
A Canonical Form of Arithmetic and Conditional Expressions

Torsten Görg, Mandy Northover

University of Stuttgart

Universitaetsstr. 38, 70569 Stuttgart, Germany
{torsten.goerg, mandy.northover}@informatik.uni-stuttgart.de

Abstract: This paper contributes to code clone

detection by providing an algorithm that calculates

canonical forms of arithmetic and conditional

expressions. An experimental evaluation shows the

relevance of such expressions in real code. The

proposed normalization can be used in addition to

dataflow normalizations.

1 Introduction

Clone detection techniques [1] try to find program

code fragments that are semantically equivalent or

similar. It is not possible to solve this problem

completely because semantic equivalence is not

decidable for arbitrary code fragments. A common

approach to compute equivalence is to use a normal

form. Because of the undecidability of semantic

equivalence, a unique normal form is also not

achievable for usual source code. Nevertheless, it is

useful to establish canonical code representations as

partial normalizations to support clone detection.

E.g., program dependence graphs (PDG) are used in

several clone detection tools to normalize data

flows [2]. Roy and Cordy [1] also mention a

transformation step as part of a general clone

detection process.

We introduce a canonical form of arithmetic and

conditional expressions. Through mathematical

term transformations, many code variations are

possible on expressions. Most of these variations

are not handled by PDG. Our normalization is

based on heuristics, so that most expressions

occuring in real code are mapped to a unique

canonical form.

2 Relevance Evaluation

As a first step, we evaluated the relevance of a

canonical form of simple expressions like operators

on basic type values, literals, variable access, and

reads on components of arrays and records. Assign-

ments, function calls, and control constructs like

loops and gotos were excluded. The expressions

obeying these constraints were located as subtrees

at the bottom of the AST. We measured the amount

of such expressions in relation to the total code size

for several open source systems. Table 1 shows the

results for make, bison, bash, gnuplot, and unzip.

Our measurements were based on the program

analysis framework Bauhaus and its intermediate

representation (IML) [3]. The total code size is

measured in SLOC and the number of all nodes in

the IML graph, including the declarative parts of

the code. The following columns show the number

and percentage of nodes in simple expressions. The

Name SLOC #all #exp %exp Avg

make 17427 82521 32643 39.6% 2.85

bison 20395 197226 74844 37.9% 2.55

bash 88401 514265 200790 39.0% 2.97
gnuplot 61494 549746 247497 45,0% 2.91

unzip 49127 82480 35535 43.1% 3.33

Table 1. Measured relevance of simple expressions

average number of nodes in these subtrees are given

in the last column to indicate the size of the expres-

sions. An average of 41% in the second last column

indicates a high relevance of simple expressions.

3 Normalization Process

To normalize expressions, we define a set of

rewrite rules. For gaining unique normal forms,

termination and confluence have to be guaranteed,

i.e., equivalent expressions have to be mapped to

the same form [4]. All our transformations termi-

nate. Confluence is heuristically approximated.

As described by Metzger and Wen [5], many

variations result from permutations on the operands

of commutative operators like add or multiply. To

eliminate these variations we define a partitial order

on expressions and sort the operands of commuta-

tive operators based on this order. The transforma-

tion is done in the following steps:

1. As is usual in intermediate representations,

Bauhaus IML constructs expressions from binary

and unary operators. To handle arbitrary sums,

cohesive binary add nodes are contracted to a single

sum node, based on these rules:

add(o1,o2) → sum(o1,o2)

sum(...,add(o3,o4),...)

 → sum(...,o3,o4,...)

Multiply nodes are contracted to products in the

same way, as are logical and bitwise disjunctions

and conjunctions. Although logical operations are

usually evaluated lazily, this is no problem here

because the constraints specified in the previous

section exclude side effects and guarantee referen-

tial transparency.

Inverse operations are also included in the contrac-

ted representation, e.g., subtracts in sums. To

express this, each operand has a sign:

sub(o1,o2) → sum(o1,-o2)

Divisions are handled similarly.

2. Unary plus operators are simply eliminated

because they have no semantic effect in arithmetic

expressions.

3. A unary minus operator toggles the signs of the

operands that it dominates. Thus it is also integrated

in the contracted representation.

4. The operands of each contracted sum or product

are reordered based on several sorting criteria

(beginning with the highest priority):

o The type of the root node of the subtree

representing the operand.

o The number of operands.

o Successive comparison of operands.

o The value of a literal.

o The IML node ID of the declaration for a

variable access.

After the contractions and operand reorderings,

further transformations are processed to improve

the confluence:

1. Constant folding reduces the number of literal

nodes. The reordering in the previous step has

already grouped literal operands together. Because

calculations on literal values may introduce

rounding imprecisions, the comparison of canonical

forms allows some tolerance.

2. The contractions may result in sums and

products in multiple layers:

sum(...,product(...,sum(...),...)

Applying the distributive law eliminates this.

3. Additional mathematical laws are applied, e.g.,

absorption, idempotence, and complement.

Another problem is the unification of corresponding

variable accesses. Semantically equivalent expres-

sions usually access different free variables. To get

a more unique form, variable accesses are replaced

by numbered surrogate nodes, e.g.:

a + b + 2*b

2
 → s2 + s1 + 2*s1

2

But in some cases this is still not unique. To cope

with this problem, a heuristic approach simliar to

the technique described by Metzger and Wen [5] is

used. It identifies the unique variable accesses in a

term to order them uniquely. Numbering a variable

may unify a variable access that was ambiguous

previously. In the example above, b is uniquely

represented by s1 because of the unique subterm

2*b
2. Subsequently a is uniquely numbered as s2.

Variables that are not orderd uniquely have to be

renumbered during the comparison of normalized

terms.

4 Application

The suggested normalization can easily be com-

bined with PDG techniques. After normalizing and

comparing the expressions, they are contracted to

surrogate nodes. All variable accesses are incoming

data flows. The result of an expression is its only

outgoing data flow. In contrast to the fine grained

PDG technique of Krinke [2], this handles more

variations and reduces the number of PDG nodes.

An evaluation of our approach is future work.

5 Related Work

Metzger and Wen [5] use canonical forms to handle

variations in code that hamper the recognition of

known algorithms taken from a knowledge base.

They focus on reordering the operands of commuta-

tive operations and do not process any further

transformations.

Zhou and Burleson [6] apply canonical arithmetic

expressions to identify datapaths with equivalent

path predicates in designs of digital signal proces-

sing systems.

References

[1] Chanchal Kumar Roy and James R. Cordy, “A

survey on software clone detection research,”

technical report, Queen’s University, Canada, 2007.

[2] Jens Krinke, “Identifying Similar Code with

Program Dependence Graphs,” in Proc. Eight

Working Conference on Reverse Engineering

(WCRE 2001), Stuttgart, Germany, pp. 301-309,

October 2001

[3] Aoun Raza, Gunther Vogel, and Erhard Plödereder,

“Bauhaus – A Tool Suite for Program Analysis and

Reverse Engineering,” in Proceedings of Ada

Europe 2006, LNCS 4006, pp. 71-82.

[4] N. Dershowitz, “Rewrite systems,” in “Handbook of

Theoretical Computer Science,” pp. 243-320,

Elsevier Science Publishers B.V., 1990.

[5] Robert Metzger and Zhaofang Wen, “Automatic

Algorithm Recognition and Replacement – A New

Approach to Program Optimization,” MIT, 2000

[6] Zheng Zhou and Wayne Burleson, “Equivalence

Checking of Datapaths Based on Arithmetic

Expressions,” in Proceedings of 32nd ACM/IEEE

Design Automation Conference, ACM, 1995.

