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Abstract. We present a clustering algorithm for use when the number
of clusters is unknown. We first show that the EM algorithm for mixture
modeling can be considered as an alternating minimization between the
data space and the model space. We then show how data cleaning can be
performed by alternating between the data space and two model spaces.
Finally, we develop a mixture model approach that iteratively refines the
model spaces, beginning with a coarse model and selecting finer models
as indicated by the consistent Akaike information criterion.

1 Introduction

Image segmentation has been long considered as an unsupervised learning or
clustering problem (see [3] for a comprehensive summary). However, few stud-
ies have used automated techniques for the segmentation of underwater images.
Model-based clustering or mixture modeling [7, 9] assumes that the data derive
from a mixture of probability measures or distributions, each of which corre-
sponds to a different cluster. The EM algorithm for Gaussian mixture modeling
has been shown to perform well when (i) the number of clusters is known in ad-
vance and (ii) the initialization is close to the true parameter values. However,
determining the number of clusters and providing a good initialization are two
problems that limit its application.

We approach the problem of mixture modeling as an alternation between
the data space and, in the case where the number of components is known, the
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model space. In the case where the number of components is not known, we
alternate between a hierarchy of data and model spaces. Using iterative refine-
ment, we provide an algorithm that simultaneously finds the number of clusters
and provides good initializations for the EM algorithm for refinement.

We apply our algorithm to the segmentation of video images of southern
bluefin tuna. The Australian fishery operates by holding wild-caught fish for
fattening after capture. Fish are held temporarily in towing cages and then
released into grow-out cages where they are fed on a diet of baitfish and then
harvested between three and eight months later. Given their high value, farmers
are reluctant to cause the fish stress by removing them from the water. Therefore,
monitoring is performed on a small sample of fish from each tow cage by taking
length and weight measurements. An underwater video attached to the side of
the gate is used to manually count the fish as they are transferred between the
cages. We aim to automate the process and improve its accuracy by developing
an algorithm that will use the video to detect and count the fish.

Image data for the project are being provided by Dr. Euan Harvey (Marine
Biology Group, Department of Botany, University of Western Australia). Fig-
ure 1 shows typical frames collected by the underwater camera. Whilst most
segmentation applications cluster in the RGB color space or some derived fea-
ture space, in order to visually assess our results, we apply our algorithm to
the thresholded image data, using the X and Y pixel locations as input data.
We model the image data as a mixture, with each individual fish modeled by a
Gaussian distribution.

Fig. 1. Typical frames with intensity increasing from black to white.

2 Mixture modeling by data space - model space
alternation

We define the mixture modeling problem as follows. We have an observed data
set Y = {yi : i = 1, ..., N}, where each yi ∈ �

n, and each yi belongs to one of K
clusters. We assume that each of the K mixture components has a model with
known parametric form and densities . The probability density function for the
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mixture is then assumed to be a weighted sum of the component densities:

p (y| θ) =
K∑

j=1

αjpj (y|θj)

where the weights, αj sum to one:
The model parameters consist of the parameters of each of the component

models and the K mixture weights θ = (θ1, ..., θK , α1, ..., αK)T , where each θj

may itself be a real-valued vector. We call the space of all possible parametriza-
tions the model space,

Θ =
{

θ = (θ1, ..., θK , α1, ..., αK)T
}

We apply the EM algorithm for finding the maximum likelihood estimate for
incomplete data [5] as follows. For each yi we define a K -dimensional vector, wi =
(wi1, ..., wiK)T , whose elements sum to one. This vector contains the probabilities
of the datum yi belonging to each of the K clusters. We cannot observe the wi

directly; they are hidden. Thus, we define the hidden data space to be

W =


w = (w1, ...wK)T :

K∑
j=1

wj = 1




the (K -1)-dimensional Simplex; and the complete data space, Z, to be the col-
lection of sets:

Z = Y ×W = {zi = (yi, wi) : yi ∈ Y,wi ∈ W}N
i=1

The EM algorithm is an iterative procedure, arbitrarily begun, where at
iteration k, given an estimated model, θ(k), we perform two steps.

The Expectation (E) step uses the model, θ(k), and the observed data, Y =
{yi : i = 1, ..., N}, to find the weight vectors,

{
w

(k+1)
i : i = 1, ..., N

}
:

w
(k+1)
il =

αlp
(
yi|θ(k)

l

)

K∑
j=1

αip
(
yi|θ(k)

j

)

This enables us to form the completed data
{

z
(k+1)
i =

(
yi, w

(k+1)
i

)
: i = 1, ..., N

}

thus finding a point in the data space, Z(k+1) ∈ Z.
The Maximization (M) step maximizes the normalized log-likelihood function

using the completed data Z(k+1):

NLL (θ) =
1
N

N∑
i=1

log p (yi|θ) =
1
N

N∑
i=1

K∑
j=1

αjpj (yi| θj)
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to get the maximum likelihood estimate

θ(k+1) = arg max
θ

NLL (θ)

Thus, finding a point in the model space θ(k+1) ∈ Θ.
The maximum likelihood estimate for the weights is simply

α
(k+1)
j =

n
(k+1)
j

N
where n

(k+1)
j =

N∑
i=1

w
(k+1)
ij .

