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ABSTRACT 

Quantitative Microbiological Risk Assessment (QMRA) is a methodology used to organize and 

analyze scientific information to both estimate the probability and severity of an adverse event as 

well as prioritize efforts to reduce the risk of foodborne pathogens. No QMRA efforts have been 

applied to Campylobacter in the Australian chicken meat sector. Hence, we present a QMRA 

model of human campylobacteriosis related to the occurrence of cross-contamination while 

handling raw chicken meat in Western Australia (WA). This work fills a gap in Campylobacter 

risk characterization in Australia and enables benchmarking against risk assessments undertaken 

in other countries. The model predicted the average probability of the occurrence of illness per 
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serving of salad that became cross-contaminated from being handled following the handling of 

fresh chicken meat as 7.0 × 10
-4

 (90% Confidence Interval [CI] ± 4.7 × 10
-5

). The risk 

assessment model was utilized to estimate the likely impact of intervention scenarios on the 

predicted probability of illness (campylobacteriosis) per serving. Predicted relative risk 

reductions following changes in the retail prevalence of Campylobacter were proportional to the 

percentage desired in the reduction scenario; a target that is aiming to reduce the current baseline 

prevalence of Campylobacter in retail chicken by 30% is predicted to yield approximately 30% 

relative risk reduction. A simulated one-log reduction in the mean concentration of 

Campylobacter is anticipated to generate approximately 20% relative risk reductions. Relative 

risk reduction induced by a one-log decrease in the mean was equally achieved when the tail of 

the input distribution was affected—that is, by a change (one-log reduction) in the standard 

deviation of the baseline Campylobacter concentration. A scenario assuming a 5% point 

decrease in baseline probability of cross-contamination at the consumer phase would yield 

relative risk reductions of 14%, which is as effective as the impact of a strategic target of 10% 

reduction in the retail prevalence of Campylobacter. In conclusion, the present model simulates 

the probability of illness predicted for an average individual who consumes salad that has been 

cross-contaminated with Campylobacter from retail chicken meat in WA. Despite some 

uncertainties, this is the first attempt to utilize the QMRA approach as a scientific basis to guide 

risk managers toward implementing strategies to reduce the risk of human campylobacteriosis in 

an Australian context.  

Keywords: Campylobacter; Public Health; Risk mitigation; Western Australia 

1. INTRODUCTION   

Campylobacter spp. are a common cause of bacterial gastroenteritis in humans. A few 

hundred of these bacteria can induce clinical gastrointestinal symptoms. Infection is generally 

manifested as self-limiting diarrhea that lasts three to five days, although, in some cases, 

infection may progress to bloody diarrhea and pose life-threatening consequences (Hansson et 

al., 2018). Extensive research in some countries has identified that cross-contamination occurring 
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while handling fresh (rather than frozen) broiler chickens is a significant source of 

Campylobacter infection (Boysen et al., 2014; Havelaar et al., 2007; Mughini Gras et al., 2012). 

Compared to cross-contamination, several studies have indicated that undercooking plays a 

limited role in the foodborne exposure to Campylobacter (Al-Sakkaf, 2015; Luber, 2009). In the 

context of Campylobacter and chicken, cross-contamination in the kitchen environment may 

occur directly from fresh meat either on cooked meal components or indirectly via hands, cutting 

boards, and/or knives (Luber et al., 2006).  

A study in Australia reported that 75% (95% confidence interval [CI] 67%–83%) of cases 

of Campylobacter infection might be due to foodborne transmission (Hall et al., 2005). Stafford 

et al. (2008) estimated that the foodborne risk factor with the highest attributable risk to 

Campylobacter infection in persons >or=5 years of age in Australia was cooked chicken, with an 

estimated median of 21.2%; followed by undercooked chicken, with an estimated median of 

8.1%. Despite its significance as a critical food safety challenge, there have been few published 

reports on Campylobacter in the Australian poultry meat in the past ten years. Campylobacter 

was found in 87.8% and 93.2% of surveyed chicken portions and carcasses sampled at the retail 

level in New South Wales and South Australia, respectively (2005 to 2006) (Pointon et al., 

2008). A national survey coordinated by Food Standards Australia New Zealand (FSANZ) 

indicated that, in Western Australia and New South Wales, the Campylobacter concentration of 

positive whole chicken carcasses sampled at the end of abattoir processing (rather than retail) 

was, on average, 0.70 log10 CFU/cm
2
. In Queensland, where only counts >100 CFU/ml were 

quantified, the mean concentration was 1.45 log10 CFU/cm
2
 (FSANZ, 2010). Nationally 

representative quantitative data based on the enumeration of Campylobacter per gram of chicken 

are insufficient in Australia. Such data are required to fill a gap in the assessment of the 
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microbial safety of Australian poultry and could be used as an input for further development of 

Quantitative Microbial Risk Assessment (QMRA) of Campylobacter in Australia.  

QMRA is a valuable tool for the characterization of complex exposure pathways that 

contribute to adverse human health outcomes (Nauta et al., 2009). Hurdles concerning 

harmonization of data collection and the uncertainty about contamination levels in poultry across 

the different states are among several factors challenging the development of a “national” risk 

assessment approach for Campylobacter in chicken in Australia (Pointon et al., 2008). The 

Australian chicken meat industry is predominantly vertically integrated; with the two largest 

integrated chicken companies supply more than 70% of Australia’s meat chickens (ACMF, 

2017). The objective of this study is to predict, using a Monte-Carlo simulation model, the risk 

of illness per serving due to the transfer of Campylobacter as a result of cross-contamination 

from contaminated chicken to other foods (e.g., salad) in an Australian home kitchen context. 

This result is used as baseline to assess and compare the relative effects of interventions on the 

public health risk. Scenarios are presented to examine the impact of specific intervention 

strategies on the probability of illness per serving. The model was developed using baseline 

microbiological data generated explicitly in Western Australia (WA), a state occupying the entire 

western third of Australia. In 2016, WA produced 110-115,000 tons of poultry meat, 19% of 

which were interstate imports (Western Australian Agriculture Authority, 2017). This QMRA 

model provides information to risk managers in the Australian chicken meat industry and 

controlling authorities to help with future refining and benchmarking of effective strategies to 

reduce the risk of human campylobacteriosis. 

