotype 

that did not correspond with a known species was designated as a putative new species. 

Phylotypes corresponding to new or undescribed species were labelled as Phytophthora sp. 

nov followed by the clade number. The identified Phytophthora species are considered 

phylotypes due to their detection through sequencing compared to the collection of living 

isolates. 

Site variables and predictors of Phytophthora species  

Soil and climate variables and site characteristics were collected for a statistical analysis to 

determine if these covariates predicted Phytophthora presence (Table 3.1). Soil properties 

at a depth of 5–15cm and 15–30cm were extracted from the Soil and Landscape Grid of 

Australia (SLGA) with a 90 m2 resolution using the slga R package (Grundy et al. 2015, 

O'Brien 2019). Simulated mean monthly soil moisture and temperature between 1960 and 

2014 at a resolution of 5 km2 was collected from the Australian Water Availability Project 

(AWAP) (Jones et al. 2009). The mean summer (December to February), winter (June to 

August) and annual soil moisture and temperature was calculated from the AWAP dataset. 

Observational climate variables were extracted from a dataset of monthly gridded 

maximum and minimum air temperatures and precipitation produced by the Australian 

Bureau of Meteorology (BOM) for the AWAP (Raupach et al. 2009). The BOM variables were 

gridded at 5 km2 and interpolated from a network of weather stations. The BOM monthly 

observations between 1970 and 2016 were used to calculate mean summer, winter and 

annual maximum and minimum temperature and precipitation covariates (Table 3.1). Site 

characteristics such as subsite (disturbed or natural), distance from disturbance, latitude, 

longitude, elevation above mean sea level and vegetation type were included in the analysis 

(Table 3.1).  
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Table 3.1: The soil, climate and site characteristic variables collected and extracted from 
databases and used for modelling the presence of Phytophthora species. The statistical 
analysis contained the variables in bold after testing for collinearity. 
Variable type Predictor Variable Measurement Source1 Resolution 

     
Continuous Soil pH (5 - 15cm; 15 - 30cm)  SLGA 90m2 

Continuous Soil available water capacity (5 - 15cm; 15 - 30cm) % SLGA 90m2 
Continuous Soil electrical conductivity (5 - 15cm; 15 - 30cm) dS/m SLGA 90m2 
Continuous Soil sand (5 - 15cm; 15 - 30cm) % SLGA 90m2 
Continuous Soil silt (5 - 15cm; 15 - 30cm) % SLGA 90m2 
Continuous Soil clay (5 - 15cm; 15 - 30cm) % SLGA 90m2 
     
Continuous Mean summer precipitation mm BOM 5km2 
Continuous Mean winter precipitation mm BOM 5km2 
Continuous Mean annual precipitation mm BOM 5km2 
Continuous Mean summer temperature maximum oC BOM 5km2 
Continuous Mean winter temperature maximum oC BOM 5km2 
Continuous Mean annual temperature maximum oC BOM 5km2 
Continuous Mean summer temperature minimum oC BOM 5km2 
Continuous Mean winter temperature minimum oC BOM 5km2 

Continuous Mean annual temperature minimum oC BOM 5km2 
     
Continuous Mean summer soil temperature (grass root density 0 - 0.5m) oC AWAP 5km2 
Continuous Mean winter soil temperature (grass root density 0 - 0.5m) oC AWAP 5km2 
Continuous Mean annual soil temperature (grass root density 0 - 0.5m) oC AWAP 5km2 
Continuous Mean summer soil moisture relative to saturation (grass root density 0 - 0.5m) Proportion (0 - 1) AWAP 5km2 
Continuous Mean winter soil moisture relative to saturation (grass root density 0 - 0.5m) Proportion (0 - 1) AWAP 5km2 
Continuous Mean annual soil moisture relative to saturation (grass root density 0 - 0.5m) Proportion (0 - 1) AWAP 5km2 
     
Continuous Latitude (S30.97036 to S29.74415)    
Continuous Longitude (E115.05681 to E115.61680)    
Continuous Elevation m.a.m.s.l2   
Continuous Distance from disturbance m   
Categorical Subsite (disturbed/natural)    
Categorical Plant community (Banksia woodland/kwongan)    
     

1 Sources: Soil and Land Grid of Australia (SLGA), Bureau of Meteorology (BOM) and Australian Water Availability Project (AWAP) 
2 Metres above mean sea level. 

 

Statistical Analysis 

Statistical analyses were used to determine if subsite (disturbed or natural) influenced the 

community of Phytophthora species. Samples with at least one detection were included in 

the analyses. Unconstrained ordination using non-metric multidimensional scaling (NMDS) 

was performed with the metaMDS function in the vegan R package (Oksanen et al. 2018). 

The NMDS coordinates for each sample were generated using both Jaccard (presence) and 

Bray-Curtis (abundance) indices in two dimensions. All NMDS coordinates generated using 

the Jaccard index were randomly jittered by 0.05 along the x and y axes to display the 

abundance of points plotted at the same location representing identical communities. A 

dummy species was added to each sample point or site due to denuded assemblages (Clarke 

et al. 2006). The NMDS coordinates were extracted and plotted using the GGplot2 R 

package (Wickham 2016). Ellipses were drawn into plots to display the extent of the 

Phytophthora communities with 95% confidence intervals for the site type using the 
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‘stat_ellipse’ function. A permutational multivariate analysis of variance (permanova) was 

performed to determine if subsite significantly influenced the composition of Phytophthora 

communities using the adonis function in the vegan R package. The dissimilarity matrices 

were produced with the Jaccard and Bray-Curtis method using the vegdist function. The 

permanova assumption of homogeneity of multivariate dispersions between factor levels 

was assessed using the betadisper and permutest functions in the vegan R package. 

A binomial generalised linear mixed effect model (GLMM) was performed to determine if 

the presence of Phytophthora was correlated with climate, soil and site characteristics. A 

binary analysis was opted for over a Poisson response variable (Phytophthora species 

richness) due to the rarity of multiple detections from a single sample point. Two binomial 

GLMM analyses were performed on the presence of all Phytophthora species and the 

P. versiformis complex at each sample point. In both analyses, subsite was used as a random 

intercept to account for the dependency structure associated with observations from a 

similar location. The model included predictor variables soil, climate and site characteristics 

as fixed effects terms (Table 3.1). The data exploration and model validation protocols were 

conducted as outlined by Zuur et al. (2010) and Zuur and Ieno (2016), respectively. 

Correlation coefficients appropriate for the variable types, graphical representation, and 

variance inflation factor (VIF) values were used to assess the collinearity of covariates in 

order to prevent conservative P-values (Zuur et al. 2010). The model did not contain 

covariates if correlation coefficients were > 0.6 or < -0.6 (Dormann et al. 2013), or VIF values 

were above 3 (O’Brien 2007). The optimal model was selected by ranking the combinations 

of fixed effects in the model (Zuur et al. 2009), using AICc values with the dredge function in 

the MuMIn R package (Barton 2019). All statistical analyses were conducted in R (R Core 

Team 2018), using the dplyr (Wickham et al. 2018), effects (Fox 2003), emmeans (Lenth 

2018), ggplot2 (Wickham 2016), and lme4 (Bates et al. 2014) packages. 

 

Results 

Sequencing throughput and quality control 

A total of 233,172 reads were obtained from the run and 35.7% of wells produced good 

quality reads. From the 84.8% of read pairs that were merged successfully, the average 
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merged read length was 292 bp. The genus Phytophthora corresponded to 39.2% of reads. 

On average, there were 457 ± 123 Phytophthora reads per sample. The remaining reads 

were attributed to other oomycetes, Peronospora (6.5%) and Pythium (21.3%) phylotypes 

were identified (Table S3.4) but were not included in the statistical analysis. Three groups of 

phylotypes could not be separated on the basis of the ITS1 phylogeny, (1) P. citricola and 

P. pachypleura; (2) P. versiformis, P. quercina and P. ‘aff. ohioensis’; and (3) P. inundata, 

P. condilina, and P. humicola. The word ‘complex’ has been placed behind the first 

Phytophthora species listed when referencing these groups that could not be separated on 

the basis of the ITS1 phylogeny. 

Phytophthora species detected from root eDNA 

A total of seven distinct phylotypes were detected that primarily matched a species or a 

complex (Table 3.2, Table S3.2). The phylotypes corresponding to P. arenaria, P. cinnamomi, 

P. citricola complex, P. elongata, P. inundata complex, and P. versiformis complex have 

previously been recorded in WA. This was the first study to record P. sp. nov 10 in Western 

Australia, it had previously only been detected in Queensland. 

Phytophthora was detected at 18 (90%) sites and 43 (21.5%) sample points (Table 3.2). On 

average, 1.45 different phylotypes were detected at each site. The mean alpha diversity for 

disturbed and natural sites was 1.6 and 1.0, respectively. The detection of multiple 

phylotypes from a single sample point was uncommon, and seven (3.5%) of sample points 

contained either two or three phylotypes. Phytophthora was detected more frequently at 

disturbed than natural subsites (Table 3.2). Phytophthora phylotypes were detected from 

24% of disturbed and 13% of natural subsites. Introduced Phytophthora phylotypes were 

detected at 3% and 4% of disturbed and natural subsites, respectively. 

Several clades of Phytophthora were not represented in the survey. There were no 

detections of phylotypes belonging to Phytophthora Clades 1, 5, 8 and 9 (Table 3.2), and 

multiple phylotypes were only identified from Clade 2. The majority of the phylotypes were 

rare, five were detected at three or fewer sites (Table 3.2). The most common phylotype 

corresponded to the P. versiformis complex and was detected at 65% of sites and from 

14.5% of sample points, followed by P. elongata which was found at 25% of sites and from 

5% of sample points (Table 3.2). The phylotype corresponding to the invasive P. cinnamomi 

was detected in five samples, three of which were from the same site (Table 3.2). 



52 
 

The proportion of each Phytophthora species at disturbed and natural sites was similar. The 

phylotype corresponding to the P. versiformis complex comprised 53% and 60% of the total 

detections in disturbed and natural plant communities, respectively (Figure 3.2). Similarly, 

P. elongata did not differ substantially between the site types. Both P. arenaria and 

P. sp. nov 10 were not detected at natural sites (Figure 3.2; Table 3.2), and all species, apart 

from P. elongata, increased their representation as a proportion of total species in the 

natural site communities (Figure 3.2B).  

 

Table 3.2: The phylotypes and corresponding Phytophthora species detected in kwongan 
and Banksia woodland plant communities in southwest Australia. The clade, first record in 
Australia, status, count and percentage of detections at sites and sample points for 
individual Phytophthora species are displayed. The number of detections at disturbed and 
natural subsite sample points is included. The total number of Phytophthora detected at 
sites and sample points is summarised below. 
    Sites Sample points 

Phytophthora species Clade First record Status1 # % # % Disturbed Natural 

          
P. citricola complex 2 1971 Invasive 2 10 2 1 1 1 

P. elongata 2 1989 Native? 5 25 10 5 7 3 

P. versiformis complex 3 2014 Native 14 65 29 14.5 17 12 

P. arenaria 4 1986 Native 1 5 2 1 2 0 

P. inundata complex 6 1984  2 10 2 1 1 1 

P. cinnamomi 7 1947 Invasive 3 15 5 2.5 2 3 

P. sp. nov 10 10 2017 Native? 2 10 2 1 2 0 

          

Total    18 90 43 21.5 24 17 

n samples    20  200  100 100 

          
1  The current status of Phytophthora species in Australia designated by Burgess et al. (2017b), a phylotype 

complex corresponding to a mix of putative native and invasive Phytophthora was not categorised.  

 

 

Figure 3.2: The proportion of Phytophthora species detected at A. disturbed and B. natural 
subsites. 
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Phytophthora community analysis 

The presence permanova determined there was no significant (F = 0.5384, R2 = 0.0129, P = 

0.7065) difference between Phytophthora communities associated with natural and 

disturbed subsites (Figure 3.3A). Additionally, the permanova run using the abundance of 

Phytophthora reads produced similar results, and subsite was not significant (F = 1.1585, 

R2 = 0.0275, P = 0.2777) (Figure 3.3B). 

 

 
Figure 3.3: The non-metric multidimensional scaling ordination plots displaying the 
Phytophthora communities associated with natural and disturbed site types using A. 
Jaccard (presence); and B. Bray-Curtis (abundance) dissimilarity indices. Small clusters of 
points in figure A. represent the same community of Phytophthora spp. as positions were 
randomly jittered. 
 

Predictors of Phytophthora presence 

Binomial GLMMs were used to determine if soil, climate or site characteristics predicted the 

presence of any Phytophthora species and P. versiformis complex, the most commonly 

detected species. Data exploration revealed there were no outliers, non-linear relationships, 

or unbalanced covariates. Covariates were removed during model selection if they did not 

contribute to the explanation of the response variable. The selection of the optimal 

P. versiformis complex model indicated that none of the fixed effects helped explain the 

variation in the response variable or were significant. The optimal Phytophthora model 

contained four covariates after the selection process. The dispersion statistic was 0.98 and 

indicated that the optimal Phytophthora model had unbiased estimated parameters and 
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accurate standard errors. Patterns were not detected in the graphical representation of the 

Pearson residuals versus the fitted values and the included and excluded covariates.  

The optimal binomial GLMM indicated that mean summer precipitation was a significant 

(P = 0.036) predictor of Phytophthora presence and absence (Table 3.3). The probability of 

detecting a Phytophthora species was 21.2% higher at sample points with the greatest mean 

summer precipitation (35 mm) compared to the lowest (27 mm) (Figure 3.4A–B). Mean 

summer precipitation was highly collinear with longitude (correlation coefficient r = 0.92, 

P < 0.001; Figure 3.4A, C). Additionally, mean summer precipitation was moderately 

collinear with elevation (correlation coefficient r = 0.59, P < 0.001) and negatively correlated 

with summer, winter and annual minimum temperatures and maximum temperatures 

during winter. The correlation between these covariates indicates summer precipitation and 

Phytophthora presence increased with distance from the coast. The site type (disturbed or 

natural) had no significant (P = 0.17) effect on the presence of Phytophthora. No other 

covariates were significant in the optimal model (Table 3.3). The Phytophthora presence 

model marginal and conditional R2 values were 0.09 and 0.12, respectively.  

 

Table 3.3: The presence and absence of all Phytophthora species detected in the survey 
region modelled against soil, climate and site characteristic variables. The covariates, 
estimated regression parameters, standard error, Z values and P values of the optimal 
Binomial GLMM are displayed. 
Fixed Effects Estimate Std. error Z value P-value Sig 

      
Intercept -1.1555 0.2684 -4.304 1.68e-05 *** 
Electrical conductivity 0.3107 0.1811 1.716 0.0861  
Subsite: Natural -0.5182 0.3779 -1.371 0.1703  
Mean summer precipitation 0.4099 0.1959 2.092 0.0364 * 
Mean summer soil moisture 0.2794 0.1634 1.709 0.0874  
      
Asterisks indicate the different levels of significance, * P ≤ 0.05, ** P ≤ 0.01, and *** P ≤ 0.001. 
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Figure 3.4:  A. Mean summer precipitation and the number of Phytophthora detections 
made at each site. B. The predicted probability of Phytophthora presence with 95% 
confidence intervals in relation to mean summer precipitation. C. The relationship between 
the longitude and the mean summer precipitation at sample points. 
 

Discussion 

Metabarcoding of eDNA extracted from the roots of plant species within a hyper-diverse 

Mediterranean type ecosystem revealed low Phytophthora richness and abundance. The 

survey detected seven distinct Phytophthora phylotypes corresponding to a species, of 

which P. versiformis complex was the only commonly detected species. The composition of 

Phytophthora communities at disturbed and natural subsites did not differ significantly; 

however, detections and species abundance were higher at disturbed sites. Mean summer 
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precipitation, highly correlated with longitude, was the only significant indicator of the 

presence of Phytophthora within the survey region. The Phytophthora species richness and 

abundance were a strong departure from the findings of previous studies and the 

hypothesised distribution of Phytophthora species in the region. 

The results of metabarcoding Phytophthora surveys conducted within natural vegetation 

and the same region have produced conflicting results. Burgess et al. (2017b) collected 

bulked soil samples from 23 sites within the region and detected 27 Phytophthora 

phylotypes with an estimated Jackknife species richness of 31.78 (Table S3.4). Seven 

Phytophthora phylotypes were detected in the current survey with an identical Jackknife 

estimation of species richness (Table S3.4). The stark difference between the current and 

previous metabarcoding survey indicate roots may be a biological filter for many species, or 

variation in the location of sites, sample material and processing procedure produce 

substantially different results. Phytophthora species can be poor saprophytes (McCarren 

2006), infect the roots of asymptomatic plant species (Crone et al. 2013, Belhaj et al. 2018), 

and spread through dry natural environments with permeable soils by root to root contact 

(Hill et al. 1994). Therefore, it is unlikely that the large number of Phytophthora species 

detected by Burgess et al. (2017b) are surviving exclusively in remote natural soils without 

the infection of roots. In the current study, sample sites were primarily located in dry 

kwongan and Banksia woodland plant communities; in contrast, Burgess et al. (2017b) 

mainly processed samples from water gaining sites which are not representative of the plant 

community as a whole (Tsakalos et al. 2018), and more likely to contain Phytophthora due 

to favourable environmental conditions and the transportation of spores via water flows. 

Sieving or grinding soil samples may have caused cross-contamination during the processing 

procedure employed by Burgess et al. (2017b). Whilst in the current study, the collection of 

root material avoided sieving and grinding activities, and utilised disposable equipment to 

considerably reduce the risk of cross-contamination. Sampling biases and processing 

procedures may substantially influence the outcome of metabarcoding HTS surveys, and 

further testing is required to quantify their impact on reported Phytophthora communities. 

Phytophthora community structure and the number of introduced phylotype detections 

were similar between natural and disturbed roadside vegetation. The structure of the 

Phytophthora community did not change significantly between the natural and disturbed 
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roadside plant communities. Similar Phytophthora communities were detected when 

comparing natural and roadside vegetation in an Australian alpine environment (Khaliq 

2019). The consistent structure between natural and disturbed subsites indicates that once 

introduced Phytophthora species establish within roadside plant communities they easily 

disperse into natural vegetation. Putatively native Phytophthora phylotypes were more 

abundant in disturbed vegetation compared to natural plant communities; however, subsite 

was not a significant predictor of Phytophthora presence. The transmission of both native 

and introduced Phytophthora species likely provides more opportunities to infect plant 

hosts adjacent to dispersal pathways. Anthropogenic dispersal pathways, such as roads alter 

the soil chemical properties and composition of the below-ground microbial community 

(Trombulak and Frissell 2000, Neher et al. 2013, Neher et al. 2017). Studies of roadside 

conditions in Western Australia suggests higher concentrations of mineral nutrients and soil 

moisture for longer periods may increase the abundance and health of Banksia species 

(Lamont et al. 1994a, Lamont et al. 1994b). However, changes to abiotic and biotic 

environmental conditions by disturbance may increase plant stress for some species and 

subsequently, susceptibility to pathogen infection (Cobb and Metz 2017). For example, 

disturbed roadsides are associated with increased canker disease incidence in marri 

(Corymbia calophylla) by the native pathogen Quambalaria coyrecup in the south-west of 

WA (Paap et al. 2017a, Paap et al. 2018). Sampling the roots of asymptomatic roadside 

vegetation in a dry Mediterranean plant community does not affect the observed 

Phytophthora community structure, but these environments may increase the reported 

species abundance due to plant stress and higher soil moisture. 

The period of summer drought appears to be a limiting factor in the distribution of 

Phytophthora species in a dry Mediterranean climate. Mean summer precipitation was the 

only significant predictor of the presence of Phytophthora at a site. Sites with the highest 

mean summer precipitation had a higher probability of Phytophthora detection. However, 

mean summer precipitation did not vary substantially across the survey region, and the 

location and quantity of summer rainfall are stochastic between years. The term was highly 

collinear with other covariates, such as longitude which may reflect changes in the 

vegetation community (Laliberté et al. 2014, Zemunik et al. 2016) or land use and traffic. 

Therefore, it is difficult to confidently hypothesise summer precipitation is a key driver of 
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the presence of Phytophthora species. In other studies, precipitation is the primary factor 

shaping the distribution and community composition of Phytophthora species. 

Phytophthora cinnamomi is constrained by precipitation in the southwest of Australia 

(Burgess et al. 2017a), and the mean precipitation of the warmest quarter was the strongest 

climate predictor of Phytophthora community in Australia (Burgess et al. 2018b). Increased 

aridity is linked to the recovery of P. ramorum from hosts (Lione et al. 2017). Precipitation 

appears to be a stronger driver than temperature in shaping terrestrial Phytophthora 

communities in colder climates (Redondo et al. 2018). The low abundance and richness of 

Phytophthora species within the survey region is likely a result of the low annual and 

summer precipitation compared to other regions of southwest of Australia and the world. 

An extensive survey or a review of Phytophthora species detected in southwest of Australia 

is required to accurately determine the influence of a Mediterranean climate on the 

functional diversity and distribution of Phytophthora. 

The status of Phytophthora species found in the survey region can be more accurately 

estimated based on the frequency and location of detections. The P. versiformis complex 

was the only abundant native phylotype and was first found to be distributed across the 

southwest of Australia in natural and disturbed vegetation (Paap et al. 2017c, Khdiar 2018). 

Although, P. versiformis cannot be separated from P. quercina and P. ohioensis based on 

ITS1, their detection is doubtful as these species have not been reported within Australia 

(Paap et al. 2017c, Jung et al. 2018). Phytophthora versiformis was associated with marri 

and was first detected on the Geraldton Sandplain from the roots of this tree species (Paap 

et al. 2017c, Croeser et al. 2018). However, P. versiformis appears to be weakly pathogenic 

to native hosts and not a major predisposing factor to canker disease experienced by marri 

(Paap et al. 2017a, Croeser et al. 2018). Phytophthora versiformis is probably native to 

kwongan vegetation; however, it may have been distributed widely through the study 

region over the past century from another plant community in WA. Conversely, current 

evidence suggests P. elongata may be introduced into the survey region. Phytophthora 

elongata was recently recognised as a distinct species, and it is hypothesised to have been 

introduced to the Jarrah forest of WA due to a clonal population structure (Rea et al. 2010). 

This species has primarily been detected in Australia (eastern states and WA), but has been 

identified in a North American nursery and South African vegetation (Bienapfl and Balci 



59 
 

2014, Bose et al. 2018). Phytophthora elongata was detected more often along dispersal 

pathways and was infrequent in natural vegetation compared to P. versiformis complex. The 

distribution and frequency of detection support the hypothesis that P. elongata was 

introduced into WA, and was likely transmitted into the survey region from a source within 

the state. 

Phytophthora species previously hypothesised to be native to kwongan plant communities, 

such as P. arenaria, P. constricta, and members of clade 6a were absent or rarely detected 

in natural vegetation. This result suggests these Phytophthora species may not be native to 

dry shrubland and woodland communities; however, water gaining sites were not 

extensively surveyed in this study and these species may be localised within wetter niche 

environments (Burgess et al. 2018c). Phytophthora arenaria and P. boodjera have been 

identified as damping-off pathogens and may not have been detected due to the sampling 

of mature plant species (Chapter 2, Simamora et al. 2017). The absence of previously 

detected Phytophthora species on the Geraldton Sandplain make the status and subsequent 

management of these pathogens ambiguous. 

Traditional baiting and isolation methods were not used to detect Phytophthora due to the 

high probability of false negative results and the time intensive procedure (Hüberli et al. 

2000, Davison and Tay 2005, O’Brien et al. 2009). High throughput sequencing (HTS) from 

roots detects the greatest number of Phytophthora species, many of which are not 

frequently isolated using traditional baiting methods (Khaliq et al. 2018). Traditional baiting 

methods increase the accuracy of identifications through the sequencing of living 

Phytophthora isolates. Molecular detection methods can identify persistent DNA from 

deceased Phytophthora in soil and plant tissue leading to false positives (Nielsen et al. 2007, 

Kunadiya et al. 2019). However, extracting DNA from cleaned rhizosphere roots decreases 

the probability of detecting dead organisms and identifies Phytophthora species that are 

infecting host plants. This method of Phytophthora spp. detection is likely the most accurate 

as it reduces the likelihood of both false negatives and positives associated with traditional 

baiting and persistent DNA, respectively.  

This study sets a baseline for the native Phytophthora species that should typically be 

detected within dry kwongan and Banksia woodland plant communities. Protected areas on 

the Geraldton Sandplain bioregion remain relatively free from introduced Phytophthora 
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species, despite the high abundance and richness detected by Khdiar (2018) in urban nature 

reserves and green amenity spaces in the nearest major city. The remote location of the 

surveyed protected areas and long dry summers likely make anthropogenic dispersal and 

the establishment of soil-borne plant pathogens difficult in kwongan plant communities. 

Hygiene and management practices are still necessary within the region as Phytophthora 

species appear to spread easily into the highly susceptible plant community once 

established on edges (Wills 1993, Shearer et al. 2004). The low species richness and 

abundance of Phytophthora species detected compared to previous studies highlighted 

sampling collection and processing procedures need to be reviewed to determine their 

impact on the monitoring of plant disease and metabarcoding surveys. Detections of 

P. arenaria, P. cooljarloo, P. kwongonina, P. pseudorosacearum and P. rosacearum in dry 

native vegetation should be treated with caution until their native range can be confirmed. 

