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Abstract 

Nucleic acid technologies such as antisense oligonucleotides (AOs) and DNAzymes can bind 

specifically to target messenger RNA and modulate gene expression by different mechanisms of 

actions. Recent approval of Nusinersen (Spinraza), by the United States Food and Drug 

Administration for the treatment of spinal muscular atrophy has demonstrated the potential of 

nucleic acid technologies in treatment of neuromuscular diseases. This thesis explores the potential 

of AOs and DNAzymes for tackling neurological diseases, particularly multiple sclerosis and 

Alzheimer’s disease. Chapter 1 provides a broad overview of the various nucleic acid technologies 

including the importance of chemical modifications and delivery of the nucleic acid molecules for 

clinical applications. Chapter 2 focused on developing DNAzymes targeting integrin subunit alpha 

4 (ITGA4), a validated therapeutic target in multiple sclerosis. A DNAzyme candidate, RNV143, 

was identified to efficiently cleave exon 9 of ITGA4 RNA. This chapter also briefly explored the 

use of chemical modifications for nuclease resistance. Towards this, the DNAzyme, RNV143 was 

chemically modified and further evaluated for its nuclease resistance and cleavage activity. The 

focus of Chapter 3 was to develop DNAzyme and splice modulating AOs for tackling Alzheimer’s 

Disease by targeting amyloid precursor protein (APP), beta-site amyloid precursor protein 

cleaving enzyme (BACE1), and microtubule-associated protein tau (MAPT). Splice modulating 

AOs targeting APP, BACE1, and MAPT were developed and evaluated at the RNA and protein 

levels. DNAzymes targeting MAPT were also developed and its efficacy was evaluated in vitro. 

The results presented here highlight the scope of DNAzymes and splice modulating AOs for 

tackling multiple sclerosis and Alzheimer’s disease.  
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Chapter 1 Nucleic acid technologies 

1.1 Introduction 

The central dogma of biology introduced by Francis Crick in 1970 is the notion that genes encode 

protein (Figure 1.1); DNA is transcribed to messenger RNA (mRNA) that is translated to protein 

except for some genes that encode structural RNAs including ribosomal RNAs, transfer RNAs, 

small nucleolar RNAs, and spliceosomal RNAs to name a few (1). However, we now know that 

the central dogma is an overly simplified concept and has been challenged by the discovery of the 

importance of non-coding RNA (Figure 1.1). 

Furthermore, we now know that introns make up 95% of the pre-mRNA, and 97-98% of all pre-

mRNA transcripts are non-coding RNAs and only 1.5% of the total RNA codes for proteins (2). 

These non-coding RNA, although not extensively studied, have a significant role in cell and 

developmental biology (2). Multiple studies have shown that long non-coding RNAs are regulated 

during development and are expressed in specific cell types; they are localised to specific 

subcellular compartments and are implicated in many diseases (3, 4). RNAs have a role in 

epigenetic regulation, chromatin modification, transcriptional regulation, alternative splicing and 

post-transcriptional modification (2, 4-7). Non-coding RNAs can affect mRNA stability and 

translation and can interact with proteins to influence signalling (2). The non-protein coding DNA 

and RNA that was once considered junk is now seen to have an important role in developmental 

programming, regulation of many processes and regulation of proteins. The role of protein in 

diseases is well understood while the importance of RNA and in particular non-coding RNA in 
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diseases is now being explored. Nucleic acid technologies can be used to manipulate RNA and 

protein expression as research, diagnostic and therapeutic tools for various diseases. 

 
Figure 1.1 A schematic illustration of the central dogma (left) and the reinterpretation of the central dogma 

showing increased complexity in line with current knowledge (right). miRNA: micro RNA; mRNA: messenger RNA 

1.2 Brief history of nucleic acid technologies 

Interestingly, the natural roles of RNA have been exploited to develop nucleic acid technology 

that can mimic or manipulate the RNA in the body to regulate gene expression for drug and 

diagnostic development and increase our understanding of unknown genes. Zamecnik and 

Stephenson (1978) were the first to use antisense DNA to target and inhibit Rous sarcoma virus 

35s RNA, that resulted in the inhibition of virus production (8). Cech and Altman (1990) showed 

that RNAs can act as catalysts to excise themselves from larger RNAs, and can with the help of 

proteins cut leader sequences off all transfer RNAs (9, 10). This discovery was contrary to the 

central dogma of molecular biology that RNA provides the intermediate information storage 

between DNA and proteins and has no other function. In 2004, both Tuerk and Gold first described 
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the systematic evolution of ligands by exponential enrichment (SELEX) process for generating 

single-stranded (ss) DNA or RNAs from random oligonucleotide libraries that can form a 3D 

structure called aptamers (11). Following the discovery of ribozymes, Breaker and Joyce (1994) 

generated DNA that similar to ribozymes could act as catalysts to cleave RNA through an in vitro 

procedure called DNAzymes although no such DNA enzymes have been found in nature (12). The 

RNA interference (RNAi) was then discovered in 1998 by Fire et al. who showed that injection of 

a double-stranded (ds) RNA into Caenorhabditis elegans reduced the expression of a specific 

endogenous transcript and the resultant protein (13). Till date, these nucleic acid technologies have 

been used to manipulate gene expression for therapeutic purposes and to investigate gene function. 

The potential of nucleic acid technologies to be used as therapeutics was first realised in 1998 with 

the first United States of America (US) Food and Drug Administration (FDA) approval and the 

European Agency for the Evaluation of Medicinal Products (EMEA) for an antisense 

oligonucleotide (AO) Vitravene or fomivirsen to treat cytomegalovirus retinitis (14, 15). 

Following the first FDA approval of Vitravene in 2015, there was one aptamer and one other AO 

that received FDA approval. The first clinical aptamer approved by the FDA (2004) was Macugen 

or pegaptanib, an anti-vascular endothelial growth factor (VEGF) aptamer, to treat age-related 

macular degeneration (AMD) (11, 12, 15). Kynamro or mipomersen was the second AO to be 

approved by the FDA and was approved in 2013, 15 years after the first FDA approved AO. (15, 

16). Importantly, from 2016-2019, six nucleic acid drugs were approved by the FDA, of which, 

four were AOs, including Exondys51 or eteplirsen for the treatment of Duchene muscular 

dystrophy (DMD), Spinraza or nusinersen for spinal muscular atrophy (SMA), Tegsedi or 

inotersen for familial amyloidotic polyneuropathy, volanesorsen or Waylivra for treatment of 

familial chylomicronemia syndrome, one short interfering RNA (siRNA) drug called Onpattro or 
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patisiran, again for familial amyloidotic polyneuropathy, and a GalNac siRNA called Givosiran 

for the treatment of acute hepatic porphyria (15, 17-19). The recent clinical success of the nucleic 

acid technologies has demonstrated the immense potential of various nucleic acid technologies as 

a viable class of therapeutics. This chapter describes nucleic acid technologies including RNase H 

mediated inhibition and steric block, DNAzymes/ Ribozymes, anti-micro RNA (miRNA)/ miRNA 

mimics, aptamers and RNA interference technologies, including siRNA. 

1.3 Types of Nucleic Acid Technologies 

1.3.1 Antisense oligonucleotides (AOs) 

Synthetic AOs are short DNA or RNA analogue sequences around 13-25 nucleotides long that can 

be used as therapeutic agents or as tools to study gene function. These short sequences bind to the 

target mRNA by complementary Watson-Crick base pairing and regulate the expression by 

cleaving the target mRNA, modulating splicing of the target RNA or by acting as a steric block 

(Figure 1.2). 

 
Figure 1.2 Simplified schematic demonstrating the mechanism of action of AOs including RNase H-mediated 

degradation of mRNA and steric blocking AOs. AO: antisense oligonucleotide; mRNA: messenger RNA 
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1.3.1.1 RNase H-mediated degradation dependent AOs 

Antisense oligonucleotides (AOs) can modulate gene expression by inducing RNase H-mediated 

degradation of the target mRNA and therefore have potential as therapeutic molecules to tackle 

diseases by downregulating gene expression, for example, oncogenes as cancer therapies (20). The 

AO binds to its target mRNA through Watson-Crick base pairing, and this DNA-RNA 

heteroduplex recruits RNase H1, a mammalian cellular enzyme that then cleaves the RNA strand 

(Figure 1.2) (21). The cleaved mRNA fragments are then degraded by RNA degradation pathways 

(21). As the AO needs to be recognised by RNase H, we are restricted as to how much the AOs 

can be chemically modified, which limits its pharmacological abilities. However, the most 

common chemical modification is the phosphorothioate (PS) internucleotide linkages and the 

addition of 2’-sugar- modified analogues (2’-O-methyl (2’-OMe) or 2’-O-methoxyethyl (2’-

MOE)) at the 3’and 5’ ends. These modifications protect the AOs against degradation by 

nucleases, and increases the stability in cell culture and in vivo, without compromising its 

recognition by RNase H, also known as a ‘gapmer’ design (22). In the ‘gapmer’ design, typically 

a 20-nucleotide long sequence has a central phosphorothioate (PS) DNA core, and approximately 

five nucleotides at each ends containing 2’-sugar-modified nucleotides that protect the AOs against 

degradation by nucleases. The DNA nucleotide phosphorothioate (PS) gap in the centre allows the 

cleavage of targeted mRNA by RNase H (20, 23). A minimum of five phosphorothioate (PS) DNA 

nucleotides in the centre is sufficient for recruitment of RNase H (22, 23). A disadvantage of the 

PS backbone is its toxicity that varies according to sequences (24). Toxic effects include increased 

coagulation time, pro-inflammatory effects and activation of the complement pathway (23, 24). At 

higher concentrations, PS AOs lead to renal tubular changes and thrombocytopenia (24). Certain 

sequences on a PS backbone induce a strong immunostimulatory response through their 
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interactions with Toll-like receptors or bind directly to proteins, leading to unexpected effects (23, 

24). The FDA approval of fomivirsen, mipomersen and inotersen have made RNase H-based AOs 

an effective class of therapeutic molecules, however, the admission of these drugs results in 

adverse events and therefore requires careful monitoring. 

1.3.1.2 Steric Blocking AOs 

Oligonucleotides can be designed to bind to RNA and block the access of cellular machinery to 

pre-RNA and mRNA, and can, thereby, modulate splicing, repair defective RNA, restore protein 

production or downregulate gene expression without degrading the RNA (Figure 1.2) (20, 23-25). 

As steric block oligonucleotides do not exploit cellular enzymes, to exert an effect, these 

oligonucleotides can be chemically modified more extensively to improve their pharmacological 

properties (25). The 2’-sugar modified oligonucleotides and phosphorodiamidate Morpholino 

oligomer (PMO) have been used extensively for this purpose, including in clinical trials. 

Splice-modulating oligonucleotides are steric blockers, that may be applicable as therapeutics for 

a broad range of diseases, caused by particular protein isoforms or by mutations in particular 

regions of the gene (23). Splice-modulating oligonucleotides bind to the target RNA and block 

interaction of the pre-mRNA with splicing factors such as RNA-binding proteins, small nuclear 

RNAs and other components of the spliceosome (26). Eteplirsen and nusinersen were approved by 

the FDA (2016) to treat DMD and SMA respectively and show that splice-modulation AOs may 

be a good treatment strategy for various genetic diseases.  

1.3.1.2.1 Splice-modulating AOs for Duchene muscular dystrophy (DMD) 

Duchene muscular dystrophy (DMD) is a severe muscle wasting genetic disorder that affects 1 in 

3500-5000 newborn males, leading to loss of mobility by 10-12 years of age and death in their 

mid-20s due to respiratory and cardiac function failure and is caused primarily by exon deletions 
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in the dystrophin gene (25, 27, 28). Dystrophin is required to connect the actin cytoskeleton to the 

sarcolemma and is essential for the maintenance of membrane integrity (25, 27, 28). Therefore, 

the lack of dystrophin leads to the disintegration of muscle fibres, that cannot be replaced 

indefinitely by muscle regeneration mechanisms (25, 27, 28). The disease causing deletions in the 

dystrophin gene disrupt the translational reading frame and prevent or greatly reduce production 

of dystrophin (25, 27, 28). In Becker muscular dystrophy, the deletions in the dystrophin gene do 

not generally disrupt the reading frame and therefore results in a truncated dystrophin isoform that 

retain partial function and lead to variable, milder forms of muscular dystrophy (25, 27, 28). The 

understanding of the molecular basis of Duchenne and Becker dystrophies provided the basis for 

development of splice-modulation as a strategy to reduce the severity of DMD. AOs that bind to 

and prevent selection of an exon adjacent to the frame-shifting deletion can restore the open 

reading frame and lead to a translation of a partially truncated but functional protein (25, 27, 28). 

Eteplirsen also known as Exondys51 is a splice-modulating PMO that has been approved by the 

US FDA for the treatment of DMD-causing deletions that flank exon 51 (27, 29). 

1.3.1.2.2 Splice-modulating AOs for spinal muscular atrophy (SMA) 

Spinal muscular atrophy (SMA) is a neuromuscular disease caused predominantly by homozygous 

deletion of the survival of motor neuron 1 (SMN1) gene that is critical for motor neuron 

development and function. The closely related variant SMN2 encodes an identical protein but is 

inefficiently spliced and therefore cannot fully compensate for the loss of SMN1 (25, 30, 31). The 

low protein activity of SMN2 is due to a C>T change in exon 7 that results in the exclusion of exon 

7 during splicing (25, 30, 31). Splice-modulating AOs that target exonic and intronic splicing 

silencer elements to promote the inclusion of exon 7 were screened and identified an AO sequence 

that led to splice-switching 2’-OMOE oligonucleotide, nusinersen, which has now been approved 
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by the US FDA for the treatment of selected SMA patients (25, 30, 31). The target tissue in SMA 

is the spinal cord. However, a key challenge for the use of oligonucleotide therapeutics in treating 

neurological diseases is the inability of the oligonucleotides to cross the blood-brain barrier (BBB). 

To bypass the BBB, oligonucleotides need to be delivered directly to the target tissue, that is the 

brain and/or spinal cord by intracerebroventricular or intrathecal injections (25, 31). 

1.3.1.3 Other steric block AOs 

Steric blocking AOs can also downregulate protein production by excluding exons that are out of 

frame or by inclusion of certain introns and therefore disrupt the reading frame, resulting in the 

mRNA being degraded by nonsense-mediated decay, preventing the production of protein (32). 

The AOs can also prevent protein translation by blocking the interaction of the translation 

machinery with the mRNA at the translational start site. Another mechanism through which steric 

blocking oligonucleotides can downregulate protein production is by the generation of external 

guide sequences (25, 33). External guide sequences are short RNAs that bind to the target mRNA 

and form a three-dimensional structure similar to a transfer RNA and guide the transfer RNA-

processing ribozyme RNase P to cleave the targeted mRNA (25, 33). The targeted mRNA is 

cleaved at the first base pair of the duplex formed by the oligonucleotide and the targeted mRNA 

(25, 33). These steric-blocking AOs have been developed for antibacterial and antiviral treatments 

(25, 33). An 11-mer PMO can enter through the bacterial cell wall, unlike other types of 

oligonucleotides (34). Other oligonucleotides that can penetrate the bacterial cell wall are the 

PMOs conjugated to cell-penetrating peptides (PPMOs), and positively charged PMOs (35, 36). 

1.3.2 RNA interference (RNAi) 

RNA interference (RNAi) was first demonstrated in Caenorhabditis elegans where delivery of a 

long, dsRNA resulted in silencing of the expression of a gene that encoded a myofilament protein 
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(13). The mechanism of the silencing involved, degradation of the target mRNA mediated by 

siRNAs, small dsRNAs, 21-22 nucleotides long, that interacted with an RNA-induced silencing 

complex (RISC) (37). In this multi-complex, the siRNA is unwound, the sense strand discarded, 

and the antisense or guide strand binds to the target mRNA resulting in the cleavage of the mRNA 

at a particular site by the endonuclease Argonaute 2, a component of the RISC (Figure 1.3) (27). 

Although the dicers found in mammalian cells cannot process dsRNA to generate siRNA, synthetic 

siRNAs can enter the RISC and degrade the target mRNAs (38, 39). Unmodified siRNA is rapidly 

degraded by nucleases in the bloodstream, and its uptake into target organs is poor, although there 

has been some success in siRNA delivery to the liver (31). Although chemical modifications may 

help overcome these challenges, chemical modifications need to be compatible with maintaining 

RISC function (31). Inclusion of PS internucleotide linkages at the 3’ end and 2’-OMe nucleotide 

substitution in one or two internal nucleotides in the antisense strand are tolerated and improve the 

siRNA nuclease resistance (31). In the sense strand, additional internal nucleotides can be 

substituted with 2’-OMe nucleotides (31). Alternative siRNA designs such as asymmetrical siRNA 

designs can increase the potency of the siRNA. For example, a divalent siRNA composed of two 

fully chemically modified phosphorothioate-containing siRNAs joined by a linked resulted in the 

siRNA reducing its target mRNA protein in mice brains for six months (40). Due to challenges to 

intracellular delivery, the siRNA is locally administered (31). An additional problem associated 

with RNAi technology are the off-target effects of siRNAs (30, 41, 42). Synthetic siRNAs can 

bind to mRNA with mismatched base pairs, acting as miRNAs and can therefore, also cleave 

untargeted mRNA, leading to off-target gene silencing (30, 41, 42). 
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Figure 1.3 Basic schematic demonstrating the mechanism of action of siRNA. Dicer is an enzyme that cleaves 

double-stranded RNA into short double-stranded RNA fragments and activates the RISC complex. RISC is a 

multiprotein complex that recruits a single strand of the siRNA to recognize its complementary mRNA. Once the mRNA 

has been incorporated, the Argonaute protein which is part of the RISC complex cleaves the mRNA. siRNA: small 

interfering RNA; RISC: RNA-induced silencing complex; mRNA: messenger RNA 
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1.3.3 DNAzymes 

DNAzymes are catalytic oligonucleotides that can target and cleave mRNA with high specificity 

(Figure 1.4) (12, 43-53). DNAzymes can catalyse RNA/ DNA cleavage, ligation, phosphorylation 

and other reactions (12, 43-53). By modifying the DNAzymes with fluorescent or signalling 

molecules, they can also act as a diagnostic marker or as a biosensor (54-56). DNAzymes are not 

found in nature as they are single-stranded, while most DNAs in cells are double-stranded (56). 

DNAzymes are selected by an in vitro selection method through the use of a  ̴ 1014 random 

oligonucleotides library and a synthetic target ribonucleotide/ RNA sequence to select for specific 

cleavage of the target that may be an RNA/ DNA chimeric substrate, or mRNA cleavage 

respectively (56). The selection can occur at physiological conditions or in biological fluids to 

optimise for activity in vivo (56). DNAzymes can cleave specific target RNA by binding to their 

target through complementary Watson-Crick base pairing of their arms (56). DNAzymes cleave 

specific sites through the catalytic loop (56) and show great potential as theranostic molecules, for 

diagnosis or as biosensors, as well as for therapeutics, and can overcome the challenges faced 

when the biodistribution of the diagnostic and therapeutic molecules differ (56). DNAzymes are 

useful as therapeutics since they can be reused within the cell and therefore can be potent at lower 

dosages (56). Using DNAzymes instead of exogenous protein enzymes overcomes the potential  

for immunological responses that may be elicited, and the high cost of producing recombinant 

enzymes (56). Other advantages of DNAzymes as therapeutics include the ease of production of 

different DNAzymes to target different RNA targets, modification of DNAzymes with low 

immunogenicity and the easy conjugation of the DNAzymes to other molecules for signalling and 

delivery (56). DNAzymes are preferred over ribozymes due to their increased stability and cost-

effectiveness. DNAzymes require metal ions as cofactors for catalysis; therefore, it is 
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advantageous if the effective cofactors are Na+, K+, Mg2+ or Ca2+ as these are found at high 

concentrations in the blood and cells. DNAzymes with all-natural nucleotides are less costly to 

synthesise than DNAzymes with modified nucleotides, although DNAzymes selected from 

chemically modified libraries may have enhanced cleavage rates. Santoro and Joyce (1997) first 

reported a DNAzyme that when bound to target RNA through complementary base pairing with 

its binding arm has a catalytic loop that could cleave almost any targeted RNA (32). This ensures 

that in vitro selection procedures do not need to be carried out specifically for each RNA target 

which is both time consuming and can be expensive (32). Santoro and Joyce reported 10-23 and 

8-17 DNAzymes, DNAzymes with a stem-loop or a hammerhead design that cleaved RNA 

substrates in the presence of Mg2+ (32). The 10-23 DNAzymes have high catalytic efficiency for 

cleavage, can cleave all purine-pyrimidine junctions and therefore can be designed to target any 

RNA sequence. The 10-23 DNAzymes’ catalytic loop has now been exploited and used to 

synthesise many different DNAzymes (32). The 8-17 DNAzymes can only cleave sites next to the 

G·T wobble pair, which limits the RNA sequences that can be targeted (32). However, the 8-17 

DNAzymes have shown high activity and high tolerance to mutations. 

Although DNAzymes show potential in vitro, they have not achieved clinical or commercial 

successes yet. However, there are three DNAzymes currently in clinical trials for the treatment of 

allergic bronchial asthma (57, 58), basal cell carcinoma (59) and nasopharyngeal carcinoma 

indicating their potential as therapeutics. One of the limitations of DNAzymes is that although they 

can achieve high activity in vitro, they achieve this with a metal ion concentration higher than that 

is available in the cells (56). Other studies have claimed that the gene silencing seen due to 

DNAzymes may be an antisense effect rather than a cleavage effect (33). A study that compared 

the antisense effect and the cleavage effect of the DNAzyme 8-17 showed that in the presence of 
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Mg2+, the antisense effect predominates while in the presence of Zn2+, the cleavage activity was 

predominant (33). 

1.3.4 Ribozymes 

Natural ribozymes were discovered in the early 1980s in Tetrahymena thermophila and 

Escherichia coli (9, 10) and provided the first demonstration that nucleic acids could also have 

catalytic activity. Ribozymes like DNAzymes catalyse RNA cleavage and ligation reactions 

(Figure 1.4). The most common types of ribozymes used for therapeutics are the “hammerhead” 

or “hairpin motifs”. The hammerhead ribozyme, similar to DNAzymes, contains a catalytic core 

that cleaves the target RNA and three hybridizing helices, where two helices flank the catalytic 

core and bind the target RNA through Watson-Crick base pairing (52). The hammerhead ribozyme 

cleaves its target RNA adjacent to the 3’ of uracil and an A, C, or U base resulting in two shorter 

RNA that are unstable and rapidly degraded, resulting in decreased protein production (52). The 

ribozymes similar to DNAzymes can also have an antisense effect. 

The first synthetic ribozyme tested in clinical trials was Angiozyme that targeted the mRNA of the 

vascular endothelial growth factor receptor-1 to block angiogenesis and tumour growth (44). 

Although angiozyme showed promising results in preclinical studies and Phase I clinical trials, in 

Phase II clinical trials, the drug did not show any significant positive clinical outcomes although 

it was safe (44). Angiozyme was discontinued and not further pursued (44). Another ribozyme, 

Herzyme was developed to treat cancer, and targeted the mRNA of the human epidermal growth 

factor type II oncogene (HER2), overexpressed in breast cancers (44). Herzyme was tested in Phase 

I clinical trials on HER2- overexpressing patients with metastatic breast cancer (44). Herzyme was 

well tolerated and showed stabilisation of disease in four patients, however, there were no partial 

or complete responses, and Herzyme like Angiozyme was not pursued further (44, 51). 
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Ribozymes have also been developed as anti-viral therapeutics. The ribozyme, Heptazyme targets 

the 5’untranslated region of the hepatitis C viral RNA (51). However, in animal studies, one mouse 

lost its eyesight resulting in the experiments being terminated (51). Similarly, the ribozyme 

HerBzyme is a ribozyme that targets the hepatitis B virus transcript, as well as hepatitis B virus 

pre-genomic RNA (51). HerBzyme was investigated in phase I/II clinical trials, but was also 

discontinued in 2003 (51). 

 
Figure 1.4 Schematic demonstrating the mechanism of action of a DNAzyme/Ribozyme. mRNA: messenger 

RNA 

1.3.5 Nucleic acid aptamers 

Aptamers are short single-stranded (ss) DNA or RNA sequences that can form a unique three-

dimensional shape and bind to various targets, including proteins and whole cells. Aptamers are 



15 

isolated thorough systematic evolution of ligands by exponential enrichment (SELEX). The ability 

of DNA or RNA sequences to bind to proteins was first discovered in studies on human 

immunodeficiency virus, where a short RNA sequence called ‘trans-activation response’, binds to 

viral proteins T1 and Tat, that control gene expression and viral replication (60, 61). In 1990, two 

studies demonstrated that, RNA sequences that bound to target proteins with high affinity by 

folding into a specific three-dimensional conformation could be isolated from a library using 

SELEX (62, 63). This process could be performed similarly using a DNA library to isolate DNA 

sequences against specific protein targets (64, 65). 

SELEX is an iterative process. In SELEX, a large DNA or RNA library that contains a randomised 

region of around 40 nucleotides and fixed flanking regions on both ends that allow reverse 

transcription-polymerase chain reaction (RT-PCR) to be used (66). The library is incubated with 

a target protein, and the nucleic acid molecules that bind to the target are separated and isolated 

(66). The bound nucleic acid molecules are amplified by RT-PCR, and the resulting nucleic acid 

molecules are used for another round of selection (66). The process is repeated 8-12 times until a 

high-affinity pool of aptamers is isolated (66). This pool is then sequenced and analysed to identify 

the aptamers with the highest affinity and specificity for the target (66). Aptamers can bind to their 

target with affinity in the nanomolar to picomolar range (66, 67). Aptamers can also be chemically 

modified to improve their pharmacological properties, which can be done either after selection or 

by using a chemically modified library to isolate the aptamers (68). Aptamers have several 

advantages over antibodies (67, 69). In vitro selection of aptamers means that aptamers for any 

target protein in a variety of conditions can be isolated (67, 69), and aptamers have low or no 

immunogenicity, unlike antibodies that often provoke immunogenic responses (67, 69). Besides, 
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other advantages include no batch to batch variation, low production costs, and the possibility to 

improve the pharmacological properties by chemical modifications (67, 69). 

Since isolation of the first aptamer nearly 28 years ago, one aptamer, Macugen, has been approved 

by the US FDA for the treatment of age-related macular degeneration (AMD) (70). Macugen or 

pegaptanib is an RNA aptamer against  VEGF165, that is upregulated in AMD (12). Macugen was 

approved in 2004 but has since been replaced by ranibizumab, an antibody-based therapy that 

recognises more of the VEGF isoforms (67). There have been two other aptamers to treat AMD 

that were tested in clinical trials, in combination with ranibizumab (67). Pegpleranib, a platelet-

derived growth factor DNA aptamer showed positive outcomes in Phase II clinical trials, and 

Avacinacaptad pegol, a modified RNA aptamer targeting complement component C5, showed 

positive outcomes in open-label Phase IIa clinical trials (67). Aptamers have also been developed 

for the treatment of thrombosis, vascular disease and cancer and are currently being investigated 

in clinical trials (67, 71). 

1.3.6 miRNA 

Micro RNAs (miRNAs) were first discovered in 1993 by Victor Ambros and Gary Ruvkun in 

Caenorhabditis elegans where a small RNA encoded by the lin-4 locus was shown to be important 

in the developmental timing in the nematode (72, 73). The miRNAs are small non-coding single-

stranded (ss) RNAs, 21-23 nucleotides long, and are crucial negative regulators of many processes 

in the body, and their dysregulation is implicated in a wide variety of diseases (74). Furthermore, 

a single miRNA can regulate the expression of multiple genes (74). Therefore, modulation of 

miRNA expression is an important therapeutic strategy that is now being explored. The two 

strategies used to regulate miRNAs include the use of AOs to block miRNA function, called anti-
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micro RNA (anti-miRs) and the use of synthetic RNAs called miRNA mimics that can mimic the 

action of a miRNA and increase its function (74). 

The long RNA precursors called pri-miRNAs are transcribed by RNA polymerase II in the nucleus 

and then processed by Drosha, a nuclear RNAse III enzyme, resulting in a 60-70 nucleotide pre-

miRNA with a hairpin structure (75). The pre-miRNAs are then exported from the nuclease by 

exportin 5 and further processed by a second RNase III enzyme, Dicer, which recognises and 

cleaves the dsRNA to form single-stranded (ss) miRNA known as the guide strand (75). The 

miRNAs (guide strands) are then loaded into the RISC complex, similar to siRNAs, and can bind 

to their target mRNA and regulate gene expression (75). The miRNA inhibits its target mRNA 

through complementary base pairing of the nucleotides 2-7 at its 5’ end and recruiting RISC 

(formed by the argonaute protein and Dicer) to the mRNA (75). The recruitment of the RISC 

complex to the mRNA results in degradation of the mRNA or inhibition of translation, and thereby 

regulates gene expression (75). 

The most successful anti-miR reported to date is miravirsen, a β-D-oxy-locked nucleic acid 

(LNA)-modified PS AO targeting miR-122 that has shown promise in Phase II clinical trials on 

hepatitis C (76). Another miRNA antagonist RG-101 is also being investigated in Phase II clinical 

trials as a treatment strategy for hepatitis C (77) and a miRNA mimic targeting miR-34 as a 

treatment strategy for hepatocellular carcinoma is in Phase I clinical trials (78). 

1.4 Chemical modifications 

Unmodified RNA and DNA are unsuitable for clinical use as they are easily degraded by nucleases, 

have poor cellular uptake, have unfavourable biodistribution and pharmacokinetic properties and 

have lower binding affinity than needed (48). Furthermore, the degradation products of 
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phosphodiester oligonucleotides may be cytotoxic and have anti-proliferative effects. Chemical 

modifications can overcome the disadvantages of unmodified phosphodiester oligonucleotides and 

improve their pharmacological properties; including increasing stability against nucleases, making 

their use as therapeutics potentially more viable. Some of the chemical modifications that have 

been effective to date include changes to the backbone, sugar, or base that may increase target 

affinity and specificity while increasing resistance against nuclease degradation and improving 

pharmacokinetics. Some of the chemical modifications available are shown in Figure 1.5. 

 
Figure 1.5 Examples of chemically-modified nucleotide analogues. 2’-OMe: 2’-O-methyl; 2’-MOE:2’-O-

methoxyethyl; 2’-F: 2’-fluoro; 2’-NH2: 2’-amino; FANA: fluoroarabinonucleotide; LNA: locked nucleic acid; TNA: 

threose nucleic acid; PNA: peptide nucleic acid; PMO: phosphorodiamidate morpholino oligomer; MNA: morpholino 

nucleic acid; HNA: hexitol nucleic acid; CeNA: cyclohexenyl nucleic acid; ANA: anhydrohexitol nucleic acid (79) 

One of the earliest chemical modifications reported was the PS backbone that provides stability 

against nucleases while still allowing the AOs to be recognised by RNase H and reducing renal 

clearance of the oligonucleotide (47, 48, 50). However, PS backbone modification results in 
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decreased AO binding affinity to target (47, 50). The PS backbone modification also results in the 

AOs suppressing immune responses by downregulation of TLR-induced immune activation (80). 

Other backbone modifications include methylphosphonate, N3’-P5’ phosphoramidites and 

thiophosphoroamidites, amides, methylene(methylamino), fromacetal and thioformacetal, 

morpholino phosphorodiamidate (PMO) and peptide nucleic acids (49). In a PMO, the 

riobofuranose ring is replaced with a morpholino ring, and the phosphodiester backbone is 

replaced with a phosphorodiamidate linkage (49). PMOs are neutral in charge, have a similar 

affinity as in a DNA: DNA duplex, are nuclease resistant but cross the cell membrane poorly (49). 

PMOs do not support RNase H activity but are used as steric blockers as they have an excellent 

safety profile as shown by eteplirsen, an FDA approved splice-modulating PMO (49). 