Since we are using Gaussian mixtures, we can also explicitly solve for the mean
and covariance matrix of each component as follows:

µ
(k+1)
j =

N∑
i=1

zijyi

n
(k+1)
k

Σ
(k+1)
j =

N∑
i=1

zj

(
y
(k+1)
i − µ

(k)
j

)T (
y
(k+1)
i − µ

(k)
j

)

n
(k+1)
k

Figure 2 shows the geometry of the EM algorithm considered as an alternation
between the data space and model space.

Data space Model space

θ

θ

k+1

k+1(          )

(     )k

Z (          )

Fig. 2. The EM algorithm for mixture modeling as a data space - model space alter-
nation.

3 Alternating minimization

Having shown that the EM algorithm alternates between points in the (com-
plete) data space and the model space, we can also show that the EM algorithm
minimizes a non-symmetric distance between the two spaces [4]. We first observe
that for any observed data set X = {xi : i = 1, ..., N} , we can define a unique

82

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney



singular measure, the empirical measure, corresponding to X as follows. For any
open subset u ⊂ �

n,

δX (u) =
k

N

where k is the number of xi ∈ X contained in u. For any xi ∈ X, we have that
the value of the measure at the singleton set containing only xi is

δX ({xi}) =
1
N

For convenience, we write δX (xi) for δX ({xi}) from hereon.
For any model θ we define the data-model divergence to be

D(X ‖ θ) =
N∑

i=1

δX (xi) log
δX (xi)
p (xi|θ)

We can think of this as the divergence of the data from the given model. We
note that if we constrain θ to be defined only over the data X (and equal to zero
for any x /∈ X), then D(X ‖ θ) is the Kullback-Leibler information divergence,
also known as the cross-entropy [11].

We can easily show that the M-step of the EM algorithm (maximizing the
likelihood) is equivalent to minimizing the divergence as follows. We have

D(X ‖ θ) =
N∑

i=1

δX (xi) log
δX (xi)
p (xi|θ)

=
N∑

i=1

δX (xi) log δX (xi) −
N∑

i=1

δX (xi) log p (xi|θ)

=
N∑

i=1

δX (xi) log δX (xi) − 1
N

N∑
i=1

log p (xi|θ)

= F (X) − NLL (θ)

where the first term F (X), the entropy of the data, is constant for any given
data set and the second term NLL (θ) is the normalized log-likelihood.

Csiszár, and Tusnády [4] show that the E-step is also equivalent to minimizing
the divergence.

4 Data cleaning by model space refinement

To introduce the idea of model space refinement, we consider the problem of
cleaning noisy data: detecting and removing noise from an observed data sample.
For example, Figure 3 shows the thresholded data for a typical frame collected
from the underwater video camera used to monitor southern bluefin tuna. The
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Fig. 3. Image data showing a single fish and some spatial noise.

quality of the data is poor and we can clearly see spatial noise caused by sus-
pended particles and matter in the water. We want to remove the noise and fit
a model to the fish.

We model the data by a bivariate Gaussian and the noise by a bivariate
uniform distribution.. Let X = {xi : i = 1, ..., N} be the observed data set and
let the data space be the set of all possible observed data sets. We approach the
data-cleaning problem as an alternation between the data space and iteratively
refined model spaces as a three-step algorithm:

1. Find the maximum likelihood estimate, θu, for the uniform parameters us-
ing the observed data sample, and the maximum likelihood estimate, θg,
for the Gaussian parameters using the observed data sample. This gives a
point, (θu, θg) in the model space Θu ×Θg where Θu is the space of uniform
parameters and θg is the space of Gaussian parameters.

2. Remove the noise from the observed data set by deleting the data more likely
to have been generated by the uniform distribution. This gives a new point,
X∗ , in the data space.

3. Find the maximum likelihood estimate for the Gaussian parameters using
the new data set. This corresponds to finding a point θ∗g in the model space,
Θg.

We note that steps 1 and 3 are maximizing the likelihood and thus performing
the M-step of the EM algorithm. Step 2 is implicitly finding the EM weights
vectors for each datum, wi = (wig, wiu), thus performing the E-step of the EM
algorithm. We therefore have an alternating minimization algorithm for data
cleaning.

Figure 4 shows the geometry of the data cleaning problem considered as
an alternation between the data space and model spaces. There is clearly a
projection between the two data spaces: π2 : Θu × Θg → Θg.
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Fig. 4. Data cleaning as an alternation between the data space and model spaces.

5 How many clusters?

Various criteria have been developed for comparing mixtures with different num-
bers of components. These include Akaike’s information criterion (AIC) [1], Boz-
dogan’s consistent AIC [2], the Bayesian information criterion [10] and the min-
imum message length criterion [12]. In most applications, the EM algorithm is
randomly initialized for K = 1, ...,Kmax, where Kmax is some pre-specified max-
imum number of components. The algorithm is run for each K, and the criteria
evaluated. The model that achieves the minimum value is then selected. The
major limitation of this approach is the problem of initialization.

