
A Canonical Form of Arithmetic and Conditional Expressions 
 

Torsten Görg, Mandy Northover 

University of Stuttgart 

Universitaetsstr. 38, 70569 Stuttgart, Germany 
{torsten.goerg, mandy.northover}@informatik.uni-stuttgart.de 

  

 
Abstract: This paper contributes to code clone 

detection by providing an algorithm that calculates 

canonical forms of arithmetic and conditional 

expressions. An experimental evaluation shows the 

relevance of such expressions in real code. The 

proposed normalization can be used in addition to 

dataflow normalizations. 

1 Introduction 

Clone detection techniques [1] try to find program 

code fragments that are semantically equivalent or 

similar. It is not possible to solve this problem 

completely because semantic equivalence is not 

decidable for arbitrary code fragments. A common 

approach to compute equivalence is to use a normal 

form. Because of the undecidability of semantic 

equivalence, a unique normal form is also not 

achievable for usual source code. Nevertheless, it is 

useful to establish canonical code representations as 

partial normalizations to support clone detection. 

E.g., program dependence graphs (PDG) are used in 

several clone detection tools to normalize data 

flows [2]. Roy and Cordy [1] also mention a 

transformation step as part of a general clone 

detection process. 

We introduce a canonical form of arithmetic and 

conditional expressions. Through mathematical 

term transformations, many code variations are 

possible on expressions. Most of these variations 

are not handled by PDG. Our normalization is 

based on heuristics, so that most expressions 

occuring in real code are mapped to a unique 

canonical form. 

2 Relevance Evaluation 

As a first step, we evaluated the relevance of a 

canonical form of simple expressions like operators 

on basic type values, literals, variable access, and 

reads on components of arrays and records. Assign-

ments, function calls, and control constructs like 

loops and gotos were excluded. The expressions 

obeying these constraints were located as subtrees 

at the bottom of the AST. We measured the amount 

of such expressions in relation to the total code size 

for several open source systems. Table 1 shows the 

results for make, bison, bash, gnuplot, and unzip. 

Our measurements were based on the program 

analysis framework Bauhaus and its intermediate 

representation (IML) [3]. The total code size is 

measured in SLOC and the number of all nodes in 

the IML graph, including the declarative parts of 

the code. The following columns show the number 

and percentage of nodes in simple expressions. The 

 
Name SLOC #all #exp %exp Avg 

make 17427 82521 32643 39.6% 2.85 

bison 20395 197226 74844 37.9% 2.55 

bash 88401 514265 200790 39.0% 2.97 
gnuplot 61494 549746 247497 45,0% 2.91 

unzip 49127 82480 35535 43.1% 3.33 

 

Table 1.  Measured relevance of simple expressions 

average number of nodes in these subtrees are given 

in the last column to indicate the size of the expres-

sions. An average of 41% in the second last column 

indicates a high relevance of simple expressions. 

3 Normalization Process 

To normalize expressions, we define a set of 

rewrite rules. For gaining unique normal forms, 

termination and confluence have to be guaranteed, 

i.e., equivalent expressions have to be mapped to 

the same form [4]. All our transformations termi-

nate. Confluence is heuristically approximated. 

As described by Metzger and Wen [5], many 

variations result from permutations on the operands 

of commutative operators like add or multiply. To 

eliminate these variations we define a partitial order 

on expressions and sort the operands of commuta-

tive operators based on this order. The transforma-

tion is done in the following steps: 

1. As is usual in intermediate representations, 

Bauhaus IML constructs expressions from binary 

and unary operators. To handle arbitrary sums, 

cohesive binary add nodes are contracted to a single 

sum node, based on these rules: 

 
add(o1,o2) → sum(o1,o2) 
 

sum(...,add(o3,o4),...) 

 → sum(...,o3,o4,...) 

 

Multiply nodes are contracted to products in the 

same way, as are logical and bitwise disjunctions 



and conjunctions. Although logical operations are 

usually evaluated lazily, this is no problem here 

because the constraints specified in the previous 

section exclude side effects and guarantee referen-

tial transparency. 

Inverse operations are also included in the contrac-

ted representation, e.g., subtracts in sums. To 

express this, each operand has a sign: 

 
sub(o1,o2) → sum(o1,-o2) 
 

Divisions are handled similarly. 

2. Unary plus operators are simply eliminated 

because they have no semantic effect in arithmetic 

expressions. 

3. A unary minus operator toggles the signs of the 

operands that it dominates. Thus it is also integrated 

in the contracted representation. 

4. The operands of each contracted sum or product 

are reordered based on several sorting criteria 

(beginning with the highest priority): 

o The type of the root node of the subtree 

representing the operand. 

o The number of operands. 

o Successive comparison of operands. 

o The value of a literal. 

o The IML node ID of the declaration for a 

variable access. 

 

After the contractions and operand reorderings, 

further transformations are processed to improve 

the confluence: 

1. Constant folding reduces the number of literal 

nodes. The reordering in the previous step has 

already grouped literal operands together. Because 

calculations on literal values may introduce 

rounding imprecisions, the comparison of canonical 

forms allows some tolerance. 

2. The contractions may result in sums and 

products in multiple layers: 

 
sum(...,product(...,sum(...),...) 

 

Applying the distributive law eliminates this. 

3. Additional mathematical laws are applied, e.g., 

absorption, idempotence, and complement. 

 

Another problem is the unification of corresponding 

variable accesses. Semantically equivalent expres-

sions usually access different free variables. To get 

a more unique form, variable accesses are replaced 

by numbered surrogate nodes, e.g.: 

  
a + b + 2*b

2
  →  s2 + s1 + 2*s1

2
 

 

But in some cases this is still not unique. To cope 

with this problem, a heuristic approach simliar to 

the technique described by Metzger and Wen [5] is 

used. It identifies the unique variable accesses in a 

term to order them uniquely. Numbering a variable 

may unify a variable access that was ambiguous 

previously. In the example above, b is uniquely 

represented by s1 because of the unique subterm 

2*b
2. Subsequently a is uniquely numbered as s2. 

Variables that are not orderd uniquely have to be 

renumbered during the comparison of normalized 

terms. 

4 Application 

The suggested normalization can easily be com-

bined with PDG techniques. After normalizing and 

comparing the expressions, they are contracted to 

surrogate nodes. All variable accesses are incoming 

data flows. The result of an expression is its only 

outgoing data flow. In contrast to the fine grained 

PDG technique of Krinke [2], this handles more 

variations and reduces the number of PDG nodes. 

An evaluation of our approach is future work. 

5 Related Work 

Metzger and Wen [5] use canonical forms to handle 

variations in code that hamper the recognition of 

known algorithms taken from a knowledge base. 

They focus on reordering the operands of commuta-

tive operations and do not process any further 

transformations. 

Zhou and Burleson [6] apply canonical arithmetic 

expressions to identify datapaths with equivalent 

path predicates in designs of digital signal proces-

sing systems. 
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