Chemical modifications that can increase the binding affinity as well as provide nuclease resistance 

are 2’-ribose modifications including 2’-OMe, 2’-MOE and 2’-fluoro (2’-F) modification of the 

RNA (48, 50). The 2’ modifications result in the oligonucleotide adopting the most energy-

favourable RNA conformation, an RNA-like C3’-endo sugar pucker that increases its binding 

affinity and improves its nuclease resistance. The nuclease resistance is also improved by the 

inability of the nucleases to recognise the chemical modifications. Clinically most oligonucleotide 

drugs including mipomersen, nusinersen and inotersen carry 2’-MOE modifications (50). The 2’-

F modification can also enhance drug-like properties of siRNA and has been used for many nucleic 

acid technologies including ribozymes, RNase H competent AO gapmers, steric block AOs, 

siRNA duplexes, miRNA antagonists and aptamers (49). Macugen, an FDA approved aptamer is 

a partially 2’-F RNA (49). As these modifications are ‘RNA-like’, the duplex formed by binding 

of these modified AOS to the target mRNA cannot be recognised by RNase H (48). Therefore fully 

modified 2’- ribose modifications are used for steric blocking AOs while a gapmer design 
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(chemical modifications flank the central eight to ten base DNA ‘gap’ that can be recognised by 

RNase H) is exploited for RNase H competent AOs (48). The binding affinity of the 

oligonucleotides to their target RNA can be further improved by reducing conformational 

flexibility of the nucleotides by introducing locked nucleic acid (LNA) modifications that link the 

2’ oxygen and 4’ carbon of the ribose sugar (50). The 2’-OMe and 2’-MOE modifications have 

lower binding affinity than LNA modified nucleotides but can be used to make fully modified 

oligonucleotides. However, although LNA modifications have higher binding affinity, fully LNA 

modified oligonucleotides tend to aggregate and therefore chimeric (RNase H competent AOs) or 

‘mixmer’ (steric block AOs) oligonucleotide design incorporating LNAs is used (50). LNA 

modified gapmers have shown an increased risk of hepatotoxicity that is AO sequence dependent 

and may be overcome by a constrained ethyl modification (49). 

There are many other bridged nucleic acids similar to LNA, and analogues that are being 

investigated include six-membered ring analogues, bicyclo and tricyclo DNA modifications and 

constrained nucleic acids (49). In addition, nucleobase modifications such as 5-methyl 

pyrimidines, 5-substituted pyrimidine analogues, 2-thio-thymine and purine modifications can be 

used (49). The chemical modifications, 2’-thiothymidine; 3’-fluorohexitol nucleic acid; 5’-

modified pyrimidine base; and α,β constrained nucleic acid can be incorporated into gapmers to 

improve specificity, including replacing DNA within the gap-region of the RNase H AOs that are 

specific for single-nucleotide polymorphisms (49, 50). The 2’-fluroarabinonucleic acid 

modifications of the DNA can improve affinity and stability without affecting RNase H 

compatibility (50). Another unique class of nucleic acids are called spiegelmers that are 

enantiomers of the natural RNA and are used to create nuclease-resistant aptamers. 
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1.5 Delivery challenges and strategies 

Oligonucleotides are commonly administered by intravenous (IV) infusion or subcutaneous (SC) 

injection, and the AOs can take minutes to hours to transfer from the blood into the tissues (81). 

The administration of the oligonucleotide by IV and SC injection results in the distribution of the 

oligonucleotides in numerous tissues, except for the central nervous system (CNS), although, the 

highest concentrations of the oligonucleotides are expected in the liver and kidney (81). The rapid 

uptake by cells is facilitated by endocytosis, and once the oligonucleotides have entered the cells, 

the oligonucleotides can exhibit long half-lives and prolonged antisense activity (81). 

Phosphorothioate (PS)-modified oligonucleotides show delayed renal filtration, as they bind to 

plasma proteins (81, 82). In contrast, oligonucleotides such as the peptide nucleic acids, and PMOs 

that are neutrally charged, and unmodified siRNAs are cleared more rapidly from the blood as they 

bind weakly to plasma proteins resulting in much lower tissue uptake (81, 82). Although chemical 

modifications to AO drugs can improve the target binding affinity and nuclease resistance, other 

major clinical challenges for nucleic acid therapeutics include poor delivery efficiency, tissue 

targeting and specificity, off-target effects and the stimulation of an immune response (82). Many 

drugs that are effective at the pre-clinical stages of testing and show good efficiency and specificity 

in animal studies fail in clinical trials. For example, naked siRNAs and aptamers that are typically 

used in lung, eye and skin applications may generate an inflammatory response due to the 

activation of the Toll-like receptors and result in poor cellular uptake, and siRNAs are degraded 

by nucleases (83). A major challenge to the use of AOs, RNAi and steric blocking oligonucleotides 

as therapeutics is the poor intracellular uptake. Most of the chemically modified nucleic acid 

therapeutics show limited tissue distribution and therefore need to be administered locally. 

Furthermore, once administered, the drugs become accumulated in the liver and kidney, are rapidly 
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excreted and therefore, require repeated administration. The concentration of the drugs required 

for a clinically effect is often high, which increases the risk of off-target effects. 

1.5.1 Conjugation strategies 

Antisense oligonucleotides (AOs) or siRNAs can be conjugated to ligands that are recognised by 

specific receptors, highly expressed in the target cells, to mediate cell type-specific intracellular 

delivery. Single-stranded (ss) AOs or siRNAs conjugated to triantennary N-Acetylgalactosamine 

(GalNAc) show increased delivery to hepatocytes where the GalNAc is recognised by the highly 

expressed asialoglycoprotein receptors (20, 81, 82). The siRNAs can be conjugated to cholesterol 

and incorporated into high-density lipoproteins for targeted delivery to the liver, gut, kidney and 

steroidogenic organs while incorporating them into low-density lipoprotein can specifically target 

the delivery of the siRNAs to the liver (84, 85). Conjugation of α-tocopherol with siRNAs also 

targets the siRNAs for delivery to the liver (86) and linking folic acid to liposome or nanoparticle 

encapsulated AOs or siRNAs can target the AOs or siRNAs to folate receptor-overexpressing cells, 

which is especially useful in cancers where folate receptors are overexpressed (85). Similarly, 

transferrin receptor is also overexpressed in many cancer cells and therefore, transferrin conjugated 

nanoparticle or liposome-encapsulated AOs or siRNAs can target transferrin mediated delivery to 

many cancers, endothelial cells and the brain (85). Previous studies show that peptide conjugated 

PMO (PPMO), phosphorothioated (PS) tricyclo DNA or 2’-OMePS modifications of splice 

modulating AOs can improve uptake by cells that express the scavenger receptor SCARA1, similar 

to GalNAc-conjugated oligonucleotides that also use a specific receptor (87). 

1.5.1.1 Liposome-based delivery methods 

Liposomes are vesicles with a phospholipid bilayer that can be used to carry oligonucleotides 

across the cell membrane (88). Liposomes come in a variety of sizes (as small as 20 nm to larger 
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than 1 µm) and the composition can be altered for different purposes (88). Conventional liposomes 

are composed of neutral or negatively charged phospholipids and cholesterol, and are quickly 

absorbed by the reticuloendothelial system (88). Liposomes need to be composed of cationic 

phospholipids to allow them to carry negatively charged oligonucleotides but can also be made 

pH-sensitive or induced to have long circulation time in the blood or be made cell-specific by 

changing the composition of the liposomes (88). Negatively charged siRNAs can be assembled 

into cationic liposomes through the formation of self-assembled nanoparticles or polyethylene 

glycol (PEG)-ylated liposomes (88). PEGylated liposomes have reduced clearance by the reticular-

endothelial system and therefore have increased plasma half-life although they are less effective 

than non-PEGylated liposomes (88). The most successful liposome-based delivery system in the 

clinic is the stable nucleic acid-lipid particle produced by Tekmira Pharmaceuticals that has been 

used to administer many siRNA in guinea pigs, non-human primates and in human clinical trials 

(88). The siRNA patisiran, approved by the FDA recently, is encapsulated in a second-generation 

stable nucleic acid-lipid particle or lipid nanoparticle carrier that is a cationic lipid nanoparticle 

designed to deliver the siRNA to the target tissue (i.e. liver) by IV injection (83, 88, 89). 

1.5.1.2 Nanoparticle (polymer)-based delivery methods 

Polymeric nanoparticles with sizes between 10 nm and 100 nm are considered to be optimal for 

the delivery of siRNAs and-miRs. There are several types of nanoparticles similar to liposomes, 

into which, positively charged moieties such as polyethyleneimine can be incorporated to allow 

them to carry negatively charged AOs or siRNAs (90). Other ligands can also be incorporated 

including lipids, polyethyleneimine, cell-penetrating peptides, folates, antibodies and aptamers to 

ensure cell-specific delivery (90). Cyclo-dextrin nanoparticles complexed with siRNA and coated 

with polyethyleneimine were used to deliver siRNA into tumour cells in mice (91). Nanoparticles 
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composed of a lysine-based amino acid backbone with lipid functional groups have also been 

reported to deliver siRNAs in vitro and in vivo (92, 93). More recently, a nucleic acid nanoparticle 

that can self-assemble into particles of well-defined sizes was reported to deliver siRNAs to the 

target tumours with high specificity (94). 

1.5.1.3 Antibody-based delivery methods 

Antibodies can be used to direct the delivery of AOs or siRNAs to specific cell types (85). 

Antibodies are used as delivery vehicles by linking the fragment antigen binding or single-chain 

variable fragments isolated from the cell- or tissue- targeting antibody to the nanoparticles 

encapsulating the siRNA or AOs (85). However, the use of receptor-specific antibodies to deliver 

AOs or siRNA to target tissue may result in an immunogenic response (85, 95). 

1.5.1.4 Cell-penetrating peptides (CPP) 

Cell-penetrating peptides (CPP) are short positively charged peptide sequences that can cross the 

cell membrane (85, 96, 97). Cell-penetrating peptides (CPP) can be conjugated to the AOs or 

siRNAs directly or with the other delivery systems including liposomes or nanoparticles 

encapsulating siRNAs or AOs to deliver the AOs or siRNAs into the cell (85, 96, 97).  Conjugation 

of CPPs directs oligonucleotides to Toll-like receptor 9 expressing cells (87). A skin-penetrating 

peptide conjugated to siRNAs was reported to deliver the siRNAs to keratinocytes, skin fibroblasts 

and endothelial cells after topical application in mice (98). Polyethylene glycol (PEG)-conjugated 

nanoparticles were conjugated with integrin-binding Arginylglycylaspartic acid peptides to form 

polyplexes for the successful delivery of siRNAs into tumours (84, 91). 

1.5.1.5 Aptamer-based delivery methods 

Aptamers similar to antibodies can be conjugated with other AOs or siRNAs to serve as a delivery 

vehicle. Aptamers, unlike peptides and antibodies, have low immunogenicity and are cheap to 
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produce. Aptamers can also be chemically modified to overcome degradation issues and are 

smaller than antibodies. For example, a nucleolin-specific aptamer can mediate delivery of AOs 

to cancer cells (87) and a prostate membrane-specific antigen targeting aptamer increased cellular 

uptake of siRNA in vitro in cancer cells that overexpress prostate-specific membrane antigens 

(99). 

1.5.2 Crossing the blood-brain barrier (BBB) 

A major challenge in developing therapeutics for neurological diseases is the inability of the 

oligonucleotides to cross the intact BBB. However, the oligonucleotides can be delivered to the 

cerebrospinal fluid (CSF) by intrathecal administration that results in the distribution of the 

oligonucleotides into the spinal cord and brain tissue (81). An FDA approved AO drug, Spinraza, 

has been delivered to ~7000 spinal muscular atrophy (SMA) patients through intrathecal 

administration (81); however AOs can also be delivered to the nervous system using other 

strategies. 

1.5.2.1 Peripheral delivery 

Peripheral delivery involves the administration of the oligonucleotides systemically and the uptake 

of these oligonucleotides into the nervous system (23). When AOs are administered systemically, 

a fraction of the oligonucleotides bind to plasma proteins while a fraction does not (23). The 

oligonucleotides that bind to the plasma proteins constitute the pharmacologically relevant 

fraction, that with the right properties will be able to cross the BBB (23). The fraction that does 

not bind to the plasma proteins is excreted (23). The bound fraction can cross the BBB by simple 

diffusion, if they are small lipophilic substances (23), however, AOs are too large (approximately 

around 6000 to 10000 Da) to cross the BBB (23). 
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The AOs can cross the BBB via receptor-mediated endocytosis that allows macromolecules, for 

example, insulin and transferrin to cross the barrier (23). The transferrin transport pathway has 

been used to transport AOs as well as nanoparticles carrying AOs into the brain parenchyma (23). 

Cell-penetrating peptide (CPP) delivery systems have also been successful in delivering AOs 

across the BBB (23). In particular, systemically delivered AOs tagged with arginine-rich CPPs 

were able to cross the BBB in mice (23). However, not all AO modifications can be coupled 

successfully with the CPPs (23). 

1.5.2.2 Direct delivery into the nervous system 

The AOs can be delivered directly into the cerebrospinal fluid by intracerebroventricular infusion 

(23), however, the oligonucleotide will then have to cross the ependymal cell layer to enter the 

parenchyma (23). Oligonucleotides can also be delivered intrathecally into the subarachnoid space 

of the spinal cord but will have to pass the pia mater to enter the parenchyma (23). Although both 

intracerebroventricular infusion and intrathecal infusions have been tested in animal models, 

intrathecal infusions of AOs has been used in humans and shows no major adverse effects (23). 

1.5.2.3 Intranasal delivery 

Intranasal delivery, if successful, could overcome challenges faced with invasive delivery 

strategies as well as being permissive to crossing the BBB (23). Intranasal administration of 

molecules transports the molecules along the olfactory and trigeminal nerve pathway and has been 

successfully used in clinical trials to deliver insulin to Alzheimer disease (AD) patients as well as 

CPP-conjugated siRNAs targeting intracerebral tumours (23). 

Table 1.1 Different delivery strategies sfor nucleic acid technologies and their pros and cons 

Delivery 

Strategy 
Pros Cons 

Unmodified naked siRNAs/ AOs 
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Delivery 

Strategy 
Pros Cons 

Intravenous 

injection/ 

Subcutaneous 

injection 

• Minutes to hours to transfer from the blood 

into the tissues 

• Distribution of AOs to numerous tissues 

• Cannot enter the 

central nervous system 

• Highest concentration 

in the liver and kidney 

and is rapidly excreted 

out.  

Modified naked siRNAs/ AOs 

Intravenous 

injection/ 

Subcutaneous 

injection 

• PS- modified AOs have delayed renal 

filtration 

• PPMO, PS tricyclo DNA or 2’-OMePS 

modified AOs improve uptake of cells that 

express scavenger receptor SCARA1 

• Have lower tissue 

uptake.  

• Poor delivery 

efficiency  

• Poor tissue targeting 

and specificity 

• Off-target effects  

• Stimulation of an 

immune response  

• Limited tissue 

distribution 

• Need to be 

administered locally  

• Accumulated in the 

liver and kidneys and 

rapidly excreted and 

require repeated 

administration.   

Conjugation strategies 

GalNAc 

conjugation  

• Increased delivery to hepatocytes where 

GalNAc is recognized by asialoglycoprotein 

receptors  

• Delivery to only those 

cells that express 

asialoglycoprotein 

receptors  

Cholesterol 

conjugation and 

incorporation into 

high or low-density 

lipoproteins 

• Targeted delivery to liver, gut, kidney and 

steroidognic organs when incorporated into 

high-density lipoproteins 

• Targeted delivery to liver when incorporated 

into low-density lipoprotein  

 

α- tocopherol 

conjugation 
• Targeted delivery to the liver  

Folic acid to 

liposome or 

nanoparticle 

encapsulated AOs 

or siRNAs 

• Target AOs or siRNAs to folate receptor-

overexpression cells- Useful for cancers 

where folate receptors are overexpressed  

 

Transferrin 

conjugated 

nanoparticle or 

liposome-

encapsulated AOs 

or siRNAs 

• Transferrin mediated delivery to transferrin 

receptor overexpressing cells- in cancers, 

endothelial cells and the brain 

 

Liposome-based 

delivery methods  

• Liposome composition can be changed to 

make them pH-sensitive, induced to have 

long circulation time in the blood and made 

cell-specific 

• Quickly absorbed by 

the reticuloendothelial 

system. 
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Delivery 

Strategy 
Pros Cons 

• PEGylated liposomes have reduced clearance 

by the reticular-endothelial system- increased 

plasma half-life but less effective than non-

PEGylated liposomes 

• Stable nucleic acid-lipid particle- cationic 

lipid nanoparticle- delivers siRNA to target 

tissue by IV injection. FDA approved siRNA 

patisiran is delivered using this method.  

• Unless composed of 

cationic phospholipids, 

cannot carry 

negatively charged 

oligonucleotides 

Polymeric 

nanoparticles 

• For delivery of siRNAs and miRNAs 

• Ligands incorporated into nanoparticles 

include lipids, polyethyleneimine, cell-

penetrating peptides, folates, antibodies and 

aptamers for cell-specific delivery.  

• E.g. Cyclo-dextrin nanoparticles complexed 

with siRNA and coated with 

polyethyleneimine were used to deliver 

siRNAs into tumour cells.  

 

Antibody-based 

delivery  

• Link the fragment antigen binding or single-

chain variable fragments isolated from cell- 

or tissue-targeting antibody to nanoparticles 

encapsulating siRNA or AOs.  

• May result in 

immunogenic 

response. 

Cell-penetrating 

peptides 

• Short positively charged peptide sequences 

that can cross the cell membranes.   

• Can be conjugated to siRNAs or AOs directly 

and directs AOs to Toll-like receptor 9 

expressing cells.  

• Can be conjugated to other delivery systems 

including liposomes or nanoparticles 

encapsulating siRNAs or AOs.  

• Not all AO 

modifications can be 

coupled successfully 

with the cell-

penetrating peptides.  

Aptamer-based 

delivery methods 

• Like antibodies, can be conjugated with other 

AOs or siRNAs to serve as a delivery vehicle.  

• Low immunogenicity and are cheap to 

produce 

• Can be chemically-modified to overcome 

degradation issues and smaller than 

antibodies 

 

Delivery strategies for crossing the blood-brain barrier 

Peripheral delivery 

• Only a fraction of the oligonucleotides bind 

to plasma proteins and will be able to cross 

the BBB.  

• Bound fraction can cross the BBB via 

receptor-mediated endocytosis that allows 

macromolecules to cross the barrier.   

• The fraction that does 

not bind to plasma 

proteins is excreted.  

• AOs are too large to 

cross the BBB by 

simple diffusion.  

Direct delivery into 

the nervous system 

• By intracerebroventricular infusion.  

• Delivered intrathecally into subarachnoid 

space of the spinal cord.  

• Intrathecal infusions of AOs has been used in 

humans and shows no major adverse effects.  

• Intracerebroventricular 

infusion of AOs need 

to cross ependymal 

cell layer to enter 

parenchyma.  

• Intrathecal infusion of 

AOs need to pass the 

pia mater to enter the 

parenchyma.  
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Delivery 

Strategy 
Pros Cons 

Intranasal delivery 

• Less invasive than other delivery methods.  

• Permissive to crossing the BBB  

• Transports molecules along olfactory and 

trigeminal nerve pathway  

• Used successfully in clinical trials to delivery 

insulin to AD patients as well as CPP-

conjugated siRNAs targeting intracerebral 

tumours.  

 

1.6 Conclusion and Overall Aims 

Nucleic acid molecules have shown great potential and have been approved by the United States 

Food and drug administration for the treatment of many diseases in recent years including an AO 

which was approved for the treatment of spinal muscular atrophy. Nucleic acid technologies have 

many advantages as therapeutics over antibodies, the traditional therapeutics used as treatment for 

many diseases, including the vast number of chemical modifications and delivery agents that can 

be conjugated. Chemical modifications and delivery strategies can be used to increase efficiency 

and specificity while decreasing nuclease degradation and renal clearance of the nucleic acid 

technologies. This thesis aims to develop novel nucleic acid technologies against ITGA4 for 

treatment of multiple sclerosis and against various targets including BACE1, APP and MAPT for 

Alzheimer’s disease. 

Aim 1: Developing DNAzymes against ITGA4 for tackling Multiple Sclerosis.  

Aim 2: To develop splice-modulating antisense oligonucleotides to induce exon 16 and exon 17 

skipping. 

Aim 3: To develop splice-modulating antisense oligonucleotides to downregulate BACE1. 

Aim 4: To develop DNAzymes and splice-modulating antisense oligonucleotides to downregulate 

MAPT.  
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Chapter 2 Developing novel DNAzymes 

targeting Integrin alpha-4 RNA transcript 

as a potential molecule to reduce 

inflammation in multiple sclerosis 

2.1 Introduction 

Multiple sclerosis (MS) is a chronic inflammatory neurological disease that results in 

demyelination of the axons in the central nervous system (CNS). Multiple sclerosis (MS) affects 

over 25000 Australians and more than 2 million people worldwide. Multiple sclerosis (MS) is 

three times more prevalent in women than men. Multiple Sclerosis (MS) mostly affects people 

between the ages of 20-40 years and is the leading cause of disability in young adults. As MS 

predominantly affects young adults at the peak of their active life, this condition places an 

enormous psychological, physical and financial burden on the patients and their families and 

reduces life expectancy by around seven years. 

There is no single test to diagnose MS that is often made after a combination of clinical tests 

including an magnetic resonance imaging (MRI) scan to observe areas of scarring, inflammation 

in the brain and spinal cord, and a clinical exam to look for characteristic symptoms. Multiple 

sclerosis (MS) patients exhibit different clinical symptoms such as: motor symptoms (muscular 

spasms, limb weakness and problems with balance, coordination and mobility); fatigue and heat 
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sensitivity; other neurological symptoms (loss of vision or vision disturbances, vertigo, sensory 

changes including pins and needles, tingling and numbness, neuralgia and cognitive dysfunction); 

continence problems (lack of bladder control and constipation); and neuropsychological symptoms 

(anxiety, depression and difficulties sleeping, cognitive difficulties, impaired memory and 

concentration, changes in processing speed and ability, impaired cognitive function and memory 

loss) (1). Diagnosis is confirmed when there have been two or more attacks each lasting a 

minimum of 24 hours at least one month apart. In addition, diagnosis requires MRI or 

electrophysiological testing showing central nervous system (CNS) damage in more than one area. 

Currently, there is no cure for MS, however, United States of America (US) Food and Drug 

Administration (FDA) have approved several treatments that slow the disease progression and help 

manage disease symptoms that are discussed later. 

The course of MS differs widely between each individual, however, it tends to take one of the 

following three courses: relapsing-remitting MS, secondary progressive MS, and primary 

progressive MS. Relapsing-remitting is the most common form of MS affecting 70-75% of 

diagnosed patients initially and is characterised by partial or total recovery after attacks. More than 

50% of people with relapsing-remitting MS go on to develop the secondary progressive form 

within 10 years and 90% within 25 years. The secondary progressive form is characterised by 

continual attacks, partial recoveries and a steady increase in permanent neurological disability. 

The primary progressive form affects 15% of people diagnosed with MS and is characterised by 

no recovery from the attacks and steady neurological function decline from onset without recovery. 

Primary progressive MS is diagnosed when a person has been living with MS for a long period of 

time and shows progressive disability rather than acute attacks. 
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2.1.1 Pathobiology of MS 

There is no known cause for the disease, although a combination of environmental and genetic 

factors have been identified to increase or decrease the risk of disease. The role of environmental 

and genetic factors in MS has been discussed in detail in many reviews and therefore will only be 

briefly mentioned here.  

Environmental exposures before adolescence may have a role in determining your risk of 

developing MS later on in life. Some of the environmental factors that have been shown to have a 

protective role in MS include lower latitudes, increased UV exposure and Vitamin D (2). 

Furthermore, evidence suggesting that exposure to pathogens early in life can also be protective 

against developing immune-mediated diseases such as MS gave rise to the ‘hygiene hypothesis’ 

(3, 4). The type of gut microbiota and its distribution may also affect the risk and course of MS 

(2). Lastly, increase in smoking, obesity and shift work has been linked to increased MS risk during 

adolescence (2). 

The relative risk of a sibling with MS is increased by 7 fold, indicating the importance of genetic 

factors in MS (2). Genetic variations in the HLA complex code for immunoregulatory gene 

products, can confer risk or have a protective role in MS (2). Genome-wide association studies 

(GWAS) have identified 110 non-HLA single nucleotide polymorphisms that confer a risk for MS 

(2). For example, polymorphisms close to a central vitamin D metabolism gene CYP27B1, is 

associated with increased MS risk (2). 

The presence of the environmental and genetic risk factors discusses above may confer risk alone, 

however, the interaction of the environmental and genetic risk factors confer a greater risk for MS. 

For example, the presence of HLA variant HLA-DRB1*15:01 increases the MS risk by three times, 

the lack of HLA variant HLA-A*02 increases the risk by 1.8 times, however, having the first HLA 
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variant and not the second HLA variant increases the risk by five times in non-smokers (2). 

Smoking increases MS risk further by 14 times (2). Similarly, obese individuals that have HLA 

variant HLA-DRB1*15:01 and lack variant HLA-A*02 also have 14 times increased MS risk (2). 

The interaction between smoking and a non-HLA gene variant NAT1 has also been observed (2). 

2.1.2 Pathobiology 

Multiple sclerosis (MS) is a complex disease that may be caused by the accumulation of multiple 

risk factors, although the cause is unknown, the pathobiology is well understood. The pathobiology 

of MS has been largely attributed to immune system dysregulation or dysfunction and 

compromised blood-brain barrier (BBB). 

In MS, dendritic cells and other antigen-presenting cells are activated by the recognition of self- 

or myelin antigens. The dendritic cells release various cytokines to communicate with the naïve 

CD4+ T cells, polarising the memory T cells into differentiated T helper 1 (Th1) and Th17 cells 

(5). CD4+ T cells differentiate into interferon-γ secreting Th1 cells in the presence of interleukin 

(IL)-12, while they differentiate into IL-17 secreting Th-17 cells in the presence of IL-23 (5). 

Under normal physiological conditions, the Th1 cells and Th17 cells are defence mechanisms 

against intracellular pathogens and fungal infections respectively, however, these pro-

inflammatory cytokines have a deleterious effect in autoimmune diseases like MS (5). In MS, the 

myelin antigens activate the T lymphocytes in the lymph node, that produce pro-inflammatory 

cytokines to mediate their toxic effects by producing matrix metalloproteinases and radical oxygen 

species, increasing the blood-brain barrier (BBB) permeability for T lymphocytes into the CNS (5, 

6). 

Myelin peptide mimics can compete with the native peptide to protect against induction of 

experimental autoimmune encephalomyelitis (EAE) in mouse models (6). In MS patients, myelin-



45 

specific T cells are active and show increased production of pro-inflammatory cytokines, including 

IL-2, IFN-γ and tumor necrosis factor (TNF) (6). Injection of an altered myelin peptide in clinical 

trials, resulted in increased Th1 responses and new inflammatory lesions in the CNS, causing 

relapses (6). Reducing the expression or knocking down IL-23 and IL-17 results in suppressed 

disease activity in animal models of MS supporting the role of Th17 cells (5). Furthermore, 

increased Th17 cells were observed in the peripheral blood of MS patients (5). 

The activated memory T cells cross the BBB and penetrate the CNS, where they are reactivated 

by myelin presenting antigen-presenting cells, including macrophages, microglia, dendritic and B 

cells, thereby inducing an inflammatory response (5, 6). The reactivated T-cells, and activated 

macrophages and microglia release pro-inflammatory factors, and produce oxygen and nitric oxide 

radicals, leading to demyelination and axonal loss (5, 6). 

Studies show that the other immune cells also have a role in MS including microglia, astrocytes, 

natural killer cells and B cells. The exact role of microglia and its interaction with T cells are not 

well understood, however, increased levels of activated microglia in MS lesions and in CNS of 

MS patients has been observed (6). Furthermore, in EAE models, the increased levels of activated 

microglia precedes infiltration of macrophages and T cells into the CNS (6). Microglia can also 

activate the naïve T cells by secretion of specific cytokines to enable their differentiation into Th1 

or Th17 subsets (6). The crosstalk between the microglia and T cells can be beneficial by the 

promotion of an anti-inflammatory response or deleterious by sustaining an inflammatory response 

(6). 

The B cells also have a role in MS, where B cells produce antibodies and autoantibodies against 

antigens resulting in demyelination and axonal damage in MS (5). B cells can be reactivated in the 

CNS and contribute to myelin damage by inducing complement-mediated damage to myelin and 
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reactivating the T cells (5). B cells can also activate the microglia, causing damage to neurons and 

loss of dendrite density (5). B cells, can both be beneficial or deleterious depending on the 

cytokines produced, by either increasing activation of macrophages and T cells or producing 

cytokines that may be protective (5). 

Astrocytes can produce and secrete cytokines and chemokines, which can alter T cell responses 

and contribute to CNS inflammation and neurodegeneration (6). Astrocytes can also control the 

infiltration of the pro-inflammatory leukocytes into the CNS and regulate the activation of 

microglia, oligodendrocytes and other cells from the adaptive immune system (5). Natural killer 

cells could have a role in MS by stimulating antigen-presenting cell maturation and cytokine 

production (5). 

2.1.3 Blood-brain barrier (BBB) and its role in MS 

The BBB plays an important role in MS by restricting migration of cells from the periphery to the 

CNS under normal physiological conditions (6). However, in MS there is a huge infiltration of the 

pro-inflammatory leukocytes early in the disease (6). The migration of the immune cells from the 

periphery to the CNS is called extravasation, that involves key steps including capture/rolling, 

activation, firm adhesion, crawling and diapedesis/transmigration (6). Activated T cells have the 

ability to cross the BBB and increase its permeability due to the expression of key molecules such 

as chemokine receptors, adhesion molecules, integrins, cytokines, matrix metalloproteinases and 

reactive oxygen species (6). The transmigration of the leukocytes across the BBB invovels 

interaction between adhesion molecules expressed by the endothelial cells of the BBB and their 

ligands expressed by the activated leukocytes (6). The cytokines increase the expression of the 

adhesion molecules such as the intracellular cell adhesion molecule-1 (ICAM-1), vascular 

adhesion molecule-1 (VCAM1)/ Integrin alpha-4 (ITGA4), activated leukocyte cell adhesion 
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molecule and melanoma cell adhesion molecule (6). Two treatments for MS, Natalizumab and 

Efalizumab (discussed further in section 2.1.4) prevent migration of the immune cells into the CNS 

by blocking the cell adhesion molecules on the endothelial cells of the BBB, thereby preventing 

myelin degeneration and axonal damage (Figure 2.1) (6). The BBB and the migration of cells 

across the BBB have an important role in the treatment strategies for MS (6). Chemokines 

produced by the CNS derived cells can also influence the migration of cells across the BBB 

including activated T cells (6). 

 
Figure 2.1 Schematic representing the migration of T cells across the BBB resulting in degradation of the 

myelin sheath. Adapted from Noseworthy et al (2005) (7). ITGA4: Integrin alpha-4; VCAM1: Vascular cell adhesion 

molecule; MHC: major histocompatibility complex; CNS: central nervous system; BBB: blood-brain barrier 

2.1.4 Current treatments for MS 

Treatments for MS can be categorised into relapse treatments, treatments that slow down disease 

progression, and treatments that help manage symptoms. There are many treatments that slow 



48 

progression of the relapsing-remitting MS and occasionally secondary progressive MS but no drug 

has been approved for the treatment of primary progressive MS. Treatments that slow progression 

of the relapsing-remitting MS can be categorised into two approaches, induction therapy and 

escalation therapy. In induction therapy, immunosuppressant drugs are used as first line of therapy 

and are followed by use of immunomodulatory agents for long-term maintenance of treatment (8). 

The escalation therapy approach uses disease modifying drugs like beta interferon, glatiramer 

acetate, teriflunomide and dimethyl fumarate as first life of treatment and if these disease 

modifying drugs are ineffective or only partially effective, a second line of more aggressive drugs 

like mitoxantrone, natalizumab and fingolimod are used (8).  

Multiple sclerosis (MS) patients are initially treated with basic therapeutics; including 

immunomodulators, interferon beta (IFN-β) and glatiramer acetate, first approved in 1995, and are 

administered as injections (9). The immunomodulators reduce the annual relapse rate by 30% and 

do not cause any severe side effects, although in some patients, they cause reactions at the site of 

injection while some develop neutralising antibodies that tends to reduce or abolish the therapeutic 

effect of the drug (9). An anti-inflammatory response is induced by glatiramer acetate, a mixture 

of short polypeptides of varying lengths of four amino acids, by proliferation and activation of 

glatiramer acetate specific lymphocytes and IFN-β, a cytokine (9). 

Alemtuzumab, is a humanised monoclonal antibody developed against CD52 that is found on the 

surface of lymphocytes and monocytes (9, 10). Treatment of Alemtuzumab, resulted in reduced B 

and T cells, reduced annual relapse rates and worsening of the disease than the IFN-β-1a treatment 

(9, 10). The most frequent adverse effects are infusion reactions, and in some patients, the 

development of herpetic and fungal infections (9, 10). There is a risk of developing autoimmune 
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disorders including thyroid disorders in 30% of the patients, immune thrombocytopenia in 1-3% 

of patients and glomerulonephritis in 0.3% of the patients (9, 10). 