2. MATERIALS AND METHODS  
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2.1. The scope of the QMRA model – pathogen/food pathway and setting 

The considered pathogens refer to thermophilic species of Campylobacter. In Australia, 

the dominating species isolated from chicken meat are C. jejuni and C. coli (Pointon et al., 

2008). The food source in this model was fresh (rather than frozen) chicken meat (whole or in 

parts) presented for retail consumption in WA. The frozen chicken meat was not included 

because freezing poultry for commercial and retail distribution has been associated with low 

Campylobacter exposure risk (Hansson et al., 2018). The food pathway was simulated using a 

modular process model approach  (Figure 1), which focuses on quantifying Campylobacter 

exposure from retail through to human consumption as a function of consumer handling behavior 

during meal preparation (Nauta and Christensen, 2011). We did not include the effects of 

transportation to and storage within the kitchen prior to food preparation on the contamination 

levels of chicken meat because Campylobacter spp. do not multiply at room temperature and 

lower (Hansson et al., 2018). Given that chicken meat is typically cooked prior to consumption, 

direct exposure to undercooked chicken meat is assumed to be less critical than is exposure by 

cross-contamination (Havelaar et al., 2007; Luber et al., 2006); hence, we did not include 

exposure due to undercooking in the present model. Cross-contamination is defined as the 

transmission of pathogens from naturally contaminated sources to the finished product. 

A cross-contamination pathway was considered in our QMRA, based on a quantitative 

model described by Kusumaningrum et al. (2004) for simulating transfer from contaminated 

chicken carcasses via unwashed surfaces to salad vegetables in the domestic kitchen. This model 

provided the full mathematical details for conversion of the level of contamination on cucumber 

slices (expressed in CFU per square centimeter) based on the consumption size (expressed in a 

weight unit (grams)) (Kusumaningrum et al., 2004). Cucumber slices were used as a 
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model/surrogate for salad vegetables (Figure 1). This route was chosen because cucumber is a 

typical salad component that is frequently cut to small pieces or slices. The likelihood of 

cucumber slices become cross-contaminated with Campylobacter from fresh chicken exists if 

both were prepared using unwashed common surfaces (kitchen bench or cutting board) or knives. 

It should be noted that the simulated scenario adopted in the present study is specific to the 

chicken cross-contaminated cucumber that is included in the salad. Other routes of cross-

contamination (e.g., fingers contamination) might vary; hence, the results based on this 

cucumber-specific model might not be generalized for all pathways of cross-contamination 

occurring while handling raw fresh chicken. 

2.2. Exposure assessment 

2.2.1. Retail 

The model was developed using inputs data from a baseline microbiological survey on 

Campylobacter in WA retail. Our group purposively designed that survey with the aim of 

generating data to feed the future development of QMRA; the full details of this survey are 

published elsewhere (Habib et al., 2019). Raw poultry products (n = 315) were purchased for a 

year (2016–2017) from retail supermarkets in metropolitan Perth, WA. Campylobacter 

concentration was determined by a direct plating method in all samples, whereas in 59.0% 

(186/315) of the samples, testing was done using enrichment culture in conjunction with direct 

plating, to reduce uncertainty arising from testing methods misclassification (Habib et al., 2019).  

The prevalence at retail (Pret) was 53.7% (100 Campylobacter-positive samples out of 186 total 

samples tested) and was modeled using a Beta distribution (Table 1). Using a standard direct 

plating method, Campylobacter were recovered from almost 23.8% [75/315] of the retail chicken 
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meat samples; the results were used to feed into the QMRA model. The quantification (N ret) 

input variable (Table 1) was the 10-based log of the concentration at retail (log N ret) which is 

modeled using a Normal distribution with mean=1.82 log CFU/g and standard deviation (SD)= 

2.26 (Habib et al., 2019). The number of Campylobacter (CFU) on one serving of consumed 

meat, Nserving, is defined by a Poisson distribution (N serving ∼ Poisson (N ret × Wserving)) (Table 1); 

where ∼ represents “is distributed from,” and Wserving represents the serving sizes (Nauta and 

Christensen, 2011). Wserving refers to the typical chicken portion size consumed by Australian 

adults based on the 2011–12 National Nutrition and Physical Activity Survey (NNPAS), where a 

portion was defined as the amount of foods consumed per eating occasion (Zheng et al., 2016). 

Based on NNPAS data, chicken serving sizes in the present model are sampled from a Log-

Normal distribution with mean=142 g, SD=127, and the distribution was truncated assuming a 

maximum chicken portion size of 1 kg [such high limit has a very low probability] (Neves et al., 

2018). The retail module was used to estimate the number of organisms that “arrive in the 

kitchen” and hence are potentially transferred via cross-contamination.    

2.2.2. Consumer handling and meal preparation 

For the consumer phase module, we utilized the quantitative Campylobacter cross-

contamination model (from retail chicken to salad vegetables, e.g., cucumber slices) of 

Kusumaningrum et al. (2004). The prevalence of salad vegetable contamination (P v) and an 

estimation of the level of that contamination (C v) on salad serving in relation to CFU per square 

centimeter (cm
2
) of the chicken (surface concentration) are determined as follows:  

P v = Pret × P cross      

C v = Nserving × T1/100 × T2/100    
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Where P ret = a probability distribution describing the prevalence of contaminated chicken meat 

at retail; P cross = a probability distribution describing the frequency of cross-contamination in 

domestic kitchens; N serving = the level of microorganisms on contaminated chicken carcasses 

(CFU/cm
2
 carcass); T1 = the transfer rate (in %) from chicken risk serving to surfaces; and T2 = 

the transfer rate (in %) from surfaces to salad vegetables. The inputs describing the transfer rates 

for Campylobacter, (T1) and (T2), were included in the model using log-normal and logistic 

probability distributions (Table 1), respectively, based on distribution parameters described in 

the QMRA model of Signorini et al. (2013); these parameters are based on data of experimental 

cross-contamination using “naturally contaminated” chicken meat rather than spiked samples 

(Luber et al., 2006). Realizing that only the cells that are present on the outer layer of the meat 

can be transferred (initiate the cross-contamination process), the variable Wx serving was included 

in the model to mind the number of cells on outer contact side (=15%) of chicken serving that 

can give rise to transmission of the pathogen (Table 1). The fixed value of the variable Wx serving 

was driven from a risk assessment study by Uyttendaele et al. (2006), based on their calculations 

of the outer contact side of chicken meat preparation that can give rise to transmission of the 

Campylobacter. 