Phytophthora versiformis appears to be native to the region and detections of the species in 

natural vegetation do not need to be managed as an infestation. 
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Chapter 4: Damping-off within post-mining ecological restoration and 

the influence of fungicide seed coats on seedling emergence and 

survival 

Abstract 

Broadcast seeding is a key technique for returning plant species to post-mining ecological 

restoration; however, the practice is inefficient and expensive. Soil-borne damping-off 

pathogens reduce seedling emergence and survival and may impact the efficiency of 

broadcast seed. Fungicide and arbuscular mycorrhizal fungi seed coatings, novel 

technologies in ecological restoration, were applied to the seed of native plant species and 

sown into the restoration of a hyper-diverse Mediterranean plant community. Metalaxyl-M 

and Fludioxonil fungicides applied as film layer seed coatings improved the seedling 

emergence of five kwongan and Banksia woodland plant species by 5–18%. Common 

damping-off genera, Pythium, Fusarium and Rhizoctonia were isolated from restoration 

topsoil and seedling roots. The effect of fungicides varied over time, indicating damping-off 

pathogens may be more virulent in late winter and biodegradation of fungicides may occur. 

The commercial arbuscular mycorrhizal fungi seed coating had no effect on seedling 

emergence and survival. These results suggest damping-off pathogens are active in the 

topsoil of ecological restoration and are responsible for a proportion of broadcast seed 

losses. The management and study of damping-off pathogens may further increase the 

efficiency of broadcast seed and improve ecological restoration outcomes.  

 

Introduction 

Post-mining ecological restoration is a regulatory requirement in Australia and the practice 

aims to return vegetation that reflects the floristic diversity and function of natural plant 

communities. Broadcast seeding is a commonly practiced method of returning plant species 

to ecological restoration projects. The seed is harvested from adjacent native sites, stored, 

treated with necessary germination stimulants and sown into the topsoil (Koch 2007a). The 

efficiency of broadcast seeding can be as low as 2–7% (Rokich et al. 2002, Hallett et al. 2014) 
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and contribute 1% of total germinable seed (Bellairs and Bell 1993). The cost of broadcast 

seeding can be expensive due to the time taken to collect a sufficient quantity of seed for 

large scale restoration projects. Despite the efficiency and financial cost, the method 

substantially increases the species richness of restoration sites compared to independent 

return of topsoil (Bellairs and Bell 1993, Rokich et al. 2002, Koch 2007b). Broadcast seeding 

allows the re-introduction of plant species that are serotinous (or bradysporus), and require 

environmental triggers which are absent from the restoration site (Koch 2007b). Fire is an 

integral process in the reproduction of many plant species in Mediterranean-type 

ecosystems (Bell et al. 1993), and can be simulated through picking and releasing seeds 

from fruits, heat shock and smoke water treatments (Sweedman and Merritt 2006). 

Plant species with soil-stored seed that do not require specific environmental triggers can 

be returned through topsoil transfer. The process of topsoil transfer re-introduces seed and 

the microbial community back to restoration sites (Rivera et al. 2014). Topsoil will often be 

stripped to a depth of 150 mm from a donor site before it is mined, stockpiled for six 

months or longer, transferred, and then spread over the restoration site (Koch 2007a). The 

microbial community is important in ecological restoration as it contains beneficial 

mutualists (Neuenkamp et al. 2018). Mycorrhizal fungi and nitrogen-fixing bacteria improve 

the health and survival of host seedlings (Van Der Heijden et al. 2008, Jung et al. 2012). The 

microbial community is disturbed by the initial stockpiling and distribution of topsoil (Harris 

et al. 1989, Williamson and Johnson 1990), but microbial biomass and arbuscular 

mycorrhizal fungi (AMF) communities slowly re-establish after these events (Jasper et al. 

1987, Frouz et al. 2013, Birnbaum et al. 2017). 

Soil-borne plant pathogens can severely impact the emergence and survival of seedlings in 

managed and unmanaged environments (Comita et al. 2014, Lamichhane et al. 2017). 

Damping-off pathogens affect the emergence and survival of seedlings by causing the rapid 

decay of the seed, radicle, hypocotyl and root tissue (Tainter and Baker 1996). The most 

common damping-off pathogens are from the oomycete genera Pythium and Phytophthora, 

and the fungal genera Fusarium and Rhizoctonia (Tainter and Baker 1996). Native damping-

off plant pathogens are a mechanism for maintaining the diversity of natural plant 

communities (Bever et al. 2015). Despite the focus on natural plant communities in the 

literature, few studies have investigated the impact of plant pathogens on ecological 
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restoration. For example, reviews by Kardol and Wardle (2010), Macdonald et al. (2015) and 

Perring et al. (2015) identify very few studies that explore the role of plant pathogens in 

ecological restoration. Soil-borne plant pathogenic fungi have been isolated in young and 

old post-mining forest restoration sites (Nováková 2001). Genera commonly regarded as 

damping-off pathogens have survival spores and structures (Ayers and Lumsden 1975, 

Sitton and Cook 1981, Crone et al. 2013, Jung et al. 2013, Ritchie et al. 2013), allowing them 

to persist long term in the soil and plant material of stockpiles. Given that seedling 

emergence appears to be the critical life stage in determining the outcome of restoration 

projects (James et al. 2011), and the efficiency of broadcast seed is low (Bellairs and Bell 

1993), damping-off plant pathogens may be responsible for pre- and post-emergent 

seedling mortality.  

Seed coating technologies are an understudied management strategy for improving 

emergence and seedling health in ecological restoration (Pedrini et al. 2017). Nutrients, 

protectants and symbiotic microorganisms can be applied to the surface of seed before 

sowing through pelleting, encrusting or thin film layers (Taylor et al. 1998). Fungicide 

coatings have primarily been applied to agronomic seeds and can improve germination and 

emergence (Sharma et al. 2015, Pedrini et al. 2017). Fungicides have been successful in 

controlling seed-borne pathogenic fungi for species used in desert restoration (Derbel et al. 

2010). Other seed coat technologies such as crust penetrative seed agglomerations (Madsen 

et al. 2012), seed predator protective clays (Overdyck et al. 2013), and herbicide protective 

layers (Madsen et al. 2014) have demonstrated the ability to improve seedling 

establishment and health in restoration. Small or no effect was observed when the seed of 

North American shrub and grass species were treated with biochar (Williams et al. 2016), or 

when polymer seed coatings were applied to Banksia woodland plant species (Turner et al. 

2006) in ecological restoration.  

The post-mining restoration of kwongan and Banksia woodland plant communities of the 

southwest Australia provide an opportunity to test seed coat treatments. Broadcast seeds 

are an important but often inefficient method of plant species return in these environments 

(Bellairs and Bell 1993, Rokich et al. 2002). Putatively native Phytophthora species are 

frequently detected from natural and disturbed kwongan and Banksia woodland plant 

communities (Rea et al. 2011, Burgess et al. 2018c), and the genus is associated with 
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damping-off in this ecosystem (Chapter 2). However; the abundance, distribution, and 

diversity of other damping-off soil-borne plant pathogens in natural and disturbed kwongan 

and Banksia woodland plant communities are not known. Additionally, topsoil stockpiling 

disturbance disrupts AMF in kwongan plant communities, contributing to lower levels of 

root colonisation (Birnbaum et al. 2017). Applying fungicides or mycorrhizal spores to the 

seed coat are a potential solution for reducing damping-off and increasing mycorrhizal 

availability for native seedlings in restoration. Improving the emergence and survival of 

broadcast seed in post-mining restoration will reduce the financial cost, pressures on native 

plant community harvest populations (Nevill et al. 2018) and improve community 

composition similarity to reference sites (Herath et al. 2009a).  

This study aimed to determine the potential benefit of applying fungicide film coat layers or 

AMF inoculum to broadcast seed used in post-mining restoration. The use of different 

fungicides will additionally reflect the activity of the various groups of damping-off 

pathogens. The study aimed to answer the following specific questions: 

1. Do fungicide film coat layers and beneficial AMF inoculum applied to seed improve 

the emergence and survival of seedlings in post-mining restoration? 

2. What effect do seed coat treatments have on the emergence and survival of 

seedlings over time? 

3. Do the effects of fungicide seed coats vary, indicating the activity of different groups 

of damping-off pathogens?  

 

Methods 

Site location and description 

Plots (n = 36) were established within the Tronox Ltd Cooljarloo mineral sand operation in 

2017 and 2018, and Iluka Resources Ltd Eneabba mineral sand operation in 2017 (Figure 

4.1A–C). The Cooljarloo (30.65°S, 115.45°E) and Eneabba (29.875°S, 115.285°E) sites are 

located 150km and 250km north of Perth, Western Australia (WA), respectively (Figure 

4.1D). The Cooljarloo site is bisected by the border of the Geraldton Sandplains and Swan 

Coast Plain Australian biogeographical regions; however, plots were situated on the Perth 
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sub-region of the latter (DEE, 2018). Eneabba lies within the Lesueur Sandplains sub-region 

of the Geraldton Sandplain biogeographical region (DEE, 2018).  

 

  

  

Figure 4.1: Plot distributions at sites A. Cooljarloo 2017, B. Cooljarloo 2018, C. Eneabba 
2017, and D. site locations in WA relative to the capital city, Perth. 
 

Cooljarloo and Eneabba experience a Mediterranean climate, which is characterised by a 

prolonged period of drought over the summer and rainfall during the winter months. 

Kwongan plant communities in the region can receive between 450 mm and 625 mm of 

mean annual rainfall (Mucina et al. 2014). On average (1968–2018) Cooljarloo and Eneabba 

received annual rainfalls of 559 mm and 489 mm, respectively (Bureau of Meteorology 
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2019, DPIRD, 2019). The Cooljarloo site is situated between the Lancelin and Badgingarra 

weather stations and rainfall data were extracted from both weather stations and averaged. 

After plot establishment, Cooljarloo received an estimated 286 mm of rainfall between June 

and August 2017 and 292 mm over the same period in 2018 (Bureau of Meteorology 2019). 

Eneabba received 280 mm between June and August 2017 (DPIRD, 2019). 

Pre-mining, Cooljarloo has kwongan and Banksia woodland plant communities. These plant 

communities are defined by their high species richness and diversity (Lamont et al. 1984, 

Hopper and Gioia 2004, Mucina et al. 2014). Classification groupings indicate four Wet 

Heath and two Banksia woodland communities present at Cooljarloo (Tsakalos et al. 2019). 

Banksia woodland and kwongan plant communities at Cooljarloo were identifiable by the 

high abundance of proteaceous and myrtaceous genera, respectively. The pre-mining 

vegetation at the Eneabba site was a mosaic of common subclassifications of kwongan 

vegetation, and these communities were described as 1A, 3A, 4A, and 6B by Tsakalos et al. 

(2018). 

All experimental plots were located within post-mining restoration. All restoration activities 

were completed by the mining companies between February and April 2017 and 2018, prior 

to plot establishment. At Cooljarloo in 2017 and 2018 plots were established in rehabilitated 

mining pits (Figure 4.1A–B). At these sites, 50 mm of six-month-old topsoil was laid above a 

200 mm layer of topsoil that had been stockpiled for less than 10 years. Turf Special 

fertilizer produced by CSBP Ltd containing trace elements, nitrogen (N), phosphorus (P), and 

potassium (K) at 12.8-2.3-6.2 was added at 40 kg/ha to Cooljarloo restoration sites. Plots at 

Eneabba were dispersed across a more heterogeneous restoration site (Figure 4.1C). Three 

plots were in a mining pit that was being rehabilitated for a second time and two were 

placed at a site that was previously a haul road. Topsoil was derived from previously 

rehabilitated kwongan plant communities established in the late 1980s, stockpiled for ten 

years before being spread to a depth of 100 mm. The Eneabba restoration site was 

amended with a low phosphorus fertiliser (NPK 18-1-11) at 50 kg/ha that contained 

additional trace elements produced by Summit Fertilisers.  

Species selection 

Plant species selected and analysed in the experiment were predominantly from the 

Fabaceae and Proteaceae (Table 4.1). The plant species chosen were in the native broadcast 
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seed mix at both sites. In 2018, some plant species were removed from the experiment and 

replaced due to the availability or viability of seed (Table 4.1). The seed used was sourced in 

the immediate locality of each mine site by either the mining companies or through seed 

suppliers. The seed supplied by each site was not combined as to adhere to the local 

provenance requirements in restoration areas. Plant species received appropriate 

germination treatments, as recommended by Sweedman and Merritt (2006), prior to the 

application of fungicides (Table 4.1). 

 

Table 4.1: The plant species selected and the number and location of plots containing seed. 
    Site 

Family Species 
Germination 
treatment1 

Nutrient 
Acquisition2 

Eneabba 
2017 

Cooljarloo 
2017 

Cooljarloo 
2018 

       
Fabaceae Acacia pulchella subsp. pulchella HW, S AM 12 12 12 
Ericaceae Astroloma xerophyllum Smk ERM   10 
Proteaceae Banksia attenuata None NMCR 12 11 12 
Proteaceae Banksia candolleana None NMCR 12 12  
Proteaceae Banksia menziesii None NMCR 10 11 12 
Proteaceae Banksia prionotes None NMCR   12 
Fabaceae Bossiaea eriocarpa HW, S AM/NMCR   12 
Fabaceae Daviesia podophylla HW, S AM/ECM 12 11 10 
Myrtaceae Eremaea beaufortioides var. beaufortioides None AM/ECM 12 12  
Myrtaceae Eucalyptus macrocarpa subsp. elachantha None ECM/AM   12 
Myrtaceae Eucalyptus todtiana None ECM/AM 12 12 7 
Fabaceae Gastrolobium capitatum HW, S ECM   12 
Proteaceae Hakea costata None NMCR 11 12 12 
Proteaceae Hakea incrassata None NMCR 11 10  
Proteaceae Hakea trifurcata None NMCR 11 12 10 
Fabaceae Kennedia prostrata HW, S AM/NMCR 8 9 9 
Iridaceae Patersonia occidentalis Smk AM   12 

Asphodelaceae Xanthorrhoea preissii Smk AM 4 10 11 

       

1 Germination treatments abbreviated as HW, hot water; S, scarify; and Smk, smoke water.  
2 Nutrient acquisition strategy from Zemunik et al. (2015). AM, arbuscular mycorrhizal fungi; ECM, ectomycorrhizal fungi; 
ERM, Ericoid mycorrhizal; and NMCR, non-mycorrhizal cluster roots. 

 

Plot establishment 

Plant species received four seed coat treatments in 2017, (1) Apron® XL 350 ES, (2) Maxim® 

XL, (3) a combination of Apron XL  350 ES and Maxim XL, and (4) a negative control. Apron 

XL 350 ES and Maxim XL are liquid fungicides produced by Syngenta®. Apron’s active 

constituent is Metalaxyl-M at 350 g/l and controls Pythium and Phytophthora rot. Maxim 

contains two active constituents, 25 g/l of Fludioxonil and 10 g/l of Metalaxyl-M and 

controls Pythium, Fusarium and Rhizoctonia diseases. Directions on the product labels were 

followed when selecting the application method and rate. The Apron and Maxim fungicides 
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were applied as film coating layers at rates of 2 ml/kg and 3 ml/kg of seed, respectively. In 

2018, the combined fungicide treatment was removed and replaced with a commercial 

vesicular arbuscular mycorrhizal fungi inoculum. Maxx produced by MycoApply® was 

applied as a dust seed coat at 100 g/kg of seed. 

Plots were placed at least 25 m away from the restoration site’s edges (Figure 4.1). Each plot 

was 6.5 m × 2 m and contained four 1 m × 1 m treatment quadrats that were separated by 

0.5 m. The seed of each plant species was sown in lines separated by 25 mm in each 

treatment quadrat, and was covered by 5–10 mm of topsoil. A treatment quadrat contained 

75 seed of each plant species with the same seed coat treatment. The order of the 

treatment quadrats and rows of plant species were randomised. The perimeter of the plot 

was fenced with 1.2 m high galvanised wire netting to exclude large seed and seedling 

predators. Throughout the experiment, seedlings that emerged from the soil seed bank 

were removed from treatment quadrats if it did not disturb the roots of the selected plant 

species. 

Plots were established and seed sown 18–21 April 2017 at Eneabba. Plots were established 

at Cooljarloo 9–11 May 2017 and 30 May–1 June 2018. Seedling counts were completed 

three times between late July and September at Eneabba in 2017. At Cooljarloo plots were 

monitored four times between mid-July and September 2017, and five times between July 

and October 2018. The number of alive and dead seedlings present in each treatment 

quadrat were counted during each monitoring visit. A standard photograph was taken from 

above each treatment quadrat to compare to previous monitoring visits. These photographs 

were used to confirm seedling numbers and identify perished seedlings between trips. Post-

summer monitoring occurred the year following plot establishment in June 2018 and May 

2019 after summer drought and moderate rainfalls. In 2018, seedlings were thinned in 

October so each treatment quadrat contained a maximum of seven individuals of each plant 

species. The remaining seedlings represented the average health and condition of the 

species in the treatment quadrat. Plots were thinned to avoid seedling deaths related to 

high seedling densities. 

Dead seedlings and non-emergent seeds were not removed from within treatment quadrats 

to avoid disturbing the remaining seedlings and seed. Soil samples were collected from 

around the edge of each plot in 2017 and 2018 during establishment. Soil was baited as 
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outlined by O’Brien et al. (2009) and leaf tissue was plated onto NARPH  and amended 

NARPH agar plates to isolate any Phytophthora and Pythium species, respectively (Hüberli et 

al. 2000). For the detection of Pythium spp., hymexazol was removed from a set of NARPH 

plates due to the  sensitivity of this genus to the fungicide (Kato et al. 1990). At Cooljarloo in 

2018, in addition to baiting, the remaining seeds that were not used in the experiment were 

sown in rows in between the treatment quadrats. The plant species sown and harvested in 

these rows were A. pulchella, B. attenuata, B. eriocarpa, G. capitatum, H. trifurcata and 

X. preissii. Seedlings were harvested on 5th of September 2018, 9 weeks after the first 

emergent seedlings, and roots and stems were cleaned with sterile water, dried and then 

plated onto regular and hymexazol removed NARPH, malachite green agar (MGA), and ½ 

potato dextrose agar (PDA) agar plates for the isolation of Phytophthora, Pythium, Fusarium 

(Leslie et al. 2006) and Rhizoctonia (Nontachaiyapoom et al. 2010) species, respectively. The 

MGA and ½ PDA agar plates per 1 L of deionised water, contained antibiotics, 100 mg 

ampicillin, 1 ml nystatin and 10 mg rifampicin. When isolates were cleaned, they were 

grown on ½ PDA agar plates without antibiotics for seven days and identified to the species 

level through amplification and sequencing of the ITS gene region for Pythium species as 

described previously (Burgess et al. 2018c) and for Fusarium and Rhizoctonia species as 

described previously (Burgess et al. 2018a). 

Statistical analysis 

Plant species with sufficient seedling emergence and survival data were analysed and 

reported. For individual plant species at each site, the mean proportion of the control was 

subtracted from the proportion of seedlings in each treatment. The difference between 

proportions was an absolute effect size and used as a response variable in the analysis. 

Seedling emergence and survival were a proportion of the total seed sown. Outliers were 

removed from the dataset. The site and seed coat treatment were interaction terms; 

however, site was removed from the model as it caused heteroskedasticity. The sites were 

then analysed separately and collectively without an interaction term. The data sets were 

analysed with an analysis of variance (ANOVA) with seed coat treatment as the predictive 

variable and plot as the random intercept. The data sets were first analysed with a binomial 

generalised linear mixed model (GLMM) before assumption validation procedures 
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determined that the analysis poorly fit the data (Zuur et al. 2010). The mixed effects ANOVA 

models met assumptions and fitted the data better than the binomial GLMMs.  

Additionally, a two-way mixed effects ANOVA with an interaction between treatment and 

monitoring time was performed on plant species that had significant response to seed 

coats. The proportion of emergent seedlings out of the available non-emergent seed was 

calculated for each treatment at the first two monitoring visits.  The mean proportion of the 

control at each time was subtracted from the proportion of emergent seedlings in each 

treatment. The absolute effect size of the available non-emergent seed at each monitoring 

visit was used as the response variable.  

Tukey adjusted P-values below an alpha of 0.05 were determined to be significant for all 

analyses. The analysis was performed in R (R Core Team 2018), using the car (Fox and 

Weisberg 2019), lme4 (Bates et al. 2014), effects (Fox 2003),  and emmeans packages (Lenth 

2018). 

 

Results 

Seedling emergence 

There was sufficient seedling emergence data for 14 of 18 plant species at one or more sites 

to be statistically analysed. Individual and combined site analyses were performed for eight 

plant species where there was sufficient data from two or more sites. Fungicide seed coats 

protected five plant species from pre-emergent damping-off. The seedling emergence of 

B. attenuata, B. candolleana, Eucalyptus macrocarpa subsp. elachantha, E. todtiana, and 

K. prostrata were significantly (P < 0.05) improved by fungicide seed coats relative to the 

control. 

The Apron seed coat consistently increased the seedling emergence of B. attenuata at all 

sites (Table 4.2). The Apron fungicide improved B. attenuata seedling emergence by 7.2% on 

average in comparison to the control treatments (Figure 4.2). Unlike the other plant species, 

the Maxim seed coat for B. candolleana increased the seedling emergence over the Apron 

treatments at Cooljarloo in 2017 (Table 4.2). This result was not observed for B. candolleana 

at the Eneabba site in 2017. On average, Maxim improved the seedling emergence of 

B. candolleana relative to the control by 8.6% (Figure 4.2). The seedling emergence of 



71 
 

K. prostrata, sown at all three sites, was improved by Apron and the combined fungicide 

seed coats over the controls at Cooljarloo in 2017 by 8.8% and 9.7%, respectively (Table 

4.2). Averaged across the sites, Apron and the combined fungicide seed coats improved the 

seedling emergence of K. prostrata by 4.2% and 4.9%, respectively (Figure 4.2). Apron and 

Maxim seed coats increased the emergence of Eucalyptus macrocarpa subsp. elachantha in 

comparison to the control treatment by 13.9% and 15.4%, respectively. Similarly, the Apron 

seed coat improved E. todtiana seedling emergence by 18.7% in comparison to the control 

at Cooljarloo in 2018 (Table 4.2). The results could not be repeated for E. macrocarpa subsp. 

elachantha as it was sown at one site, and E. todtiana due to poor seed viability in 2017.  

The seedling emergence of the remaining nine plant species was unaffected by fungicide or 

AMF seed coat treatments at individual sites or averages across experiments. Acacia 

pulchella subsp. pulchella, Bossiaea eriocarpa, H. costata and H. trifurcata displayed some 

positive trends associated with fungicide treatments (Table 4.2, Figure 4.2). Negligible 

differences between seed coat treatments were found for B. menziesii, Daviesia podophylla, 

Gastrolobium capitatim, H. incrassata and Xanthorrhoea preissii. The seedling emergence of 

plant species with AMF mutualist relationships, A. pulchella, B. eriocarpa, G. capitatum, 

K. prostrata and X. preissii, were unaffected by the AMF seed coat treatment (Table 4.2). 
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Table 4.2: The plant species analysed and the mean percentage of the total emergent 
seedlings in each of the fungicide and arbuscular mycorrhizal fungi treatments. Letters 
represent homogenous subsets generated from Tukey post-hoc adjusted P-values (P < 0.05), 
and bold results were significant. The number of plots used in the statistical analyses after 
outliers were removed is displayed. 
   Treatment1 

Plant species Site and year Plots Control Apron Maxim A+M AMF 

             
Acacia pulchella Eneabba 2017 12 47.1 a 36.3 a 44.0 a 42.7 a   
 Cooljarloo 2017 12 64.1 a 70.0 a 70.1 a 67.9 a   
 Cooljarloo 2018 12 38.6 a 53.3 a 52.2 a   48.1 a 
Banksia attenuata Eneabba 2017 6 30.2 a 42.4 a 43.1 a 41.6 a   
 Cooljarloo 2017 11 11.3 a 17.1 a 13.6 a 16.4 a   
 Cooljarloo 2018 12 34.8 a 40.7 a 36.6 a   39.6 a 
Banksia candolleana Eneabba 2017 6 21.6 a 32.9 a 31.6 a 27.1 a   
 Cooljarloo 2017 12 34.2 ab 27.8 a 42.2 b 34.7 ab   
Banksia menziesii Eneabba 2017 6 18.0 a 12.2 a 18.2 a 11.1 a   
 Cooljarloo 2017 11 21.5 a 26.3 a 23.8 a 27.6 a   
 Cooljarloo 2018 12 12.1 a 13.7 a 12.1 a   8.6 a 
Bossiaea eriocarpa Cooljarloo 2018 12 11.4 a 17.7 a 14.8 a   13.7  a 
Daviesia podophylla Eneabba 2017 12 45.4 a 48.5 a 52.5 a 49.9 a   
Eucalyptus macrocarpa Cooljarloo 2018 12 12.0 a 25.9 b 27.4 b   12.0 a 
Eucalyptus todtiana Cooljarloo 2018 7 25.1 a 43.8 b 35.8 ab   25.9 a 
Gastrolobium capitatum  Cooljarloo 2018 12 23.2 a 31.1 a 20.1 a   27.4 a 
Hakea costata Eneabba 2017 9 36.1 a 51.1 a 49.2 a 39.4 a   
 Cooljarloo 2017 12 8.2 a 8.7 a 9.0 a 10.1 a   
Hakea incrassata Eneabba 2017 7 76.2 a   65.3 a 65.7 a   
Hakea trifurcata Eneabba 2017 10 38.7 a   50.8 a 49.3 a   
 Cooljarloo 2017 12 28.8 a   33.1 a 30.3 a   
 Cooljarloo 2018 10 30.8 a 32.4 a 31.2 a   30.8 a 
Kennedia prostrata Eneabba 2017 8 20.2 a 21.5 a 18.0 a 20.0 a   
 Cooljarloo 2017 9 19.6 a 28.4 b 25.2 ab 29.3 b   
 Cooljarloo 2018 9 6.8 a 9.2 a 10.8 a   9.6 a 
Xanthorrhoea preissii Cooljarloo 2017 10 49.1 a 45.6 a 39.5 a 47.2 a   
 Cooljarloo 2018 10 48.8 a 51.3 a 51.0 a   49.9 a 
             
1 Treatment names were abbreviated to Apron, Apron XL; Maxim, Maxim XL; A+M, Apron XL and Maxim XL; AMF, 
MycoApply Maxx. 

