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Thesis Abstract  

Sporting injuries are on the rise and wide-scale injury prevention strategies are needed in 

community-level sport. Research indicates that community-level adolescent pace bowlers could 

benefit from exercise-based injury prevention programs (IPPs), however, a specific program 

for this group has not been developed. The primary aim of this thesis was to therefore develop 

a specific IPP for community-level adolescent pace bowlers and investigate if this program 

could modify risk factors for injury in this population.  

The Translating Research into Injury Prevention Practice (TRIPP) framework guided 

the progression of studies in this thesis. In Chapter 2, risk factors for injury in adolescent pace 

bowlers were systematically reviewed. The review included all experimental and observational 

studies that reported risk factors for non-contact injuries in pace bowlers aged 12-19 years. The 

Newcastle-Ottawa Quality Assessment Scale was used to assess risk of bias. In Chapter 3 the 

various barriers and facilitators to program implementation at the community-level were 

identified and used to guide the development of an IPP that was appropriate for community-

level adolescent pace bowlers. In Chapters 4 and 5 a cluster-randomised controlled trial was 

employed to examine the efficacy of this IPP to modify neuromuscular risk factors and alter 

bowling kinematics. Eligible pace bowlers from eight cricket organisations (clusters) were 

recruited and then randomised into either an intervention group or control group. The 

intervention group completed an eight-week IPP while the control continued their normal 

cricket activity. Either side of the eight-week intervention period all participants attend a 

baseline and follow-up session where measures of muscle strength, muscle endurance, dynamic 

neuromuscular control and bowling kinematics were assessed. The treatment effect of the IPP 

was estimated with linear mixed models.  

Chapter 2 identified several potentially modifiable risk factors for injury in adolescent 

pace bowlers and these included; excessive lateral trunk flexion while bowling, kinematics of 
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pelvis and hip while bowling, reduced trunk endurance, and poor lumbo-pelvic-hip movement 

control. There were conflicting results amongst the studies which investigated the mixed 

technique, bowling workload, and quadratus lumborum asymmetry. Among the five cross-

sectional studies, risk of bias was high and very high. Of the 11 cohort studies, three were rated 

as low risk of bias and eight as high risk of bias. With the information gathered in Chapter 2, 

an exercise program to modify risk factors was developed in Chapter 3. The program included 

exercises to improve; eccentric strength of the external shoulder rotators, hip adductor strength, 

eccentric hamstring strength, dynamic neuromuscular control of the lumbo-pelvic region and 

lower-limbs, and trunk extensor endurance. Chapter 3 also considered the various facilitators 

to program implementation at the community-level, and therefore included exercises that were; 

simple to learn, non-reliant on expensive equipment, and time-efficient. In Chapter 4 the 

efficacy of this newly developed IPP to modify neuromuscular risk factors was assessed. There 

were significant treatment effects (estimated marginal mean with 95% confidence intervals) 

favouring the intervention group for; isokinetic shoulder strength (90°/s) (0.05 Newton meters 

per kilogram (N.m/kg); 0.02 to 0.09), isokinetic hamstring strength (60°/s) (0.32 N.m/kg; 0.13 

to 0.50), hip adductor strength dominant side (0.40 N.m/kg; 0.26 to 0.55) and non-dominant 

side (0.33 N.m/kg; 0.20 to 0.47), Star Excursion Balance Test reach distance dominant side 

(3.80 percent of leg length (%LL); 1.63 to 6.04) and non-dominant side (3.60 %LL; 1.43 to 

5.78), and back endurance (20.4 seconds; 4.80 to 36.0). No differences were observed for 

isokinetic shoulder strength (180°/s) (p=0.09), isokinetic hamstring strength (180°/s) (p=0.07), 

lumbo-pelvic stability (p=0.90), and single leg squat knee valgus angle (dominant p=0.06, 

non-dominant p=0.15). In Chapter 5 there were significant treatment effects favouring the 

intervention group for shoulder counter-rotation (-3.75°; -7.19 to -0.32) and lateral trunk flexion 

relative to pelvis (-2.24°; -3.97 to -0.52). There were however, no significant between-group 

differences for; global angles of lateral trunk flexion at front foot contact (FFC) (1.2°; -2.5 to 
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4.8), global angles of lateral trunk flexion ball release (BR) (-0.5°; -3.0 to 2.0), pelvis rotation 

FFC (0.9°; -4.0 to 2.2), pelvis rotation BR (-1.1°; -5.7 to 3.6), front hip angle FFC (1.6°; -3.6 to 

6.7), front hip angle BR (-1.6°; -5.0 to 1.9), front knee angle FFC (-1.1°; -4.5 to 2.3), front knee 

angle BR (1.7°; -5.6 to 9.1), or ball velocity (1.1 km/h; -7.5 to 9.7). 

This thesis demonstrates that the TRIPP framework can used to successfully guide the 

process of injury prevention in community-level adolescent pace bowlers. The IPP in this thesis 

was also able to modify several neuromuscular and biomechanical risk factors, however a 

number of measures were not altered. Future research is needed to refine the current IPP and 

investigate if it can reduce injury risk in a real-world setting. 
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GENERAL INTRODUCTION  
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1.1 Introduction 

Sport participation provides an important opportunity for adolescents to increase physical 

activity, which can reduce their risk of type II diabetes, cardiovascular disease and various 

forms of cancer [1]. Increased physical activity can also promote bone health and improve 

mental health [2, 3]. However, sport is also the number one cause of injury in adolescent 

individuals [4]. Sports injuries can increase the risk of future injury, lead to physical inactivity, 

and cause drop out [5-7]. The prevention of injury through the adolescent years is therefore 

vital for maintaining the various benefits associated with sport.  

Sporting injuries also place a substantial economic burden on the community. In a study 

from the Flemish Region, the direct medical cost of sporting injury in one year was an estimated 

€15 million (AU$26 million) [8]. In another study from the Australian state of Victoria, the 

direct cost of hospital-treated sports injuries in individuals >15 years of age was an estimated 

AU$265 million over a seven-year period [9]. Alarmingly, research has also revealed a 24% 

increase in hospital-treated sports injuries and 26% increase in lower-limb sport injuries over 

the past seven years in individuals >15 years of age [9]. The development and wide-scale 

implementation of injury prevention strategies for community-level athletes is therefore an 

important research focus at the current time [9]. 

Cricket, which is a popular youth sport in many countries and associated with a 

moderate risk of injury, presents as an appropriate target for injury prevention [10]. Seasonal 

incidence rates in youth cricket are between 114-242 injuries/1000 participants and these are 

comparable to those seen in youth soccer (107 injuries/1000 participants) [11, 12]. When 

examining injury rates relative to hours of exposure, junior and community-level cricketers 

sustain 130 injuries (per 10,000 hours of play), tennis players 40 injuries, soccer players 35 

injuries, and basketballers 33 injuries [10].  
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Most injuries in youth cricket are attributed to bowling (33-51% of all injuries), whereas 

batting injuries and those related to fielding account for 11-34% and 23-37% of all injuries, 

respectively [12-14]. When looking further into bowling-related injuries, we see most of these 

occurring in the pace bowlers [13-16]. A pace bowler is a player who bowls at such a speed 

that the wicketkeeper is required to stand back from the stumps in order to field the ball [17]. 

In a study by Kumar et al [16], 50% of pace bowlers and 23% of spin bowlers sustained an 

injury over a season. Milsom et al [13] also observed a similar trend, with approximately three 

times as many injuries occurring in pace bowlers than spin bowlers. When examining injury 

rates relative to the number of balls delivered, pace bowlers also sustain more injuries than spin 

bowlers (16.5 injuries/100,000 balls compared to 6.6 injuries/100,000 balls, respectively) [15].  

Despite the injury patterns in community-level youth pace bowlers, there is a lack of 

intervention research aimed at reducing their injury rates. In other sports exercise-based injury 

prevention programs (IPPs), which increase muscle strength, muscle endurance, and 

balance/control, have reduced injury risk by approximately 32-45% [18-20]. Evidence also 

shows that IPPs such as the FIFA (Fédération Internationale de Football Association) 11+ and 

the FootyFirst program can be successfully delivered at the community-level [21, 22]. Exercise-

based IPPs could therefore present as a viable option for reducing injury risk in community-

level adolescent pace bowlers. The overarching aim of this thesis was to therefore develop and 

test the efficacy of a specific IPP for community-level youth pace bowlers.  

Before developing an IPP for community-level adolescent pace bowlers, it is important 

to consider the Translating Research into Injury Prevention Practice (TRIPP) framework [23]. 

In Stage 1, the framework highlights the need to survey injury rates to identify common/severe 

injuries. In Stage 2, the framework outlines the importance of uncovering risk factors for these 

injuries. Following this, preventive programs are developed (Stage 3) and then tested in ‘ideal’ 
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settings (Stage 4). In Stage 5 the various barriers/facilitators to program implementation are 

considered and in Stage 6, program effectiveness is assessed in real-world contexts. 

If we consider the TRIPP framework in the context of youth pace bowlers, there is a 

considerable amount of research detailing injury patterns (Stage 1). Broad injury locations have 

been well documented in bowlers, with approximately 11-12% of all injuries occurring in the 

upper-limb, 26-30% in the lower-limb and 53-56% in the back/trunk [13, 24]. When looking 

further into the upper-limb, the shoulder is the most common injury area accounting for 9-16% 

of all injuries in adolescent pace bowlers. [25, 26]. In the lower-limb, knee and ankle/heel 

injuries are common. Knee injuries account for 34-41% of all injuries and are typically 

attributed to patellofemoral pain and Osgood-Schlatter disease [25, 27]. It is important to note, 

however, that some investigations involving adolescent pace bowlers report no knee injuries 

[26, 28, 29]. As for injuries in the ankle/heel, these account for approximately 8-19% of all 

injuries in youth pace bowlers and most present as ligament sprains [27] or calcaneal apophysis 

(Sever’s disease) [26]. The majority of back/trunk injuries are to the low back which account 

for 37-64% of all reported injuries in adolescent pace bowlers [26, 28, 29]. The majority of 

these injuries affect the lumbar soft tissues (such as the muscle, tendons, ligaments and 

intervertebral discs) or the lumbar vertebrae [26, 30, 31]. Lumbar vertebrae injuries typically 

include, stress reactions, spondylolysis, and spondylolisthesis [26, 30, 31].  

The one-year incidence of symptomatic lumbar vertebral injury in adolescent pace 

bowlers is 11-12% [26, 30, 31] and four-year incidence is 24% [32]. These injuries are almost 

exclusively associated with bowling and occur with a gradual on-set [32]. Bowlers who are 

diagnosed with a lumbar vertebral injury are generally required to stop bowling for 8-12 weeks 

and it is typically 6-12 months before bowlers can return to full competitive match-play [32].  

Again, when applying the TRIPP framework to community-level adolescent pace 

bowlers, a large quantity of research has uncovered risk factors for injury (Stage 2). Broadly, 
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these risk factors include; poor bowling biomechanics, inappropriate bowling load, and 

neuromuscular deficiencies [26, 28, 31, 33]. While these individual studies provide us with vital 

information, a systematic review of this literature has not been conducted. The quality of this 

research and the relative importance of each risk factors is therefore unclear. 

While the injury patterns and risk factors for injury are well documented in community-

level adolescent pace bowlers, there is a lack of research situated in Stages 3 and 4 of the TRIPP 

framework. Evidence from other sports indicates that exercise-based IPPs can reduce injury 

risk, but a specific program for community-level adolescent pace bowlers has not been 

developed. Furthermore, the efficacy of exercise-based IPPs to modify risk factors for injury in 

adolescent pace bowlers has not been investigated. The primary aim of this thesis was to 

develop a specific IPP and test if this program can modify risk factors for injury in community-

level adolescent pace bowlers.  
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1.2 Statement of the Problem 

Sporting injuries are on the rise and wide-scale injury prevention strategies are needed in 

community sport. Injury patterns and injury risk factors in adolescent pace bowlers are well 

established (in line with Stages 1 and 2 of the TRIPP framework), but this risk factor literature 

has not been systematically reviewed. This makes it difficult to design appropriate IPPs for 

community-level pace bowlers (Stage 3 of the TRIPP framework), and as such, there are 

currently no specific exercise-based recommendations available for this group. Furthermore, in 

line with Stage 4 of the TRIPP framework, we do not know if IPPs can modify risk factors for 

injury in community-level adolescent pace bowlers. Table 1.1 provides an overview of the 

thesis’ contributions in the context of the TRIPP framework. 

 

 

  

Table 1.1 Thesis contribution and the TRIPP framework. 

TRIPP Stage a Current research b Thesis contribution  

1 Injury surveillance Well documented  

2 
Establish aetiology and  

mechanism of injury 

Well documented  

(no systematic review) 
Study 1 

3 Develop preventitive measures Research needed Study 2 

4 Scientific evaluation in ideal conditions Research needed 
Study 3 

Study 4 

5 
Describe intervention context to inform 

implementation strategies 
Research needed  

6 
Evaluate effectiveness of preventitive 

measeures in implementation context 
Research needed  

a Adapted from Finch [23], b in the context of community-level adolescent pace bowlers. 
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1.3 Purpose and Aims of the thesis 

The aim of this thesis was to systematically review risk factors for injury in adolescent pace 

bowlers (Study 1, Chapter 2) and then develop a specific IPP for community-level adolescent 

pace bowlers (Study 2, Chapter 3). The thesis also aimed to test the efficacy of this newly-

developed IPP to modify neuromuscular risk factors for injury (Study 3, Chapter 4) and alter 

bowling kinematics linked to low back injury (Study 4, Chapter 5). The title and primary aim 

of each study is presented below. 

Study 1 (Chapter 2) 

Risk factors for non-contact injury in adolescent cricket pace bowlers: a systematic review 

a) Identify the risk factors for non-contact injury in adolescent cricket pace bowlers.  

 

Study 2 (Chapter 3) 

Injury prevention strategies for adolescent cricket pace bowlers 

a) Provide rationale and present an IPP specific to community-level adolescent pace 

bowlers. 

 

Study 3 (Chapter 4) 

Exercise-based injury prevention for community-level adolescent cricket pace bowlers: a 

cluster-randomised controlled trial 

a) Investigate changes in muscle strength, dynamic neuromuscular control, and trunk 

extensor endurance following an eight-week exercise program. 

 

Study 4 (Chapter 5) 

Modifying bowling kinematics in cricket pace bowlers with exercise-based injury prevention: 

a cluster-randomised controlled trial 

a) Investigate changes in bowling kinematics following an eight-week exercise program. 
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1.4 Significance of the research 

The research comprising this thesis is situated in Stages 2, 3 and 4 of the TRIPP framework. 

The thesis is the first to systematically review risk factors for injury in adolescent pace bowlers. 

It also presents a newly-developed exercise program and investigates if this can modify 

neuromuscular deficiencies and alter kinematics of the bowling action. Policy makers who wish 

to promote the uptake of exercise-based injury prevention within their respective playing 

cohorts could use the findings in this thesis to inform their approach. Community-level cricket 

coaches with limited experience in exercise prescription could also implement the exercise 

program presented in this thesis to modify risk factors in their playing group. While future 

research is still needed, this thesis ultimately lays the foundation for future advancements in the 

area of injury prevention for community-level adolescent pace bowlers. 

1.5 Limitations and assumptions 

A number of limitations exist within this thesis. In Chapters 4 and 5 the outcome assessor was 

not blind to group allocation at follow-up. Some of the outcome scores may therefore be prone 

to bias. Nevertheless, most outcomes in Chapters 4 and 5 were assessed objectively, and these 

measures are typically less susceptible to bias. The kinematical bowling data in Chapter 5 may 

also lack ecological validity as they were collected in a controlled laboratory environment. 

Measurement error due to skin movement while bowling could have also affected the validity 

of the kinematic data. While there are limitations associated with 3D motion capture, it is 

important to note that this method is the currently the gold-standard in biomechanical data 

collection.  

Due to financial and practical constraints, wearable technologies were not used to 

quantify bowling load. Instead, players recorded their bowling load in a logbook. Although this 

method may be prone to recall bias, the primary researcher met with each player on a weekly 
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basis to ensure their logbooks were up to date. It was also difficult to collect comprehensive 

training load data in Chapters 4 and 5. While rating of perceived exertion (RPE) data were 

collected during the training sessions associated with this study, if a player trained with an 

additional cricket organisation, their RPE data was not collected. 

1.6 Delimitations 

Overall generalisability of the findings in this thesis may be limited. For example, the majority 

of studies identified in the systematic review (Chapter 2) and the studies presented in Chapters 

4 and 5, involved male, adolescent pace bowlers playing cricket in Australia. The participants 

partaking in Chapters 4 and 5 also had limited resistance training experience. The findings in 

this thesis may therefore lack generalisability to players outside this cohort.  

The exercise program utilised in this thesis was also delivered by the primary researcher 

not the team coach. While this allowed program-efficacy to be tested under ‘ideal conditions’, 

it limited the external validity of the findings. In a real-world setting, where the coach would 

typically deliver the program, adherence and compliance rates may differ to those seen in the 

current thesis. Furthermore, the exercise program was only implemented over an eight-week 

period, which may not reflect the context of implementation where programs are typically 

delivered over the entire season. It is also important to note that the effect of the IPP to reduce 

injury risk was not directly targeted in this thesis, owing to time and monetary limitations  
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CHAPTER 2  
 

 

RISK FACTORS FOR NON-CONTACT 

INJURY IN ADOLESCENT CRICKET PACE 

BOWLERS: A SYSTEMATIC REVIEW 

Based on the following paper published in Sports Medicine 

 

Forrest MRL, Hebert JJ, Scott BR, Brini S, Dempsey AR. Risk factors for noncontact 

injury in adolescent cricket pace bowlers: a systematic review. Sports Med. 

2017;47(12):2603–19. 
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2.1 Abstract 

Background: Adolescent cricket pace bowlers are prone to injury. Recognising the risk factors 

for non-contact injury in this population will aid future injury prevention strategies. Objective: 

To identify the risk factors for non-contact injury in adolescent cricket pace bowlers. Methods: 

PubMed, Cochrane Library, PEDro, SPORTDiscus, Embase, and the South African Journal of 

Sports Medicine were systematically searched to identify all experimental and observational 

studies reporting risk factors for non-contact injuries in pace bowlers (aged 12-19 years). The 

search syntax included terms relevant to cricket bowling, injury, and known risk factors for 

injury. The Newcastle-Ottawa Quality Assessment Scale and a modified Newcastle-Ottawa 

Quality Assessment Scale were used to assess the risk of bias in the cohort and cross-sectional 

studies, respectively. Results: Sixteen studies (5 cross-sectional studies, 11 cohort studies), 

comprising 687 participants (96% male, 75% playing cricket in Australia) met the selection 

criteria and were included for qualitative synthesis. Three cross-sectional studies were rated as 

high risk of bias and two as very high risk of bias. For the cohort studies, three were rated as 

low risk of bias, and eight as high risk of bias. Injury was associated with bowling biomechanics 

(excessive lateral trunk flexion and pelvis/hip kinematics), reduced trunk endurance, poor 

lumbo-pelvic-hip movement control, and early signs of lumbar bone stress. Conflicting results 

were found by studies examining the mixed technique, bowling workload, and quadratus 

lumborum (QL) asymmetry. Conclusions: The current systematic review identified a number 

of bowling biomechanics and various neuromuscular deficiencies as risk factors for non-contact 

injury in adolescent pace bowlers. These factors may provide a useful target for future 

interventional research aiming to prevent injury in this population. Future studies should utilise 

prospective cohort designs; and ensure that participants are injury free at baseline, confounding 

factors are well controlled, and attrition rates are reported.  
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2.2 Introduction 

Injury prevalence rates are high in cricket pace bowlers and similar to those seen in individuals 

playing contact sports such as rugby union and Australian Football [34-36]. The majority of 

pace bowling injuries are attributed to the bowling action, where ground reaction forces 

approximate 4-6 times body weight, and lumbar shear forces are 40-50 times greater than those 

experienced during running [37-39]. Pace bowlers are most commonly injured in the lower 

back and lower-limb regions, with lumbar stress fractures considered the most debilitating 

injury, typically resulting in 6-12 months of missed playing time [32, 40].  

A recent systematic review of studies investigating injury risk factors among adult pace 

bowlers reported bowling biomechanics, bowling workload, neuromuscular factors, and 

previous injury as risk factors for non-contact injury [41]. Similarly, an earlier systematic 

review by Morton et al. [42] identified bowling biomechanics, neuromuscular factors, and 

previous injury as risk factors specific for low back injury. No prior systematic review however, 

has comprehensively reported on risk factors for all non-contact injuries among adolescent pace 

bowlers. This represents an important gap in knowledge as adolescent cricketers are more prone 

than adult cricketers to back/trunk injuries, overuse injuries, [14] and growth-related conditions 

common to the lower extremities (e.g., Osgood-Schlatter disease and Sever’s disease) [43]. The 

knowledge surrounding risk factors for injury in adolescent pace bowlers will help guide future 

injury prevention research. Therefore, the aim of this systematic review is to identify the 

intrinsic and extrinsic risk factors for non-contact injury in adolescent pace bowlers. 

2.3 Methods 

2.3.1 Protocol and registration 

This systematic review was registered a priori with the International Prospective Register of 

Systematic Reviews ((PROSPERO), CRD42016043956) and reported in accordance with 
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Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA guidelines) 

[44]. 

2.3.2 Eligibility criteria 

Full-text, peer-reviewed studies that investigated risk factors for non-contact injury in pace 

bowlers aged 12-19 years were included. Eligible study designs included randomised controlled 

trials; as well as prospective and retrospective cohort, cross-sectional, and case-control studies. 

Unpublished studies, case reports, editorials, books, letters, and conference proceedings were 

excluded. There were no restrictions on language; or the country of origin, sex of participants, 

or playing level of participants.  

Injuries were defined in accordance with the international consensus statement on injury 

surveillance in cricket and therefore included match time-loss injuries, general time-loss 

injuries, medical attention injuries, player-reported injuries, and imaging-abnormality injuries 

[45]. Non-contact injuries were defined as those which occurred without a collision mechanism 

(colliding with another player or being hit by the bat/ball) and therefore included both sudden 

and gradual-onset non-contact injuries [45]. If injury mode (contact or non-contact) was 

ambiguous, the site of injury was considered in the determination of injury mechanism. This is 

consistent with previous approaches of classifying bowling injuries to the shoulder, low back, 

and lower-limb as non-contact injuries [41].  

2.3.3 Information sources 

A comprehensive search strategy was developed in consultation with a reference librarian and 

implemented in the following databases from inception to 2 May 2016: PubMed, Cochrane 

Library, PEDro, SPORTDiscus, and Embase. The South African Journal of Sports Medicine 

was also searched, as relevant articles were identified in this journal during the preliminary 

search process. The articles contained within this journal however, were not indexed in the 

aforementioned databases. The search syntax was initially developed for PubMed (Systematic 
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Review Syntax) utilising Medical Subject Headings (MeSH) and index terms, and then adapted 

for use in the other databases and the South African Journal of Sports Medicine. The search 

syntax included terms relevant to cricket bowling, injury, and known risk factors for injury. The 

reference lists of all included articles were manually searched to identify any remaining studies.  