A distribution describing the frequency of cross-contamination in domestic kitchens, P 

cross, was estimated based on a “national” Australian food safety telephone survey that involved a 

sample of 1,203 randomly selected Australian households (Jay et al., 1999). The study indicated 

that the percentage range of incorrect responses to hypothetical food preparation situations was 

18.0 to 81.4%. For the survey question “when you cut raw vegetables or any raw produce and 

need to use that surface again for something you are not going to cook (or something that has 

already been cooked)”, an unsafe food handling practice (reuse the surface as is, or wipe the 
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surface with a damp cloth) that would lead to cross-contamination of the ready-to-eat food with 

microorganisms from the raw food would be performed by 38.1% of respondents. Hence, P cross 

was modeled using a Pert distribution with a minimum of 18%, a mode of 38% and a maximum 

of 81%. Studies on the Australian consumers’ handling and cooking raw poultry are scarce. We 

do acknowledge that the study of Jay et al. (1999) was undertaken in Australia almost twenty 

years ago; however, the Pert distribution constructed based on this study is still comparable 

(around the mode value (38%)) with results from other, more recent, studies in neighboring New 

Zealand, as well as from different industrialized countries. For instance, a New Zealand study 

(2007) has indicated that 28-41% of consumers allow cross-contamination to occur in their 

kitchen (Gilbert et al., 2007). A study in the U.S. reported that nearly 70% of adult grocery 

shoppers washing or rinsing raw poultry before cooking it, a potentially unsafe practice because 

"splashing" of contaminated water may lead to the transfer of pathogens (e.g., Campylobacter) to 

other kitchen surfaces (Kosa et al., 2015).     

The number of Campylobacter per serving of salad (C e) was calculated by multiplying 

the level of contamination on cucumber slices (C v) (CFU per cm
2
) by the cucumber serving size 

(cm
2
) (Kusumaningrum et al., 2004). The variability in serving weight of cucumber was modeled 

using a Log-Normal distribution (with mean=26 g, SD=12g), based on the typical portion size 

consumed by Australian adults as indicated in the 2011–12 NNPAS (Zheng et al., 2016). 

Because the consumption size was expressed in a weight unit (grams) while the level of 

contamination on cucumber slices was expressed in CFU per square centimeter, the weight of the 

serving size was transformed to square centimeters using a transformation formula described by 

Kusumaningrum et al. (2004): 

T W-S (cm
2
 serving) = (wconsumption/wslice) × πd

2
/4 
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Where wconsumption= the weight of vegetable consumption (grams); wslice= the weight of a 

cucumber slice with an approximate thickness of 0.3 cm (grams); and d= the diameter of the 

cucumber slice (cm). The wslice and d values of the cucumber slices were 6.4±0.8 g, and 4.0±0.2 

cm, respectively as measured experimentally (Kusumaningrum et al., 2004). 

2.3. Hazard characterization 

The dose-response is the relationship between the ingested levels of Campylobacter (C e) 

per salad serving and the probabilities of consequent human campylobacteriosis (probability of 

infection (P inf), and the probability of illness given (conditional probability) infected (P ill)). 

First, the probability of illness per Campylobacter dose (P dr) in a salad serving was estimated 

using the Beta-Poisson Model developed by the Joint FAO/WHO activities on Risk Assessment 

of Microbiological hazards in food (FAO/WHO, 2009). A Beta-Poisson model was adjusted to 

estimate the probability of infection per one bacterium (P inf(1)) for an individual consuming a 

meal with a specific dose (C e) (Lindqvist and Lindblad, 2008; Signorini et al., 2013). 

In the presented model, exposure is a function of the proportion of meals where fresh 

chicken meats are prepared along with salads. Thus, with the probability of illness per serving of 

salad (P ill-riskserv) was estimated by multiplying the predicted P dr value by the probability that 

salad vegetables are contaminated (P v) (Kusumaningrum et al., 2004; Signorini et al., 2013). 

2.4. Simulation setting and software 

The model was created in Microsoft Excel 2010 with the add-on package @Risk (version 

7.5, Palisade Corporation, New York, USA). A Monte-Carlo simulation with Latin-Hypercube 

sampling was carried out to simulate the distribution of contamination probabilities and levels of 

Campylobacter spp. in salad vegetables as a result of cross-contamination. The predicted 

probability of illness per salad serving (P ill-riskserv) was estimated through 50,000 iterations. Each 
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iteration predicts a probability of illness for a random scenario of cross-contamination during 

consumer handling and meal preparation. The number of iterations provided adequate 

convergence (<1% change in the simulation statistics) (Cassin et al., 1998). A sensitivity analysis 

was conducted, using the Spearman rank correlation coefficient (r), to determine the impact of 

each input variable and the uncertain variables on the predicted model output (P ill-riskserv). The 

closer the value of r is to 1, the higher the correlation, and thus the more important the factor is 

for the variability in the process (Busschaert et al., 2011).  

2.5. What-if scenarios 

The risk assessment model was utilized to estimate the likely impact of intervention 

strategies scenarios on the probability of illness (campylobacteriosis) per serving of salad cross-

contaminated after handling of fresh chicken meat. Guided by analyzing the model sensitivity 

analysis, eight scenarios for reducing the predicted probability of illness were examined, as 

presented in Table 2. These scenarios are aiming at: (i) reducing the prevalence of 

Campylobacter-positive fresh retail chicken meat, (ii) reducing the concentration of 

Campylobacter spp. on retail chickens, and (iii) consumer campaign aiming toward improving 

the range of incorrect hypothetical food preparation situations leading to cross-contamination. 