 

Seedling survival  

The seedling survival of plant species over winter and early spring was consistent with the 

observed emergence trends. There was a significantly (P < 0.05) greater number of seedlings 

in fungicide treatments compared to control treatments for five plant species (Table 4.3, 

Figure 4.2). However, seedling mortality was similar between the seed coat and control 

treatments, and indicated fungicides and AMF inoculum did not protect against post-

emergence damping-off. The greater numbers of B. attenuata, B. candolleana, 

E. macrocarpa subsp. elachantha, E. todtiana and K. prostrata surviving seedlings in 

fungicide treatments were primarily the result of improved emergence. Post-emergent 

seedling deaths above 5% were uncommon. A comparatively large number of A. pulchella, 
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B. attenuata, E. macrocarpa and E. todtiana seedling deaths were recorded at Cooljarloo in 

2018 in comparison to other plant species across the three sites.  

 

Table 4.3: The mean percentage of surviving seedlings in October of the same year that 
seeds were sown and treated with fungicides and arbuscular mycorrhizal fungi. Letters 
represent homogenous subsets generated from the seedling survival statistical analysis and 
Tukey post-hoc adjusted P-values (P < 0.05), and bold results were significant. The mean 
percentage of seedling deaths, and post-emergence damping-off, are displayed in brackets. 
  Treatment1 

Plant species Site and year Control Apron Maxim A+M AMF 

                 

Acacia pulchella Eneabba 2017 45.3 a (-1.8) 35.7 a (-0.6) 42.4 a (-1.6) 42.0 a (-0.7)    

 Cooljarloo 2017 60.6 a (-3.5) 65.7 a (-4.3) 65.3 a (-4.8) 61.9 a (-6.0)    

 Cooljarloo 2018 30.6 a (-8.0) 47.2 a (-6.1) 39.7 a (-12.5)    36.9 a (-11.2) 

Banksia attenuata Eneabba 2017 26.2 a (-4.0) 39.8 a (-2.6) 39.6 a (-3.5) 40.0 a (-1.6)    

 Cooljarloo 2017 9.7 a (-1.6) 16.5 b (-0.6) 13.0 ab (-0.6) 15.3 ab (-1.1)    

 Cooljarloo 2018 29.2 a (-5.6) 32.4 a (-8.3) 25.9 a (-10.7)    29.6 a (-10.0) 

Banksia candolleana Eneabba 2017 19.8 a (-1.8) 30.2 a (-2.7) 29.6 a (-2.0) 25.1 a (-2.0)    

 Cooljarloo 2017 30.9 ab (-3.3) 25.4 a (-2.4) 40.1 b (-2.1) 32.3 ab (-2.4)    

Banksia menziesii Eneabba 2017 14.4 a (-3.6) 9.3 a (-2.9) 15.1 a (-3.1) 8.7 a (-2.4)    

 Cooljarloo 2017 19.0 a (-2.5) 22.7 a (-3.6) 22.1 a (-1.7) 25.8 a (-1.8)    

 Cooljarloo 2018 10.2 a (-1.9) 11.9 a (-1.8) 10.4 a (-1.7)    5.9 a (-2.7) 

Bossiaea eriocarpa Cooljarloo 2018 8.2 a (-3.2) 13.0 a (-4.7) 8.8 a (-6.0)    10.0 a (-3.7) 

Daviesia podophylla Eneabba 2017 41.1 a (-4.3) 44.6 a (-3.9) 49.7 a (-2.8) 46.3 a (-3.6)    

Eucalyptus macrocarpa Cooljarloo 2018 6.4 a (-5.6) 16.9 b (-9.0) 16.3 b (-11.1)    7.4 a (-4.6) 

Eucalyptus todtiana Cooljarloo 2018 19.0 a (-6.1) 37.3 b (-6.5) 31.2 ab (-4.6)    19.6 a (-6.3) 

Gastrolobium capitatum  Cooljarloo 2018 20.3 a (-2.9) 25.4 a (-5.7) 18.1 a (-2.0)    25.8 a (-1.6) 

Hakea costata Eneabba 2017 34.1 a (-2.0) 49.5 a (-1.6) 45.9 a (-3.3) 36.7 a (-2.7)    

 Cooljarloo 2017 6.3 a (-1.9) 7.4 a (-1.3) 6.4 a (-2.6) 8.7 a (-1.4)    

Hakea incrassata Eneabba 2017 75.8 a (-0.4)    64.0 a (-1.3) 64.6 a (-1.1)    

Hakea trifurcata Eneabba 2017 34.2 a (-4.5)    47.5 a (-3.3) 46.8 a (-2.5)    

 Cooljarloo 2017 26.7 a (-2.1)    32.0 a (-1.1) 28.0 a (-2.3)    

 Cooljarloo 2018 27.2 a (-3.6) 28.7 a (-3.7) 26.7 a (-4.5)    25.6 a (-5.2) 

Kennedia prostrata Eneabba 2017 19.5 a (-0.7) 21.2 a (-0.3) 17.3 a (-0.7) 19.5 a (-0.5)    

 Cooljarloo 2017 19.3 a (-0.3) 27.9 b (-0.5) 24.6 ab (-0.6) 29.0 b (-0.3)    

 Cooljarloo 2018 6.7 a (-0.1) 8.7 a (-0.5) 10.1 a (-0.7)    9.0 a (-0.6) 

Xanthorrhoea preissii Cooljarloo 2017 47.1 a (-2.0) 43.0 a (-2.6) 38.5 a (-1.0) 46.3 a (-0.9)    

 Cooljarloo 2018 47.3 a (-1.5) 50.4 a (-0.9) 50.5 a (-0.5)    46.7 a (-3.2) 

                 
1 Treatment names shortened or abbreviated to Apron, Apron XL; Maxim, Maxim XL; A+M, Apron XL and Maxim XL; AMF, 
MycoApply Maxx. 
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Figure 4.2: The mean absolute effect size of fungicide and AMF seed coats on seedling 
emergence and survival in comparison to the control treatment, for plant species sown at 
multiple sites. The mean absolute effect size and 95% confidence intervals were extracted 
from linear mixed effects models. Statistical significance is indicated when the 95% 
confidence intervals do not intersect zero (emphasized by an asterisk). Treatment names are 
abbreviated to Apron, Apron XL; Maxim, Maxim XL; A+M, combined Apron XL and Maxim XL; 
AMF, MycoApply Maxx. 
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Seedling emergence over time 

Plots were first monitored 20–33 days after the first major rainfall events of the winter 

(Table 4.4). First rainfall events occurred on the 21 June 2017, and 5 June 2018. Plots were 

established closer to the completion of rehabilitation works by the mining companies in late 

April and early May in 2017, and were first monitored a substantial period of time after 

seeds were sown into the topsoil in comparison to Cooljarloo in 2018 (Table 4.4). The plots 

were first monitored between 35 and 97 days after sowing (Table 4.4). The timing of the 

first rainfall event and the late plot establishment in 2018 resulted in different monitoring 

times. The Cooljarloo site in 2018 received more rainfall between the establishment of the 

plots and the monitoring visits relative to Eneabba and Cooljarloo in 2017 (Table 4.4).  

 

Table 4.4: The period of time and rainfall that occurred between the monitoring visits and 
the establishment of plots, or the first major winter rainfall event (21/06/2017 and 
05/06/2018) at the restoration sites.  
 Monitoring visit 1 Monitoring visit 2 

Site and sow year 
Post- 

Establishment 
(days) 

First winter 
rainfall event 

(days) 

Rainfall 
(mm) 

Post-
Establishment 

(days) 

First winter 
rainfall event 

(days) 

Rainfall 
(mm) 

       
Eneabba 2017 97 33 100.4 119 55 190.2 
Cooljarloo 2017 63 20 97.1 85 42 189.2 
Cooljarloo 2018 35 29 142.4 49 43 226.7 
       

 

Differences in seedling emergence between seed coat treatments were greatest in mid-July. 

Seedling emergence primarily occurred before the first monitoring visit to the sites, and had 

concluded by the third monitoring visit in early to mid-August. The plant species that 

experienced significantly greater seedling emergence when treated with fungicide seed 

coats were analysed to determine if the effect of the treatments changed over time (Figure 

4.3). The protection provided to pre-emergent seedlings by fungicide treatments 

significantly (P < 0.05) varied over time for B. attenuata, B. candolleana and K. prostrata at 

Cooljarloo in 2017, and E. macrocarpa subsp. elachantha and E. todtiana at Cooljarloo in 

2018. 

Banksia attenuata seedling emergence improved relative to the control when treated with 

Apron and Maxim seed coats in mid-July at Cooljarloo in 2017; however, there was no affect 

in August (Figure 4.3). As a proportion of available non-emergent seed, the seedling 
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emergence of B. attenuata treated with Apron and Maxim was greater in mid-July 

compared to August. The seedling emergence of B. candolleana and K. prostrata treated 

with Maxim and Apron seed coats, respectively, followed the same trends relative to the 

control and time as B. attenuata (Figure 4.3). The difference between the seedling 

emergence of B. candolleana treated with Apron and Maxim was not consistent during the 

experiment (Table 4.2; Figure 4.3). The seedling emergence of B. candolleana treated with 

Apron decreased between mid-July and August, and there was no difference between 

Apron and Maxim treatments in mid-July (Figure 4.3).  

Seed coat treatments did not affect E. macrocarpa subsp. elachantha and E. todtiana 

seedling emergence in early July at Cooljarloo in 2018 (Figure 4.3). Eucalyptus todtiana 

seedling emergence was improved by the Apron seed coat compared to the control in mid-

July (Figure 4.3). Additionally, the Apron and Maxim seed coats improved the seedling 

emergence of E. macrocarpa subsp. elachantha relative to the control in mid-July (Figure 

4.3). The emergence of E. macrocarpa subsp. elachantha treated with Apron was greater in 

mid-July compared to the first monitoring visit in early July. At Cooljarloo in 2018 variation 

between seed coat treatments disappeared by August due to negligible seedling 

germination.  

There were no emergent seedlings in early July at Eneabba in 2017; therefore, monitoring 

was adjusted to later dates. The seedling emergence of Maxim treated B. attenuata was 

greater than the control in late July at Eneabba in 2017. There was no difference between 

B. attenuata fungicide seed coat treatments and the control in mid-August. There was no 

substantial difference between the seedling emergence of B. candolleana and K. prostrata 

treated with fungicide seed coats and the control at either of the monitoring visits. 

Fungicide seed coats had no impact on seedling emergence at Eneabba in 2017, and this 

affect was consistent over time. 
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Figure 4.3: The seedling emergence as the percentage of the available non-emergent seed 
at the first three monitoring visits. Plant species included were those with a significant 
response to a seed coat treatment. Error bars represent the raw 95% confidence intervals. 
Blank panels are present when species were not included in a trial or were not statistically 
analysed. 
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Post-summer seedling survival 

All plant species sown in 2017 and analysed experienced seedling deaths over the summer 

period. Fungicide and AMF seed coats did not increase the number of surviving seedlings. 

There were a larger number of Kennedia prostrata seedlings surviving in plots after the 

summer period in comparison to the control (Table 4.5). Kennedia prostrata post-summer 

seedling survival was consistent with emergence and pre-summer survival trends (Table 4.2, 

Table 4.3), indicating Apron and the combined fungicide seed coats had no effect. Three 

plant species, B. attenuata, B. menziesii and X. preissii, experienced extremely low seedling 

survival and were not statistically analysed or reported. Additionally, B. candolleana and 

H. costata results are not reported due to strong violations of test assumptions. 

Additionally, the seedling survival of plant species sown at Cooljarloo in 2018 over the 

summer period were unaffected by seed coat fungicide and AMF treatments (Table 4.6). 

 

Table 4.5: The mean percentage of seedling survival in June 2018 for plant species sown at 
sites in 2017. Letters represent homogenous subsets generated from the post-summer 
seedling survival statistical analysis and Tukey post-hoc adjusted P-values (P < 0.05), and 
bold results were significant. The mean percentage of summer seedling deaths is displayed 
in brackets. 
  Treatment1 

Plant species Site and sow year Control Apron Maxim A+M 

      

Acacia pulchella Eneabba 2017 28.3  a (-17.0) 23.3  a (-12.4) 27.3  a (-15.1) 26.3  a (-16.4) 

 Cooljarloo 2017 25.8  a (-34.8) 29.9  a (-35.8) 26.6  a (-38.7) 32.6  a (-35.3) 

Daviesia podophylla Eneabba 2017 24.1  a (-17.0) 28.6  a (-16.0) 28.9  a (-20.8) 29.0  a (-17.3) 

Hakea incrassata Eneabba 2017 47.1  a (-28.7)    39.9  a (-24.1) 40.7  a (-25.0) 

Hakea trifurcata Eneabba 2017 23.1  a (-11.1)    32.8  a (-14.7) 31.7  a (-15.1) 

 Cooljarloo 2017 16.4  a (-10.3)    18.0  a (-14.0) 17.1  a (-10.9) 

Kennedia prostrata Eneabba 2017 11.4  a (-8.1) 11.5  a (-9.7) 9.0  a (-8.3) 10.3  a (-9.2) 

 Cooljarloo 2017 4.7  a (-14.6) 9.6  b (-18.3) 6.6  ab (-18.0) 9.2  b (-19.8) 

              

1 Treatment names shortened or abbreviated to Apron, Apron XL; Maxim, Maxim XL; A+M, Apron XL and Maxim XL. 
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Table 4.6: The mean percentage of seedling survival in May 2019 for plant species sown at 
Cooljarloo in 2018. Seedlings were thinned prior to the summer period and the percentages 
were calculated based on the number of seedlings that remained in the plot. Letters 
represent homogenous subsets generated from the post-summer seedling survival statistical 
analysis and Tukey post-hoc adjusted P-values (P < 0.05). 
  Treatment1 

Plant species Site and sow year Control Apron Maxim AMF 

          

Acacia pulchella Cooljarloo 2018 40.7 a 42.9 a 33.3 a 39.9 a 

Banksia attenuata Cooljarloo 2018 69.0 a 75.0 a 67.9 a 67.9 a 

Banksia menziesii Cooljarloo 2018 42.0 a 48.0 a 33.8 a 51.1 a 

Bossiaea eriocarpa Cooljarloo 2018 55.6 a 79.5 a 42.9 a 71.2 a 

Eucalyptus macrocarpa Cooljarloo 2018 58.1 a 70.1 a 77.4 a 67.7 a 

Eucalyptus todtiana Cooljarloo 2018 83.7 a 75.5 a 93.9 a 79.6 a 

Gastrolobium capitatum  Cooljarloo 2018 76.2 a 66.6 a 65.3 a 83.3 a 

Hakea trifurcata Cooljarloo 2018 91.4 a 94.0 a 85.7 a 91.4 a 

Kennedia prostrata Cooljarloo 2018 59.2 a 83.4 a 70.6 a 70.9 a 

Xanthorrhoea preissii Cooljarloo 2018 52.0 a 54.5 a 54.5 a 57.1 a 

          

1 Treatment names shortened or abbreviated to Apron, Apron XL; Maxim, Maxim XL; AMF, MycoApply Maxx. 

 

Data validation 

The data for several plant species sown into three plots had to be removed from the 

analysis at Eneabba in 2017. These three plots were located in a post-mining pit that was 

restored for a second time and removed from the dataset as they were deemed to be 

outliers due to substantially lower seedling emergence compared to other plots. The data 

from three additional plots were removed from the analysis for B. attenuata, B. candolleana 

and B. menziesii from the Eneabba site due to herbivory from emus (Dromaius 

novaehollandiae). Hakea incrassata and H. trifurcata had Apron treatments removed from 

the Eneabba and Cooljarloo in 2017 site data due to spoilt seed caused by an issue with the 

fungicide application. The majority of individual and combined models for each plant 

species met the assumptions of the analysis. Some models showed small to moderate 

violations of the normality assumption which were tested with Q-Q plots of the model 

residuals, histograms and Shapiro-Wilk tests. It was not possible to analyse seedling deaths 

due to violations of test assumptions. 

Isolation of pathogens 

Three Pythium spp. were recovered from Eneabba and Cooljarloo in 2017 through baiting 

techniques. Py. irregulare and Py. cryptoirregulare were recovered from all plots at both 

sites in 2017. Py. mamilatum was isolated in all plots at Cooljarloo in 2017; however, it was 
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not recovered at Eneabba in 2017. Pythium irregulare was detected through soil baiting 

within 11 or the 12 plots at Cooljarloo in 2018. Fusarium oxysporum, and 

Py. aff. cederbergense were isolated from seedlings within all plots at Cooljarloo in 2018, 

respectively. Three isolates of Rhizoctonia were found but not identified due to 

contamination. 

 

Discussion 

Fungicides applied as a seed coat increased the seedling emergence and survival of five of 

14 native plant species in post-mining restoration. Both Apron and Maxim fungicide seed 

coats improved seedling emergence, while commercial AMF treatments had no effect. In 

addition, the study highlighted that the impact of fungicide seed coat treatments changed 

over time. Damping-off pathogens were present in post-mining ecological restoration and 

appear to have a small to moderate impact on the efficiency of broadcast seeding in situ.  

Fungicide seed coat treatments are a novel technology for improving the outcomes of 

broadcast seed in restoration ecology (Pedrini et al. 2017). The present study indicates that 

seed coat treatments increased the seedling emergence of individual plant species by 5–

18% in the field. This technology is practical given germination stimulation treatments are 

applied to seed prior to sowing in post-mining restoration (Koch 2007a). Financially, the 

fungicide seed coat treatments may reduce the cost of expensive broadcast seed, such as 

B. attenuata and B. candolleana. Assuming B. attenuata and B. candolleana seed costs 

approximately $1,500 per kilogram, seeds are applied at 330 g/ha and 40 hectares are 

rehabilitated annually, the effective fungicide treatments would save $1320 and $1720 for 

each plant species per year. These treatments may help reduce pressure on natural harvest 

populations of plant species (Nevill et al. 2018).  

Seed coat treatments have seldomly been applied to broadcast seed used in ecological 

restoration of ecosystems within the southwest of Australia. Compared to polymer seed 

coatings evaluated by Turner et al. (2006) in Banksia woodland restoration, fungicide seed 

coats improved emergence to a similar extent. However, fungicide seed coats improved the 

emergence of more plant species. Fungicide seed coat treatments and drenches have 

controlled damping-off diseases for many agricultural and silvicultural plant species (Rhodes 
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and Myers 1989, Munkvold and O'Mara 2002, Linderman et al. 2008, Leisso et al. 2009). The 

impact of fungicide seed coats on the emergence of agricultural and silvicultural plant 

species has generally been larger than the plant species tested in this study, likely the result 

of increased pathogen inoculum due to monocultures and supportive abiotic conditions 

(Lamichhane et al. 2017). 

The commercial AMF treatment did not improve seedling emergence or survival of any plant 

species. Commercial arbuscular mycorrhizal treatments used in restoration projects were 

found to be less effective than inoculum sourced from reference systems (Maltz and 

Treseder 2015). MycoApply AMF products have not improved ecological restoration 

outcomes in other in situ experiments (Aprahamian et al. 2016, Emam 2016, Perkins and 

Bennett 2018). The use of additive beneficial microbial treatments in ecological restoration 

may need to be developed from the local microflora. Kwongan and Banksia woodland top 

soil contains native AMF propagules (Birnbaum et al. 2017), given these commercial 

treatments do not appear to improve seedling survival they may not be worth applying 

within restoration as they can produce negative outcomes (Tarbell and Koske 2007, Koch et 

al. 2011). It should be noted that the efficacy of these mycorrhizal products are influenced 

by propagule viability, and overcoming these logistical challenges may lead to improved 

restoration outcomes. 

Fungicide seed coat treatments did not consistently improve seedling emergence 

throughout the winter period. Differentiation between fungicide seed coats and control 

treatments was greatest in mid-July. The negligible difference between seed coat 

treatments in early July at Cooljarloo in 2018 suggested there is a lag time associated with 

the build-up of inoculum or the activity of damping-off pathogens. Damping-off pathogens 

are more virulent in soils with higher moisture content (Lamichhane et al. 2017), and seed 

and root exudation (Nelson 1991). The lag time may be the result of lower initial soil 

moisture, responding to exudates and the disruption associated with topsoil stockpiling and 

spreading. The lack of differentiation between seed coat treatments in August at Cooljarloo 

and Eneabba in 2017 indicated the fungicides lost their ability to prevent damping-off over 

time. The degradation rate of Metalaxyl-M (Apron) and Fludioxonil (Maxim) in soils is 

dependent on abiotic and biotic factors (Sukul and Spiteller 2001, Pung 2002, Komárek et al. 

2010). Metalaxyl-M had a half-life of 70 days and leached to a mean depth of 18 cm after 
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800 mm of rainfall and irrigation over 142 days in similar Western Australian soils (Kookana 

et al. 1995). Fludioxonil has low solubility and mobility (Komárek et al. 2010), and the 

dissipation half-life from wheat seeds has been found to be as low as 21 days in biologically 

active soils (NRA 2000). Fludioxonil can often take a longer period of time to degrade in a 

variety of soils (Komárek et al. 2010). The smaller impact of fungicide seed coats at Eneabba 

and Cooljarloo in August 2017 may be due to the degradation of the Metalaxyl-M and 

Fludioxonil between plot establishment and seedling emergence. Additionally, leaching can 

impact on the persistence of Metalaxyl-M. The persistence of seed coat treatment efficacy 

was not the primary focus of this study, the timing of monitoring visits was not regular, and 

fungicide levels were not measured. Fungicide seed coat treatments may only be effective 

when damping-off pathogens are most active and before degradation. 

Seed coat treatments did not reduce post-emergent and summer seedling mortality. 

Pathogens may cause post-emergent damping-off for several weeks until root tissue 

hardens (Tainter and Baker 1996, Agrios 2005), and reduce the health of the remaining 

plants (Huang and Erickson 2007). Metalaxyl-M and Fludioxonil seed treatments used in 

inoculated trials can provide small to moderate improvements in seedling survival for 

agricultural and silvicultural plant species for short periods after seedling emergence 

(Rhodes and Myers 1989, Howell 2007, Linderman et al. 2008, Thakur et al. 2011). In native 

seedling damping-off experiments, Py. irregulare which was present at Cooljarloo in 2017 

and 2018 and Eneabba, did not caused substantial levels of post-emergence damping-off 

(Chapter 2). It is possible that damping-off pathogens present in post-mining restoration did 

not decrease the post-emergence seedling survival or fungicide degradation and leaching 

lead to less protection post-emergence.  

The ability of fungicide seed coat treatments to increase the emergence of seedlings for 

several plant species indicates damping-off pathogens were present in the period directly 

after topsoil return. Both fungicide treatments, Apron XL for Pythium spp. and Maxim XL for 

Fusarium and Rhizoctonia spp., were found to improve seedling emergence for one or more 

plant species. Pythium, Fusarium and Rhizoctonia species were isolated and widely 

distributed within the post-mining ecological restoration sites studied, and these genera are 

frequently associated with damping-off in agricultural crops (Lamichhane et al. 2017). A 

range of soil-borne plant pathogens have previously been found in ecological restoration 
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after topsoil return (Nováková 2001). Pythium irregulare, Py. cryptoirregulare, and 

Py. mamilatum isolated in post-mining restoration at Cooljarloo and Eneabba have been 

identified as virulent damping-off pathogens in other studies (Mwanza and Kellas 1987, 

Matoba et al. 2008, Bahramisharif et al. 2013, Abreo et al. 2017). In particular, Py. irregulare 

in glasshouse trials decreased seedling emergence by 50–90% across a broad host range of 

Banksia woodland and kwongan plant species (Chapter 2). It was likely that these Pythium, 

Fusarium and Rhizoctonia soil-borne damping-off pathogens were responsible for the loss of 

seedlings in post-mining ecological restoration. 

Damping-off pathogens may not be particularly active or have abundant inoculum given 

that the effect size of fungicide treatments was moderate for significant treatments. The 

environmental conditions may not have been as conducive to damping-off pathogens 

(Lamichhane et al. 2017), due to the low winter rainfall and temperatures at the sites. 

Birnbaum et al. (2017) and Frouz et al. (2013) found that microorganisms and the microbial 

community are initially disrupted by both the disturbance and stockpiling of topsoils. It is 

possible that there is less inoculum of damping-off pathogens within post-mining ecological 

restoration due to topsoil disturbance and abiotic conditions. Pathogenicity trials of 

Fusarium, Pythium and Rhizoctonia species isolated from restoration topsoil at different 

inoculum levels and environmental conditions are required to confirm this hypothesis. 