2.3.4 Study selection 

Using Covidence software [46], two review authors (MF and AD) independently screened the 

titles and abstracts of all identified articles to determine their eligibility. The full-text of eligible 

studies was then evaluated independently by the two review authors. Disagreements regarding 

article inclusion at each stage were resolved through discussion with a third review author (JH).  

2.3.5 Data collection process  

Two review authors (MF and SB) used a customised data extraction form to collect the 

following information from each study: design, participant information (number of participants, 

definition of playing position, sex of participants, age of participants, playing level of 

participants and country in which the study took place), exposure definition (risk factor/s 

identified), outcome definition (type of injury examined, mechanism of injury and anatomical 

position of injury), and study results (mean, standard deviation, risk ratios (RR) and statistical 

significance). If data were unobtainable, the corresponding author was contacted for additional 

information. Disagreements between the two review authors (MF and SB) regarding study 

design, participant information, exposure/outcome definition and study results were resolved 

through discussion with a third review author (JH).  

2.3.6 Risk of bias assessment 

A modified Newcastle-Ottawa Scale for cross-sectional studies (Appendix B) [47] and the 

Newcastle-Ottawa Scale for cohort studies (Appendix C) [48] were applied independently by 

two review authors (MF and SB) to assess the risk of bias of included studies (at the study level). 
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Two sections on the Newcastle-Ottawa Scale for cross-sectional studies [47] were modified to 

realign this scale with the rating system from the Newcastle-Ottawa Scale for cohort studies 

[48]. This was achieved by substituting the “ascertainment of exposure” and “assessment of 

outcome” sections from the Newcastle-Ottawa Scale for cohort studies into the Newcastle-

Ottawa Scale for cross-sectional studies. A maximum of nine stars were available for the cohort 

studies and eight stars available for the cross-sectional studies. Disagreements between the two 

review authors (MF and SB) on risk of bias ratings were resolved through discussion with a 

third review author (JH). Studies awarded ≥ 7 stars were deemed to be at low risk of bias, 4-6 

stars at high risk of bias and ≤ 3 stars at very high risk of bias [49].  

2.3.7 Data synthesis 

A random-effects meta-analysis was planned and the Grading of Recommendation, Assessment, 

Development and Evaluation (GRADE) [50] considered if studies were found to be clinically 

and statistically homogeneous. The planned meta-analysis was not performed, and the GRADE 

summaries of evidence quality were not applied [50], owing to clinical heterogeneity between 

studies. Consequently, a qualitative synthesis of the included studies was performed. 

2.4 Results 

2.4.1 Study selection 

A flow diagram outlining the study selection procedure is presented in Figure 2.1. The search 

strategy yielded 1889 articles. After removing duplicates, 1265 articles were included in the 

title/abstract screening, and 126 articles were retained for full-text review. Articles were 

removed following full-text screening due to incorrect publication type (n = 25), non-cricket 

population (n = 11), adult population (n = 52), no injury outcome (n = 8), and no risk factor 

investigated (n = 14). Following this screening process, sixteen articles were included [25-28, 

30, 31, 33, 51-59]. 
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2.4.2 Study characteristics 

The sixteen eligible studies in this systematic review included five cross-sectional and 11 cohort 

studies, comprising a total of 687 participants. Mean/median age of the included participants 

ranged from 13.2-19.0 years [52, 59]. Age range was not reported in four studies [33, 51-53] 

and five studies reported an age range which included participants who were <12 or >19 years 

(the mean age in all of these studies fell between 12-19 years) [25, 27, 28, 30, 59]. One study 

included both male and female participants [57] while the remaining studies included only male 

participants.  

The majority of studies (75%) were conducted in Australia [26, 28, 30, 31, 33, 51-54, 

56-58], with two studies (12.5%) taking place South Africa [25, 55] and two (12.5%) in 

England/Wales [27, 59]. Three studies (18.7%) included club/district/school level pace bowlers 

[26, 30, 33] and two studies (12.5%) included pace bowlers from a range of skill levels (district 

to state level [31] and club to national level [54]). Playing level was not reported in one 

investigation [58], with the remaining 10 studies (62.5%) comprising elite level cricket players 

(state/provincial/county/national) [25, 27, 28, 51-53, 55-57, 59]. 

Bowling speed was reported in four investigations [31, 51-53] and five studies included 

fast bowlers who were identified by their coaches as such, or who delivered the ball at a speed 

that required the wicketkeeper to stand back from the stumps to field the ball [26-28, 30, 59]. 

One study included cricketers from a mix of playing positions but identified risk factors for 

injury in players who had suffered a low back injury due to bowling or a comparable action 

(e.g., an injury attributed to rotating, extending or laterally flexing the trunk during a task other 

than bowling) [57]. The remaining six studies did not explicitly define their bowlers but did 

report their participants as being fast bowlers in either the title or text [25, 33, 54-56, 58]. 
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Figure 2.1 Flow diagram of studies through the systematic review. 

2.4.3 Risk of bias within studies  

Risk of bias was assessed within five cross-sectional studies; three of these were rated as high 

risk of bias and two as very high risk of bias [51, 53, 55-57] (Table 2.1). Three major sources 

of bias were found within the cross-sectional studies which typically failed to justify sample 

size [51, 53, 55-57], report the number of non-respondents [51, 53, 55, 56], or control for 

confounding factors [53, 55-57]. Of the 11 cohort studies, three were rated as low risk of bias 

and eight as high risk of bias [25-28, 30, 31, 33, 52, 54, 58, 59] (Table 2.2). Three major sources 
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of bias also existed in the cohort studies which typically failed to report if participants were 

injured at baseline [26, 28, 30, 53-55, 58], control for confounding factors [26, 27, 30, 33, 52, 

54, 58, 59], or report the number of participants lost to follow-up [25, 26, 28, 30]. 

Table 2.1 Newcastle-Ottawa Quality Assessment Scale for cross-sectional studies. 

Study Selection Comparability Outcome Total a 

  1 2 3 4 1a 1b 1 2   

Elliott et al. [51] * - - * - * * - 4 

Elliott et al. [53] * - - * - - * * 4 

Gray et al. [55] * - - * - - - * 3 

Hardcastle et al. [56] * - - * - - * - 3 

Hecimovich et al. [57] * - * * - - - * 4 
a Total is out of 8 stars. 

Table 2.2 Newcastle-Ottawa Quality Assessment Scale for cohort studies. 

Study Selection Comparability Outcome Total a 
 

1 2 3 4 1a 1b 1 2 3  

Bayne et al. [31] * * * * * * * * * 9 

Burnett et al. [33] * * * * - - * * * 7 

Davies et al. [25] * * * * * * - * - 7 

Dennis et al. [28] * * * - - * * * - 6 

Dennis et al. [26] * * - - - - * * - 4 

Elliott et al. [52] * * * - - - * * * 6 

Engstrom et al. [54] * * * - - - * * * 6 

Foster et al. [30] * * * - - - * * - 5 

Gregory et al. [27] * * - - - - - * * 4 

Kountouris et al. [58] * * * - - - * * * 6 

Ranson et al. [59] * * * * - - * * * 7 
a Total is out of 9 stars. 

2.4.4 Study Exposures 

Eight studies investigated bowling biomechanics such as trunk/pelvis/lower-limb kinematics, 

lumbar kinetics, and ground reaction forces [28, 30, 31, 33, 51-53, 56]. Bowling workload 

factors such as bowling quantity and frequency were investigated in six studies [25-28, 30, 31]. 
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A number of neuro-musculo-skeletal factors were also investigated and these included 

anthropometry/posture [28, 30, 31, 51, 53, 57, 58], QL morphology [54, 58], abdominal muscle 

morphology [55], bone stress on magnetic resonance imaging (MRI) [59], flexibility [25, 28, 

30, 31, 53], muscular strength [28, 30, 51], muscular endurance [28, 30, 31, 51, 53], and lumbo-

pelvic-hip movement control [31]. Aerobic capacity was also investigated in two studies [28, 

30]. 

2.4.5 Study Outcomes 

Ten studies examined intervertebral disc and vertebral imaging-abnormality injuries [30, 31, 

33, 51-54, 56, 58, 59]. Seven of these examined abnormalities in the lumbar spine [31, 52-54, 

56, 58, 59], two in the lumbo-sacral region [30, 51], and one in the thoraco-lumbar region [33]. 

Intervertebral disc abnormalities were defined as disc degeneration, disc bulging, disc 

herniation, or reduced disc height [33, 51-53, 56], with bony vertebral abnormalities including 

pedicle sclerosis, pars interarticularis sclerosis, stress reaction of the posterior element of a 

vertebra, spondylolysis, or spondylolisthesis [30, 31, 53, 54, 56, 58, 59]. Four studies 

investigated symptomatic abnormalities [30, 54, 58, 59], with another four investigating both 

symptomatic and asymptomatic abnormalities [31, 33, 53, 56]. In two studies, it was unclear 

whether the abnormalities were associated with pain [51, 52].  

Nine studies defined injury as match time-loss [26, 28, 30, 31], match/training time-loss 

[25, 55, 57], or a painful/disabling condition [27, 58]. Of these nine studies, six examined 

injuries to certain anatomical locations; lower back [31, 55, 57, 58], back [30], and 

back/trunk/lower-limb [28]. The remaining three studies did not restrict injury to an anatomical 

location and generally recorded injuries to the shoulder, low back and lower-limb (groin, knee, 

ankle and foot) [25, 27, 28]. Two of the nine studies only examined injuries with a gradual onset 

[26, 28]. 
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2.4.6 Results of individual studies 

The injury risk factors identified in this systematic review included; bowling biomechanics 

(lateral trunk flexion, technique factors, pelvis/lower-limb kinematics, and ball release height), 

bowling workload (bowling frequency and bowling quantity), and neuro-musculo-skeletal 

factors (anthropometry, lumbar posture, longitudinal foot arch, QL morphology, abdominal 

muscle morphology, bone stress reaction, flexibility, muscular strength, muscular endurance, 

and lumbo-pelvic-hip movement control) (Table 2.3 and Table 2.4).  

2.4.6.1 Lateral trunk flexion  

Lateral trunk flexion contralateral to the bowling arm was greater in injured bowlers than non-

injured bowlers [31]. This was evident at both front foot contact (FFC) (mean difference 4.9°, 

p = 0.039) and ball release (BR) (mean difference 9.6°, p = 0.002). However, there were no 

differences in lumbo-pelvic lateral flexion range (between FFC and BR) in injured and non-

injured bowlers [31].  

2.4.6.2 Technique factors 

The use of the mixed technique (i.e., bowling with a rotated trunk at back foot contact (BFC) 

or rotating the shoulders excessively between BFC and FFC) was associated with imaging-

abnormality injury in two cohort studies [33, 52]. In the study by Burnett et al. [33], 80% of 

bowlers (n = 8/10) who utilised the mixed technique at baseline and follow-up showed signs of 

progressive thoracolumbar disc degeneration whereas, of the bowlers who utilised the mixed 

technique at one session only (either at baseline or follow-up), only 14% (n = 1/7) showed signs 

of progressive thoracolumbar disc degeneration (p = 0.015).  

Shoulder counter-rotation (i.e., excessive shoulder rotation between BFC and FFC) was 

significantly greater amongst injured bowlers in two cross-sectional studies [53] albeit at an 

alpha level of 0.1 in one investigation [51]. Elliott et al. [53], reported significantly greater 

shoulder counter-rotation among bowlers who displayed signs of bony lumbar abnormalities 
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(median 12°) and intervertebral disc abnormalities (median 25°) compared those who were 

injury free (median 0°). Conflicting results linking shoulder counter-rotation to injury were 

reported by three cohort studies [28, 30, 31]. Foster et al. [30] reported relatively low levels of 

shoulder counter-rotation in uninjured bowlers (16°), whereas, of the bowlers who counter-

rotated >40°, 35% sustained a stress fracture and 41% sustained a soft tissue injury to the back. 

In contrast, Bayne et al. [31] observed no differences in the amount of shoulder counter-rotation 

utilised by bowlers who sustained a lumbar injury and those who did not (p >0.05). In one cross-

sectional study, two other shoulder kinematics were associated with injury; shoulder alignment 

at BFC, and minimum shoulder alignment [53]. However, other investigations including one 

cross-sectional study [51] and two cohort studies [28, 30] found no associations between these 

kinematics and injury.  

2.4.6.3 Pelvis and lower-limb kinematics 

In one cohort study, pelvic rotation at BR was significantly greater in bowlers who developed 

a low back injury compared to those who did not (mean difference 10.7°, p = 0.024) [31], while 

no difference (p >0.05) was observed at FFC. In the same study, injured bowlers delivered the 

ball with a relatively straighter front hip at FFC compared to the non-injured bowlers (mean 

difference 4.6°, p = 0.049) [31]. This was also a characteristic observed by Foster et al. [30], 

where those who developed stress fractures bowled with a more extended front hip and knee at 

FFC. A link between an extended front knee at FFC and injury, however, was not reported in 

other studies [28, 31, 51].
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Table 2.3 Cross-sectional study characteristics and results. 

Study Participants Exposure Outcome Results 

Elliott et al. [51] N = 24, mean = 

13.7 y, school 

and club, 

Australia, male 

Bowling kinematics 

(shoulder rotation) 

Lumbar 

intervertebral disc 

abnormalities 

Bowlers with disc degeneration or disc bulging had greater shoulder 

counter-rotation (30.0±10.5°) compared to those who did not 

(18.9±9.3°) p = 0.088. (alpha level = 0.1 in this study). No significant 

differences between the groups for a range of bowling kinematics, 

ground reaction forces, age, muscular endurance, and anthropometry  

Elliott et al. [53] N = 20, mean = 

17.9 y, all male, 

state, Australia 

 

 

 

Bowling kinematics 

(shoulder rotation and 

ball release height), 

hamstring/ low back 

flexibility 

 

 

Lumbar 

intervertebral disk 

degeneration (group 

2) and bony vertebral 

abnormalities (group 

3) 

Alignment of shoulder at BFC: group 1 (injury free) median 179.0°, 

group 2 median 206.0°*, group 3 median 197.0°*. Release 

height/height: group 1 median 110%, group 2 median 113%, group 3, 

median 114%*. Shoulder alignment at minimum: group 1 median 179°, 

group 2 median 181°, group 3 median 193°*. Minimum - BFC (shoulder 

counter-rotation): group 1 median 0°, group 2 median -25°*, group 3 

median -12°*. Age: group 1 (16.4 y), group 2 (17.4 y), group 3 (18.4y)*. 

Sit and reach: group 1 (8.0cm), group 2 (4.5cm)*, group 3 (10.5cm). No 

differences between the groups for a range of bowling kinematics, 

ground reaction forces, posture, muscular strength, muscular endurance, 

and anthropometry 

Gray et al. [55] N = 25, 

mean(range) 17 

and 16 (14-18) 

y, all male, 

provincial, South 

Africa 

 

 

Abdominal muscle 

morphology 

Current LBP which 

had existed for at 

least six weeks. The 

pain originated from 

fast bowling and 

caused at least one 

missed game or 

training session 

LBP group had larger abdominal muscle CSA on the non-dominant side 

(p = 0.01). Non-LBP group had no differences in the CSA of the 

dominant and non-dominant sides (p = 1.0). LBP group had reduced 

abdominal muscle CSA on the non-dominant side 2.4±0.4cm, compared 

to the non-LBP group 3.0±0.4cm, p = 0.03. No difference in CSA on 

the dominant side (LBP group 2.5±0.4cm, non-LBP group 2.5±0.4cm, 

p = 1.0). LBP group had reduced internal oblique CSA compared to the 

non-LBP group (p = 0.02). No difference between the groups when 

examining the external oblique and transversus abdominis muscle CSA. 

The CSA of the muscles on the non-dominant side of the non-LBP 

bowlers was always larger (p <0.001). In the LBP group, the CSA of 

the individual muscles was symmetrical (p = 0.01) 
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Study Participants Exposure Outcome Results 

Hardcastle et al. 

[56] 

N = 24, 

mean(range) = 

17.9 (16-18) y, 

all male, state, 

Australia 

Bowling kinematics 

(mixed action) 

Lumbar pars 

interarticularis 

defects, 

intervertebral disc 

degeneration and 

LBP 

Of the bowlers with a mixed technique who rotated <10°, 83% (n = 5/6) 

displayed signs of both lumbar abnormality and LBP. Of the bowlers 

with a mixed technique who rotated >10°, 100% (n = 10/10) displayed 

signs of lumbar abnormality and 80% (n = 8/10) of these had LBP 

Hecimovich and 

Stomski [57]  

N = 59, 

mean(range) = 

14.3 (13-17) y, 

male/female, 

state, Australia  

Lumbar lordosis  Match/training time-

loss injury to the 

lower back 

associated with 

bowling/similar 

action 

Lumbar lordosis was significantly greater in bowlers with a history of 

low back injury (42.53±9.10°) compared to those with no history of low 

back injury (30.33±8.36°) (p <0.01) 

Values are meanSD unless otherwise indicated. List abbreviations; y (years), LBP (low back pain), CSA (cross-sectional area), * (significant difference compared to injury free 

group (p <0.05)) 
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Table 2.4 Cohort study characteristics and results. 

Study Participants Exposure Outcome Results 

Bayne et al. 

[31] 

N = 25, 

mean(range) =15.8 

(14-19) y, all male, 

district/state, 

Australia 

 

Bowling kinematics 

(trunk, pelvis and 

lower-limb), lumbar 

bowling kinetics, trunk 

endurance, and reduced 

movement control  

 

Match time-loss injury 

to the low back, and 

asymptomatic signs of 

lumbar bone stress 

Compared to non-injured bowlers, injured bowlers had lower front 

hip angle at FFC (46.1±5.6°; 50.7±5.5°, p = 0.049), greater thorax 

lateral flexion at FFC (19.9±6.0°; 15.0±5.1°, p = 0.039), increased 

pelvis rotation at BR (287.3±10.8°; 276.6±11.4°, p = 0.024), 

increased thorax lateral flexion at BR (49.8±5.9°; 40.2±7.8°, p = 

0.002), higher peak lumbar flexion/extension moment (10.5±4.9 

Nm.kg–1.m–1; 6.9±2.5 Nm.kg–1.m–1, p = 0.036), higher peak 

lumbar lateral flexion moment (12.5±2.6 Nm.kg–1.m–1; 10.6±1.9 

Nm.kg–1.m–1, p = 0.049), higher peak lumbar lateral flexion power 

(25.8±16.2 W.kg–1.m–1; 14.4±7.7 W.kg–1.m–1, p = 0.043), 

reduced Biering-Sorensen test hold time (103±33s; 132±33s, p = 

0.037) and increased knee valgus angle during single leg decline 

squat on dominant (9±3°; 5±4°, p = 0.031) and non-dominant sides 

(9±4°; 6±3°, p = 0.027). No significant between group differences 

in lumbar kinetics, ground reaction forces, shoulder counter-

rotation, lumbo-pelvic ROM while bowling, joint ROM (ankle 

dorsiflexion and internal/external hip rotation), muscular endurance, 

lumbo-pelvic stability, foot arch height, a range of bowling 

kinematics and bowling workload 

Burnett et 

al. [33] 

N = 19, mean = 

13.6 y, all male, 

school/club, 

Australia 

Bowling kinematics 

(mixed action) 

 

Progressive 

degeneration of the 

thoracolumbar 

intervertebral discs 

Eighty percent of the bowlers with a mixed technique at both 

baseline and follow-up showed signs of progressive thoracolumbar 

disc degeneration whereas only 14% of the bowlers utilising a mixed 

technique at one session (baseline or follow-up) showed signs of 

progressive thoracolumbar disc degeneration (p = 0.015). More 

bowlers showed signs of thoracolumbar disc degeneration at 16.3 y 

of age (58%) compared with those who were 13.6 y of age (21%) (p 

= 0.008). No significant relationships between thoracolumbar disc 

degeneration and bowling with a mixed technique at session 1 only 

or bowling with a mixed technique at session 2 only 
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Study Participants Exposure Outcome Results 

Davies et al. 

[25] 

N = 46, 

mean(range) = 

14.6 (11-18) y, all 

male, national, 

South Africa 

Bowling workload and, 

hamstring flexibility  

 

A condition which 

prevents normal 

cricketing activity  

 

Hamstring flexibility was reduced in players who missed playing 

time due to injury compared to those who did not: Pre-season (mean 

difference 8.6°, p = 0.003), mid-season (mean difference 7.4°, p = 

0.015), average for the season (mean difference 6.7°, p = 0.006). No 

difference in post season hamstring flexibility (mean difference 2.3°, 

p = 0.542). Bowling workload was significantly related to weeks 

injured (Pearson’s correlation (r) = 0.62, p <0.0005). Recurrent 

injuries accounted for 43% of injuries 

Dennis et al. 

[28] 

N = 91, 

median(range) 

=17.8 (12.3-33.1) 

y, all male, state, 

Australia 

Hip internal rotation 

ROM and ankle 

dorsiflexion ROM 

Insidious condition 

to the back, trunk or 

lower-limb 

associated with 

bowling. Affected 

match selection/ 

performance or 

resulted in surgery 

Reduced internal hip rotation ROM on the leg ipsilateral to the 

bowling arm was associated with a reduced injury risk (≤30° vs >40°, 

OR = 0.20, 95 % CI 0.06-0.73). Conflicting results between reduced 

ankle dorsiflexion lunge on the leg contralateral to the bowling arm 

and injury risk (12.1–14.0 cm vs >14 cm, OR = 4.03, 95 % CI 1.07-

15.21 and ≤12 cm vs >14 cm, OR = 1.38, 95 % CL 0.04-4.48). No 

significant relationship between injury and shoulder counter-rotation, 

a range of bowling kinematics, joint ROM (knee extension, hip 

extension/abduction/external rotation), muscular strength, muscular 

endurance, aerobic capacity and anthropometry 

Dennis et al. 

[26] 

N = 44, 

mean(range) = 

14.7 (12-17) y, all 

male, 

club/district, 

Australia 

Bowling workload Insidious condition 

affecting match 

selection/ 

performance or 

requiring surgery 

Fewer days rest between bowling sessions increased injury risk (<3.5 

days compared to ≥ 3.5 days, RR = 3.1, 95 % CI 1.1-8.9). Injured 

bowlers had significantly fewer days between bowling sessions 

compared to the non-injured bowlers (median 3.2, median 3.9, p = 

0.038). No significant increase in injury risk when bowling ≥ 2.5 days 

per week (RR = 2.5, 95 % CI 0.9-7.4), bowling ≥ 50 deliveries per 

day (RR = 2.0, 95 % CI 0.7-5.4) and bowling ≥ 100 deliveries per 

week (RR = 1.2, 95 % CI 0.4-3.4)  

Elliott et al. [52] N = 41, mean = 

13.2 and 13.4 y, 

all male, state, 

Australia 

Bowling kinematics 

(mixed action) 

Lumbar 

intervertebral disk 

abnormalities 

Bowlers who utilised the mixed technique had significantly increased 

levels of lumbar disk degeneration when compared to bowlers 

utilising the front-on or side-on action (p = 0.002) 
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Study Participants Exposure Outcome Results 

Engstrom 

et al. [54] 

N = 51, mean =13-

17 y, all male club 

to national, 

Australia 

QL muscle morphology Symptomatic 

lumbar pars 

lesions 

Increasing risk of a symptomatic L4 pars lesions with increasing 

asymmetry, 105% QL asymmetry = 4%, 95 % CI 0.01%-17% risk of a 

symptomatic L4 pars lesions, 125% QL asymmetry = 58%, 95 % CI 32%-

80% risk of a symptomatic L4 pars lesions and, 130% QL asymmetry = 

78%, 95 % CI 45%-93% risk of a symptomatic L4 pars lesions. No 

significant associations between the combined CSA of the erector 

spinae/multifidus and injury 

Foster et al. 