In an effort to avoid poor initializations, Figueirdo and Jain [6] incorporate
the MML criteria into the EM algorithm. The algorithm is initialized with a large
number of components, and components are collapsed as it iterates. Hierarchical
agglomeration methods [8] also first fit a large number of clusters, successively
merging clusters according to some criteria.

A problem with these techniques arises with the selection of the maximum
number of clusters. If it is too small, the model may be too coarse for the data;
if it is too large, the computational time may become very large. In the next
section, we will present an algorithm that initially models the data using a
coarse model, splitting clusters until our criteria is minimized. This allows us to
minimize the amount of computation required. It also suggests a logical way of
initializing the EM algorithm at each split based upon the previous level in the
hierarchy.

6 Mixture modeling by iterative model space refinement

We now apply the data space - model space alternation approach to the problem
of mixture modeling where the number of components is not known in advance.
We first clean the data using the approach from Section 4, and we therefore
have an initial Gaussian component with parameters g(1). We can think of this
as a mixture model, where the number of components is equal to one; that is, a
1-dimensional mixture, θ(1).

85

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney



We test whether the component can be split by considering two potential
models: the original model, g(1), and a two-component mixture that results from
using the EM algorithm (10 iterations) with the initializations derived from g(1)

as follows. We decompose g(1) into its mean and covariance matrix. We perform
an eigenanalysis on the covariance matrix and initialize the two components
at either end of the larger eigenvector from the mean, at a distance of two
standard deviations. We retain the model that achieves the minimum value of
the consistent AIC [2].

Figure 5 shows how the iterative model refinement algorithm alternates be-
tween the data space and the higher-dimensional model spaces as they are it-
eratively refined. The model hierarchy is shown in tree form, to indicate which
components have been split. In this example, we split the original 1-dimensional
mixture, θ(1) into two components, so that we have a 2-dimensional mixture,
θ(2), with components g(2) and g(3). We then test whether the components g(2)

and g(3) can be split, by applying the same procedure. The algorithm is iterated
until all components have been tested.

θ(1)= (     )g(1)

g(2) g(3)θ(2)= (      ,      )

g(2) g(4) g(5)θ(3) = (      ,      ,      )

g(4) g(6)g(3) g(7)θ(4) = (      ,      ,       ,       )

g(1)

g(2) g(3)

g(4) g(5)

g(6) g(7)

Z (3)

Z
(1)

Z (2)

Model spaces Model heirarchy

Z

Data spaces

Fig. 5. Iterative model space refinement.

7 Results and conclusions

We tested the algorithm on eighty frames of video. The results are shown in
Table 1. For frames with less than three fish, the algorithm worked well - some-
times finding two clusters for a single fish. This is shown in Figure 6 (three
successive frames containing two fish). In two of the frames, the algorithm has
over-segmented the data, finding both the head and tail of the second fish. On
closer examination of the algorithm (see Figure 7), we see that this problem
occurs when the initialization for the two-component model leads to the EM
algorithm converging to a suboptimal local minima of the divergence.

For frames with three or more fish, the algorithm performed poorly. In most
cases, the fish were over-segmented, as seen in Figure 6. However, in some cases,
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Table 1. Results for free-swimming fish detection.

Number of fish detected

Number of fish 0 1 2 3 4 ≥ 5

0 6

1 22

2 1 24 12 1

3 3 2 1

4 2 4

the initializations caused images containing three fish to cluster into only a single
fish. This occurred when the initial split into two clusters failed to converge
because the real clusters were located along the minor rather than the major
axis of the original Gaussian.
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Fig. 6. Successive frames (31, 32 and 33) with two fish.

We conclude that whilst the iterative refinement algorithm seems to provide
good clustering results when the clusters are distinct, it has failed to adequately
detect more than two free-swimming fish in an image. The main problem occurs
because the Gaussian distributions do not model the shapes of tuna sufficiently
well. Further adaptations to the algorithm may be worth investigating. For in-
stance, we could use the facts that the tuna have an elliptical rather than round
shape and are all moving in a roughly upward direction as they are released
from the tow-cage by adopting a Bayesian approach. Thus, we would define a
prior distribution over the component models that lends higher probability to
components with the preferred shapes and orientations. Because our initializa-
tions at each refinement step are giving poor results, we also need to consider a
better way of moving from the data space to a higher-dimensional model space
and thus providing better initializations.

In addition, we believe that the failure of the algorithm is likely caused by the
unsuitability of the data provided to it. In order to visually assess the algorithm’s
performance, we have provided two-dimensional data in the form of the locations
of pixels in the threshholded images. The data are thus over-simplified and do
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Fig. 7. Original data and two potential models for frame 32. The green ellipses show
the initialization

not include colour or temporal information. We are continuing to work on this
application with better feature selection.

Further work is also required on comparing the algorithm with other cluster-
ing approaches.
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