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Abstract: Controlling rain-splashed crop diseases is an extremely difficult task. Their spread is a 

complicated process and large-scale field surveys to determine the extent of an incursion over a large area are 

often economically intractable. A failed attempt at control or eradication of a pathogen can be very costly. In 

1996 there was a major incursion of lupin anthracnose in Western Australia, which crippled the albus lupin 

industry. At the time of the outbreak a wide-spread survey was undertaken to estimate the extent of the 

incursion. A containment protocol involving broad-scale crop destruction was put into place with the view of 

eradicating the disease. This eradication attempt subsequently failed due to wild lupins acting as a reservoir 

for the disease from road verges and non-arable land outside the cropping area. There was also evidence of 

long distance dispersal vectors such as native budworm. Had all the relevant information related to spread 

and spatial habitat suitability been collected and taken into account, the decision to destroy the crops may not 

have been made and significant economic losses to growers may have been avoided. Estimates of the current 

extent of an incursion based solely on incomplete empirical data are likely to be inaccurate, as are predictions 

of the future trajectory of an incursion that do not take into account all available information. Therefore any 

control or eradication attempt based on these estimates and predictions may be ineffective.  

Simulation modelling is an important method for making the best use of all available empirical data and 

integrating all available knowledge to predict the spread of rain-splashed crop diseases. With this prediction, 

an evaluation of the potential success of control or eradication measures may be estimated. This study 

describes a model that was built to simulate a situation analogous to that of the 1996 lupin anthracnose 

incursion in Western Australia, for the purpose of identifying general indicators of the eradicability of rain-

splashed crop diseases. 

We extended the spatiotemporal model AnthracnoseTracer to simulate the spread of lupin anthracnose in a 

heterogeneous paddock environment analogous to the 1996 conditions. Three control methods aimed at 

eradication were investigated. A simple detection model was assumed, where the probability of detecting the 

disease is dependent on the level of passive surveillance and the detectability of the disease.  

As part of the preliminary analysis contained in this paper we investigated two scenarios to identify potential 

indicators of eradicability, based on the time taken to detect the disease. Our preliminary results indicate that 

rain-splashed pathogens are extremely difficult to eradicate and the chance of successful eradication appears 

strongly dependent on the level of surveillance of the susceptible areas and the detectability of the disease. 

The level of surveillance and detectability of the disease may both serve as general indicators of eradicability 

for rain-splashed crop diseases. We discuss further modelling analyses to be carried out to refine these 

indicators.   
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1. INTRODUCTION 

Rain-splashed pathogens have the ability to spread aggressively, particularly when mediated by highly 

variable mechanisms such as wind, and are capable even of intercontinental spread (Brown and Hovmøller, 

2002). Depending on the environmental conditions, the disease may be capable of long distance jumps and 

satellite infestations may occur, leading to a patchy population structure. This makes predicting the extent of 

an incursion a very difficult task.  

Simulation modelling is a powerful tool to aid decision makers in the event of a new incursion. Simulations 

of disease spread and potential responses may be rapidly carried out and the likelihood of successful 

eradication estimated. Using simulation modelling we can investigate a wide range of environmental 

scenarios which would otherwise be difficult or impossible to carry out experimentally. Determining the 

extent of an incursion empirically is an expensive process and is not guaranteed to be accurate.   

Rare long distance jumps are often modelled using a fat-tailed dispersal kernel and in these cases the rate of 

spread no longer approaches a constant rate; but accelerates (Kot et al., 1996). If an incursion of this sort is 

not detected swiftly and action taken promptly, then the disease may rapidly reach ineradicable proportions. 