Apron and Maxim fungicides applied as seed coats may only improve the seedling 

emergence of some native kwongan and Banksia woodland plant species. Fungicide seed 

coat treatments can improve seedling emergence by 5–18%; however, results may be 

variable. Rokich et al. (2002) reported the efficiency of broadcast seed was 7% in 

comparable Banksia woodlands restoration, pre-emergent damping-off may only account 

for a relatively small proportion of the total seed loss. Broadcast seed treated with 

fungicides should be sown as close to winter rainfall as possible to minimize the potential 

degradation of Metalaxyl and Fludioxonil over time. Species of Pythium, Fusarium and 

Rhizoctonia were isolated from the restoration sites, and the impact of both fungicides 

indicated different groups of damping-off pathogens are active in topsoil. Therefore, 

multiple fungicides should be applied as seed coats to protect against different groups of 

damping-off pathogens. Fungicide seed coats may be more effective when used in 

ecological restoration projects in climates that experience more conducive warmer and 
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wetter conditions to damping-off pathogens. Protectants may provide improved seedling 

emergence when applied at higher rates, within pelleting layers or when treated seeds are 

sown closer to germination trigger events to prevent degradation or leaching.  
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Chapter 5: Plant-soil feedback through damping-off and oomycete 

associations with plant species and host age in a diverse 

Mediterranean shrubland  

Abstract 

Plant-soil feedbacks mediated by the microbial community can be an important interaction 

leading to coexistence between plant species and the maintenance of diversity. These 

interactions have recently been examined in Mediterranean plant communities but the 

underlying mechanisms causing plant-soil feedback are difficult to identify through common 

experiment designs. The emergence and survival of seedlings was monitored in conspecific 

and heterospecific soils for five plant species with contrasting nutrient acquisition strategies 

from hyper-diverse kwongan plant communities. Additionally, the oomycetes associated 

with seedlings and mature plants for each species were identified and related to plant-soil 

feedback observed. Pre- and post-emergent damping-off occurred and caused Jacksonia 

floribunda and Xanthorrhoea sp. Lesueur to experience negative plant-soil feedback in 

conspecific soils. There was little evidence to suggest the presence or abundance of 

oomycetes influenced seedling emergence and survival; however, year, plant species and 

host age were significant predictors of the oomycete community detected. Seedlings 

promoted their own oomycete community without the influence of mature plant species, an 

indication adult density or distance may have little direct effect on the microbial community 

producing feedback amongst kwongan seedlings. Plant-soil feedback driven by damping-off 

may promote coexistence and the oomycete associations with mature plant species 

provided evidence for previously hypothesised nutrient acquisition trade-offs that can 

maintain diversity in this Mediterranean shrubland. Interactions between the microbial 

community and plants are quite possibly a force promoting diversity in Mediterranean 

shrublands and molecular tools help distinguish between previously ambiguous mechanisms 

driving plant-soil feedback. 
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Introduction 

The interactions between plant species and soil microbes play an important component in 

shaping the structure and diversity of plant communities. The Janzen-Connell (J-C) 

hypothesis describes the local accumulation of specific natural enemies, such as soil-borne 

plant pathogens in close proximity to adult plants that reduce the dominance of conspecific 

seedlings through damping-off and allow heterospecific seedlings to compete for space 

(Janzen 1970, Connell 1971). The J-C effect represents negative density or distance 

dependant plant-soil feedback (PSF), and the detrimental impact of plant pathogens present 

in conspecific soils decreases with lower seedling densities or increased distance from the 

mature plant (Bever et al. 2012). Negative PSF creates a series of unfavourable “home” and 

favourable “away” recruitment sites beneath conspecific and heterospecific plant species, 

respectively. 

Plant pathogens, such as ‘fungus-like’ oomycetes, Fusarium and Rhizoctonia have been 

isolated from the seedling rhizosphere or roots and identified as the mechanism responsible 

for the J-C effect or PSF (Bever et al. 1997, Mills and Bever 1998, Packer and Clay 2000, 

2003, Ampt et al. 2019). However, the net effect of the pathogens or microbial community 

has most frequently been identified through applications of biocides (e.g. Bell et al. 2006)  

or soil sterilisation (e.g. Packer and Clay 2000). Ampt et al. (2019) found many of 

experiments in species-rich grasslands determined the role of the below-ground microbial 

community without identifying the primary soil-borne plant pathogens that caused 

feedback through isolation and Koch’s postulates. There has typically been less focus on the 

below-ground microbial agents driving feedback in natural plant communities due to the 

vast taxonomic and functional diversity present (Bever et al. 2012, Bever et al. 2015). 

Furthermore, the effects of below-ground microbial communities may be hidden compared 

to more visible impacts of above-ground pathogens (Ampt et al. 2019). The lack of an 

understanding of the key microbial agents driving PSF creates uncertainty regarding the 

specific mechanisms that help maintain the diversity of plant communities. 

The adult and seedlings may both contribute to the abundance of pathogens driving the J-C 

effect as root exudations alter the composition of the below-ground microbial community 

(Broeckling et al. 2008). Negative distance-dependent mortality unaffected by seedling 

density may indicate adults provide a reservoir of pathogen inoculum for seedlings (Packer 
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and Clay 2003, Reinhart and Clay 2009, Xu et al. 2015). However, it is difficult to determine 

the difference between negative feedback caused by seedling densities or distance as seed 

density is highest beneath the adult plant (Freckleton and Lewis 2006, Reinhart and Clay 

2009). Unfavourable environmental conditions, such as poor light underneath the 

conspecific adult may interact with seedling pathogens to cause negative distance 

dependant seedling mortality (McCarthy-Neumann and Ibáñez 2013). Xu et al. (2015) 

explain how distance dependent patterns may follow years of density dependent mortality 

after previous recruitment periods increased pathogen inoculum close to the adult; or 

density dependent pre-emergent damping-off may occur leading to the observation of 

seedling mortality reflecting a distance-dependent response. The role of seedlings and adult 

conspecifics in directly “culturing” a community of pathogens responsible for negative PSF in 

many studies is unclear. 

Seed and seedlings may be responsible for “culturing” pathogens driving negative PSF in 

most situations. The microbial community associated with the host’s rhizosphere and roots 

changes over the development of a plant species (Marschner et al. 2002, Houlden et al. 

2008). The composition of the rhizosphere microbial community and the presence of 

specific fungi can change between early and later life stages (Cavaglieri et al. 2009, Chaparro 

et al. 2014). Successional shifts in the microbial community are likely a response to different 

exudates released by the roots (Marschner et al. 2002). Additionally, the susceptibility of 

plant tissues to pathogens can vary over the lifetime of a host (Panter and Jones 2002, 

Develey-Rivière and Galiana 2007). The oomycete damping-off pathogens Phytophthora and 

Pythium become less virulent as seedlings age (Martin and Loper 1999, Simamora et al. 

2017). Pythium fails to break down suberin and lignin present in mature woody roots (Agrios 

2005). Oomycetes may persist in the rhizosphere or plant tissue without causing disease to 

susceptible hosts as they can produce long lived survival spores that germinate when 

triggered by environmental or biological conditions (Martin and Loper 1999, Crone et al. 

2013, Jung et al. 2013). The abundance of pathogens responsible for damping-off disease 

driving PSF may not be influenced directly by the adult conspecific plants given the shifts in 

the microbial community and susceptibility of hosts with age. 

Kwongan plant communities are hyper-diverse Mediterranean type shrubland located in 

southwest Australia. The diversity and richness of plant species and functional traits, such as 
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nutrient acquisition strategies are greatest in old weathered phosphorus impoverished soils 

(Laliberté et al. 2014, Zemunik et al. 2015). Plant species with non-mycorrhizal cluster roots 

(NMCR) are the most effective at extracting P from these soils. However, despite this 

completive advantage NMCR do not dominate the plant community (Laliberté et al. 2015, 

Lambers et al. 2018). Plant species with NMCR experience negative PSF when grown in a mix 

of soils collected from plant species with the same nutrient acquisition strategy (Teste et al. 

2017). Additionally, putatively native Phytophthora species can equalise the competitive 

ability of plant species with NMCR when grown with ectomycorrhizal plant species in 

inoculated glasshouse trials (Albornoz et al. 2016). Plant species with mutualist arbuscular 

and ectomycorrhizal fungal associations may be less effective at collecting soil resources but 

provide protection from oomycete and fungal root pathogens that may negatively impact 

NMCR, leading to coexistence between these functional traits (Laliberté et al. 2015, Lambers 

et al. 2018). Interactions between plant species of contrasting nutrient acquisition strategies 

has been linked to coexistence (Laliberté et al. 2015, Lambers et al. 2018). Plant species with 

superior root structures for extracting specific nutrients from deficient soils may increase 

the availability of those nutrients for neighbouring plant species with different nutrient 

acquisition strategies leading to coexistence (Muler et al. 2014, Teste et al. 2014, Teste et al. 

2015). Seedlings of NMCR plant species Banksia and Hakea in kwongan plant communities 

have displayed negative density-dependent mortality in post-fire microsites (Lamont et al. 

1993). Competition for soil moisture was identified as a key driver of negative density 

dependent PSF in litter microsites by Lamont et al. (1993); however, the role of plant 

pathogens was never assessed.  

Interactions between plant species and the below-ground microbial community may play an 

important role in shaping the structure and diversity of kwongan vegetation. Previous 

research in this Mediterranean shrubland has indicated seedlings and functional trait groups 

experience negative density-dependent mortality and both negative and positive PSF, 

respectively (Lamont et al. 1993, Teste et al. 2017). Interactions between plant species may 

also lead to co-existence though nutrient facilitation and exchange (Lambers et al. 2018). 

The role of pathogens driving PSF has not been examined from the earliest plant 

developmental stages for kwongan species and few studies have focused on pathogen 

mediated diversity outside tropical forest, temperate forests and grasslands (Comita et al. 
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2014, Bever et al. 2015). Pre-emergent damping-off by the microbial community can be 

responsible for PSF (Miller et al. 2019) despite less evidence to support their impact within 

the literature (Comita et al. 2014). Putatively native oomycetes have been detected in 

kwongan plant communities (Chapter 3, Burgess et al. 2018). These oomycetes have been 

hypothesised to drive negative PSF for hosts with NMCR (Lambers et al. 2018), and can be 

virulent damping-off pathogens (Chapter 2). Detecting the oomycetes associated with plant 

species may identify the mechanism driving PSF in seedlings and the functional trait groups 

found by Teste et al. (2017). Additionally, determining the oomycete communities 

associated with different plant developmental stages may provide new insight into the role 

of the adults and seedlings in promoting a community of pathogens within the rhizosphere. 

Two experiments and a metabarcoding survey were designed to answer four questions, 

1) Do conspecific and heterospecific soils and the oomycete community drive plant-soil 

feedback through the pre- and post-emergent damping-off of kwongan plant 

species? 

2) Are pre- and post-emergent damping-off constant in conspecific and heterospecific 

soils in the presence of a second plant species? 

3) Do plant species affect the oomycete alpha diversity and community? 

4) Are oomycete communities age-specific? 

 

Methods 

Rhizosphere soils samples were collected from a natural kwongan plant community to test 

the level of pre- and post-emergent damping-off of five plant species in soil sources from 

the same (conspecific) and different plant species (heterospecific) in a glasshouse 

experiment. The second experiment included two plant species sown together to test if this 

interaction changed levels of pre- and post-emergent damping-off. The oomycete 

communities associated with the roots of mature plant species sampled in the field and 

seedlings harvested from conspecific soils in the glasshouse were identified through 
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metabarcoding. The oomycete community was additionally used as a predictor of damping-

off in the first glasshouse experiment. 

Plant species selection 

Five plant species common within kwongan plant communities were selected for the 

experiments (Table 5.1). Each plant species has a different nutrient acquisition strategy. 

Banksia attenuata and Hakea lissocarpha have different non-mycorrhizal cluster root 

structures (Shane and Lambers 2005), and the genera have displayed different responses to 

soil-borne root pathogens (Chapter 2). The seed for the five selected plant species was 

purchased from Nindethana Seed Company (https://www.nindethana.net.au/), and had 

been collected from the Geraldton Sandplain Bioregion. The seeds of J. floribunda and 

X. sp. Lesueur were treated with hot water, and smoke water germination stimulants, 

respectively (Sweedman and Merritt 2006). 

 

Table 5.1: The plant species selected for the metabarcoding and glasshouse experiments 
together with information on their growth form and nutrient acquisition strategies. 
Family Plant species Growth Form Nutrient acquisition strategy 

    
Asphodelaceae Xanthorrhoea sp. Lesueur1 Tree-like monocot Arbuscular mycorrhizal 
Fabaceae Jacksonia floribunda Woody shrub N-fixing, arbuscular and 

ectomycorrhizal  
Myrtaceae Eucalyptus todtiana Tree Ectomycorrhizal 
Proteaceae Banksia attenuata Tree and woody 

shrub 
Non-mycorrhizal cluster root  
(compound) 

Proteaceae Hakea lissocarpha Woody shrub Non-mycorrhizal cluster root  
(simple) 

    
1 Previously identified in the area as Xanthorrhoea preissii prior to reclassification.  

 

Study area and site location 

The collection of soil samples occurred within Mt Lesueur National Park, Western Australia 

(Figure 5.1A). The site was located in stage six of the Jurien Bay chronosequence, 

characterised by old, strongly weathered and phosphorus deficient soils where species and 

functional diversity are the greatest (Turner and Laliberté 2015, Zemunik et al. 2015, 2016). 

The site was selected because it contained the five plant species in close proximity (Figure 

5.1A). The Department of Conservation, Biodiversity and Attractions (DCBA) approved a 
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permit for the collection of samples from protected areas under their management 

(SW019089). Kwongan vegetation with a mosaic of a low Banksia and Eucalyptus overstorey 

was present at the site (Figure 5.1B). The overstory contained a mix of B. attenuata, 

B. menziesii and E. todtiana. Adenathos cygnorum, B. telmatiaea, Conospermum spp., 

Eremaea asterocarpa, Hibbertia spp., Isopogon spp., and Jacksonia floribunda comprised the 

shrub layers. 

 

Sample collection 

Rhizosphere samples were collected in early October 2017 and repeated in late September 

2018. The sample collection and processing were consistent between 2017 and 2018; 

however, an adjacent area of the site was sampled in 2018 for all plant species except 

H. lissocarpha as it was not located elsewhere at the site (Figure 5.1A). The protocol 

describes how samples were collected in each year.  

Each of the five plant species had 15 individuals sampled (n = 75). An individual plant was 

sampled if it was healthy (showing no signs of dieback or leaf chlorosis), not within 5 m of 

another sampled individual, and where possible was not growing within 1.25 m (radius) of a 

different plant species. Small plant species growing at the base of a sampled individual were 

removed and soil and roots were not collected where roots intermingled. Leaf litter was 

 
Figure 5.1: A. The location of the sampled plant species in 2017 and 2018 at the site located 
at Mt Lesueur National Park, Western Australia. B. The kwongan vegetation sampled at the 
site. 

B 
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removed from the surface, and the sample was collected from the base of the plant (0–1 m) 

to a depth of 30 cm from each of the cardinal points. The samples collected from the 

cardinal points of an individual plant were combined in the field.  

Two distinct samples were collected from the rhizosphere of the 75 individuals, soil and 

roots (3 kg for Experiment 1 and 9 kg for Experiment 2) for the glasshouse experiments, and 

fine roots (100 g) for high throughput sequencing (HTS). Glasshouse samples were stored in 

insulated boxes (20°C), and then upright and open in the glasshouse before potting within 

seven days. The individual glasshouse samples were not homogenised based on plant 

species and were kept independently to allow the oomycete communities to be included as 

variables in the statistical analysis of Experiment 1. 

Glasshouse Experiment 1 

The five plant species were sown into conspecific and heterospecific soils in 2017 and 

repeated in 2018. The rhizosphere soil and root sample collected from an individual plant 

were placed into five 0.55 L, small free-draining rectangular pots (95 mm × 85 mm × 

95 mm), weighing 0.48 kg when filled, from Garden City Plastics 

(https://www.gardencityplastics.com/). The bottom of each pot was covered in plastic to 

prevent it from draining freely and leaching nutrients. For each year, each plant species was 

sown into 15 replications of conspecific and four heterospecific soils (n = 75), and each pot 

contained 20 seeds. Seeds were covered by 2–5 mm of soil. Seedling emergence and deaths 

were monitored over 130 days after the experiment was established in late October 2017 

and early October 2018. Seedling emergence and death accumulation curves were 

monitored to determine when germination and post-emergence damping-off ceased. 

Wooden toothpick markers were placed in the pots beside a seedling post-emergence and 

helped to indicate when a new germination or death had occurred. Pots were watered to 

70% of field capacity three times a week to keep soil moist and consistent throughout the 

experiment. The minimum and maximum temperature were measured during the 

experiment. The mean daily minimum and maximum temperatures in the evaporatively 

cooled glasshouse were 18.5°C and 34.6°C in 2017 and 15.5°C and 30.7°C in 2018. The roots 

of each plant species that survived the experiment in conspecific soils were harvested for 

high throughput sequencing. 

https://www.gardencityplastics.com/
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Glasshouse Experiment 2 

Plant species of contrasting nutrient acquisition strategies can interact in various ways, the 

emergence and survival of two plant species sharing the same soil was tested in 2017. The 

15 replicates of rhizosphere soil and root samples collected from each plant species were 

placed in four 1.55 L (140 mm diameter) large round pots (n = 60) purchased from Garden 

City Plastics. The bottom of each pot was covered in plastic to prevent it from draining freely 

and leaching nutrients. For each of the 15 replicates, the plant species was sown into the 

four pots containing conspecific soils with one of the other four plant species. This 

experiment was not fully factorial as one of the plant species was always sown into a 

conspecific soil. The pots contained the same soils and seed density as Experiment 1, 

allowing seedlings sown alone into conspecific and heterospecific soils to be compared to 

the various sharing arrangements. Each pot had 38 seeds sown, 19 seed from both the 

conspecific and heterospecific plant species. The seed of both species was evenly 

distributed within the pot using a consistent pattern marked out by a tool and then covered 

by 2–5 mm of soil. The experiments were located in the same glasshouse and experienced 

the same temperature conditions. Experiment 2 was monitored and watered in the same 

way as Experiment 1, but was not repeated in 2018.  

Metabarcoding 

The roots of mature plants in the field and harvested seedlings from conspecific soils after 

glasshouse Experiment 1 in 2017 and 2018 were collected and processed using identical 

equipment and protocols to that described in Chapter 3. The same methodology, kit and 

location for the eDNA extractions were used in this experiment as was described in 

Chapter 3. 

The RPS10 mitochondrial gene region (~450 bp) was amplified by a nested PCR. The first PCR 

used primers PVP9-F1 and PVP9-R1. The first round of PCR tubes contained 12.5 μl of PCR 

buffer KAPA HiFi HotStart ReadyMix (KAPA Biosystems), 8 μl of PCR grade water, 1 μM of 

each primer and 2.5 μl of genomic DNA. The first PCR cycling conditions were 1) 94°C for 

two minutes, 2) 94°C for 30 seconds, 35 cycles at 55°C for 45 seconds followed by 72°C for 

1 minute, 3) 72°C for 5 minutes, and 4) and holding at 14°C. A second nested PCR used 

RSP10 F and RSP10 R primers with Illumina MiSeq EXP000 adapter sequences attached to 

the 5’ end. The second round of PCR tubes contained 2.5 μl of PCR product. PCR cycling 
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conditions were 1) 94°C for 2 minutes, 2) 35 cycles of 95°C for 20 seconds, 60°C for 25 

seconds and 72°C for 1 minute before 3) a final 72°C for 7 minutes and 4) holding at 4°C. The 

first and second round of PCR was conducted in triplicate and then combined based on 

intensity of bands on 2% agarose gels. Extraction and PCR controls were run to test for 

contamination.  

Amplicon library preparation was performed according to recommended protocols (Illumina 

Demonstrated Protocol: 16S Metagenomic Sequencing Library Preparation). Uniquely 

indexed libraries were pooled for the sequencing run, which was performed on an 

Illumina MiSeq using 500-cycle V2 chemistry (250 bp paired-end reads) following the 

manufacturer’s recommendations. The merging and clustering of zero-radius operational 

taxonomic units (ZOTUs) was performed as described in Chapter 3; however, forward and 

reverse end reads were trimmed by 17 bp after the oomycete sequences were merged. The 

generated ZOTUs were matched against a database containing described and designated 

but undescribed oomycete taxa previously sequenced with the primers. A phylogenetic 

analysis of the Pythium phylotypes was performed using confirmed sequences of species 

with Geneious tree builder. Pythium phylotypes corresponding to new or not previously 

sequenced species were labelled as Pythium sp. followed by the clade letter based on 

Robideau et al. (2011). Pythium phylotypes that did not closely match a species were placed 

within a clade and Salisapilia were numerically labelled. Phylotypes that were oomycetes 

but did not match a known genus were labelled “Unknown Oomycete” followed by a 

number. The identified oomycetes are considered phylotypes due to their detection through 

sequencing compared to the collection of living isolates. 

Statistical analyses 

Binomial generalised linear mixed effect models (GLMM) tested the impact of the soil 

source and oomycete community variables on the emergence and survival of seedlings. The 

total emergent and surviving seedlings, out of the seed sown, were binary response 

variables in models for each plant species. Replicate and observation (i.e. pot) level random 

factors were included in all models. Observation level random effects were used to control 

for overdispersion (Bates et al. 2014). Dependent variables included soil source (the plant 

species), trial (2017 and 2018), and indices reflecting the oomycete community. Oomycete 

community indices were calculated for both mature plants and harvested seedlings, 
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including a hierarchical clustering of oomycete communities into groups, the presence of at 

least one oomycete phylotype, the number of oomycete phylotypes and the number of 

oomycete reads. The hierarchical clusters and the number of detected phylotypes were 

removed from models as they were unbalanced and highly collinear with oomycete 

presence. Two models analysed the seedling emergence and survival of each plant species. 

The first model included all observations, and the dependent variables soil source, trial and 

mature plant oomycete community indices. The second model only contained observations 

with seedling oomycete community indices as they were absent from some replicates 

because there were no remaining seedlings to harvest for metabarcoding. The strength of 

PSF within conspecific soils in relation to heterospecific soils was calculated by taking the 

natural logarithm of the odds ratio (Brinkman et al. 2010). The ‘glmer’ function from the 

lme4 R package was used to analyse the results with the “bobyqa” optimiser (Bates et al. 

2014). An alpha of 0.05 was set to determine a statistically significant result. The emmeans 

R package was used for post-hoc analyses (Lenth 2018), and fixed effects were extracted 

from models for graphing with the effects package (Fox and Hong 2009). Data exploration 

and model validation were conducted as described in Zuur et al. (2010) and Zuur and Ieno 

(2016). 

A binomial GLMM tested the effect of sharing soil with a second plant species on the 

emergence and survival of seedlings for the analysis of glasshouse Experiment 2. Plant 

species were analysed separately with two dependent variables, soil source and the sharing 

arrangement. The emergence and survival of seedlings sown alone into each soil in 

Experiment 1 were included in the sharing arrangement variable as seeds were sown at the 

same density and were comparable. The analysis was not fully factorial as seeds were not 

sown into soil heterospecific to both plant species. The sharing arrangement was separated 

by soil source in post-hoc analyses to compare the emergence and survival of plant species 

sown alone and together under the same conditions. The replicate, individual plant sampled 

and observation level random factors were included in all models. The same functions, 

packages and protocols were followed in the analysis as glasshouse Experiment 1. 

Generalised linear models (GLM) tested the influenced of the plant species (Table 1), year of 

sampling (2017 vs 2018) and the plant age (mature field plant vs harvested glasshouse 

seedling) on the number of oomycete phylotypes or alpha diversity. The number of 
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oomycete phylotypes was analysed in two separate models. The plant species covariate was 

removed from the first alpha diversity model. The second alpha diversity model included 

plant species; however, observations were removed from the analysis if a three-way 

interaction grouping had zero oomycete detections, the model could not accurately 

calculate standard errors due to a lack of variance within these categories. The first model 

was run using a negative binomial GLM to correct for overdispersion and the second with a 

Poisson distribution using the stats base package in R (R Core Team 2018). Additionally, a 

separate Poisson model was run to determine if oomycetes associated with mature plants 

influenced the number of oomycetes detected from seedlings. The seedling model included 

the plant species, year of sampling and oomycetes presence from the corresponding mature 

individual in the field as dependent variables. The same functions, packages and protocols 

were followed as described in the previous analyses. 

Statistical analyses were performed to determine if the plant species, age and year of 

sampling influenced the oomycete community detected. Mature plants and seedlings were 

first separately analysed to determine if plant species, year of collection and the interaction 

of covariates affected the detected oomycete community. The third model analysed all 

observations with the previous covariates, in addition to plant age and its interactions. 

Samples with at least one detection were included in the analyses. Datasets containing the 

presence and abundance (number of reads) of oomycetes produced dissimilarity matrices 

with the Jaccard and Bray-Curtis indices, respectively. The dissimilarity matrices were each 

used in a permutational multivariate analysis of variance (permanova) run with 9999 

permutations, performed with the ‘adonis’ function in the vegan R package (Oksanen et al. 

2018). A Bonferroni P-adjusted post-hoc test was then used to compare the statistically 

significant (P ≤ 0.05) categorical terms with two or more levels with the ‘pairwise.adonis’ 

function from the pairwiseAdonis R package (Martinez Arbizu 2017). The ‘betadisper’ and 

‘permutest’ functions in vegan tested the assumption of homogeneity of multivariate 

dispersions between categorical levels. The oomycete communities were graphically 

represented through unconstrained ordination, non-metric multidimensional scaling 

(NMDS) from the ‘metaMDS’ function in the vegan R package (Oksanen et al. 2018). The 

NMDS coordinates for each sample were generated using both Jaccard (presence) and Bray-

Curtis (abundance) indices in two dimensions. A dummy oomycete species was added to 
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each sample due to denuded assemblages preventing NMDS convergence (Clarke et al. 

2006). All NMDS coordinates generated using the Jaccard index were randomly jittered by 

0.1 along the x and y axes to display the abundance of points plotted at the same location 

representing identical communities. The NMDS coordinates were extracted and plotted 

using the GGplot2 R package (Wickham 2016). Ellipses were drawn into plots to display the 

extent of the oomycete community with 95% confidence intervals for the experiment year 

and plant age using the ‘stat_ellipse’ function. Polygons were produced using the function 

‘chull’ in the grDevices base R package (R Core Team 2018) to highlight the area occupied by 

each plant species. 