[30] 

N = 82, 

mean(range) = 16.8 

(15-22) y, all male, 

club/school, 

Australia. 

Longitudinal foot arch, 

quadriceps torque, 

shoulder strength, 

bowling kinematics 

(shoulder counter-

rotation and ball release 

height), and bowling 

workload 

Match time-loss 

injury to the 

vertebra or soft 

tissue of the back  

 

 

 

Compared to the non-injured bowlers, those who developed a stress 

fracture had lower longitudinal foot arch height, greater non-dominant 

quadriceps strength, greater amounts of shoulder counter-rotation and 

released the ball from a higher point (p <0.05). Compared to the non-

injured bowlers, those who developed a back injury had greater shoulder 

depression strength and shoulder horizontal flexion strength on the 

bowling arm side (p <0.05). They also displayed a more front-on shoulder 

alignment at BFC. Fifty nine percent of participants who bowled in >17 

matches sustained a stress fracture or back injury (total injury incidence 

rate of 38%). Bowling >10 overs in a day resulted in a relatively high 

number of players (66%) reporting back pain the next day. No significant 

differences between the groups when examining ground reaction forces, a 

range of bowling kinematics, anthropometry, muscular strength, muscular 

endurance, joint ROM, aerobic capacity, and posture 

Gregory et 

al. [27] 

N = 70, 

mean(range) = 15.3 

(9-21) y, all male, 

county, England  

Bowling workload A condition 

associated with 

bowling that 

reduced bowling 

performance or 

prevented 

bowling 

No significant link between injury incidence (injuries per 1000 balls 

bowled) and the quantity of balls bowled over a six-month period (0-1000 

balls bowled = 0.258 injuries/1000 balls, 1000-2000 = 0.236, 2000-3000 

= 0.147, and >3000 = 0.067 (p = 0.180). No significant difference between 

the injury rates of the bowlers delivering <1000 balls (20 injuries/100 

bowlers) and those delivering >1000 balls (36.4 injuries/100 bowlers (p = 

0.232). No significant difference in the percentage of injured bowlers in 

the group who bowled >3000 balls and the group who bowled 1000–3000 

balls (mean difference 3.7%, 95 % CI –30%-29%) 
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Study Participants Exposure Outcome Results 

Kountouris 

et al. [58] 

N = 38, 

mean(range) = 14.9 

(12-17) y, all male, 

Australia 

QL muscle morphology Lumbar bone 

stress or lumbar 

soft tissue injuries 

The quantity of individuals with QL asymmetry (<10%, 10-20% and, 

>20%) was not significantly different between groups (lumbar bone stress 

injury, lumbar soft tissue injury and no injury p = .180). No differences in 

average asymmetry between those with lumbar soft tissue injuries (12.5% 

asymmetry), lumbar bone stress injuries (15.7%) and non-injured (12.4%) 

(p = .537). Average asymmetry did not differ significantly between the 

bowlers with lumbar bone stress injuries (15.7%) and those without 

(12.4%) (p = 0.267). Four bowlers who had asymptomatic signs of lumbar 

bone stress at pre-season went on to develop a symptomatic stress fracture 

during the cricket season. Lumbar stress fracture group had significantly 

greater body mass index (22.6±1.73) compared to non-lumbar stress 

fracture group (20.7±1.72) (p <0.05). No significant differences between 

the groups when examining age, height, and weight 

Values are meanSD unless otherwise indicated. List abbreviations; y (years), CSA (cross-sectional area), ROM (range of motion), QL (quadratus lumborum), 95 % CI 

(confidence interval), RR (risk ratio), OR (odds ratio).  
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2.4.6.4 Ball release height 

Ball release height was associated with injury in one cross-sectional [53] and one cohort study [30]. 

Foster et al. [30], however, did not present the ball release height values, so the magnitude of 

association cannot be judged. In the cross-sectional study by Elliott et al. [53], the bony abnormality 

group released the ball from a greater height (114% of their standing height) compared to bowlers 

in the non-injured group (110% of their standing height) (p ≤ 0.05). In a number of other studies, 

no significant associations were found between injury and ball release height, both when examining 

release height as an absolute value [53] or as a value relative to standing height [28, 51]. 

2.4.6.5 Lumbar kinetics 

Lumbar moments and lumbar power between FFC and BR were significantly greater in bowlers 

who developed a low back injury compared to those who did not [31]. This included greater peak 

lumbar flexion/extension moments (mean difference 3.6 Nm.kg–1.m–1, p = 0.036), greater peak 

lumbar lateral flexion moments (mean difference 1.9 Nm.kg–1.m–1, p = 0.049), and higher peak 

lumbar lateral flexion power (mean difference 11.4 W.kg–1.m–1, p = 0.043). No significant 

difference existed between the injured and non-injured bowlers when examining peak lumbar force 

(anterior/posterior, vertical, and medio/lateral), peak lumbar rotation moment, and peak lumbar 

power (flexion/extension and rotation) [31].  

2.4.6.6 Other biomechanical factors 

A number of notable bowling biomechanics were not associated with injury and these included 

approach velocity [30, 31, 51, 53], ball speed [28, 51, 53], angle of back foot at BFC [30, 51, 53], 

stride length between BFC and FFC [28, 51, 53], lumbo-pelvic range of motion (flexion/extension, 

and rotation) [31], and ground reaction forces at BFC and FFC (both vertical/compressive and 

breaking/horizontal forces) [30, 31, 51, 53]. 
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2.4.6.7 Bowling frequency  

Injured bowlers had significantly fewer days’ rest between bowling sessions compared to non-

injured bowlers (median difference 0.7 days, p = 0.038). A significant increase in injury risk was 

also observed in bowlers who had <3.5 days’ rest between bowling session compared to those with 

≥ 3.5 days’ rest (RR = 3.1, 95 % confidence interval (CI) 1.1-8.9) [26]. In the same investigation, 

no significant increase in injury risk was observed when bowling ≥ 2.5 days per week (RR = 2.5, 

95 % CI 0.9-7.4) [26].  

2.4.6.8 Bowling quantity 

Conflicting results were found linking bowling quantity to injury in five cohort studies [25-27, 30, 

31]. Davies et al. [25], for example, found a significant relationship between mean balls delivered 

per week and playing time lost to injury over the course of a season (Pearson’s r = 0.62, p <0.0005). 

However, in another investigation, no significant increase in injury risk was found when bowling 

≥ 50 deliveries per day (RR = 2.0, 95 % CI 0.7-5.4) and when bowling ≥ 100 deliveries per week 

(RR = 1.2, 95 % CI 0.4-3.4) [26]. Likewise, Gregory et al. [27] found no significant link between 

the quantity of balls bowled over a six-month period and injury incidence (p = 0.180) and Bayne 

et al. [31] reported no significant differences in a variety of bowling workload factors (average 

number of overs per week and per session, average sessions per week and maximum number of 

overs in one session, one week, two weeks and four weeks) between bowlers who did and did not 

develop a low back injury over the course of a season (p >0.05). 

2.4.6.9 Anthropometry 

In one cohort study, body mass index was significantly greater in bowlers who sustained a stress 

fracture compared to those who did not (mean difference 1.9, p <0.05) [58]. In other investigations, 
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no significant associations were found between injury and body fat percentage [28, 30, 51, 53], 

height [28, 51, 53], or body weight [28, 30, 51, 53].  

2.4.6.10 Lumbar posture and longitudinal foot arch  

In a cross-sectional investigation, lumbar lordosis was significantly greater (mean difference 12.2°, 

p <0.01) in bowlers with a history of low back injury compared to those with no history of low 

back injury [57]. In one cross-sectional study [53] and another cohort study [30], however, no 

association was found between lumbar lordosis and lumbar imaging-abnormality injuries and low 

back injuries, respectively. A low longitudinal foot arch was a characteristic of bowlers who 

sustained a lumbar stress fracture in one cohort study (p <0.05) [30]. In other investigations, 

including one cross-sectional study [18] and one cohort study [31], no associations were found 

between longitudinal foot arch height and injury. 

2.4.6.11 QL morphology 

Conflicting results linking QL asymmetry to injury were found within two cohort studies [54, 58]. 

In the investigation by Engstrom et al. [54], for example, increased QL asymmetry (greater cross 

section area on the side ipsilateral to the bowling arm) was significantly linked with sustaining a 

stress fracture. This was particularly evident in bowlers with >130% QL asymmetry who had a 78% 

(95 % CI 45-93%) chance and bowlers with 125% QL asymmetry who had a 58% (95 % CI 32-

80%) chance of sustaining a lumbar stress fracture. Conversely, bowlers with lower QL asymmetry 

(105%) only had a 4% (95 % CI 0.01-17%) chance of sustaining a lumbar stress fracture [54]. In 

the investigation by Kountouris et al. [36], no significant differences in QL muscle asymmetry 

existed between non-injured bowlers and those who sustained a lumbar soft tissue injury or a 

lumbar bone stress injury over the course of the season (p = 0.537).  
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2.4.6.12 Abdominal muscle morphology  

In bowlers with low back pain (LBP), the combined cross-sectional area of the abdominal muscles 

(external oblique, internal oblique, and transverse abdominis) was not significantly different 

between the dominant and non-dominant sides (p = 1.0), yet in bowlers with no LBP, it was 

significantly greater on the non-dominant side (p = 0.01) [55]. There were no differences in 

abdominal muscle cross-sectional area (dominant side) between the LBP and non-LBP groups; 

however, the non-LBP group had larger cross sectional area on the non-dominant side (mean 

difference 0.6 cm, p = 0.03) [55]. Combined thickness of the internal oblique (dominant side + 

non-dominant side) was reduced in the LBP group compared to the non-LBP group (p = 0.02). 

There was no difference between groups when examining combined thickness of the external 

oblique (p = 1.0) or the transverse abdominis (p = 1.0) [55].  

2.4.6.13 Bone stress reaction 

In the cohort study by Ranson et al. [59], early bone stress reaction, as identified with MRI, was 

associated with future lumbar stress fracture (p <0.001). Eleven of 15 bowlers in this study with 

signs of bone stress at baseline went on to develop a stress fracture approximately 10 weeks later. 

Similarly, in the investigation by Kountouris et al. [58], all four bowlers with asymptomatic lumbar 

stress reactions at baseline developed a symptomatic bone stress injury later in the season.  

2.4.6.14 Flexibility 

In the cohort study by Dennis et al. [28], conflicting results were found when linking ankle 

dorsiflexion range (ankle dorsiflexion lunge test) to injury. For example, bowlers with 12.1-14 cm 

of range were at an increased risk of injury (12.1–14.0 cm vs >14 cm, odds ratio (OR = 4.03, 95 % 

CI 1.07-15.21), whereas bowlers with ≤ 12 cm of range were not (12 cm vs >14 cm, OR = 1.38, 
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95 % CL 0.04-4.48). In the cohort study by Bayne et al. [31], no link was found between ankle 

dorsiflexion range of motion and low back injury. 

Hamstring flexibility (straight-leg raise test) was significantly reduced in players who 

missed playing time due to injury over the course of a season compared to those who did not [25]. 

This was evident at pre-season (mean difference 8.6°, p = 0.003) mid-season (mean difference 7.4°, 

p = 0.015), and when averaged across the season (mean difference 6.7°, p = 0.006) [25]. A 

significant difference was not observed when examining post season hamstring flexibility (mean 

difference 2.3°, p = 0.542) [25]. Likewise, in two other cohort studies, no link was found between 

reduced hamstring flexibility and the development of lumbar stress fractures [30] or 

back/trunk/lower-limb injuries [28]. 

Conflicting results were found in two cohort studies examining hip rotation range of motion 

[28, 31]. Reduced hip internal rotation range on the leg ipsilateral to the bowling arm, for example, 

was significantly associated with a reduced risk of injury in one study (OR = 0.20, 95 % CI 0.06-

0.73) [28]. In the same investigation, however, neither contralateral hip internal rotation range nor 

external hip rotation range were linked to injury [28]. Bayne et al. [31] also reported no significant 

differences in internal or external hip rotation range between bowlers who did and did not sustain 

a low back injury over the course of a season. 

2.4.6.15 Muscular strength 

In the cohort study by Foster et al. [30], greater isokinetic quadriceps torque (60°/s) in the leg 

contralateral to the bowling arm was significantly associated with stress fractures, and increased 

shoulder strength in the bowling arm (depression strength and horizontal flexion strength) was 

linked with back injuries (p <0.05). In the same investigation, isokinetic hamstring strength (60°/s), 

trunk flexion strength and trunk extension strength were not significantly different between injured 
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and non-injured bowlers [30]. Likewise, in the cross-sectional study by Elliott et al. [53], trunk 

flexion strength, trunk extension strength, and trunk flexion/extension strength ratio were not 

significantly different between injured and non-injured bowlers. 

2.4.6.16 Muscular endurance 

In one cohort study, reduced hold time on the Biering-Sorensen test, an assessment of trunk 

extensor muscle endurance, was a characteristic of bowlers who sustained a low back injury (mean 

difference 29 s, p = 0.037) [31]. No significant associations between injury and the following 

assessments of muscular endurance were found in several studies; calf endurance test [28, 31], sit-

up endurance test [30, 51, 53], prone plank hold [28, 31], single leg bridge hold [28, 31], and side 

plank hold [31]. 

2.4.6.17 Movement control 

Bowlers who sustained a low back injury had significantly greater medial knee movement during 

a single leg decline squat [31]. This was evident in both the dominant limb (mean difference 4°, p 

= 0.031) and non-dominant limb (mean difference 3°, p = 0.027). In the same investigation, a score 

of “0” on a lumbo–pelvic stability test was not significantly associated with an increased risk of 

injury (RR = 1.7, 95 % CI 0.78-4.10) [31]. 

2.5 Discussion 

The current systematic review identified risk factors for non-contact injury in adolescent pace 

bowlers aged 12-19 years. Bowling biomechanics, bowling workload, and neuro-musculo-skeletal 

factors were commonly investigated, with potentially modifiable risk factors including lateral trunk 

flexion, pelvis/hip kinematics, reduced trunk endurance, and poor lumbo-pelvic-hip movement 

control [25-28, 30, 31, 33, 51-59]. Conflicting results were found amongst the studies investigating 



34 

 

the mixed technique [28, 30, 31, 33, 51-53], bowling workload [25-27, 31], and QL asymmetry 

[54, 58].  

2.5.1 Risk of bias within studies 

The cross-sectional studies did not report sample size calculations and were potentially 

underpowered and prone to type II error. Many cross-sectional and cohort studies also failed to 

control for potential confounding factors, which may limit the internal validity of these results. The 

majority of cohort studies did not report whether the study outcome (i.e., injury) was present at 

baseline and, therefore, may have included injured participants at baseline. Dropout rates were not 

well reported in a number of cohort studies, making it difficult to assess for attrition bias and 

external validity at follow-up.  

2.5.2 Risk factors  

Excessive lateral trunk flexion contralateral to the bowling arm at both FFC and BR was associated 

with low back injury in one cohort study with low risk of bias [31], and these findings accord with 

studies of adult fast bowlers [60]. Contralateral lateral trunk flexion occurs at a time when 

compressive and shear forces acting on the body are high [37, 38] and towards the side where the 

majority of lumbar stress fractures occur in pace bowlers [56, 61]. Continued research is needed to 

confirm excessive lateral flexion as a risk factor for injury; however it may prove a good target for 

modification. 

The mixed action was linked with thoracolumbar disc degeneration in two cohort studies at 

low [33] and high [52] risk of bias respectively. When examining shoulder counter-rotation (a 

component used to classify the mixed action) the cohort studies at lower risk of bias found no 

significant association between this factor and injury [28, 30, 31], whereas cross-sectional studies 

with a higher risk of bias did [51, 53, 56]. Furthermore, in two cohort studies examining the 
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kinematics used to classify the mixed action at BFC (angle of back foot and shoulder alignment), 

no link was found between these factors and injury [28, 30]. The influence of the mixed action on 

injury therefore remains unclear and further research is needed to determine whether this factor 

influences injury.  

Conflicting results were found in both the cross-sectional [51, 53] and cohort studies [25, 

30] examining the relationship between ball release height and injury. In a low risk of bias cohort 

study, bowling with a more extended hip at FFC was associated with low back injury [31]. This is 

similar to findings reported in adult pace bowlers, where bowling with an extended knee at FFC 

was linked with trunk injury [62]. Bowling with a straighter lower-limb may reduce the capacity 

to attenuate forces while bowling and increase the shear forces affecting the lumbo-pelvic region 

[38, 62]. Bowling with an extended lower-limb, however, is an important aspect for producing 

faster ball speeds [38, 62]. While modification of lower-limb kinematics may have implications 

for reducing injury risk [38, 62], recent work has found that faster bowlers can have straighter front 

legs while also having lower vertical ground reaction forces [63]. 

There were contrasting results within cohort studies examining bowling workload in both 

the studies at low [25, 31] and high risk of bias [26, 27]. Workload was self-reported in all studies 

and potentially prone to recall bias. In another study, the bowling workload data were incomplete 

and excluded from analysis [28]. It is unclear if the other studies examining workload also had 

difficulties with incomplete data [25-27, 31]. The contrasting findings could also be explained by 

the method in which the workload data was analysed. In adult pace bowlers for example, spikes in 

acute workload (one week) relative to chronic workload (one month) have been shown to increase 

the risk of injury [64]. There is also evidence to support a potential U-shaped distribution in the 

relationship between workload and injury, with moderate workloads protecting against injury and 
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low/high workloads increasing the risk of injury [41]. Future research examining bowling workload 

as an injury risk factor should ensure that the association between acute/chronic workloads and the 

potential U-shaped relationship between workload and injury are considered. 

The role of QL asymmetry is unclear with two high risk of bias cohort studies reporting 

conflicting results [54, 58]. Neither study excluded individuals with asymptomatic bone stress at 

baseline, the methods used to measure QL cross-sectional area differed between studies, and one 

study investigated L4 stress fractures [54], while the other examined a combination of L4 and L5 

stress fractures [58]. Biomechanical investigations suggest a potential link between certain bowling 

biomechanics (lumbo-pelvic lateral flexion measurements) and QL asymmetry [38]. Neither 

Engstrom et al. [54] nor Kountouris et al. [58], however, controlled for bowling biomechanics and 

this could have potentially confounded the results. Finite element modelling studies question the 

role of QL asymmetry in the development of injury [65]. While QL asymmetry may be associated 

with injury, the causal nature of this association remains unclear. Future research aiming to 

establish the role of QL asymmetry in bowling-related injuries should ensure that participants are 

injury-free at baseline and bowling biomechanics are controlled for. 

Neuromuscular dysfunction may lead to injurious movements while bowling and 

potentially exposes bowlers to injurious loads [31, 66]. In one low risk of bias cohort study, reduced 

trunk extensor endurance and poor lumbo-pelvic-hip movement control were associated with injury 

[31]. These factors are also associated with injury in other populations and their potential for 

modification makes them a good target for intervention [67-69]. 

2.5.3 Limitations 

Clinical heterogeneity prevented the quantitative synthesis of study results and limited the 

application of GRADE summaries of evidence quality [50]. Study heterogeneity also limited my 
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ability to assess publication bias. It is therefore unclear if publication bias influenced the findings 

in this review. A comprehensive search strategy developed in consultation with a reference 

librarian was implemented in several major databases; however, it is possible that relevant articles 

were not identified during the search process.  

No consistent definition was used to define a fast bowler and only four studies reported 

bowling speed [31, 51-53]. It was therefore difficult to compare cohorts across studies. A number 

of investigations also failed to explicitly state whether they examined contact or non-contact 

injuries and the studies investigating workload were potentially limited by recall-bias. Most 

included studies were conducted on elite, male pace bowlers playing cricket in Australia and the 

results of this review may not generalise to individuals outside this cohort. Furthermore, there was 

a lack of evidence regarding risk factors for non-low back injuries, with only four studies 

examining injuries outside this location. 

2.5.4 Future research  

Future studies investigating risk factors for injury in adolescent pace bowlers should ensure that 

participants are injury free at baseline, confounding factors are controlled, and attrition rates 

reported. Weight-normalised bowling speeds should also be reported in future investigations to 

allow comparisons to be made between cohorts. Injury type and mode (contact or non-contact) 

should be reported in accordance with the international consensus statement on injury surveillance 

in cricket [45], to allow for easier comparisons between studies and sporting codes. There is also a 

need to more accurately measure bowling workload, as self-reported methods can be problematic 

in adolescent individuals [28]. Recent developments using microsensor technology may serve as a 

useful tool, although these methods require further validation in adolescent pace bowlers [70]. 

Female pace bowlers and pace bowlers playing cricket outside of Australia were not well 
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represented in the current review and further research is needed to identify risk factors for injury 

in these populations. Injury records from epidemiology studies also highlight the need to identify 

risk factors for injuries occurring outside the low back, such as those to the shoulder, groin, knee, 

ankle and foot [14, 40]. 

Several potentially modifiable risk factors were identified in this review and these could be 

the target of future interventional studies. Exercise-based interventions should be considered in 

adolescent pace bowlers as these programs are effective in modifying neuromuscular risk factors 

and reducing injuries in adolescent athletes [20]. It would also be beneficial to investigate whether 

certain biomechanical features are modifiable, such as excessive lateral trunk flexion during the 

bowling action. Care must be taken when modifying any factor to ensure performance is not 

compromised and that additional risk factors are not introduced. When implementing injury 

prevention strategies, it is also important to consider the ecological validity of these methods [71]. 

Interventions which are costly, time consuming, and reliant on expert knowledge may have limited 

practical application.  

2.6 Conclusion 

A number of potentially modifiable risk factors are associated with non-contact injury in adolescent 

cricket pace bowlers and these include excessive lateral trunk flexion while bowling, pelvis and 

hip bowling kinematics, reduced trunk extensor endurance, and poor lumbo-pelvic-hip movement 

control. MRI may be helpful to identify individuals who are prone to developing future lumbar 

stress fractures. There were conflicting findings regarding the mixed technique, bowling workload, 

and QL asymmetry. Further research is needed to understand the influence of these factors on injury. 