Note that the intervention strategies scenarios (i) and (ii) are assumed to be implemented 

somewhere along the production chain, at primary production or during industrial processing. 

Hence, they do not affect the consumer phase model itself. The ratio of the predicted value in an 

intervention scenario to that in the baseline scenario is used to measure the expected 

effectiveness of the intervention. Thus, relative risk reductions were calculated for the what-if-

scenarios, for both models before and after an intervention, using 50,000 iterations in @Risk. 
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Relative risk reduction was presented as one minus the quotient of Campylobacter probabilities 

of illness after implementation of the control measure and before (Nauta et al., 2007). 

3. RESULTS 

An intermediate prediction of the model, the concentration of Campylobacter in a cross-

contaminated salad serving after handling of fresh chicken meat, is given in Fig. 2 [A]. The 

predicted average log concentration of total Campylobacter per serving of salad (C e) was 2.76 

log10 CFU/serving (SD= 1.50 log10). The average prevalence of such contaminated salad servings 

(P v) was predicted by the model to be 22.4% (Fig. 2[B]). 

Fig. 3 shows the simulated cumulative density function of the probability of illness per 

serving of cross-contaminated salad after handling of fresh chicken meat. Each iteration 

predicted a probability of illness for a single serving. The presented Monte-Carlo simulation 

summarizes the results from 50,000 iterations, including both the variability between servings 

and the uncertainty about the estimate. The range of this probability extended from 10
-14

 to 10
-3

, 

with an average of 7.0 × 10
-4

 (the 90% Confidence Interval (CI) from @ risk is reported as ± 4.7 

× 10
-5

, although the value of skewness= 5.0 indicates that CI is not symmetrical around the 

average estimate). The distribution in Fig. 3 indicates the central tendency (50%) of the 

distribution at risk 10
-4

. Log probability of illness was chosen as a convenient representation of 

the probability of risk, which is so concentrated near zero that it was not useful to display on a 

linear scale. All of the following results related to sensitivity analysis and relative risk reduction 

estimation were done utilizing the simulated value of the probability of illness (on a linear scale 

and not log probability of illness).    
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The sensitivity analysis indicated that the predicted probability of illness per salad 

serving cross-contaminated with Campylobacter after handling of fresh chicken meat was most 

sensitive (r= 0.82) to the input distribution (in the dose-response model) describing the 

probability of infection from an ingested Campylobacter (Fig. 4). Other factors included; 

probability of cross-contamination in domestic kitchens, number of Campylobacter in retail fresh 

chicken meat, probability of illness given infection, variability in serving weight of cucumber, 

transfer rates from surfaces to salad vegetables, prevalence of Campylobacter in retail fresh 

chicken meat, and transfer rates from chicken serving to surfaces (Fig. 4). 

The model was used to evaluate the effect that a change in an assumption will have on 

the predicted risk to human health. Figure 5 presents a comparison of the efficacy of the eight 

(hypothetical) scenarios (Table 2). The per-serving probability of illness under the original 

model was considered the baseline and the effectiveness of the various strategies was expressed 

as the predicted relative risk reductions. As shown in Fig. 5, predicted relative risk reductions 

after a change in prevalence were proportional to the percentage of the desired percentage of 

reduction; for instance, a strategic target aiming to reduce the current baseline prevalence of 

Campylobacter at retail chicken by 30% is predicted to yield around 30% relative risk reduction. 

Considering quantitatively set targets; a one-log decrease in the mean concentrations of 

Campylobacter, which is equivalent to a 10-fold reduction of the concentrations, is predicted to 

yield around 20% relative risk reductions (Fig. 5). Relative risk reduction induced by a one-log 

decline in the mean was equally achieved when the tail of the input distribution is affected—that 

is, by a change (one-log reduction) in the standard deviation of the baseline Campylobacter 

concentration (Fig. 5). The previously described intervention strategies were assumed to be 
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implemented somewhere along the production chain, at primary production or during industrial 

processing.  

A consumer concerned intervention approach was also evaluated. A scenario assuming a 

5% point reduction (from 38% to 33%, which is relatively a 13% decrease) in the probability of 

cross-contamination, compared to the baseline model, would yield relative risk reductions of 

14% (Fig. 5); this was almost as effective as the impact of a strategic target of 10% reduction in 

Campylobacter prevalence at the retail chicken (going from 100/186 to 90/186; which is equal to 

only a 5.4% point reduction). 

4. DISCUSSION 

The model described in this research predicted the distribution of probability of illness 

attributable to Campylobacter cross-contamination during the handling of fresh chicken meat in 

an Australian context (WA). The model predicted risk by integrating current microbial food 

safety data, evidence from relevant literature, and techniques of QMRA. The model utilized 

probability distributions to more effectively describe variability and uncertainty in the estimates 

of model parameters (Montville and Schaffner, 2005). The presented baseline risk model is a 

representation of “the most likely situation” based on dedicated microbiological survey data on 

Campylobacter contamination in retail chicken meat in WA between 2016 and 2017 (Habib et 

al., 2019). 

A QMRA approach for Campylobacter in chicken meat could be much needed now more 

than ever in the Australian context. Australia has one of the highest rates of Campylobacter 

infection in the developed world; being around ten times that of the United States and double that 

seen in the European Union (Moffatt et al., 2017). In April 2017, the Australia and New Zealand 
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Ministerial Forum on Food Regulation identified the development of a strategy to reduce 

foodborne illness, mainly related to Campylobacter in Australia, noting New Zealand has an 

existing Campylobacter strategy, as a priority area for 2017–2021 (Anonymous, 2017). To meet 

such evolving food safety priority in Australia, there is a need to develop a science-based, 

objective-oriented strategy in collaboration between controlling authorities and industry, with 

input from research and community. To this end, QMRA has emerged as a useful tool in 

enabling food safety risk manager to consider and compare management and control options 

(Lammerding and Paoli., 1997). Together with other means, for example, risk ranking, 

epidemiology (e.g., source-attribution) and economic analysis, QMRA can provide a sound 

scientific foundation for “risk-based” management systems and control measures (Havelaar et 

al., 2007). Around twenty QMRAs have been published for Campylobacter in broiler chickens 

over the past two decades by some independent researchers and national food safety agencies 

worldwide (Chapman et al., 2016; Nauta et al., 2009). However, there are no published models 

for Campylobacter risk assessment in chicken meat in Australia. Thus, the present work fills a 

gap in the quantitative understanding of Campylobacter food safety risk in the Australian context 

and enables benchmarking against risk assessments undertaken in other countries. The exact 

numeric results of the presented model are interesting to compare with different model-based 

approaches; however, it should not be considered as the ultimate output, giving that several 

simplifications and assumptions were necessary for the risk assessment. We believe that the 

results from the present model are best suited if considered as baseline incidences that can be 

used to assess and compare the relative effects of interventions on the public health risk. 