 

Results 

Glasshouse Experiment 1 

Soil source contributed to statistically significant changes in the emergence and survival of 

seedlings for three of the five plant species (Table S5.1, Figure 5.3), and caused negative 

feedback in conspecific soils for J. floribunda and X. sp. Lesueur (Figure S5.1). Banksia 

attenuata seedling survival in 2018 was improved by 16.5% and 13.3% in E. todtiana soils 

compared to other heterospecific sources H. lissocarpha and J. floribunda, respectively 

(Figure 5.3A). However, this trend was not present in 2017, or when the trials were 

combined and doesn’t indicate a plant-soil feedback (Figure 5.3A). The survival of 

J. floribunda was reduced by 9% in conspecific soil when the trials were combined (Figure 

5.3B), despite experiencing no negative effects on seedling emergence in the same 

conspecific soils (Figure 5.3B). Post-emergent damping-off caused the negative conspecific 

feedback experienced by J. floribunda. In 2017 and combined trials, the seedling emergence 

and survival of J. floribunda was also worse in B. attenuata soils compared to H. lissocarpha 

and X. sp. Lesueur (Figure 5.3B). In 2018 and the combined trial analyses, the emergence 

and survival of X. sp. Lesueur was higher within B. attenuata soils by 13–18% in comparison 

to conspecific soils (Figure 5.3C). The negative conspecific feedback experienced by 

X. sp. Lesueur was driven primarily by pre-emergent damping-off as a decrease in seedling 

survival did not substantially contribute to the different between soil sources. Furthermore, 

X. sp. Lesueur seedling emergence and survival experienced negative feedback in 

H. lissocarpha and J. floribunda soils when averaged across both trials, respectively (Figure 
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5.3C). Hakea lissocarpha was the only plant species not influenced by either the source of 

the soil or the oomycete communities associated with mature plants or seedlings (Table 

S5.1; Table S5.2). 

There was a statistically significant correlation between the presence of oomycetes 

detected in the roots of harvested seedlings with reduced emergence of E. todtiana and 

survival of J. floribunda in 2018 (Table S5.2). The presence of oomycetes decreased the 

emergence of E. todtiana and survival of J. floribunda by 10% and 12%, respectively. 

However, the overall presence of oomycetes did not affect J. floribunda, and it was only 

possible to analyse the data from 2018 for E. todtiana. The presence and the abundance of 

oomycetes reads associated with mature plants did not have a statistically significant 

influence on the emergence and survival of any plant species (Table S5.2).  

Seed viability was similar between trials allowing trials to be combined. Eucalyptus todtiana 

seed viability was poor in 2017 and was removed from the analysis. Seedling emergence and 

survival observations were removed from the analyses for the seedling oomycete 

community because 20 of the 150 replicates across the two trials had no living seedlings in 

conspecific soils for metabarcoding. The replicates removed from the analysis came from 

E. todtiana (11), J. floribunda (8) and B. attenuata (1) soils.  

Glasshouse Experiment 2 

The sharing arrangement did not affect seedling emergence. There were statistically 

significant improvements in the survival of H. lissocarpha and J. floribunda when sown with 

another plant species in a heterospecific soil (Figure 5.2A–B). Hakea lissocarpha seedling 

survival was significantly improved when sown with J. floribunda and into J. floribunda soil 

(Figure 5.2A). The survival of H. lissocarpha seedlings was 16.8% or 1.97 times higher than 

when it was sown alone in soils sourced from J. floribunda, which had no significant negative 

effect on seedling survival compared to the other four soil sources. The seedling survival of 

J. floribunda was significantly improved by 7.7% or 2.26 times higher when sown with 

B. attenuata and into B. attenuata soil (Figure 5.2B). Soil sourced from B. attenuata had a 

significant negative effect on the emergence and survival of J. floribunda seedlings when 

they were sown alone (Figure 5.2B). The survival of X. sp. Lesueur and B. attenuata was not 

affected by the various sharing arrangements (data not shown). Eucalyptus todtiana was not 
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analysed and its sharing arrangements were removed from the analyses of the other four 

plant species due to poor emergence in 2017.  

 

Figure 5.2: The effect of a second plant species and soil source on the emergence and 
survival of A. Hakea lissocarpha, and B. Jacksonia floribunda compared to when they were 
sown alone. Plant species were sown into their own soil (conspecific) and the corresponding 
second plant species’ (heterospecific) soils. The odds ratio (OR) can be interpreted as a 
positive (OR > 1) or negative (OR < 1) effect of the second plant species on the seedling 
emergence and survival. The 95% confidence intervals that do not intersect an odds ratio of 
one (dashed lined) were statistically significant and marked with an asterisk.  
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Figure 5.3:The mean seedling emergence and survival of plant species in Experiment 1, A. 
Banksia attenuata; B. Jacksonia floribunda; and C. Xanthorrhoea sp. Lesueur in 2017 and 
2018, and the combined analysis of the 2017 and 2018 trials. Eucalyptus todtiana and 
H. lissocarpha are not shown. Seedlings of each species were sown into soils originally 
sourced from B. attenuata, Eucalyptus todtiana, Hakea lissocarpha, J. floribunda and 
X. sp. Lesueur. Letters represent homogenous subsets determined through a post-hoc 
analysis (P ≤ 0.05).  
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Metabarcoding 

A total of 703,538 paired reads were obtained from the HTS, and 48% of wells produced 

good quality reads. The merge successfully paired 63% of reads (441,882) with a mean 

length of 476 bp, and a mean alignment length of 26 bp. No alignment was found for 23% of 

paired reads because they were too short (<75 bp). Oomycetes accounted for 44% of 

merged pairs, and on average 2,637 reads were detected in each sample.  

The metabarcoding survey detected a total of 19 distinct oomycete phylotypes (Table 5.2). 

Three oomycete phylotypes were matched with Phytophthora species, P. arenaria, 

P. sp. kununarra and P. quercetorum. Seven Pythium, of which five were placed into clades, 

and two Salisapilia spp. phylotypes were identified to the genus level. The remaining seven 

oomycete phylotypes could not be matched with a genus and species. Phytophthora 

arenaria and P. sp. kununarra have previously been detected in Western Australia; however, 

the other 16 phylotypes were either new detections or absent in the library database. 

Oomycetes were detected in 74 samples (26%), 32 (21%) from mature plants from the field 

and 42 (32%) from harvested seedlings in conspecific soil from the glasshouse. On average, 

1.94 and 1.12 oomycete phylotypes were detected within positive samples from mature 

plants and harvested seedlings, respectively. A total of 15 oomycetes phylotypes were 

identified in the roots of mature plants and 8 from harvested seedlings. Phytophthora 

arenaria (33 detections), Pythium sp. 1 (18), and P. sp. kununarra (10) were the most 

commonly detected phylotypes (Table 5.2). Six oomycete phylotypes, Py. sp. 2, Py. sp. H, 

Salisapilla sp. 2, and unknown oomycetes 1, 2, and 5 were detected once. The most 

commonly detected oomycetes were Pythium sp. 1 (14) amongst mature plants and 

P. arenaria (32) from harvested glasshouse seedlings (Table 5.2). Only four oomycete 

phylotypes were detected from the roots of mature plants and seedlings (Table 5.2). 

Pythium sp. G and Py. sp. J were uncommon phylotypes regardless of host age, whereas 

P. arenaria and Py. sp. 1 were predominantly associated with the roots of seedlings and 

mature plants, respectively. 

 

Table 5.2: The oomycete phylotypes and the number of detections from mature plant and 
seedling roots in 2017 and 2018. The number of samples collected and the total detections 
are displayed at the top and bottom of the table, respectively.  
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  Detections 

  Mature plants Seedlings 

 Total 2017 2018 2017 2018 
Oomycete Phylotype n = 280 n = 75 n = 75 n = 63 n = 67 

      
Phytophthora arenaria 33 0 1 24 8 
P. sp. kununarra 10 10 0 0 0 
P. quercetorum 3 3 0 0 0 
      
Pythium sp. 1 18 12 2 3 1 
Py. sp. 2 1 0 0 0 1 
Py. sp. B  2 0 0 2 0 
Py. sp. D 7 6 1 0 0 
Py. sp. G 4 3 0 1 0 
Py. sp. H 1 0 1 0 0 
Py. sp. J 3 0 2 1 0 
      
Salisapilia sp. 1 3 3 0 0 0 
Salisapilia sp. 2 1 1 0 0 0 
      
Unknown oomycete 1 1 1 0 0 0 
Unknown oomycete 2 2 0 0 2 0 
Unknown oomycete 3 4 4 0 0 0 
Unknown oomycete 4 1 0 1 0 0 
Unknown oomycete 5 4 0 0 0 4 
Unknown oomycete 6 7 7 0 0 0 
Unknown oomycete 7 4 4 0 0 0 
      
Total 109 54 8 33 14 
      

 

Oomycete alpha diversity  

Plant species and the year of sampling had a statistically significant effect on the oomycete 

alpha diversity associated with the roots of mature plants. On average a greater number of 

oomycete phylotypes were detected in the roots of H. lissocarpha compared to 

B. attenuata, E. todtiana and X. sp. Lesueur in 2017 (Figure 5.4). Oomycete alpha diversity 

was lower in 2018; on average, 0.5 oomycete phylotypes were detected per individual in 

2017 compared to 0.074 in 2018 (Figure 5.5). Specifically, in 2018 the oomycete alpha 

diversity associated with H. lissocarpha was significantly lower and no oomycetes were 

detected in the roots of E. todtiana, J. floribunda and X. sp. Lesueur (Figure 5.4). 

The year samples were collected was the only statistically significant predictor of oomycete 

alpha diversity associated with the roots of seedlings harvested from conspecific soils in the 
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glasshouse. The oomycete alpha diversity detected was higher in seedling roots harvested in 

the 2017 experiment (Figure 5.5F). The oomycete alpha diversity associated with each plant 

species was relatively similar between and within experiments (Figure 5.4). Although, 

oomycetes were not detected in the roots of E. todtiana in 2018 despite double the sample 

size collected in 2017.  

 

 
Figure 5.4: The oomycete alpha diversity (mean number of oomycete phylotypes) and the 
95% confidence intervals associated with the roots of B. attenuata (B.a), E. todtiana (E.t), 
H. lissocarpha (H.l), J. floribunda (J. f) and X. sp. Lesueur (X. l) in 2017 and 2018. Roots were 
collected from mature plants and seedlings grown in conspecific soils under glasshouse 
conditions. Letters represent homogenous subsets generated by post-hoc analyses 
(P ≤ 0.05), plant species without oomycete detections were removed from the analysis and 
not grouped. 
 

The year samples were collected had a statistically significant effect on the mean number of 

oomycete phylotypes detected (Figure 5.5F; Table S5.3). Plant age did not influence the 

oomycete alpha diversity (Table S5.3). Overall, roots collected from mature plants and 

seedlings grown in conspecific soils had similar oomycete alpha diversities within years 

(Figure 5.5F; Table S5.3). On average, 0.4 more oomycete phylotypes were detected in each 

sample in 2017. There was a statistically significant interaction between H. lissocarpha and 

plant age, and in 2017 oomycete alpha diversity was higher in the roots of mature plants 



104 
 

compared to seedlings (Figure 5.5C). Additionally, on average more oomycete phylotypes 

were detected in the roots of J. floribunda and X. sp. Lesueur seedlings despite zero 

detections from their respective mature plants from the field in 2018 (Figure 5.5D–E). The 

presence of oomycetes in the corresponding mature individual in the field was not a 

significant (LR χ2 = 0.213, P = 0.644) predictor of the number of oomycete phylotypes 

detected from seedlings. 

 
Figure 5.5: The oomycete alpha diversity (mean number of oomycete phylotypes) and the 
95% confidence intervals associated with the roots of mature plant species in the field and 
seedlings grown in the same conspecific soils under glasshouse conditions. Oomycete 
alpha diversity is separated by the year of collection for plant species independently (A.–
E.), and F. combined. Letters represent homogenous subsets generated by post-hoc 
analyses (P ≤ 0.05), plant species without oomycete detections were removed from the 
analysis and not grouped. 

 

Oomycete communities 

The year that samples were collected appeared to have little impact on the oomycete 

communities detected (Figure 5.6A - B). The analyses performed using the presence and 

abundance dissimilarity indices indicated year explained a small amount of variation in the 
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oomycete community, despite being a statistically significant term in mature, seedling and 

global presence models (Table 5.3). Additionally, the oomycete communities associated 

with individual mature plant species and seedlings did not differ between years. 

 

 
Figure 5.6: Non-metric multidimensional scaling ordination of the oomycete communities 
associated with the year and age of the plant roots were collected. The graphical 
representations are separated by the dissimilarity index, A. Jaccard (presence); B. Bray-
Curtis (abundance). Small clusters of points in graph A. represent the same community of 
oomycetes as positions were randomly jittered. 
 

Plant age had a statistically significant impact on the oomycete communities. In both 

presence and abundance analyses, plant age influenced the oomycete community detected 

(Table 5.3, Figure 5.6A–B). The amount of variation in the oomycete community explained 

by the abundance model was lower compared to the presence model (Table 5.3, Figure 

5.6B). Specifically, the age of the plant species had an impact on the oomycete community 

associated with J. floribunda in the presence analysis. However, the oomycete communities 

associated with individual plant species did not differ between mature plants and seedlings 

in the abundance model. There was some overlap between the oomycete phylotypes 

present within mature plant and seedling roots for several plant species; however, the 

composition of the oomycete communities was substantially different (Figure 5.7). All plant 

species had vastly different compositions based on the abundance of oomycete phylotype 

reads (Figure 5.7). 

 



106 
 

 
Figure 5.7: The composition of the oomycete communities associated with the roots of 
mature plant species and their seedlings grown in conspecific soils. The two calculations of 
oomycete composition, presence and abundance are based on the total number of 
phylotype detections and reads, respectively.  The oomycete communities are separated by 
plant species and plant age. 
 

Plant species explained a larger amount of variation in the oomycete community associated 

with mature plants and seedlings (Table 5.3). In both presence and abundance analyses of 

mature plants, the oomycete community of B. attenuata was significantly different from 

H. lissocarpha and J. floribunda (Figure 5.8A – B). Additionally, the oomycete community 

associated with mature H. lissocarpha plants was also significantly different to E. todtiana 

and J. floribunda in the presence analysis (Figure 5.8A). Results varied between analyses of 

the oomycete community associated with seedlings. The seedling oomycete community 

associated with H. lissocarpha was significantly different from B. attenuata, J. floribunda and 

X. sp. Lesueur (Figure 5.8C). However, there were no differences amongst plant species 

when the abundance of oomycetes was analysed (Figure 5.8D). 
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Table 5.3: Permanova results for the global and individual plant age analyses that were 
separated by mature plants sampled in the field at Lesueur National Park, WA, and seedlings 
grown and harvested from the same conspecific soils in the glasshouse. The results of a 
presence analysis using a Jaccard index and abundance analysis using the Bray-Curtis index 
are displayed. The results display the effect of plant species, sampling year, and plant age 
and their interaction on the composition of oomycete communities associated with 
rhizosphere roots. Significant (P ≤ 0.05) results are presented in bold.  
  Presence Abundance 

Factor df SS MS F-value R2 P-value SS MS F-value R2 P-value 

            
Global            
Plant species 4 2.73 0.68 7.53 0.183 0.0001 3.48 0.87 2.58 0.115 0.0001 
Year 1 0.49 0.49 5.36 0.033 0.0005 0.36 0.36 1.07 0.012 0.3277 
Plant age 1 2.32 2.32 25.60 0.155 0.0001 1.30 1.30 3.85 0.043 0.0004 
Plant species: Year 3 1.39 0.46 5.11 0.093 0.0001 1.98 0.66 1.95 0.065 0.0023 
Plant species: Plant age 4 2.06 0.52 5.69 0.138 0.0001 3.04 0.76 2.25 0.100 0.0001 
Year: Plant age 1 0.24 0.24 2.60 0.016 0.0222 0.28 0.28 0.82 0.009 0.6409 
Plant species: Year: Plant age 1 0.46 0.46 5.05 0.031 0.0002 0.37 0.37 1.10 0.012 0.3289 
Residuals 58           
Total 73           
            
Plant age - Mature            
Plant species 4 2.90 0.72 5.25 0.400 0.0001 3.46 0.87 2.28 0.256 0.0001 
Year 1 0.63 0.63 4.57 0.086 0.0003 0.34 0.34 0.90 0.025 0.5552 
Plant species: Year 1 0.33 0.32 2.36 0.044 0.0234 0.22 0.22 0.58 0.016 0.9416 
Residuals 25           
Total 31           
            
Plant age - Seedling            
Plant species 4 1.06 0.26 4.86 0.247  0.0002 2.55 0.64 2.09 0.170 0.0089 
Year 1 0.39 0.39 7.08 0.090  0.0008 0.44 0.44 1.45 0.029 0.1762 
Plant species: Year 3 1.03 0.34 6.31 0.242  0.0002 1.99 0.66 2.17 0.132 0.0073 
Residuals 33           
Total 41           
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Figure 5.8: Non-metric multidimensional scaling ordination of the oomycete communities 
associated with the roots of mature plant species and their seedlings grown in conspecific 
soils. The NMDS representations of the oomycete communities are separated by the 
dissimilarity index and plant age, A. Jaccard (presence) mature plants; B. Bray-Curtis 
(abundance) mature plants; C. Jaccard (presence) seedlings; and D. Bray-Curtis (abundance) 
seedlings. Small clusters of points in graphs A and C represent the same community of 
oomycetes as positions were randomly jittered. 
 

Discussion 

Negative plant-soil feedback occurred in conspecific and heterospecific soils for J. floribunda 

and X. sp. Lesueur, two of the five kwongan plant species screened. Pre- and post-emergent 

damping-off contributed to the feedback observed. The diversity of kwongan plant 

communities may be influenced by PSF or a Janzen-Connell effect beginning from the pre-
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emergent seedling stages. Several PSF studies have been conducted in natural 

Mediterranean plant communities (Hyatt et al. 2003, Kulmatiski et al. 2008, Miki 2012, 

Comita et al. 2014), and the results of the current study are consistent with previous 

findings suggesting these plant communities can be influenced by the microbial community 

or natural enemies (Steinitz et al. 2011, Bonanomi et al. 2012, Teste et al. 2017, Png et al. 

2019). There was little evidence to suggest the addition of a second plant species 

contributed to substantial changes in pre- and post-emergent seedling mortality. The 

presence and abundance of oomycetes detected from the roots of either the mature plants 

or seedlings were not correlated with seedling emergence or survival. However, the 

oomycete communities detected were significantly influenced by the plant species and host 

age. This is one of the first studies to link the below ground oomycete communities to PSF 

through metabarcoding, a novel tool that allows the microbial community to be related to 

the response of plant species (Merges et al. 2019, Miller et al. 2019). The early PSF and 

oomycete communities found may influence local diversity of kwongan vegetation and drive 

changes in pre- and post-emergent seedling mortality in these plant communities. 

Plant-soil feedback through the pre- and post-emergent damping 

The primary aim of this study was to determine if conspecific and heterospecific soils, and 

the oomycete community drive plant-soil feedback through the pre- and post-emergent 

damping-off of kwongan plant species. Levels of pre- and post-emergent damping-off varied 

significantly in soils sourced from different plant species and appears to play a role in 

shaping the abundance of seedlings in kwongan plant communities. Damping-off impacted 

X. sp. Lesueur and J. floribunda in conspecific soils causing negative PSF primarily through 

pre- and post-emergent seedling mortality, respectively. Negative PSF in conspecific soils 

leads to coexistence between plant species (Bever et al. 2015). Pre-emergent damping-off in 

a heterospecific soil led to a temporary positive PSF for J. floribunda during the earliest 

developmental stage. Comparatively, seed germination in conspecific soils of seven 

grassland plant species produced both negative and positive PSF (Miller et al. 2019). A meta-

analysis found weaker effects of conspecific soils pre-emergent damping-off compared to 

seedling mortality; however, a significant negative density-dependent effect on seed was 

identified across the literature (Comita et al. 2014). Previous studies on kwongan plant 

species and PSF have typically ignored early plant developmental stages and focused on the 
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equally important measurement of biomass accumulation (e.g. Albornoz et al. 2016, Teste 

et al. 2017). Studies that focus on transplanting seedlings in natural environments and the 

glasshouse (Reinhart and Clay 2009), or observations of seedling distributions in natural 

environments (Condit et al. 1992, Comita et al. 2010, Johnson et al. 2012) may be missing 

pre- and post-emergent seedling mortality an important period of shaping plant 

communities. 

The presence and abundance of oomycetes detected from mature plants or harvested 

conspecific seedlings appeared to have little effect on emergence and survival seedlings in 

this study. The total effect of oomycete presence and abundance was negligible for four 

plant species and the significant negative effect displayed by E. todtiana was not repeated. 

Oomycetes have been identified as the natural enemies causing negative PSF in tropical 

forests, temperate forests and grassland plant communities (Mills and Bever 1998, Packer 

and Clay 2000, Bell et al. 2006). Phytophthora arenaria composed most of the oomycete 

community in seedlings and caused significant pre- and post-emergent damping-off of 

B. attenuata, E. todtiana and J. floribunda in pathogenicity trials (Chapter 2). Despite the 

pathogenicity and detection frequency of P. arenaria, few negative effects on seedlings 

were attributable to the oomycete community. Previous pathogenicity trials may not have 

reflected natural plant-soil interactions by using excessive P. arenaria inoculum levels, 

isolates collected from diseased mature plants (Rea et al. 2011), and by not including other 

rhizosphere microbes that directly influence pathogen abundance or seedling health 

(Bennett et al. 2006).  The PSF observed may have been the sum of many different microbial 

interactions, including mycorrhizal fungi and bacteria (Bever et al. 2015), or other damping-

off fungi, such as species of Fusarium (Liu et al. 2012b) which were not in the scope of the 

present study. Without a sterile control treatment, soil properties modified by the mature 

plant species may have also contributed to PSF (Png et al. 2019). The metabarcoding results 

may have not entirely represented the oomycete communities of heterospecific seedlings 

and subsequently were not correlated with seedling emergence and survival. Alternatively, 

the oomycete community and P. arenaria may reduce the growth of plant species during 

early developmental periods (Albornoz et al. 2016). 
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Impact of a second plant species on pre- and post-emergent damping-off 

Pre- and post-emergent damping-off was rarely influenced by the presence of a second 

plant species. The seedling survival of J. floribunda and H. lissocarpha were each significantly 

improved in a single heterospecific soil. This result does not provide reliable evidence to 

suggest interactions between plant species that impact levels post-emergent damping-off 

are widespread, and there was no indication of any effect on plant species in conspecific 

soils or pre-emergent mortality. Previous studies have found below ground nutrient 

facilitation and exchanges between plant species with different nutrient acquisition 

strategies may contribute to coexistence (Muler et al. 2014, Teste et al. 2014, Teste et al. 

2015). Additionally, plant pathogens have promoted coexistence between competing plant 

species with different nutrient acquisition strategies (Albornoz et al. 2016). The interactions 

between kwongan plant species in previous studies found changes in the accumulation of 

biomass, mutualist mycorrhizal root colonisation and nutrient concentrations in tissue, but 

these may not cause identifiable variation in pre- and post-emergent seedling mortality. 

Additionally, the seedlings from different plant species may not have had enough time to 

substantially manipulate the soil microbial community. Plant-soil feedback can be driven by 

pre- and post-emergent damping-off and studies focusing on mortality during early 

developmental stages of plants may not need to include interactions between seedlings of 

different plant species, despite the importance of interactions between mature plants. 

Effect of plant species on oomycete alpha diversity and community composition 

The oomycete alpha diversity and community were significantly affected by plant species. 

Seedling oomycete communities were similar due to the association of P. arenaria with 

three of the five plant species studied. Seedlings have previously been found to be 

influenced by generalist plant pathogens more frequently than host specialists (Augspurger 

and Wilkinson 2007, Hersh et al. 2012), and this appears to be the same for the seedlings of 

kwongan plant species and oomycetes. Conversely, mature plant species had varied 

oomycete communities and alpha diversity. The mature NMCR plant species, H. lissocarpha 

dominated a separate area of vegetation at the site and had a different oomycete 

community and significantly higher alpha diversity. Other evenly dispersed plant species at 

the site had significantly lower oomycete alpha diversity indicating H. lissocarpha may be 

experiencing a negative PSF. Bever et al. (2012) suggest negative PSF would be enhanced by 
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multiple plant pathogen infections due to a cumulative increase in virulence. Alternatively, 

variation in abiotic conditions, such as soil moisture at the site may be responsible for 

changes in the oomycete community.  

The year and plant species impacted the detected oomycete community. There were more 

oomycetes detected from mature plants and seedlings in 2017 compared to 2018. Rainfall 

recorded at adjacent weather stations in the month leading up to sampling was 

substantially lower in 2018 compared to 2017 and the long-term averages (BoM 2019, 

DPIRD 2019). Soil moisture can have a substantial effect on the ability of oomycetes, such as 

Phytophthora to infect roots (Weste and Marks 1987, Rhoades et al. 2003), and may have 

influenced their detection from mature plants and seedlings if inoculum levels in the soils 

were low.  