Future investigations examining injury risk factors in adolescent pace bowlers should utilise 

prospective cohort study designs and ensure the major sources of within-study bias identified in 
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this review are minimised where possible. It would also be beneficial to assess if exercise-based 

IPPs are effective for modifying neuromuscular factors and coaching interventions are useful for 

bowling technique modification.
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CHAPTER 3  
 

 

INJURY PREVENTION STRATEGIES FOR 

ADOLESCENT CRICKET PACE BOWLERS 

Based on the following paper published in Sports Medicine 

 

Forrest MRL, Scott BR, Hebert JJ, Dempsey AR. Injury prevention strategies for adolescent 

cricket pace bowlers. Sports Med. 2018;48(11):2449-61. 
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3.1 Abstract 

Adolescent cricket pace bowlers are prone to non-contact shoulder, low back and lower-limb 

injuries. Exercise-based IPPs are effective for reducing non-contact injuries in athletes; however, 

a specific program for adolescent pace bowlers has not been published. This paper therefore seeks 

to provide a rationale for the development of an exercise-based IPP specific for adolescent pace 

bowlers. It also outlines design principles and provides an example exercise program that can be 

implemented at the community-level. In addition, the paper addresses other injury prevention 

techniques concerned with the prescription of appropriate bowling loads and the modification of 

poor bowling biomechanics. Performing an exercise-based IPP before cricket training could reduce 

injury rates in adolescent pace bowlers. Eccentric strengthening exercises can be employed to target 

injuries to the posterior shoulder muscles, hip adductors and hamstring muscles. The risk of low 

back, knee and ankle injury could also be reduced with the inclusion of dynamic neuromuscular 

control exercises and trunk extensor endurance exercises. Other prevention strategies that need to 

be considered include the modification of poor bowling biomechanics, such as shoulder counter-

rotation and lateral trunk flexion. Coaches and players should also aim to quantify bowling load 

accurately and coaches should use this information to prescribe appropriate individualised bowling 

loads. Specifically, players would benefit from avoiding both long periods of low load and acute 

periods when load is excessively high. Future evidence is needed to determine the effectiveness of 

the example program outlined in this paper. It would also be beneficial to investigate whether the 

modification of bowling biomechanics is achievable at the non-elite level and if bowling load can 

be accurately measured and manipulated within a community-level population. 
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3.2 Introduction 

Sporting activities are a major cause of injury in adolescent individuals [9]. These injuries are 

associated with costly medical expenses [9], result in sports dropout [72], decrease sport 

performance at the team/individual level [73] and increase the risk of developing a future sporting 

injury [74]. For adolescent athletes aiming to advance to elite senior competition, some injuries 

can also represent a serious threat to their career. Cricket pace bowlers have similar injury 

prevalence rates to athletes playing high-contact football codes, prompting research interest in the 

area of injury prevention for pace bowlers [34, 35, 40]. Within this field, attention has been 

particularly focused on adolescent pace bowlers, who are susceptible to certain injuries during their 

developmental years [75, 76]. Adolescent individuals, for example, have partially ossified lumbar 

vertebrae, elastic intervertebral discs, immature articular cartilage prone to micro-damage and 

elongated musculotendinous tissues [77-79]. Consequently, non-contact injuries frequently occur 

in adolescent pace bowlers and typically affect the shoulder, low back (e.g., lumbar stress fractures) 

and lower-limbs [13, 24, 25, 27, 28].  

In Chapter 2, neuromuscular deficiencies, poor bowling biomechanics and bowling load 

were identified as risk factors for non-contact injury in adolescent pace bowlers [80]. These factors 

are potentially modifiable, but it can be difficult to change bowling biomechanics without elite 

coaching staff [81], and at the community-level it is challenging to quantify and then determine 

appropriate individualised bowling loads [80, 82]. Exercise-based IPPs, however, are effective for 

modifying neuromuscular risk factors and have been shown to reduce injury risk by 32% in 

community-level adolescent athletes [20]. Although IPPs also have associated challenges at the 

community-level, evidence shows that appropriately designed programs can be successful [20]. 

Nevertheless, no such program has been developed or published specific to adolescent pace 
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bowlers, despite their considerably high injury prevalence rates and the unique physical demands 

of the pace bowling action.  

Educating community-level cricket coaches about the benefits of IPPs and providing 

practical education about program delivery would likely increase the chance of implementation 

and improve player adherence after a program was implemented [21, 83, 84]. Therefore, the 

primary aim of this paper is to provide coaches with exercise-based recommendations to reduce 

injury risk in community-level adolescent pace bowlers. A secondary aim is to highlight additional 

injury prevention strategies which could be considered by community-level cricket coaches, such 

as the manipulation of bowling biomechanics and the moderation of bowling loads.  

3.3 Exercise Program Design Principles  

When developing an IPP for adolescent pace bowlers, it is important to consider the unique 

demands of the bowling action and understand the principles outlined in the TRIPP framework 

[23]. The TRIPP framework highlights the importance of identifying common/debilitating injuries, 

uncovering injury mechanisms and risk factors, considering the context of program implementation 

and developing effective preventive programs [23]. Sections 3.3.1–3.3.4 highlight important 

considerations regarding these factors and provides coaches with an understanding of the 

underlying rationale and challenges associated with implementing an IPP specific to adolescent 

pace bowlers. 

3.3.1 Bowling Action 

Adolescent pace bowlers deliver approximately 55 balls per match and more than 100 deliveries 

per week in-season [26]. The bowling action (Figure 3.1) is highly dynamic, combining rapid 

multi-planar trunk movements with large ground reaction forces. Between FFC and BR, for 
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example, the spine moves through a combination of extension/ flexion, lateral flexion and rotation 

[85], while the body experiences ground reaction forces approximately four to six times body 

weight [37]. The resultant lumbar shear forces during this time reach levels 40–50 times greater 

than those experienced while running [38]. The repetitive application of these forces to the body is 

therefore considered an important aetiological factor in the development of non-contact injury in 

pace bowlers [31, 86]. 

 

Figure 3.1 The pace bowling action: a BFC; b FFC; and c BR. 

3.3.2 Common Injuries 

The majority of non-contact injuries in adolescent pace bowlers are to the back/trunk and lower-

limbs, with the remainder affecting the upper limbs [13, 24, 25] (Table 3.1). Lumbar spine 

abnormalities such as spondylolysis and spondylolisthesis have been reported in 11–55% of 

adolescent pace bowlers [30, 53]. Unilateral lumbar spine abnormalities typically occur on the side 

opposite the bowling arm at the L4 or L5 spinal level [53, 54] and, when symptomatic, can cause 

between 6 and 12 months of missed cricket [32]. Thoracolumbar intervertebral disk degeneration 

has also been reported in 21–65% of adolescent bowlers, although this condition is not always 
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symptomatic [33, 53]. Pace bowlers may also be susceptible to lumbar muscle strains, which when 

combined with lumbar stress fractures comprise 47% of all injuries [13].  

Common lower-limb injuries include those to the groin, knee and ankle [13, 25, 27, 28]. 

Groin injuries generally present as muscular strains [13], with those to the knee typically attributed 

to patellofemoral pain syndrome and Osgood- Schlatter disease [27]. In the ankle, ligament sprains 

comprise the majority of injuries [13, 27]. Hamstring strains are the most common injury in adult 

pace bowlers [40] and are more likely to occur in bowlers who have previously sustained a 

hamstring strain [87]. Prevention of this injury in the adolescent years is therefore important for 

reducing future injury risk. The shoulder is the most common injury location in the upper limbs 

[25, 40], with musculotendinous tissues typically affected [13]. Identifying risk factors for injuries 

affecting the shoulder, low back and lower-limbs (groin, hamstring, knee and ankle) will have the 

most benefit for adolescent pace bowlers. 

Table 3.1 Injury occurrence in adolescent pace bowlers as a percentage of all injuries. 

 Stretch [24] Milsom et al. [13] Gregory et al. [27] 

Upper-limb 11.2 14.8 4.3 

Shoulder   4.3 

Infraspinatus & deltoid strains  8.8  

Other upper-limb injuries  6.0  

Back & trunk 55.5 53.0 21.7 

Low back  47.1 17.4 

Other back & trunk injuries  5.9 4.3 

Lower-limb 29.5 32.3 73.8 

Groin   14.7 4.3 

Knee   34.8 

Ankle   11.8 26.1 

Other lower-limb injuries  5.8 8.6 
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3.3.3 Neuromuscular Injury Risk Factors  

A range of neuromuscular deficiencies exist as risk factors for injury in adolescent pace bowlers (a 

summary of these factors has been provided in Table 3.2). In the shoulder, eccentric weakness of 

the external rotators and strength imbalances between internal and external rotators are common 

risk factors in non-cricket populations [88-90]. Inadequate neuromuscular control 

(proprioception/movement control) is a risk factor for low back and lower-limb injury in pace 

bowlers [31, 95, 96], in line with data from other sporting populations [68, 96, 113]. In a study 

involving adolescent pace bowlers, those who developed a low back injury had reduced 

neuromuscular control of both dominant and non-dominant lower-limbs during a single-leg decline 

squat test [31]. Furthermore, reduced reach on the Star Excursion Balance Test (SEBT) has been 

linked to low back/lower-limb injury in adult pace bowlers [96]. In addition to these 

proprioception/movement control risk factors, reduced trunk extensor muscle endurance may 

predispose adolescent pace bowlers to low back injury [31].  

Table 3.2 Injury risk factors and exercise-based prevention strategies. 

Injury 

locations 

Potential risk factors Injury prevention strategies 

Shoulder ↓ External rotator strength and shoulder strength 

imbalances [88-90]  

Resistance-band strengthening exercises [91-

94] 

Low back ↓ Dynamic neuromuscular control of the 

 lumbo-pelvic region and lower-limb [31, 95, 96] 

↓ Trunk extensor endurance [31] 

Lower-limb strengthening, proprioceptive 

exercises and plyometric drills [18, 19, 97, 98]  

Trunk extensor endurance exercises [99, 100] 

Groin ↓ Hip adductor strength and hip strength 

imbalances [101, 102] 

Isometric strengthening and eccentric 

strengthening exercises [103-105]  

Hamstring ↓ Hamstring strength, strength imbalances  

and ↓ dynamic neuromuscular control of the 

lower-limb [106-109] 

Eccentric strengthening and lower-limb 

proprioceptive exercises [110-112] 

Knee and 

ankle 

↓ Lower-limb proprioception/balance  

[68, 96, 113] 

Lower-limb strengthening, proprioceptive 

exercises and plyometric drills [18, 19, 97, 98] 

↓ reduced. 



47 

 

For groin and hamstring injuries, respectively, general weakness of the hip adductor 

muscles [101, 102] and eccentric weakness of the hamstring muscles [106-108] have been reported 

as risk factors. It should be noted that these findings come from non-cricket studies and the 

mechanism of hip adductor and hamstring injury may differ in pace bowlers. Based on the risk 

factors for shoulder, low back and lower-limb injury, prevention strategies in adolescent pace 

bowlers should aim to modify muscular strength deficiencies, poor dynamic neuromuscular control 

and reduced muscular endurance. 

3.3.4  Exercise Program Implementation at the Community-Level  

Exercise-based programs have been used successfully in a wide variety of sports to modify 

neuromuscular risk factors and reduce injuries [20]. In baseball pitchers they have been employed 

to increase posterior shoulder strength [94], in soccer players they have been used to reduce the 

risk of hamstring and hip adductor injury [105, 111], and in a range of sports these programs have 

significantly reduced the occurrence of lower-limb injuries [19]. It is evident from these studies 

that well-designed exercise-based IPPs that take place in relatively controlled environments can be 

effective for reducing injury risk. However, when designing injury prevention strategies for 

community-level athletes, it is important to consider the viability of these strategies in a real-world 

setting [71].  

Exercise-based IPPs that fail to consider the context of implementation may have limited 

uptake, adherence and effectiveness at the community sport level [71]. Identifying which factors 

facilitate program implementation and considering these factors when designing IPPs may help 

mitigate these potential issues. The coach, for example, plays a major role in deciding whether an 

IPP is implemented at the community-level; therefore, designing strategies that accommodate 

coaches’ attitudes and beliefs can be beneficial [84, 114, 115]. Educating players about the benefits 
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of IPPs and developing fun/enjoyable strategies may also be important for player adherence [84]. 

The following points should be considered when designing exercise-based IPPs for community-

level athletes: (1) incorporate exercises that are simple for the coach and players to learn; (2) use 

minimal/ inexpensive equipment; (3) include dynamic exercises that act as a warm-up; (4) ensure 

sessions are time-efficient; and (5) make the sessions fun/enjoyable with the inclusion of partner-

assisted exercises and game-/skill-based exercises where possible.  

3.4 Evidence-Based Exercise Recommendations  

As outlined in section 3.3.4, community-level IPPs need to be effective and simple to implement. 

With this considered, this section presents a series of exercises that could benefit adolescent pace 

bowlers competing at the community-level. Strength deficits are commonly related to shoulder 

injuries in athletes [88-90]. Resistance exercises for the external shoulder rotators are a primary 

component in the prevention of shoulder injuries in tennis players and baseball pitchers [91-94]. 

Significant gains in eccentric external rotator shoulder strength have been reported in college tennis 

players who completed a 5-week shoulder strengthening program incorporating resistance band 

and dumbbell exercises (78% increase in total work and 30% increase in mean peak force) [92]. 

Similarly, strength gains of approximately 20% (average force) have been reported in college 

baseball pitchers who completed a comparable program over a 6-week period [94]. Resistance 

exercises may therefore be a viable method for correcting strength deficits in pace bowlers at risk 

of shoulder injury.  

As is the case with shoulder injury risk factors, reduced strength is also a risk factor for 

groin and hamstring injury [102, 106]. The Copenhagen adductor exercise and the Nordic 

hamstring exercise, respectively, are effective for increasing hip adductor and hamstring strength 

[103, 105, 112]. In elite soccer players, the introduction of the Copenhagen adductor exercise 
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significantly increased eccentric hip adductor strength between 9% and 35% [103, 105]. Significant 

gains in eccentric hamstring strength have been reported amongst elite soccer players who 

performed the Nordic hamstring exercise over a 10-week period (11% increase in peak torque) 

[112]. The Nordic hamstring exercise also significantly reduces injury risk among amateur soccer 

players (OR = 0.28, 95% CI 0.11–0.72) [116]. Not only are the Copenhagen adductor exercise and 

the Nordic hamstring exercise effective, they are also ideal for amateur athletes. These partner-

based exercises can be performed without any additional equipment and are relatively simple to 

teach and learn.  

Strengthening exercises are also vital components in the prevention of low back and lower-

limb injuries, especially when combined with balance and plyometric/jumping drills [18, 19, 97, 

98]. Squats and lunges are appropriate introductory strengthening exercises and ideal for teaching 

correct exercise technique to novice athletes. Dynamic single-leg balance exercises are also 

beneficial in the early stages (i.e., balancing on one leg while catching a ball from a partner) [117-

119]. While catching a ball on one leg is not necessarily a cricket-specific movement, it is a 

dynamic activity with the potential to increase the level of enjoyment. More advanced 

strengthening exercises (i.e., partner-assisted single-leg squats) and double-leg plyometric/jumping 

drills are effective exercises in the intermediate stages of a program. These exercises can then 

become more dynamic with the inclusion of single-leg squats and multidirectional single-leg 

jumping drills [120, 121]. In a systematic review examining the effect of specific training 

modalities on injury risk, both strength training (RR = 0.32, 95% CI 0.21–0.48) and proprioceptive 

programs (RR = 0.55, 95% CI 0.35–0.87) significantly reduced injury risk [18]. Results from 

another systematic review demonstrate that programs incorporating plyometric/jumping drills are 

also effective for attenuating injury risk (RR = 0.40, 95% CI 0.35–0.57) [19].  
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Another element to consider when attempting to reduce low back injury in pace bowlers is 

trunk extensor endurance. Static hold exercises are effective for targeting improvements in this 

area and should aim to progress athletes from low-load to high-load positions [122]. The prone 

hold is an ideal exercise for community-level athletes as it requires no equipment and can easily be 

progressive with relatively simple adjustments to limb position. In a group of track and field 

athletes, the prone hold and series of other static hold exercises were included in a program that 

increased hold time on the Biering-Sorensen trunk endurance test by approximately 20% [100]. 

3.5 Practical Application of an Exercise‑Based Injury Prevention Program 

Five key injury prevention areas for adolescent pace bowlers have been identified: (1) increase 

eccentric strength of the external shoulder rotators [91]; (2) increase hip adductor strength [102]; 

(3) increase eccentric hamstring strength [111]; (4) improve dynamic neuromuscular control of the 

lumbo-pelvic region and lower-limbs [31]; and (5) improve trunk extensor endurance [31]. 

Practitioners with appropriate qualifications should use the five key prevention areas to guide the 

design of individualised programs. These individualised programs should consider the needs of the 

athlete and aim to accommodate individuals returning from injury or those with certain 

neuromusculoskeletal deficiencies. Coaches also need to consider what exercise equipment they 

have available and the environment in which the program is being prescribed (e.g., the surface of 

the training ground or the climatic conditions). Although this individualised context-specific 

approach to injury prevention is ideal, it is often complex and could act as a major barrier to 

program implementation at the community-level.  

When developing exercise-based IPPs for community-level athletes it is therefore 

necessary to design generalised programs that accommodate the majority of athletes. The FIFA 

11+ and the FootyFirst program are noteworthy examples of IPPs that achieve this [22, 84]. To aid 
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community-level cricket coaches and others involved with exercise programming in cricket, an 

example IPP for adolescent pace bowlers was developed (Table 3.3) with an accompanying 

program manual (Appendix D). As this is just an example program, coaches with appropriate 

qualifications are encouraged to individualise the exercises for their athletes and tailor the program 

to suit their environment.  

The example program can be performed two times per week (ideally before training) and 

used in both the preseason and the regular season. The program requires minimal equipment (a 

cricket bat and ball), includes relatively simple exercises and takes approximately 10–15 min to 

complete per session. A running warm-up and number of dynamic exercises have also been 

included in the program, allowing it to be used in place of a usual warm-up. For coaches prescribing 

this program, it is recommended that they educate players about the potential benefits of 

participating in IPPs and, where possible, incorporate the exercises into game/skill activities. 

Coaches are also encouraged to include all players in the example program, not just the pace 

bowlers in the team. 

3.5.1 Exercise Program Progression 

Three progressive phases are included in the example program: a basic phase incorporating simple 

exercises that can be used to teach correct exercise technique (stage 1); an intermediate stage where 

players continue to build a base of strength, endurance and balance (stage 2); and an advanced 

phase where the exercises become more sport-specific and dynamic (stage 3). Athletes can begin 

the program at any stage; however, it is recommended that practitioners screen athletes for 

neuromuscular deficiencies before deciding which stage is the most appropriate starting point. In 

the amateur setting where screening athletes may be difficult, it is appropriate to begin all athletes 

at stage 1.
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Table 3.3 Example of an exercised-based IPP for adolescent pace bowlers. 

Exercise 
Stage 1 - Initial 2 - Intermediate 3 - Advanced 

Week 1 2 3 4 5 6 7 8 

STR 

Posterior shoulder (resistance-band) Shoulder abducted 0  ̊ Shoulder abducted to 45 ̊ Shoulder abducted to 90 ̊ 

 Volume 2x10 2x10 2x12 2x15 2x10 2x12 2x15 

Posterior shoulder (cricket bat) 

 Volume 

Shoulder abducted 0  ̊ Shoulder abducted to 45 ̊ Shoulder abducted to 90 ̊ 

1x10 1x10 1x12 1x15 1x10 1x12 1x15 

Hip adductor  Side-lying hip adduction Copenhagen adductor exercise Copenhagen adductor exercise 

 Volume 1x10 1x4a 1x6a 1x6a 1x8a 1x10a 1x12a 

Hamstring Nordic hamstring Nordic hamstring  Nordic hamstring  

 Volume 1x3 1x5 1x6 1x8 1x10 1x12 1x14 1x15 

DNC 

Balance  Single-limb ball throw Opposite hand to foot 
Nil 

 Volume  1x20a 1x10a 1x12a 1x15a 

Lower-limb control Squats and lunges Assisted single-leg squat Single-leg squat 

 Volume 1x10 of each exercise 1x10a 1x12a 1x15a 1x8a 1x10a 1x12a 

Jumping drills  
Nil 

Double-leg jumps
b
 Single-leg jumps

b
 

 Volume 1x8 1x10 1x12 1x8a 1x10a 1x12a 

END 
Trunk extensors Prone hold Prone hold with leg lift Prone hold with arm + opposite leg lift 

 Volume 20 seconds 30 seconds 1x4c 1x6c 1x6c 1x4c 1x6c 1x6c 

List of abbreviations, STR strengthening, DNC dynamic neuromuscular control, END endurance. a per leg, b jump forwards, to the left and to the right, c number of 

cycles. Volume is expressed as sets x repetitions. Posterior shoulder (cricket bat) exercises should only be performed when resistance-bands are unavailable. 
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 Principles for exercise progression in the example program are in accordance with 

criteria from other community-level IPPs [84, 119]. Players should therefore progress through 

the stages on an individual basis when they can complete the prescribed sets and repetitions of 

an exercise with correct technique (refer to Appendix D for examples of correct exercise 

technique). It is therefore possible for a player to progress to the next stage for some exercises 

and remain in their current stage for the others. Before progressing, athletes should also ensure 

they do not experience excessive delayed-onset muscle soreness. This is particularly important 

with the eccentric strengthening exercises, where athletes are recommended to wait at least 1–

2 weeks before advancing to the next stage [123]. In some contexts, it may be acceptable for 

coaches to progress all athletes through the phases of the training program at the same time. 

While this approach may not be optimal for all players, it is more practical for community-level 

coaches who may have no formal qualifications or experience in exercise coaching. 

3.5.2 Performing the Exercise Program 

Each exercise session in the example program begins with a dynamic warm-up comprising a 

range of movements for the upper and lower-limbs (e.g., jogging while swinging the arms in 

circles, heel flicks, high knees, side steps and shuttle runs). After the dynamic warm-up, players 

can begin the strengthening exercises, dynamic neuromuscular control drills and muscular 

endurance exercises. In the initial stage of the program, shoulder external rotator exercises 

begin with the arm by the side and then progress to positions of 45° shoulder abduction in the 

intermediate stage and 90° shoulder abduction in the advanced stage. This progression 

gradually advances the athletes to more unstable shoulder positions and strengthens the 

shoulder musculature within a sport-specific range of motion. Side-lying hip adductor 

strengthening exercises are performed in the initial stages to create a base of hip adductor 

strength before progressing to the more difficult Copenhagen adductor exercise. The Nordic 

hamstring exercise is prescribed with low repetitions initially and progressed by approximately 
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1–2 repetitions per week, until 12–15 repetitions can be performed. The low load in the 

beginning and gradual progression of this exercise minimises the potential effects of delayed-

onset muscle soreness. Squats, lunges and a basic single-leg balance exercise are prescribed in 

the initial stage of the dynamic neuromuscular control component. Partner-assisted single-leg 

squats, double-leg jumping drills and a more dynamic balance exercise are then incorporated 

in the intermediate stage. In the advanced stage of the dynamic neuromuscular control 

component, single-leg squats and single-leg, multidirectional jumping drills are prescribed. As 

for the static trunk extensor endurance exercises, these are performed with the limbs near the 

body in the initial stage and then gradually progressed to higher-load positions where the upper 

and lower-limbs are extended.  

All exercise sessions should be supervised by a coach or exercise professional to ensure 

athlete safety and provide feedback for players who may not have the proprioceptive awareness 

to determine whether or not they are actually performing an exercise correctly [124]. This is 

particularly important when performing the dynamic neuromuscular control exercises where 

inadequate lower-limb control and poor trunk postures can increase the chance of injury [68, 

125]. To ensure the athletes receive adequate supervision, coaches should avoid prescribing the 

program to large groups (i.e., no more than one squad per supervising coach). If a player is 

having difficulty performing an exercise with correct technique, coaches are encouraged to 

provide simple analogy-based feedback and focus on modifying one body segment/movement 

pattern at a time [126, 127]. Tips for providing feedback to bowlers attempting to change 

movement patterns have been provided in section 3.6.1 and may also assist coaches attempting 

to teach correct exercise technique. 