Teriflunomide is a dihydroorotate dehydrogenase inhibitor that suppresses the proliferation of 

autoreactive B and T cells causing a shift from a pro-inflammatory to an anti-inflammatory 

cytokine profile (9, 10). Teriflunomide reduces annual relapse rate and has a similar efficacy to 

IFN-β (9, 10). Adverse side effects include headache, diarrhea, hair thinning, increased liver 

enzymes, nausea and in rare cases, peripheral neuropathy (9, 10). The treatment should be 

constantly monitored due to the risk of hepatic failure, serum transaminase and bilirubin (9, 10). 

Dimethyl fumarate has a dual anti-oxidant and anti-inflammatory effect through activation of 

transcription factor E2 related factor and inhibition of transcription factor nuclear factor κB 

respectively. Subsequently, there is a reduction in the release of inflammatory cytokines and 

migration of the inflammatory cells through the BBB (9, 10). The drug reduces the relapse rates 

and delays disease progression, but side effects are flushing and gastrointestinal symptoms, and 

development of multiple leukoencephalopathy in a few patients (9, 10). 

When first-line of treatments fail, more aggressive therapies are administered, one of which is an 

immunomodulatory and immunosuppressive oral drug, Fingolimod (9, 10). Fingolimod binds to 

sphingosine-1-phosphate receptors and inhibits release of B and T cells from the lymph nodes, 

reducing the annual relapse rate by 54% compared to placebo and 52% compared to IFN-β-1a (9, 

10). The side effects include transient cardiac arrhythmias at start of therapy, macular edema within 

six months of start of therapy and in some cases serious cardiac side effects (9, 10). 

Another immunosuppressive therapeutic that may be used either as an induction or escalation 

therapeutic treatment is Mitoxantrone (9, 10). Mitoxantrone can be administered for worsening of 
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relapsing-remitting MS or secondary progressive MS (9, 10). However, this treatment does pose a 

risk of cardiac toxicity and side-effects includes risk of acute leukemia (9, 10). 

Natalizumab, another escalation therapeutic, is a humanized monoclonal anti integrin alpha-4 

(ITGA4) antibody, that is a component of the very late antigen-4 present on lymphocytes (9, 10). 

Natalizumab inhibits ITGA4’s interaction with the VCAM found on the endothelial cells of the 

BBB, thereby preventing leukocytes from migrating across the BBB (9, 10). Natalizumab reduces 

the annual relapse rate by 68%; however, the treatment results in severe side effects including 

progressive multifocal leukoencephalopathy and the presence of neutralising antibodies was found 

in 6% of patients (9, 10). 

Daclizumab, another monoclonal antibody, against IL2 decreases the annual relapse rate by 45% 

compared to IFN-β-1a, however did not slow down progression of MS (9, 10). Orelizumab, a 

humanised monoclonal antibody, developed against CD20, is in phase III clinical trials for 

treatment of remitting-relapsing MS patients (9, 10). Ocrelizumab reduces annual relapse rate by 

46% and disease progression by 40% compared to IFN-β-1a (9, 10). 

MS patients may also be treated symptomatically for other neurological symptoms, including 

fatigue, depression, spasticity, tremor, ataxia, seizures, pain and sleep disorders to name a few. 

Treatment and management of these symptoms can help improve the quality of life of MS patients 

(1). 

Table 2.1 Summary of the treatment strategies for multiple sclerosis, the target of the treatment strategies, 

their outcomes and adverse effects. 

Treatment 

Strategy 
Target Outcomes Adverse Effects 

Interferon beta/ 

Glatiramer 

acetate 

• Proliferation and 

activation of interferon 

beta 

• Proliferation and 

activation of glatiramer 

• Reduce annual 

relapse rate by 

30% 

• Cause reaction at site of 

injection  

• Some develop 

neutralizing antibodies 

that tends to reduce or 
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Treatment 

Strategy 
Target Outcomes Adverse Effects 

acetate specific 

lymphocytes 

abolish therapeutic effect 

of drug 

Alemtuzumab  

• Monoclonal antibody 

against CD52 found on 

surface of lymphocytes 

and monocytes 

• Reduced B and T cells 

• Reduced annual 

relapse rates  

• Reduced 

worsening of the 

disease 

• Infusion reactions  

• Development herpetic and 

fungal infections in some 

patients 

• Risk of developing 

thyroid disorders in 30% 

of patients, immune 

thrombocytopenia in 1-

3% of patients and 

glomerulonephritis in 

0.3% of the patients.  

Teriflunomide  

• Dihydroorotate 

dehydrogenase inhibitor  

• Suppresses proliferation 

of autoreactive B and T 

cells 

• Reduces annual 

relapse rate 

similar to IFN-β 

• Headache, diarrhea, hair 

thinning, increased liver 

enzymes, nausea and in 

rare cases peripheral 

neuropathy.  

• Risk of hepatic failure, 

serum transaminase and 

bilirubin.  

Dimethyl 

fumarate  

• Anti-oxidant and anti-

inflammatory effect. 

Activates transcription 

factor E2 related factor  

• Inhibits transcription 

factor nuclear factor κB  

• Reduction in 

release of 

inflammatory 

cytokines and 

migration of the 

inflammatory 

cells through the 

blood brain 

barrier 

• Reduces relapse 

rates  

• Delays disease 

progression 

• Flushing  

• Gastrointestinal 

symptoms 

• Development of multiple 

leukoencephalopathy in a 

few patients.  

Fingolimod 

• Binds to sphingosine-1-

phosphate receptors  

• Inhibits release of B and 

T cells from lymph nodes 

• Reduces annual 

relapse rate by 

54% compared to 

placebo and 52% 

compared to 

IFN-β 

• Transient cardiac 

arrhythmias at start of 

therapy 

• Macular edema within six 

months of start of therapy 

• Serious cardiac side 

effects in some cases.  

Mitoxantrone • Immunosuppressive 

• Recues 

worsening of 

relapsing-

remitting MS or 

secondary 

progressive MS 

• Poses a risk of cardiac 

toxicity  

• Risk of acute leukemia 

Natalizumab 

• Monoclonal anti ITGA4 

antibody 

• Inhibits ITGA4’s 

interaction with VCAM 

found on endothelial 

• Reduces annual 

relapse rate by 

68% 

• Risk of progressive 

multiple 

leukoencephalopathy  

• Presence of neutralising 

antibodies in 6% of 

patients.  
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Treatment 

Strategy 
Target Outcomes Adverse Effects 

cells of the blood-brain 

barrier 

• Prevents leukocytes from 

migrating across the 

blood-brain barrier.  

Daclizumab  
• Monoclonal antibody 

against IL2  

• Decreases annual 

relapse rate by 

45% compared to 

IFN-β-1a 

• Did not slow down 

progression of MS 

Orelizumab 
• Humanised monoclonal 

antibody against CD20 

• Reduces annual 

relapse rate by 

46% compared to 

IFN-β-1a.  

• Reduces disease 

progression by 

40% compared to 

IFN-β-1a. 

 

2.1.5 Disadvantages of monoclonal antibodies as treatment strategies 

Many humanised monoclonal antibodies are used as treatment strategies for MS, and a major 

disadvantages are their limits of targets (11). Antibodies can only be targeted against protein 

targets, but not miRNA, transcription factors and other junk DNA, that also have an important role 

in disease (11). Furthermore, antibodies can only target proteins expressed on the cell surface of 

the host cells or invading pathogens, although developing intrabodies or antibodies that can target 

the proteins inside the cells is now possible, its therapeutic potential is unknown (11). 

Monoclonal antibodies are large (150 kDa), multimeric proteins containing numerous disulphide 

bonds and post-translational modifications such as glycosylation, therefore, producing the active 

form of the antibody requires sophisticated eukaryotic machinery. Furthermore, large amounts of 

antibodies are needed to achieve clinical efficacy that requires large cultures of mammalian cells 

and extensive purification steps, leading to high production costs, limiting their use to serious 

medical conditions (12). The large molecular size of the antibodies mean that they cannot easily 

penetrate tissue or tumours (only around 20% of the administered dose) to have a therapeutic effect 
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(12). Therefore, the limited efficacy of antibody-based therapy cannot justify the high production 

costs. 

Antibodies are potentially immunogenic and occasionally result in producing an anti-drug 

antibody response, leading to a major safety issue and reducing the therapeutic benefit in patients 

(13). Furthermore, antibodies can cause rare but serious adverse events like multifocal 

leukoencephalopathy with the treatment of Natalizumab, which led to two deaths out of 5000 

patients (11). Antibodies are also at risk of degradation during the manufacturing and storage 

stages, as well as in vivo, that cannot be controlled adequately (14). The degradation may affect 

antigen recognition, reduce its function and in severe cases, lead to immunogenic responses (14). 

Antibodies are denatured and/or proteolysed in the gut and are not orally bioavailable (13). 

Antibodies have a poor ability to penetrate the BBB and therefore, are poorly suited for the 

treatment of chronic neurodegenerative diseases or tumours that originate or have metastasised to 

the brain (13). 

2.1.6 Nucleic Acid Technologies as Treatment Strategies 

The major advantage of nucleic acid technologies as therapeutics over antibodies, is their ability 

to selectively target the undruggable human and viral genomes, upregulate or downregulate gene 

expression, alter mRNA splicing, target trinucleotide repeats disorders and target non-coding 

RNAs, to modulate gene expression. RNA based therapeutics can also evolve with cancer or 

pandemic influenza, (15). With the FDA approval of many nucleic acid therapeutics in recent 

years, nucleic acids are becoming attractive therapeutic strategies. 

2.1.6.1 Nucleic Acid technology for the treatment of MS 

Myers et al. (2005) reported a 20-mer PS oligonucleotide gapmer containing 2’-OMOE 

modifications (ISIS 17044) that binds at the 3’ end of the translation initiation codon of mouse 
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Itga4 mRNA (16). ISIS 17044 reduced the Itga4 mRNA expression as well as the cell surface 

expression of ITGA4 in bEND.3 cells dose-dependently (16). At a concentration of 100 nM, ISIS 

17044 reduced the mRNA expression by 98% and cell surface expression by 75% compared to the 

scrambled (SCR) control (16). Furthermore, with the reduction in ITGA4 expression, there were 

no alterations in the expression of other cell adhesion molecules expressed by bEND.3 cells, 

including platelet and endothelial cell adhesion molecule (PECAM-1), and TNF-induced 

decreases in ICAM-1 or VCAM-1 (16). ISIS 17044 had similar inhibitory effects on the Itga4 

mRNA in IC-21 cells, a macrophage-like cell line with an IC-50 of 2 nM (16). In primary CSJLF1 

mouse lymph node cells and splenocytes from DBA mice, a dose-dependent reduction in ITGA4 

levels were seen by flow cytometry in both the unfractionated lymph node cells and in T cell 

subpopulations (16). In an experimental autoimmune encephalomyelitis (EAE) mouse model, 

treatment of ISIS 17044 prevented or ameliorated paralysis when given as a prophylactic and 

reduced disease severity when given as a therapeutic drug (16). Immunohistochemical staining of 

the spinal cord tissue from these mice indicated reduced T cell and macrophage trafficking and 

reduced ITGA4 expressing cells (16). The oligonucleotides were present in the CNS white matter, 

even though it has been previously shown that the AOs do not cross the BBB in healthy mice,and 

this may be due to the disruption of the BBB in the EAE mouse model (16). However, the AOs 

that reduce ITGA4 levels and prevent the immune cells from migrating to the CNS do not need to 

enter the BBB to modulate disease (16). 

Recently, a splice modulating AO has been reported by Aung-Htut et al. (2019) to downregulate 

ITGA4 in human dermal fibroblasts and Jurkat cells (17). AOs with a 2’-OMePS and a PMO 

chemistry were effective in inducing exon-skipping of the ITGA4 transcript and resulted in 

downregulation of the ITGA4 protein in human dermal fibroblasts and Jurkat cells (17). The most 
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efficient AO targeted exon 4 and was tested in an EAE mouse model using peptide conjugated 

PMO (PPMO) chemistry, resulting in delaying disease progression (17). 

Nerve growth factor levels were increased in stress and inflammation in the cerebrospinal fluid 

(CSF) of MS patients (18). Nerve growth factor signalling transduction pathways control the 

activation of integrins on the leukocytes and subsequent transmigration of the inflammatory cells 

into the brain through the TrkA/p75 heterodimer (18).A growth factor receptor, p75, that binds to 

the nerve growth factor, had increased expression on endothelial and perivascular cells in the CNS 

of EAE. Soilu-Hanninen et al. (2000) induced EAE in mice using myelin proteolipid protein 

(PLP)-peptide, resulting in upregulation of p75 in the CNS (18). A PS AO against p75 resulted in 

downregulating p75 mRNA and protein levels by 30% and attenuation of EAE (18). The AO 

treatment did not induce a nonspecific immunostimulatory response, however, there were two 

cases of liver abscesses that were only in the AO treated mice (18).  

IL-23 is a heterodimeric cytokine comprising of a p19 subunit that associates with the IL-12/23p40 

subunit expressed in activated dendritic cells and phagocytic cells (19). Functional IL-23 is 

required for inducing EAE in mice; and dendritic cells from MS patients had increased levels of 

IL-23 and IL-23p19 mRNA (19). Inhibition of the IL-23p19 mRNA by AOs resulted in decreased 

levels of IL-23, IL-12 and TNF-α production (19). Decreased IL-23 expression increased IL-10 

production, which may inhibit T cell proliferation or decrease IL-12 (19). In secondary progressive 

MS patients, IL-12 levels are increased and reduced IL-10 production is associated with increased 

severity of MS (19). 

The dysregulated inflammatory response in MS is mediated by TNF- α and associated neuronal 

apoptosis (20). Kim et al. (2010) developed a siRNA to reduce TNF-α expression by targeted 

delivery of the siRNAs to TNF-α expressing macrophages and microglial cell (20). Targeted 
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delivery was achieved by conjugating an acetylcholine receptor binding peptide fused to non-D-

arginine residues, that can bind to and deliver siRNAs to macrophage and microglial cells (20). 

The siRNA silenced the expression of liposaccharide-induced TNF-α expression in vitro and in 

vivo accompanied by reduced neuronal apoptosis (20). 

2.1.6.2 DNAzymes as a therapeutic strategy 

The advantage of DNAzymes over other nucleic acid technologies, including RNAi technology 

and AOs is their ability to turn over, capability to cleave mRNA independently of endogenous 

nucleases and cellular machinery unlike siRNAs and RNAse H AOs (Figure 1.4) (21). DNAzymes 

also have several advantages over natural protein-based enzymes. The production of foreign 

protein-based enzymes requires fermentation and high costs, the products are easily contaminated 

and can elicit immune responses (21). Proteins are difficult to label at specific sites making in situ 

production of signal quite challenging , however, DNAzymes are easily modified and can be 

labelled easily with very low immunogenicity (21). DNAzymes can be conjugated to various 

nanomaterials for signalling and delivery and are more stable and cost-effective than RNA and 

proteins (21). 

2.1.6.3 DNAzymes in clinical trials: 

The potential of DNAzymes as a therapeutic strategy has been realised through their pre-clinical 

success and positive results in clinical trials. SB010 is a DNAzyme that cleaves GATA3 mRNA 

and has shown positive results in phase IIa clinical trials (22, 23). GATA3 is a transcription factor 

essential for Th2-cell differentiation and activation (22, 23). An Th2 driven immune response has 

been implicated in allergic bronchial asthma, an inflammatory disease of the airways, where there 

is dysregulation of the innate and adaptive immune system (22, 23). GATA3 is overexpressed in 

asthma patient bronchoalveolar lavage and lung biopsies, even those undergoing treatment, 
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emphasizing the need for better therapeutics (22, 23). In Phase IIa clinical trial, SB010 reduced 

both late and early asthmatic responses and Th2- regulated inflammatory responses to allergens in 

patients with allergic asthma (22, 23). Sterna Biologicals is now preparing for conducting Phase 

IIb clinical trials. 

The DNAzyme Dz1 in phase I/II clinical trials, targeted Epstein-Barr virus (EBV) LMP1 mRNA 

to treat nasopharyngeal carcinoma in combination with radiotherapy. Dz1 was given to 40 

nasopharyngeal carcinoma patients and showed a higher tumour regression at week 12 and 

impacted tumour microvascular permeability as shown by molecular imaging analysis. The Dz1-

treated group had a higher number of samples with an undetectable level of EBV DNA copies, and 

DZ1 was considered safe. 

The two DNAzymes in clinical trials have demonstrated the impact of DNAzymes as potential 

therapeutic strategies. DNAzymes are unique and have distinct advantages over other protein-

based enzymes, other nucleic acid technologies and antibodies. The use of the antibody 

Natalizumab against ITGA4 in treatment of MS has shown the importance of ITGA4 as a validated 

target for MS. However, Natalizumab, a monoclonal antibody has severe adverse effects and 

therefore there is need for better therapeutic strategies that minimise the adverse effects. 

DNAzymes targeting ITGA4 may be a good therapeutic strategy for tackling MS. DNAzymes, 

unlike antibodies will not induce production of neutralizing antibodies. Use of DNAzymes as 

therapeutics to target ITGA4 rather than antibodies like Natalizumab may result in patients not 

developing multifocal encephalopathy in those rare cases although this would have to be validated. 



58 

2.2 Aim 

To develop novel chemically modified DNAzymes targeting ITGA4 RNA transcript as a potential 

molecule to reduce inflammation in MS 

2.3 Methods 

2.3.1 DNAzyme design and synthesis 

DNAzymes with either stem loop or hammer head conformation were designed for the selected 

exons (exon map shown in Figure 2.2) and the oligonucleotides (sequences given in Figure 2B) 

were ordered from Integrated DNA Technologies (IDT). The locked nucleic acid (LNA)-modified 

DNAzyme was made in-house by ABI ExpediteTM 8909 (Applied Biosystems, Foster City, CA, 

USA) oligonucleotide synthesiser system in 1 µM scale. The synthesised oligonucleotides were 

deprotected by treatment with 1 mL Ammonium Hydroxide (Sigma; Cat# 221228-500Ml, Castle 

Hill, NSW, Australia overnight at 55 °C. The oligonucleotides were then purified and desalted 

using illustra NAP-10 columns (GE Healthcare; Cat# 45-000-153, Springfield, QLD, Australia) 

according to the manufacturer’s protocol. 

 
Figure 2.2 Exon map of ITGA4. 
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2.3.2 Cell propagation and transfection 

Normal primary human fibroblasts from muscle biopsies were kindly provided by Prof. Sue 

Fletcher. Cell culture media and supplements were purchased from (Life technologies, Australia) 

unless specified. Normal human fibroblasts were propagated in Dulbecco's modified Eagle's 

medium (DMEM) (Thermofisher Scientific; Cat # 11995073) supplemented with GlutaMAX™ 

(Thermofisher Scientific; Cat #: 35050061) and 10% fetal bovine serum (FBS) (Serana; Cat # 

FBS-AU-015). Transfections were performed in 24 well-plate format with approximately 15,000 

cells/well. The cells were seeded one day before transfecting with the DNAzymes complexed with 

Lipofectamine 3000 transfection reagent (Thermofisher Scientific; Cat # L3000015) per the 

manufacturer’s protocol. Transfection was carried out for 24 hours before harvesting RNA for 

transcript analysis. RNA was extracted using Direct-zol RNA MiniPrep Kit (Zymo Research; Cat: 

R2051) following manufacturer’s protocol. 

2.3.3 RT-PCR assays 

50 ng of total RNA was analysed using a Superscript III One-Step RT-PCR System (Thermofisher 

Scientific; Cat #: 12574026) and reaction conditions are as follows: 55°C for 30 min, 94°C for 2 

min, 28 rounds of 94°C for 30 sec, 55°C for 30 sec and 68°C for 1 min 30 sec. Exon 1-10 was 

amplified using primer pair 1F (5’gagagcgcgctgctttaccagg3’) and 10R 

(5’gccatcattgtcaatgtcgcca3’); exon 9-20 using primer pair 9F (5’ggatcgtactttggagcttctg3’) and 20R 

(5’gcatgcactgtgatactgaggt3’). The products were analysed on 2% agarose gels in Tris-acetate-

EDTA buffer, stained with Red Safe (iNtRON Biotechnology; Cat# 21141) and destained with 

water before being visualised with the Fusion Fx gel documentation system (Vilber Lourmat). 
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2.3.4 Image analysis of the gel from gel electrophoresis 

Densitometry (measuring the band intensity) of the bands was performed using Image J Software 

(24). The band intensity of the ITGA4 bands in different DNAzymes treated samples were 

measured and normalised to the band intensity of the corresponding CYCD bands before 

comparing to the band intensity of the untreated samples. The percentage of ITGA4 transcript 

knockdown by DNAzymes in fibroblasts was expressed as activity of DNAzyme. 

2.3.5 In vitro cleavage assay 

4.4 µL of 20 µM DNAzyme was incubated with equal molar concentration of FAM-conjugated 

ITGA4 RNA (5’-FAM-CUGUGCUGUGGACCUCAAUGCAGAUGGCUUCUCA-3’) in 5 µL of 

buffer containing Mg2+ divalent cations (10 mM MgCl2) at 37°C. The reaction was stopped by 

adding 10 µL of formamide to 10 µL of the reaction mixture at 0, 30 mins, 60 mins and 2 hours. 

Scrambled DNAzyme RNV174, RNV143-Mut1 (CATCTGCAGGCTAAATACAACGATGAG), 

RNV143-Mut2 (CATCTGCAAACTAGCTACAACGATGAG) and RNV143-Mut3 

(CATCTGCAGGCTAGCAACAACGATGAG) were used as negative controls and the untreated 

samples did not have any DNAzyme. The red bases are the mutated bases and the two double 

mutants RNV143-Mut1 and RNV 143-Mut2 were designed based on a previous paper (25). The 

reaction mixtures were separated on a 15% polyacrylamide gel/ 7M urea for 50 mins at 13 W. The 

gel was visualised using the Fusion Fx gel documentation system (Vilber Lourmat). 

2.3.6 Image Analysis of the gel from in vitro cleavage assay 

Densitometry (measuring the band intensity) of the bands was performed using Image J 

Software.(24) The band intensity of the full length RNA bands for different time points were 

measured and normalised to the combined band intensity of both cleaved and full length RNA 

bands for different time points and plotted on excel as the % of uncleaved RNA. The same analysis 
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was repeated to calculate % of cleaved RNA. The slope of the curve was used to calculate the % 

cleaved per minute. 

2.3.7 Phosphodiesterase assay 

5 µM DNAzyme was incubated with 0.00001 U phosphodiesterase from Crotalus adamanteurs 

venom (Sigma Aldrich; Cat #: P3243-1VL) at 37°C. At different time points 0, 2 mins, 5 mins, 10 

mins, 30 mins and 1 hour, 10 µL of formamide was added to equal volume of the reaction mixture 

to stop the reaction. The reaction mixture was separated on a 20% polyacrylamide/ 7 M urea gel. 

The gel was stained with ethidium bromide for 10 minutes and destained in water for 10 minutes 

before visualizing under UV light using ChemiDoc XRS Imaging System (Bio-Rad Molecular 

Imager). 

2.3.8 Human serum degradation assay 

5 µM DNAzyme was incubated in human serum at 37°C. At different time points 0, 30 mins, 60 

mins, 2 hours, 4 hours and 6 hours, 10 µL of formamide was added to equal volume of the reaction 

mixture to stop the reaction. The reaction mixture was separated on a 15% polyacrylamide 

(BioRad; Cat #: 1610146)/ 7 M urea (Ajax Finechem; Cat #: AJA572) gel. The gel was stained 

with ethidium bromide for 10 minutes and destained in water for 10 minutes before visualizing 

under UV light using ChemiDoc XRS Imaging System (Bio-Rad Molecular Imager). The images 

are shown in Figure A.5 (Appendix A). 

2.4 Results 

2.4.1 Design and screening of first-generation DNAzymes targeting ITGA4 mRNA 

Two groups of non-modified DNAzymes, one with 10-23 catayltic motif (hammerhead) and the 

other with 8-17 catalytic motif (arm-loop) (Figure 2.3) were designed to target various exons of 
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the ITGA4 transcript (first-generation DNAzymes). The sequences of the catalytic regions were 

pre-fixed according to previous reports(26, 27) and the arm regions were designed to be specific 

and complementary to the ITGA4 mRNA sequences (Figure 2.3). The catalytic activities of these 

DNAzymes against ITGA4 mRNA were screened in human primary fibroblasts by transfecting 

DNAzymes at different concentrations (600 nM, 400 nM, 200 nM, 100 nM and 50 nM) for 24 h. 

RNA was extracted from the cell lysate and the integrity of ITGA4 transcript was assessed by 

performing RT-PCR. Scrambled sequence (SCR) was used as a negative control to account for the 

non-specific effects. 

Dose-dependent reduction of the full-length ITGA4 transcript was observed for all DNAzymes 

treated samples. The best ITGA4 transcript knockdown was observed at 600 nM and therefore, the 

efficiency of each DNAzyme was calculated as a percentage of ITGA4 transcript knockdown at 

600 nM after normalising to the house keeping gene transcript cyclin D (CYCD) and described as 

the activity in fibroblasts (Figure 2.3). DNAzyme candidate RNV143 targeting the exon 9 of the 

ITGA4 mRNA showed highest efficacy with 84% knockdown of ITGA4 (gel shown in Figure 2.3) 

followed by RNV148 (71% although this was not statistically significant) and RNV145 (68%) 

(Figure 2.3). 
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Figure 2.3 (A) Schematic illustration of the 10-23 and 8-17 catalytic motifs of DNAzymes. (B) Table for the 

activities of first-generation DNAzymes targeting ITGA4 mRNA that is directly correlated with the percentages of 

ITGA4 mRNA knockdown (See Materials and Methods for detailed procedures); The catalytic motifs are shown in 

red, the arm regions are in black, and the sequences are from 5’→ 3’. p-values were calculated for the activity in 

fibroblasts which was normalised to the UT using student t-test and * indicates p-value<0.05, ** indicates p-
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value<0.005 and *** indicates p-value<0.0005. p-values have been rounded to 2 s.f.  (C) Representative RT-PCR 

products (of three replicates) of the ITGA4 and CycD transcripts from normal human primary fibroblasts after 

treatment with DNAzyme at different concentrations. The RT-PCR products after treatment with RNV143 are shown 

here. FL, full-length; UT, untreated; SCR, scrambled sequence; CYCD was used as a loading control. The gel images 

were cropped to highlight the ITGA4 specific products and the corresponding house-keeping gene control CYCD. The 

original images are shown in Figure A.2 (Appendix A). 

2.4.2 Design and screening of second-generation DNAzymes targeting ITGA4 

mRNA 

Based on the initial screen, the best performing DNAzyme RNV143 was selected for further 

modifications. Many studies have shown that increasing the hybridisation arms on either side of 

the catalytic motif can increase the binding affinity and efficacy (28-30). In our study, the first 

generation of DNAzymes initially had 8 nucleotides on one arm and 7 on the other. Several studies 

showed that the optimal arm lengths vary from 7 to 10 nucleotides long (28-33). Therefore, the 

length of RNV143 was systematically increased at the end of both arms, and then the efficacy of 

the modified DNAzymes was verified. One, two and three nucleotides were added to both arms of 

RNV143 and named RNV182, RNV183 and RNV184 respectively (Figure 2.4). The catalytic 

activities of these second generation DNAzyme candidates were analysed in human primary 

fibroblasts as described above. The transfections were repeated at least twice. Notably, a decrease 

in activities were observed for RNV182 (57%) and RNV183 (74%) at 600 nM compared to the 

parent DNAzyme RNV143 (84%) (Figure 2.4). RNV184 with additional six nucleotides (three on 

each ends) was the only candidate that showed similar activity to the parent RNV143, with 89% 

knockdown of ITGA4 mRNA. These results showed that increasing the arm length did not 

dramatically improve the efficacy of DNAzyme RNV143 in fibroblasts. 

Next, we explored the improvement of nuclease stability of the DNAzymes since the natural 

nucleotide monomers are rapidly degraded in vivo. First, we introduced phosphorothioate (PS) 

linkages to the arm regions of RNV143 to improve nuclease resistance and named RNV143PS. 
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However, RNV143PS failed to cleave ITGA4 RNA when transfected into the human fibroblasts. 

Only 10% of the ITGA4 transcript was degraded when treated with RNV143PS while nearly 29% 

of the ITGA4 transcript was non-specifically knocked down by the scrambled control (Figure 2.4). 

Then we introduced another chemical modification, an ‘inverted dT' at the 3’ end of RNV143, 

RNV183 and RNV184, the DNAzymes with high activities, and the new generation DNAzymes 

were named RNV143A, RNV183A and RNV184A respectively. RNV143A, RNV183A and 

RNV184A slightly improved the activities of DNAzymes (89%, 76% and 92% respectively; Figure 

2.4). 

We also investigated the potential of LNA nucleotides in DNAzymes. Two LNA nucleotides were 

incorporated to both arms of RNV183 at positions 2, 5 and 31, 35. However, RNV183 with 4 LNA 

modifications was not effective (did not cleave ITGA4) when tested in cells (data not shown). We 

believe that this may be due to the formation of secondary structures caused by LNAs within the 

arms of the DNAzymes that could potentially affect the catalytic motif (sequence of the LNA 

modified RNV183 and the mfold (34) predicted structures are shown in Appendix A, Error! R

eference source not found.). To limit this secondary structure formation, we truncated the LNA 

modified RNV183 by four nucleotides from the 5’ end to generate RNVLNA-3 (Figure 2.4) with 

one LNA nucleotide on the truncated arm and two LNA nucleotides on the other non-truncated 

arm. This truncation is predicted to limit the secondary structure formation and promote its ability 

to bind to the ITGA4 mRNA. Transfection with RNVLNA-3 showed 58% knockdown of ITGA4 

transcript indicating that the truncation helped to improve the activity, although the efficacy of 

ITGA4 knockdown was not efficient (Figure 2.4).  
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Figure 2.4 Second-generation DNAzymes derived from RNV143, targeting the ITGA4 mRNA. The activity of 

DNAzymes directly correlated with the percentage of ITGA4 mRNA knockdown. Activities of DNAzymes were 

calculated as described in section 2.3.4. The catalytic motifs are shown in red, the arm regions are in black and the 

residues modified with LNA are in blue. The sequences are from 5’→ 3’. 

2.4.3 In vitro cleavage of ITGA4 RNA template 

To further verify the catalytic activity of DNAzyme towards the target region of ITGA4 transcript, 

we performed the cleavage efficacy in vitro using a synthetic fluorescein dye (FAM)-labelled RNA 

target composed of exon 9 region of the ITGA4 transcript. The experiments were performed by 

incubating DNAzymes with FAM-labelled RNA template in the presence of divalent metal ions 

and the products were separated and analysed on polyacrylamide gels. Briefly, 1.76 µM 

oligonucleotides were incubated with 1.76 µM FAM-conjugated ITGA4 RNA in the presence of 

Mg2+ divalent cations for 30 min, 60 min and 120 min at 37°C. The reactions were stopped by 

adding 10 µL of formamide solution. The products were then separated on a 15% denaturing 

polyacrylamide gel and visualised using Fusion FX Vilber Lourmat imager. The cleaved products 

of the 34mer full length FAM-conjugated RNA was expected to be 18 nucleotides. A scrambled 

(SCR) sequence and RNV143 mutants with different mutations within the catalytic region of 

RNV143 were used as negative controls in parallel and an untreated (UT) sample with no 

DNAzyme was also included. 
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Although variable efficiencies were observed for these DNAzymes in fibroblasts, RNV143, 

RNV182, RNV183 and RNV184 showed similar cleavage efficiency in vitro (around 0.7%/min) 

(Figure 2.5). In general, the in vitro cleavage rates of the modified DNAzymes were slower than 

that of their parent oligonucleotides. Notably, RNV143PS showed very low cleavage efficiency 

with small percentage of cleaved FAM-conjugated RNA appeared after 120 minutes of incubation. 

Similar results were observed for RNV143-Mut3 while the other mutant DNAzymes and the SCR 

sequence showed no cleavage (Figure 2.5). 

 
Figure 2.5 In vitro cleavage of the FAM-conjugated ITGA4 RNA template composed of exon 9 region (34 

nucleotides) by RNV143 and its derivatives. FL RNA, full-length; FAM-conjugated RNA; cleaved RNA; the cleaved 

FAM-conjugated ITGA4 RNA (18 nucleotides long). The FAM- conjugated template RNA is a small region of the 

ITGA4 transcript complementary to the hybridisation arms of the DNAzymes of interest. The gel images were cropped 

for better overview. The original images are shown in Figure A.3 (Appendix A). The table shows the cleavage rate in 

%/min which was calculated as described in the Methods section (Section 2.3.) 
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2.4.4 Nuclease stability analysis of DNAzymes 

High nuclease stability is paramount towards the clinical development of oligonucleotides. 