In this paper we investigated the eradicability of rain-splashed crop diseases by simulating a situation 

analogous to that of the 1996 lupin anthracnose incursion in Western Australia which devastated the albus 

lupin industry (Clements et al., 2005). Lupin anthracnose is a devastating disease of lupins. It is caused by the 

fungus Colletotrichum lupini (Nirenberg et al., 2002), previously known as Colletotrichum gloeosporioides 

(Paulitz et al., 1995; Sweetingham et al., 1995) or Colletotrichum acutatum (Talhinhas et al., 2002). Lupins 

are a multi-million dollar commodity in Australia (Australian Bureau of Statistics) and much is known, about 

the progression of lupin anthracnose epidemics (Shivas et al., 1998; Yang and Sweetingham, 1998; Diggle et 

al., 2002; Thomas and Sweetingham, 2004; Adhikari et al., 2009, among others). In the 1996 case, after a 

wide-spread survey following the initial discovery the disease was detected on 133 properties, 128 of which 

were in the Western Australian northern agricultural region (Sweetingham and Shea, 1998). An eradication 

attempt involving the large-scale destruction of lupin crops was made. In 1997 it was deemed that the 

eradication attempt had failed due to wild lupins outside the cropped areas acting as a reservoir for the 

disease. There was also evidence of long distance spread by the native budworm (Sweetingham and Shea, 

1998). This case study highlights the necessity of integrating all possible information regarding the disease 

and the environment it is found in to guide eradication decisions.  

In this paper, we describe how we extended the spatiotemporal model AnthracnoseTracer (Diggle et al., 2002) 

to simulate spread though a heterogeneous landscape, A heterogeneous paddock map, created from a satellite 

image, was used to segregate the mapped area into different land uses, namely: lupin crop, verges and other 

non-arable land where wild lupins may be present, and areas without any lupins. The advantage of the spatial 

extension is that we can obtain an indicator of the efficacy of surveillance and eradication at regional scales. 

We also identify two potential candidates to be used as general indicators of eradicability for rain-splashed 

crop diseases and discuss planned ongoing modelling studies to refine these indicators.  

2. THE MODEL 

2.1. Original AnthracnoseTracer 

We extended the model AnthracnoseTracer (Diggle et al., 2002), a stochastic model of lupin anthracnose 

spread over a homogeneous paddock. AnthracnoseTracer adopts a grid-based modelling approach and 

simulates intra-cell crop growth as the temperature dependent development of growing points including the 

reduction due to disease. The initial incursion occurs by the sowing of infected seed.  Disease development 

into the formation of potentially infective anthracnose spores is modelled in a cell using a simple temperature 

dependent latent phase (delay function). When this threshold is passed, the spread of spores, which occurs 

both within and between cells, is triggered once a rainfall threshold of 2mm in a day or 0.1mm in an hour is 

reached. Dispersal of spores is simulated individually in each of these wet hours up to a threshold after which 

their dispersal is simulated in groups (or clouds). Both rain-splash and wind dispersal mechanisms are 

simulated. The direction of travel for a spore (or spores) during rain splash is assumed equally likely in all 

directions, whilst the direction of spores travelling by wind was determined using a normal distribution based 

on the average wind direction and the standard deviation of wind direction during the wet hour. Half Cauchy 

distributions determined the distances spores disperse, by either rain splash or wind vectors. The shape 

parameter for the wind distribution is multiplied by the average wind speed in the wet hour. Both half 

Cauchy distributions in AnthracnoseTracer were parameterised using field observations. The position after 
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dispersal is determined by the vector sum of the rain splash vector and the wind vector. The deposition of a 

spore on a susceptible lupin growing point is determined using the probability:  

where    is the spore deposition probability,    is the number of susceptible growing points and   is the time 

of susceptibility, and   is the shape parameter which controls the rate of decrease in the probability of 

deposition as the number of susceptible growing points by susceptibility time approaches zero        . 