3.5.3 Additional Benefits of the Exercise Program 

Although this program has been designed to reduce the risk of injury in adolescent pace bowlers, 

it is likely to result in improved bowling performance and benefit other cricketers. Bowlers with 
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greater strength/power in the lower-limbs and increased lumbo-pelvic control, for example, 

could potentially bowl faster [128]. This may be achieved through their ability to produce a 

faster run-up, generate a larger horizontal impulse during the delivery stride and more 

efficiently mediate ground reaction forces up through the body to the bowling arm [63, 129]. 

The exercises could also benefit adult bowlers and cricketers in other playing positions. Injuries 

to the shoulder, low back and lower-limbs (hamstring, groin, knee and ankle), for example, are 

common in adult bowlers [40]. Batters also sustain the majority of their noncontact injuries to 

the lower-limbs (hamstring and groin), while non-contact fielding injuries typically affect the 

shoulder and hamstring [13, 40]. 

The neuromuscular exercises included in the example program could also have 

implications for modifying injurious bowling biomechanics in pace bowlers. In other sporting 

populations neuromuscular training has been used to alter a range of kinematics linked to 

anterior cruciate ligament injury [121, 130, 131]. In one study, athletes who performed 

proprioceptive exercises and plyometric drills reduced their knee valgus angle on a single-leg 

drop task [130]. These results are of interest to adolescent pace bowlers, especially when 

considering the findings by Bayne et al. [31], where the bowlers who exhibited excessive knee 

valgus on a single-leg squat test also bowled with increased amounts of lateral trunk flexion 

range (r = 0.401, p = 0.047).  

3.5.4 Final Considerations for the Exercise Program 

Coaches incorporating injury prevention strategies into their cricket program should always 

consider athlete safety and well-being. Injured athletes or those with a serious health condition 

should seek medical approval before participating in the example program. In addition, players 

should not perform an exercise if it causes them pain. If an athlete experiences pain during a 

stage 2 or stage 3 exercise, it is appropriate to return to the previous stage. Players should be 

educated about delayed-onset muscle soreness, which may occur after completing certain 
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exercises. This muscle soreness, however, is a normal part of exercise and usually subsides 

naturally within a few days [123].  

3.6 Other Injury Prevention Strategies 

The preventative effect of the example exercise program could be influenced by other factors 

such as poor bowling biomechanics and bowling load [80]. A comprehensive approach to injury 

prevention therefore needs to consider modification of these factors. While it may be more 

difficult for inexperienced community-level cricket coaches to implement strategies to 

manipulate bowling biomechanics and bowling load, sections 3.6.1 and 3.6.2 will discuss some 

approaches that could be used to address these factors. 

3.6.1 Bowling Biomechanics 

Excessive amounts of shoulder counter-rotation, lateral trunk flexion contralateral to the 

bowling arm (hereafter referred to as lateral trunk flexion) and bowling with an extended lower-

limb at FFC/BR can predispose pace bowlers to injury [31, 52, 62]. The extent to which 

shoulder counter-rotation (rotation of the shoulders between BFC and FFC) influences injury 

in adolescent pace bowlers is still debated throughout the literature [80]. Despite this, alteration 

of this factor does not appear to reduce bowling speed or induce other injurious kinematics [81], 

and modification is therefore still recommended. Excessive lateral trunk flexion is considered 

to be an important aetiological factor in the development of lumbar injuries and it is also on the 

side contralateral to the bowling arm where the majority of lumbar stress fractures occur in pace 

bowlers [31, 54]. Altering the technique of bowlers with excessive amounts of lateral flexion 

during the delivery stride could therefore protect against low back injury [31]. Bowling with an 

extended front limb at FFC has been linked to injury [30, 31]; however, it also appears to be an 

important factor for bowling fast [62]. The potential trade-off between injury risk and 
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performance should be considered before attempting to modify sagittal plane front-limb 

kinematics.  

Few studies have attempted to modify bowling biomechanics in pace bowlers [52, 81, 

132]. One study used a specialised harness to help bowlers align their shoulders and pelvis 

while bowling [132], and two other studies employed a coaching intervention to modify a range 

of injurious trunk and lower-limb kinematics [52, 81]. The studies with a coaching intervention 

reported significant reductions in shoulder counter-rotation, but no study was able to 

significantly modify lateral trunk flexion or front-limb extension angle [52, 81, 132]. Improving 

bowling biomechanics is challenging, but the limited research in this area demonstrates that 

certain kinematics can be modified [52, 81]. The success of these studies, however, is reliant 

on the expertise of the coaching staff prescribing the intervention [81]. Providing community-

level coaches with practical, context-specific techniques to change bowling biomechanics is 

therefore essential.  

Before attempting to modify a bowler’s technique, it is important to understand the 

motor control principles that underpin the process of motor skill acquisition. For example, 

coaches need to be aware that it is necessary to (1) focus on modifying one body 

segment/movement pattern at a time; (2) provide visual and verbal feedback (use analogies and 

do not overload the player with complicated cues); (3) provide prescriptive knowledge of 

performance (highlight errors and provide tips for correction/demonstrate the desired 

movement pattern); (4) avoid providing feedback after every bowling delivery and gradually 

decrease feedback frequency as the bowler adopts the desired movement pattern; (5) remain 

positive and be aware of potential decrements in performance during the initial stages of 

technique modification; and (6) ensure bowling speed and accuracy are not compromised [126, 

127, 133, 134]. It is also important to note that not all bowlers require alterations to their 

bowling action, and in some cases, maintenance as opposed to modification is required. Once 
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these basic motor skill acquisition principles are considered, coaches can begin to assist players 

who require changes to their bowling action.  

Several movement patterns can influence the amount of shoulder counter-rotation or 

lateral trunk flexion that occurs during a bowler’s action. Experienced coaches can identify 

these ‘poor’ movement patterns and provide individualised tips for alteration; however, for the 

less-experienced coach this may be difficult. Coaches are therefore recommended to use 

analogy-based feedback to teach their bowlers to align the levers of their body towards the 

target and carry good momentum through the crease towards the batter [135]. To achieve this, 

the following points may be useful: (1) during the run-up bowlers should lean their torso slightly 

forward, have a powerful leg drive and move the arms/legs straight through the sagittal plane); 

(2) during the delivery stride, the non-bowling arm should align towards the target and pull 

straight down close to the body; (3) the legs/torso/arms should drive towards the target during 

the delivery stride (i.e., avoid unwanted movements of the arms and legs across the midline/out 

to the side of the body); and (4) the bowler should follow through towards the target with a 

strong hip drive on the dominant leg and continue to pull the front arm through close to the 

body.  

At the community-level, video recording bowlers with a smartphone/tablet at training 

is a viable method for providing visual feedback. Although the bowling action involves 

dynamic, multi-planar movements, two-dimensional video footage can be used to identify 

lateral trunk flexion angles and sagittal plane front-limb kinematics [136]. When recording a 

bowler’s lateral trunk flexion at BR, a camera positioned directly behind the bowler is ideal. If 

attempting to examine lateral trunk flexion at FFC, a camera placed at an angle perpendicular 

to the bowler’s back at FFC is required [136]. For front-limb kinematics and shoulder counter-

rotation, respectively, a side-on camera and a camera positioned directly above the bowler 

during the delivery stride would be required.  
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Although outside the scope of this section, poor throwing biomechanics are also likely 

to increase the risk of shoulder injury. There is, however, limited research in this area focused 

on cricket pace bowlers and, for this reason, it is difficult to make recommendations to coaches 

regarding throwing technique modification. Experienced coaches may have the ability to 

recognise and correct poor throwing technique, and these coaches are encouraged to do so. 

When attempting to modify throwing biomechanics it is still important to consider the motor 

control principles outlined earlier in this section. 

3.6.2 Bowling Load 

Various measures of external and internal load have been identified as risk factors for injury in 

pace bowlers [41, 80]. External load is often simply described as the number of balls bowled or 

the number of bowling sessions per week [137]. Internal load, on the other hand, refers to a 

bowler’s level of physiological and psychological stress [137]. The most common and practical 

method to calculate internal load involves multiplying a bowler’s sessional RPE for a training 

session or a match (using a 0–10 category ratio scale) by the duration of that session in minutes 

[64].  

High absolute external loads can increase injury risk in pace bowlers. In one study there 

were significant differences in the average number of balls bowled between the injured bowlers 

(235 deliveries per week averaged over the season) and the bowlers who remained injury free 

(165 deliveries per week) [64]. Furthermore, individuals bowling >203 deliveries per week 

increased their injury risk by approximately six times compared with those bowling ≤203 

deliveries per week [138]. It is hypothesised that the repetitive application of these high loads 

to the body can cause micro-tissue damage which eventually accumulates to result in injury 

[139]. While it may appear intuitive that bowlers would benefit from simply reducing external 

loads throughout a season, this is likely an inadequate approach to moderating load-associated 

injuries.  



60 

 

To illustrate, Dennis et al. [17] have demonstrated that both low and high absolute 

external loads can increase injury risk. Bowlers who averaged 123–188 balls per week over the 

season were at a lower risk of injury than those who delivered <123 balls or >188 balls [17]. 

Likewise, bowlers with approximately 3–4 days’ rest between bowling sessions over the season 

were significantly less likely to sustain an injury than those with <2 days’ or ≥5 days’ rest 

between bowling sessions [17]. Bowlers may therefore benefit from maintaining moderate 

loads, rather than simply reducing bowling load altogether [17]. Moderate loads may promote 

positive neuromusculoskeletal adaptations, which could prepare bowlers to more effectively 

attenuate the large forces experienced while bowling [82]. Low bowling loads, on the other 

hand, may physically decondition a bowler and ultimately increase their risk of injury [82]. 

While it is important to consider absolute load over the course of a season, recent research has 

revealed that spikes in acute load (1 week) relative to chronic load (1 month), termed the acute 

chronic workload ratio (ACWR), can also influence injury risk [29, 64].  

ACWRs can be determined separately for both external and internal load by dividing 

the average weekly load over the past month by the load in the current week [29, 64]. If 

determining an ACWR for external load, a bowler who delivered 20 overs in the current week 

and averaged 10 overs per week in the past month would have an ACWR for external load of 

200%. Likewise, if a bowler’s internal load was 2000 arbitrary units in the current week and 

their average weekly internal load over the past month was 1000 arbitrary units, their ACWR 

for internal load would be 200%. In a study by Warren et al. [29], adolescent pace bowlers with 

an ACWR for external load of ≥ 142% were 1.6 times more likely to sustain an injury. Likewise, 

Hulin et al. [64] demonstrated that a high ACWR (200%) for both external and internal load 

increased injury risk by 3 and 4.5 times, respectively. Load-related injury risk increases when 

bowlers are exposed to substantially high acute loads. These spikes in load can induce 

neuromuscular fatigue (e.g., compromised movement control), which increases tissue loading 
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and ultimately increases the chance of injury [140]. Moderate acute loads coupled with low 

chronic loads, however, can also increase injury risk. The low chronic loads may lead to 

physical deconditioning, which reduces a bowler’s capacity to withstand the application of the 

relatively moderate loads experienced in the acute period [140]. Pace bowlers may therefore 

benefit from avoiding spikes in load and should aim to achieve moderate chronic loads.  

To ensure bowlers avoid these spikes and achieve moderate chronic loads, they should 

record and monitor the number of balls they bowl, the number of bowling sessions per week, 

their internal load and their ACWR for both balls bowled and internal load. There are a variety 

of methods available for recording and monitoring bowling load; however, each must be 

considered within the context of community-level cricket. Wearable technologies that utilise 

accelerometer, gyroscopic, magnetometer and global positioning system technologies are one 

available method for monitoring bowling load [70, 141]. Despite the ability of these 

technologies to objectively determine when a ball has been bowled, the cost associated with 

these devices may make them an unrealistic option for community-level bowlers. Smartphone 

applications and bowling logbooks, however, can be more cost-effective methods for 

monitoring load. While these approaches may be prone to recall bias [80], daily logbooks have 

been successfully used in the past to monitor external load in adolescent pace bowlers [26, 29].  

Although logbooks can be successfully used to monitor a bowler’s load, they require a 

certain level of ‘buy-in’ from the player involved. While in high-performance under-age 

programs this may not be an issue, at the community-level this method is less likely to result in 

valid load quantification. Consequently, the coach is typically responsible for ensuring their 

bowlers achieve appropriate bowling loads. It may be most practical for the coach to prescribe 

each player a certain number of balls/bowling sessions per week and ensure players adhere to 

these recommendations. If a bowler is playing for two teams (e.g., both club and school cricket 

teams), this should be considered when training loads are prescribed. Furthermore, coaches 
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should also consider the bowler’s age when prescribing bowling load. Older adolescent 

individuals could potentially tolerate higher loads as they are typically stronger and have greater 

bone mass than younger adolescent individuals [142, 143]. To tolerate these higher loads the 

older adolescent bowlers would require a longer pre-season period to ensure they are adequately 

conditioned. With all this considered, caution should still be exercised when providing general 

recommendations to adolescent pace bowlers. This is especially important for those going 

through their growth spurt or in the early years after the growth spurt where bone stress injuries 

are common [79, 144]. Muscle strength and power generation increase markedly around the 

years of the growth spurt [143] and the newly developed musculoskeletal tissues in these young 

athletes require time to adapt to the resultant increases in tissue loading [79].  

Recommendations for bowling load in youth pace bowlers have been recently published 

by Cricket Australia (Table 3.4) [145]. These recommendations indicate that bowlers should 

avoid >2 consecutive bowling days and >4 bowling days per week. Bowlers are also encouraged 

to have a light bowling week every 4–5 weeks (i.e., perform 50% of prescribed bowling load) 

and a week with no bowling every 10–12 weeks [145]. Although these guidelines will assist 

bowlers in achieving moderate absolute loads and reduce their chance of experiencing a spike 

in load, further steps could be taken. To avoid spikes in internal load, for example, coaches 

could reduce the training duration or reduce training intensity during the weeks in which 

multiple matches are scheduled (e.g., longer rest periods between deliveries or bowling off a 

shorter run-up). Coaches could also avoid spikes in internal load by gradually increasing the 

training load in the month preceding a demanding week. As previously mentioned, adolescent 

pace bowlers may benefit from avoiding an ACWR for balls bowled of ≥ 142% [29]. If a bowler 

knew they would be required to bowl 30 overs in the first week of the season, they could aim 

to achieve an average weekly bowling load in the final 4 weeks of the preseason of at least 22 

overs (ACWR of 136%) to ensure their ACWR remained below 142%.  
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Table 3.4 Bowling load recommendations for youth pace bowlers.  

Age group Under 

11s 

Under 

13s 

Under 

15s 

Under 

17s 

Under 

19s 

Maximum overs per spell a 2 4 5 6 7 

Maximum overs per match 4 8 12 16 20 

Target deliveries per week b NS 100-120 100-120 120-150 150-180 

Weeks of preseason c NS NS 4-6 6-8 8-10 

Table adapted from Cricket Australia youth pace bowling guidelines, with permission [145], List of 

abbreviations, NS not specified. a work to rest ratio of 1:1 (e.g., the rest period after bowling a 4 over spell 

should equal 8 match overs), b both training and match deliveries combined, c gradually build-up bowling load 

over this time.  

Although somewhat outside the scope of this section, it is also important to monitor and 

potentially manipulate throwing load. One study involving adult cricketers revealed that those 

who performed >75 throws per week were at a significantly greater risk of injury (RR = 1.73, 

95% CI 1.03–2.92) than those who completed <75 throws [146]. Furthermore, in the week 

preceding an injury, a player’s throwing load was approximately 36% higher than their average 

weekly throwing load [146]. These results may not translate directly to adolescent cricketers, 

but they highlight the need to consider throwing load. When working with adolescent pace 

bowlers, it is important to calculate ACWRs for balls thrown and use this information to avoid 

acute spikes in throwing load.  

3.7 Conclusions 

Adolescent pace bowlers are prone to sustaining non-contact injuries and could benefit from 

participating in the example program provided in this paper, which aims to increase muscular 

strength (external shoulder rotators, hamstrings and hip adductors), improve dynamic 

neuromuscular control of the lumbo-pelvic region/lower-limbs and increase trunk extensor 

muscle endurance. Cricketers in other positions are also likely to receive benefit from the 

example program and coaches should therefore ensure all players in the team perform the 

exercises if they are implemented. It should also be noted that additional empirical evidence is 
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needed to confirm the effectiveness of the example program. Coaches and bowlers should work 

to reduce excessive shoulder counter-rotation and lateral trunk flexion during the bowling 

action. Appropriate feedback will play a vital role when altering bowling biomechanics, and 

coaches should therefore carefully consider their approach when communicating with bowlers. 

Prescribing appropriate bowling loads is another key factor to consider. Bowlers should aim to 

establish moderate loads over the season and avoid large spikes in load. Ultimately, a 

multifactorial approach to injury prevention is needed to reduce injury risk in adolescent pace 

bowlers and should focus on modifying neuromuscular deficiencies, correcting poor bowling 

biomechanics and achieving appropriate bowling loads. 
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CHAPTER 4  
 

 

EXERCISE-BASED INJURY PREVENTION 

FOR COMMUNITY-LEVEL ADOLESCENT 

CRICKET PACE BOWLERS: A CLUSTER-

RANDOMISED CONTROLLED TRIAL 

Based on the following paper published in the Journal of Science and Medicine in Sport 

 

Forrest MRL, Scott BR, Hebert JJ, Dempsey AR. Exercise-based injury prevention for 

community-level adolescent cricket pace bowlers: a cluster-randomised controlled trial. J 

Sci Med Sport. 2020;23(5):475-480. 

 

 

The investigations in Chapters 4 and 5 commenced before Chapter 3 had been published. The 

exercise-based IPP in Chapter 3 (Appendix D), which was amended in accordance with 

reviewer feedback, therefore differs slightly to the program implemented in Chapters 4 and 5. 

Importantly, only the trunk extensor endurance exercises differ between Chapters 4/5 and 

Chapter 3. The trunk extensor endurance exercises included in Chapters 4 and 5 are presented 

in Appendix E.  
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4.1 Abstract 

Objectives: To investigate if an exercise-based IPP can modify risk factors for injury in 

community-level adolescent cricket pace bowlers. Design: Cluster-randomised controlled trial. 

Methods: Eight cricket organisations (training two times per week and no previous involvement 

in a structured IPP) participated in this cluster-randomised trial. Participants were aged 14 to 

17 years, injury free, and not currently performing a rehabilitation/exercise program. Cricket 

organisations (clusters) were block-randomised by computerised number generation into an 

intervention group (n=32 performed an eight-week IPP at training) or control group (n=33 

continued their usual cricket activity). Participants were not blinded to group allocation. 

Strength, endurance, and neuromuscular control were assessed at baseline and follow-up. 

Treatment effects were estimated using linear mixed models. Results: Sixty-five male 

adolescent pace bowlers (intervention n=32 and control n=33) were randomised. There were 

significant treatment effects favouring the intervention group for shoulder strength (90°/s) 0.05 

(95% CI 0.02-0.09) Newton meters per kilogram body weight (N.m/kg), hamstring strength 

(60°/s) 0.32 (95% CI 0.13-0.50) N.m/kg, hip adductor strength dominant 0.40 (95% CI 0.26-

0.55) N.m/kg and non-dominant 0.33 (95% CI 0.20-0.47) N.m/kg, SEBT reach distance 

dominant 3.80 (95% CI 1.63-6.04) percent of leg length (%LL) and non-dominant 3.60 (95% 

CI 1.43-5.78) %LL, and back endurance 20.4 (95% CI 4.80-36.0) seconds. No differences were 

observed for shoulder strength (180°/s) (p=0.09), hamstring strength (180°/s) (p=0.07), lumbo-

pelvic stability (p=0.90), and single leg squat knee valgus angle (dominant p=0.06, non-

dominant p=0.15). Conclusions: Exercise-based IPPs can modify risk factors for injury in 

community-level adolescent pace bowlers. Future research is needed to confirm if IPPs can also 

reduce injury risk in this population.  
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4.2 Introduction 

Cricket is a popular community-level sport in many Commonwealth countries, though it is 

associated with a risk of injury [13]. Pace bowlers are the most injury-prone group in youth 

cricket, with seasonal incidence rates of approximately 26% [13]. Most of their injuries are non-

contact and generally to the low back, shoulder and lower-limb [13]. Lumbar stress fractures 

are the most concerning injury in youth pace bowlers (one-year incidence 12%) and typically 

cause players to miss several months of cricket [31]. 

A number of risk factors for these injuries have been identified in Chapter 2 and these 

include; poor bowling biomechanics, inappropriate bowling load, and neuromuscular 

deficiencies (e.g., reduced muscular strength, neuromuscular control, and muscular endurance) 

[80]. While earlier studies have attempted to change bowling biomechanics [81] and there are 

published guidelines for bowling load [145], there is minimal published literature which has 

attempted to alleviate injury risk factors by modifying neuromuscular deficiencies in youth pace 

bowlers. 

Research from other sports such as soccer, baseball, and gymnastics, indicates that 

exercise-based IPPs can improve strength, increase neuromuscular control, and improve 

endurance [94, 105, 147, 148]. Several IPPs have also been successfully developed for 

community athletes and when implemented properly, these programs can reduce injury risk by 

approximately 32% [20]. Despite the success of these programs, the efficacy of exercise-based 

injury prevention has not been examined in cricket. Therefore, this study aimed to investigate 

if the exercise-based IPP developed in Chapter 3 can modify neuromuscular risk factors in 

community-level adolescent pace bowlers.  
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4.3 Methods 

This prospective cluster-randomised control trial was registered retrospectively during the 

recruitment phase (ACTRN12616001572459) and reported in accordance with both the 

Consolidated Standards of Reporting Trials (CONSORT) framework for cluster-randomised 

trials [149] and the Consensus on Exercise Reporting Template [150]. Eight cricket 

organisations represented the clusters in this investigation. Four organisations were randomised 

into an intervention group that performed a structured IPP over an eight-week period. Four 

other organisations were randomised into a control group that continued their normal cricket 

activity. Either side of the eight-week intervention period, all players attended a baseline and a 

follow-up testing session.  

Participants were recruited from cricket organisations (cricket schools and cricket clubs) 

within proximity of the testing venue. Eligibility criteria for the clusters included; training two 

times per week and no current or previous involvement in a structured IPP. When recruiting 

from cricket schools, the players in the first and second XI teams were eligible. When recruiting 

from cricket clubs, the players from the Under 15s and Under 17s teams were eligible. Further 

eligibility criteria for participants included; aged 14-17 years, identified by their coach as a pace 

bowler, currently injury free, and not involved in any rehabilitation/structured IPP. Prior to 

randomisation, consent was obtained from the coordinator of each organisation, the cricket 

coaches, participants, and the participant’s parent/guardian. During this process, all entities 

were informed about potential assignment into either group and blinding of group allocation 

was therefore not achieved. Ethics approval was obtained from the institution’s human research 

ethics committee (2016/136). 