In the present risk assessment, the predicted probability of human campylobacteriosis per 

serving (average of 7.0 × 10
-4

) was in agreement with the probability reported in the model of 
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Uyttendaele et al. (2006) for the risk assessment of Campylobacter cross-contamination (and 

undercooking) during handling chicken meat preparations in Belgium, which was estimated at 

7.84 × 10
-4

. Also, our result is in line with the average probability (3.32 × 10
-4

)
 
predicted by 

Signorini et al. (2013) in a model of human campylobacteriosis through consumption of salad 

cross-contaminated with Campylobacter from broiler meat in Argentina. The later model 

predicted the prevalence of salad contaminated with Campylobacter to be 32.9%, compared to 

22.4% as predicted by our model in Western Australia (Fig. 2[B]). The predicted probability of 

illness should be interpreted carefully. A particular cross-contaminated serving may pose no risk 

or a very high risk to an individual considering the process by which it arrived on the plate of the 

consumer. Some individuals may always experience a more upper or lower risk, due to their age, 

particular immune-competence, hygienic practices during meal preparation, and eating habits 

(Cassin et al., 1998). With this regard, it should be noted that Australians consumption pattern of 

chicken meat is way more than a lot of other nations; the per-capita annual consumption of 

chicken meat was 44.5 kilograms per person in 2017, setting Australians as the fourth-highest 

ranked chicken consumers in the world, behind Israel, United States, and Saudi Arabia (OECD, 

2017). Considering such high consumption pattern, along with the well-established role of 

broiler chickens as one of the primary sources of campylobacteriosis (Kaakoush et al., 2015), it 

is not a total surprise that Australia reports a high number of human campylobacteriosis. In 2016, 

the reported (all sources) Australian national notification rate of campylobacteriosis was 99.9 

cases per 100,000 population, compared to 133.2 reported cases per 100,000 population in WA 

(Zheng et al., 2016). Because the estimation of risk was not the ultimate purpose of our QMRA, 

we did not include analyses necessary for the evaluation of predicted annual risk or number of 

human cases. Thus, the probability of illness predicted by the present model surrogates the risk 
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experienced by an average person, consuming salad cross-contaminated with Campylobacter 

from retail chicken meat in WA. 

The presented QMRA was developed to provide a mean to analyze the relationship 

between Campylobacter probability of illness and possible intervention scenarios. A risk 

manager is likely to be more interested in the sensitivity analysis (Fig. 4) and comparison of 

intervention strategies (Fig. 5), than the risk distribution itself (Fig. 3). Sensitivity analysis of the 

model input parameters identified several factors which contribute significant uncertainty to the 

‘total uncertainty’ of the risk of illness prediction. As indicated in Figure 4, a group of these 

factors is related to the dose-response relationship (probability of illness per a consumed 

Campylobacter, and the probability of illness given infection). Similar to our finding, inputs 

related to the dose-response relationship were noted as the most important predictive factors of 

the estimated probability of human campylobacteriosis in the QMRA models of Lindqvist and 

Lindblad (2008) in Sweden, Signorini et al. (2013) in Argentina, and Uyttendaele et al. (2006) in 

Belgium, using the same dose-response model that we applied in the present study. The 

uncertainty arising from the single-hit assumption in the Beta-Poisson dose-response relationship 

is an inherent caveat in Campylobacter risk assessment (Nauta et al., 2007). Data on the infective 

dose of Campylobacter have been widely assumed based on a single human feeding study, which 

unfortunately provides incomplete and biased information on the dose-response relationship 

(Black et al., 1998). Such methodological caveat is a well-recognized knowledge gap, as noted 

by several (inter)national Campylobacter risk assessment studies (Chapman et al., 2016).   

In addition to the inherent methodological issue associated with Campylobacter dose-

response relationship, the sensitivity analysis identified several factors related to the consumer 

phase. The probability of cross-contamination in domestic kitchens was on top of such 
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consumer-related predictive factors (Fig. 4). Some studies emphasized the importance of cross-

contamination, compared to undercooking, as the main kitchen route by which humans are 

exposed to the pathogen (Al-Sakkaf, 2015; Fischer et al., 2007). Since Campylobacter is heat-

sensitive, it poorly survives the heat treatment of typical cooking conditions of chicken meat (Al-

Sakkaf and Jones, 2012). Data on chicken meat cooking preferences are scarce in Australia. 