Equation (1) is commonly used to approximate the proportion of incoming radiation intercepted by a crop 

canopy (van Heemst, 1986; Diggle et al., 2002). Whether a spore successfully infects the growing point is 

determined stochastically. The AnthracnoseTracer model was parameterised for the narrow leaf lupin 

varieties Wonga and Myallie as well as the susceptible Kiev Mutant (albus lupin) variety. In our model we 

assumed two crop types, Myallie and Kiev Mutant, and the different crops are distinguished in the disease 

process by the number of potentially infective spores produced per sporulating growing point. For details of 

the AnthracnoseTracer model the reader is referred to Diggle et al. (2002). We took the original 

AnthracnoseTracer model in its entirety and made the necessary additions to simulate multiple lupin types as 

well as spread through a heterogeneous landscape.   

2.2. The heterogeneous paddock map 

We created a map that allowed us to distinguish different paddock uses and also verge areas to simulate the 

spread of lupin anthracnose through a heterogeneous environment. A satellite image obtained from Google 

Earth was used to create a suitability map reflecting the differing land uses. The satellite image was 

segmented into individual paddocks shown in Figure 1. The left hand image is the original satellite image and 

the image on the right shows the 48 paddocks represented by individual colours. The colours are arbitrary 

and similar colours do not represent any similarities in environmental conditions or paddock type. The 

paddock where the initial infection occurs in all simulations is marked by an “X”. The black area in the 

image on the right in Figure 1 represents the assumed verge areas.  

      

Figure 1. Converting the satellite image into a suitability map. The image on the left shows the original 

satellite image (© 2009 Google, © 2010 Cnes/Spot Image, Image © 2010 DigitalGlobe, © 2010 MapData 

Sciences Pty Ltd, PSMA) and the image on the right shows the generated suitability map. The “X” in the 

right image depicts the paddock where the incursion occurs in all simulations. One unit on the suitability map 

scale corresponds to 10m. 

2.3. Detection 

We assumed a simple detection model where each lupin paddock grid cell has equal probability of being 

inspected each day and the chance of detecting the disease if present in a cell is governed by an assumed 

level of detectability. The level of surveillance,          , is the assumed proportion of lupin crop area 

inspected on each day. The surveillance is assumed to be casual inspection by a farmer which suggests a 

lower value of     is appropriate. The level of detectability,          , is the proportion of infected 

growing points in a cell required for a 50% chance of detection. Therefore        , the probability of 

detecting the disease at time t, is given by 

                       (2)  

where        , the probability of detection in a cell, is given by 

                  (1)  

X 

N 
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 (3)  

 

where     is the number of infected growing points in a cell and    is the number of growing points in the 

cell. This formulation allows an estimate of the detectability of a disease to be obtained via a simple 

estimation of the proportion of infected growing points corresponding to a fifty-fifty chance of detection in a 

cell. The worst case scenario (corresponding to      ) in (3) assumes a maximum          of 0.5 when 

all growing points are infected in a cell. The possibility of the disease being more difficult to detect than this 

is neglected under the assumption that eradication would not be feasible.  

2.4. Eradication measures 

We considered three techniques of control aimed at eradicating the disease. These methods are: 

1. Destroy all the lupin in the paddock/s in which the disease was detected, but not wild lupins in verge 

areas; 

2. Destroy all lupin paddocks immediately after detection, but not wild lupins in verge areas; 

3. Destroy all lupins within a certain control radius - both crop area and wild lupins in the verge areas. 

The assumption was made that control is 100% effective and there was no remaining disease in the areas 

where the lupins were destroyed.    

2.5. Dispersal beyond the mapped area 

Anthracnose spores dispersing beyond the mapped area are allocated to a land use which is determined 

randomly using the proportion of area of each land use in the mapped area as the expected proportion outside 

the mapped area. Once the land use has been determined, whether the spore infects a susceptible lupin 

growing point or not is determined by the probability given by equation (1). 