This investigation was conducted in four waves across two seasons (2016/17 and 

2017/18). In each testing wave, two cricket organisations, matched for type (i.e., club or school), 

were block-randomised by computerised number generation into either an intervention or 



69 

 

control group. The researcher overseeing the randomisation process was not involved in the 

recruitment process and group allocation was concealed from the recruiting researcher until 

after baseline testing.  

The IPP used in this study was based on that described in Chapter 3 [151]. The program 

was developed to prevent injuries in the shoulder, low back, hip adductors, hamstring, knee and 

ankle [151]. Players in the intervention group performed this program twice per week over an 

eight-week period (16 sessions total). All sessions were performed on a grassed cricket oval 

with groups of 6 to 12 players. Each session was performed before cricket training in place of 

the normal warm-up, took approximately 10-15 minutes to complete, and required limited 

equipment (i.e., only cricket balls and resistance-bands). While the current exercise program 

was designed to be implemented by a cricket coach [151], to assess program effectiveness in 

ideal conditions, as per the TRIPP framework [23], an Accredited Exercise Physiologist with 

three years of experience delivered all exercise sessions. 

Three progressive phases were included in the program, with all players beginning in 

phase one and progressing as a group from thereon. Six exercise components were completed 

per session; (a) dynamic warm-up, (b) shoulder external rotation strengthening, (c) hip adductor 

strengthening, (d) hamstring strengthening, (e) lumbo-pelvic/lower-limb dynamic 

neuromuscular control, and (f) trunk extensor endurance. The trunk extensor endurance 

exercises in the current chapter (Appendix E) differ to those presented in Chapter 3 [151].  

General encouragement was provided to the participants during the exercise sessions, 

but no additional motivation strategies were used. Players in the intervention group were asked 

to report if any adverse events occurred during the exercise program. If necessary, the 

intervention was adapted to avoid the recurrence of an adverse event. The cricket organisations 

in the control group were monitored throughout the intervention and did not perform any 
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structured IPP. At the completion of the study all players in the control group were given access 

to the IPP. 

All testing sessions were conducted in a biomechanics laboratory. Participant age, 

height and weight were collected before players completed a ten-minute aerobic warm-up. 

Measures of external shoulder rotator strength, hamstring strength, hip adductor strength, 

lumbo-pelvic stability, composite reach distance on the SEBT, single leg squat knee valgus 

angle, and back endurance test were then collected. The outcome assessor was blind to group 

allocation at baseline, but not blinded during the intervention period and follow-up.  

Eccentric isokinetic strength for the dominant shoulder rotators and non-dominant 

hamstring was assessed using a Humac Norm dynamometer (CSMi, Stoughton, MA). Shoulder 

strength was assessed at 90°/s and 180°/s through full pain-free range of motion. The participant 

lay supine with the shoulder abducted to 90° and elbow flexed to 90° with the procedure 

showing acceptable test-retest reliability (intraclass correlation coefficient (ICC)=0.76) [152]. 

Hamstring testing was performed seated at 60°/s and 180°/s through full pain-free range of 

motion with high reliability previously reported (ICC=0.94) [153]. Participants performed five 

consecutive familiarisation repetitions and then five consecutive test repetitions. A one-minute 

rest was given after the familiarisation and testing repetitions. The highest peak torque value 

from each testing speed was recorded in N.m/kg. 

Isometric hip adductor strength was tested with a handheld dynamometer (Lafayette 

Instruments, Lafayette, USA) using standard testing procedures which have shown excellent 

reliability (ICC=0.89) [154]. Participants were tested in the supine position and performed three 

trials on each leg [154]. Weight-normalised torque (N.m/kg) was calculated using maximal 

force and leg length. 

A five-stage lumbo-pelvic stability test was performed using procedures outlined 

previously [155]. Participants were required to maintain pressure on a cuff that was placed 
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under the lumbar spine (Stabilizer Pressure Biofeedback Unit, Chattanooga Group Inc, USA) 

while performing a series of leg movements. Two attempts were given per stage and the highest 

successfully completed stage was recorded. 

During the SEBT participants were required to reach as far as possible in the anterior, 

posterior-medial, and posterior-lateral directions, as per standard procedures (high reliability 

has been reported for this test, ICC=0.89-0.93 [113]. Participants performed six familiarisation 

reaches and then three test reaches on each leg in each direction. Reach distance was measured 

with 3D Qualisys Motion Capture (QTM) and normalised to leg length. A composite reach 

distance was calculated for the dominant and non-dominant leg. 

Maximal knee valgus angle during the eccentric phase of the single leg squat was 

measured from the stance leg using QTM. All squats were performed on a 25° decline box. 

Retro-reflective markers were placed on the body based on a custom marker set [125]. Markers 

were also placed on all malleoli and femoral condyles for static subject calibration trials. 

Dynamic functional methods were used to locate knee and hip joint centres [156]. Participants 

performed two familiarisation trials on each leg, and after a one-minute rest, performed five 

test squats on each leg. Data analysis was performed using Visual 3D (Version 5, C-Motion, 

Germantown, USA). All data were filtered using a 6Hz Low pass Butterworth Filter. Joint 

angles were calculated using a standard joint coordinate system [157].  

Maximal hold time (seconds) on the Biering-Sorensen test was used to assess back 

endurance. Reliability for this test has been reported as moderate (ICC=0.59) [158]. A digital 

inclinometer (Dualer IQ Inclinometer J-Tech Medical, Salt Lake City, UT) was also placed on 

the upper back to measure trunk angle. The test was stopped if participants dropped the trunk 

by ≥10º below horizontal.  

During the intervention period training attendance was recorded from both groups as a 

percentage of total cricket training sessions (16 sessions attended = 100% attendance). Exercise 
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session attendance was recorded in the same manner, however, only for those in the intervention 

group. Exercise compliance was again only recorded in the intervention group and reported as 

a percentage of completed exercise components per session (all exercise components completed 

at every session attended = 100% compliance). Players who were absent from training received 

a ‘not applicable’ for exercise program compliance on that particular day. 

Fifteen minutes after each training session in the current study, all participants reported 

their sessional RPE (using a using a 0-10 category ratio scale). All participants also reported 

their bowling load (average number of balls bowled per week). This was collected for all 

bowling sessions and therefore considered balls delivered during any training session, match, 

or casual bowling session. Players recorded their bowling load in a logbook and the primary 

researcher met with each player weekly to ensure these were regularly updated.  

Cohen’s f effect sizes were calculated for each of the primary outcomes using smallest 

detectable difference values. The smallest Cohen’s f effect size (0.247) was then input into 

G*Power (3.1.9.2) to produce a sample estimate of n=36 (α error probability at 0.05 and β error 

probability at 0.80). To account for clustering a variance inflation factor of 1.7 was calculated 

using an average cluster size of n=8 and an intra-cluster correlation coefficient of 0.1 [159]. 

The final required sample was n=62.  

Statistical analyses were performed using IBM SPSS Statistics V.24. Treatment effects 

(95% CI) were estimated with linear mixed models, in line with the intention-to-treat principal. 

Follow-up scores were input as the dependant variable and adjusted for baseline score and 

cluster. Cohen’s d effect sizes were calculated with the average standard deviation at follow-up 

and the treatment effect. The intra-cluster correlation coefficient for each variable at baseline 

was calculated with a one-way analysis of variance (ANOVA). Between group-differences for 

training session attendance, training session RPE, and bowling load were examined with 

independent-samples t-tests. Statistical significance was set at <0.05.  
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4.4 Results 

 Participant recruitment and flow through the study is presented in Figure 4.1. The intervention 

was delivered as planned. Exercise session attendance for the intervention group was 83.1±12.1% 

and exercise compliance was 98.8±3.1%. Two players reported delayed onset muscle soreness 

in the hamstrings after the first week and two players also experienced back pain while 

performing the stage two trunk extensor endurance exercise. Further investigation revealed that 

these players had initially hurt their back while bowling and the stage two exercise was 

reproducing this pain. These players reverted to the stage one trunk extensor endurance exercise 

(which did not cause them pain) for the remainder of the program. Baseline player demographic 

information and values for training session attendance, training session RPE, and bowling load 

are presented in Table 4.1. 

There were significant treatment effects (95% CI) in favour of the intervention group 

for shoulder strength (90°/s) (0.05 N.m/kg; 0.02 to 0.09), hamstring strength (60°/s) (0.32 

N.m/kg; 0.13 to 0.50), hip adductor strength dominant side (0.40 N.m/kg; 0.26 to 0.55) and 

non-dominant side (0.33 N.m/kg; 0.20 to 0.47), SEBT reach distance dominant side (3.80 %LL; 

1.63 to 6.04) and non-dominant side (3.60 %LL; 1.43 to 5.78), and back endurance (20.4 

seconds; 4.80 to 36.0) (Table 4.2). 

Table 4.1 Demographics and anthropometrics at baseline, attendance, and player load. 

 Intervention n=32 Control n=33 P value 

Age (years) 15.8 ± 1.0 15.4 ± 1.2 - 

Height (cm) 180.3 ± 7.1 175.7 ± 8.2 - 

Weight (kg)  69.4 ± 11.5 63.8 ± 10.4 - 

Training session attendance (%) 86.4 ± 9.5 86.9 ± 13.0 0.88* 

Average training session RPE (0-10) 5.3 ± 0.9 6.2 ± 1.0 0.01* 

Mean overs per week 16.0 ± 5.4 19.7 ± 7.7 0.03* 

Values presented as mean (±) standard deviation, *statistically significant (p<0.05). 
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Figure 4.1 Flow of participants through Chapter 4. 

4.5 Discussion  

The exercise-based IPP used in this study improved hip adductor strength, increased reach 

distance on the SEBT, and improved back endurance. Significant improvements in shoulder 

and hamstring strength were also observed at the slower isokinetic testing speeds. When 

comparing the current results to other studies, there are similar, albeit slightly smaller 

improvements in most outcomes [94, 105, 147, 148]. This may have occurred because the study  
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Table 4.2 Outcome results and treatment effects Chapter 4. 

Outcome Intervention 

n=32  

Control 

n=33 

Treatment  

effect 

Cohen’s 

d 

ICC  

Shoulder strength 90º/s      

Baseline 0.52 ± 0.10 0.54 ± 0.10    

Follow-up 0.55 ± 0.09 0.52 ± 0.09 0.05 (0.02-0.09)* 0.56 0.07 

Shoulder strength 180º/s 
     

Baseline 0.54 ± 0.10 0.56 ± 0.08    

Follow-up 0.55 ± 0.09 0.53 ± 0.09 0.03 (-0.01-0.07) 0.33 0.04 

Hamstring strength 60º/s 
     

Baseline 1.96 ± 0.46 2.04 ± 0.50    

Follow-up 2.22 ± 0.54 1.99 ± 0.45 0.32 (0.13-0.50)* 0.65 0.17 

Hamstring strength 180º/s 
     

Baseline 2.06 ± 0.50 2.09 ± 0.55    

Follow-up 2.27 ± 0.54 2.13 ± 0.52 0.18 (-0.01-0.38) 0.34 0.09 

Hip adductor strength D 
     

Baseline 1.65 ± 0.38 1.83 ± 0.46    

Follow-up 1.97 ± 0.36 1.70 ± 0.42 0.40 (0.26-0.55)* 1.03 0.18 

Hip adductor strength ND 
     

Baseline 1.62 ± 0.42 1.86 ± 0.49    

Follow-up 1.90 ± 0.37 1.75 ± 0.45 0.33 (0.20-0.47)* 0.80 0.16 

SEBT reach distance D 
     

Baseline 80.93 ± 6.92 81.19 ± 7.92    

Follow-up 83.17 ± 7.06 79.16 ± 8.25 3.80 (1.63-6.04)* 0.50 0.28 

SEBT reach distance ND 
     

Baseline 80.87 ± 6.68 80.04 ± 7.69    

Follow-up 82.67 ± 6.62 78.61 ± 7.76 3.60 (1.43-5.78)* 0.50 0.33 

SLS knee valgus angle D 
     

Baseline 6.12 ± 3.47 5.94 ± 3.32    

Follow-up 5.75 ± 3.47 6.17 ± 3.98 -1.17 (-2.37-0.04) 0.31 0.14 

SLS knee valgus angle ND 
     

Baseline 4.56 ± 5.67 5.66 ± 3.51    

Follow-up 4.51 ± 3.89 5.92 ± 4.65 -1.22 (-2.91-0.47) 0.29 0.11 

Lumbo-pelvic stability score 
     

Baseline 1.48 ± 0.89 1.88 ± 1.45    

Follow-up 1.77 ± 1.19 2.24 ± 1.54 0.40 (-0.56-0.64) 0.03 0.07 

Back endurance 
     

Baseline 139.3 ± 41.7 166.2 ± 55.7    

Follow-up 155.4 ± 45.9 155.6 ± 56.0 20.4 (4.80-36.0)* 0.40 0.12 

Baseline and follow-up outcome scores presented as mean (±) standard deviation, Treatment effects (95%CI) 

were adjusted for baseline score and cluster, ICC intra-cluster correlation coefficient at baseline, SEBT star 

excursion balance test, SLS single leg squat, D dominant side, ND non-dominant side, Strength (N.m/kg), SEBT 

(%LL), SLS (º), lumbo-pelvic stability (stage), back endurance (sec), * statistically significant (p<0.05).  
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populations differed (e.g., different gender [147, 148], playing-level [105], or sport [94, 105, 

147, 148]) or due to slight differences in the way outcomes were assessed. It is also possible 

that the other studies were more effective because they targeted one risk factor/injury in their 

exercise program. In the current study a broader approach was taken (i.e., multiple risk factors 

were targeted) and as a result, the exercise volume was comparatively lower for each prescribed 

exercise. Despite this, multifaceted exercise programs which can be incorporated into training 

are favoured in a practical setting where coaches and players typically do not have enough time 

to implement multiple stand-alone IPPs [160]. 

While injury risk was not assessed in the current investigation, results from other studies 

can provide some insight into the clinical importance of the findings. In handball players for 

example, shoulder injury-risk reduced by around 30% for every 10 N.m increase in external 

rotator strength [89]. When extrapolating this finding to the results in the current study, the 

approximate 3 N.m increase in the intervention group’s peak torque (measured at 90°/s) may 

represent an approximate 9% reduction in injury risk. It should be acknowledged, however, that 

the relationship between muscle strength and injury risk may not be linear, and future research 

is needed to confirm if this 3 N.m increase in peak torque protects against shoulder injury. The 

improvements in the intervention group’s SEBT reach distance (approximately 3.6-3.8 %LL) 

may also be clinically important. In adult pace bowlers for example, reduced reach distance on 

the SEBT test (3.0-3.6 %LL) was identified as a risk factor for lower-limb/low back injury 

[161]. It is also likely that the improvements in the intervention group’s hip adductor strength 

and hamstring strength are capable of attenuating the risk of groin injury and hamstring strain. 

In studies involving soccer players where the Copenhagen adduction exercise and the Nordic 

hamstring exercise have been prescribed, the risk of groin injury and hamstring strain reduced 

by approximately 40% [162] and 70% [116], respectively. While the mechanism of injury may 
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differ in soccer and cricket, and future research is needed in this area, the Copenhagen adduction 

exercise and the Nordic hamstring exercise may still protect against injury in cricket players.  

The non-significant findings for shoulder and hamstring strength (180º/s) may be related 

to exercise specificity as the training speeds for the exercises targeting these factors were slower 

than the 180º/s testing speed. Developing field-based strategies to improve strength at 

functionally appropriate speeds may be beneficial for future studies. The null finding for 

lumbo-pelvic stability is somewhat expected as the training protocol did not specifically target 

the abdominal muscles. Despite this, both groups still improved their lumbo-pelvic stability by 

approximately 16% which may suggest a learning effect occurred after the baseline testing 

session. It is also important to note that the lumbo-pelvic stability test utilised in the current 

study may be unreliable and potentially lack the precision to detect differences between the 

groups. In a previous study which investigated a comparable lumbo-pelvic stability test for 

example, only a moderate reliability score was reported (ICC=0.65) [163].  

The non-significant result for single leg squat knee valgus angle may reflect the lack of 

visual feedback provided to the athletes during the exercise sessions. In previous research, the 

use of appropriate visual and verbal feedback is identified as an important factor [164]. 

Although a pragmatic approach was taken to reflect the context of implementation, where a 

coach is typically unable able to provide visual feedback to all athletes during all exercises, my 

results indicate that visual feedback may be needed to alter squat mechanics in pace bowlers.  

Further investigation into the bowling load data revealed that the additional overs in the 

control group primary came from match deliveries. The bowlers in the control group may 

therefore have rated their training sessions as more intense because they had bowled more 

match overs in the days previous. Most exercise sessions in the current study were missed 

because players were absent from training (52% of all missed sessions) or because training 

sessions were cancelled due to rain (31% of all missed sessions). It is important to note, that 
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two players missed an exercise session (2.5% of all missed sessions) because their coach 

instructed them to perform skills training instead. This is an important finding as it highlights a 

potential barrier to real-world program implementation where the coach may prioritise skills 

training over performing the exercise program. Future work in this area could therefore benefit 

from investigating if the current IPP also improves bowling performance.  

An important finding in the current study was the general decline in most outcomes at 

follow-up for those in the control group. In previous work at the elite-level, it has been 

suggested that the physical demands of cricket are not adequate to maintain pre-season values 

of strength and power [165]. The findings in the current paper appear to support these claims 

among community-level cricketers and highlight the importance of continued exercise-based 

injury prevention throughout the season. Despite this, it should be acknowledged that those in 

the control group decreased at follow-up because they knew they had been placed into a non-

exercise group [166]. It is also important to note that the outcome assessor was not blinded to 

group allocation at follow-up. 

There is also the possibility of contamination (diffusion of treatment) between the two 

groups. The control group was monitored throughout the intervention and did not perform any 

structured exercise-based IPP at training. Players in the control group, however, could have 

performed an exercise-based IPP outside of training. Regardless, contamination of this nature 

would likely result in an underestimation of the treatment effect in the current paper.  

To ensure the exercise were performed correctly, an Accredited Exercise Physiologist 

delivered the program to all players. While this allowed training to be performed under 

somewhat ideal conditions, it did not allow us to assess program adherence in a practical setting, 

where the coach typically delivers the exercises. Having an Accredited Exercise Physiologist 

deliver the program may also explain why the compliance levels were so high in the current 

study. Due to season scheduling, only an eight-week exercise program (16 sessions) was 
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implemented. If the current exercise program was performed over the entire season, as might 

be the case in a real-world setting, the intervention may have been more effective.  

4.6 Conclusions 

This study shows that exercise-based IPPs improve shoulder and hamstring strength (when 

measured at slow isokinetic speeds), increase hip adductor strength, improve SEBT 

performance, and increase trunk endurance. The modification of these factors could also protect 

against injury in community-level adolescent pace bowlers. Although these findings are 

promising, future prospective investigations are needed to confirm if exercise interventions can 

not only modify risk factors, but also reduce injury risk in community-level pace bowlers. This 

is especially important in a cricket-context where other risk factors, such as poor bowling 

biomechanics and inappropriate bowling loads also influence injury risk.
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CHAPTER 5  
 

 

MODIFYING BOWLING KINEMATICS IN 

CRICKET PACE BOWLERS WITH 

EXERCISE-BASED INJURY PREVENTION: 

A CLUSTER-RANDOMISED CONTROLLED 

TRIAL 

Based on the following paper published (In Press) in the Journal of Science and Medicine 

in Sport 

 

Forrest MRL, Scott BR, Hebert JJ, Dempsey AR. Modifying bowling kinematics in cricket 

pace bowlers with exercise-based injury prevention: a cluster-randomised controlled trial. J 

Sci Med Sport. In Press. 

 

 

Thus far, this thesis has provided prevention strategies for several common injuries. However, 

as most biomechanical risk factors in pace bowlers pertain to the back, the current chapter has 

a specific emphasis on this area. It is also important to highlight that one participant from 

Chapter 4 was not able not partake in Chapter 5. This occurred because the participant was not 

medically cleared to bowl but was able to perform the assessments in Chapter 4.   
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5.1 Abstract 

Objectives: Undesirable bowling kinematics can increase the risk of low back injury. This study 

investigated if an exercise-based injury prevention program (IPP) could modify bowling 

kinematics in community-level adolescent pace bowlers. Design: Cluster-randomised 

controlled trial. Methods: Pace bowlers from eight cricket organisations were cluster-

randomised into an intervention (n=31) or control group (n=33). At baseline and follow-up 

sessions biomechanical bowling data were collected. Between sessions, the intervention group 

completed an eight-week IPP while the control continued their normal cricket activity. 

Treatment effects (95% CI) were estimated with linear mixed models. Results: There were 

significant treatment effects favouring the intervention group for shoulder counter-rotation (-

3.8°; -7.2° to -0.3°) and lateral trunk flexion relative to the pelvis (-2.2°; -4.0° to -0.5°). 

Shoulder counter-rotation also increased in the control group by 2.2° (Cohen’s d = 0.22). There 

were no effects of the intervention on: lateral trunk flexion at front foot contact (FFC) (1.2°; -

2.5° to 4.8°), lateral trunk flexion at ball release (BR) (-0.5°; -3.0° to 2.0°), pelvis rotation at 

FFC (0.9°; -4.0° to 2.2°), pelvis rotation at BR (-1.1°; -5.7° to 3.6°), front hip angle at FFC 

(1.6°; -3.6° to 6.7°), front hip angle at BR (-1.6°; -5.0° to 1.9°), front knee angle at FFC (-1.1°; 

-4.5° to 2.3°), front knee angle at BR (1.7°; -5.6° to 9.1°), or ball velocity (1.1 km∙h-1; -7.5 km∙h-

1  to 9.7 km∙h-1) Conclusions: The IPP maintained shoulder counter-rotation and lateral trunk 

flexion relative to the pelvis in the intervention group and this could attenuate injury risk. No 

treatment effects were observed for lower-limb kinematics.  
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5.2 Introduction  

Cricket is a popular sport in many countries and provides young people with an opportunity to 

increase physical activity. There is however a risk of injury associated with playing cricket. 

Seasonal incidence rates in youth cricket are between 114-242 injuries/1000 participants, which 

are comparable to those seen in other team sports such as soccer (107 injuries/1000 participants) 

[11, 12]. Most injuries in youth cricket affect pace bowlers and within this group, approximately 

37-47% of all injuries are to the low back [13, 25]. Lumbar stress fractures are one of the most 

common injuries in this region and have a four-year incidence of 24% [32]. Lumbar stress 

fractures are also relatively severe and can cause between 6-12 months of missed cricket [32].  

Risk factors for lumbar injury in community-level pace bowlers, which could be 

potential targets for modification, fit into three broad categories: neuromuscular deficiencies, 

bowling workload, and bowling biomechanics (i.e., >30° shoulder counter-rotation, excessive 

lateral trunk flexion, excessive movements of the pelvis, and bowling with a straighter front 

lower-limb) [31, 52, 62, 80]. In Chapter 4 I demonstrated that an exercise-based IPP designed 

to modify neuromuscular risk factors can significantly improve muscle strength, neuromuscular 

control, and muscle endurance in community-level pace bowlers [167]. Cricket Australia has 

also published guidelines to help youth pace bowlers achieve appropriate age-specific bowling 

loads [168]. There is however, limited evidence for interventions that have successfully 

modified bowling biomechanics in community-level adolescent pace bowlers.  