However, a survey of domestic food handling practices in Australia’s neighbor New Zealand 

indicated that none of the respondents (n= 128) preferred raw and rare cooking conditions of 

chicken roast (Gilbert et al., 2007); supporting our model assumption not to include 

undercooking given its neglected role compared to cross-contamination. In domestic kitchen, 

cross-contamination could support the transfer of Campylobacter from fresh chicken to ready-to-

eat foods and other surfaces, especially in a setting where there is a relatively high chance of 

preparing chicken before salad, combined with lower chance of washing hands and cutting board 

(Fischer et al., 2007; Luber et al., 2006). A study by Jay et al. (1999) indicated that almost 25% 

of 1,203 randomly selected Australian households respondents failed to identify that washing 

hands before handling food and during food preparation as an important factor in reducing the 

risk of cross-contamination and possible foodborne illness. The work of Jay et al. (1999) 

concluded that “although Australians appear to understand that the home kitchen could be a 

source of foodborne disease, they generally lack the knowledge to ensure that food preparation 

in the home is performed so that the risk of illness is minimized”. Hence, available Australian 

data on consumer food safety practices combined with our sensitivity analysis of the key 

predictive factors in our model, demonstrate the need for considering consumer education 

regarding safe food handling practices and its possible impact on reducing the probability of 

cross-contamination in domestic kitchens.  
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To guide the selection of a risk mitigation strategy, possible interventions may be 

deduced from variables that possess predictive contributions to risk (Cassin et al., 1998). The 

probability of cross-contamination in domestic kitchens may theoretically be a controllable 

variable through investment in consumer awareness and kitchen hygiene campaigns (Milton and 

Mullan, 2012). Sensitivity analysis also points to other consumer-related factors (Fig. 4), as 

transfer rates from chicken to surfaces and from surfaces to salad will consequently be affected 

by the controlling of cross-contamination—given that the transfer of Campylobacter in a kitchen 

is conditional to the initial occurrence of a cross-contamination incidence. Mylius et al. (2007) 

identified that the risk of Campylobacter infection is proportional to the probability of preparing 

chicken prior to preparing salad and is negatively related to the probability of washing hands and 

using a cutting board. The transfer of Campylobacter throughout the kitchen environment may 

be managed by enhancing food safety culture among food preparers—for instance, washing 

hands before, during, and after meal preparation, separating between fresh chicken meat and 

ready-to-eat foods, and washing surfaces and cutting boards (Al-Sakkaf, 2015; Havelaar et al., 

2007; Jay et al., 1999; Milton and Mullan, 2012). 

Aside from methodological and consumer-related factors discussed above, sensitivity 

analysis (Fig. 4) also pointed to the impact of both concentration and prevalence of 

Campylobacter in retail fresh chicken meat on driving the estimate of the probability of illness. 

Reduction in Campylobacter prevalence in retail chicken requires interventions implementation 

along the production chain, at primary production or during industrial processing (Hansson et al., 

2018; Havelaar et al., 2007; Wagenaar et al., 2013). In our model, the number of Campylobacter 

in retail fresh chicken was ranked third out of the eight predictive factors highlighted in the 

sensitivity analysis (Fig. 4). The importance of the number of Campylobacter in retail was more 
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evident compared to the predictive impact of Campylobacter prevalence (Fig. 4). This finding, 

stresses the importance of evaluating the applicability and implications of mitigation strategies 

aiming toward reducing the numbers (mean and/or standard deviation) of Campylobacter in 

retail chicken meat. Chicken meat carrying low numbers of Campylobacter pose a lower risk of 

human infection than those carrying a higher concentration (Duarte and Nauta, 2015). A Danish 

risk assessment estimated that a reduction of 2 log10 CFU/g would reduce the human incidence 

of infection with Campylobacter 30 folds (Rosenquist et al., 2003). Thus, investing in refining a 

quantitative Campylobacter monitoring and process hygiene target could help the Australian 

chicken meat industry in prioritizing risk-based corrective actions, as well as tracing sources of 

unacceptable contamination. 

Guided by sensitivity analysis, we simulated some possible risk mitigation scenarios, 

demonstrating the possible application of QMRA for decision-making (Table 2). Using this 

approach for comparison of possible options de-emphasizes the importance of the actual risk 

estimate, and emphasizes the relative risk estimates under possible intervention options (Cassin 

et al., 1998; Signorini et al., 2013). Thus, an advantage of such approach is that the uncertainty 

of the relative risk is expected to be substantially smaller than the estimate of the risk itself 

because the uncertainty in the numerator and the denominator may cancel out (Nauta et al., 

2007). 

Our results show that the differences between the predicted relative risk reductions 

depend on the parameter targeted by the mitigation scenario (Fig.5). The reader should keep in 

mind that the reported risk reduction values (Fig. 5) should not be generalized to all chicken-

attributed cases (contracted through other ways and settings). Results of the mitigation scenarios 

in the present work are specific to the risk of infection from chicken cross-contaminated 
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cucumber that is included in the salad. Relative risk reductions after a change in prevalence (with 

the distribution of concentration unaltered) was found to be proportional to the percentage of the 

desired reduction in Campylobacter prevalence in retail chicken meat (Fig. 5); similar to what 

was noted by Nauta and Christensen (2011) comparing seven different published consumer 

phase models. If the mitigation strategy changes the distribution of concentrations, the models 

show variable risk reduction rates (Fig. 5). Our result comes to concordance with conclusions 

from various researchers confirming the importance of the tail of the distribution of 

Campylobacter concentrations, which is driven by the proportion of highly contaminated chicken 

meats (Busschaert et al., 2010; Busschaert et al., 2011; Nauta et al., 2012). Our recent baseline 

microbiological survey on Campylobacter counts in retail chicken (n=315) in WA revealed that 

76.2% of the chicken portions and carcasses were contaminated with <10 CFU/g, and 18.7% of 

the samples were contaminated with ≥ 100 CFU/g (Habib et al., 2019). In Australia, the use of 

chlorine in the chiller water during poultry processing is a very well established control point; 

poultry processing establishments are commonly multistage counterflow with the use of chlorine 

at a level up to 5 ppm of free available chlorine (Duffy et al., 2014).  It has been proposed by 

Nauta and Christensen (2011) that most practical control measures targeting Campylobacter 

concentrations during industrial poultry processing, like the use of chlorine in the chiller water, 

are believed to affect the mean concentrations and not the tail of the distribution. However, it 

could be argued that the use of chlorine, and similar chemical interventions, might “shift” the 

distribution but not the upper percentiles (i.e., stretching of the distribution and hence large SD).  