Towards this goal, we tested the stability of DNAzymes 143, 183, 184, RNVLNA-3, 143A, 183A, 

and 184A using snake venom phosphodiesterase, a harsh enzyme with very high 3’→5’ 

exonuclease activity. DNAzyme candidates were incubated with the enzyme at 37°C and samples 

were collected at different time points (0, 30, 60 and 120 minutes) followed by the products 

analysis on 15% denaturing polyacrylamide gels. As expected the stability was increased by 

increasing the arm lengths of the DNAzymes and RNV184 (36 nt long) was found to be the most 

stable compared to RNV183 and RNV143 (Figure 2.6). RNVLNA-3 with LNA modifications 

(known for high nuclease stability(35, 36)) was more stable than RNV143, RNV183 and RNV183. 

A weak product band was visible even after 60 minutes of incubation. Remarkably, the DNAzymes 

with inverted dT nucleotide at 3’-end (RNV143A, RNV183A and RNV184A) showed highest 

stability with no significant degradation even after 1 hour incubation with phosphodiesterase 

(Figure 2.6). 

 

Figure 2.6 Phosphodiesterase degradation analysis of DNAzymes that showed high efficacy in the cleavage of 

ITGA4 RNA in vitro and knockdown of ITGA4 RNA in fibroblasts. The gel images were cropped for better overview. 

The original images are shown in Figure A.4(Appendix A). 
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2.5 Discussion 

We have successfully identified a DNAzyme that cleaves the ITGA4 transcript both in vitro and in 

human primary fibroblasts by screening different DNAzyme constructs with 10-23 catalytic motif 

and 8-17 catalytic motif targeting different sites of ITGA4 mRNA. The DNAzyme was not only 

capable of downregulating the ITGA4 transcript in vitro and in human primary fibroblasts but also 

showed high resistance to exonuclease degradation. Our study thus provides a novel approach for 

downregulating ITGA4 transcript that may have therapeutic potential towards the treatment of MS 

where ITGA4 is a validated target for tackling inflammation. 

Cleavage by first generation DNAzymes with either 10-23 or 8-17 catalytic motif targeting five 

different cleavage sites of the ITGA4 transcript showed variable cleavage efficiencies (Figure 2.3). 

The best cleavage efficiency was achieved with the 10-23 catalytic motif DNAzymes designed to 

cleave a site located in exon 9 of the ITGA4 transcript. The variable target-cleaving efficiencies 

observed for different first generation DNAzymes targeting different regions of the ITGA4 

transcript could be due to the structure variations that might affect the accessibility of target 

sequences. This is consistent with previous observations by Vester et al.(2006) (29, 33, 37) The 

cleavage efficiency of DNAzyme has been proposed to be dependent on the structural complexity 

of the RNA that is targeted (29, 38). In a comparison between different substrate structures, Vester 

et al. (2006), targeted three different cleavage sites of either a short (17 nucleotides) unstructured 

RNAs; or longer (58 nucleotides) RNAs with stable secondary structures; or longer (2904 

nucleotides) RNAs with both stable secondary and tertiary structures (29, 38). The results indicated 

that only one cleavage site out of three could be efficiently cleaved by the DNAzymes and the 

cleavage of the short unstructured RNAs were more efficient than the longer structured RNA (29, 

38). This implies that the accessibility of the purine-pyrimidine sites differs in different regions of 
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the ITGA4 (1032 bp long) transcript due to the formation of different secondary and tertiary 

structures in the transcript inside the cells, leading to differences in the ability of DNAzymes to 

cleave them. 

The optimal arm length may vary for different DNAzymes and there is no evidence on whether 

the arms should be asymmetrical or symmetrical for optimal catalytic activity. In addition, the GC 

content may also have an effect on the catalytic efficiency (28, 30, 33, 39), but how it is affected 

is unclear (28, 30, 31). In parallel, increasing the DNAzyme binding arm length would increase 

DNAzyme- target affinity as it enhances the heteroduplex stability (40), but it could also result in 

slower product release that would inhibit or decrease the rate of multiple turnovers. Therefore, 

longer binding arms may not always produce higher catalytic efficiency (26, 41). Using the best 

candidate RNV143 from the first screen, we further tested the impact of DNAzyme arm lengths 

aiming for increased efficiency. However, the catalytic efficiency was decreased in most 

DNAzymes with longer arms. _ENREF_26We speculate that increasing the arm length of the 

DNAzyme RNV143 could increase the binding affinity of DNAzymes to the target RNA but result 

in slower product release and turnover (38). For DNAzymes to have therapeutic potential, it is 

desirable to have high turnover. 

Although we have identified a DNAzyme with high cleavage efficiency, one of the disadvantages 

of unmodified DNAzymes, similar to antisense oligonucleotides, is their vulnerability to nucleases 

in vivo and therefore, nuclease resistance is a critical characteristic of their physical property (42). 

The suitable solution to increase nuclease resistance is to introduce chemical modifications (42). 

Several modifications have been successfully introduced into the oligonucleotides including sugar 

modifications such as LNA,21,22 and inverted thymidine and backbone modification such as PS 

(42). In line with this, we modified several of our efficient DNAzyme candidates, RNV143 and its 
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two derivatives RNV183 and 184 with PS, LNA and inverted-dT. When modified with PS 

modification (RNV143PS), RNV143 resulted in decreased cleavage efficiency both in vitro (Figure 

2.5) and in human fibroblasts (Figure 2.4). PS modification typically enhances the stability of the 

oligonucleotide against nucleases, however, they compromise the affinity to their target in some 

cases which could result in decreased cleavage efficiency (42). Similar results were also observed 

in another study that further support our observation that PS modification may not be ideal for 

developing efficient DNAzymes (31). Although truncation and incorporation of LNA to the 

DNAzymes increased resistance to nuclease (Figure 2.6), the activity was decreased (Figure 2.4). 

The reduction in the activity may be due to a combination of reduced size and slower DNAzyme 

dissociation from the mRNA target based on the high affinity of LNA nucleotides (31). Among 

all modifications tested, incorporation of inverted dT (RNV143A, 183A and 184A) was found to 

be the best chemistry in this case, since it not only conferred nuclease resistance (Figure 2.6) but 

also achieved high activity (89%, 76% and 92% respectively) (Figure 2.4). The result is also 

consistent with a previous study performed by Schubert et al (2003) (31). Additionally, we have 

also performed a human serum degradation experiment to observe the stability of the DNAzymes 

in human serum (Figure A.5 in Appendix A). RNV143, 182, 183 and 184 showed similar stability 

(degradation observed after 2 hours incubation) in human serum and as expected their modified 

counterparts RNV143A, 183A and 184A showed better stability ( ̴26%-50% DNAzymes remained 

after 6h incubation). Interestingly, LNA-3 conferred the best stability in human serum, however 

as discussed above, its activity in cells was decreased (Figure 2.4). 

We observed a discrepancy between the ITGA4 knock down observed in fibroblasts and the in 

vitro cleavage for the same DNAzymes. Although variable efficiencies are observed for second 

generation DNAzymes in human primary fibroblasts (Figure 2.4), the in vitro data does not reflect 
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this (Figure 2.5). It is expected that cell-free conditions are incomparable to the crowded cell-

culture environment and the mRNA folding and accessibility of the template may significantly 

influence the success of experiments within the cells. It is also expected that the ITGA4 RNA 

expressed in fibroblasts (1032 base pairs long) is much longer and can adopt complex secondary 

and tertiary structures. However, the synthetic short single-stranded (ss) RNA (34 nucleotides 

long) used for the in vitro cleavage assay may not form any secondary or tertiary structures and 

therefore it is much easier for the DNAzyme to access and cleave. However, the DNAzymes that 

knocked down ITGA4 transcript in fibroblasts also showed the ability to cleave the synthetic 

ITGA4 transcript template in vitro and from this we may suggest that the ITGA4 knock down 

observed in the fibroblast could be due to the DNAzymes-mediated cleavage of ITGA4 transcript. 

Furthermore, we designed three RNV 143 mutants, RNV143-Mut1, RNV143-Mut2 and RNV143-

Mut3 to investigate the possibility of antisense effect rather than DNAzyme cleavage. RNV143-

Mut1 and RNV 143-Mut2 are double mutants designed based on the paper by Wang et al. (2015) 

that suggested that these double mutants were critical for activity in the hammerhead and the stem 

loop respectively (25). Both double mutants may be important for catalytic activity as they 

abolished the in vitro cleavage activity (Figure 2.5). However, RNV143-Mut3 showed very small 

cleavage activity indicating that the mutated nucleotide may not be crucial for catalytic activity, 

supporting the previous study by Wang et al.(2015) (25). These controls also suggest that the gene 

silencing effects seen in cells by RNV143 may be due to DNAzyme cleavage rather than the 

antisense effect. The cleavage rates of the DNAzymes observed here is about half of that reported 

by Schubert et al (2003) (31). However, we performed the in vitro cleavage reactions with equal 

molar ratio of the DNAzyme to substrate in the presence of 0.5 mM MgCl2 while Schubert et al. 
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(2003), performed the reactions with 10-fold excess of DNAzyme to substrate in 10mM MgCl2 

(31). 

2.6 Conclusion 

_ENREF_24_ENREF_22_ENREF_26_ENREF_26_ENREF_26_ENREF_26_ENREF_17_ENREF_17 In 

conclusion, we identified DNAzymes that are capable of cleaving the ITGA4 transcript in human 

primary fibroblasts. The DNAzyme candidate RNV143 targeting exon 9 of the ITGA4 transcript 

showed 92% knock down of the ITGA4 transcript and the catalytic ability of the DNAzyme was 

verified by in vitro cleavage assay. Furthermore, introducing a chemical modification such as an 

inverted dT at the 3’ end (RNV143A) significantly improved the stability while maintaining 

efficient catalytic activity. Although RNV143A needs further validations, based our current 

results, we firmly believe that the candidate could provide therapeutic benefits. 
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Chapter 3 Alzheimer’s Disease 

3.1 Introduction 

Alzheimer’s disease (AD) is the most common form of dementia; accounting for 70% of cases 

with a dementia diagnosis. Globally, there are  ̴47 million current cases; with 7.7 million new cases 

added each year (1). Alzheimer’s disease (AD) is characterised by a progressive loss of memory 

and cognitive function (2), patients eventually needing 24-hour care that places emotional and 

economic burdens on the community. There is no cure for AD nor any treatment that addresses 

the underlying molecular cause (1). Current treatments use cholinesterase inhibitors (3) and N-

methyl-d-aspartate receptor (NMDA) antagonists (4) that improve cognitive function and reduce 

symptoms temporarily but do not stop the progression of the disease. The current approach to 

diagnosis relies on a combination of cognitive and clinical assessment, genetic profiling, and 

magnetic resonance imaging (MRI) to measure anatomical changes in the brain (5), but 

confirmation relies on post-mortem neuropathological assessment and misdiagnosis is common 

(2). The two hallmarks of the disease, the extracellular amyloid-β (Aβ) plaques (mainly an 

agglomeration of Aβ peptides) and intracellular neurofibrillary tangles (hyperphosphorylated tau 

peptides). This chapter explores the potential of nucleic acid therapeutic, diagnostic, and research 

strategies that target both Aβ and tau pathologies to treat AD and focuses on manipulating gene 

expression in both sporadic and familial forms of AD. 

3.1.1 Types of AD 

Alzheimer’s disease (AD) can be classified into two types, early-onset AD is characterised by a 

clinical onset under 65 years of age while late-onset of AD is characterised by a clinical onset 



80 

above 65 years of age. Early-onset AD can then be further classified into two groups, sporadic and 

familial AD (FAD), while most late-onset AD is a sporadic form of AD. Early-onset AD affects 

around 10% of all AD patients, of which 10-15% are diagnosed with FAD. Sporadic AD is a 

multifactorial disease with a complex etiology, influenced by both genetic and environmental 

factors have a role, while genetics has a major role in early-onset AD patients. 

3.1.1.1 Familial Alzheimer’s Disease 

Familial Alzheimer’s disease (FAD) accounts for around less than 1% of all AD cases (6, 7) and 

has a strong genetic determinant, with increased risk of AD development in relatives as well as 

more severe clinical features (6, 7). Familial Alzheimer’s disease (FAD) is an autosomal dominant 

disease, with 50% of the patients carrying mutations in one of the following three genes: APP, 

PSEN1 and PSEN2. Mutations in the APP, PSEN1 and PSEN2 genes leads to aberrant cleavage of 

APP and aggregation of Aβ (detailed discussion in section 3.1.2.1) (8, 9). These patients present 

similar memory problems to those seen in sporadic AD patients (8). 

3.1.1.2 Sporadic Alzheimer’s Disease 

Most late-onset AD and a large proportion of early-onset AD occur sporadically. However, many 

gene loci have been identified as risk factors for AD with the apolipoprotein E (APOE) locus being 

identified as the biggest risk factor for sporadic AD (10). Since then many susceptibility genes 

have been identified that are part of the Aβ pathway, tau pathway, immune system/ inflammation 

pathway, lipid transport and metabolism pathway, and synaptic cell functioning or endocytosis 

pathways have now been identified (10). This section will explore the pathways implicated in AD 

pathogenesis rather than the susceptibility genes themselves. 
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3.1.2 Pathogenesis of Alzheimer’s Disease 

3.1.2.1 Amyloid β (Aβ) hypothesis 

The Aβ hypothesis states that there is an imbalance of toxic Aβ peptide production and clearance 

(11-13). The main Aβ species, Aβ1-40 and Aβ1-42, can aggregate to form fibrils and plaques (11-

13). Aβ1-40 and Aβ1-42 are produced by the aberrant processing of the APP by β-site APP cleaving 

enzyme 1 (BACE1) and γ-secretase (Figure 3.1) (12-16). Mutations in the APP and Presenilin 

genes (PSEN1 codes for the catalytic subunits of γ-secretase) increase Aβ1-42 levels (11-13, 15, 17-

19) and lead to early-onset familial AD. People with Down syndrome cases have an extra copy of 

chromosome 21, and hence of the APP gene, and develop Aβ plaques early in adulthood (20). 

Oligomers of Aβ promote synaptic loss, neuronal dysfunction, and cell death (21, 22). Aβ1-42 

inhibits the maintenance of long-term hippocampal potentiation, resulting in altered memory 

function (11, 23) and reduced synaptic neurotransmission through NMDA receptor-mediated 

signalling (11, 23, 24). Aβ toxicity has also been implicated in inflammation (12), oxidative stress 

(12, 25) and impaired cholinergic transmission (24), glucose metabolism(26, 27), and cholesterol 

metabolism (28). 

 
Figure 3.1 Non-amyloidogenic and amyloidogenic pathways in AD neurons. In the amyloidogenic pathway, 

the APP is aberrantly spliced by BACE1 and γ-secretase leading to accumulation of toxic Aβ species. AICD: 
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amyloid precursor protein intracellular domain; sAPP: soluble amyloid precursor protein; APP: amyloid precursor 

protein; BACE1: beta site amyloid precursor protein cleaving enzyme 1;Aβ: amyloid beta 

3.1.2.2 Tau hypothesis 

Microtubule-associated protein tau (tau), predominantly expressed in neuronal axons, is involved 

in microtubule assembly and stability. Tau is regulated by phosphorylation (29, 30); 

hyperphosphorylation decreases the ability of tau to bind to microtubules, leading to reduced 

trafficking, destabilisation of microtubules, and synaptic loss (30, 31) (Figure 3.2). Abnormal tau 

can aggregate into paired helical filaments to form neurofibrillary tangles (32) in the cytosol and 

sequester normal tau and inhibit microtubule assembly (30). Alternatively, tau aggregation may 

be a protective mechanism to prevent hyperphosphorylated tau sequestering normal tau and inhibit 

microtubule assembly (30). Tau hyperphosphorylation is detrimental in various neurodegenerative 

diseases termed “tauopathies” (29, 33) and correlates with neurodegeneration and cognitive 

decline (30, 33). Other post-translational modifications of tau, including abnormal glycosylation 

and reduced β-linked acylation of N-acetylglucosamine, increase hyperphosphorylation (30, 34). 

Inhibition of the ubiquitin-proteasome system may also increase the aggregation of 

hyperphosphorylated tau (32). 
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Figure 3.2 The roles of tau in healthy neurons and of hyperphosphorylated tau in AD neurons that leads to 

neuronal toxicity. Tau plays a role in stabilising microtubules in axons. Hyperphosphorylation of tau results in 

destabilisation of microtubules.   

3.1.2.3 Other hypotheses of AD 

Drugs currently approved by the FDA for the treatment of AD are Donepezil, Rivastigmine, 

Galantamine and Memantine (Table 3.1) (35-38). These agents enhance cholinergic and 

glutamatergic neurotransmission and improve cognitive function temporarily, these drugs, do not 

slow the progression of the disease. Oxidative stress (39), inflammation (40), insulin impairment 

(41, 42) and abnormal cholesterol metabolism (28) may also play roles (Table 3.1), but are not 

considered in-depth here. 

3.1.3 Current therapeutic molecules and clinical trials for the treatment of AD 

Many disease-modifying therapeutics show promising results in animal models but disappointing 

outcomes in clinical trials (for drug candidates and ongoing trials see Table 3.1). Poor outcomes 



84 

might have arisen because each agent targets a single pathway, whereas AD is a complex disease, 

and it may be important to address multiple targets (43, 44). Developing a suitable therapeutic 

approach is challenging because the pathogenesis of AD is unknown (45) and trials might be 

affected by factors such as genetics, metabolism, diet and environment (46), but there is a need to 

develop novel therapeutics for this disease. Current strategies under investigation have been 

comprehensively reviewed elsewhere (47). 

Table 3.1 Therapeutic molecules in clinical trials, their targets, and trial outcomes. 

Drug molecule Role/ Target Trial stage Results References 

Donepezil 

(Pfizer) 

Cholinesterase inhibitor FDA approved- Although they improve the 

symptoms temporarily, these drugs do not stop the 

progression of the disease. 

(172-175) 

Rivastigmine 

(Novartis) 

Cholinesterase inhibitor 

Galantamine 

(Jansen-Cilag) 

Cholinesterase inhibitor 

Memantine 

(Lundbeck) 

NMDA receptor antagonist 

Tramiprosate Aβ aggregation inhibitor Phase III No significant benefit. May promote 

abnormal tau aggregation 

(185-187) 

Colostrinin Aβ aggregation inhibitor Phase III Modest improvements not sustained  (188-190) 

Scyllo-inositol Stabilises Aβ aggregates 

and inhibits toxicity 

Phase II No statistically significant effect. 

Reduced Aβ in cerebrospinal fluid 

(191) 

Aβ vaccination Aβ aggregation inhibitor Phase II Halted because patients developed 

meningoencephalitis 

(192) 

Bapineuzumab Aβ aggregation inhibitor Phase III Endpoints not significantly different (193) 

Solanezumab Aβ aggregation inhibitor Phase III Endpoints not significantly improved (194) 

Anti-amyloid 

Ab 

Aβ aggregation inhibitor Phase III No positive primary outcome (195) 

Other mAbs Aβ aggregation inhibitor Various  No positive outcome (184, 196, 

197) 

Tarenflurbil γ-secretase inhibitor Phase III No significant improvement (198-200) 

LY450139 (Eli 

Lilly) 

γ-secretase inhibitor Phase III Discontinued: no Aβ40/42 reduction (201) 

BMS-708163 

(B-M Squibb) 

γ-secretase inhibitor Phase II Terminated due to lack of favourable 

pharmacodynamics 

(184, 202) 

Verubecestat BACE1 inhibitor Phase III No positive outcome (203) 

Rosiglitazone BACE1 inhibitor and Type 

2 diabetes drug 

Phase III No positive outcome (204) 

Pioglitazone BACE1 inhibitor and Type 

2 diabetes drug 

Phase III No positive outcome (204) 

Methyl thionium 

chloride 

Tau aggregation inhibitor Phase II Significantly improved cognitive 

function 

(205, 206) 

Tideglusib GSK3β Phase IIb No positive outcome (206, 207) 
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Drug molecule Role/ Target Trial stage Results References 

Davunetide Microtubule stabilizer Phase III No significant improvement (168) 

Antioxidants ROS Phase III  No positive outcome (184, 208) 

Anti-

inflammatories 

Inflammation Phase III No significant improvement (163, 177, 

197, 209-

211) 

Intranasal 

insulin 

Insulin impairment Pilot Improvement in patients without 

APOE-ε4 allele 

(178, 212) 

Other anti-

diabetics 

Insulin impairment Phase III Currently running  

Statins Cholesterol metabolism Phase III Preliminary results positive; 

mechanism unknown. 

(165, 213) 

3.1.4 Current animal models of AD 

Most of the animal models for AD are based on the genetics of AD or are based on transgenic 

expression of genes that result in overproduction of proteins that are implicated in the pathology 

of AD (77). Some popular genetic mouse models include mouse models that express transgenic 

human APP, transgenic Aβ expression, transgenic double presenilin and human APP expression, 

and transgenic human APP and human tau expression to name a few (77). One of the most popular 

mouse model is the mouse model that expresses the Swedish double mutation that results in 

overexpression of APP and results in FAD, discovered in a Swedish family (77). No mouse model 

exhibits all clinical and pathological features of AD but exhibit different combinations of the 

clinical and pathological features to varying degrees (77). However, almost all mouse models 

exhibit amyloid plaques but very few mouse models exhibit neurofibrillary tangles and neuronal 

loss (77). Therefore, different mouse models are useful for studies that study the role of targets 

and drugs for particular mechanisms (77). For example, mouse models that express human tau and 

therefore the resulting neurofibrillary tangles, are used when testing drugs or studying targets and 

their effect against tau (77). Many drugs that showed improvement in mouse models were 

unsuccessful in clinical trials, possibly due to lack of mouse models that exhibit all clinical and 

pathological features of AD (77). Therefore, mouse models may be more useful for studying 
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therapeutic molecules against FAD than sporadic AD and may explain the discrepancy between 

the success in animal testing but failure in human clinical trials.  
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3.2 Nucleic-acid molecules for tackling AD 

 
Figure 3.3 Nucleic acid therapeutic strategies. mRNA: messenger RNA; RNase H: ribonuclease H; siRNA: 

small interfering RNA; RISC: RNA induced silencing complex; AO: antisense oligonucleotide; antimiR: anti-

microRNA; miRNA mimic: microRNA mimic 
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3.2.1 Antisense oligonucleotides 

A classical nucleic acid approach to controlling the expression of proteins is to use AOs, short 

single-stranded (ss) synthetic oligonucleotides, that can precisely target an mRNA transcript to 

regulate expression of the encoded protein. Antisense mechanisms include RNase H recruitment 

and cleavage of mRNA, modulation of splicing in pre-mRNA, and steric blockade of either mature 

or pre-mRNAs (Figure 3.3). RNase H-mediated cleavage involves designing a short DNA 

oligonucleotide that binds to the target mRNA to form an RNA-DNA duplex (78). The duplex is 

recognised and cleaved by endogenous RNase H. Antisense oligonucleotides (AOs) that modulate 

pre-mRNA splicing can be used to repair defective RNA and eliminate disease-associated splice 

variants (79). Many pre-mRNA transcripts are alternatively spliced to produce different mRNA 

isoforms, and hence protein, variants (79). 

3.2.1.1 APP 

Many groups have designed AOs that target APP to reduce APP expression. An early study by 

Allinquant et al. (1995) (80) developed AOs that successfully blocked rat APP synthesis. 

Administration of the AOs showed that APP played a role in axonal and dendritic growth, and thus 

in neuronal differentiation (80). ISIS Pharmaceuticals (now Ionis Pharma) have patented (US 

2003/0232435 A1) 78 gapmer AOs with 2'-MOE wings and a central DNA region. The AOs target 

various regions of APP mRNA and inhibit 39–82% of APP protein expression (81). 

Kumar and colleagues (2000) (82) developed DNA PS AOs against sequences that correspond to 

the Aβ region of APP (17-42 amino acids). Administration of the AOs led to improved cognitive 

function in senescence-accelerated mouse-prone 8 (SAMP8) mice. SAMP8 mice have a natural 

mutation that leads to APP over-expression, impaired Aβ removal, and loss of memory with 

increasing age. The AOs that target the mid-Aβ region reduced APP levels by 43–68% in the 
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amygdala, septum and hippocampus (82). The mice showed improvement in acquisition and 

retention in the footshock avoidance paradigm, which reversed their deficits in learning and 

memory (82). The AOs that target sequences that correspond to the region of APP encoding the 

first 17–30 amino acids of Aβ were the subject of intellectual property protection (83). Banks and 

colleagues (2001) (84) showed that a radioactively tagged phosphorothioate DNA AO targeting 

the Aβ region of APP could transit the blood-brain barrier (BBB) of mice to enter the cerebrospinal 

fluid. When a 100-fold higher dose of the AO was injected into the brain by intracerebroventricular 

injection, it reversed the learning and memory deficits in SAMP8 mice, possibly through reduced 

oxidative stress. Poon et al. (2005) (85) used proteomics to show that lower Aβ levels result in 

reduced oxidative stress in brain. 

Opazo et al. (2006) (86) transfected the AOs described by Kumar and colleagues (2000) (82) into 

the CTb cell line, a neuronal line from mice that overexpresses APP, and the CNh cell line from 

normal mice. The AOs resulted in APP knockdown in CTb cells by 36%, 40% and 50% compared 

with normal CNh cells after 24 h, 48 h and 72 h respectively (86). By 72 h after AO transfection, 

choline uptake was similar to that in CNh cells, and there was increased choline release in response 

to glutamate, nicotine and KCl depolarisation, that reached similar levels to those observed in CNh 

cells. The CTb cells were derived from a Down syndrome mouse model, that shows some learning 

deficits and cholinergic dysfunction, similar to those found in AD (87). Similarly, Rojas et al. 

(2008) (88) showed that APP overexpression reduced the expression and retrograde transport of 

nerve growth factor. This reduced nicotine-induced stimulation of α3β2 nicotinic acetylcholine 

receptor and in consequence lowered intracellular Ca2+ responses in CTb cells. The effects of APP 

overexpression were restored close to normal by treatment with AOs targeting APP expression. 
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Chauhan and colleagues (2002) (89) designed gapmer AOs composed of 2'-OMe and DNA 

nucleotides on a PS  backbone that targeted the β-secretase cleavage site of APP and found that 

they reduced brain Aβ40 and Aβ42 levels in a mouse model of AD. The AOs were delivered 

intracerebroventricularly and showed rapid uptake and retention for 30 minutes. They efficiently 

crossed cell membranes into the nuclear and cytoplasmic compartments of neuronal and non-

neuronal cells. Chauhan and Siegel (2007) (90) designed two additional AOs targeting the β- and 

γ-secretase site of APP in the Tg2576 mouse model that expresses APP. The AO targeting the 

mutated β-secretase site increased soluble APPα by 43% and decreased soluble Aβ40 and Aβ42 

levels by 39%, whereas the AO targeting the γ-secretase site had no effect. The AO targeting β-

secretase also inhibited acetylcholinesterase activity, increasing acetylcholine by five-fold in 

cortex compared with controls. 

Erickson et al. (2012) (91) peripherally administered an APP AO to SAMP8 mice, that resulted in 

a 30% decrease in APP levels but no change in soluble Aβ levels. The treated mice showed 

improved memory. They also showed (92) that AO-mediated APP knockdown in Tg2576 mouse 

brains reduced cytokine expression and improved learning and memory. Attenuating APP 

overexpression may improve learning and memory by reducing inflammation (also implicated in 

AD pathology). 

3.2.1.2 BACE1 

Yan et al. (1999) (93) developed two AOs that target β-secretase aspartyl protease and found that 

they reduced the release of Aβ40 and Aβ42 by 50–80%. Vassar and colleagues (1999) (94) also used 

AOs that target β-secretase to reduce Aβ40 and Aβ42 production by around 30%. These studies 

showed that β-secretase is important for the production of Aβ40 and Aβ42 and highlighted BACE1 

as an important target for AD. Wolfe et al. (95) designed splice-modulating AOs to target BACE1 



91 

since alternatively spliced transcript variants at exons 2 and 3 do not show β-secretase activity. 

The AOs reduced Aβ production significantly in cells without altering total BACE1 mRNA. 

3.2.1.3 Presenilin 1 (PSEN1) 

Refolo et al. (1999) (96) found that AOs targeting PSEN1 in a human cell line reduced PSEN1 

holoprotein by 80% 12 days after treatment and by 90 % after 14 days. The reduced PSEN1 

holoprotein was correlated with a two-fold increase in Aβ42 levels. Grilli et al. (2000) (97) found 

that primary hippocampal neurons overexpressing mutant PSEN1 were vulnerable to excitotoxic 

and hypoxia-hypoglycemic damage and increased cell death. They designed two 

phosphorothioates AOs targeting Psen1 in wild type mice. In contrast to Refolo et al. (1999) (96) 

they found that lower PSEN1 expression reduced cell death and provided neuroprotection (97). 

Fiorini et al. (2013) (98) administered AOs targeting Psen1 to aged SAMP8 mice that then showed 

reduced brain oxidative stress biomarkers. In the T-maze foot shock avoidance and novel object 

recognition tests the mice showed a reversal of learning and memory deficits. 

3.2.1.4 Tau 

Tau proteins come from alternative splicing of the MAPT gene transcript. Caceres et al. (1990) 

(99) targeted an AO to the 5' end of the Mapt gene, in the region before the start codon, and showed 

strong inhibition of neurite elongation in primary rat neurons. Immunoblotting revealed that the 

tau protein level was reduced in AO-treated mice but not in control mice. The effect of AO 

treatment on cognition remains to be assessed. DeVos et al. (2013) (100) screened 80 AOs 

targeting Mapt and selected the three that showed the best knockdown of Mapt to test in vivo. The 

latter reduced Mapt mRNA levels by more than 75%. The best AO was selected for further testing 

in mice; it lowered brain Mapt mRNA and protein significantly in a dose-dependent manner. 

Behavioural impacts and neurotoxicity were not measured. Alternate splicing of the MAPT mRNA 
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at exons 2,3, and 10 results in tau proteins containing three of four microtubule binding repeats 

and are referred to as Tau3R and Tau4R respectively (101). The ratio of Tau3R and Tau4R 

transcripts is one in the human adult brain (101). Mutations that disrupt the Tau3R and Tau4R 

transcript ratio result in destabilising microtubules and therefore result in tauopathies like 

frontotemporal dementia and parkinsonism (101). Kalbfuss et al. (2001) (102) developed splice-

modulating AOs modified with 2'-OMe nucleotides to target the tau exon 10 splice junctions to 

reduce exon 10 exclusion. Exclusion of exon 10 increases the ratio of tau proteins lacking the 

microtubule-binding domain with the consequence, that the microtubule cytoskeleton becomes 

destabilised as occurs in frontotemporal dementia and parkinsonism.  

Peacey et al. (2012) (103) designed bipartite AOs that bound to the hairpin structure at the 

boundary between exon 10 and intron 10 of tau to inhibit exon 10 splicing, reversing the effect of 

disease-causing mutations in cells. Liu et al. (2014) (104) developed a small-molecule 

(mitoxantrone) conjugated to a bipartite AO that binds to the MAPT RNA hairpin structure. The 

conjugate also inhibited exon 10 splicing in cell-free conditions more effectively than 

mitoxantrone or the bipartite AO alone, but induced cytotoxicity in cells. The same group used a 

PNA-modified bipartite AO conjugated to mitoxantrone that inhibited MAPT splicing but was also 

cytotoxic (95). 

Sud et al. (2014) (105) developed PMOs to modulate the splicing of MAPT and tau expression. 

The AOs were designed to target sequences at the donor and acceptor splice sites, the splicing 

branch points, and splicing enhancers and inhibitors to induce exon skipping (105). Exons 0, 1, 4, 

5, 7, 9 and 10 were targeted (105). Exons 1, 4, 5, 7 and 9 are found in all six isoforms of MAPT 

while exon 10 is present in only three of the six isoforms (105). Of the 31 AOs tested, AO E1.4 

targeting the splice donor site at the exon 1 intron 1 junction reduced MAPT mRNA expression by 



93 

50% (105). The other AOs effective in this region were a combination of AOs that targeted the 

splice donor and acceptor sites and the start codon (105). AO E5.3 targeted the splice donor site at 

the exon 5 intron 5 junction and reduced total MAPT mRNA expression by 29–46% (105). It also 

reduced tau protein level by 58–62% (105). The resulting transcript was missing exons 4 to exon 

7 using the normal splice sites. AO E7.7 targeted the exon 7 splice donor site; and it reduced MAPT 

mRNA expression by 30% and tau protein levels by 67% (105). E5.3 injected into mice in vivo 

produced lower Mapt mRNA levels than in non-injected regions (105). 