Evidence suggests that bowling kinematics do not naturally change over the course of a 

season and specialised interventions may therefore be needed to alter biomechanics [81]. In an 

investigation by Elliott et al.[169], reducing the length of the pitch significantly decreased 

shoulder counter-rotation in junior bowlers (under 11s and under 13s), but not in older 

adolescent bowlers (under 15s). Attempts to reduce shoulder counter-rotation with the use of a 

specialised bowling harness have also been unsuccessful [132]. At the elite level beneficial 
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modifications to shoulder counter-rotation have been reported, although these interventions 

were guided by 3D biomechanical analysis and involved specific bowling technique training 

prescribed by elite coaching staff or experienced biomechanists [52, 81]. At the community-

level, where access to biomechanical testing facilities is limited and coaches may be 

inexperienced, this approach has clear limitations [151].  

In other community-level sports, kinematics of the trunk, hip and knee have been 

modified with exercise based IPP; and this approach could therefore present as a viable option 

for modifying kinematics in pace bowlers [170]. Exercise-based IPPs, which can be delivered 

by a relatively inexperienced coach and implemented without expensive equipment, could also 

present as a viable option for modifying kinematics in community-level pace bowlers [21]. The 

current study therefore investigated if an eight-week exercise-based IPP, originally designed to 

modify neuromuscular risk factors, could also change bowling kinematics in community-level 

adolescent pace bowlers. 

5.3 Methods 

This parallel cluster-randomised controlled trial was reported in accordance with both the 

CONSORT framework for cluster-randomised trials [149] and the Consensus on Exercise 

Reporting Template [150]. The methods outlined in this study have been detailed in Chapter 4 

[167]. Eight cricket clubs or schools (clusters) were randomly assigned to receive an eight-week 

exercise-based IPP or a control intervention. Those in the intervention group continued their 

usual cricket activity during the intervention period (i.e., two training sessions and one match 

per week), however instead of performing their usual warm-up at training, they completed an 

exercise-based IPP (two sessions per week for eight weeks = 16 total sessions). Those in the 

control group continued their usual cricket activity and therefore performed their standard 

warm-up before training. The standard warmup typically included a five-minute jog and a series 
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of stretches for the upper-limb, trunk, and lower-limb. Within a two-week period before and 

after the eight-week intervention, all players attended a biomechanics laboratory for baseline 

and follow-up assessment of their bowling kinematics. 

Eligible schools and clubs were required to have organised training sessions two times 

per week and no previous involvement with a structured IPP. Eligible pace bowlers were aged 

14-17 years, currently injury free, and not involved in a rehabilitation/structured IPP. Ethics 

approval was obtained from the Murdoch University’s Human Research Ethics Committee 

(2016/136) and consent was obtained from all entities involved (i.e., the coordinator of each 

cricket organisation, the cricket coaches, participants, and the participant’s parent/guardian). 

Blinding of the participants was not appropriate for this research, as players were either required 

to complete an exercise-based IPP across the intervention period, or simply train as normal. 

This study was conducted in four waves across the 2016/17 and 2017/18 seasons. The 

eight cricket organisations were matched for type (i.e., club or school) and then block-

randomised by computerised number generation into either an intervention group or a control 

group. Allocation was concealed from the recruiting researcher until after baseline testing and 

the researcher overseeing randomisation was not involved with recruitment. 

The intervention group performed the IPP on a grass cricket oval with groups of 6 to 12 

players. Each session took approximately 10-15 minutes to complete and only required the use 

of cricket balls and resistance-bands. Although the exercise program was designed to be 

delivered by a cricket coach [151], an Accredited Exercise Physiologist with three years of 

experience delivered all exercise sessions in the current study. This approach was taken to allow 

the program effectiveness to be assessed in ideal conditions as per stage three of the Translating 

Research into Injury Prevention Practice framework [23]. 

Details of the exercise program used in this study have been presented in Chapter 4 

[167]. In brief, six exercise components were completed per session: (1) dynamic warm-up, (2) 



85 

 

strengthening of the shoulder external rotators, (3) hip adductor strengthening, (4) hamstring 

strengthening, (5) dynamic neuromuscular control of the lumbo-pelvic region and lower-limb 

and, (6) trunk extensor endurance. The researchers provided verbal feedback to the participants 

during the injury prevention program but did not provide any specific coaching instruction to 

correct bowling technique. The verbal feedback was largely focused on ensuring correct and 

safe exercise technique, and therefore included cues to reduce excessive knee valgus angles and 

excessive movements of the trunk/pelvis. All cues provided to the players during the exercise 

session were taken directly from the IPP program manual, which has been published as 

supplementary material in a previous study [151]. The primary researcher took this approach 

to help mimic the context of implementation, where an inexperienced coach may read directly 

off the program manual when providing feedback.  

At baseline and follow-up testing sessions participants firstly completed a 10-minute 

self-directed warm-up. Following this, all players performed a series of neuromuscular 

assessments as previously presented [167]. Retro-reflective markers were then placed on 

various anatomical landmarks according to a custom marker set [125, 171, 172]. Markers were 

also placed on the medial and lateral malleoli and the medial and lateral femoral condyles for 

static subject calibration trials. An additional retro-reflective marker was placed on a 156g 

cricket ball to measure ball velocity. After bowling three practise deliveries, each participant 

was instructed to bowl six legal deliveries at match intensity. A target was placed directly 

behind the wickets at the striker’s end to simulate an appropriate bowling area. Deliveries which 

missed the target were not included in the analysis. All bowling deliveries took place on a 

synthetic, standard length cricket wicket within a biomechanics laboratory. The laboratory was 

large enough for bowlers to perform off their full run-up and follow-through as they normally 

would. Marker trajectories were tracked using a 12-camera motion capture system (Oqus3+ 

cameras (Qualisys AB, Gothenburg, Sweden), Qualisys Track Manager software). A one-
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minute rest was required between deliveries because of data processing. The three best 

deliveries for each participant were used for analysis (maximal ball velocity with minimal 

marker loss). 

Kinematic data analysis was performed using Visual 3D software (Version 5, C-Motion, 

Germantown, USA). Kinematic data were firstly filtered using a 15Hz low pass Butterworth 

filter. Dynamic functional methods were then used to locate knee and hip joint centres [173] 

and joint angles were calculated using a standard joint coordinate system [157]. Kinematics 

which have been established as risk factors for lumbar injury in pace bowlers were then 

identified during each delivery [31, 52, 62]. In the trunk these included; shoulder counter 

rotation, lateral trunk flexion at front foot contact (FFC), lateral trunk flexion at ball release 

(BR), and maximal lateral trunk flexion relative to the pelvis between FFC-BR (hereafter 

referred to as relative lateral trunk flexion). Lateral trunk flexion angles towards the non-

dominant side were defined as positive. In the lower limb, pelvis rotation angle, front hip angle, 

and front knee angle were measured at FFC and BR. Positive angles for the hip and knee 

indicated flexion. As for the pelvis, 270° represented a front-on alignment. The timing of BFC 

and FFC were determined using force plate data (9287C Kistler Group Winterthur, Switzerland) 

and BR was considered as the first frame after the ball had left the hand.  

During the intervention period, all players reported their sessional rating of perceived 

exertion (RPE) using a 0-10 category ratio scale fifteen minutes after each training session. The 

players were also required to record their bowling load in a logbook (number of balls bowled 

per day). The primary researcher met with each player on a weekly basis to ensure their 

logbooks were kept up to date. Cricket training attendance was also recorded from both groups 

as a percentage of total cricket training sessions (16 sessions attended = 100% attendance). 

Exercise session attendance was recorded in the intervention group only (16 exercise 

sessions attended = 100% exercise attendance). Exercise compliance was also collected in the 
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intervention group (all exercise components completed at every exercise session attended = 100% 

exercise compliance). Players who were absent from training received a ‘not applicable’ for 

exercise compliance on that particular day. 

The sample size estimate in this study, which has been described in detail in Chapter 4, 

was performed to detect a Cohen’s f effect size of 0.25. The current study therefore had 

sufficient power to detect an approximate 6° change in shoulder counter-rotation between 

groups. In line with the intention-to-treat principle, treatment effects (95% CI) were estimated 

with linear mixed models (IBM SPSS Statistics V.24). Follow-up scores were input as the 

dependant variable and adjusted for baseline score (covariate) and cluster (random effect). 

Cohen’s d effect sizes were also calculated where appropriate using the treatment effect and 

average standard deviation at follow up. The intra-cluster correlation coefficient was also 

calculated for each variable at baseline by dividing the between-cluster variability by the sum 

of the within-cluster and between-cluster variabilities [174].  

5.4 Results 

Details of recruitment, group allocation, participant drop out and missing data are reported in 

Figure 5.1. Missing kinematic data occurred when biomechanical markers were obstructed or 

fell off while bowling. It is important to note that all players with missing kinematic data 

recorded at least one testing session with complete data. For example, the two players in the 

intervention group with missing trunk kinematics at baseline, had complete data for trunk 

kinematics at follow-up. Baseline player demographic information, attendance and player load 

data are presented in Table 5.1. All players in this study were male. Exercise session attendance 

for the intervention group was 82.7 ± 12.1% and exercise compliance was 98.7 ± 3.1%. 
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Table 5.1 Demographics and anthropometrics at baseline, attendance, and player load. 

 Intervention n=31 Control n=33 P value 

Age (years) 15.8 ± 1.0 15.4 ± 1.2  

Height (cm) 180.4 ± 7.2 175.7 ± 8.2  

Weight (kg)  69.7 ± 11.5 63.8 ± 10.4  

BMI 21.3 ± 2.7 20.6 ± 2.2  

Training session attendance 86.3 ± 9.6 86.9 ± 12.9 0.82 

Average training session RPE 5.3 ± 0.9 6.2 ± 1.0 0.01* 

Mean overs per week 16.2 ± 5.4 19.7 ± 7.7 0.04* 

Values presented as mean (±) standard deviation, BMI body mass index, * Statistically significant (p < 

0.05). 

 

Figure 5.1 Flow of participants through Chapter 5. 
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Table 5.2 Outcome results and treatment effects Chapter 5. 

 

Outcome 
Intervention 

n=31 

Control 

n=33 

Treatment 

effect 

Cohen’s 

d 
ICC 

Shoulder counter-rotation      

Baseline 21.4 ± 9.5 25.7 ± 8.9    

Follow-up 20.4 ± 8.8 27.9 ± 10.9 -3.8 (-7.2 to -0.3)* 0.38 0.13 

Lateral trunk flexion FFC      

Baseline 16.4 ± 9.0 16.6 ± 9.7    

Follow-up 16.7 ± 7.8 15.7 ± 8.7 1.2 (-2.5 to 4.8) 0.14 0.12 

Lateral trunk flexion BR     
 

Baseline 45.9 ± 7.2 47.6 ± 7.7    

Follow-up 44.1 ± 5.2 46.0 ± 9.2 -0.5 (-3.0 to 2.0) 0.07 0.10 

Relative lateral trunk flexion       

Baseline 34.8 ± 4.9 37.7 ± 5.7    

Follow-up 34.1 ± 3.5 38.3 ± 5.6 -2.2 (-4.0 to -0.5)* 0.49 0.10 

Pelvis rotation FFC      

Baseline 233.5 ± 12.4 232.1 ± 13.1    

Follow-up 233.6 ± 10.1 233.5 ± 13.0 0.9 (-4.0 to 2.2) 0.08 0.05 

Pelvis rotation BR      

Baseline 283.5 ± 11.4 283.7 ± 12.0    

Follow-up 280.8 ± 9.7 282.2 ± 11.6 -1.1 (-5.7 to 3.6) 0.10 0.15 

Front hip angle FFC      

Baseline 45.4 ± 10.8 42.6 ± 7.8    

Follow-up 45.0 ± 8.5 41.2 ± 7.2 1.6 (-3.6 to 6.7) 0.20 0.13 

Front hip angle BR      

Baseline 66.4 ± 12.9 62.3 ± 10.1    

Follow-up 65.2 ± 9.1 63.8 ± 11.8 -1.6 (-5.0 to 1.9) 0.15 0.23 

Front knee angle FFC      

Baseline 14.9 ± 11.4 15.5 ± 10.4    

Follow-up 13.9 ± 10.5 15.4 ± 10.1 -1.1 (-4.5 to 2.3) 0.10 0.16 

Front knee angle BR      

Baseline 40.4 ± 17.3 39.5 ± 20.5    

Follow-up 43.1 ± 16.7 40.8 ± 21.7 1.7 (-5.6 to 9.1) 0.09 0.09 

Ball velocity (km∙h-1)  

Baseline 105.1 ± 8.5 102.5 ± 8.3    

Follow-up 105.4 ± 8.8 102.3 ± 8.1 1.1 (-7.5 to 9.7) 0.13 0.31 

All values in degrees (°) unless otherwise indicated, Baseline and follow-up outcome scores presented as mean 

(±) standard deviation, Treatment effect (95%CI) were adjusted for baseline score and cluster, ICC intra-

cluster correlation coefficient at baseline, FFC front foot contact, BR ball release, * statistically significant 

p<0.05. 
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Treatment effects (95% CI) indicate significant decreases favouring the intervention 

group for shoulder counter-rotation (-3.8°; -7.2° to -0.3°) and relative lateral trunk flexion (-2.2°; 

-4.0° to -0.5°) (Table 5.2). No between-group differences were observed for lateral trunk flexion 

at FFC (1.2°; -2. 5° to 4.8°), lateral trunk flexion at BR (-0.5°; -3.0° to 2.0°), pelvis rotation at 

FFC (0.9°; -4.0° to 2.2°), pelvis rotation at BR (-1.1°; -5.7° to 3.6°), front hip angle at FFC 

(1.6°; -3.6° to 6.7°), front hip angle at BR (-1.6°; -5.0° to 1.9°), front knee angle at FFC (-1.1°; 

-4.5° to 2.3°), front knee angle at BR (1.7°; -5.6° to 9.1°), or ball velocity (1.1 km∙h-1; -7.5 km∙h-

1 to 9.7 km∙h-1) (Table 5.2). When examining the shoulder counter-rotation in the intervention 

group, 7/28 players (24%) were above the recommended threshold (i.e., >30°) at baseline and 

4/24 (14%) were above the threshold at follow-up. In the control group 10/33 players (30%) 

were at risk at baseline and 14/33 (42%) were at risk at follow-up. Mean shoulder counter-

rotation in the control group also increased by 2.2° between testing sessions (d = 0.22). 

5.5 Discussion  

This study investigated the effect of an exercise-based IPP on bowling kinematics in a group of 

community-level adolescent pace bowlers. Performing the eight-week exercise-based IPP at 

training, in place of the usual warm-up, decreased shoulder counter-rotation and relative lateral 

trunk flexion. These findings may have implications for injury risk as shoulder counter-rotation 

and lateral trunk flexion have been previously linked to low back injuries in pace bowlers [31, 

52, 62]. 

The reduction in the proportion of bowlers in the intervention group with excessive 

shoulder counter-rotation from baseline (24%) to follow up (14%) is likely beneficial. 

Conversely in the control group, there was an increase in the proportion of bowlers with 

excessive shoulder counter-rotation from baseline (30%) to follow up (42%). Lumbar kinetics 
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were not examined in this study, however, results from an investigation which employed a finite 

element analysis suggest that the 2° difference in relative lateral trunk flexion could reduce the 

forces acting on the lumbar spine while bowling [86]. The approximate 2° treatment effect for 

relative lateral trunk flexion, however, is relatively small and could be a result of measurement 

error. Additional research is therefore needed to determine if changes in shoulder counter-

rotation and relative lateral trunk flexion attenuate injury risk. 

The mechanism underlying the changes in shoulder counter-rotation and relative lateral 

trunk flexion may be related to the improvements in shoulder strength, lower-limb strength, 

dynamic control, and trunk extensor endurance which were reported in Chapter 4 [167]. It is 

difficult to identify which of these neuromuscular improvements had the greatest effect on 

changing kinematics, however, improvements in stability of the lower-limb and lumbopelvic 

region, may have played a role [170]. 

The approximate 4° treatment effect for shoulder counter-rotation, albeit significant, is 

considerably lower than the 20° change reported by Ranson et al.[81] who implemented a 

coaching intervention over a two-year period. The 4° difference is also substantially lower than 

the 14° decrease in shoulder counter-rotation reported by Elliott et al.[52] who prescribed a 

series of educational seminars over 3-4-years. While this may indicate that coaching 

interventions are a more suited to modifying shoulder counter-rotation, the current study was 

only conducted over eight-weeks, in comparison to the 2-4 year intervention periods in the 

technique modification studies.  

The studies by Ranson et al.[81] and Elliott et al.[52] also included a higher proportion 

of bowlers with >30° shoulder counter-rotation at baseline, 93% and 80% respectively. In the 

current study, however, only 24% of the bowlers in the intervention group had >30° shoulder 

counter-rotation at baseline. The small magnitude of change for shoulder counter rotation in the 

current study may have occurred because most bowlers already had low levels of shoulder 
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counter-rotation and therefore had little room for improvement. Other studies which have 

changed risk factors for knee injury, support this suggestion, with ‘high-risk’ athletes typically 

showing the greatest response to intervention [175]. 

There was a small effect size (d = 0.22) for the control group’s 2.2° increase in shoulder 

counter-rotation between baseline and follow-up testing sessions. This finding may be 

associated with those reported in Chapter 4 where hip adductor strength, reach distance on the 

star excursion balance test, and trunk extensor endurance also reduced in the control group 

[167].  It is possible that the changes in the neuromuscular measures could have driven the 

changes in bowling kinematics seen in the control group [31]. It is unclear why the 

neuromuscular measures and bowling technique declined in the control group. However, in 

previous work by Carr et al.[165], where measures of strength and power decreased in elite 

cricketers over the course of the season, the authors concluded that training loads in cricket 

were too low to appropriately condition the bowlers [165]. The same explanation could apply 

to community-level bowlers who may begin the cricket season with elevated levels of strength 

and power as a result of their participation in other sports during the cricket off-season. It is 

also possible that the neuromuscular measures and bowling kinematics declined in the control 

group because in-season bowling loads were too fatiguing. This may be the case in the current 

study as those in control group bowled more overs per week and perceived their training 

sessions to be more intense than the players in the intervention group.  Further research to 

confirm if bowlers naturally decline over the course of a season would be beneficial, as would 

research aiming to uncover why these declines occur.  

There were no treatment effects for the angles of global lateral trunk flexion, pelvis 

rotation, front hip angle, and front knee angle. This may have occurred because the exercise-

program was not reinforced with coaching instruction to change bowling kinematics [170]. In 

other team sports, exercise interventions that were reinforced with visual and verbal feedback 
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were among the most beneficial for modifying potentially injurious knee kinematics [170]. 

Future research involving community-level pace bowlers should therefore investigate if 

exercise-based approaches combined with coach instruction can change bowling kinematics.  

The non-significant findings for the angles of global lateral trunk flexion, pelvis rotation, 

front hip angle, front knee angle, and ball velocity could have also been related to the exercises 

included in the current program. While this program was designed to change neuromuscular 

factors and evidence demonstrates it can do this effectively [151, 167], program-refinement 

may be needed to alter bowling kinematics and ball velocity. For example, side-bridge exercises 

could be used to target the posterior trunk muscles on the side opposite the bowling arm as these 

muscles may play an important role in controlling the levels of lateral trunk flexion between 

FFC and BR [66]. Additional dynamic neuromuscular control exercises for the lower-limb may 

also help reduce lateral trunk flexion angles and promote changes in the kinematics of the pelvis, 

hip and knee [31, 170]. As for shoulder counter-rotation, exercises to strengthen the trunk 

rotator muscles may provide benefit. To target improvements in ball velocity, exercises which 

increase pectoral strength, latissimus dorsi strength, lower-limb power, and sprint performance 

may be needed. In previous studies involving junior pace bowlers and adult community-level 

pace bowlers for example, bench-throw performance, one repetition max pull-up strength, static 

jump performance, and 20m sprint time were among the best predictors of ball velocity [176, 

177]. 

While this study provides important information regarding the efficacy of exercise-

based programs to modify bowling kinematics, it does include some limitations. Firstly, the 

program was prescribed by an Accredited Exercise Physiologist not a community-level coach. 

The findings of this study may therefore not generalise to programs implemented by 

community-level coaches. Nevertheless, the program includes simple exercises and was 

designed to be used by a coach with no previous experience in exercise prescription. The 
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coaches of the bowlers in this study were also free to continue their standard coaching practices 

and this likely included the prescription of drills to correct bowling technique. While this may 

have influenced the results, it is likely that players in both groups received a similar level of 

coaching support throughout the study. There was also no quantification of fatigued state prior 

to each testing session. While players refrained from physical activity on the day of testing, 

their level of fatigue could have influenced their performance. It is also important to note that 

the outcome assessor was not blind to group allocation at follow-up or during data analysis. 

While this approach is not ideal, the objective measures used to assess bowling kinematics, are 

typically less prone to bias [178].  

5.6 Conclusion 

The eight-week exercise-based IPP decreased shoulder counter-rotation and relative lateral 

trunk flexion within our cohort of community-level adolescent pace bowlers. Additional 

research is needed to confirm if these changes reduce injury risk. Some bowling kinematics 

changed in the control group throughout the study. Continued exercise-based IPP in the pre-

season and in-season is therefore important. There were no significant changes for the global 

measures of lateral trunk flexion or the kinematics of the pelvis, hip or knee. It would be 

beneficial if future studies investigated if exercise programs reinforced with coaching 

instruction could modify these kinematics.
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CHAPTER 6  
 

 

THESIS DISCUSSION
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6.1 Thesis Overview 

In line with the TRIPP framework [23], the aim of this thesis was to systematically review risk 

factors for injury in adolescent pace bowlers and then design an IPP for community-level 

adolescent pace bowlers. Following this, the thesis aimed to assess if this program could modify 

neuromuscular risk factors and alter bowling kinematics.  

The primary results of Chapter 2 demonstrate that bowling workload, neuromuscular 

deficiencies, and bowling biomechanics are risk factors for non-contact injury in adolescent 

pace bowlers. In Chapter 3, five key target areas for injury prevention were identified and these 

included; shoulder strength, hamstring strength, hip adductor strength, dynamic neuromuscular 

control of the lumbo-pelvic region and lower-limb, and trunk extensor endurance. Factors to 

facilitate potential uptake of an IPP at the community-level equipment were also considered in 

Chapter 3, such as the inclusion of exercises which were simple, time-efficient, enjoyable to 

perform, and non-reliant on equipment. After identifying the five key prevention areas and the 

facilitators for implementation, a specific IPP for adolescent pace bowlers was developed. In 

Chapters 4 and 5, the newly-developed IPP showed significant treatment effects favouring the 

intervention group for; shoulder strength (90°/s), hamstring strength (60°/s), hip adductor 

strength, SEBT reach distance, back endurance, shoulder counter-rotation and relative lateral 

trunk flexion.  

6.2 Discussion of Findings 

The following section will provide commentary around the process of injury prevention in 

community-level adolescent pace bowlers. Findings will be discussed in the context of the 

TRIPP framework and in line with other published work in this area.  