2.6. Model characteristics 

A schematic of the model processes is shown in Figure 2 and the model characteristics assumed to represent 

the 1996 situation are described in Table 1. All other parameter values are exactly as for the original  

AnthracnoseTracer model (Diggle et al., 2002). The paddock map is shown in Figure 3. This was created by 

randomly assigning each paddock (except the paddock where initial infection occurs) of the suitability map  

 

Figure 2. Schematic representation of each model run. Disease progression is simulated until detection 

occurs or the end of the growing season is reached. 
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Table 1. Model characteristics for the test case 

assumed to describe the 1996 situation. (KM – 

Kiev Mutant, M – Myallie, US – Unsuitable) 

Parameter Value 

    0.1 

    0.1 

Initial    density (#/m
2
)  

Crop 

Verge 

Unsuitable 

40 

3% of crop 

0 

Lupin crop abundance 40% (20% 

KM, 20% 

M, 60% US) 

Initial infection crop type KM 

Location of initial infection in 

paddock 

Random 

Distribution of lupins in 

paddocks surrounding paddock 

of initial infection 

Scattered 

(Figure 3) 

Lupin variety in the verge areas KM 

Rainfall dataset location and 

year 

Mingenew 

1996 

Simulation start day 140 

(19/05/1996) 

Simulation end day 313 

(8/11/1996) 

 

 

Figure 3.  Model paddock map. Blue paddocks 

correspond to Kiev Mutant (KM), green paddocks 

are Myallie (M) and yellow paddocks are 

unsuitable (US). The remaining black area is 

assumed to be verge. As in Figure 1, one unit on 

the paddock map scale corresponds to 10m.  

 

in Figure 1 with each of the three paddock land uses 

Kiev Mutant (KM), Myallie (M) and unsuitable (US) 

according to the assumed abundance contained in Table 

1. The lupin abundance is assumed to be the proportion 

of paddocks for each land use. For the current 

distribution of 20% KM, 20% M and 60% US this 

corresponds to 10 KM, 10 M and 28 US paddocks. 

Hence the distribution is not based on the area made up 

by each land use. We used the hourly weather dataset 

for Mingenew in 1996 since it is in the Western 

Australian northern agricultural region where the 

incursion occurred and there was a good hourly rainfall 

dataset collected that year. We considered this rainfall 

dataset to be typical of the scenario of the 1996 

incursion. The growing season was assumed to span 

from the 19
th

 of May to the 8
th

 of November. A random 

infection point is simulated in the paddock where the 

initial infection occurs (Figure 1) by selecting a 

coordinate at random. This is designed to simulate the 

potential for the point of initial incursion to be close to 

the paddock boundary resulting in dispersal outside the 

paddock boundary occurring quicker – thus affecting 

the control success. The crop type in the paddock where 

initial infection occurs is assumed to be Kiev Mutant. 

2.7. A more optimistic surveillance and 

detectability scenario 

In addition to the              scenario of Table 

1, we investigated the effect of an improved 

surveillance and detectability scenario on the results of 

the control methods. We tested the sensitivity of the 

results by running another scenario with         and 

         to investigate the change in success in the 

control methods. This means the amount of crop area 

inspected per day is 30% and the proportion of infected 

growing points in a cell required for a 50% chance of 

detection is reduced to 1%.    

3. PRELIMINARY RESULTS 

We performed a number of stochastic model runs for 

the nominal case presented in Table 1. We carried out 

1000 runs and analysed the chance of eradication for 

the three control techniques considered.  

Successful control for method 1 was achieved in 8.2% 

of model runs. A success rate of 18.2% was achieved 

for control method 2. For control method 3, an 

eradication radius of 20km resulted in a success rate of 

42.4%. Figure 4 shows the cumulative distribution of 

the maximum distance of infection for each run. The 

distance describes the radial distance of the circular 

region where all lupins (paddock and verge) would 

have to be destroyed (control method 3). For a 95% 

probability of success a circular area with radius 400km 

would need to be destroyed. This corresponds to an 

area of approximately 500,000 km
2
. 

Next we investigated the effect of changing the level of 

detectability and the level of surveillance from their 
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Figure 4. Cumulative distribution of the maximum 

distances for all model runs with fixed level of detection 

(         ) and level of surveillance           ) 

along with the characteristics of the nominal model 

described in Table 1. 