3.2.1.5 GSK-β  

Farr et al. (2014) (106) showed that a phosphorothioated AO that targets GSK-3β decreased GSK-

3β protein levels in the cortex of SAMP8 mice. There were improvements in learning and memory, 

reduced oxidative stress, increased levels of the antioxidant transcription factor nuclear factor 

erythroid-2 related factor 2, and decreased tau phosphorylation. 

3.2.1.6 Acetylcholinesterase (AChE)  

Fu et al. (2005) (107) found that AOs targeted to human AChE mRNA reduced AChE activity in 

an AD mouse model after 8 h; the effect lasted till 42 h. The lower enzymic activity was 

accompanied by an improvement in behavioural tasks, that showed increased memory retention 

and improved water maze performance (shorter swimming time). 

3.2.1.7 Apolipoprotein E receptor 2 (ApoER2)  

Apolipoprotein E receptor 2 (ApoER2) may be a primary risk factor for late-onset AD (108, 109). 

Dysregulation of ApoER2 splicing may result in impaired synaptic homeostasis. Cerebral injection 

of mice with AOs targeting the adjacent introns enhanced exon 19 inclusion, an effect that persisted 

for up to 6 months (109). The mice showed improvement in Aβ-induced cognitive defects. It was 

postulated that the AOs bind to the splicing factor SRF1 to reduce its expression and increase the 
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inclusion of exon 19, thereby increasing the level of the active form of ApoER2 to enhance NMDA 

receptor phosphorylation. 

3.2.2 Small interfering RNA (siRNA) 

These are short synthetic double-stranded (ds) RNA oligonucleotides that target complementary 

mRNA and silence gene expression through the assembly of the RNA-induced silencing complex 

(RISC) (Figure 3.3) (78, 110). Chemical modifications can be introduced into the siRNA to 

increase its stability against nucleases and increase its selectivity for the target (Figure 1.5). 

3.2.2.1 APP  

Miller and colleagues (2004) (111) found that siRNAs targeting the Swedish mutant in APP that 

causes a familial form of AD silenced the expression of mutant alleles in cells. The siRNAs were 

designed to ensure that they bound specifically to the mutant alleles and not the healthy allele. The 

mutation was placed in the central region of the siRNA duplex to achieve high silencing efficiency. 

3.2.2.2 BACE1  

McSwiggen and colleagues (2002) (112) patented 325 siRNAs that target BACE (NCBI ID: 

NM_012104). The patent covers sequences of various chemically modified siRNAs that include 

2'-deoxy, 2'-F and 2'-OMe pyrimidine and purine nucleotides, phosphorothioate internucleotide 

linkages and inverted deoxy abasic caps. Four of the siRNAs reduced BACE1 expression by 40–

90% at 25 nM concentration, but there was no data on whether this altered Aβ40 and Aβ42 

expression. Basi et al. (2003) (113) made an siRNA that reduced the BACE1 mRNA level by 50% 

and BACE protein by more than 90% and decreased the secretion of Aβ peptide without affecting 

BACE2 expression, indicating specificity for BACE1. Kao et al. (2004) (114) also designed 

siRNAs, where two of the siRNAs reduced BACE1 mRNA by more than 90% and Aβ production 
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by 36–41%. Pretreatment of neurons with the siRNA increased neuroprotection against hydrogen 

peroxide-induced oxidative stress. Modarresi et al. (2011) (115) injected LNA-modified siRNAs 

targeting Bace1 antisense transcripts into the third ventricle of Tg-19959 mice to downregulate 

Bace1 and Bace1 antisense transcripts, which led to lower BACE1 protein levels and lower Aβ 

production and aggregation in the brain. Notably, Cai et al. (2012) (116) _ENREF_140showed that 

siRNAs targeting Bace1 inhibited its expression in mice and increased choroidal 

neovascularisation: BACE1 is also expressed in the neural retina and in in vitro and in vivo 

angiogenesis. Although BACE1 inhibition may be therapeutically beneficial in AD, this strategy 

may contribute to retinal pathologies and exacerbate conditions such as age-related macular 

degeneration. 

3.2.2.3 Heterogeneous nuclear ribonucleoprotein H  

A G-rich region in exon 3 of BACE1 may form a G-quadruplex structure and recruit a splicing 

regulator, heterogeneous nuclear ribonucleoprotein H, that regulates splicing to increase the 

generation of the BACE1 501 isoform (501 kDa protein). Fisette et al. (2012) (117) reported that 

siRNA and short hairpin RNA candidates that target heterogeneous nuclear ribonucleoprotein H 

reduced its expression and thereby decreased BACE1 501 isoform levels and Aβ production. 

3.2.3 AntimiRs and miRNA mimics 

miRNAs are short non-coding RNAs that regulate protein expression post-transcriptionally. 

miRNA mimics can modulate RNA and protein expression by acting in the same way as their 

endogenous miRNA counterparts. AntimiRs can modulate RNA and protein expression by 

inhibiting endogenous miRNA (Figure 3.3). Micro RNAs (miRNAs) generally silence gene 

expression by translational repression and/or mRNA degradation (118, 119). miRNAs are first 

transcribed by RNA polymerases II or III to form long primary miRNA with a 5’ CAP and a 
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poly(A) tail (119-121). These are then processed in the nucleus into short 70-nucleotide hairpin 

structures called precursor miRNAs (pre-miRNA) by the microprocessor complex (119-121). The 

pre-miRNAs are exported to the cytoplasm by Exportin 5 and processed by Dicer into double-

stranded miRNA duplexes, that are approximately 22 nucleotides long (119-121). 

3.2.3.1 BACE1  

An endogenous non-coding BACE1 antisense transcript stabilises the BACE1 transcript and may 

upregulate BACE1 in AD. BACE1 antisense binds to BACE1 at the miR-485-5p binding site and 

suppresses BACE1 expression. Faghihi et al. (122) found that LNA-antimiRs that target miR-485-

5p decreased miRNA-induced suppression of BACE1 and increased BACE1 antisense expression. 

Hebért et al. (2008) (123) showed that miR-29a/b-1 cluster was significantly reduced in sporadic 

AD patients and correlated with increased BACE1 expression and Aβ generation, and therefore 

may be a potential target for miRNA mimics as a therapeutic strategy for AD. 

3.2.3.2 Tau  

MiR-34a reduces endogenous MAPT/tau expression at both the mRNA and protein level in M17D 

cells by binding to the 3' UTR region of MAPT (95), whereas miR-34c levels are elevated in the 

hippocampus of AD patients and mouse AD models (124). Wolfe et al. (2014) (95) used LNA 

antimiRs to inhibit miR-34a, -34b and -34c and found increased tau expression. Zovolis et al. 

(2011) (124) found that an antimiR that targets miR-34c rescued learning in mouse models. 

3.2.3.3 Acetyl-CoA acyltransferase  

Acetyl-CoA acyltransferase has a role in lipid metabolism and has been implicated in the 

pathogenesis of AD. Murphy et al. (125) inhibited Acetyl-CoA acyl transferase using an artificial 

miRNA to reduce Aβ plaque burden and improve cognition in a mouse model of AD. The miRNA 

also reduced full-length human APP levels. 
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3.2.3.4 Brain-derived neurotrophic factor:  

Brain-derived neurotrophic factor regulates synaptic plasticity and memory and is decreased in 

AD brains (126-128), while miR-206 suppresses brain-derived neurotrophic factor levels and 

memory function in AD mice (129). Lee et al. (129) injected an anti-miR candidate AM-206 that 

targets miR-206 into the third ventricle of Tg2576 mice. It increased brain levels of brain-derived 

neurotrophic factor, enhanced hippocampal synaptic density, neurogenesis, and memory. 

Intranasally administered AM-206 also reached the brain and had similar effects to the injected 

AM-206. 

3.2.4 DNAzymes/Ribozymes as therapeutic candidates for AD 

DNAzymes and ribozymes have been previously discussed in Chapter 2. 

3.2.4.1 BACE1  

Nawrot et al. (130) designed RNA-cleaving hammerhead ribozymes that downregulated BACE1 

mRNA expression by more than 90% in HEK293 and SH-SY5Y cells and reduced Aβ40 and Aβ42 

production by more than 80%. They also showed that a DNAzyme with the 10–23 catalytic loop 

reduced BACE mRNA expression by 70%. However, whether the reduced BACE mRNA 

expression leads to reduced Aβ production is unknown and requires validation. 

3.2.5 Nucleic acid aptamers 

Aptamers are short single-stranded RNA or DNA oligonucleotides with unique three-dimensional 

structure that bind to targets with high affinity and specificity. Aptamers can be developed against 

a variety of targets ranging from small molecules to complex proteins over whole cells.  Aptamers 

can be used for therapeutic, diagnostic (biosensors and molecular imaging), and targeted drug 

delivery applications. They are typically selected from large DNA and RNA oligonucleotide 
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libraries through a process called  Systematic Evolution of Ligands by EXponential enrichment 

(SELEX) (131, 132). 

3.2.5.1 Aβ  

Ylera et al. (133) were the first to report novel RNA aptamers that bound to Aβ1-40 fibrils with high 

affinity (29–48 nM). Bunka et al. (134) made aptamers against amyloid-like fibrils from β2-

microglobulin that bound to the target with high affinity but also bound to other amyloid fibrils 

including, but not confined to, those found in dialysis-related amyloidosis patients. Rahimi et al. 

(135) also developed RNA aptamers against Aβ fibrils, and these similarly interacted with other 

amyloidogenic proteins by binding to a common β-sheet motif. They bound to fibrils with ≥15-

fold higher sensitivity than thioflavin-T, suggesting that aptamers might be applicable as 

diagnostic tools for AD. Takahashi et al. (136) isolated two RNA aptamers, N2 and E2, that bound 

to monomeric Aβ40 with dissociation constants of 21.6 and 10.9 µM respectively. Though the 

affinities were quite low for clinical use, enzyme-linked immunosorbent assay (ELISA) showed 

that they could inhibit Aβ aggregation efficiently. When conjugated to AuNP gold nanoparticles, 

N2 and E2 bound to both Aβ monomers and oligomers. Mathew et al. (137) showed that the N2 

aptamer conjugated to curcumin-polymer nanoparticles enhanced binding to, and disaggregated, 

amyloid plaques, that were then cleared by phagocytosis. The study targeted peripheral amyloid 

as peripheral organs may also generate amyloid proteins, which have also been implicated in AD. 

Targeting peripheral amyloid is easier than targeting the CNS due to the challenges of brain 

delivery of aptamers. 

Farrar et al. (138) developed a fluorescently tagged aptamer that bound to Aβ oligomers in both 

AD and transgenic mouse brain tissue. The aptamer may be useful for Aβ imaging, which has 

diagnostic implications. Similarly, Babu and colleagues (139) developed an aptamer complexed 
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with ruthenium that binds to and inhibits the formation of, Aβ oligomers. The aptamer-ruthenium 

interaction increases luminescence intensity, which is reduced when the aptamer binds to Aβ 

monomer or oligomers. 

3.2.5.2 BACE1  

Rentmeister et al. (140) made an RNA aptamer that binds to the short cytoplasmic tail of BACE1. 

The aptamer is a good research tool to investigate the biological function of the cytoplasmic tail 

without interfering with BACE1 transport and localisation. Liang et al. (141) developed two DNA 

aptamers, A1 and A4, that bind to the extracellular domain of BACE1 with high affinity (Kd 15–

69 nM) and specificity, showing similar affinities to the anti-BACE1 antibody. In vitro, APP 

Swedish mutant cells treated with A1 showed lower Aβ40 and Aβ42 levels than control cells. 

Soluble APPβ expression decreased with A1 treatment compared with untreated controls. 

3.2.5.3 Tau  

Kim et al. (142) used recombinant his-tagged tau40 to select aptamers from an RNA library 

through SELEX. Twelve rounds of selection produced a tau-1 aptamer, which represented  ̴76% 

of identified aptamers, that reduced the levels of oligomeric tau (by  9̴4%) in vitro in a dose-

dependent manner. However, it could not de-oligomerize pre-existing tau oligomers and had no 

effect on tau degradation. The aptamer bound to tau protein and inhibited its oligomerisation, 

unlike control aptamers. Primary neurons treated with tau-1 aptamer showed less cytotoxicity than 

controls but no difference in membrane integrity or viability; there was little effect on normal tau 

function. Primary rat cortical neurons administered tau oligomers and treated with tau-1 aptamers 

showed significantly less oligomeric tau phosphorylation at Ser199/202, but there was no effect 

on monomeric tau. Extracellular tau oligomers also stress neighbouring neurons. Tau-1 aptamers 

can prevent or reverse cytotoxicity mediated by tau oligomerisation both in a non-neuronal cell 
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line and in primary rat cortical neurons. Unfortunately, the tau-1 aptamers isolated by Kim et al. 

bound only to one of the six isoforms of tau. Therefore, the effects of tau-1 aptamers observed in 

mice may not translate clinically, because six isoforms are prone to aggregation and implicated in 

neurodegeneration. To be successful clinically, the aptamers must be able to cross the BBB and 

the neuronal cell membrane, and disaggregate the neurofibrillary tangles after binding (143). Kim 

et al. (144) reported a DNA aptamer-antibody sandwiched to the tau-381 isoform that detected tau 

in human plasma at femtomolar concentrations by surface plasmon resonance. 

3.2.5.4 The ubiquitin-proteasome system  

Lee et al. (145) developed an aptamer against USP14, an enzyme that delays protein degradation 

by the ubiquitin-proteasome system. Recombinant USP14 was incubated with a random RNA 

library for SELEX. Three aptamers, USP14-1, USP14-2 and USP-14-3, were identified, all of 

which bound to USP14 with high affinity. USP14-3 showed the strongest inhibition of 

deubiquitination, which may be due to its ability to bind both USP14 and UCH37. UCH37 is a 

protein that also slows protein degradation in the proteasome. The aptamers have yet to be tested 

in mice for their effect on tau oligomerisation and degeneration. 

3.2.5.5 Prion protein:  

Mashima et al. (146) isolated aptamers against bovine prion protein by SELEX that may have 

therapeutic potential in prion diseases and AD. The Aβ oligomers bind to the prion protein to block 

long-term potentiation and may mediate Aβ oligomer-induced synaptic dysfunction. 

3.3 Conclusions and Future Perspectives 

Nucleic acid approaches offer great promise for developing novel therapeutics for AD, a complex 

neurodegenerative disease with several pathological features. Confounding factors include genetic 
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factors, metabolic disorders including high cholesterol levels, insulin resistance due to impaired 

glucose metabolism, and dysfunction in various molecular pathways. Existing therapies only treat 

AD symptoms, not the underlying molecular causes. Although many drug molecules have shown 

success in cell and animal models, this effect often cannot be replicated in human trials. There is 

an unmet need for better theranostic strategies. The drug Nusinersen, recently approved by the 

FDA for spinal muscular atrophy, shows that nucleic acids have the potential for the treatment of 

neurological diseases, including AD. Their efficacy in targeting several pathways that underlie AD 

highlights their potential to be developed as novel therapeutics for AD. 
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Chapter 4 APP 

4.1 Introduction 

Mutations in the APP gene or copy number changes of the APP gene results in FAD in some cases 

(1, 2). Many patients with APP mutations have an onset of AD between the ages 45-60 years. The 

APP locus is encoded by Chromosome 21 (3-5). APP is a type-1 integral membrane glycoprotein 

containing the Aβ region, comprising of 28 amino acids that make up the ectodomain and 11-14 

amino acids that make up the adjacent transmembrane domain (1). There have been 30 pathogenic 

mutations found in Exons 16 and 17 (Table 4.1) and occur around the Aβ cleavage sites affecting 

APP processing by secretases (2, 6). APP is cleaved by β and γ secretases to generate Aβ (1, 2). 

Down’s syndrome is caused by chromosome 21 trisomy and individuals with Down’s syndrome 

show overproduction of Aβ and present cognitive dysfunction similar to that seen in AD patients 

(1, 2, 6). 

There is no treatment for FAD, and no AOs tested in clinical trials targeting APP for the treatment 

of FAD. There have been six mutations reported to date in exon 16 of the APP gene that is 

pathogenic and causes AD while there are 24 mutations reported to date in exon 17 of the APP 

gene that is pathogenic and cause AD and cerebral amyloid angiopathy (Table 4.1). Skipping of 

exon 17 has been shown to reduce Aβ production (7). 

Table 4.1 Pathogenic mutations reported in Exon 17 of the APP gene that causes cerebral amyloid angiopathy 

or AD. Adapted from Alzforum Database (https://www.alzforum.org/mutations/app)(286) 

Mutation Exon Type of Mutation Disease 

KM670/671NL Exon16 Point, Double AAG&ATG 

to AAT & CTG 

AD 
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Mutation Exon Type of Mutation Disease 

A673V Exon 16 Point, Missense GCA to 

GTA 

AD 

D678H Exon 16 Point, Missense GAC to 

CAC 

AD 

D678N Exon 16 Point, Missense GAC to 

AAC 

AD 

E682K Exon 16 Point, Missense GAA to 

AAA 

AD 

K687N Exon 16 Point, Missense AAA to 

AAT 

AD 

A692G Exon 17 Point, Missense GCA to 

GGA 

AD 

E693del Exon 17 Deletion GAA to --- AD 

E693G Exon 17 Point, Missense GAA to 

GGA 

AD 

E693K Exon 17 Point, Missense GAA to 

AAA 

Cerebral Amyloid Angiopathy 

E693Q Exon 17 Point Missense GAA to 

CAA 

Hereditary Cerebral Hemorrhage with 

Amyloidosis of the Dutch type 

D694N Exon 17 Point, Missense GAT to 

AAT 

AD, Cerebral Anyloid Angiopathy 

L705V Exon 17 Point, Missense CTC to 

GTC 

Cerebral Amyloid Angiopathy 

T714A Exon 17 Point, Missense ACA to 

GCA 

AD 

T714I Exon 17 Point, Missense ACA to 

ATA 

AD 

V715A Exon 17 Point, Missense GTG to 

GCG 

AD 

V715M Exon 17 Point, Missense GTG to 

ATG 

AD 

I716F Exon 17 Point, Missense ATC to 

TTC 

AD 

I716M Exon 17 Point, Missense ATC to 

ACC 

AD 

I716T Exon 17 Point, Missense ATC to 

ACC 

AD 

I716V Exon 17 Point, Missense ATC to 

GTC 

AD 

V717F Exon 17 Point, Missense GTC to 

TTC 

AD 

V717G Exon 17 Point, Missense GTC to 

GGC 

AD 

V717I Exon 17 Point, Missense GTC to 

ATC 

AD 

V717L Exon 17 Point, Missense GTC to 

CTC 

AD 

T719N Exon 17 Point, Missense ACC to 

AAC 

AD 
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Mutation Exon Type of Mutation Disease 

T719P Exon 17 Point, Missense ACC to 

CCC 

AD 

M722K Exon 17 Point, Missense ATG to 

AAG 

AD 

L723P Exon 17 Point, Missense CTG to 

CCG 

AD 

K724N Exon 17 Point, Missense AAG to 

AAC 

AD 

 

4.2 Aim  

To develop splice-modulating AOs targeting exon 16 and 17 of APP to induce exon 16 and exon 

17 skipping (to reduce APP mRNA or form a truncated APP without the deleterious mutations 

given in Table 4.1 and reduce production of amyloid beta) as a therapeutic strategy for FAD.  

4.3 Methods 

4.3.1 AO Design and Synthesis 

The 2’-OMePS AOs (Table 4.2) were designed for exon 16 and exon 17 of APP (Exon map in 

Figure 4.1). The AOs were synthesised in-house using ABI ExpediteTM 8909 oligonucleotide 

synthesiser (Applied Biosystems) and AKTA Oligopilot 10 synthesiser (GE Healthcare Life 

Sciences) using standard phosphoramidite chemistry at 1 µmol scale. The synthesised 

oligonucleotides were deprotected by treatment with 1 mL Ammonium Hydroxide (Sigma 

Aldrich; Cat# 221228-500mL) overnight at 55 °C. The oligonucleotides were then purified and 

desalted using illustra NAP-10 columns (GE Healthcare; Cat#: 45-000-153) according to the 

manufacturer’s protocol. AO2-PMO and AO8-PMO were purchased from Gene Tools. 
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Figure 4.1 Exon map of APP showing the reading frame. The rectangles represent in-frame exons, whereas 

the arrows indicate codons that are disrupted by exon junctions. The codons at the start and end of each in-frame 

and out-of-frame exon are represented by the letters above the rectangles and arrows.  

Table 4.2 List of 2’-OMePS AOs synthesised targeting exon 16 and 17 of the APP mRNA. 

AO Number AO name Exon 

AO1 APP 1E17A (-15+10) Exon 17 

AO2 APP 1E17A(+6+30) Exon 17 

AO3 APP 1E17A (+41+65) Exon 17 

AO4 APP 1E17A(+69+93) Exon 17 

AO5 APP 1E17A (+96+120) Exon 17 

AO6 APP 1E17A (+123+147) Exon 17 

AO7 APP 1E17D(+7-18) Exon 17 

AO8 APP 1E17A(+60+85) Exon 17 

AO9 APP 1E17A(+71+95) Exon 17 

AO10 APP 1E17A(+98+122) Exon 17 

AO11 APP 1E16A(-5+20) Exon 16 

AO12 APP 1E16A(+39+63) Exon 16 

AO13 APP 1E16A(+41+65) Exon 16 

AO14 APP 1E16A(+56+80) Exon 16 

AO15 APP 1E16D(+22-4) Exon 16 

4.3.2 Cell culture and transfection 

HEK293 cells were obtained from Cell Bank Australia (kindly provided by Associate Prof. Bruno 

Meloni) and the primary human fibroblasts from muscle biopsies were kindly provided by Prof. 

Sue Fletcher and Prof. Steve Wilton. Cells were grown and maintained in 10% Foetal Bovine 

Serum in Dulbecco’s Modified Eagle’s Medium (ThermoFisher Scientific; Cat#: 11995073) in a 

humidified atmosphere 37 °C incubator with 5% CO2. Cells were maintained at 70-90% 

confluency and seeded in a plate or flask at densities shown in Table 4.3, 24 h before transfection. 

The HEK293 cells were plated in a plate or flask pre-treated with 50 µg/mL poly-D-lysine (Merck 

Millipore; Cat#: P7886-50mg). 
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Table 4.3 The seeding density of HEK293 cells used for different assays. 

Assay Plate or Flask? HEK293 seeding density  Fibroblast seeding 

density 

RNA Extraction 24 well plate 50,000 cells/well 15,000 cells/well 

Western Blot T25cm2 flask 625,000 cells/flask  

Nucleofection 24 well plate 100,000 cells/well  

 

Next, the cells were then transfected with 2’-OMePS AOs at 400 nM and 50 nM using 

Lipofectamine 3000 (ThermoFisher Scientific; Cat#: L3000015) transfection reagent according to 

the manufacturer’s protocol. Cocktails of AOs were transfected at a total transfection concentration 

of 400 nM and 50 nM for an initial screen, where the individual AO concentration (at 200 nM and 

25 nM) was half the total transfection concentration. The best performing AO cocktails were then 

transfected using the same protocol at the following concentrations: 400 nM, 200 nM, 100 nM, 50 

nM and 25 nM. Twenty- four hours after transfection, the cells were collected for RNA extraction. 

For western blot, the cells were collected for RNA extraction and western blot, 24h, 48h and 3 

days after AO treatment. The AO2-PMO and AO8-PMO were transfected into HEK293 cells at 

100 µM and 250 µM total concentrations (individual PMO concentrations were 50 µM and 125 

µM) by nucleofection. For each treatment, 5 x 105 cells were trypsinised, centrifuged and 

resuspended in the nucleofection master mix as per the manufacturer’s protocol. The cells were 

then nucleofected with AO2-PMO and AO8-PMO using program CM- 130 on the 4D Nuclofector 

system X-unit (Lonza) using the SF Cell Line 4D-NucleofectorTM X Kit S (Lonza; Cat#: V4XC-

2032) and seeded into five wells of the 24 well plate. Cells were collected at 24 h, 48 h, 3 day, 5 

day and 7 day timepoints after the first transfection for RNA extraction. 

4.3.3 RNA extraction and RT-PCR 

RNA was extracted from transfected cells using ISOLATE II RNA Mini kit (Bioline; Cat#: BIO-

52073) as per the manufacturer’s protocol. The APP transcript was amplified using the following 
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primers (ordered from IDT): Forward primer: TTGAGCCTGTTGATGCCCG and Reverse 

primer: ACATGAAGCATCCCCCATCG to amplify the region exon 16- exon 18 of the APP 

transcript with SuperScript III One-Step RT-PCR kit (ThermoFisher Scientific; Cat# 12574026). 

The following RT-PCR conditions were used: 30 mins at 55°C, 2 mins at 94 °C, 23 rounds of 30 

s at 94 °C, 1 min at 60 °C and 2 mins at 68°C. The products were then separated on a 2% agarose 

gel in Tris-acetate-EDTA buffer, stained with Red Safe (iNtRON Biotechnology; Cat# 21141) and 

destained with water before being image captured with the Fusion Fx gel documentation system 

(Vilber Lourmat, Marne La Valle, France). Densitometry was performed by Image J Software (9). 

An AO sequence that does not anneal to any human transcript, supplied by Genetools (Genetools 

Control, GTC) was used as a negative control. 

4.3.4 Sequencing Analysis 

To confirm specific exon-skipping, the full-length product band and the bands representing the 

exon-skipped product were band stabbed using a previously published procedure (10). The isolated 

products were amplified using AmpliTaq Gold® 360 DNA Polymerase Kit (Thermofisher 

Scientific, Cat# 4398823) and the same primer set described in the previous section under the 

following RT-PCR conditions: 6 mins at 94 °C, 23 cycles of 30 s at 94 °C, 1 min at 52 °C and 2 

mins at 72 °C. The quality of PCR products was confirmed by 2% agarose gel electrophoresis and 

purified using the Diffinity Rapid Tip® (Sigma Aldrich, Cat #: D1947-96RXN). The products 

were sequenced using both the forward and reverse primer by the Australian Genome Research 

AGRF Facility, Western Australia. 

4.3.5 Western Blot 

Western Blot was performed on the proteins extracted from cells treated with the best performing 

AO cocktail to evaluate the effect of the AO cocktail on the APP protein in comparison to the 
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scrambled and untreated AOs. Cells were lysed in lysis buffer (100 µL/ sample) containing 12% 

SDS, 100 mM Tris-HCl, pH 6.8, 10% glycerol with loading buffer containing 1.875 µL 

bromophenol blue, 4.688 µL dithiothreitol and 1.5 µL protease inhibitor per 100 µL samples. Cell 

pellets were sonicated six times for 3 s pulses and denatured at 95°C for 5 mins before being snap-

frozen on ice. Protein concentrations were determined to ensure equal loading on the protein gel 

that was then stained with coomassie blue. The proteins were separated on a 10% separating gel 

containing 400 mM Tris-HCL (pH8.8) and 0.1% SDS and a 5% stacking gel containing 130 mM 

Tris-HCL (pH6.8), 0.1% SDS and 0.004% bromophenol blue in Tris-glycine-SDS running buffer 

before being transferred to a 0.2 µm nitrocellulose membrane (Biorad; Cat# 162-0112) in Tris-

glycine-methanol transfer buffer. The membranes were blocked in 5% skim milk Tris-buffered 

saline with 0.1% Tween for 1 h. The membrane was washed three times in Tris-buffered saline 

with 0.1% Tween for 20 mins each, and the membrane was incubated in primary antibody solution, 

1:5000 anti-APPL (Abcam, Cat# ab180140) and 1:1000 anti-GAPDH (ThermoFisher Scientific, 

Cat# PA1-988) overnight at 4 °C. After washing the membrane three times in Tris-buffered saline 

with 0.1% Tween for 20 mins each, the membrane was incubated in the secondary antibody 

(1:5000 anti-rabbit HRP, Thermofisher Scientific, Cat# 31460) for 1 h at room temperature before 

washing three times in Tris-buffered saline with 0.1% Tween for 20 mins each. The antibodies 

were detected using the Clarity Western ECL detection kit (Biorad; Cat# 1705060) according to 

the manufacturer’s protocol and visualised using the Fusion Fx gel documentation system (Vilber 

Lourmat, Marne La Valle, France). 
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4.4 Results 

4.4.1 Developing splice-modulating AOs to induce skipping of APP exon 17. 

Various 2’-O-Methyl (2’-OMe)-modified AO sequences on a phosphorothioate (2’-OMePS) 

backbone were designed to target exon 17 of the APP mRNA and synthesised in house (Table 4.2). 

All single AOs were initially screened for induction of exon-skipping by transfection at 400 nM 

and 50 nM (Appendix B, Figure B.1) concentrations, using Lipofectamine 3000 as per 

manufacturer’s protocol, in HEK293 cells. Twenty-four hours after transfection, the cells were 

collected, and the total RNA was extracted before performing a reverse transcription-polymerase 

chain reaction (RT-PCR) to amplify the exon 16- exon 18 APP product. The RT-PCR products 

were separated on a 2% agarose gel and Image J software was used to perform densitometry on 

the gel images. All 10 AOs were re-screened in cocktails at 400 nM and 50 nM concentrations 

(individual AOs concentrations of 200 nM and 25 nM; only 2 AOs per cocktail was tested in this 

study) (Appendix B, Figure B.2). The most efficient AO cocktails targeting exon 17 (AO2+AO8, 

AO9+AO2, AO9+AO10, and AO10+AO2) were further evaluated at 400 nM, 200 nM, 100 nM, 

50 nM and 25 nM concentrations. 

4.4.1.1 Evaluation of the most efficient 2’-OMePS AO cocktails to induce exon-

skipping of exon 17 of the APP transcript in HEK293 cells in vitro. 

We systematically evaluated the most effective AO cocktails (AO2+AO8, AO9+AO1, AO9+AO2, 

AO9+AO10, AO10+AO1, AO10+AO2 and AO10+AO8) in vitro at 400 nM, 200 nM, 100 nM, 50 

nM, and 25 nM concentrations. Cocktail of two AOs that included a combination of AO1, AO2, 

AO8, AO9, and AO10 induced APP exon 17 skipping, however, AO2 and AO8 were found to be 

the most effective (Figure 4.2). 
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Figure 4.2 RT-PCR analysis of APP transcripts after treatment with the most effective 2’-OMePS AO 

cocktails (AO2+AO8, AO9+AO1, AO9+AO2, AO9+AO10, AO10+AO1, AO10+AO2 and AO10+AO8) targeting 

exon 17 at 400 nM, 200 nM, 100 nM, 50 nM and 25 nM in HEK293 cells. FL, full-length; UT, untreated; SCR, 

scrambled sequence. The gel images were cropped, however, the original images are shown in Figure B.3 

(Appendix B). 

4.4.1.2 Evaluation of the most efficient 2’-OMePS AO cocktail to induce exon 17 

skipping. 

We then evaluated the most effective exon 17 targeting AO cocktail, AO2+AO8 at lower 

concentrations (50 nM, 25 nM, 12.5 nM, 5 nM and 2.5 nM) to induce exon 17 skipping in HEK293 

cells. The cocktail of AO2+AO8 induced dose-dependent exon 17 skipping of the APP transcript 

at the lower concentrations (Figure 4.3). The AO2+AO8 cocktail worked most efficiently at 100 

nM concentration, and the skipped product was later confirmed by sequencing (Figure 4.3). 
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Figure 4.3 A. RT-PCR analysis of the APP transcript after treatment of HEK293 cells with the most effective 

2’-OMePS AO cocktail, AO2+AO8, targeting exon 17 at two concentration ranges (range 1: 400 nM, 200 nM, 100 

nM, 50 nM and 25 nM, range 2: 50 nM, 25 nM, 12.5 nM, 5 nM and 2.5 nM) in HEK293 cells. FL, full-length; UT, 

untreated; SCR, scrambled sequence. The gel images were cropped to highlight the APP specific products. The 

original images are shown in Figure B.4 (Appendix B). B. Sequencing data analysis of FL and 17 band. 
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4.4.1.3 Evaluation of the most efficient 2’-OMePS AO cocktail to induce exon-

skipping in fibroblasts. 

Although testing of AOs in mouse is important for further validation of the AOs to be clinically 

viable, testing of AOs in patient-derived cells may be equally important and more reliable at 

assessing whether the developed AOs can be effective in individual patients. Therefore, we 

assessed APP expression and exon-skipping efficiency of the AO2+AO8 cocktail in normal 

primary fibroblasts in the 50 nM, 25 nM, 12.5 nM, 5 nM and 2.5 nM concentrations (Figure 4.4). 

The AO cocktail also induced exon 17 skipping in fibroblasts but the efficiency was lower than in 

HEK293 cells. 

 
Figure 4.4 RT-PCR analysis of the APP transcript after treatment of HEK293 cells and healthy primary 

fibroblasts with the most effective 2’-OMePS AO cocktail, AO2+AO8, targeting exon 17 at 50 nM, 25 nM, 12.5 nM, 

5 nM and 2.5 nM concentrations. FL, full-length; UT, untreated; SCR, scrambled sequence. The gel images were 

cropped, however the original images are shown in Figure B.5(Appendix B). 