Host age and oomycete communities 

Oomycete communities associated with mature plants were significantly different to 

seedlings. Community analyses identified significant shifts between host ages, particularly in 

the phylotype presence model. There were clear differences in the composition of 

oomycete communities between age groups for each plant species. In total, mature plants 

and seedlings shared four oomycete phylotypes, of which none were either common or 

abundant in both host age groups. Furthermore, oomycetes detected in the roots of mature 

plants did not significantly increase the likelihood of detection in seedlings. Adult plant 

species likely have little or no direct influence on the oomycetes infecting conspecific 

seedling roots, and host root tissue does not appear to act as a large oomycete inoculum 

reservoir for the kwongan plant species studied. Oomycetes can remain in the soil through 

survival structures between years and can quickly propagate to infect seedlings (Martin and 

Loper 1999, Jung et al. 2013). Phytophthora can also remain dormant in asymptomatic host 

roots (Crone et al. 2013), but this does not appear to be the case for the five adult plants 

studied. The natural enemies present in conspecific soils of kwongan plant species may be a 

response to seedling densities if they are manipulated in the same way as oomycetes. These 

findings are comparable to studies from managed systems that identified the rhizosphere 

microbial community associated with plant species changed between developmental stages 

(Houlden et al. 2008, Cavaglieri et al. 2009, Chaparro et al. 2014). Although the oomycete 

communities were not correlated with seedling performance, metabarcoding adult and 
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seedling microbial communities could be a robust method to identify the mechanisms 

responsible for driving PSF as experimental evidence can be ambiguous (Reinhart and Clay 

2009, Xu et al. 2015).  

Plant-soil feedback and oomycete communities in kwongan vegetation 

The findings of the current study were relatively consistent with previous research and 

provided evidence to support the hypothesised role of pathogens in kwongan plant 

communities. The negative conspecific feedback of J. floribunda and X. sp. Lesueur was 

previously found by Teste et al. (2017) using homogenised soil mixes. The NMCR plant 

species B. attenuata and H. lissocarpha did not experience lower survival in conspecific soils 

relative to heterospecific soils in the current study. This was not consistent with the 

feedback identified by Teste et al. (2017), and suggests seedling mortality may not 

contribute to the hypothesised susceptibility trade-off leading to coexistence between 

nutrient acquisition strategies (Laliberté et al. 2015, Lambers et al. 2018). However, the 

oomycete communities associated with mature plant roots supported the hypothesis that 

NMCR plant species may be more susceptible to root pathogens (Laliberté et al. 2015, 

Lambers et al. 2018). Hakea lissocarpha dominated an area of the site and had the greatest 

oomycete alpha diversity associated with its roots. The other NMCR plant species, 

B. attenuata, was evenly distributed throughout the site and had significantly lower 

oomycete alpha diversity compared to H. lissocarpha in 2017. Additionally, as hypothesised 

by Laliberté et al. (2015) and Lambers et al. (2018), the mature plant species with 

mycorrhizal associations, E. todtiana and X. sp. Lesueur had the lowest oomycete alpha 

diversity, implying mycorrhizal fungi protected roots from pathogens. The oomycete 

communities indicate NMCR plant species may experience negative PSF when they become 

dominant and mycorrhizal mutualists provide protection from root pathogens leading to a 

trade-off that promotes coexistence amongst mature plants. 

 

The experiment aimed to identify the changes in seedling emergence and survival in 

conspecific and heterospecific soils. In the present study, the factorial design identified the 

role of each heterospecific soil source, a level of detail not within the scope of previous 

experiments completed with kwongan plant species (Cahill Jr et al. 2017, Teste et al. 2019). 

Furthermore, a large component of this study focused on detecting the communities of 
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oomycetes associated with seedlings, homogenising soil sources would have likely skewed 

these results (Reinhart and Rinella 2016, Rinella and Reinhart 2019).  Despite reducing the 

required resources, PSF experiments conducted with conspecific vs sterilised soil sources, 

homogenised soils, or pooled heterospecific soils are not necessarily reflective of specific 

microbial communities associated with a plant species and can lead to problems with the 

statistical analysis (Reinhart and Rinella 2016, Rinella and Reinhart 2019). The findings of 

Chapter 3 highlighted several sampling strategies used in past surveys of Phytophthora, such 

as soil bulking lead to higher estimations of species abundance at site levels. The choice to 

not homogenise soils and avoid bulking root samples for metabarcoding in the present 

study meant sampling from seedlings in heterospecific soils was not possible due to the 

considerable resources required to sample all individuals. Despite the higher variability 

associated with individual soil samples compared to homogenised samples (Kulmatiski 

2016), the experiment was adequately replicated and repeated to ensure confidence in the 

results and to avoid Type II error (Gundale et al. 2017). Sterile conspecific treatments were 

initially included in the experiment design but were subsequently removed from the 

statistical analysis as fungal and oomycete damping-off pathogens were isolated from dead 

seedling roots. Sterile soil treatments would have helped to identify and separate the effect 

of the microbial community and abiotic effects on the feedback experienced in conspecific 

soils for each plant species. 

Relating the oomycete community to the response of seedlings included assumptions that 

may have influenced the outcome of the analyses. A survivorship bias was present as 

seedlings were harvested at the conclusion of the experiment. Subsequently, 19 replicates 

were removed from analyses due to seedling death that may have been due to virulent 

pathogens. However, half of these replicates removed were E. todtiana in 2017 and their 

roots were not available to collect due to poor seed viability. Additionally, the roots of dead 

seedlings were not removed to avoid disturbing the root systems of remaining seedlings and 

influencing pathogen inoculum levels. Seedling roots were often destroyed by the pathogen 

before damping-off symptoms became apparent or soon after emergence. Despite many 

plant species having similar oomycete communities, the indices used in the analysis were 

not likely to be entirely representative of the oomycete community affecting heterospecific 

seedlings and represented a selection bias. The microbial community will often change 



115 
 

substantially during the development of a plant. Therefore, the samples collected at 130 

days did not contain many new emergent seedlings and may not identify oomycetes 

affecting seedlings soon during early developmental periods. Seedling roots harvested after 

the experiment may reflect a temporal bias. It is difficult to quantify the effect of these 

sampling biases on the outcome of the statistical analyses.   

The microbial community may promote coexistence between plant species in kwongan 

shrublands. Two of the five plant species experienced negative PSF in conspecific soils which 

was driven by either pre- or post-emergent damping-off. There was little evidence to 

suggest pre- and post-emergent seedling mortality were influenced by oomycetes or the 

addition of a second plant species. The oomycete communities detected from mature plant 

and seedling roots had little in common suggesting adult plants do not provide a reservoir of 

inoculum. Metabarcoding indicated fewer oomycetes were associated with mature plant 

species with mycorrhizal associations, and pathogens may respond to the dominance of 

NMCR plant species and promote negative feedback. This study identified the diversity of 

kwongan plant communities may be shaped by damping-off and found further evidence for 

nutrient acquisition strategy trade-offs. Additionally, molecular tools can be employed to 

determine the microbial community of both adults and seedlings to more accurately identify 

mechanisms promoting PSF.
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Chapter 6: General discussion 

Major Findings 

This study was the first to explore the role of damping-off and the distribution of 

Phytophthora and oomycetes in kwongan plant communities, a diverse Mediterranean 

shrubland. It was hypothesised damping-off may substantially influence natural and 

restored kwongan plant communities and be caused by Phytophthora species. Experiments 

identified damping-off was a mechanism promoting co-existence between plant species in 

natural vegetation and reduced the establishment of seedlings in post-mining ecological 

restoration. Oomycetes and fungal pathogens were identified directly through isolation or 

indirectly by the positive effect of fungicides on seedling emergence in restoration. 

However, while there was clear evidence for pre- and post-emergent damping-off, there 

was little evidence to suggest Phytophthora and other oomycetes were the cause in natural 

soils. The richness and abundance of Phytophthora were low in kwongan plant 

communities, but evidence strongly suggests P. versiformis is native as well as P. arenaria. 

The results of these experiments viewed in the context of one another, provide insight into 

a mechanism that can influence the abundance of plant species in kwongan plant 

communities.  

The putatively native Phytophthora arenaria, introduced P. cinnamomi, and Py. irregulare 

were virulent damping-off pathogens with a wide host range of native plant species in 

glasshouse pathogenicity trials (Chapter 2). Phytophthora and Pythium damping-off 

pathogens impacted a substantial number of Fabaceae plant species, as well as Myrtaceae 

and Proteaceae. The closely related Phytophthora species placed into phylogenetic clade 6a 

are hypothesised to be native to kwongan plant communities, but did not cause substantial 

levels of damping-off. In a novel functional trait model, plant species slowest to emerge 

were significantly more susceptible to P. arenaria. These results suggest that native and 

introduced Phytophthora may be influencing kwongan plant communities through damping-

off, a plant disease that has not been studied thoroughly in natural Mediterranean plant 

communities. 



117 
 

Putative native and introduced Phytophthora species were believed to be abundant and 

distributed widely throughout kwongan plant communities. However, the current survey for 

Phytophthora species using metabarcoding revealed their richness and abundance in natural 

kwongan plant communities were exceptionally low (Chapter 3). This key finding was at 

odds with a previous survey (Burgess et al. 2017b); however, the elimination of sampling 

biases, by not sampling from symptomatic plants, and potential sources of cross-

contamination, suggest the current study has set a reliable baseline for natural kwongan 

plant communities. The harsh road surface where Phytophthora species are most likely to 

be introduced into an environment, may be a key hurdle in the establishment of introduced 

Phytophthora species given their overall low detection frequency. However, if these 

pathogens do establish they move easily deep into natural vegetation, well away from roads 

and other areas of anthropogenic disturbance. 

A large proportion of topsoil seedbank and broadcast seed applied to post-mining ecological 

restoration does not establish in kwongan plant communities (Bellairs and Bell 1993). 

Fungicide seed coats improved the seedling emergence for five of 14 plant species by 5–18% 

(Chapter 4). The seedling survival was unaffected by fungicide seed coats and their ability to 

improve seedling emergence declined with time. Several damping-off pathogens, such as 

Pythium, Fusarium and Rhizoctonia species were detected in ecological restoration, and 

topsoil disturbance likely homogenised, diluted and reduced pathogen inoculum. Fungicide 

seed coats are a novel technology for improving the seedling emergence of plant species 

susceptible to damping-off.  

Native damping-off pathogens can be a mechanism driving negative PSF and help to 

maintain the diversity of plant communities. Two of the five plant species experienced 

negative conspecific PSF through pre- or post-emergent damping-off, indicating the co-

existence between plant species may be promoted through this mechanism (Chapter 5). A 

coinciding metabarcoding survey indicated plant species, host age, and the year of sample 

collection all had a significant influence on either the oomycete alpha diversity or 

community composition. Additionally, oomycetes detected from the roots of mature plant 

species and seedlings were not correlated with pre- and post-emergent damping-off. 

Although, the oomycete communities associated with the mature plant species matched the 

predicted nutrient acquisition strategy trade-off which may help maintain the diversity of 
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kwongan plant communities (Laliberté et al. 2015, Lambers et al. 2018). For the first time it 

was identified the oomycete communities associated with adult plants and seedlings were 

vastly different, suggesting seedlings promote their own microbial community without the 

influence of the parent. Identifying the individual microbial communities of seedlings and 

adults determines the specific processes driving plant-soil feedback, these mechanisms 

remain ambiguous without the use of metabarcoding analyses. 

Damping-off in kwongan plant communities 

Damping-off was identified in post-mining ecological restoration and in soils collected from 

natural plant communities. Phytophthora arenaria and Py. irregulare were found to be 

virulent damping-off pathogens with wide host ranges in the glasshouse pathogenicity trial 

(Chapter 2) and were detected frequently (Chapter 4, Chapter 5). Statistical analyses 

indicated the presence and abundance of oomycetes detected from seedling roots, of which 

P. arenaria was approximately two-thirds of all detections, were not significantly correlated 

with pre- and post-emergent damping-off in natural soils (Chapter 5). The presence of 

oomycetes in seedling roots was correlated with reduced E. todtiana seedling emergence. 

The impact of oomycetes on E. todtiana was substantially lower than observed in 

glasshouse pathogenicity trials (Chapter 2), and the experiment was not repeated for this 

plant species (Chapter 5). Despite the detection of Py. irregulare from all plots in the 2017 

ecological restoration, pre-emergent damping-off was reduced by 7% on average for plant 

species effected by the oomycete fungicide seed coat treatment (Chapter 4). The complexity 

of natural and rehabilitated soils compared to sterilised soils used in the glasshouse 

pathogenicity trial may influence the level of damping-off. The virulence of damping-off 

pathogens in the glasshouse pathogenicity trial was likely increased by higher levels of 

inoculum, high soil moisture, warmer temperatures and biologically inactive soils. However, 

without sterile or pasteurised control treatments in restoration (Chapter 4) and natural soil 

experiments (Chapter 5) the levels of damping-off may have been higher then observed as 

there was no baseline comparison.  

The correlation between the susceptibility of functional traits and damping-off by multi-host 

pathogens revealed little about the potential role of damping-off in natural plant 

communities. Plant species exposed to P. arenaria for the longest period before seedling 
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emergence appeared to be most susceptible in the glasshouse pathogenicity trial (Chapter 

2). The transfer of the potential susceptibility of this trait to natural soils was unlikely as 

oomycetes were not associated with damping-off. Functional traits other than the role of 

nutrient acquisition strategies may be important in shaping kwongan plant communities. 

Jacksonia floribunda and X. sp. Lesueur were the only plant species used in the natural 

damping-off experiment that store their seed in the soil (Chapter 5), whereas the seed of 

B. attenuata, H. lissocarpha and E. todtiana remain in the canopy. Conspecific negative 

feedback caused by pre- and post-emergent damping-off only affected J. floribunda 

and X. sp. Lesueur and may indicate the annual input of seed into the soil may promote a 

community of damping-off pathogens. Studies of natural kwongan seed banks identified the 

lowest densities of soil stored seed occurred on the most nutrient deficient soils with the 

highest richness of plant species with canopy storage (Enright et al. 2007). Low soil 

seedbank density on nutrient deficient sites was not explained by lower seed input or other 

trade-offs due to nutrient availability (Enright et al. 2007). Given plant species with soil 

seedbanks experienced damping-off in conspecific soils (Chapter 5) canopy storage may be a 

strategy or inadvertently avoid exposure to soil-borne damping-off pathogens. The level of 

damping-off or the abundance of plant pathogens may vary depending on soil nutrients, 

species richness and the abundance of seedbank functional traits due to the changes 

described by Enright et al. (2007). Future plant-soil feedback experiments may wish to 

incorporate seed bank functional traits into analyses to determine their interaction and 

effect on kwongan plant communities.  

Previous studies of spatial distributions of plant species and functional traits in kwongan 

plant communities does not provide evidence for the Janzen-Connell hypothesis. Plant 

species regularly display aggregated spatial distributions compared to segregated 

distributions predicted by the Janzen-Connell hypothesis (Perry et al. 2008, Miller et al. 

2010, Perry et al. 2014). Additionally, nearest neighbour relationships in kwongan plant 

communities are rare and when observed primarily occur between conspecifics (Perry et al. 

2009a, Perry et al. 2014). Woody non-resprouting plant species that are dependent on seed 

to persist at sites are more likely to be spatially aggregated compared to resprouters 

(Enright et al. 2007, Perry et al. 2013). The level of aggregation between plant species 

typically declines as nutrient availability decreases and species richness increases (Perry et 
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al. 2008, Perry et al. 2009b, Perry et al. 2014). Freckleton and Lewis (2006) highlighted that 

seedling mortality must be overcompensating to prevent the highest levels of recruitment 

still occurring closest to the parent. For example, damping-off experienced by X. sp. Lesueur 

was greatest in conspecific soils; however, over 40% of the total seed sown emerged and 

survived (Chapter 5). The negative feedback caused by damping-off in the most diverse 

kwongan plant communities on nutrient deficient soils studied in Chapter 5 may help 

prevent an accumulation of soil stored seed leading to these plant species dominating the 

plant community, and or be a selective force promoting canopy storage. Laliberté et al. 

(2015) hypothesised monodominant stands of plant species with ectomycorrhizal nutrient 

acquisition strategies may be a positive plant-soil feedback mechanism that allows less 

competitive plant species to persist. 

Assessing the changes in the seedling emergence and survival of plant species used in 

ecological natural and restoration topsoil may indicate how soil disturbance can influence 

damping-off for different plant species. Xanthorrhoea preissii was not affected by fungicide 

seed coat treatments in restoration trials (Chapter 4), but pre-emergent seedling mortality 

of X. sp. Lesueur was the greatest in conspecific natural soils (Chapter 5). This may indicate 

the correct biocide was not applied to the seedcoat of X. preissii, or topsoil disturbance and 

homogenisation associated with stockpiling and soil transfer during restoration diluted and 

reduced inoculum levels of damping-off pathogens impacting X. sp. Lesueur (Figure 6.1A). 

However, this hypothesis assumes Xanthorrhoea species are comparably susceptible and 

are affected by the same damping-off pathogens in natural soils based on a strong 

phylogenetic signal (Gilbert and Webb 2007, Bever et al. 2015). Pre-emergent damping-off 

experienced by E. todtiana was caused by oomycetes in ecological restoration and 

correlated with the presence of oomycetes in natural soils. The emergence of E. todtiana 

did not differ based on the collection of soils from different plant species, but oomycetes 

were rarely detected from E. todtiana seedlings harvested from conspecific soils. Unlike the 

Xanthorrhoea species, this may indicate plant species like E. todtiana that rarely experience 

damping-off in conspecific soils may be more affected in restoration due to soil 

homogenisation increasing their likelihood of exposure to damping-off pathogens (Figure 

6.1B). Plant species that did not display spatially variable levels of pre- and post-emergent 

damping-off in natural soils, such as B. attenuata experienced significant pre-emergent 
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damping-off in restoration. Plant species with more evenly distributed damping-off 

pathogens in natural soils may not be affected by the mixing of topsoil (Figure 6.1C). 

Damping-off pathogen inoculum may have been reduced due to topsoil disturbance as 

B. attenuata seedling survival decreased by 10% in natural soils compared to 2% in 

ecological restoration. Topsoil disturbance associated with ecological restoration 

homogenises and likely reduces damping-off pathogen inoculum, the impact on the 

emergence and survival of seedlings may be dependent on the spatial distribution of 

damping-off pathogens in natural soils.  

 

 
Figure 6.1: The hypothesised effect of restoration topsoil disturbance on the spatial 
distribution of damping-off pathogens and seedling establishment. The three examples are 
based on observations of A. Xanthorrhoea preissii and X. sp. Lesueur, B. Eucalyptus todtiana 
and C. Banksia attenuata seedling emergence and survival. Examples on the left are based 
on seedling establishment in conspecific and heterospecific natural soils (Chapter 5) and 
ecological restoration (Chapter 4). Grey arrows represent dispersal and crosses pathogens. 
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Phytophthora and oomycetes in kwongan plant communities 

The richness and abundance of Phytophthora species were low in kwongan plant 

communities, but the detection of these plant pathogens was influenced by several factors. 

A total of nine Phytophthora phylotypes were detected across both metabarcoding surveys, 

of which P. versiformis and P. arenaria were the most common. Phytophthora versiformis 

was detected frequently and appears native to kwongan plant communities (Chapter 3). 

Phytophthora arenaria was abundant amongst seedlings at one site and current evidence 

suggests the species may also be native (Chapter 5). The detection of Phytophthora and 

other oomycetes appears to be influenced by the plant species and the host’s age (Chapter 

5). Surprisingly, P. versiformis was not detected from mature plant species or seedlings in 

the natural damping-off experiment (Chapter 5) despite being found in samples collected 

from different locations within Mt Lesueur National Park (Chapter 3). The absence of 

P. versiformis may be due to the collection of samples from specific plant species of which it 

may not infect, or a single site and vegetation type that it may not be present within. 

Phytophthora arenaria was associated with seedlings of several plant species, while 

P. sp. kununurra was detected only predominantly from the mature plants of X. sp. Lesueur. 

Rainfall or soil moisture was a key abiotic variable influencing the detection, pathogenicity 

and potentially the distribution of Phytophthora. A reduction of rainfall in the month leading 

to sample collection in 2018 compared to 2017 levels was likely a key factor in the detection 

of fewer oomycetes from the roots of mature plant species and seedlings harvested in the 

glasshouse. Avoiding wetlands and water gaining sites when surveying kwongan vegetation 

in this study may be a reason for reduced Phytophthora species richness found in 

comparison to previous surveys where wetter sites favoured. These sites are more suited to 

the survival and aquatic species belonging to clade 6 (Burgess et al. 2018b, Burgess et al. 

2018c, Redondo et al. 2018), and several have been detected from kwongan previously. 

Furthermore, the delay in the effect of fungicide seed coats observed in ecological 

restoration (Chapter 4) could have been due to the build-up of damping-off pathogen 

inoculum after the first major winter rainfalls. Biotic and abiotic variables effect the 

detection of Phytophthora from kwongan plant communities. 

Species of Pythium are as common as Phytophthora in kwongan plant communities. Eight 

Pythium phylotypes were detected in the regional metabarcoding survey with Phytophthora 
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specific primers (Chapter 3) and seven with oomycete primers from roots collected from 

plant species apart of the natural soils damping-off experiment (Chapter 5). The richness of 

Pythium species was greater than that of Phytophthora in kwongan plant communities 

(Chapter 5). Pythium species were detected more frequently in the roots of mature plants 

(18%) compared to seedlings (6.9%) in kwongan plant communities. The age associations of 

Pythium species challenging the assumption they are predominantly damping-off or 

seedling pathogens (Martin and Loper 1999) and needs to be examined further. Several 

Pythium species were commonly detected in plots established within post-mining ecological 

restoration through soil baiting and direct isolation. Seven oomycetes were unknown and 

did not fall within a described genus (Chapter 5). Unknown oomycetes were assumed to be 

damping-off pathogens for the statistical analyses, but their role in natural kwongan plant 

communities has not been determined. The unknown oomycetes, Pythium and 

Phytophthora phylotypes need to be isolated and pathogenicity tested to determine their 

potential role in the microbial and plant community (Ampt et al. 2019).  

Overall, Phytophthora and other oomycetes are not common in kwongan plant 

communities. The Mediterranean climate and seasonal environmental conditions are 

unfavourable to introduced and native Phytophthora species. The dry environmental 

conditions throughout most of the year are not conducive to damping-off caused by 

Phytophthora or Pythium species. Despite moist and warm glasshouse conditions in the 

natural soils damping-off experiment (Chapter 5), there was little evidence to suggest the 

presence and abundance of oomycetes was correlated with damping-off for the plant 

species tested. Fungal pathogens may be more important than oomycetes. Species of 

Fusarium associated with cereal disease have distributions in areas that receive less than 

300 mm of annual average rainfall within Australia (Backhouse and Burgess 1995), much 

lower than the 450mm of average annual rainfall measured at the driest sampling locations 

in kwongan plant communities (Chapter 3). Within post-mining ecological restoration, 

Fusarium oxysporum was isolated from seedling roots, and Fusarium and Rhizoctonia 

specific fungicides significantly improved seedling emergence for two plant species (Chapter 

3). Fusarium oxysporum has been isolated from harsh environments, such as the Simpson 

Desert, and subgroups or formae speciales can be virulent damping-off pathogens 

(Summerell et al. 2011). Damping-off caused by Fusarium and Rhizoctonia species is less 
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dependent on high soil moisture; conversely, oomycetes are reliant on high soil moisture or 

saturation (Lamichhane et al. 2017). Although some Pythium species can be saprophytes 

(Martin and Loper 1999, Schroeder et al. 2013), many Fusarium and Rhizoctonia species are 

saprobes (Keijer 1996, Ogoshi 1996, Summerell et al. 2011). Saprophytes are associated 

with the depletion of soil seed banks (Wagner and Mitschunas 2008) and increased activity 

of saprophytic and pathogenic fungi may lead to additional infections of seed. Whereas, 

oomycetes may need to germinate from resting structures when exudates are present in 

the soil (Lamichhane et al. 2017). Fungal damping-off pathogens can have greater 

environmental tolerances, may be more active in soils as saprobes and are not as reliant as 

oomycetes on high soil moisture to cause damping-off disease; therefore, they may be the 

more important seedling pathogens in kwongan plant communities. 

Phytophthora arenaria 

Phytophthora arenaria was highlighted as a potentially important pathogen in kwongan 

plant communities by Rea et al. (2011). The ecological role of P. arenaria in kwongan plant 

communities has become clearer. Phytophthora arenaria appears to be an age specific, 

multi-host, damping-off or seedling pathogen of kwongan plant species (Chapter 2, Chapter 

5). Phytophthora arenaria was not virulent in soils collected from natural plant 

communities, and oomycetes were not correlated with pre- and post-emergent seedling 

mortality. Damping-off caused by P. arenaria may only occur when soils are saturated for 

longer periods; alternatively, the species may reduce the growth of seedlings (Albornoz et 

al. 2016). In the natural plant communities sampled, P. arenaria was very rarely associated 

with mature plants (Chapter 3, Chapter 5). Prior to the results of regional Phytophthora and 

local oomycete metabarcoding surveys (Chapters 3, Chapter 5), P. arenaria was assumed to 

be polyphagous due to its isolation from mature diseased plants and its ability to cause 

damping-off (Rea et al. 2011, Simamora et al. 2017). Mature plant deaths caused by 

P. arenaria may be rare and only occur when other predisposing factors are present, such as 

summer rainfall events, waterlogging or anthropogenic disturbance. This matches with the 

original description of P. arenaria diseased mature plants by Rea et al. (2011), and in 

addition to its infrequent infection of mature plants accounts for the lack of dieback fronts. 
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Phytophthora arenaria is most likely native to kwongan plant communities and perhaps 

more widely Australia. Despite highlighting issues with the sampling and processing 

methodologies of previous Phytophthora surveys (Chapter 3), P. arenaria has been detected 

frequently in natural plant communities and urban environments in Western Australia and 

Australia (Barber et al. 2013, Burgess et al. 2017b, Khaliq et al. 2018, Khdiar 2018). 