The systematic review (Chapter 2) was the first in the literature to identify risk factors 

for injury in adolescent pace bowlers. The identified factors were similar to those found by 
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Olivier et al. [41] among adult pace bowlers. Both reviews for example, identified studies which 

linked bowling load, shoulder counter-rotation, and poor balance/control of the lower-limb to 

injury. Numerous risk factors for low back injury were also identified in Chapter 2. Several 

factors were related to the bowling action and these therefore lack generalisability to other 

sports. The neuromuscular factors, such as inadequate lower-limb control and poor trunk 

muscle endurance, however, may have implications for other sports, such as gymnastics [179], 

volleyball [180], and tennis [181], where low back injuries are common.  

After identifying the risk factors for injury in pace bowlers, an IPP that was suitable at 

the community-level was developed (Chapter 3). The exercises in this IPP were similar to those 

presented in FIFA 11+ and FootyFirst, however, the current IPP also included exercises to 

target the shoulder [84, 119]. Following the publication of Chapter 3, another IPP for cricketers 

was published by Soomro et al. [182]. Given the similarities in the target population, there were 

several overlapping features in both programs. Soomro et al. [182] for example, included 

resistance exercises for the posterior shoulder, the Nordic hamstring exercise, several 

balance/control drills for the lower-limb, and trunk extensor endurance exercises. A major 

difference between the programs was the inclusion of the single-leg squat exercise in the current 

IPP. This exercise has implications for correcting lower-limb mechanics [170] which have been 

linked to increased lateral flexion while bowling in adolescent bowlers [31].The inclusion of 

the single-leg squat exercise was therefore a vital component in the current IPP. Soomro et al. 

[182], however, did include more exercises to target the upper limbs, such as push-ups and rows. 

While the effectiveness of the program by Soomro et al. [182] has not been assessed, the 

inclusion of these additional upper-limb exercises could potentially provide beneficial 

outcomes for shoulder injury prevention [183]. The push-ups which strengthen the pectoral 

muscles could also aid in increasing ball speed, as bench throw performance (an assessment of 

pectoral muscle power) is one of the best predictors of ball speed in junior fast bowlers [176].  
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The results of Chapters 4 and 5 indicate that the IPP was able improve a number of 

neuromuscular factors and bowling kinematics. The FIFA 11+ also provides similar benefits, 

with studies investigating this program reporting improvements in muscle strength, muscle 

power, sprint speed and balance/proprioception [97, 184]. While injury risk was not 

investigated in this thesis, systematic reviews demonstrate that the FIFA 11+ can reduce the 

risk of injury by approximately 30-40% [184, 185]. It is therefore possible that with future 

research and continued refinement of the current IPP, similar results could be achieved in a 

cricket-context.  

The findings in Chapters 4 and 5, which are situated in Stage 4 of the TRIPP framework, 

also provide vital information about the attitudes of cricket organisations/players towards injury 

prevention. The response rates among the cricket organisations/players indicate that these 

groups are willing to take engage with injury prevention. Of the ten invited cricket organisations, 

80% agreed to participate in this research. Within these organisations approximately 70% of 

players were also willing to be involved. The low dropout rates (n=1) are also promising and 

suggest players will persist with exercise programs once they are implemented.  

Although this thesis makes a number of significant contributions to the literature, it does 

contain some limitations. In Chapters 4 and 5 for example, the outcome assessor was not 

blinded to group allocation at follow-up. It is therefore possible that some bias was introduced 

here. Nevertheless, most outcomes in these chapters were assessed objectively and these 

measures are typically less susceptible to bias [178]. The participants in Chapters 4 and 5 were 

also aware of their group allocation at follow-up and this may have affected their performance 

during outcome assessment. Despite this, blinding of the participants was not appropriate for 

this research, as the players were either required to complete an exercise-based IPP or train as 

normal. Efforts were made to reflect the real-world context in Chapters 4 and 5, however, the 

information provided to participants during recruitment, the short intervention period (eight-
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weeks), and the delivery of the program by an Accredited Exercise Physiologist may affected 

the external validity of the findings [23]. 

6.3 Future Research Directions  

The IPP developed in this thesis modified several injury risk factors, however a number of the 

neuromuscular factors and bowling kinematics did not change. Future refinement of the IPP 

may therefore be needed to modify these factors. A Delphi study, which achieves expert 

consensus on the various exercises included within an IPP, would be an ideal progression after 

this thesis. An example of a successful Delphi study can be found in work by Donaldson et al. 

[186], where an IPP to prevent lower-limb injury in Australian Football was developed. In this 

study, expert medical staff, physiotherapists, and sport scientists from the Australian Football 

League collaborated to determine which exercises should be included in the IPP and how these 

exercises should be progressed. Replication of this study in a cricket-context with assistance 

from national and/or state coaching/medical staff would be beneficial and could ultimately 

improve the efficacy of the current IPP.  

Following this, it would be useful to assess if the IPP reduces injury risk in pace bowlers. 

Cluster-randomised control trial designs would be best suited here. Ensuring definitions of 

injury align with the recent International Consensus Statement on Injury Surveillance in Cricket 

[45] would also be necessary. It is recommended that injuries be defined as ‘player reported’ 

and ‘general time loss’. Player reported injuries (i.e., a condition which the player or their 

parent/teacher deem to represent an injury) are suited at the community-level where medical 

staff may not be available. General time loss injuries (i.e., an injury that causes a player to be 

unavailable for match-play, regardless of whether a match or training was scheduled) are also 

ideal at the community-level as they are unaffected by season scheduling and therefore provide 

a more accurate representation of injury-burden. Future studies should also control for 
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confounding variables such as bowling load, as this factor can influence injury risk [26, 29]. A 

bowler for example, may have appropriate bowling kinematics and adequate levels of strength, 

balance and endurance, yet still sustain an injury because their bowling load was inappropriate 

As discussed in Chapter 5, it would be useful to reinforce exercise-based approaches 

with coach instruction aimed at changing bowling technique, as this approach appears to be 

useful in other studies aiming to change knee kinematics [164]. When designing the 

interventions to change bowling kinematics, researchers need to ensure they consider the 

context of implementation. This is especially important at the community-level, where an 

inexperienced coach may not have the expertise to identify poor kinematics and prescribe 

appropriate coaching drills for remediation. 

If exercise-based IPPs are able attenuate injury risk in adolescent pace bowlers, it would 

be useful to turn our attention to Stage 5 of the TRIPP framework, which considers the various 

motivators and barriers to real-world program implementation [23]. An important step in this 

stage is to understand the attitudes towards injury in community-level cricket [23]. There is 

some pre-existing literature in this space from White et al. [187], who investigated the 

perceptions of injury risk in junior cricketers (Under 12s, 14s, and 16s). The study revealed that 

cricketers had relatively accurate perceptions of injury risk [187]. Injury risk associated with 

bowling was also higher among the Under 16s, indicating this group may be more receptive to 

partaking in exercise-based IPPs aimed at preventing bowling injuries [187, 188].  

Future research should also consider the coaches’ attitude toward IPPs because they are 

typically the one responsible for introducing and prescribing programs to their players [115, 

189]. In other sports, coaches generally have favourable views towards IPPs but lack confidence 

to prescribe an intervention [115]. If this was also the case in cricket, it would be beneficial to 

provide coaches with additional education regarding program delivery. Coaches are also more 

likely to implement an IPP if it improves performance [190]. Examining if IPPs improve 
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bowling speed and accuracy is therefore recommended. Additional research situated in Stage 5 

of the TRIPP framework should also aim to establish how constraints on time, facilities, finance, 

equipment and personal, influence program implementation; and how IPPs can be effectively 

marketed and promoted towards players, cricket clubs, and governing bodies [23].  

Stage six of the TRIPP framework highlights the importance of examining program 

effectiveness in a real-world setting [23]. A recent controlled ecological study, which 

implemented an exercise program to prevent lower-limb injuries in Australian Football, 

provides a useful example of a study situated within Stage 6 of the TRIPP framework [191]. 

This study demonstrated that hospital-treated lower-limb injuries related to Australian Football 

could be reduced within a specific geographical region where an IPP was introduced. A key 

element to the success of this study was the level of support provided to the clubs performing 

the IPP [192]. Support included; small-scale marketing strategies to create awareness, the 

distribution of program manuals to clubs, coach education, and continued coach mentoring 

[192]. The ecological approach taken to prevent injury in Australian Football should be 

replicated in future investigations aiming to attenuate injury risk in community-level adolescent 

pace bowlers [191, 192]. 

6.4 Practical Applications  

The practical recommendations based on the studies presented in this thesis are: 

1. Neuromuscular deficiencies, inappropriate bowling workload, and poor bowling 

biomechanics are associated with injury in adolescent pace bowlers (Chapter 2). 

Practitioners could use this information to help identify pace bowlers at risk of injury. 

 

2. Adolescent pace bowlers who are susceptible to non-contact injury and have associated 

neuromuscular risk factors will likely benefit for exercise-based programs (Chapter 3). 
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3. Cricket organisations are encouraged to implement exercise-based IPPs, as these 

programs can be effectively integrated into normal cricket training sessions at the 

community-level (Chapters 4 and 5).  

 

4. Exercise-based IPPs can improve shoulder strength, hamstring strength, hip adductor 

strength, SEBT reach distance, back endurance, shoulder counter-rotation, and relative 

lateral trunk flexion in community-level adolescent pace bowlers (Chapters 4 and 5). 

 

5. Coaches, players and parents should be aware that neuromuscular risk factors and 

bowling kinematics may worsen in pace bowlers who do not perform exercise-based 

injury prevention (Chapters 4 and 5). 

6.5 Final Summary 

Developing and implementing injury prevention strategies for community-level adolescent 

pace bowlers can provide many benefits. This thesis makes a significant contribution to the 

process of injury prevention in this population by; 1) providing the first systematic review to 

identify injury risk factors in adolescent pace bowlers; 2) developing a new exercise-based IPP 

appropriate for community-level cricketers; and 3) demonstrating that this exercise-based IPP 

can modify risk factors for injury. Ultimately it is hoped that the findings in this thesis provide 

the foundation for future research aimed at reducing injury risk within our community-level 

adolescent pace bowlers.  
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Appendix A Systematic Review Syntax 

 

 



 

A-2 

Population: (cricket OR cricketer OR cricketers OR cricketing OR Bowler[title/abstract] OR bowlers[title/abstract] OR 

bowling[title/abstract]) 

Injury terms and risk factors: AND ("Wounds and Injuries/anatomy and histology"[Mesh] OR "Wounds and 

injuries/epidemiology"[Mesh] OR "Wounds and Injuries/etiology"[Mesh] OR "Wounds and Injuries/injuries"[Mesh] OR 

"Wounds and Injuries/ physiology"[Mesh] OR "Wounds and Injuries/prevention and control"[Mesh] OR "Wounds and 

Injuries/radiography" [Mesh] OR "Wounds and Injuries/rehabilitation"[Mesh] OR "Wounds and Injuries/therapeutic 

use"[Mesh] OR "Wounds and Injuries/therapy"[Mesh] OR "Wounds and Injuries/ultrasonography"[Mesh] OR "Acute 

Pain/epidemiology"[Mesh] OR "Acute Pain/etiology"[Mesh] OR "Acute Pain/physiology"[Mesh] OR "Acute 

Pain/prevention and control"[Mesh] OR "Acute Pain/radiography"[Mesh] OR "Acute Pain/rehabilitation"[Mesh] OR 

"Acute Pain/therapy"[Mesh] OR "Acute Pain/ultrasonography"[Mesh] OR "Myalgia/anatomy and histology"[Mesh] OR 

"Myalgia/epidemiology"[Mesh] OR "Myalgia/etiology"[Mesh] OR "Myalgia/physiology"[Mesh] OR "Myalgia/ 

prevention and control"[Mesh] OR "Myalgia/radiography"[Mesh] OR "Myalgia/rehabilitation"[Mesh] OR "Myalgia/ 

therapy"[Mesh] OR "Myalgia/ ultrasonography"[Mesh] OR "Fractures, Stress/anatomy and histology"[Mesh] OR 

"Fractures, Stress/epidemiology" [Mesh] OR "Fractures, Stress/etiology"[Mesh] OR "Fractures, Stress/ physiology" 

[Mesh] OR "Fractures, Stress/ prevention and control"[Mesh] OR "Fractures, Stress/radiography"[Mesh] OR "Fractures, 

Stress/rehabilitation" [Mesh] OR "Fractures, Stress/therapy"[Mesh] OR "Fractures, Stress/ultrasonography" [Mesh] OR 

"Intervertebral Disc Degeneration/anatomy and histology"[Mesh] OR "Intervertebral Disc Degeneration/ epidemiology" 

[Mesh] OR "Intervertebral Disc Degeneration/etiology"[Mesh] OR "Intervertebral Disc Degeneration/ physiology" 

[Mesh] OR "Intervertebral Disc Degeneration/prevention and control"[Mesh] OR "Intervertebral Disc Degeneration/ 

radiography" [Mesh] OR "Intervertebral Disc Degeneration/rehabilitation"[Mesh] OR "Intervertebral Disc 

Degeneration/therapy" [Mesh] OR "Intervertebral Disc Degeneration/ultrasonography"[Mesh] OR "Sprains and 

Strains/anatomy and histology" [Mesh] OR "Sprains and Strains/epidemiology"[Mesh] OR "Sprains and Strains/ 

etiology"[Mesh] OR "Sprains and Strains/physiology"[Mesh] OR "Sprains and Strains/prevention and control"[Mesh] OR 

"Sprains and Strains/radiography" [Mesh] OR "Sprains and Strains/rehabilitation"[Mesh] OR "Sprains and Strains/ 

therapy"[Mesh] OR "Sprains and Strains/ultrasonography"[Mesh] OR "Rupture/anatomy and histology"[Mesh] OR 

"Rupture/epidemiology" [Mesh] OR "Rupture/etiology"[Mesh] OR "Rupture/physiology"[Mesh] OR "Rupture/ 

prevention and control"[Mesh] OR "Rupture/ radiography"[Mesh] OR "Rupture/rehabilitation"[Mesh] OR "Rupture/ 

therapy"[Mesh] OR "Rupture/ ultrasonography" [Mesh] OR "Fractures, Bone/anatomy and histology"[Mesh] OR 

"Fractures, Bone/epidemiology" [Mesh] OR "Fractures, Bone/etiology"[Mesh] OR "Fractures, Bone/ physiology"[Mesh] 

OR "Fractures, Bone/ prevention and control"[Mesh] OR "Fractures, Bone/radiography "[Mesh] OR "Fractures, 

Bone/rehabilitation" [Mesh] OR "Fractures, Bone/therapy"[Mesh] OR "Fractures, Bone/ultrasonography "[Mesh] OR 

"Hernia/anatomy and histology"[Mesh] OR "Hernia/epidemiology" [Mesh] OR "Hernia/etiology"[Mesh] OR "Hernia/ 

physiology"[Mesh] OR "Hernia/prevention and control"[Mesh] OR "Hernia/radiography"[Mesh] OR "Hernia/ 

rehabilitation"[Mesh] OR "Hernia/therapy"[Mesh] OR “Ultrasonography/ hernia"[Mesh] OR "Hernia/ ultrastructure 

"[Mesh] OR "Shoulder Impingement Syndrome/anatomy and histology"[Mesh] OR "Shoulder Impingement Syndrome/ 

epidemiology"[Mesh] OR "Shoulder Impingement Syndrome/etiology"[Mesh] OR "Shoulder Impingement Syndrome/ 

physiology"[Mesh] OR "Shoulder Impingement Syndrome/prevention and control"[Mesh] OR "Shoulder Impingement 

Syndrome/radiography" [Mesh] OR "Shoulder Impingement Syndrome/ rehabilitation"[Mesh] OR "Shoulder 

Impingement Syndrome/therapy" [Mesh] OR "Rotator Cuff/anatomy and histology" [Mesh] OR "Rotator Cuff/ 

etiology"[Mesh] OR "Rotator Cuff/growth and development" [Mesh] OR "Rotator Cuff/ injuries"[Mesh] OR "Rotator 

Cuff/physiology"[Mesh] OR "Rotator Cuff/ radiography"[Mesh] OR "Rotator Cuff/therapy" [Mesh] OR "Rotator Cuff/ 

ultrasonography"[Mesh] OR "Rotator Cuff/ ultrastructure"[Mesh] OR "Dislocations/ anatomy and histology"[Mesh] OR 

"Dislocations/epidemiology"[Mesh] OR "Dislocations/etiology"[Mesh] OR "Dislocations/ injuries"[Mesh] OR 

"Dislocations/physiology"[Mesh] OR "Dislocations/prevention and control"[Mesh] OR "Dislocations/ radiography" 

[Mesh] OR "Dislocations/ rehabilitation" [Mesh] OR "Dislocations/therapy"[Mesh] OR "Dislocations/ ultrasonography 

"[Mesh] OR "Spondylosis/anatomy and histology"[Mesh] OR "Spondylosis/epidemiology" [Mesh] OR "Spondylosis/ 

etiology"[Mesh] OR "Spondylosis/ physiology"[Mesh] OR "Spondylosis/ prevention and control"[Mesh] OR 

"Spondylosis/radiography"[Mesh] OR "Spondylosis/rehabilitation "[Mesh] OR "Spondylosis/therapy" [Mesh] OR 

"Spondylosis/ ultrasonography"[Mesh] OR "Spondylolysis/anatomy and histology" [Mesh] OR Spondylolysis/ 

epidemiology"[Mesh] OR "Spondylolysis/etiology" [Mesh] OR "Spondylolysis/ physiology" [Mesh] OR "Spondylolysis/ 

prevention and control"[Mesh] OR "Spondylolysis/radiography"[Mesh] OR "Spondylolysis/ rehabilitation"[Mesh] OR 

"Spondylolysis/therapy"[Mesh] OR "Spondylolysis/ultrasonography"[Mesh] OR "Spondylolisthesis/anatomy and 

histology"[Mesh] OR "Spondylolisthesis/ epidemiology"[Mesh] OR "Spondylolisthesis/ etiology"[Mesh] OR 

"Spondylolisthesis/physiology" [Mesh] OR "Spondylolisthesis/prevention and control"[Mesh] OR "Spondylolisthesis/ 

radiography"[Mesh] OR "Spondylolisthesis/ rehabilitation"[Mesh] OR "Spondylolisthesis/therapy" [Mesh] OR 

"Spondylolisthesis/ ultrasonography"[Mesh] OR injury OR injuries OR pain OR painful OR sore OR soreness OR damage 

OR trauma OR symptomatic OR abnormal OR abnormality OR abnormalities OR defect OR defects OR degeneration OR 

impairment OR strain OR strains OR sprain OR sprains OR tear OR tears OR rupture OR fracture OR fractures OR "stress 

fracture" OR "stress fractures" OR lesion OR lesions OR microtrauma OR micro damage OR "micro damage" OR 

herniation OR impingement OR dislocation OR spondylosis OR spondylolysis OR spondylolisthesis OR "Medical 

attention" OR “risk factor” OR “risk factors” OR biomechanics OR biomechanical OR kinematics OR kinematic OR 

kinetics OR kinetic OR technique OR force OR load OR "bowling action" OR "counter rotation" OR "Biomechanical 

Phenomena/ classification"[Mesh] OR "Biomechanical Phenomena/ education"[Mesh] OR "Biomechanical Phenomena/ 

etiology" [Mesh] OR "Biomechanical Phenomena/physiology" [Mesh] OR workload OR workloads OR overuse OR 

asymmetry OR asymmetrical OR asymmetries OR morphology OR morphologies OR "Cross sectional area") 

Excluded: NOT (gryllus OR gryllidae OR gryllacrididae OR teleogryllus OR "case reports" [Publication Type]) 
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Appendix B Modified Newcastle-Ottawa Quality Assessment 

(Cross-sectional) 
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Note: A study can be awarded a maximum of one star for each numbered item within the 

Selection and Outcome categories. A maximum of two stars can be given for Comparability 

Selection 

1) Representativeness of the sample 

a) truly representative of the average in the target population. (all subjects or random 

sampling)  

b) somewhat representative of the average in the target population. (non-random 

sampling)  

c) selected group of users. 

d) no description of the sampling strategy. 

 

2) Sample size 

a) justified and satisfactory.  

b) not justified. 

 

3) Non-respondents 

a) comparability between respondents and non-respondents characteristics is 

established, and the response rate is satisfactory.  

b) the response rate is unsatisfactory, or the comparability between respondents and 

non-respondents is unsatisfactory. 

c) no description of the response rate or the characteristics of the responders and the 

non-responders. 

 

4) Ascertainment of exposure 

a) secure record (eg surgical records)  

b) structured interview  

c) written self-report 

d) no description 

 

Comparability 

1) The subjects in different outcome groups are comparable, based on the study design 

or analysis. Confounding factors are controlled 

a) the study controls for the most important factor (select one).  

b) the study control for any additional factor.  

 

Outcome 

1) Assessment of outcome  

a) independent blind assessment   

b) record linkage  

c) self-report  

d) no description 

 

2) Statistical test 

a) the statistical test used to analyze the data is clearly described and appropriate, and 

the measurement of the association is presented, including confidence intervals and 

the probability level (p value).  

b) the statistical test is not appropriate, not described or incomplete.
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Appendix C Newcastle-Ottawa Quality Assessment (Cohort 

studies)  
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Note: A study can be awarded a maximum of one star for each numbered item within the 

Selection and Outcome categories. A maximum of two stars can be given for Comparability. 

Selection 

1) Representativeness of the exposed cohort 

a) truly representative of the average _______________ (describe) in the community 

  
b) somewhat representative of the average ______________ in the community  

c) selected group of users eg nurses, volunteers 

d) no description of the derivation of the cohort 

 

2) Selection of the non-exposed cohort 

a) drawn from the same community as the exposed cohort  

b) drawn from a different source 

c) no description of the derivation of the non-exposed cohort 

 

3) Ascertainment of exposure 

a) secure record (eg surgical records)  

b) structured interview  

c) written self-report 

d) no description 

 

4) Demonstration that outcome of interest was not present at start of study 

a) yes  

b) no 

 

Comparability 

1) Comparability of cohorts on the basis of the design or analysis 

a) study controls for _____________ (select the most important factor)  

b) study controls for any additional factor  (This criteria could be modified to indicate 

specific control for a second important factor.) 

 

Outcome 

1) Assessment of outcome  

a) independent blind assessment   

b) record linkage  

c) self-report  

d) no description 

 

2) Was follow-up long enough for outcomes to occur 

a) yes (select an adequate follow-up period for outcome of interest)  

b) no 

 

3) Adequacy of follow-up of cohorts 

a) complete follow-up - all subjects accounted for   

b) subjects lost to follow-up unlikely to introduce bias - small number lost - > ____ % 

(select an adequate %) follow-up, or description provided of those lost)  

c) follow-up rate < ____% (select an adequate %) and no description of those lost 

d) no statement 
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Appendix D Exercise Program Manual 

 

The following exercise program was developed in accordance with the TRIPP framework, 

previous research into cricket injuries/risk factors, and established principles for exercise 

program development/prescription. The team of Exercise Scientists and Physiologist behind the 

development of this program have extensive expertise in the area of exercise program design 

and prescription.  
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Appendix E Modified Trunk Extensor Endurance Exercises in 

Chapters 4 and 5 
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Appendix F Ethics Documentation 
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Appendix G Published Manuscripts 
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