4.4.1.4 Evaluation of the most efficient 2’-OMePS AO cocktail as a PMO to induce 

exon-skipping. 

To be clinically applicable, AOs need to be safe for use in humans. The PMO chemistry has been 

approved for clinical use demonstrating that PMO chemistry have an acceptable safety profile. 
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The AO sequences for AO2+AO8 were re-synthesised as PMOs and the ability of the cocktail to 

induce exon 17 skipping was evaluated in HEK293 cells (Figure 4.5). The AO2-PMO+AO8-PMO 

cocktail did not induce exon17 skipping. 

 
Figure 4.5 RT-PCR anlaysis of the APP transcript after treatment with the most effective AO sequences, 

AO2+AO8 as PMOs, targeting exon 17 (100 µM and 250 µM concentrations) in HEK293 cells after treatment for 1, 

2, 3, 5 and 7 days. FL, full-length; UT, untreated; SCR, scrambled sequence. The gel images were cropped, 

however, the original images are shown in Figure B.6 (Appendix B). 

4.4.1.5 Evaluation of APP protein downregulation. 

The efficacy of the 2’-OMePS cocktail, AO2+AO8, to downregulate APP protein expression was 

evaluated by Western blotting in HEK293 cells after 24h, 48h and 3 days of AO treatment. Briefly, 

the AO2+AO8 cocktail (100 nM) treated HEK293 cells were incubated for 24h, 48h, and 3 days 

before the cell pellet was collected and lysed. The proteins were separated on a 10% separating gel 

and electroblotted onto a nitrocellulose membrane. The membrane was incubated with 1:5000 

dilution of the anti-APP antibody overnight at 4°C, and 1:5000 anti-rabbit HRP secondary 

antibody for 1 h at room temperature. Western blot analysis showed that the APP protein was not 

downregulated after AO cocktail treatment although exon 17 skipping was evident at the same 

timepoints at the RNA level (Figure 4.6). 
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Figure 4.6 A. RT-PCR analysis of the APP transcript after treatment with the most effective AO sequences, 

AO2+AO8 targeting exon 17 at 100 nM concentration after cocktail treatment for 24 h, 48 h and 3 days in HEK293 

cells. B. Western blot analysis of APP and GAPDH after treatment of HEK293 cells with AO2+AO8, at 100 nM  for 

24 h, 48 h and 3 days, FL, full-length; UT, untreated; SCR, scrambled sequence. The gel images were cropped to 

highlight the APP specific products. The original images are shown in Figure B.7 (Appendix B). 

4.4.2 Developing splice-modulating AOs to induce exon 16 skipping of the APP 

transcript. 

Following exon 17 studies, we designed and synthesised 2’-OMePS AOs in-house targeting Exon 

16 of the APP mRNA (Table 4.2). All AOs were initially screened for exon-skipping at 400 nM 

and 50 nM (Figure 4.7) in HEK293 cells by incubating for 24 h using Lipofectamine 3000 as per 

manufacturer’s protocol. Twenty-four hours after transfection, the cells were collected, and the 

total RNA was extracted before a reverse transcription-polymerase chain reaction (RT-PCR) was 

performed to amplify the exon 16- exon 18 region of the APP gene. The RT-PCR products were 
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separated on a 2% agarose gel by gel electrophoresis, and Image J software was used to perform 

densitometry on the gel image. 

4.4.2.1 Evaluation of single AOs and AO cocktails for inducing skipping of APP exon 

16 in HEK293 cells. 

We systematically evaluated single AOs to induce exon 16 skipping in HEK293 cells at 400 nM 

and 50 nM concentrations (Figure 4.7). The results showed that AO12 and AO13 were able to 

induce low level of exon 16 skipping at 50 nM but not at 400 nM concentration. All exon 16 

targeting AOs were then assessed as cocktails at 400 nM and 50 nM (individual AOs 

concentrations of 200 nM and 25 nM; only 2 AOs per cocktail was tested in this study) (Figure 

4.8). 

 
Figure 4.7 A screen of exon 16 AOs. RT-PCR analysis of the APP transcript after treatment with exon 16 2’-

OMePS AOs, targeting exon 16 at 400 nM and 50 nM concentrations in HEK293 cells. FL, full-length; UT, 

untreated; SCR, scrambled sequence.  

All exon 16 AO cocktails were able to induce exon 16 skipping. Similar to exon 17 AO cocktails, 

the AO cocktails were more efficient at induce exon-skipping at 50 nM concentration compared 

to its efficiency in inducing exon 16 skipping at 400 nM concentration. Therefore, the most 

effective AO sequences (AO11+AO12, AO11+AO13, AO11+AO14, AO12+AO13, 

AO12+AO14, AO12+AO15 and AO13+AO14) targeting exon 16 were further evaluated at 100 

nM, 50 nM, 25 nM, and 12.5 nM concentrations. 
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Figure 4.8 A screen of exon 16 AO cocktails. RT-PCR analysis of the APP transcript after treatment with 

exon 16 2’-OMePS AO cocktails, targeting exon 16 at 400 nM and 50 nM concentrations in HEK293 cells. FL, full-

length; UT, untreated; SCR, scrambled sequence.  

4.4.2.2 Evaluation of the most efficient 2’-OMePS AO cocktails to induce exon-

skipping of exon 16 of the APP transcript in HEK293 cells in vitro. 

The most efficient AO 16 sequences (AO11+AO12 and AO12+AO13) were further evaluated at 

100 nM, 50 nM, 25 nM, and 12.5 nM concentrations in HEK293 cells (Figure 4.9). The AO 

sequences were most efficient at 50 nM concentration. The effect of these AO sequences on AOO 

protein levels need to be further evaluated by Western blot.  
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Figure 4.9 Most efficient exon 16 AO cocktails. RT-PCR analysis of the APP transcript after treatment with 

exon 16 2’-OMePS AO cocktails, targeting exon 16 at 100 nM, 50 nM, 25 nM and 12.5 nM concentrations in 

HEK293 cells. FL, full-length; UT, untreated; SCR, scrambled sequence.  

4.5 Discussion 

4.5.1 Developing splice-modulating AOs to induce exon 17 skipping of the APP 

transcript. 

In this study, 10 different AOs targeting exon 17 were screened for the ability to induce exon 17 

skipping; however, none of the AOs were effective. Previous studies demonstrated the application 

of a combination of ineffective or marginally effective individual AOs to induce efficient exon-

skipping (11). Similarly, I screened cocktails of different combinations of two AOs to evaluate 

their ability to induce exon 17 skipping. Although it is unknown why cocktails of two individually 

ineffective AOs may work in synergy, I speculate that it could be due to the need to block a 

combination of splicing enhancer motifs. A cocktail of AOs may bind to two different regions of 

the exon and block a combination of splicing enhancer motifs that may be required for the 
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exclusion of an exon, not achieved by a single AO. Another reason for the better performance of 

a cocktail of AOs over a single AO to induce exon-skipping could be due to one AO annealing to 

its target and changing the secondary structure of the surrounding region that allows a second AO 

in the cocktail to bind to its target to block splicing motifs and induce exon-skipping. The target 

region of the mRNA may be otherwise inaccessible to a single AO. Although a previous study by 

Adams et al. (2007) demonstrated that the 2’-OMePS AOs and PMOs show similar exon skipping 

trends (11), this study shows that 2’-OMePS AOs do not always show a similar trend to PMOs. 

The 2’-OMePS cocktail of AO2 and AO8 induced exon 17 skipping; however, the same AO 

sequences as a PMO did not induce any exon-skipping. I speculate that this may be due to the 

conformational rigidity of the PMO structure in comparison to the 2’-OMePS chemistry that may 

restrict the accessibility of the PMOs to bind to their target and therefore behave differently to the 

cocktail of 2’-OMePS AOs (12-18). Although unlikely, the lack of activity of the PMO could also 

be due to an experimental issue with the electroporation of the PMO. To confirm that the PMO 

does not induce exon skipping compared to the 2’-OMePS cocktails, the 2’-OMePS cocktails 

would need to be electroporated similar to the PMOs to conclude if the lack of effect is real or due 

to an experimental issue with electroporation.  

In comparison to my study using both 2’-OMePS sequences and PMO sequences, another recent 

report in 2018 used 2’-MOE AOs (7) to induce APP exon 17 skipping. Interestingly, single 2’-

OMOE sequences were able to induce exon 17 skipping. In our study, 2’-OMePS sequences were 

not able to induce any exon 17 skipping, but, were able to induce efficient exon 17 skipping as 

cocktails. PMO sequences were not able to induce any exon 17 skipping even when used as 

cocktails. This study indicates that the chemistries of the AO sequences can determine its ability 

to induce exon-skipping as reported previously. 
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Adams et al. (2007) (11) also demonstrated that there might be species differences in the way that 

specific AO sequences perform between human and mouse cells, indicating that patient-derived 

cell lines may be more appropriate than mice in designing AO strategies to treat human disease. 

Although the cocktail of AO2 and AO8 induced exon 17 skipping in both HEK293 cells and 

primary fibroblasts, the cocktail was less efficient in primary fibroblasts compared to HEK293 

cells. The AO2 and AO8 cocktail induced 50% exon-skipping in HEK293 cells at 12.5 nM 

concentration while in primary fibroblasts much lower exon 17 skipping, that may be due to 

reduced transfection efficiency in the primary fibroblasts compared to HEK293 cells. I have shown 

that the transfection efficiency using the same transfection reagent differs from cell to cell and the 

oligonucleotide efficacy is dependent on the transfection efficiency (19). 

A previous study has shown that the 2’-OMePS AOs were initially very effective at splice altering 

the transcript but that 2’-OMePS AOs degrade rapidly and therefore are not effective long term or 

for analysing changes in gene expression at the protein level (20). The opposite was true for PMOs 

that were not as effective as 2’-OMe PS AOs at the mRNA level but the small effect it had was 

sufficient to have a significant effect on the protein level (20). As the PMO AO2+AO8 was not 

effective at the mRNA level, I assessed the effect of the cocktail of 2’-OMePS AOs, AO2 and 

AO8 on protein level and found that the 2’-OMePS AO cocktail had no effect. The quick 

degradation of the 2’-OMePS AOs may be one reason for the lack of effect of the AO cocktail on 

APP protein level. The other reason may be due to the short, 4 hour half-life of the APP protein in 

vivo that may mean that if an effect was detectable, this effect would have to be observed within 

12 hours (21). However, both of the above suggestions may not explain the result, as exon-skipping 

at the mRNA level was observed at all time points. I can speculate that the mRNA levels do not 

correlate with the protein data in our study possibly due to change in the half-life of the protein or 
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the degradation rate of the protein to balance the reduction in protein synthesis (22). Protein levels 

are not only determined by the mRNA levels but are also determined by rate of protein synthesis 

and degradation, post-translational modifications and translational rate of the mRNA (22). It is 

also important to note that the in vivo half-life may differ from the half-life in vitro. However, the 

lack of AO effect on APP protein could be due to an issue with the antibody not recognising the 

APP protein. The validity of the antibody can be tested by use of a siRNA as a positive control to 

ensure that the antibody is picking up the APP protein.   

A study by Chang et al. (2018) (7), were able to induce efficient APP exon 17 skipping. The 

current study indicates that there may be functional differences, due to the different chemistries in 

inducing exon-skipping that is target and/or sequence dependent. Furthermore, the study by Chang 

et al. (2018) (7) also showed that the 2’-OMOE sequence was efficient at inducing exon-skipping 

at the mRNA level as well as downregulate the protein. However, my study did not show 

downregulation of APP protein. I cannot compare our study with that of Chang et al. (2018) (7), 

as their study used different cells (HEK293 vs Down syndrome patient fibroblasts), different 

antibodies and used different chemistries (2’-OMePS vs 2’-OMOE). However, weather the lack 

of effect on the APP protein levels observed in my study is real or due to study design can be 

further validated by investigating the reasons for differences observed between the two studies. 

4.5.2 Developing splice-modulating AOs to induce exon 16 skipping of the APP 

transcript. 

Of the five AOs tested for inducing APP exon 16 skipping, only two AOs (AO12 and AO13) 

induced low level of exon 16 skipping (Figure 4.7) at 50 nM concentration but not at 400 nM 

concentration. This unexpected pattern of exon-skipping is similar to that resulting from AO 

cocktail treatment targeting exon 17 whereby the AO cocktail was more efficient at inducing exon 
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17 skipping at lower concentrations while at higher concentration, transcript knockdown was 

observed. As only low-level exon 16 skipping was observed, AO cocktails were evaluated at 400 

nM and 50 nM concentrations (Figure 4.8). Again, at higher concentrations (400 nM), the AO 

cocktails induce lower levels of exon 16 skipping compared to those induced at lower 

concentrations (50 nM), where the AO cocktails were able to induce exon 16 skipping more 

efficiently. I therefore, further evaluated the most efficient exon 16 AO cocktails at lower 

concentrations (100 nM- 12.5 nM concentrations) (Figure 4.9). The AO cocktails 11+12 and 

12+13 were the most efficient at inducing exon 16 skipping, particularly at 50 nM concentrations, 

with the skipping of the exon 16 dose-dependent at the lower concentrations. We speculate that 

similar to skipping of exon 17, the cocktails may be more efficient due to inaccessibility of the 

RNA to a single AO and a cocktail of two AOs may make the RNA more accessible to the efficient 

AO. The cocktails may also be more efficient due to the need to target multiple splicing motifs to 

induce efficient exon 16 skipping. Comparing all the AO cocktails that induced exon 16 skipping, 

the most efficient AO cocktails consisted of AO12 and AO13, that were also the AOs that induced 

detectable exon 16 skipping individually. This suggests that the regions that AO12 and AO13 

target may be important regions for inducing exon 16 skipping. The AO cocktails 11+12 and 

12+13 remain to be further evaluated as PMOs and in APP protein studies.  

4.6 Conclusion 

In conclusion, I have screened various AOs to induce APP exon 17 skipping and found no potential 

lead candidates. However, after testing various combinations of the AOs in cocktails, I identified 

a cocktail of AO2 and AO8 that could efficiently induce exon 17 skipping in vitro in HEK293 

cells and primary fibroblasts. Of the two chemistries evaluated, the 2’-OMePS AOs cocktail was 

able to efficiently induce exon 17 skipping but the same sequences synthesised as a PMO were not 
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able to induce any exon 17 skipping. The 2’-OMePS cocktail of AO2 and AO8 did not 

downregulate APP protein. Further investigations are needed to explain the different effects of the 

same AO sequences as different chemistries. Understanding APP protein expression would help 

develop better treatment strategies for familial AD. 
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Chapter 5 BACE1 

5.1 Introduction 

Increased amyloid beta (Aβ)-42 peptide in the brain is one of the pathological hallmarks of 

Alzheimer’s disease (AD) [1–3]. Aβ is produced by the processing of amyloid precursor protein 

(APP) by two secretases, a β-secretase, beta-site amyloid precursor protein cleaving enzyme 1 

(BACE1) and a γ-secretase [4]. Since the APP is processed first by BACE1, a rate-limiting step, 

BACE1 is a good therapeutic target [5]. BACE is an aspartyl protease and a type I transmembrane 

protein that is highly expressed in the brain and pancreas [5]. Elevated BACE1 expression and 

activity have been reported in post-mortem brains and the cerebrospinal fluids (CSF) of AD 

patients [3,6]. BACE1 accumulation has also been observed around amyloid plaques in brains of 

AD mouse models and patients [7,8]. The BACE1 gene is found on Chromosome 11 and includes 

nine exons. BACE1 has two aspartic protease active site motifs (DTGS and DSGT residues) in 

exons 2 and 6, respectively [5]. The BACE1 pre-mRNA undergoes alternative splicing through the 

splice sites within exons 3 and 4 resulting in the production of protein isoforms that are 457 and 

476 amino acids in length and expressed both in the brain and pancreas, respectively. However, 

the alternatively spliced variants of BACE1 have reduced β-secretase activity [5]. 

Although there have been no clinical trials on AOs targeting BACE1, six BACE1 inhibitors 

evaluated in clinical trials have failed due to liver toxicity in some cases and in others due to lack 

of an effect on cognitive decline [10]. Some early studies focused on AO development as research 

tools to better understand the role of BACE1 [10–13]; however, a systematic screening of steric 

blocking AO designs was not reported. It was speculated that BACE1 inhibitors may need to be 



144 

administered to presymptomatic patients at high risk of developing AD, and may only need to 

partially inhibit BACE1 activity to reduce Aβ load slightly over a long period to have a beneficial 

effect [14,15]. As BACE1 partial inhibition may help to reduce Aβ load to rescue patients from 

cognitive decline, the development of BACE1 inhibitors that cause partial BACE1 inhibition is 

required. 

5.2 Aim 

To systematically screen splice-modulating AOs targeting BACE1 exons to devlop an AO that 

results in partial inhibition of BACE1. 

5.3 Methods 

5.3.1 AO Design and Synthesis 

The 2’-OMethyl (2’-OMe)-modified AO sequences on a phosphorothioate (2’-OMePS) backbone 

were designed and synthesised in-house using an ABI ExpediteTM 8909 oligonucleotide 

synthesiser (Applied Biosystems) using standard phosphoramidite chemistry at the 1 µmol scale. 

The synthesised oligonucleotides were deprotected by treatment with 1 mL Ammonium Hydroxide 

(Sigma; Cat# 221228-500Ml) overnight at 55 °C. The oligonucleotides were then purified and 

desalted using illustra NAP-10 columns (GE Healthcare; Cat# 45-000-153) according to the 

manufacturer’s protocol. The AO2-PMO was purchased from Gene Tools. High-performance 

liquid chromatography (HPLC from Shimadzu) analyses of the most efficient AOs are shown in 

Table C.5 (Appendix C). 
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5.3.2 Cell Culture and Transfection 

HEK293 cells were obtained from Cell Bank Australia (kindly provided by Associate Prof. Bruno 

Meloni). Cells were grown and maintained in 10% Foetal Bovine Serum in Dulbecco’s Modified 

Eagle’s Medium (ThermoFisher Scientific; Cat# 11995073) in a humidified atmosphere 37 °C 

incubator with 5% CO2. Cells were maintained until 70-90% confluent and then seeded in a plate 

or flask pre-treated with 50 µg/mL poly-D-lysine (Merck Millipore; Cat# P7886-50mg) at 

densities shown in the Appendix C (Table C.1), 24 h before transfection. 

Next, the cells were transfected with 2’-OMePS AOs using Lipofectamine 3000 (ThermoFisher 

Scientific; Cat# L3000015) transfection reagent according to the manufacturer’s protocol at 400 

nM and 200 nM for an initial screen. The best performing AOs were then transfected using the 

same protocol at the following concentrations: 600 nM, 400 nM, 200 nM, 100 nM, and 50 nM. 

Twenty- four hours after transfection, the cells were collected for RNA extraction or for analysis 

by Western Blot. The AO2-PMO (Gene Tools) was transfected into HEK293 cells at 100 µM and 

250 µM concentrations by nucleofection. For each treatment, 5 × 105 cells were trypsinised, 

centrifuged, and resuspended in the nucleofection master mix as per the manufacturer’s protocol. 

The cells were then nucleofected with AO2-PMO using program CM- 130 by 4D Nuclofector 

system X-unit (Lonza, Mt Waverly, VIC, Australia) using the SF Cell Line 4D-NucleofectorTM X 

Kit S (Lonza; Cat# V4XC-2032) and seeded into five wells of the 24-well plate. Cells were 

collected at the 24 h, 48 h, three-day, and five-day time points after the first transfection for RNA 

extraction. 

5.3.3 RNA Extraction and RT-PCR 

RNA was extracted from transfected cells using ISOLATE II RNA Mini kit (Bioline; Cat#: BIO-

52073) as per the manufacturer’s protocol. The BACE1 transcripts were amplified using the primer 
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sets (Integrated DNA Technologies, Singapore) shown in the Appendix C (Table C.2) with 

SuperScript III One-Step RT-PCR kit (ThermoFisher Scientific; Cat# 12574026). The RT-PCR 

conditions for each primer set are given in Appendix C, Table C.4. Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) expression was used as a loading control and the primer set (ordered 

from IDT), and RT-PCR conditions for GAPDH are given in Appendix C, Table C.3 and Table 

C.4, respectively. The products were then separated on a 2% agarose gel in Tris-acetate-EDTA 

buffer, stained with Red Safe (iNtRON Biotechnology; Cat# 21141) and destained with water 

before being visualised with the Fusion Fx gel documentation system (Vilber Lourmat). 

Densitometry was performed using BioD for image capture and the ImageJ software for data 

analysis [16]. The downregulation of specific RT-PCR products was determined by normalising 

the BACE1 transcript levels to the loading control, GAPDH, and further normalised to the 

transcript levels from the untreated (UT) cells. The gene tools control AO sequences was used as 

a negative control (scrambled (SCR) sequence). 

5.3.4 Western Blot 

Western Blot was performed on the protein extracts obtained from cells treated with the best 

performing AO to evaluate the effect of the AO on BACE1 protein. Cells were lysed in lysis buffer 

(100 µL/ sample) containing 12% SDS, 100 mM Tris-HCl, pH 6.8, 10% glycerol and loading 

buffer containing 1.875 µL bromophenol blue, 4.688 µL dithiothreitol, and 1.5 µL protease 

inhibitor was added per 100 µL of samples. Cell pellets were sonicated six times for 3 s pulses and 

denatured at 95 °C for 5 mins before being snap-cooled on ice. Protein concentrations were 

validated by separation on a protein gel and stained with Coomassie blue to ensure equal loading. 

The proteins were then loaded onto a  5% stacking gel containing 130 mM Tris-HCL, pH 6.8, 

0.1% SDS, and 0.004% Bromophenol blue and 10% separating gel containing 400 mM Tris-HCL, 
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pH 8.8, and 0.1% SDS, and run using a Tris-glycine-SDS running buffer before being 

electrotransferred to a 0.2 µm nitrocellulose membrane (Biorad; Cat# 162-0112) in a Tris-glycine-

methanol transfer buffer. The membranes were blocked in 5% skim milk in Tris-buffered saline 

with 0.1% Tween for 1 h. The membrane was washed three times in Tris-buffered saline with 0.1% 

Tween for 20 mins each, and the membrane was incubated in primary antibodies overnight at 4 

°C, 1:500 anti-BACE1 (Cell Signaling Technology, Cat# 5606) and 1:1000 anti-GAPDH 

(ThermoFisher Scientific, Cat# PA1-988). After washing the membrane three times in Tris-

buffered saline with 0.1% Tween for 20 mins each, the membrane was incubated in the secondary 

antibody (1:5000 anti-rabbit horse radish peroxidase, Thermofisher Scientific, Cat# 31460) for 1 

h at room temperature before washing three times in Tris-buffered saline with 0.1% Tween for 20 

mins each. The antibodies were detected using a Clarity Western ECL detection kit (Biorad; Cat# 

1705060) according to the manufacturer’s protocol and visualised using chemiluminescence-based 

protocol on the Fusion Fx gel documentation system (Vilber Lourmat). 

5.4 Results 

Initially, various 2’-OMePS AOs, were synthesised in house targeting exons 2,3,4,6, and 8 of the 

BACE1 gene transcript (exon map in Figure 5.1) to induce exon-skipping (Table 5.1). All AOs 

were initially screened for exon-skipping at 400 and 200 nM concentrations in HEK293 cells by 

incubating for 24 hrs using Lipofectamine 3000, Lipofectamine 2000, Lipofectin, and 

Lipofectamine RNAimax transfection reagents as per the manufacturer’s protocol. Twenty-four 

hours after transfection, the cells were collected for total RNA extraction, and reverse 

transcription-polymerase chain reaction (RT-PCR) was performed to amplify the regions of 

interest. The RT-PCR products were separated by gel electrophoresis on a 2% agarose gel, and 

after image capture, the PCR products were quantified using ImageJ software. The BACE1 
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transcript knockdown was achieved at various levels using all AOs targeting exon 2 and 3 

(Appendix C, Figure C.1). Skipping of exons 4, 6, and 8 was achieved at various levels with 

different AOs (AO9, AO11, AO12, AO13, AO15, AO17, AO18, and AO20) targeting BACE1 

exons 4,6 and 8 (Appendix C, Figure C.2). The most efficient AOs (AO2, AO5, AO6, AO12, and 

AO13) targeted exons 2, 3, and 4, were further evaluated systematically at two different series of 

concentration series including 600 nM, 400 nM, 200 nM, 100 nM, and 50 nM, and 100 nM, 50 

nM, 25 nM, and 12.5 nM. 

 
Figure 5.1 BACE1 exon map showing the size of the exons, introns and the reading frame. The rectangles 

represent in-frame exons, whereas the arrows indicate codons that are disrupted by exon junctions. The codons at 

the start and end of each in-frame and out-of-frame exon are represented by the letters above the rectangles and 

arrows.  

. 

Table 5.1 AO sequences targeting exons 2,3,4,6, and 8. 

AO Coordinates Target Sequence(3'--> 5') AO Number 

BACE1  1E2A(+ 10 + 34) Exon 2 AGTTACTGCTGCCTGTATCCACCAG AO1 

BACE1  1E2A(+ 38 + 62) Exon 2 AAGGGGTGGGGGGCAGCACCCACTG AO2 

BACE1  1E2A(+ 65 + 89) Exon 2 AGCTGCCTCTGGTAGTAGCGATGCA AO3 

BACE1  1E3A(+ 16 + 40) Exon 3 CACATACACACCCTTCCGGAGGTCC AO4 

BACE1  1E3A(+ 41 + 65) Exon 3 CTTCCCACTTGCCCTGGGTGTAGGG AO5 

BACE1  1E3A(+ 89 + 113) Exon 3 TGACGTTGGGGCCATGGGGGATGCT AO6 

BACE1  1E3A(+ 141 + 165) Exon 3 TTGATGAAGAACTTGTCTGATTCAG AO7 

BACE1  1E3A(+ 193 + 217) Exon 3 CCTGGCAATCTCAGCATAGGCCAGC AO8 

BACE1  1E4A(+ 1 + 25) Exon 4 AGAAAGGCTCCAGGGAGTCGTCAGG  AO9 

BACE1  1E4A(+ 31 + 55) Exon 4 GAACGTGGGTCTGCTTTACCAGAGA AO10 

BACE1  1E4A(+ 61 + 85) Exon 4 CACCACAAAGCTGCAGGGAGAAGAG AO11 

BACE1  1E4A(+ 88 + 112) Exon 4 CTTCAGACTGGTTGAGGGGGAAGCC AO12 

BACE1  1E4A(+ 114 + 138) Exon 4 CATGCTCCCTCCGACAGAGGCCAGC AO13 

BACE1  1E6A(+ 4 + 28) Exon 6 TGTCCACAATGCTCTTGTCATAGTT AO14 
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AO Coordinates Target Sequence(3'--> 5') AO Number 

BACE1  1E6A(+ 36 + 60) Exon 6 TTTCTTGGGCAAACGAAGGTTGGTG AO15 

BACE1  1E6A(+ 75 + 99) Exon 6 GGAGGCTGCCTTGATGGATTTGACT AO16 

BACE1  1E8A(+ 6 + 30) Exon 8 CTGCGGAAGGATGGTGATGCGGAAG AO17 

BACE1  1E8A(+ 33 + 57) Exon 8 AAACTTGTAACAGTCGTCTTGGGAC AO18 

BACE1  1E8A(+ 63 + 87) Exon 8 AACAGTGCCCGTGGATGACTGTGAG AO19 

BACE1  1E8A(+ 109 + 133) Exon 8 CCCGATCAAAGACAACGTAGAAGCC AO20 

BACE1  1E8A(+ 148 + 172) Exon 8 CATGGCAAGCGCTGACAGCAAAGCC AO21 

5.4.1 Evaluation of the Most Efficient 2’-OMePS AOs to Induce Exon-Skipping of 

the BACE1 Transcript in HEK293 Cells in vitro. 

We then systematically evaluated the exon-skipping efficiency of the lead AOs (AO2, AO5, AO6, 

AO8, AO12, and AO13; Table 5.1) in vitro, initially at 600 nM, 400 nM, 200 nM, 100 nM, and 50 

nM concentrations. The AOs targeting exons 2 and 3, AO2, AO5, AO6, and AO8 downregulated 

the BACE1 transcript levels, and AO12 and AO13 that targeted Exon 4 were capable of inducing 

efficient exon-skipping in vitro (Figure 5.2). The AO2 and AO6 were found to be the most efficient 

at downregulating the BACE1 transcript in a dose-dependent manner, while both AO12 and AO13 

were very efficient in inducing exon 4 skipping of BACE1 Variant A. Based on these results, the 

efficacy of AO2 and AO6 and AO12 and AO13 were also further tested at lower concentrations 

(100 nM, 50 nM, 25 nM, and 12.5 nM). Both AO2 and AO6 showed downregulation of the BACE1 

transcript in a dose-dependent manner (Figure 5.3); however, densitometry analysis revealed that 

AO2 and AO6 were the most efficient at 400 nM (Figure 5.4). Interestingly, although AO12 and 

AO13 induced exon-skipping, the dose-dependence was not as obvious (Figure 5.4); however, 

exon-skipping was observed even at 12.5 nM concentration. Both AO12 and AO13 were most 

efficient at inducing exon-skipping at 400 nM, but no concentration tested in this study could 

induce 100% exon-skipping. The most effective AOs were determined to be AO2 and AO6, both 

of which showed close to 100% downregulation of the BACE1 transcript (Figure 5.4). Of the two 
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AOs, AO2 was used for further evaluation as it showed consistent dose-dependent downregulation 

of BACE1 transcript at all concentrations without affecting the reference control transcript 

expression. 

 
Figure 5.2 RT-PCR analysis of the BACE1 and GAPDH transcripts after treatment with the most effective 2’-

O-MePS AOs (AO2, AO5, AO6, AO8, AO12, and AO13) targeting exons 2, 3, and 4 at 600 nM, 400 nM, 200 nM, 

100 nM, and 50 nM concentrations in HEK293 cells. FL, full-length; UT, untreated; SCR, scrambled sequence; 

GAPDH was used as a house-keeping gene control. The gel images were cropped to highlight the BACE1-specific 

products and the corresponding house-keeping gene control GAPDH. The original images are shown in Figure C.3 

(Appemdix B). 
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Figure 5.3 RT-PCR analysis of the BACE1 and GAPDH transcripts after treatment of HEK293 cells with the 

most effective 2’-O-MePS AOs (AO2, AO6, AO12, and AO13) targeting BACE1 exons 2, 3, and 4 at 100 nM, 50 nM, 

25 nM, and 12.5 nM concentrations. FL, full-length; UT, untreated; SCR, scrambled sequence; GAPDH was used 

as a loading control. The gel images were cropped to highlight the BACE1 specific products and the corresponding 

house-keeping gene control GAPDH. The original images are shown in Figure C.4 (Appendix C). 
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Figure 5.4 A. Densitometry analysis of RT-PCR products (three replicates) derived from HEK293 cells 

transfected with AO2 and AO6 B. Densitometry analysis of RT-PCR products (more than two replicates) derived 

from HEK293 cells transfected with AO12 and AO13. Concentrations of AOs used include 12.5 nM, 25 nM, 50 nM, 

100 nM, 200 nM, 400 nM, and 600 nM. FL, full-length; UT, untreated; SCR, scrambled sequence. 

5.4.2 Evaluation of the Most Efficient 2’-OMePS AO sequences prepared as PMOs 

to Induce Exon-Skipping of BACE1 Transcript in HEK293 Cells in vitro. 

For clinical application, it is important that the AOs are safe to use in humans. The PMO chemistry 

has demonstrated an excellent safety profile in humans at all doses tested. The most effective AO 
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sequence, AO2 was synthesised using the PMO chemistry (named AO2-PMO), and evaluated for 

potential downregulation of BACE1 transcript levels in HEK293 cells at 100 µM and 250 µM 

concentrations. The cells were incubated with the AO2-PMO for 1, 2, 3, and 5 days (Figure 5.5). 

The results show that AO2-PMO treatment downregulated BACE1 transcript at 100 µM and 250 

µM concentrations at all time points assessed. However, BACE1 downregulation was much less 

than that induced by AO2, the 2’-OMePS counterpart. The highest downregulation observed with 

AO2-PMO was around 60% after three days of incubation, whereas 89% reduction in BACE1 

levels was observed after one day of incubation with the 2’-OMePS AO of the same sequence. 
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Figure 5.5 (A). Representative RT-PCR analysis (of three replicates) of the BACE1 and GAPDH transcripts 

after treatment of HEK293 cells with AO2-PMO targeting exon 2 for 1, 2, 3, and 5 days at 100 µM and 250 µM. FL, 

full-length; UT, untreated; SCR, scrambled sequence; GAPDH was used as a loading control. The gel images were 

cropped , however the original images are shown in Figure C.5 (Appendix C). (B). Densitometry analysis of BACE1 

transcript amplicons derived from transfected HEK293 cells.  