The probability of cross-contamination in domestic kitchens was on top of the consumer-

related predictive factors indicated by sensitivity analysis of the baseline model (Fig. 4). A 

scenario that assumed a 5% point reduction (theoretical value) in the probability of cross-
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contamination (from 38 to 33%, which is relatively a 13% decrease) in domestic kitchens yielded 

a relative risk reduction similar to that induced by a scenario assumed 10% reduction (going 

from 100/186 (53.7%) to 90/186 (48.3%); which is equal to only a 5.4% point reduction) in the 

prevalence of Campylobacter in retail chicken meat (Fig. 5). Modification of the probability of 

cross-contamination is only possible by changing the behavior of those who prepare the food 

(Havelaar et al., 2007). Several studies have recommended that education is a crucial step in 

preventing foodborne illness in the domestic environment (Al-Sakkaf, 2015; Jay et al., 1997). 

However, few educational or psychosocial interventions have been designed and implemented to 

improve food-safety knowledge, attitudes, and behaviors (Redmond and Griffith, 2006). It is 

important to note that self-report behavior changes should be verified through observational 

studies, which have been known to be a very challenging issue in ascertaining the impact of 

food-safety educational campaigns (Milton and Mullan, 2012).  

In recent years, several countries started to develop their own target-oriented, evidence-

based Campylobacter risk management strategies. The development of such approaches was 

partly based on the utility of QMRA to formulate voluntary targets, process hygiene criteria 

(PHC), performance objectives (POs) or even to set microbiological criteria (MC) for 

Campylobacter in chicken meat. Results from a QMRA study by the European Food Safety 

Authority indicate that adoption of critical limits of 500 or 1000 CFU/g of neck and breast skin, 

of batches of fresh broiler meat, would lead to 90% and 50% reduction of campylobacteriosis 

public health risk, respectively (EFSA, 2011). In the Netherlands, using risk assessment model 

and economic analysis, a PHC has been proposed, with a critical limit set at 1000 CFU/g breast 

skin, with none of 5 samples per batch exceeding this limit (c=0), to reduce the number of human 

cases by 2/3 (RIVM, 2013). In the UK, the Food Standard Agency jointly with the industry set 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

23 
 

together an agreed target to reduce the prevalence of the most contaminated chickens (those with 

>1000 CFU per g chicken skin) to below 10% at the end of the slaughter process (PHE/FSA, 

2017).  In the US, for chicken parts and comminuted chicken, the Federal Food Safety and 

Inspection Service (FSIS) set up a pathogen reduction performance standard for Campylobacter 

designed to reduce human illness. The US Government program “Healthy People 2020” aims to 

reduce human illnesses from Salmonella by 25% and Campylobacter by 33% by the year 2020 

(FSIS, 2015). The above examples demonstrate the utility of risk assessment as a tool that allows 

consideration and allocation of resources to potential risk reduction strategies that may be 

effective. Risk assessment at the same time help with identifying priorities for focused and 

longer-term research to understand the risk better, and intervene for its management. In 

Australia, a PHC was established for Campylobacter in 2016, with a limit <10,000 CFU for 

whole chicken carcass at the end of processing (after final chill and just before to dispatch).  A 

“moving window limit” failure occurs when the log count for seven or more out of 45 samples in 

the moving window are higher than the established limit of <10,000 CFU/carcass (FSANZ, 

2018). This PCH might assist the food operators in verifying that the whole process is under 

control; however, it is not designed to be linked with a targeted reduction in human illness. 

A limitation of the present modeling approach is that it has not yet considered the cost of 

the proposed interventions. Intervention costs must be considered when making policy decisions 

(Havelaar et al., 2007), which we regard as a priority for the next step of model improvement. 

This may be achieved through future consultation with stakeholders along the pre-harvest level, 

production chain, industrial processing, and public health authorities. Another limitation of the 

model is in the uncertainty regarding data on the Australian consumer handling of chicken as 

well as in other practices during food preparation at home. In the present model, the probability 
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estimate of cross-contamination in domestic kitchens was based on a study (Jay et al., 1999) that 

was undertaken nearly twenty years ago. To reduce the overall uncertainty in the present model, 

there exists an urgent need to gather more recent data on chicken meat handling and other 

hygienic practices in modern Australian home kitchens. In addition, there exists a need to 

generate more updated knowledge on food safety behavior, behavioral intention, attitudes, 

knowledge, and microbial transfer data applied to the situation in Australia.  

There is a limited availability of quantitative baseline data on Campylobacter levels in 

chicken meat in WA. In the past ten years, there is only one quantitative baseline survey of 

Campylobacter in WA; this study reported that 18.7% of the tested chicken meat samples were 

contaminated with ≥ 2 log10 CFU/g, and very few samples were contaminated with ≥ 3 log10 

CFU/g (Habib et al., 2019). Gathering more quantitative data on Campylobacter, especially on 

chicken carcasses, is very crucial to describe better the variability in contamination levels in 

Australian context. In future research, given that more baseline data will be generated, it will be 

important to consider the intervention scenario targeting reducing the upper tail of 

Campylobacter counts distribution; the effect of such intervention is expected be more robust 

than the scenarios investigating the effect of modifying only the standard deviation of 

Campylobacter counts. The QMRA procedure is not static because the used data, assumptions, 

and models may be changed when new information (e.g., updated knowledge on consumer 

handling practices) becomes available (Kusumaningrum et al., 2004). A general limitation in the 

QMRA methodology is that this approach may be restrictive primarily when applied to foods 

manufactured in diverse ways and wherein multiple approaches are utilized to manage risks. In 

such cases, the establishment of intermediate targets may be more desirable and more practical 

(FAO/WHO, 2009). 
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5. CONCLUSION  

Despite some uncertainties, this model can be used as a scientific basis by risk managers 

to decide upon strategies to reduce the risk of human campylobacteriosis in WA. Risk 

management does not end with the selection of an appropriate control measure; rather, it must be 

followed up with monitoring activities to determine the level of compliance. Too high a level of 

stringency may reduce the level of compliance, whereas a very high degree of compliance may 

be achieved with an approach that is slightly less stringent. In addition to monitoring the level of 

compliance, risk measures must be monitored for efficacy, and after some time, they must be 

reviewed and revised as needed. In the present work, we have introduced a simple QMRA 

framework that allows the consideration and comparison of such scenarios to facilitate the 

selection of the most appropriate risk management option. 
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Fig. 1. The conceptual framework of the QMRA model of Campylobacter spp. related to cross-

contamination during handling of fresh chicken meat 

          RETAIL 

- Prevalence of Campylobacter in retail fresh chicken meat in WA (P ret) 
- Number of Campylobacter in retail fresh chicken meat in WA (N ret) 
- Serving size of chicken consumed by Australian adults (W serving) 