Metabarcoding surveys that have regularly detected P. arenaria from either collected 

rhizosphere soil and fine roots (Burgess et al. 2017b, Khdiar 2018), or from seedling roots 

grown as baits in soils (Khaliq et al. 2018). These methods circumvent the biological filter 

that appears to be mature plant roots. However, it is difficult to hypothesise how common 

P. arenaria is on the Geraldton Sandplain as it was not detected in the regional 

Phytophthora survey because mature plants were sampled (Chapter 3). Phytophthora 

species once established on roadsides appear to move into the natural plant communities 

with ease, there is a remote possibility that P. arenaria was introduced to the study area 

where samples were collected for the damping-off experiment in natural soils (Chapter 5). 

However, surveys of natural and managed plant communities in other countries have not 

reported detections of P. arenaria through baiting or metabarcoding surveys of rhizosphere 

soils. Desert and semi-arid plant communities located in central Australia are a large 

physical barrier preventing the natural dispersal of plant pathogens or geneflow between 

populations (e.g. Hayden et al. 2007). Phytophthora arenaria may have been introduced to 

one side of the continent given the large environmental barrier separating Western 

Australia and the eastern Australian states. Introduced isolates of P. arenaria may have low 

genetic diversity if there were few introduction events or sources (Dobrowolski et al. 2003, 

Brar et al. 2018).  

Phytophthora species closely related to P. arenaria in clade 4 have distributions outside and 

within Australia. Phytophthora boodjera has been only detected within Australian natural 

and urban environments (Burgess et al. 2017b, Simamora et al. 2018), but the species is not 

known to co-occur with P. arenaria suggesting the two species may have different host 

specialisations (Burgess et al. 2018b). Other closely related species P. alticola and 

P. quercetorum have been detected primarily in natural and disturbed vegetation within 

South Africa (Maseko et al. 2007, Bose et al. 2018) and the USA (Balci et al. 2008, McConnell 

and Balci 2014), respectively. Phytophthora quercetorum was detected through 
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metabarcoding for the first time from kwongan plant communities (Chapter 5). Collection of 

isolates is required to confirm the presence of P. quercetorum in kwongan plant 

communities. Phylogenetically these Phytophthora species within clade 4 are closely 

related; however, current evidence suggests they are native to countries separated by large 

distances. Assessing the variability in isolates from different locations to determine if they 

have been introduced, and additional studies of Phytophthora in natural plant communities 

is required to determine if there is a single origin of clade 4 species.  

Management of Phytophthora and damping-off 

The baseline Phytophthora communities obtained through the current regional and local 

metabarcoding surveys (Chapter 3, Chapter 5) indicate P. versiformis should be treated as 

native, and P. arenaria as putatively native to dry kwongan vegetation. A survey of seedlings 

in the field would help to confirm P. arenaria is native to the region. Evidence currently 

suggests clade 6a Phytophthora species are native to niche water gaining kwongan plant 

communities and further research is required to establish their distribution or associations 

with specific plant species. However, detections of clade 6a Phytophthora should be treated 

with a level of caution until their status can be confirmed on the Geraldton Sandplains. 

Despite being native, the nursery industry should treat P. arenaria infestations seriously 

given the host range and virulence of the damping-off pathogen at high inoculum levels. The 

large financial impact of P. boodjera on a nursery highlights how destructive the closely 

related P. arenaria may be in similar conditions (Simamora et al. 2015, Simamora et al. 

2018). Detections of P. arenaria and P. versiformis do not need to be managed as 

infestations in kwongan plant communities. However, measures should be taken to prevent 

the movement of P. arenaria and P. versiformis present within soil and plant material 

outside of kwongan plant communities to avoid these species becoming invasive elsewhere 

and potential hybridization (Brasier et al. 1999, Brasier 2000).  

The results of the regional Phytophthora survey (Chapter 3) comparing natural and 

disturbed plant communities support the current management strategies for P. cinnamomi 

and other introduced soil-borne plant pathogens (O'Gara et al. 2005a). Given that 

Phytophthora species appear to move deep into natural plant communities, reducing the 

number of potential infestations is recommended. Road surfaces are particularly harsh 
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environments for large proportions of the year in kwongan plant communities, the high 

temperatures of bitumen and gravel roads are rapidly fatal for Phytophthora. Sand tracks 

should aim to remove all vegetation as this may be a haven for any introduced 

Phytophthora until rainfall occurs and they can be spread further from the initial infestation 

(Crone et al. 2014). Promoting roadside engineering that diverts water into culverts free 

from hosts, and do not drain freely into vegetation would be recommended (Colquhoun and 

Kerp 2007). This could prevent the increased run-off from roads in wet conditions spreading 

Phytophthora from road surfaces and anthropogenically disturbed areas into natural 

vegetation. Given the findings of recent Phytophthora surveys in urban environments 

highlighting the richness and abundance of potential introduced pathogens (Barber et al. 

2013, Hulbert et al. 2017, Paap et al. 2017b, Khdiar 2018), implementing management 

strategies to minimise the risk of introductions is vital. These management strategies 

include vehicle wash down stations, boot cleaning stations, strategic road and track closures 

and green bridging. The distance from the main metropolitan centre Perth likely shields 

kwongan plant communities from introductions; although, the risk of a new infestation only 

increases with time. 

Fungicide seed coats and several current ecological restoration practices may help to 

manage damping-off. As demonstrated in the ecological restoration experiment (Chapter 4), 

fungicide seed coats provide low to moderate protection against pre-emergent damping-off 

pathogens for some plant species. Additionally, fungicides applied to expensive seed 

provide some financial incentives. For example, seed coats applied to Banksia attenuata and 

B. candolleana can save an estimated $1000 – $2000 annually for each plant species, 

assuming a cost of $1500 /kg of seed, sown at 330 g/ha across 40 ha (Chapter 4). The effect 

of fungicide seed coats on emergence appeared to be the greatest when seeds were sown 

shortly before the first period of winter rainfall to avoid biodegradation over time. 

Oomycete and fungal damping-off pathogens were responsible for damping-off, potentially 

applying multiple compatible fungicides to the seed of plant species with unknown 

susceptibility will ensure they are protected. Post-emergent damping-off did not appear to 

decrease the survival of many seedlings by a large amount, on average 2.9% of control 

seedlings died. Other chemical control methods, such as granular fungicides applied to the 

soil during sowing may provide more widespread suppression of post-emergent damping-
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off pathogens. Current restoration practices likely assist in reducing the levels of damping-

off. The stripping, stockpiling and spread of topsoil reduces microbial biomass and activity 

(Harris et al. 1989, Williamson and Johnson 1990, Birnbaum et al. 2017). Sowing seed prior 

to the winter and late autumn rains helps to reduce damping-off by limiting the exposure of 

seed and seedlings to higher inoculum levels that build up several weeks after the first 

major winter rainfalls (Chapter 4). The application of fertilizer increases seedling vigour 

during a period of vulnerability and the greatest exposure to damping-off pathogens 

(Lamichhane et al. 2017). Other damping-off management practices, such as tillage or 

ripping have an unknown effect on damping-off as these measures may benefit some 

pathogens or may create ponding (Lamichhane et al. 2017). 

Future research 

Fire is an important disturbance in kwongan plant communities as it triggers the recruitment 

of most plant species by providing heat shock, smoke, abiotic germination cues and by 

releasing seed stored in the canopy (Miller and Dixon 2014). The influence of fire on the 

microbial community in kwongan has not been investigated and may substantially change 

the interactions observed using soils in the period between fires. Significant shifts in the 

microbial community and declines in microbial biomass, particularly amongst fungi are 

common in the upper soil layers directly after wildfires in natural vegetation (Hart et al. 

2005, Dooley and Treseder 2012, Holden and Treseder 2013). Changes in the microbial 

community have been recorded in Mediterranean plant communities (D'Ascoli et al. 2005, 

Goberna et al. 2012) and Western Australia (Muñoz-Rojas et al. 2016). The activity of plant 

pathogens may change due to the abiotic conditions (i.e. soil moisture and temperature), 

fire has as a direct and indirect impact through changes in the plant community on abiotic 

conditions (Auld and Bradstock 1996). Fewer studies have specifically focused on pathogens 

post-fire, but the introduced oomycete pathogen Phytophthora cinnamomi may become 

more virulent (Moore et al. 2015). Lamont et al. (1993) identified negative density 

dependent mortality amongst Proteaceae seedlings, and canopy stored seeds in the post-

fire environment may not follow typical seed shadow distribution present in other biomes. 

Seed dispersal patterns are dependent on reproductive functional traits, such as soil vs 

canopy stored seed (Enright et al. 2007). Given large shifts post-fire, future studies should 
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aim to identify if PSF exists and is mediated by the microbial community and abiotic factors 

during this period.  

The root pathogens associated with nutrient acquisition strategies need to be explored 

further in the period between fires. It was identified in natural soils damping-off experiment 

(Chapter 5) oomycetes were more frequently associated with NMCR plant species whereas 

mycorrhizal plant species had the fewest detections and lowest alpha diversity. There was 

evidence to support a potential negative PSF associated with H. lissocarpha; however, an 

area of lower density was not studied. A thorough study to examine the oomycete, fungal 

pathogen and mycorrhizal communities associated with different nutrient acquisition 

strategies, and the abundance of those plant species in the field to determine if the 

microbial community promotes feedback is recommended. 

Oomycetes were not associated with pre- and post-emergent damping-off of most plant 

species studied, and fungal primers may provide greater information on the microbial 

community interacting with seedlings and saplings in kwongan plant communities. As 

discussed previously, fungal damping-off pathogens may be more important in kwongan 

plant communities as they do not require high soil moisture or flooding to cause disease and 

they can have greater environmental tolerances. It can often be difficult to assign functional 

roles to all the phylotypes identified when using fungal primers as they provide large 

amounts of information on the composition of the fungal community (Ampt et al. 2019). 

Null model testing was applied by Merges et al. (2019) to identify operational taxonomic 

units associated with seedling mortality or health. Fungal plant pathogens may be relatively 

important in kwongan heath under drying and warming conditions predicted to occur due to 

climate change (Birnbaum et al. 2019). Future studies would be advised to use fungal 

primers to identify potential correlations with damping-off or plant disease. 

The design of Phytophthora surveys should be considered carefully to tailor sampling 

methods to answer specific questions. Phytophthora surveys are more frequency conducted 

in natural plant communities (Hansen et al. 2012). However, surveys of natural vegetation 

typically collect bulked soil and include sampling biases which may influence the 

Phytophthora species detected. Surveys which aim to identify potential new infestations 

and introductions should target symptomatic vegetation and sites which are most likely to 

contain Phytophthora (i.e. disturbed roadsides and disease fronts). Alternatively, studies 
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aimed at identifying native Phytophthora should avoid locations which may be conducive to 

detecting introduced pathogens as this creates ambiguity in the results. The potential 

impact of Phytophthora on the natural plant community may be difficult to estimate if 

bulked samples are used as abundance cannot be determined. Furthermore, sampling 

different plant developmental stages may potentially lead to the identification of age 

specific pathogens. Over 200 plant species and 50 genera were sampled in the regional 

Phytophthora survey (Chapter 3), but kwongan plant communities have an estimated 

richness of over 2450 plant species (Lamont et al. 1984). Bulk sampling a specific genera and 

families may be a less resource intensive study to first identify Phytophthora associated with 

uncommon plant species. The regional Phytophthora survey did not directly examine the 

impact of specific sample collection biases and processing procedures on the number or 

community of the Phytophthora detected (Chapter 3). A future study may wish to directly 

address specific sample collection biases to determine their impact on the Phytophthora 

detected.  

Conclusion 

This study investigated damping-off and Phytophthora within kwongan plant communities. 

The abundance and richness of Phytophthora species was low, but Phytophthora arenaria 

and P. versiformis are likely native. Within natural plant communities damping-off is a 

mechanism that promotes conspecific negative plant-soil feedback and potentially the co-

existence between plant species. Phytophthora and other oomycetes are virulent damping-

off pathogens; however, there was little evidence to suggest they were responsible for 

reduced seedling emergence and survival in natural soils. The associations of oomycetes 

with the roots of mature plant species provided evidence for the hypothesised trade-off 

between susceptibility to soil-borne pathogens and effective nutrient acquisition that may 

help maintain diversity within kwongan plant communities. In post-mining ecological 

restoration, damping-off reduced the number of established seedlings. Fungicide seed coats 

improved seedling emergence by a low to moderate amount and are a potentially a novel 

strategy for reducing the impact of damping-off pathogens in restoration. Variation 

between natural and restored topsoil suggests disturbance during rehabilitation practices 

may alter the spatial distribution of damping-off pathogens leading to changes seedling 

emergence and survival. Damping-off and soil-borne plant pathogens are an important 
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component of the microbial community influencing the structure of kwongan plant 

communities.  
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Supplementary Material 

Chapter 2 

Table S2.1: Supporting literature for the functional trait classification of plant species. 
Superscript letters represent the following: C sources that conflict with the reported trait, G 
sources that report the functional trait of the genus of specific species of the same genus, 
and F sources that report the functional trait for the family. 
Species Nutrient Acquisition and N-

fixing species 
Seed storage Fire response 

    
Acacia pulchella [1] [2, 3] [3, 4] 
Bossiaea eriocarpa [1, 5] [2, 3, 6] [3]C 

[4, 6] 
Daviesia nudiflora [1, 7, 8]CG 

[9, 10]G 

[11] 

[6, 12] [6, 12] 

Gastrolobium spinosum [7, 9, 13]G [3] [3, 14] 
Gompholobium knightianum [4, 8]  

[9]G 
[4, 15, 16] [4, 14-16] 

Gompholobium tomentosum [1, 8, 9, 12] [4, 12, 16] [17]C 
[4, 12, 16] 

Jacksonia floribunda [1, 8] [3, 12] [3, 12, 17, 18] 
Jacksonia sternbergiana [1] [3, 4] [3, 4] 
Kennedia prostrata [7-9, 19] [2, 4, 15] [4, 15, 16, 20] 
Viminaria juncea [8, 9, 19, 21] [3] [3, 22] 
Beaufortia elegans [7]F [3, 4, 9] [3, 4, 17, 23] 
Calothamnus hirsutus [1] [4, 9]G [4, 15]G 
Calytrix flavescens [1]G [2, 3] [2, 3] 
Eremaea asterocarpa [1, 5, 13] [3] [3] 
Eucalyptus todtiana [1, 13] [3, 12] [3, 12] 
Hypocalymma angustifolium [8] 

[1, 7, 9]G 
[3] [3] 

Leptospermum erubescens [7]G [3] [3] 
Melaleuca seriata [1, 7]G [3]G [3]G 
Scholtzia laxiflora [1]G [3, 6] [3, 6] 
Verticordia densiflora [1] [4, 6, 20] [4, 6] 

[20, 24]C 
Banksia attenuata [1, 12] [3, 12] [3, 12, 17] 
Banksia telmatiaea [25] [4] [26] 
Conospermum stoechadis [1] [3]G [3]G 

[27, 28] 
Grevillea eriostachya [7, 29, 30]G [3, 4, 6] [3, 6, 27] 
Grevillea shuttleworthiana [7, 29, 30]G [3, 6] [3, 27, 31] 
Hakea costata [1, 25, 30] [6, 32] [6, 31, 32] 
Hakea trifurcata [1, 25, 30] [3, 32, 33] [3, 27, 32, 33] 
Lambertia multiflora [29, 30]G [6]C 

[4] 
[6, 17, 27] 

Petrophile drummondii [29, 30]G [3, 6] [3, 6, 27] 
Stirlingia latifolia [1] [3, 6] [3, 6, 17, 27, 31] 
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Table S2.2: The mean seedling emergence (left) and mean seedling survival (right) (as a 
percentage of the negative control) when soils were inoculated with a Phytophthora species 
for the plant species with adequate seed viability in Experiment 1. Isolates of Phytophthora 
species included did not significantly influence the seedling emergence and survival of the 
plant species. 
 P. cooljarloo P. kwonganina P. rosacearum P.  pseudorosacearum 

Plant species MUCC770 HSA2313 IMI 329669 HSA2529 HSA2530 

Allocasuarina humilis 53 52 79 81 60 50 91 67 81 83 

Banksia attenuata 59 55 105 125 64 79 92 100 69 81 

Banksia telmatiaea 57 59 120 128 101 109 79 79 113 115 

Calothamnus quadrifidus  119 127 93 105 104 109 56 68 78 91 

Eremaea pauciflora 170 179 98 97 195 213 170 179 135 142 

Eucalyptus todtiana 83 90 83 70 175 200 92 110 158 150 

Gompholobium tomentosum 96 96 96 98 113 115 121 131 129 140 

Hypocalymma angustifolium 267 700 33 50 167 400 133 100 0 0 

Hakea trifurcata 86 78 105 100 99 97 98 104 91 88 

Leptospermum erubescens 170 213 52 60 148 180 30 40 26 27 

Melaleuca brevifolia 121 153 21 29 121 141 71 53 96 94 

Melaleuca seriata 106 107 109 110 62 50 82 65 103 76 

Patersonia occidentalis 74 74 87 87 84 84 89 89 83 83 

Xanthorrhoea preissii 104 94 136 146 93 77 140 142 120 106 
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Chapter 3 

Table S 3.0.1: Site number, site type, sample point, and location. 
Site Site Type Sample Point Latitude Longitude 

1 Disturbed 1 -30.55746995844 115.44440198690 

1 Disturbed 2 -30.55755201727 115.44491001405 

1 Disturbed 3 -30.55756601505 115.44593797065 

1 Disturbed 4 -30.55755604059 115.44649201445 

1 Disturbed 5 -30.55762804113 115.44728301466 

1 Natural 1 -30.55937097408 115.44551300816 

1 Natural 2 -30.55941103958 115.44532902539 

1 Natural 3 -30.55948304012 115.44482602738 

1 Natural 4 -30.55965998210 115.44450097717 

1 Natural 5 -30.55984999985 115.44572599232 

2 Disturbed 1 -30.48133595847 115.40850003250 

2 Disturbed 2 -30.48163896427 115.40969696827 

2 Disturbed 3 -30.48177802004 115.41043097153 

2 Disturbed 4 -30.48203500919 115.41164299473 

2 Disturbed 5 -30.48232602887 115.41255402379 

2 Natural 1 -30.47863296233 115.41187802330 

2 Natural 2 -30.47856003977 115.41149899364 

2 Natural 3 -30.47848301008 115.41107302532 

2 Natural 4 -30.47829198651 115.41167803109 

2 Natural 5 -30.47834898345 115.41211598553 

3 Disturbed 1 -30.14153603464 115.16618197784 

3 Disturbed 2 -30.14051796868 115.16592800617 

3 Disturbed 3 -30.13876397163 115.16546398401 

3 Disturbed 4 -30.13753702864 115.16517899930 

3 Disturbed 5 -30.14139102772 115.16462001018 

3 Natural 1 -30.14173896052 115.16419496387 

3 Natural 2 -30.14207297936 115.16403201967 

3 Natural 3 -30.13991698623 115.16578601673 

3 Natural 4 -30.14242703095 115.16373496503 

3 Natural 5 -30.14271000400 115.16353103332 

4 Disturbed 1 -30.29709669761 115.18404892646 

4 Disturbed 2 -30.29538896866 115.18353796564 

4 Disturbed 3 -30.29439303093 115.18329103477 

4 Disturbed 4 -30.29264800251 115.18417197280 

4 Disturbed 5 -30.29339700937 115.18712801859 

4 Natural 1 -30.29911003076 115.18198697828 

4 Natural 2 -30.29889796861 115.18159403466 

4 Natural 3 -30.29878104106 115.18137996085 

4 Natural 4 -30.29852204025 115.18091300502 

4 Natural 5 -30.29812700115 115.18119698390 

5 Disturbed 1 -30.38535998203 115.43140199035 

5 Disturbed 2 -30.38488598540 115.43183298782 

5 Disturbed 3 -30.38422498852 115.43274200521 

5 Disturbed 4 -30.38392701186 115.43323201127 

5 Disturbed 5 -30.38340096362 115.43385202065 

5 Natural 1 -30.38696100935 115.43451402336 
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Site Site Type Sample Point Latitude Longitude 

5 Natural 2 -30.38719503209 115.43438200839 

5 Natural 3 -30.38749703206 115.43443699367 

5 Natural 4 -30.38752896711 115.43492096476 

5 Natural 5 -30.38741296157 115.43540099636 

6 Disturbed 1 -29.98215498403 115.30140101910 

6 Disturbed 2 -29.98298697174 115.30243501067 

6 Disturbed 3 -29.98364998028 115.30316599645 

6 Disturbed 4 -29.98280902393 115.30181198381 

6 Disturbed 5 -29.98336801305 115.30237097293 

6 Natural 1 -29.98098302633 115.30338996090 

6 Natural 2 -29.98111898080 115.30374602415 

6 Natural 3 -29.98106600717 115.30418599024 

6 Natural 4 -29.98110003769 115.30469502322 

6 Natural 5 -29.98135702685 115.30498503707 

7 Disturbed 1 -29.74887396209 115.45360799879 

7 Disturbed 2 -29.74823702127 115.45469303615 

7 Disturbed 3 -29.74783997051 115.45553298667 

7 Disturbed 4 -29.74720998667 115.45658801682 

7 Disturbed 5 -29.74657597952 115.45776802115 

7 Natural 1 -29.74461100996 115.45483603142 

7 Natural 2 -29.74464504048 115.45519402251 

7 Natural 3 -29.74418696947 115.45542402193 

7 Natural 4 -29.74432501942 115.45503904112 

7 Natural 5 -29.74415402859 115.45463302173 

8 Disturbed 1 -29.99480101280 115.33394300379 

8 Disturbed 2 -29.99569896609 115.33409798518 

8 Disturbed 3 -29.99666900374 115.33418599516 

8 Disturbed 4 -29.99788203277 115.33421097323 

8 Disturbed 5 -29.99924501404 115.33397996798 

8 Natural 1 -29.99505096115 115.33088696189 

8 Natural 2 -29.99510502443 115.33018103801 

8 Natural 3 -29.99535002746 115.32985003665 

8 Natural 4 -29.99579804018 115.33020802774 

8 Natural 5 -29.99581899494 115.33064397052 

9 Disturbed 1 -30.23114402778 115.34134103917 

9 Disturbed 2 -30.23159296252 115.34125998616 

9 Disturbed 3 -30.23225303739 115.34128697589 

9 Disturbed 4 -30.23292602040 115.34123903140 

9 Disturbed 5 -30.23361601867 115.34121698700 

9 Natural 1 -30.23156303912 115.34320601262 

9 Natural 2 -30.23144896142 115.34357003868 

9 Natural 3 -30.23101695813 115.34340801649 

9 Natural 4 -30.23046400398 115.34362100065 

9 Natural 5 -30.23009997793 115.34373499453 

10 Disturbed 1 -30.39389301091 115.49326797947 

10 Disturbed 2 -30.39392603561 115.49293002114 

10 Disturbed 3 -30.39393802173 115.49248200841 

10 Disturbed 4 -30.39386400953 115.49209602177 

10 Disturbed 5 -30.39378798567 115.49171003513 
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Site Site Type Sample Point Latitude Longitude 

10 Natural 1 -30.39509397000 115.49206601456 

10 Natural 2 -30.39522296749 115.49179301597 

10 Natural 3 -30.39545497857 115.49167097546 

10 Natural 4 -30.39526202716 115.49129596911 

10 Natural 5 -30.39495198056 115.49119899049 

11 Disturbed 1 -30.52788401954 115.20021200180 

11 Disturbed 2 -30.52795501426 115.19902001135 

11 Disturbed 3 -30.52782400511 115.19807897508 

11 Disturbed 4 -30.52778201178 115.19569298252 

11 Disturbed 5 -30.52768402733 115.19461096264 

11 Natural 1 -30.53035802208 115.19426001236 

11 Natural 2 -30.53059196100 115.19398097880 

11 Natural 3 -30.53111197427 115.19381199963 

11 Natural 4 -30.53123703226 115.19405901432 

11 Natural 5 -30.53139201365 115.19419102930 

12 Disturbed 1 -30.56748197414 115.10963698849 

12 Disturbed 2 -30.56745003909 115.10916399769 

12 Disturbed 3 -30.56739002466 115.10866301134 

12 Disturbed 4 -30.56749303825 115.11040703394 

12 Disturbed 5 -30.56745096110 115.11138402857 

12 Natural 1 -30.56970099919 115.11000503786 

12 Natural 2 -30.56994600222 115.11035900563 

12 Natural 3 -30.57024800219 115.11080701835 

12 Natural 4 -30.57057598606 115.11066704057 

12 Natural 5 -30.57086801156 115.11015599594 

13 Disturbed 1 -29.87275497057 115.09093998000 

13 Disturbed 2 -29.87307398580 115.09133602493 

13 Disturbed 3 -29.87330599688 115.09159795940 

13 Disturbed 4 -29.87229103222 115.09040999226 

13 Disturbed 5 -29.87203798257 115.08998502977 

13 Natural 1 -29.87588795833 115.09074803442 

13 Natural 2 -29.87586499192 115.09030496702 

13 Natural 3 -29.87570003606 115.08999802172 

13 Natural 4 -29.87574898638 115.08969501592 

13 Natural 5 -29.87569701858 115.08922797628 

14 Disturbed 1 -29.88749898970 115.06052398123 

14 Disturbed 2 -29.88607599400 115.06005903706 

14 Disturbed 3 -29.88427698612 115.05971596576 

14 Disturbed 4 -29.88209903240 115.05792399868 

14 Disturbed 5 -29.88007798791 115.05905597471 

14 Natural 1 -29.88732598722 115.05798803642 

14 Natural 2 -29.88710302860 115.05758897401 

14 Natural 3 -29.88711300306 115.05704498850 

14 Natural 4 -29.88754500635 115.05686796270 

14 Natural 5 -29.88792696968 115.05681498908 

15 Disturbed 1 -30.39920495823 115.15900103375 

15 Disturbed 2 -30.39902097546 115.15922801569 

15 Disturbed 3 -30.39995899424 115.16003896482 

15 Disturbed 4 -30.40050398558 115.16036401503 
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Site Site Type Sample Point Latitude Longitude 