5.4.3 Evaluation of the Mechanism of Action of AO2. 

As AO2 was found to be the most effective candidate showing dose-dependent downregulation of 

the BACE1 transcript, AO2 was further investigated for the mechanism of action. While AO2 was 

designed to target the splicing enhancer region of BACE1 exon 2 and induce exon 2 skipping, 

exon-skipping was not observed as predicted, and we investigated the possible degradation of the 

exon 2-skipped transcript by non-sense mediated decay. Other regions of the BACE1 transcript 
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(exons 2–8, 3–8, and 4–9) were amplified, confirming reduced exon 1-4 transcript (Figure 5.6) 

and specifically reduced exon 1–2 transcript as the BACE1 transcript was not downregulated from 

exons 3–9 (Figure 5.6). This is not indicative of exon 2 skipping and subsequent degradation of 

the skipped product by nonsense-mediated decay. 

 
Figure 5.6 Representative RT-PCR analysis of the BACE1 and GAPDH transcripts (of three replicates) after 

treatment of HEK293 cells with AO2 targeting exons 2 at 400 nM, 200 nM, 100 nM, and 50 nM. Specific regions of 

the RNA were amplified using different primer sets. Exons 1–4 were amplified using primer set Ex1F-Ex4R, exons 

2–8 were amplified using primer set Ex2F-Ex8R, exons 3–8 were amplified using primer set Ex3F-Ex8R, and exons 

4–9 were amplified using primer set Ex4F-Ex9R. FL, full-length; UT, untreated; SCR, scrambled sequence; 

GAPDH was used as a loading control. The gel images were cropped to highlight the BACE1 specific products and 

the corresponding house-keeping gene control GAPDH. The original images are shown in Figure C.6 (Appendix C). 

5.4.4 Evaluation of BACE1 Protein Downregulation. 

The potential for of AO2 to downregulate BACE1 protein was evaluated y Western blotting of 

protein extracts from HEK293 cells, 24 h after transfection (Figure 5.7). Briefly, AO2 (400 nM) 

treated HEK293 cells were incubated for 24 h before collection. The cell pellet was collected and 

lysed with SDS lysis buffer. The proteins were separated on a 10% separating and 5% stacking gel 

and transferred onto a nitrocellulose membrane. The membrane was incubated with 1:500 dilution 

of the BACE1 antibody overnight at 4 °C, and 1:5000 anti-rabbit HRP secondary antibody for 1 h 

at room temperature. The total protein loading was evaluated using a loading control, GAPDH. 

The membrane was incubated with 1:1000 GAPDH antibody overnight at 4 °C, followed by 
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1:5000 anti-rabbit HRP secondary antibody. The antibodies were detected using the Clarity 

Western ECL detection kit (Biorad) and the chemiluminescence protocol on the Fusion Fx gel 

documentation system (Vilber Lourmat). The Western blot analysis showed that there was 45% 

downregulation of BACE1 in cells, 24 h after AO2 transfection. 

 
Figure 5.7 (A). Representative Western blot protein analysis of the BACE1 and GAPDH proteins, 24h after 

transfection with AO2, targeting exon 2, at 400 nM in HEK293 cells. FL, full-length; UT, untreated; SCR, 

scrambled sequence; GAPDH was used as a loading control. The gel images were cropped, however, the original 

images are shown in Figure C.7 (Appendix C). (B). Densitometry analysis of protein extracts from HEK293 cells, 24 

h after AO transfection. 

5.5 Discussion 

A steric blocking AO that partially downregulates BACE1 protein expression has been developed 

in this study. Antisense oligonucleotides (AOs) were designed to target regions in exons 2, 3, and 

8 to induce the respective exon-skipping by targeting the splicing factors binding sites to disrupt 

open reading frame, resulting in premature termination codons in exons 3, 4, and 9, respectively. 

Similarly, AOs were also designed to target regions in exons 4 and 6 to induce skipping of these 

exons that encode important functional domains required for β-secretase activity. All the AOs 

(AO1-8) targeting exons 2 and 3 of the BACE1 transcript downregulated BACE1 transcript to 

various degrees, of which AO2 and AO6 were found to be the most effective; however, these AOs 

did not show the predicted exon-skipping product. Notably, AOs (AO9, AO11, AO12, AO13, 

AO15, AO17, AO18, and AO20) targeting exons 4 and 6 induced exon-skipping as predicted, but 
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AO12 and AO13 targeting BACE1 exon 4 were most effective at inducing the transcript product 

of 763 bp, missing exon 4. 

This study used 2’-OMePS AOs for systematic screening of AO sequences to downregulate the 

BACE1 transcript, with the lead AO sequence later evaluated as a PMO. Both 2’-OMePS and PMO 

chemistries have been well-established for the use in vitro, as well as in vivo for developing splice 

modulating therapeutics [24,25]. Negatively charged 2’-OMePS oligonucleotides are economical 

to synthesise and available commercially from several manufacturers. The PMO is a neutrally 

charged oligonucleotide; however, large scale production of PMO is challenging due to difficulties 

in its synthesis that is not compatible with standard phosphoramidite chemistry. Unlike 2’OMePS 

chemistry, the PMO chemistry also has shown an excellent safety profile and is used clinically. 

Therefore, while the 2’-OMePS chemistry is used for AO sequence screening purposes, the most 

effective AO sequences are later tested as PMOs. In our study, the best 2’-OMePS AO sequence 

(AO2) efficiently downregulated the BACE1 transcript but, when this sequence was tested as a 

PMO, it was found to be less effective at inducing exon skipping and transcript downregulation. 

The AO2 sequence is a G-rich oligonucleotide sequence, and we speculate that the difference 

observed in the efficiency of the 2’-OMePS AO and the PMO AO may be due to the PMOs forming 

G-quadruplex structures, while the 2’-OMePS sequence does not, which may explain the lower 

efficiency of the same sequence with a PMO chemistry. However, although unlikely the lack of 

PMO effect may also be due to an experimental issue with electroporation of the PMO. To confirm 

if the lack of effect is real or due to an experimental issue, the 2’-OMeOS sequence would also 

have to be electroporated alongside the PMO.  

The AOs in this study were designed to target selected exons for exclusion during pre-mRNA 

processing in order to reduce the expression of functional BACE1 protein. The lead AO candidate, 
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AO2, showed downregulation of BACE1 mRNA, and we predicted that AO2-mediated BACE1 

mRNA downregulation might be due to nonsense-mediated decay, a result of reading frame 

disruption and induction of a premature stop codon [26]. Amplification of the isolated RNA after 

the treatment of the cells with AO2 showed that the downregulation of BACE1 mRNA was evident 

only in the exon 1–exon 2 region, but showed unchanged expression levels in the regions between 

exons 3–9 indicating that AO2-mediated BACE1 transcript downregulation may not be due to 

nonsense-mediated decay. We speculated that the potential reason for the downregulation of the 

exon 1–2 region might be due to a steric block imposed in this region that ultimately inhibits the 

translation. BACE1 protein analysis after AO2 treatment of HEK293 cells shows that there is a 

reduction in BACE1 level at 24 h (around 60% compared to UT). BACE1 has a half-life of over 

nine hours in cultured cells [5]; therefore, most of the inhibition is seen 24 h after AO2 treatment. 

Although we achieved close to 100% inhibition of the BACE1 mRNA, we could not see a similar 

level of BACE1 protein inhibition (only 45% inhibition at the protein level). The partial inhibition 

may be due to the regulation of BACE1 protein levels by mechanisms both at the transcriptional, 

translational, and post-translational levels [27]. As studies have shown that 5’-UTR region of the 

BACE1 has a role in regulating the BACE1 protein levels [27], reducing BACE1 mRNA may only 

have a small role in regulating BACE1 protein. The complete suppression of BACE1 may not be 

possible, but a partial reduction of BACE1 has been shown to improve amyloid neuropathology 

suggesting that a complete reduction of BACE1 is not required for beneficial effects [5,15,28]. 

Furthermore, BACE1 also has other substrates, and therefore, complete elimination of BACE1 

may have deleterious effects [15,28]. The reduction of BACE1 protein levels observed in the study 

should result in reduced beta-secretase activity. The beta-secretase activity can be measured using 

the beta-secretase activity to further validate this study.  
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5.6  Conclusion 

We have screened various AOs designed to induce BACE1 splice modulation. One potential 

candidate named AO2 targeting exon 2, potentially by a steric blocking mechanism, was found to 

be the most efficient in inhibiting BACE1 expression at the RNA and protein level in HEK293 

cells. Of the two chemistries evaluated for this application, the 2’-OMePS chemistry was found to 

be far more efficient, compared with the PMO chemistry, yielding close to 90% BACE1 transcript 

downregulation and resulted in 45% downregulation of the BACE1 protein. Although further 

validation of AO2 in vivo and its effect on Aβ production is required to ensure the applicability of 

this molecule in mitigating AD, we believe that partial inhibition of BACE1 protein levels 

achieved here could be used as a potential preventative strategy for people at high risk of 

developing AD. 
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Chapter 6 MAPT 

6.1 Introduction 

The aggregation of the hyperphosphorylated tau protein encoded by the gene microtubule-

associated protein tau (MAPT) leading to the formation of neurofibrillary tangles has been 

implicated in a variety of tauopathies including Alzheimer’s disease (AD), frontotemporal 

dementia, Pick disease, argyrophilic grain disease, progressive supranuclear palsy and corticobasal 

degeneration (1), and tau levels are elevated in the cerebrospinal fluid (CSF) of AD patients. 

Although neurofibrillary tangles are a hallmark of AD, most of the drugs development initiatives 

target the Aβ pathway. However, with the failure of the drug molecules targeting the Aβ pathway, 

the focus is now shifting towards targeting hyperphosphorylated tau. One approach is the 

development of AOs against MAPT to reduce the production of hyperphosphorylated tau. A 

gapmer (RNase H mediated mRNA degradation), AO named MAPTRX, developed by IONIS 

Pharmaceuticals is currently being tested in Phase II clinical trials (2). Another study evaluated 

PMO oligomers for downregulating tau expression in human neuroblastoma cells using splice 

modulation (3). Although tau is believed to be very important in stabilising microtubules and that 

neurodegeneration has been attributed to loss of this function, mouse models have shown that tau 

knockout is well tolerated and these mice show minor motor phenotypes that develop after 12-16 

months (4). Furthermore, reducing tau levels in adult mice results in no behavioural or 

neuroanatomical abnormalities, indicating that there may be other microtubule-associated proteins 

that can compensate for the loss of tau in microtubule stabilisation (4, 5). In addition, the reduction 
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in tau monomers may result in depolymerisation of the paired helical filaments to maintain 

equilibrium (5). 

 
Figure 6.1 Exon map of MAPT isoforms found in the human brain showing the size of the exons and the 

reading frame. The rectangles represent in-frame exons, whereas the arrows indicate codons that are disrupted by 

exon junctions. The codons at the start and end of each in-frame and out-of-frame exon are represented by the 

letters above the rectangles and arrows. 

6.2 Aim 

To develop novel DNAzymes and 2’-O-Methyl PS RNA-modified splice-modulating AOs 

targeting various MAPT exons for efficient downregulation of tau protein levels. 
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6.3 Methods 

6.3.1 DNAzyme and antisense oligonucleotides 

DNAzymes with stem-loop conformation were designed for the selected exons (sequences in 

Table D.3 and exon map shown in Figure 6.1) in line with our previous work on antimiRzymes 

(6), and the oligonucleotides were purchased from Integrated DNA Technologies (IDT, 

Singapore). The AOs (2’-OMePS AOs) were synthesised in-house on the AKTA Oligopilot 10 

synthesiser (GE Healthcare Life Sciences) using standard phosphoramidite chemistry at 1 µmole 

scale (exon map shown in Figure 6.1 and AO names and their sequences are listed in Table D.6). 

The synthesised AOs were deprotected by treatment with 1 mL ammonium hydroxide (Sigma; 

Cat# 221228-500mL) overnight at 55°C and were purified by desalting using the illustra NAP-10 

columns (GE Healthcare; Cat# 45-000-153) according to the manufacturer’s protocol and verified 

by HPLC. 

6.3.2 Cell culture and transfection of AOs and DNAzymes 

Cell cultures media and supplements were purchased from (Life technologies, Australia) unless 

specified. The SH-SY5Y cells were obtained from Cell Bank Australia (Kindly provided by Prof. 

Sue Fletcher and Prof. Steve Wilton). The SH-SY5Y cells were propagated in Dulbecco's modified 

Eagle's F12 medium supplemented with 10% Fetal Bovine Serum (FBS) (Serana; Cat# FBS-AU-

015) in a humidified atmosphere at 37°C incubator with 5% CO2. Cells were maintained until 70-

90% confluent and then seeded onto plates or flasks for transfections. Transfections were 

performed in 24 well-plate formats seeded with approximately 70,000 cells/well for RNA 

transcript analysis. Transfections were also performed in T25cm2 flasks seeded with 

approximately 875,000 cells for protein analysis. The cells were seeded one day before transfecting 

with the DNAzymes or 2’-OMe-PS AOs complexed with Lipofectamine 3000 transfection reagent 
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(ThermoFisher Scientific; Cat# L3000015) as per the manufacturer’s protocol. Transfection were 

carried out for 24 hours before harvesting RNA for transcript analysis. For protein analysis, 

transfection was carried out 24 h, 48 h (re-transfected at 24h) and six days (re-transfected at 24 h, 

and 48 h) before collecting the cell pellet. 

6.3.3 RT-PCR analysis of AOs and DNAzymes treatment 

RNA was extracted using Bioline Isolate II RNA MiniPrep Kit (Bioline; Cat# BIO-52073) 

following the manufacturer’s protocol. Total RNA (50 ng) was analysed using primer sets 

(purchased from IDT, Singapore) listed in Appendix D (Table D.1), Superscript III One-Step RT-

PCR System (ThermoFisher Scientific; Cat# 12574026) and reaction conditions are given in the 

Appendix D (Table D.2). GAPDH was used as a housekeeping control and the primer set 

(purchased from IDT), and RT-PCR conditions for GAPDH are given in Appendix D (Table D.1 

and Table D.2). The products were separated on a 2% agarose gel in Tris-acetate-EDTA buffer, 

stained with Red Safe (iNtRON Biotechnology; Cat# 21141) and destained with water before 

being visualised with Fusion Fx gel documentation system (Vilber Lourmat). 

6.3.4 Densitometry analysis 

Densitometry (measuring intensity after image capture) of the RT-PCR products on the gels was 

performed using Image J Software (7). The intensity of the MAPT product bands from different 

DNAzyme or AO treated samples was measured and normalised to the intensity of the 

corresponding GAPDH products before comparing that of the untreated samples. The percentage 

of MAPT transcript knockdown in SH-SY5Y cells was interpreted as the activity of DNAzyme or 

AO. 
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6.3.5 In vitro cleavage assay using DNAzymes 

The cleavage efficiency of the DNAzymes in vitro was tested using an in vitro cleavage assay. 4.4 

µL of 20 µM DNAzyme was incubated with an equi-molar concentration of FAM-conjugated 

MAPT RNA (5’-FAM-   UGUGGCUCAUUAGGCAACAUCCAUCAUAAACCAG-3’) in 5 µL 

of buffer containing Mg2+ divalent cations (10 mM MgCl2) at 37°C. The reaction was stopped by 

adding 10 µL of formamide to 10 µL of the reaction mixture at 0, 30 mins, 60 mins and 2 h. 

Scrambled DNAzyme RNV563-SCR (AACATCCTCGTTGTAGCTAGCCTCATAAAC), 

RNV563-Mut1 (GTTTATGAAACTAGCTACAACGAGGATGTT), and RNV563-Mut2 

(GTTTATGAGGCTAAATACAACGAGGATGTT) were used as negative controls, and the 

untreated (UT) samples did not have any DNAzyme added. The underlined bases are the mutated 

bases and the two double mutants RNV563-Mut1, and RNV 563-Mut2 were designed according 

to previous reports (8, 9). The reaction mixtures were separated on a 15% polyacrylamide gel 

containing 7M urea and run in a EDTA containing tris buffer for 50 mins at 13 W. The gel was 

visualised unstained and the image captured using the Fusion Fx gel documentation system (Vilber 

Lourmat). 

6.3.6 Western Blot analysis 

Western Blot was performed on the protein extracts from SH-SY5Y cells transfected with the lead  

AO candidate to evaluate the effect of the AO on the MAPT protein in comparison to the scrambled 

AO sequence. Cells were lysed in lysis buffer (100 µL/ sample) containing 12% SDS, 100 mM 

Tris-HCl, pH 6.8, 10% glycerol with loading buffer containing 1.875 µL bromophenol blue, 4.688 

µL dithiothreitol and 1.5 µL protease inhibitor added per 100 µL of samples. Cell pellets were 

sonicated six times for 3 s pulses and denatured at 95°C for 5 mins before snap-cooling on ice. 

Protein concentrations were determined to ensure equal protein loading with Coomassie blue 



170 

staining. The samples were loaded onto a PAGE gel with 10% separating gel containing 400 mM 

Tris-HCL, pH8.8 and 0.1% SDS and 5% stacking gel containing 130 mM Tris-HCL, pH6.8, 0.1% 

SDS and 0.004% bromophenol blue in a Tris-glycine-SDS running buffer before being transferred 

to a 0.2 µm nitrocellulose membrane (Biorad; Cat# 162-0112) in a Tris-glycine-methanol transfer 

buffer. The membranes were blocked in 5% skim milk in Tris-buffered saline with 0.1% Tween 

for 1 h. The membrane was washed three times in Tris-buffered saline with 0.1% Tween for 20 

mins each, and the membrane was incubated in primary antibodies overnight at 4 °C, 1:2000 anti-

total tau (Abcam, Cat# ab76128) and 1:1000 anti-GAPDH (ThermoFisher Scientific, Cat# PA1-

988). After washing the membrane three times in Tris-buffered saline with 0.1% Tween for 20 

mins each, the membrane was incubated in the secondary antibody (1:5000 anti-rabbit HRP, 

Thermofisher Scientific, Cat# 31460) for 1 h at room temperature before washing three times in 

Tris-buffered saline with 0.1% Tween for 20 mins each. The antibodies were detected using a 

Clarity Western ECL detection kit (Biorad; Cat# 1705060) according to the manufacturer’s 

protocol and visualised using the chemiluminescence protocol on the Fusion Fx gel documentation 

system (Vilber Lourmat). 

6.4 Results 

6.4.1 Design and screening of DNAzymes targeting MAPT mRNA 

Arm-loop-arm type non-modified DNAzymes with the 10-23 catalytic motif were designed to 

target selected exons of the MAPT transcript (Table D.3; Appendix D). The sequences of the 

catalytic regions were pre-fixed according to previous reports (10, 11) and the arm regions were 

designed to be specific and complementary to the target MAPT mRNA sequences. Initially, the 

catalytic activities of all of the DNAzymes designed to target MAPT mRNA were screened in SH-
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SY5Y neuroblastoma cells by transfecting at two different concentrations (400 nM and 50 nM) for 

24 h. RNA was extracted from the cell lysate, and the integrity of the MAPT transcript was assessed 

by performing RT-PCR. Dose-dependent reduction of the full-length MAPT transcript was 

observed at various levels after treatment with RNV559, RNV561, RNV563, RNV569, RNV570, 

and RNV571 DNAzyme candidates (Figure D.1; Appendix D). The best MAPT transcript 

knockdown was induced by RNV559, RNV561, RNV563 and RNV569 DNAzymes at 400 nM. 

The catalytic activities of RNV559, RNV561, RNV563 and RNV569 were further validated 

against MAPT mRNA in SH-SY5Y cells at four different concentrations (50 nM, 100 nM, 200 

nM, and 400 nM) (Figure 6.2). DNAzyme candidate RNV563 targeting exon 11 of the MAPT 

mRNA showed highest activity with 58% knockdown of MAPT followed by RNV561 (26%) 

(Figure 6.2; densitometry analysis in Appendix D, Table D.4). 

 
Figure 6.2 Representative RT-PCR analysis of the MAPT and GAPDH transcripts (of three replicates) from 

SH-SY5Y cells after transfection  with DNAzyme RNV559, RNV561, RNV563 and RNV569 at 400 nM, 200 nM, 100 

nM and 50 nM concentrations. FL, full-length; UT, untreated; GAPDH was used as a loading control. The gel 

images were cropped, however, the original images are shown in Figure D.2 (Appendix D). 
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6.4.2 Design and screening of second-generation DNAzymes targeting MAPT 

mRNA 

Based on the initial screening outputs, the best performing DNAzyme RNV563 was selected for 

further modifications by systematically increasing and decreasing the binding arm lengths. Many 

studies have shown that modifying the length of the hybridisation arms on either side of the 

catalytic motif can increase the binding affinity and efficacy (12-14). In our study, the first 

generation of DNAzymes initially had eight nucleotides on one arm and seven on the other. Several 

studies showed that the optimal arm lengths vary from 7 to 10 nucleotides long. Therefore, the 

length of RNV563 was increased by one to three nucleotides at the end of both arms and named 

RNV610, RNV611 and RNV612 (Table 6.1), and then the activity of the modified DNAzymes 

was verified. Also, we decreased the arm-length of our first-generation DNAzyme RNV563 and 

verified the activity of the shorter DNAzymes by removing one and two nucleotides from both the 

ends (RNV608 and RNV609) (Table 6.1). The catalytic activities of these second-generation 

DNAzyme candidates were analysed in SH-SY5Y as described above. The transfections were 

repeated at least twice. Decreasing the length of the RNV563 completely abolished the DNAzyme 

activity of RNV608 (0%) and RNV609 (0%) even at 600 nM relative to the parent DNAzyme 

RNV563 (56%). Furthermore, increasing the length of the RNV563 also reduced the DNAzyme 

activity of RNV610 (11%), RNV611 (1%) and RNV612 (6%) (Figure D.3 and Table D.5). These 

results showed that increasing and decreasing the arm length abolished the DNAzyme RNV563 

activity of the original RNV563 in SH-SY5Y cells. 

Table 6.1 Second-generation DNAzymes derived from the first-generation parent DNAzyme RNV563 and their 

sequences. 

Name Sequence 5’→3’ 

RNV563 GTTTATGA GGCTAGCTACAACGA GGATGTT 
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Name Sequence 5’→3’ 

RNV608 TTTATGA GGCTAGCTACAACGA GGATGT 

RNV609 TTATGA GGCTAGCTACAACGA GGATG 

RNV610 GGTTTATGA GGCTAGCTACAACGA GGATGTTG 

RNV611 TGGTTTATGA GGCTAGCTACAACGA GGATGTTGC 

RNV612 CTGGTTTATGA GGCTAGCTACAACGA GGATGTTGCC 

 

6.4.3 In vitro cleavage of MAPT RNA template 

To further verify and understand the catalytic activity of DNAzymes targeting the MAPT 

transcript, we performed the cleavage assay in vitro using a synthetic fluorescein dye (FAM)-

labelled RNA target specific to the exon 11 region of the MAPT transcript. The experiments were 

performed by incubating DNAzymes RNV563, and their second-generation variants with FAM-

labelled RNA template in the presence of divalent metal ions and the products were separated and 

analysed on a denaturing polyacrylamide gel. Briefly, 1.76 µM DNAzymes were incubated with 

1.76 µM FAM-conjugated MAPT RNA in the presence of Mg2+ for 30 min, 60 min and 120 min 

at 37°C. The reactions were stopped by adding 10 µL of formamide solution. The products were 

then separated on a 15% denaturing polyacrylamide gel and visualised using the Fusion FX gel 

documentation system (Vilber Lourmat). The cleavage of the 34-mer full-length FAM-conjugated 

RNA target is expected to yield a 22 nucleotides long product. A scrambled (SCR) sequence and 

RNV563 mutants with different mutations (RNV563Mut1 and RNV563Mut2) within the catalytic 

region of RNV563 were used as negative controls in parallel, and an untreated (UT) sample with 

no DNAzyme was also included. DNAzymes RNV563, RNV610, RNV611 and RNV612 showed 

efficient cleavage of the MAPT RNA template in vitro, whereas the RNV608 and RNV609 with 

decreased arm lengths failed to yield any RNA cleavage (Figure 6.3). Notably, the in vitro cleavage 

rates of the DNAzymes with increased arm lengths, RNV610, RNV611 and RNV612 were faster 
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than that of their parent DNAzyme, RNV563. As expected, the scrambled control and the mutant 

RNV563 did not show any cleavage (Figure 6.3). 

 
Figure 6.3 In vitro cleavage of the FAM-conjugated MAPT RNA template by RNV563 and its derivatives. FL 

RNA, full-length; FAM-conjugated RNA; cleaved RNA; the cleaved FAM-conjugated MAPT RNA (22 nucleotides 

long). The FAM- conjugated template RNA is a small region of the MAPT transcript complementary to the 

hybridisation arms of the DNAzymes. The gel images were cropped, however, the original images are shown in 

Figure D.4 (Appendix D). 
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6.4.4 Evaluation of splice modulating AOs to induce exon-skipping in the MAPT 

transcript. 

Firstly, we evaluated the exon-skipping efficiency of all AOs targeting different exons (Table D.6) 

in vitro at two different concentrations (400 nM and 50 nM). The results demonstrated that AO4, 

AO5, AO6 and AO19 targeting exons 4, 5, and 19 resulted in exon-skipping and downregulation 

of the MAPT transcript in vitro (Figure D.5, Appendix D). The AO4, AO5, AO6, and AO19 were 

further validated at 400 nM, 200 nM, 100 nM and 50 nM (Figure 6.4; see Figure D.7 for 

densitometry analysis, Appendix D). The results showed that AO4 (94%), AO5 (88%), AO6 (92%) 

and AO19 (86%) all efficiently downregulated MAPT transcript levels (Figure 6.4) even at the 

lowest concentration (50 nM) tested. The AO4 (13%) and AO5 (24%) induced MAPT exon 4 

skipping. The transfection of SH-SY5Y cells with AO6 resulted in MAPT exon 5 skipping (40%) 

at the50 nM concentration (Figure 6.4). The AOs 4, 5, 6, and 19 were further tested at lower 

concentrations (50 nM, 25 nM, 12.5 nM and 6.25 nM) with GAPDH as a housekeeping control as 

they showed downregulation of the MAPT transcript at the higher concentrations (Figure 6.4; see 

Figure D.7 for densitometry analysis, Appendix D). Notably, AO4 (20%) and AO5 (32%) induced 

MAPT exon 4 skipping and were most efficient at 25 nM. In addition, AO4 (96%) and AO5 (77%) 

also resulted in dose-dependent downregulation of the MAPT transcript and were most efficient at 

50 nM. Although AO19 downregulated the MAPT transcript, it failed to demonstrate dose-

dependent inhibition. AO4 was further validated for inhibition of the expression of MAPT protein 

as it was found to be the most effective candidate at inhibiting MAPT transcript. 



176 

 
Figure 6.4 A. Representative RT-PCR analysis of the MAPT transcripts (from three replicates) from SH-SY5Y 

cells after treatment with AO4, AO5, AO6, and AO19 at 400 nM, 200 nM, 100 nM and 50 nM concentrations. B. 

Representative RT-PCR analysis of the MAPT and GAPDH transcripts from SH-SY5Y cells after treatment with 

AO4, AO5, AO6, and AO19 at 50 nM, 25 nM, 12.5 nM and 6.25 nM concentrations. AO4 and AO5 target exon 4, 

AO6 targets exon 5, and AO19 targets exon 12 of the MAPT transcript. FL, full-length; UT, untreated; SCR, 

scrambled sequence; GAPDH was used as a housekeeping control. The gel images were cropped, however, the 

original images are shown in Figure D.6 (Appendix D). 

6.4.5 Evaluation of tau protein downregulation using AO4. 

To further evaluate the ability of AO4 to inhibit MAPT, the total tau protein levels were evaluated 

in SH-SY5Y cells 24 h, 48 h and six days after the transfection with AO4. Briefly, AO4 treated 

SH-SY5Y cells were incubated for 24 h, 48 h, and 6 days before collection of the cells. The cell 

pellet was collected and lysed, and the protein extracts were separated on a 10% separating gel and 
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transferred onto a nitrocellulose membrane. The membrane was incubated with 1:2000 dilution of 

the tau (total tau) antibody overnight at 4°. The results clearly demonstrated that there was 

downregulation of the MAPT gene transcript and tau protein in cells 24 h, 48 h and six days after 

AO4 treatment, however, the highest tau protein downregulation (70%) was seen six days after 

transfection (Figure 6.5; see Figure D.9 for densitometry analysis, Appendix D). A shorter protein 

product (around 48 kDa) can be observed in the 24 h and 48 h lanes.   

 
Figure 6.5 A. Representative RT-PCR analysis of the MAPT transcripts (from three replicates) from SH-SY5Y 

cells after treatment with AO4 at 50 nM and incubation of the cells with AO for 24 h, 48 h and six days. B. 

Representative protein analysis of the MAPT and GAPDH from SH-SY5Y cells after treatment with AO4 at 50 nM 

and incubation of the cells with AO for 24 h, 48 h and six days. The top band in the MAPT western blot is the total 

tau while the shorter band may correspond to the exon-skipped tau protein. FL, full-length; UT, untreated; SCR, 

scrambled sequence; GAPDH was used as a housekeeping control. The gel images were cropped, however, the 

original images are shown in Figure D.8 (Appendix D). 
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6.5 Discussion 

Hyperphosphorylated tau neurofibrillary tangle formation is believed to be a pathological hallmark 

for various tauopathies, including AD. Although some early work focused on developing nucleic 

acid-based MAPT inhibitors, we revisited this target to develop of novel nucleic acid molecules 

for efficient tau inhibition. We screened various DNAzymes targeting different MAPT exons at 

two concentrations in SH-SY5Y cells (Figure D.1, Appendix D) and identified four candidates 

RNV559, RNV561, RNV563 and RNV569 that downregulated MAPT transcripts efficiently, by 

targeting exons 9, 11, and 13. Further systematic evaluation of the DNAzymes at 400 nM, 200 

nM, 100 nM and 50 nM transfection concentrations identified RNV563 as the most efficient 

DNAzyme candidate. The variable efficiencies at downregulating MAPT transcripts were similar 

to those observed in previous studies including our work on DNAzymes targeting various regions 

of the ITGA4 mRNA (9), and others by Vester et al (2003) (12, 15) and Kurreck et al. (2002)(16). 

These studies have suggested that the DNAzyme’s catalytic cleavage efficiency may vary due to 

its dependence on the RNA tertiary structure. The RNA tertiary structure affects the accessibility 

of the purine-pyrimidine cleavage sites to the DNAzyme and may differ between different regions 

of the mRNA, which may explain the differences observed in cleavage efficiencies. 

The target binding arm of the DNAzyme is an important factor in determining cleavage efficiency. 

In our previously reported ITGA4-targeting DNAzyme RNV143, increasing the arm length did not 

have any significant effect on its cleavage efficiency (9). However, we tested the effect of 

increasing and decreasing the arm length of the most effective DNAzyme RNV563 on cleavage 

efficiency. Notably, increasing and decreasing the arm lengths significantly decreased the target 

cleavage efficiency in SH-SY5Y cells. In contrast, all candidates with increased arm lengths 

efficiently cleaved the corresponding shorter regions of MAPT synthetic RNA target in vitro in the 
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presence of divalent cation, although the candidates with decreased arm lengths failed to induce 

any cleavage. We speculate that this might be due to the structural variability of MAPT RNA in 

the cells compared to that of the shorter synthetic target. 

We also identified an exon-skipping AO that efficiently downregulates the MAPT transcript in this 

study. The AOs were designed to target regions in exons 1,4,5,7, 9, and 12. Exon 1 contains the 

initiation codon, and skipping of exons 5,7,9 and 12 would induce a frameshift and generate a 

premature stop codon (in exon 13,9,10/11, and 12 respectively). Inducing exon 4 skipping does 

not change the reading frame; however, the exon encodes a structurally important domain (17). 

Furthermore, two amino acids, serine 113 and threonine 123 that are phosphorylated in AD are 

found within exon 4, supporting the importance of exon 4 skipping as a therapeutic strategy for 

AD (18, 19). Antisense oligonucleotides (AOs) were designed to target these regions and block 

the binding of splicing factors. The AOs that targeted regions in exon 4 (AO4 and AO5) and exon 

5 (AO6) induced exon-skipping but also induced downregulation of the MAPT transcript 

simultaneously. The AO that targeted exon 12 (AO19) resulted in downregulation of the MAPT 

transcript but the effect was not dose-dependent. Although the mechanism for the MAPT 

downregulation using AO4, AO5 and AO6 needs to be further evaluated, we speculate that this 

may be due to steric bulkiness imposed by the AOs blocking translation. 