 

 

Figure 5. Cumulative distribution of the maximum 

distances for all model runs with fixed level of detection 

(          ) and level of surveillance (         ) 

along with the characteristics of the nominal model 

described in Table 1. 

 

nominal values and performed 1000 stochastic runs. With the improved scenario described by the parameters 

        and         , representing higher level of surveillance and a greater detectability of the 

disease, control method 1 was successful 58.8% of the time and control method 2 was successful 70.9% of 

the time. The cumulative distribution for the maximum distance of infection is contained in Figure 5. For a 

95% probability of success for control method 3 a circular area with radius 85km would need to be destroyed. 

This corresponds to an area of approximately 23,000 km
2
, much less than the original scenario.    

 

4. DISCUSSION AND CONCLUSIONS 

For the case presented in Table 1 we saw that 

neither of the paddock control methods (control 

methods 1 and 2) were reliably effective at 

eradicating the disease. For control method 1, 

the success rate was less than 10%. If we were 

to rely on this method there would only be a 

very slight chance of success. Control method 2 

improved on control method 1, albeit 

marginally. This resulted in a success rate of 

only 18.2% which, depending on the cost of the 

control, may be inadequate. For control method 

3, if we required a success probability of 95%, 

this would mean we would have to destroy a 

very large area over half a million square 

kilometres.  

For the improved scenario, where the improved 

values of         and          were 

used, we saw a large increase in the success 

rate of both paddock control methods and this 

was also true for control method 3. The success 

rate of control method 1 improved from 8.2% 

to 58.8% and control method 2 improved from 

18.2% to 70.9%. The area required to be 

destroyed for control method 3 to achieve a 95% 

probability of success was greatly reduced 

from 500,000 km
2
 to less than 23,000 km

2
.   

Our results showed that the level of 

surveillance       and the detectability of the 

disease       play a key role in determining 

the success of a control measure. An early 

detection time is critical for the success rate of 

all the control methods. We expect the 

detection time in general to be heavily 

dependent on the level of inspection and the 

detectability of the disease. We postulate that 

the probability of eradication success can be 

estimated from these two indices 

             . If a disease is extremely hard 

to detect then the likelihood of detection occurring before the disease has reached ineradicable proportions is 

slight. Also, if the casual inspection level is low then the disease will go undetected for longer and may reach 

a point where eradication is no longer feasible.  

Using these preliminary results, we have identified detectability as a key trait of rain-splashed crop diseases 

that indicates their eradicability. In future studies we will extend the analysis to explore the independent 

effects of the level of surveillance       and the level of detectability       on the chance of eradication. 

However, we expect other factors will also have a significant effect. Future work will use the extended model 

presented in this paper to investigate other factors that may affect the success of the eradication measures 

considered. The factors we will investigate, apart from the aforementioned dynamics of the parameters for 

detection, are mainly changes in the cropping arrangement. We expect the availability of susceptible host in 

the areas outside the cropping region to play a key role in disease eradicability and may also feature as one of 

2491



Bennett et al., Towards measures of the eradicability of rain-splashed crop diseases 

the general indices indicating eradicability. We also want to investigate changes in the landscape 

arrangement that may affect the success of the control methods, such as a reduction in available lupin 

paddocks and changes to the lupin paddock spatial structure, as well as other environmental factors, such as 

rainfall. The assumption that the control measures in Section 2.4 (once employed) are 100% successful may 

not always be realistic – particularly in the verge areas where a high conservation status may exist. This 

assumption removes the potential for an imperfect eradication scheme and assumes eradication success is 

only a function of the level of surveillance and the detectability of the disease. Future analysis could include 

the effects of an imperfect eradication scheme by simulating the probability that there is some residual 

disease remaining after control has been carried out. This could be done by specifying a probability that 

control is 100% successful and then determining the actual success of the control methods stochastically. 

Each of the effects listed above will be investigated by running an extensive set of stochastic simulations.    
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