15 Disturbed 5 -30.40105501190 115.15952196904 

15 Natural 1 -30.39924301207 115.15529899858 

15 Natural 2 -30.39929497987 115.15503304079 

15 Natural 3 -30.39939698763 115.15445502475 

15 Natural 4 -30.39957501926 115.15425201505 

15 Natural 5 -30.39986796677 115.15417900868 

16 Disturbed 1 -30.26195900515 115.10116397403 

16 Disturbed 2 -30.26339197531 115.10138802230 

16 Disturbed 3 -30.26514303870 115.10154501535 

16 Disturbed 4 -30.26619002223 115.10191901587 

16 Disturbed 5 -30.26709903963 115.10220601223 

16 Natural 1 -30.26178700849 115.09957300499 

16 Natural 2 -30.26162800379 115.09951299056 

16 Natural 3 -30.26145801879 115.09919196367 

16 Natural 4 -30.26146598160 115.09892801754 

16 Natural 5 -30.26170897298 115.09899197146 

17 Disturbed 1 -30.18761797808 115.11033000425 

17 Disturbed 2 -30.18678599037 115.11036797427 

17 Disturbed 3 -30.18537397496 115.11039001867 

17 Disturbed 4 -30.18477818929 115.11041608639 

17 Disturbed 5 -30.18374511972 115.11041516438 

17 Natural 1 -30.18699101172 115.10622303933 

17 Natural 2 -30.18724800088 115.10600795969 

17 Natural 3 -30.18734598532 115.10620501824 

17 Natural 4 -30.18771101721 115.10635497048 

17 Natural 5 -30.18795995973 115.10655404069 

18 Disturbed 1 -30.55951497518 115.36832800135 

18 Disturbed 2 -30.55797496811 115.36838801578 

18 Disturbed 3 -30.55685103871 115.36850796081 

18 Disturbed 4 -30.55662003346 115.36734396592 

18 Disturbed 5 -30.55666202679 115.36631902680 

18 Natural 1 -30.55904701352 115.36648096517 

18 Natural 2 -30.55905899964 115.36689603701 

18 Natural 3 -30.55914198048 115.36711899564 

18 Natural 4 -30.55942503735 115.36711002700 

18 Natural 5 -30.55929302238 115.36688203923 

19 Disturbed 1 -30.70360399783 115.16594300978 

19 Disturbed 2 -30.70314701647 115.16562600620 

19 Disturbed 3 -30.70270302705 115.16541696154 

19 Disturbed 4 -30.70424043573 115.16619815491 

19 Disturbed 5 -30.70463296026 115.16634500585 

19 Natural 1 -30.70266899653 115.16904498450 

19 Natural 2 -30.70240898989 115.16891003586 

19 Natural 3 -30.70184396580 115.16879403032 

19 Natural 4 -30.70175201632 115.16940297559 

19 Natural 5 -30.70218997076 115.16962199472 

20 Disturbed 1 -30.96652401611 115.61673098244 

20 Disturbed 2 -30.96703598276 115.61674900353 

20 Disturbed 3 -30.96808296628 115.61678403988 
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Site Site Type Sample Point Latitude Longitude 

20 Disturbed 4 -30.96907697618 115.61678596772 

20 Disturbed 5 -30.97036301158 115.61680298299 

20 Natural 1 -30.96664697863 115.61337101273 

20 Natural 2 -30.96701997332 115.61331300996 

20 Natural 3 -30.96758801490 115.61341501772 

20 Natural 4 -30.96788096242 115.61388096772 

20 Natural 5 -30.96825697459 115.61399001628 
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Table S 3.2: Site by species matrix with the number of reads for Phytophthora species. 
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1-1-D 0 0 0 0 0 9379 0 

1-2-D 0 0 0 0 0 0 0 

1-3-D 0 0 0 0 0 0 0 

1-4-D 0 0 0 0 0 0 0 

1-5-D 0 0 0 0 0 0 0 

1-1-N 0 2 0 0 0 0 0 

1-2-N 0 0 0 0 0 0 0 

1-3-N 0 0 0 0 0 0 0 

1-4-N 0 0 0 0 0 0 0 

1-5-N 0 0 0 0 0 0 0 

2-1-D 0 0 0 6 0 0 4 

2-2-D 0 0 0 0 0 0 0 

2-3-D 0 0 0 0 0 0 0 

2-4-D 0 0 0 0 0 0 0 

2-5-D 0 0 2 2 0 0 3 

2-1-N 0 0 0 4 0 0 0 

2-2-N 0 0 0 0 0 0 0 

2-3-N 0 0 0 0 0 0 0 

2-4-N 0 0 0 0 0 0 0 

2-5-N 0 0 0 0 0 0 0 

3-1-D 0 0 0 0 0 0 0 

3-2-D 0 0 0 0 0 0 1312 

3-3-D 0 0 0 0 0 0 0 

3-4-D 0 0 0 0 0 0 375 

3-5-D 0 0 0 0 0 0 0 

3-1-N 0 0 0 0 0 0 0 

3-2-N 0 0 0 0 0 0 0 

3-3-N 0 0 0 0 0 0 0 

3-4-N 0 0 0 0 0 0 0 

3-5-N 0 0 0 0 0 0 0 

4-1-D 0 0 0 0 0 0 0 

4-2-D 0 0 0 0 0 0 0 

4-3-D 0 0 0 0 0 0 0 

4-4-D 0 0 0 0 0 0 0 

4-5-D 0 0 0 0 0 0 0 

4-1-N 0 827 0 0 0 0 0 

4-2-N 0 0 0 0 0 0 0 

4-3-N 0 0 0 0 0 0 0 

4-4-N 0 0 0 0 0 0 0 

4-5-N 0 0 0 0 0 0 0 
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5-1-D 0 0 0 0 0 0 0 

5-2-D 0 0 0 0 0 0 8622 

5-3-D 0 0 0 0 0 0 0 

5-4-D 0 0 0 0 0 0 0 

5-5-D 0 0 0 0 0 0 0 

5-1-N 0 0 0 0 0 0 0 

5-2-N 0 0 0 0 0 0 0 

5-3-N 0 0 0 0 0 0 0 

5-4-N 0 0 0 0 0 0 0 

5-5-N 0 0 0 0 0 0 0 

6-1-D 0 0 0 0 0 0 0 

6-2-D 0 0 0 0 0 0 0 

6-3-D 0 0 0 0 0 0 0 

6-4-D 0 0 0 0 0 0 0 

6-5-D 0 0 0 0 0 0 0 

6-1-N 0 0 0 0 0 0 0 

6-2-N 0 0 0 0 0 0 0 

6-3-N 0 0 0 0 0 0 0 

6-4-N 0 0 0 0 0 0 2 

6-5-N 0 0 0 0 0 0 0 

7-1-D 0 0 0 0 0 0 0 

7-2-D 0 0 0 0 0 0 0 

7-3-D 0 0 0 2 2468 0 1612 

7-4-D 0 0 0 0 0 0 0 

7-5-D 0 0 0 0 0 0 1915 

7-1-N 0 0 0 0 0 0 0 

7-2-N 0 0 0 0 0 0 0 

7-3-N 0 0 0 0 0 0 10321 

7-4-N 0 0 0 0 0 0 0 

7-5-N 0 0 0 0 0 0 0 

8-1-D 0 0 0 0 0 0 5 

8-2-D 0 0 0 0 0 0 0 

8-3-D 0 0 0 0 0 0 0 

8-4-D 0 0 0 0 0 0 0 

8-5-D 0 0 0 0 0 0 0 

8-1-N 0 0 0 0 0 0 0 

8-2-N 0 0 0 0 0 0 0 

8-3-N 0 0 0 0 0 0 0 

8-4-N 0 0 0 0 0 0 0 

8-5-N 0 0 0 0 0 0 2 

9-1-D 0 0 0 0 0 0 0 
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9-2-D 0 0 0 0 0 0 0 

9-3-D 0 0 0 0 0 0 0 

9-4-D 0 0 0 0 0 0 0 

9-5-D 0 0 0 0 0 0 0 

9-1-N 0 0 0 0 0 0 0 

9-2-N 0 0 0 0 0 0 0 

9-3-N 0 0 0 0 2 0 2 

9-4-N 0 0 0 0 0 0 2211 

9-5-N 0 0 0 0 0 0 2 

10-1-D 0 0 0 2236 0 0 0 

10-2-D 0 0 0 0 0 0 0 

10-3-D 0 0 0 0 0 0 0 

10-4-D 0 0 0 1547 0 0 0 

10-5-D 0 0 0 1685 0 0 0 

10-1-N 0 0 0 0 0 0 0 

10-2-N 0 0 0 0 0 0 3 

10-3-N 0 0 0 0 0 0 0 

10-4-N 0 0 0 0 0 0 0 

10-5-N 0 0 0 0 0 0 0 

11-1-D 0 0 0 0 0 0 0 

11-2-D 0 0 0 0 0 0 0 

11-3-D 0 0 0 0 0 0 0 

11-4-D 0 2839 0 0 0 0 0 

11-5-D 0 532 0 0 0 0 0 

11-1-N 0 0 0 0 0 0 0 

11-2-N 0 0 0 0 0 0 0 

11-3-N 0 1047 0 0 0 0 0 

11-4-N 0 0 0 0 0 0 0 

11-5-N 0 0 0 0 0 0 0 

12-1-D 0 0 0 4195 0 0 4 

12-2-D 0 0 0 0 0 0 0 

12-3-D 0 0 0 0 0 0 7 

12-4-D 0 0 0 0 0 0 3 

12-5-D 0 0 0 0 0 0 0 

12-1-N 0 0 0 0 0 0 6 

12-2-N 0 0 0 0 0 0 0 

12-3-N 0 0 0 0 0 0 0 

12-4-N 0 0 0 0 0 0 0 

12-5-N 0 0 0 0 0 0 0 

13-1-D 0 0 0 0 0 0 0 

13-2-D 0 0 0 0 0 0 0 
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13-3-D 0 0 0 0 0 0 0 

13-4-D 0 0 0 0 0 0 0 

13-5-D 0 0 0 0 0 0 0 

13-1-N 0 0 0 0 0 0 2 

13-2-N 0 0 0 0 0 0 0 

13-3-N 0 0 0 0 0 0 0 

13-4-N 0 0 0 0 0 0 0 

13-5-N 0 0 0 0 0 0 0 

14-1-D 0 0 0 0 0 0 0 

14-2-D 0 0 0 0 0 0 0 

14-3-D 2 0 0 0 0 0 0 

14-4-D 3276 0 0 0 0 0 0 

14-5-D 0 0 0 0 0 0 0 

14-1-N 0 0 0 0 0 0 0 

14-2-N 0 0 0 0 0 0 0 

14-3-N 0 0 0 0 0 0 0 

14-4-N 0 0 0 0 0 0 0 

14-5-N 0 0 0 0 0 0 0 

15-1-D 0 0 0 0 0 0 4 

15-2-D 0 0 0 0 0 0 0 

15-3-D 0 0 0 0 0 0 0 

15-4-D 0 0 0 0 0 0 0 

15-5-D 0 0 0 0 0 0 0 

15-1-N 0 0 0 0 0 0 0 

15-2-N 0 0 0 0 0 0 0 

15-3-N 0 0 0 0 0 0 0 

15-4-N 0 0 0 0 0 0 2 

15-5-N 0 0 0 0 0 0 0 

16-1-D 0 0 0 0 0 0 0 

16-2-D 0 0 0 0 0 0 0 

16-3-D 0 0 0 0 0 0 0 

16-4-D 0 0 0 0 0 0 0 

16-5-D 0 0 0 0 0 0 0 

16-1-N 0 0 0 0 0 0 0 

16-2-N 0 0 0 0 0 0 0 

16-3-N 0 0 0 0 0 0 0 

16-4-N 0 0 0 0 0 0 0 

16-5-N 0 0 0 0 0 0 0 

17-1-D 0 0 0 0 0 0 3459 

17-2-D 0 0 0 0 0 2556 0 

17-3-D 0 0 0 0 0 0 0 
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17-4-D 0 0 0 0 0 0 0 

17-5-D 0 0 0 0 0 0 0 

17-1-N 0 0 0 0 0 0 0 

17-2-N 0 0 0 0 0 0 0 

17-3-N 0 0 0 0 0 0 0 

17-4-N 0 0 0 0 0 0 0 

17-5-N 0 0 0 0 0 0 0 

18-1-D 0 0 0 0 0 0 0 

18-2-D 0 0 0 0 0 0 0 

18-3-D 0 0 0 0 0 0 0 

18-4-D 0 0 0 0 0 0 0 

18-5-D 0 0 0 0 0 0 0 

18-1-N 0 0 0 0 0 0 0 

18-2-N 0 0 0 0 0 0 0 

18-3-N 0 0 0 0 0 0 0 

18-4-N 0 0 0 0 0 0 0 

18-5-N 0 0 0 0 0 0 0 

19-1-D 0 0 0 0 0 0 0 

19-2-D 0 0 0 0 0 0 0 

19-3-D 0 0 0 0 0 0 0 

19-4-D 0 0 0 0 0 0 0 

19-5-D 0 0 0 0 0 0 0 

19-1-N 0 0 8449 0 0 0 0 

19-2-N 0 0 0 8935 0 0 7 

19-3-N 0 0 0 2 0 0 5 

19-4-N 0 0 0 0 0 0 0 

19-5-N 0 0 0 0 0 0 0 

20-1-D 0 0 0 0 0 0 2 

20-2-D 0 0 0 0 0 0 2 

20-3-D 0 0 0 0 0 0 0 

20-4-D 0 0 0 0 0 0 5 

20-5-D 0 0 0 0 0 0 11670 

20-1-N 0 0 0 0 0 0 0 

20-2-N 0 0 0 0 0 0 0 

20-3-N 0 0 0 0 0 0 0 

20-4-N 0 0 0 0 0 0 0 

20-5-N 0 0 0 0 0 0 0 
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Sampling review 

The study area was located north of Perth, Western Australia, in kwongan plant 

communities. The north and south edges of study area were between -29.15°S in the north -

31.00°S. The eastern boundary of the survey region ran roughly parallel to the coast, the 

western boundary, between -29.15°S,115.85°E and -31.00°S, 116.37°E.  

The diagnostic data reviewed was submitted to a publicly available online resource, Dieback 

Information Delivery and Management System (DIDMS) and was collected between 1990 

and 2017 (https://didms.gaiaresources.com.au/). Phytophthora spp. positive sample 

location data (n = 171) was downloaded directly from DIDMS; however, negative sample 

locations (n = 1264) were provided by Project Dieback as they were not available to the 

public to download. The positive sample data was primarily the result of traditional baiting 

techniques (Tsao 1983, O’Brien et al. 2009), generated by the Vegetation Health Service 

(VHS) and The Centre for Phytophthora Science and Management (CPSM) Phytophthora 

diagnostic laboratories in Western Australia. Duplicate entries were removed from the 

dataset. Only three species, P. arenaria, P. cinnamomi and P. multivora were used in the 

review as they were most commonly isolated from the study area, representing 94% of 

positive samples and had a sufficient sample size for statistical analysis (n > 20).  

The diagnostic point data was placed on top of an aerial image layer, imported using the 

OpenLayers QGIS plugin (QGIS Development Team 2018). All points were viewed and the 

surrounding disease pathways (roads, fire breaks, fence lines, boundaries and vehicle tracks) 

were digitized into a line vector layer using the Bing 2018 Aerial imagery. The nearest vector 

pathway was then created using the “v.distance” module in the Geographic Resource 

Analysis Support System 7 (GRASS) QGIS plugin and the length calculated with the field 

calculator (QGIS Development Team 2018).  
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Figure S3. 1: The results and percentage of the Phytophthora spp. samples collected 
relative to the nearest disease vector between 1990 and 2017 in the kwongan survey 
region north of Perth, Western Australia. 
 

Table S3.3: The phylotypes and corresponding oomycete species detected in kwongan and 
Banksia woodland plant communities in Southwest Australia. The count and percentage of 
detections at sites and sample points for individual Peronospora and Pythium species are 
displayed. The number of detections at disturbed and natural subsite sample points is 
included. The total number of detections at sites and sample points is summarised below. 
 Sites Sample points 

Oomycete n % n % Disturbed Natural 

       

Peronospora manshurica 2 10 6 3 1 5 

Peronospora schachtii 1 5 1 0.5 0 1 

Pythium perplexum 1 5 1 0.5 0 1 

Pythium rostratifingens 8 40 13 6.5 6 7 

Pythium rostratum 4 20 4 2 4 0 

Pythium sp. 1 6 30 10 5 7 3 

Pythium sp. 2 1 5 1 0.5 1 0 

Pythium sp. 3 3 15 5 2.5 3 2 

Pythium sp. 4 1 5 1 0.5 1 0 

Pythium sp. 5 2 10 5 2.5 1 4 

       

Total 14 70 34 17 24 23 

       

 

Survey Comparison 

A wide survey of Australian natural vegetation using HTS metabarcoding was performed to 

fill the gaps in the distribution of P. cinnamomi (Burgess et al. 2017a). The results of the HTS 
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metabarcoding of all Phytophthora species were published in Burgess et al. (2017b) and the 

data made public in the following publication (Burgess et al. 2018b). The results of the 

survey were extracted from the dataset for 23 sampling sites located within the same survey 

region as Figure 1. Sampling sites were located in areas where Phytophthora species were 

most likely to be found, such as water gaining sites. Sampling methodology, bulked vs 

subsamples; sample material, soil vs roots; material processing, grinding vs cutting; and HTS 

platform, 454 pyrosequencing vs Illumina differed between Burgess et al. (2017b) and the 

current study. 

Estimates if extrapolated species richness were projected across all sites and natural and 

disturbed subsite categorizations using the specpool function in the vegan R package 

(Oksanen et al. 2018). The Jackknife 1 index was reported as the Jackknife 2 index did not 

handle the low observations of species richness. Mean observed alpha (α̅) was calculated 

per site, for all sites and natural and disturbed subcategorizations. Rarefied species richness 

was not calculated and reported to compare the studies as sites were not subsampled by 

Burgess et al. (2017b). 

 

Table S3.4: The summarised findings of HTS metabarcoding Phytophthora surveys in 
kwongan and Banksia woodland plant communities within the current study region. The 
total number of samples (N), observed richness (γ), Jackknife 1 species richness estimator 
(Jack), and mean observed alpha diversity per site (α̅) are displayed for all sites and subsite 
categorisations. 
       Subsite / disturbance categorisation 

       Disturbed Natural 

Survey Sample Sites N γ Jack α̅ N γ Jack α̅ N γ Jack α̅ 

               
Current survey1 Roots 20 200 7 7.00 1.45 100 7 8.98 0.95 100 5 6.98 0.8 
Burgess et al. (2017b) Soil 23 23 27 31.78 7.61 14 24 30.50 6.64 9 21 24.55 9.11 
               
1 The data was combined by site to make it more comparable to the Burgess et al. (2017b) survey. Mean alpha diversity 
was calculated based on the presence of Phytophthora species at a site, as opposed to within each sample. 
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Chapter 5 

Table S5.1: The results of generalised linear mixed effects models testing the influence of 

soil origin, trial, and the presence and number of reads of oomycete species detected from 

the roots of mature plants on the emergence and survival of seedlings. The Wald chi-

squared, degrees of freedom and P-values calculated by a type-III analysis of variance are 

displayed for each plant species and measurement. Bold terms were statistically significant 

(P ≤ 0.05). 

 Emergence Survival 

Term χ2 Df Pr(>χ2) χ2 Df Pr(>χ2) 

       
Banksia attenuata       

Soil origin 8.69 4 0.0692 6.55 4 0.1618 
Trial 0.06 1 0.8060 0.05 1 0.8160 

Oomycete reads 0.60 1 0.4381 0.60 1 0.4371 
Oomycete presence 0.49 1 0.4860 0.01 1 0.9199 

Soil origin: Trial 8.60 4 0.0719 12.76 4 0.0125 
Trial: Oomycete presence  0.08 1 0.7737 0.37 1 0.5404 

       
Eucalyptus todtiana       

Soil origin 5.20 4 0.2675 6.55 4 0.1616 
Oomycete reads 0.57 1 0.4490 1.58 1 0.2085 

Oomycete presence 3.37 1 0.0665 2.89 1 0.0892 
       
Hakea lissocarpha       

Soil origin 5.42 4 0.2472 7.26 4 0.1229 
Trial 0.41 1 0.5218 0.00 1 0.9669 

Oomycete reads 0.08 1 0.7822 1.12 1 0.2903 
Oomycete presence 0.03 1 0.8530 0.08 1 0.7768 

Soil origin: Trial 5.03 4 0.2845 6.01 4 0.1984 
Trial: Oomycete presence  0.22 1 0.6389 1.06 1 0.3033 

       
Jacksonia floribunda       

Soil origin 10.97 4 0.0269 17.76 4 0.0014 
Trial 21.00 1 0.0000 9.16 1 0.0025 

Oomycete presence 1.75 1 0.1863 3.25 1 0.0714 
Soil origin: Trial 9.78 4 0.0444 8.71 4 0.0687 

Trial: Oomycete presence  0.13 1 0.7203 0.44 1 0.5065 
       

Xanthorrhoea sp. Lesueur       
Soil origin 10.71 4 0.0300 10.86 4 0.0281 

Trial 0.53 1 0.4678 0.52 1 0.4709 
Oomycete reads 1.42 1 0.2336 2.20 1 0.1383 

Oomycete presence 0.31 1 0.5775 1.27 1 0.2602 
Soil origin: Trial 6.83 4 0.1449 4.64 4 0.3260 

Trial: Oomycete presence  0.84 1 0.3601 0.29 1 0.5918 
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Figure S5.1: The seedling emergence and survival plant-soil feedback of five kwongan heath 
plant species. Each type of feedback was calculated as the logarithm of the odd ratio i.e. 
ln(conspecific probability/heterospecific probability) and the strength and direction 
represents the effect of conspecific soils on seedling emergence and survival relative to the 
heterospecific soil. Error bars representing 95% confidence intervals that do not intersect 
zero are marked with an asterisk and indicate statistically significant plant-soil feedback. 
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Table S5.2: The results of generalised linear mixed effects models testing the influence of 
the presence and number of reads of oomycete species detected from the roots of 
harvested seedlings on the emergence and survival of seedlings. The Wald chi-squared, 
degrees of freedom and P-values calculated by a type-III analysis of variance are displayed 
for each plant species and measurement. Bold terms were statistically significant (P ≤ 0.05). 

 Emergence Survival 

Term χ2 Df Pr(>χ2) χ2 Df Pr(>χ2) 

       
Banksia attenuata       

Trial 3.40 1 0.0651 3.77 1 0.0523 
Oomycete reads 2.51 1 0.1134 2.01 1 0.1564 

Oomycete presence 0.08 1 0.7835 0.14 1 0.7117 
Trial: Oomycete presence  0.69 1 0.4056 1.35 1 0.2459 

       
Eucalyptus todtiana       

Oomycete reads 1.72 1 0.1901 0.94 1 0.3325 
Oomycete presence 3.91 1 0.0480 2.10 1 0.1472 

       
Hakea lissocarpha       

Trial 5.60 1 0.0179 1.83 1 0.1762 
Oomycete reads 1.69 1 0.1941 1.44 1 0.2305 

Oomycete presence 1.24 1 0.2663 0.23 1 0.6336 
Trial: Oomycete presence  0.52 1 0.4720 0.06 1 0.8095 

       
Jacksonia floribunda       

Trial 30.75 1 0.0000 17.40 1 0.0000 
Oomycete reads 0.64 1 0.4246 0.60 1 0.4389 

Oomycete presence 2.21 1 0.1374 0.82 1 0.3663 
Trial: Oomycete presence  0.91 1 0.3412 4.87 1 0.0273 

       
Xanthorrhoea sp. Lesueur       

Trial 0.60 1 0.4385 0.04 1 0.8475 
Oomycete reads 0.03 1 0.8555 0.06 1 0.8074 

Oomycete presence 2.41 1 0.1208 2.07 1 0.1500 
Trial: Oomycete presence  5.56 1 0.0184 4.30 1 0.0382 
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Table S5.3: The results of two generalised linear models testing the influence of sampling 
year, plant age and plant species on the number of oomycete phylotypes detected. The 
Likelihood ratio chi-squared, degrees of freedom and P-values calculated by a type-III 
analysis of variance are displayed for Model 1 and 2. Bold terms were statistically significant 
(P ≤ 0.05). 

 Model 1 Model 2 

Term LR χ2 Df Pr(>χ2) LR χ2 Df Pr(>χ2) 

       
Year 29.13 1 < 0.0001 16.66 1 < 0.0001 

Plant age  1.37 1 0.2415 2.01 1 0.1566 
Year: Plant age 3.42 1 0.0644 1.80 1 0.1791 

Plant species    22.12 4 0.0002 
Plant species: Year    2.90 3 0.4071 

Plant species: Plant age    19.55 4 0.0006 
Plant species: Year: Plant 

age  
   0.37 1 0.5412 
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