The most effective AO candidate AO4 targeting exon 4, was highly efficient in downregulating 

the MAPT transcript compared to the lead DNAzyme candidate RNV563 which was only effective 

at higher concentrations (58% knockdown at 400 nM), whereas AO4 was very effective even at 

concentration as low as 6.25 nM (>60% knockdown). AO4 was therefore further validated by 

assessing the tau protein in AO4 transfected SH-SY5Y cells. Tau levels were reduced at the 24 h 

and 48 h timepoints, an effect that lasted at least 3 days after transfection with AO. Tau has a 
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relatively long half-life of about 12-14 h (20), explaining why the inhibition is seen at 24 h and 48 

h after AO4 treatment. A shorter protein product was observed at 24 h and 48 h that was around 

48 kDa (around 6-7 kDa shorter than the full-length product). The shorter protein product does not 

correspond to the exon-skipped band as the exon-skipped product should only be 2-3 kDa smaller 

than the full-length product. However, it may correspond to the exon-skipped product if the larger 

difference in size may be attributed to the loss of post-translational modifications in addition to 

the amino acids skipped from the full-length product. 

6.6 Conclusions 

In summary, we have successfully developed an arm-loop-arm type DNAzyme, RNV563 with 10-

23 catalytic motif that cleaves the MAPT transcript both in vitro and in SH-SY5Y cells, identified 

by screening different DNAzyme targeting various exons of the MAPT gene transcript. We have 

also identified a 2’-OMePS AO (AO4) that induces efficient exon 4 skipping and downregulates 

MAPT transcript through RNase H activation in SH-SY5Y cells at concentrations as low as 6.25 

nM, and downregulated tau protein by more than 70%. We believe that our findings will contribute 

towards tau targeting drug development, and help to improve the knowledge in the field. 
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Final Remarks and Conclusions 

Recent clinical success has demonstrated the potential of nucleic acid-based technologies as 

therapeutic molecules for various diseases. RNA and protein targets implicated in the pathology 

of various diseases can be manipulated by using synthetic nucleic acid-based therapeutic and 

diagnostic strategies. Nucleic acid technologies have several advantages over antibodies, including 

low production cost, freedom to incorporate chemically modifications and little or no 

immunogenicity. This thesis aimed to design and evaluate DNAzymes and splice modulating AOs 

to identify novel therapeutic molecules as research tools for tackling neurological diseases, in 

particular, for MS and AD. 

I have designed DNAzymes to downregulate ITGA4 RNA transcript towards tackling 

inflammation in MS. RNV143, a DNAzyme targeting exon 9 of ITGA4 was found to be the most 

efficient at downregulating ITGA4 RNA. RNV143 modified with an inverted thymidine, was 

found to be very stable against nuclease degradation. Modifying the DNAzyme 143 by increasing 

its arm lengths by one, two or three nucleotides at each ends did not really increase the cleavage 

efficiency of the parent DNAzyme RNV143. Further validation of this DNAzyme at the protein 

level against its clinically approved antibody counterpart, Natalizumab is required to evaluate the 

clinical benefits for further development. 

I have also designed and synthesised AOs and DNAzymes for AD against APP, BACE1 and MAPT 

RNA targets that are implicated in AD pathologies. We identified a cocktail of two AOs that could 

induce exon 16 and exon 17 skipping of APP as a treatment strategy for FAD; however, the AO 

cocktail targeting exon 17 was not able to downregulate APP protein levels. Furthermore, I have 
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identified a BACE1 AO (AO2) that could efficiently downregulate BACE1 at the mRNA and 

protein level and the effect of this AO candidate on the Aβ levels needs to be validated. 

I designed DNAzymes and AOs that can efficiently downregulate MAPT at the mRNA level. The 

most efficient DNAzyme and AO at downregulating MAPT mRNA were RNV563 targeting exon 

13, and AO4 targeting exon 4 respectively. AO4 was found to be more efficient compared to the 

DNAzyme at lower concentrations and also downregulated MAPT at the protein level. The effect 

of AO4 on the formation of neurofibrillary tangles needs to be further validated for clinical 

viability. 

The best candidates that have been identified in my projects need to be further tested for off-target 

effects through RNA sequencing. The best candidates that have been identified in this thesis are 

DNA sequences and 2’OMePS sequences and therefore are not suitable for clinical use in their 

current chemistries. The DNAzymes identified for ITGA4 and MAPT are DNA sequences and the 

best sequences identified had no chemical modifications and therefore are easily degraded by 

nucleases and are not clinically viable in their current form. An inverted thymidine chemical 

modification was introduced to the DNAzymes, however this reduced the efficacy of the parent 

DNAzyme and the PS modification abolished the DNAzyme activity completely. Therefore, for 

the DNAzymes to have potential clinically, other chemistries not tested in these studies need to be 

explored to find the best chemistry that does not affect the efficacy but increases nuclease 

resistance. Similarly, the AOs identified for the BACE1 and MAPT project were 2’-OMePS 

sequences which are toxic and cannot be used clinically. The PMO modified sequences were not 

effective and therefore, other chemistries that are clinically safe to use need to be tested including 

2’-OMOE modifications. The sequences identified for the BACE1 and MAPT projects need to be 

delivered to the brain to be effective clinically and therefore conjugation strategies to different 
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molecules that allow the AOs to cross the BBB need to be explored and tested. For the DNAzymes 

and AOs identified in this thesis, the AOs effect in functional assays need to be validated. The 

DNAzyme candidate and AOs identified against MAPT needs to be further validated on its effect 

on the formation of neurofibrillary tangles while the AOs identified against BACE1 needs to be 

validated on its effect on the BACE1 activity as well as its effect on amyloid beta production. 

In conclusion, this thesis has identified novel DNAzymes and AOs against validated targets 

implicated in MS and AD. Currently used antibody-based therapeutic strategies for MS have many 

side effects, which can be limited by the application of nucleic acid therapeutic technologies. 

However, there is no cure for AD, and most of the current therapeutic strategies only treat the 

symptoms for temporary benefits. I hope that the DNAzymes and AOs targeting ITGA4, APP, 

BACE1 and MAPT presented in this work may be beneficial towards developing therapies for MS 

and AD or used as research tools to improve our knowledge on tackling these diseases. .
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Appendix A Supplementary data for 

Chapter 2 

A.1 Results 

 
Figure A.1 The structure of the DNAzyme RNV183 (A)  and LNA-3 predicted by mfold (B).1 183 was modified 

to develop LNA-3 by truncation of four residues at the 5’ end (highlighted in orange) and modification of bases as 

LNA (blue circles ). 
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Figure A.2 The  RT-PCR products after treatment with RNV143 is shown here. FL, full-length; CYCD was used 

as a loading control. [The gel in this figure is the original gel representing the gel in Figure 2.3 of the article. The 

cropped gel has been shown in Figure 2.3 due to non-specific bands that exist and other unimportant samples that 

exist between the desired samples.] 
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Figure A.3 In vitro cleavage of the FAM-conjugated ITGA4 RNA template composed of exon 9 region (34 

nucleotides) by RNV143 and its derivatives. FL RNA, full-length FAM-conjugated RNA; cleaved RNA, the cleaved 

FAM-conjugated ITGA4 RNA (18 nucleotides long). The FAM-conjugated template RNA is a small region of the 

ITGA4 transcript complementary to the hybridization arms of the DNAzymes of interest.  [The gels in this figure are 

the original gels representing the gels in Figure 2.5. For DNAzymes 143, 183 and 184 there are 5 time points (0, 15, 

30, 60 and 120 mins) in the original gels but these were cropped to include only 4 time points (0, 30, 60 and 120 mins 

with timepoint 15 mins excluded) in the article to ensure consistency with the data for the other DNAzymes. The order 

of the gels here are not the same as that represented in Figure 2.5 of the article and different experiments were run 

on different gel and therefore the data for each DNAzyme was cropped and arranged in the order seen in Figure 2.5 

of the article.] 
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Figure A.4 Phosphodiesterase degradation analysis of DNAzymes that showed high efficiency in the cleavage 

of ITGA4 RNA in vitro and knockdown of ITGA4 RNA in fibroblasts. [The gels in this figure are the original gels 

representing the gels in Figure 2.6. The order of the gels here are not the same as that represented in Figure 2.6 and 

different experiments were run on different gels and therefore the data for each DNAzyme was cropped and arranged 

in the order seen in Figure 2.6.] 
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Figure A.5 Human serum degradation analysis of DNAzymes that showed high efficiency in the cleavage of 

ITGA4 RNA in vitro and knockdown of ITGA4 RNA in fibroblasts. 

A.2 References 

1. M. Zuker, Nucleic Acids Res, 2003, 31, 3406-3415. 
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Appendix B Supplementary data for 

Chapter 4 

B.1 Results 

 
Figure B.1 Representative RT-PCR products of the APP transcript from HEK293 cells after treatment with 

AOs at 400 nM, and 50 nM concentrations. The RT-PCR products after treatment with AO1, AO2, AO3, AO4, AO5, 

AO6, AO7, AO9, and AO10 are shown here. FL, full-length; UT, untreated; SCR, scrambled sequence. 
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Figure B.2 Representative RT-PCR products of the APP transcript from HEK293 cells after treatment with 

AO cocktails at 400 nM, and 50 nM concentrations. The RT-PCR products after treatment with all combinations of 

AOs 1-10 as cocktails of two AOs are shown here. FL, full-length; UT, untreated; SCR, scrambled sequence. 
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Figure B.3 RT-PCR products of the APP transcript after treatment with the best working 2’-OMePS AO 

cocktails (AO2+AO8, AO9+AO1, AO9+AO2, AO9+AO10, AO10+AO1, AO10+AO2 and AO10+AO8) targeting 

exon 17 at 400 nM, 200 nM, 100 nM, 50 nM and 25 nM in HEK293 cells. FL, full-length; UT, untreated; SCR, 

scrambled sequence. [The gel in this figure is the original gel representing the gel in Figure 4.2. The cropped gel 

has been shown in Figure 4.2 of the article due to unwanted spaces and unimportant samples that exist on the gel.] 
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Figure B.4 RT-PCR products of the APP transcript after treatment with the best working 2’-OMePS AO 

cocktail, AO2+AO8, targeting exon 17 at two concentration ranges (range 1: 400 nM, 200 nM, 100 nM, 50 nM and 

25 nM, range 2: 50 nM, 25 nM, 12.5 nM, 5 nM and 2.5 nM) in HEK293 cells. FL, full-length; UT, untreated; SCR, 

scrambled sequence. [The gel in this figure is the original gel representing the gel in Figure 4.3. The cropped gel has 

been shown in Figure 4.3 of the article due to unwanted spaces and unimportant samples that exist on the gel.] 
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Figure B.5 RT-PCR products of the APP transcript after treatment with the best working 2’-OMePS AO 

cocktail, AO2+AO8, targeting exon 17 at 50 nM, 25 nM, 12.5 nM, 5 nM and 2.5 nM concentrations in HEK293 cells 

and normal primary fibroblasts. FL, full-length; UT, untreated; SCR, scrambled sequence. The gel images were 

cropped to highlight the APP specific products. [The gel in this figure is the original gel representing the gel in Figure 

4.4. The cropped gel has been shown in Figure 4.4 due to unwanted spaces and unimportant samples that exist on the 

gel.] 

 
Figure B.6 RT-PCR products of the APP transcript after treatment with the best working AO cocktail, 

AO2+AO8 with a PMO chemistry, targeting exon 17 at 100 µM and 250 µM concentrations in HEK293 cells after 

cocktail treatment for 1, 2, 3, 5 and 7 days. FL, full-length; UT, untreated; SCR, scrambled sequence. [The gel in 

this figure is the original gel representing the gel in Figure 4.5. The cropped gel has been shown in Figure 4.5 due 

to unwanted spaces and unimportant samples that exist on the gel.] 
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Figure B.7 A. RT-PCR products of the APP transcript after treatment with the best working AO cocktail, 

AO2+AO8 targeting exon 17 at 100 nM concentration after cocktail treatment for 24 h, 48 h and 3 days in HEK293 

cells. B. Western blot protein analysis of the APP and GAPDH proteins after treatment for 24 h, 48 h and 3 days of 

AO cocktail, AO2+AO8, at 100 nM in HEK293 cells. FL, full-length; UT, untreated; SCR, scrambled sequence. [The 

gel in this figure is the original gel representing the gel in Figure 4.6. The cropped gel has been shown in Figure 4.6 

due to unwanted spaces and unimportant samples that exist on the gel.]
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Appendix C Supplementary data for 

Chapter 5 

C.1 Methods 

Table C.1 The seeding density of HEK293 cells used for different assays. 

Assay 
Plate or Flask? Seeding density  

RNA Extraction 24 well plate 50,000 cells/well 

Western Blot T25cm2 flask 625,000 cells/flask 

Nucleofection 24 well plate 100,000 cells/well 

 

Table C.2 The primer sets used to amplify BACE1 transcript. 

Primer sets Primer pairs Primer Sequences Expected size 

Primer Set 1 
BACE1_Ex1Fa 

BACE1_Ex4R 

5’ GACAACCTGAGGGGCAAGTC 3’ 

5’ AACGTGGGTCTGCTTTACCA 3’ 
429 bp 

Primer Set 2 
BACE1_Ex2F 

BACE1_Ex8R 

5’ ACCAAAGTGAACCACGGAGG 3’ 

5’ TCTGGTAAAGCAGACCCACG 3’ 
968 bp 

Primer Set 3 
BACE1_4F 

BACE1_Ex9R 

5’  GGCAGCAGTAACTTTGCAGT 3’ 

5’ CCATAACAGTGCCCGTGGAT 3’ 

Variant A= 901 bp 

Variant B= 826 bp 

Variant C= 769 bp 

Primer Set 4 
BACE1_Ex3F 

BACE1_Ex8R 

5’ ACCTGGTAAGCATCCCCCAT 3’ 

5’ TCTGGTAAAGCAGACCCACG 3’ 

Variant A= 753 bp 

Variant B= 678 bp 

Variant C= 601 bp 

 

Table C.3 The primer sets used to amplify GAPDH transcript. 

GAPDH 

Primer  set 

Primer pairs Primer Sequences Expected 

product length 

Primer Set 1 GAPDH For 

GAPDH Rev 

5’ GGACTCATGACCACAGTCCATGC 3’  

5’ TTACTCCTTGGAGGCCATGTGGG 3’   

492 bp 
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Table C.4 The PCR conditions for each primer set 

Primer pairs  PCR Conditions 

BACE1 Primer 

set 

(25 ng each) 

BACE1_Ex1Fa 

BACE1_Ex4R 

Temperature Time  

55°C 30 min  

94°C 2 min  

94°C 30 s 30 cycles 

58°C 1 min 

68°C 2 min 

BACE1 Primer 

set 

(25 ng each) 

BACE1_4F 

BACE1_Ex9R 

Temperature Time  

55°C 30 min  

94°C 2 min  

94°C 30 s 28 cycles 

60°C 1 min 

68°C 2 min 

BACE1 Primer 

set 

(25 ng each) 

BACE1_3F 

BACE1_Ex8R 

Temperature Time  

55°C 30 min  

94°C 2 min  

94°C 30 s 30 cycles 

60°C 1 min 

68°C 2 min 

GAPDH Primer 

set (12.5 ng each) 

GAPDH For 

GAPDH Rev 

Temperature Time  

55°C 30 min  

94°C 2 min  

94°C 30 s 18 cycles 

60°C 1 min 

68°C 2 min 

 
Table C.5 The HPLC analysis of the most efficient AOs (AO2, AO5, AO6, AO8, AO12, and AO13). All the AO 

samples were run on a Ion-Exchange HPLC using (1M NaClO4, 25mM Tris-HCl pH 8 and water) as mobile phase. 

Sampl

e code 

IE-HPLC chromatogram 

AO2 

 

BACE1 Primer 

set 

(25 ng each) 

BACE1_Ex2F 

BACE1_Ex8R 

Temperature Time  

55°C 30 min  

94°C 2 min  

94°C 30 s 30 cycles 

55°C 1 min 

68°C 2 min 
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Sampl

e code 

IE-HPLC chromatogram 

AO5 

 
AO6 

 
AO8 

 
AO12 
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Sampl

e code 

IE-HPLC chromatogram 

AO13 
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C.2 Results 
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Figure C.1 The RT-PCR products after treatment with AO1, AO2, AO3, AO4, AO5, AO6, AO7, and AO8. The 

AOs were treated using a variety of transfection reagents including Lipofectamine 3000, Lipofectamine 2000, 

Lipofectamine RNAimax, and Lipofectin according to the manufacturer’s protocol. FL, full-length; SMN was used 

as a loading control; SCR, Scrambled or Gene tools control was used as a control. 
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Figure C.2 The RT-PCR products after treatment with AO9, AO10, AO11, AO12, AO13, AO14, AO15, AO16, 

AO17, AO18, AO19, AO20 and AO21. The AOs were treated using a variety of transfection reagents including 

Lipofectamine 3000 and Lipofectamine 2000 according to the manufacturer’s protocol. FL, full-length; GAPDH 

was used as a loading control; SCR, Scrambled or Gene tools control was used as a control. 
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Figure C.3 The RT-PCR products after treatment with AO2, AO5, AO6, AO8, AO12 and AO13. FL, full-

length; GAPDH was used as a loading control; SCR, Scrambled or Gene tools control was used as a control. [The 

gel in this figure is the original gel representing the gel in Figure 5.2. The cropped gel has been shown in Figure 5.2 

due to other unimportant samples that exist between the desired samples.] 
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Figure C.4 The RT-PCR products after treatment with AO2, AO6, AO12, and AO13. FL, full-length; GAPDH 

was used as a loading control; SCR, Scrambled or Gene tools control was used as a control. [The gel in this figure 

is the original gel representing the gel in Figure 5.3. The cropped gel has been shown in Figure 5.3 due to other 

unimportant samples that exist between the desired samples and the samples loaded in the wrong wells.] 
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Figure C.5 The RT-PCR products after treatment with AO2-PMO. FL, full-length; GAPDH was used as a 

loading control SCR, Scrambled or Gene tools control was used as a control. [The gel in this figure is the original 

gel representing the gel in Figure 5.5. The cropped gel has been shown in Figure 5.5 due to other unimportant 

samples that exist between the desired samples.] 
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Figure C.6 The RT-PCR products after AO2 treatment amplified using different primer sets. FL, full-length; 

GAPDH was used as a loading control; SCR, Scrambled or Gene tools control was used as a control. [The gel in 

this figure is the original gel representing the gel in Figure 5.6. The cropped gel has been shown in Figure 5.6 due 

to other unimportant samples that exist between the desired samples and nonspecific bands that exist.] 



13 

 
Figure C.7 The western blot membranes after AO2 treatment incubated with anti-BACE1 antibody (top 

membrane) and anti-GAPDH antibody (bottom membrane). GAPDH was used as a loading control; SCR, 

Scrambled or Gene tools control was used as a control. [The membrane in this figure is the original membrane 

representing the membrane in Figure 5.7. The cropped membrane has been shown in Figure 5.7 due to other 

nonspecific bands that exist.]





1 

Appendix D Supplementary data for 

Chapter 6 

D.1 Methods 

Table D.1 List of primers used, their sequences and the expected product lengths 

Primer Set Primer pairs Primer Sequences Expected 

product 

length 

MAPT Primer Set 1 MAPT6_Ex1Fa 

MAPT6_Ex4R 

5’ TCCTCGCCTCTGTCGACTAT 3’ 

5’ TCCTTCTGGGATCTCCGTGT 3’ 

Variant 2/8= 

340 bp 

MAPT Primer Set 2 MAPT6_Ex4F 

MAPT6_Ex9R 

5’ GTGACAGCACCCTTAGTGGA 3’ 

5’ GCGGGGTTTTTGCTGGAATC 3’ 

Variant 2/3/5= 

968 bp 

MAPT Primer Set 3 MAPT6_Ex7F 

MAPT6_Ex13R 

5’ AAGACGGGACTGGAAGCGAT 3’ 

5’ TGCTCAGGTCAACTGGTTTGT 3’ 

Varian 2/3/5= 

555 bp 

Variant 4/7/8= 

462 bp 

MAPT Primer Set 4 MAPT6_Ex12F 

MAPT6_Ex15Ra 

5’ TTAGCAACGTCCAGTCCAAGT 3’ 

5’ AGGTTGACATCGTCTGCCTG 3’ 

Variant 2/8= 

307 bp 

GAPDH Primer set GAPDH For 

GAPDH Rev 

5’ GGACTCATGACCACAGTCCATGC 3’  

5’ TTACTCCTTGGAGGCCATGTGGG 3’   

492 bp 

 

Table D.2 The PCR conditions for each primer set. 

Primer Set PCR Conditions 

MAPT Primer Set 1 

(50 ng each) 

 

Temperature  Time  

55°C 30 min  

94°C 2 min  

94°C 30 s 28 cycles 

55°C 1 min 

68°C 2 min 
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MAPT Primer Set 3 

& 4 

(50 ng each) 

 

Temperature  Time  

55°C 30 min  

94°C 2 min  

94°C 30 s 

34 cycles 60°C 1 min 

68°C 2 min 

MAPT Primer Set 2 

& 3 

(50 ng each) 

 

Temperature  Time  

55°C 30 min  

94°C 2 min  

94°C 30 s 

30 cycles 60°C 1 min 

68°C 2 min 

GAPDH Primer set 

(12.5 ng each) 

 

Temperature  Time  

55°C 30 min  

94°C 2 min  

94°C 30 s 16 cycles 

 

D.2 Results 

Table D.3 List of first-generation DNAzymes and their sequences. Red nucleotides represent nucleotides in the 

catalytic loop. Blue nucleotides represent the cleavage site. 

Name Sequence Target 

RNV547 ATCTTCCA GGCTAGCTACAACGA CACTTCG Exon 1 

RNV548 CAGCGTGA GGCTAGCTACAACGA CTTCCAT Exon 1 

RNV549 CCCCCTGA GGCTAGCTACAACGA CTTTCCT Exon 1 

RNV550 TTGGTGCA GGCTAGCTACAACGA GGTGTAG Exon 1 

RNV551 TCCTCAGA GGCTAGCTACAACGA CCGTCCT Exon 2 

RNV552 TCTTAGCA GGCTAGCTACAACGA CAGAGGT Exon 2 

RNV553 CTCCCTCA GGCTAGCTACAACGA CCACTAA Exon 3 

RNV554 TTCTGGGA GGCTAGCTACAACGA CTCCGTG Exon 3 

RNV555 GTCTCCAA GGCTAGCTACAACGA GCCTGCT Exon 3 

RNV556 TTTTGTCA GGCTAGCTACAACGA CGCTTCC Exon 5 

RNV557 TGTGGCGA GGCTAGCTACAACGA CTTCGTT Exon 7 

RNV558 TGCTGGAA GGCTAGCTACAACGA CCTGGTG Exon 7 

RNV559 TCCCCTGA GGCTAGCTACAACGA TTTGGAG Exon 9 

RNV560 CCGCTGCGA GGCTAGCTACAACGA 

CCCCTGA 

Exon 9 

RNV561 ACTTGACA GGCTAGCTACAACGA TCTTCAG Exon 9 

RNV562 TTG CCTAA GGCTAGCTACAACGA GAGCCAC Exon 11 

RNV563 GTTTATGA GGCTAGCTACAACGA GGATGTT Exon 11 

RNV564 CTGGTTTA GGCTAGCTACAACGA GATGGAT Exon 11 

RNV565 TTCTCAGA GGCTAGCTACAACGA TTTACTT Exon 12 

RNV566 GGACCCAA GGCTAGCTACAACGA CTTCGAC Exon 12 

RNV567 GGGTGATA GGCTAGCTACAACGA TGTCCAG Exon 12 
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Name Sequence Target 

RNV568 GTGGGTGA GGCTAGCTACAACGA ATTGTCC Exon 12 

RNV569 GTACACGA GGCTAGCTACAACGA CTCCGCC Exon 13 

RNV570 TGCTGAGA GGCTAGCTACAACGA GCCGTGG Exon 13 

RNV571 AGGAGACA GGCTAGCTACAACGA TGCTGAG Exon 13 

RNV572 CATGTCGA GGCTAGCTACAACGA GCTGCCG Exon 13 

RNV573 GTCTACCA GGCTAGCTACAACGA GTCGATG Exon 13 
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Figure D.1 Representative RT-PCR products of the MAPT and GAPDH transcripts from SH-SY5Y cells after 

treatment with DNAzyme at 400 nM, and 50 nM concentrations. The RT-PCR products after treatment with RNV547, 

RNV548, RNV549, RNV550, RNV551, RNV552, RNV553, RNV554, RNV555, RNV556, RNV557, RNV558, RNV559, 

RNV560, RNV561, RNV562, RNV563, RNV564, RNV565, RNV566, RNV567, RNV568, RNV569, RNV570, RNV571, 

RNV572 and RNV573 are shown here. FL, full-length; UT, untreated; GAPDH was used as a loading control. 

 
Figure D.2 Representative RT-PCR products of the MAPT and GAPDH transcripts from SH-SY5Y cells after 

treatment with DNAzyme at 400 nM, 200 nM, 100 nM and 50 nM concentrations. The RT-PCR products after 

treatment with RNV559, RNV561, RNV563 and RNV563 are shown here. FL, full-length; UT, untreated; GAPDH was 

used as a loading control. [The gel in this figure is the original gel representing the gel in Figure 6.2. The cropped 

gel has been shown in Figure 6.2 due to other unimportant samples that exist between the desired samples.] 
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Table D.4 The average activity of 1st generation DNAzymes (at 400 nM concentration) in SH-SY5Y cells 

(knockdown of MAPT transcript). 

Name Average Activity of 

DNAzyme in SH-SY5Y cells 

559 0% 

561 26% 

563 58% 

569 0% 

 

 
Figure D.3 Representative RT-PCR products of the MAPT and GAPDH transcripts from SH-SY5Y cells after 

treatment with DNAzyme at 400 nM, 200 nM, 100 nM and 50 nM concentrations. The RT-PCR products after 

treatment with RNV608, RNV609, RNV610, 611 and RNV612 are shown here. FL, full-length; UT, untreated; GAPDH 

was used as a loading control. 

Table D.5 The average activity of 2nd generation DNAzymes (at 400 nM concentration) in SH-SY5Y cells 

(knockdown of MAPT transcript). 

Name Average Activity of DNAzymes 

in SH-SY5Y cells 

608 0% 

609 0% 

610 15% 

611 0% 

612 2% 
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Figure D.4 In vitro cleavage of the FAM-conjugated MAPT RNA template composed of exon 11 region (34 

nucleotides) by RNV563 and its derivatives. FL RNA, full-length; FAM-conjugated RNA; cleaved RNA; the cleaved 

FAM-conjugated MAPT RNA (22 nucleotides long). The FAM- conjugated template RNA is a small region of the 

MAPT transcript complementary to the hybridisation arms of the DNAzymes of interest. [The gel in this figure is the 

original gel representing the gel in Figure 6.3. The cropped gel has been shown in Figure 6.3 due to other unimportant 

samples or unwanted spaces that exist between the desired samples.] 
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Table D.6 List of 2’-OMePS AOs and their sequences. In the sequences, capital letters denote bases from the 

exon regions, and small letters denote bases from the intronic region. 

AO  

Number 

AO Name AO Sequence Target 

AO1 MAPT E1A(+11+35) TCCATCACTTCGAACTCCTGGCGGG Exon 1 

AO2 MAPT E1A(+41+65) TCCCCCAACCCGTACGTCCCAGCGT Exon 1 

AO3 MAPT E1A(+91+115) TGTCACCCTCTTGGTCTTGGTGCAT Exon 1 

AO4 MAPT E4A(+1+25) GTGTCTCCAATGCCTGCTTCTTCAG Exon 4 

AO5 MAPT E4A(+26+50) AGCAGCTTCGTCTTCCAGGCTGGGG Exon 4 

AO6 MAPT E5A(+16+40) TCGCTTCCAGTCCCGTCTTTGCTTT Exon 5 

AO7 MAPT E5D(+3-22) ctccgtggcatcgtcagcttacCTT Exon 5 

AO8 MAPT E7A(+26+50) GGAGGGGCTGCTCCCCGCGGTGTGG Exon 7 

AO9 MAPT E7A(+46+70) TGGCCTGGCCCTTCTGGCCTGGAGG Exon 7 

AO10 MAPT E7A(+71+95) GTTTTTGCTGGAATCCTGGTGGCGT Exon 7 

AO11 MAPT E7A(+97+121) TGGGTGGTGTCTTTGGAGCGGGCGG Exon 7 

AO12 MAPT E7D(+5-20) caagagaacgttcttcttacCAGAG Exon 7 

AO13 MAPT E9A(+1+25) CGATCCCCTGATTTTGGAGGTTCAC Exon 9 

AO14 MAPT E9A(+111+135) TACGGACCACTGCCACCTTCTTGGG Exon 9 

AO15 MAPT E9A(+159+183) GGGCTGTCTGCAGGCGGCTCTTGGC Exon 9 

AO16 MAPT E9A(+196+220) TTGGACTTGACATTCTTCAGGTCTG Exon 9 

AO17 MAPT E9A(+226+250) TGGTGCTTCAGGTTCTCAGTGGAGC Exon 9 

AO18 MAPT E9D(+21-4) tcacCTTCCCGCCTCCCGGCTGGTG Exon 9 

AO19 MAPT E12A(-5+20) TACTTCCACCTGGCCACCTCctaga Exon 12 

AO20 MAPT E12A(+ 21+45) CCTTGAAGTCAAGCTTCTCAGATTT Exon 12 

AO21 MAPT E12A(+46+70) GACCCAATCTTCGACTGGACTCTGT Exon 12 

AO22 MAPT E12A(+81+95) AGGGACGTGGGTGATATTGTCCAGG Exon 12 
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Figure D.5 Representative RT-PCR products of the MAPT transcripts from SH-SY5Y cells after treatment with 

splice-modulating AOs at 400 nM, and 50 nM concentrations. The RT-PCR products after treatment with AOs 1-22 

are shown here. FL, full-length; UT, untreated; SCR, scrambled sequence. 
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Figure D.6 A. Representative RT-PCR products of the MAPT transcripts from SH-SY5Y cells after treatment 

with AO4, AO5, AO6, and AO19 at 400 nM, 200 nM, 100 nM and 50 nM concentrations. B. Representative RT-PCR 

products of the MAPT and GAPDH transcripts from SH-SY5Y cells after treatment with AO4, AO5, AO6, and AO19 

at 50 nM, 25 nM, 12.5 nM and 6.25 nM concentrations. AO4 targets exon 4, AO5 and AO6 target exon 5, and AO19 

targets exon 12 of the MAPT transcript. FL, full-length; UT, untreated; SCR, scrambled sequence; GAPDH was used 

as a loading control. [The gel in this figure is the original gel representing the gel in Figure 6.4. The cropped gel has 

been shown in Figure 6.4 due to unwanted spaces that exist on the gel.] 
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Figure D.7 Densitometry analysis of RT-PCR products (more than two replicates) using AO4, AO6, AO7 and 

AO19 showed downregulation and exon-skipping of MAPT transcript in SH-SY5Y cells in vitro. Concentrations of 

AOs used include 400 nM, 200 nM, 100 nM and 50 nM. B. Densitometry analysis of RT-PCR products (more than 2 

replicates) using AO4, AO6, AO7 and AO19 showed downregulation and exon-skipping of MAPT transcript in SH-

SY5Y cells in vitro. Concentrations of AOs used include 50 nM, 25 nM, 12.5 nM and 6.25 nM. 
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Figure D.8 A. Representative RT-PCR products of the MAPT transcripts from SH-SY5Y cells after treatment 

with AO4 50 nM concentration and incubation of AO for 24 h, 48 h and six days. AO4 targets exon 4 of the MAPT 

transcript. B. Representative protein products of the MAPT and GAPDH transcripts from SH-SY5Y cells after 

treatment with AO4 at 50 nM concentrations and incubation of AO for 24 h, 48 h and six days. AO4 targets exon 4 of 

the MAPT transcript. FL, full-length; UT, untreated; SCR, scrambled sequence; GAPDH was used as a loading 

control. [The gel in this figure is the original gel representing the gel in Figure 6.5. The cropped gel has been shown 

in Figure 6.5 due to unwanted spaces, other unimportant samples, and non-specific bands that exist on the gel and 

membrane.] 

 
Figure D.9 Densitometry analysis of the western blot shown in Figure 6.5 and Appendix B, Figure D.8
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Appendix E Publications 

First Author and first co-author publications. 

Publications from this thesis are listed in chronological order. 
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