- Number of Campylobacter in a fresh chicken meat serving (N serving) 

CONSUMER HANDLING AND MEAL PREPARATION 

HAZARD CHARACTERIZATION 

Dose-response relationship: 
- The probability of illness per Campylobacter dose in a salad (P dr) 
- The probability of illness per a contaminated serving of salad cross-
contaminated after handling of fresh chicken meat (P ill-riskserv = P dr x P v) 

 
Relative risk reductions: (1 – intervention model/base model) 
Effect of intervention-based hypothetical targets on P ill-riskserv after 
implementation of the control measure and before (baseline model) 

N serving P ret 

T1  
Transfer rate to surfaces 

T2  
Transfer rate to foods 

 

P cross 
Probability of  

x-contamination 

P v: The prevalence of salad vegetable contamination 

C v: The level of contamination on salads in CFU per square centimeter 

C e: The exposure level per salad (e.g., cucumber slices) serving (CFU) 

Chicken serving 

Surfaces 

Salad serving 
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Table 1 

Parameters and default values applied in the baseline Western Australia QMRA model 

Variable Description Units Distribution/Model 

P ret Prevalence of Campylobacter in retail fresh chicken 

meat in WA 

% Beta (α1; α1); where α1 = positive samples 

+1; α2 = total tested samples - positive 

samples + 1 

RiskBeta (101; 87)  

(Data source: Habib et al., 2019) 

 

N ret-log Number (log-normal, base 10) of Campylobacter in 

retail fresh chicken meat in WA 

Log10 

CFU/g 

Normal (Mean; SD) 

RiskNormal (1.82; 2.26) 

(Data source: Habib et al., 2019) 

 

N ret Number (exact) of Campylobacter in retail fresh chicken 

meat in WA 

 

CFU/g =10^ N ret-log 

W serving The typical serving size of chicken consumed by 

Australian adults 

g LogNormal (Mean; SD) 

RiskLogNormal (142g; 127g) 

Maximum 1000g 

(Data source: Zheng et al., 2016) 

  

Wx serving Number of cells on the outer contact side (=15%) of 

chicken serving that can give rise to transmission of the 

pathogen  

g 15% (Fixed) × W serving  

(Data source: Uyttendaele et al., 2006) 

 

N serving-ex Number (exact) of Campylobacter in a fresh chicken 

meat serving 

 

CFU/serving Nserving ∼ Poisson (N ret × Wx serving) 

N serving-log Number (log-normal, base 10) of Campylobacter in a 

fresh chicken meat serving 

 

Log10 

CFU/serving 

Log10 (N serving-ex) 

P cross The probability of cross-contamination in domestic 

kitchens 

 Pert (Minimum; Most likely; Maximum) 

RiskPert (18%; 38%; 81%) 

(Data source: Jay et al., 1999) 

 

P v The prevalence of salad vegetable contamination 

 

% = Pret × P cross 

T1 The transfer rates from chicken risk serving to surfaces % RisklogNormal (12.7; 7.0087; shift(0.54332)) 

Mean of the distribution = 13% 

(Data source: Signorini et al., 2013) 

 

T2 The transfer rates from surfaces to salad vegetables % =RiskLogistic (-0.42502; 11.002; shift 

(3.8223))  
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Mean of the distribution = 4% 

(Data source: Signorini et al., 2013) 

 

wconsumption The variability in serving weight of cucumber g RiskLogNormal (26; 12) 

(Data source: Kusumaningrum et al., 2004) 

 

Trans W-S The cucumber risk serving size; the weight (grams) of 

the serving size was transformed to cm
2
  

 

cm
2
 serving Formula = (wconsumption/wslice) × πd

2
/4 

C v Estimated levels on contaminated salad  CFU/cm
2
 = Nserving × T1/100 × T2/100 

 

C e Dose of Campylobacter per risk serving of salad 

 

CFU/serving = C v × Trans W-S 

P inf(1) The probability of infection from one Campylobacter — Beta (0.21; 59.95)  

(Data source: FAO/WHO, 2002) 

 

P inf The probability of infection/serving of salad — Beta-Poisson Model  

1-(1- P inf(1))^ C e  

(Data source: FAO/WHO, 2002) 

 

P ill | inf The probability of illness given infection (conditional) — RiskBeta (30, 61) 

(Data source: Black et al.,1988) 

 

P dr The probability of illness per serving of contaminated 

salad  

 

— = P inf × P ill | inf 

P ill-riskserv The probability of illness per serving of salad cross-

contaminated after handling of fresh chicken meat 

— = P dr× P v 
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Fig.2. Predicted [A] concentration (log10 CFU) of Campylobacter in a serving of cross-contaminated 

salad after handling of fresh chicken meat (C e); and, [B] prevalence of contaminated salad servings (P v)   

   

[A] 
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Fig. 3. Cumulative ascending distribution for the log probability of illness predicted for Campylobacter 

consumed in a serving of cross-contaminated salad after handling of fresh chicken meat 
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Table 2 

Evaluated Campylobacter risk mitigation strategies and hypothetical targets compared to the baseline 

model and the associated new input distribution assumptions 

Level Strategy Baseline distribution Scenario/Hypothetical target 

Retail Reduction of the prevalence of 

Campylobacter in retail fresh chicken meat 

RiskBeta  

(101; 87) 

RP10%; 10% prevalence reduction 

=RiskBeta((90+1),(186-90+1)) 

RP20%; 20% prevalence reduction 

=RiskBeta((80+1),(186-80+1)) 

RP30%; 30% prevalence reduction 

=RiskBeta((70+1),(186-70+1)) 

 

Reduction of the mean log concentration of 

Campylobacter in retail fresh chicken meat 

RiskNormal  

(1.82; 2.26) 

RM0.5; Mean log, 0.5 log unit lower 

RM1.0; Mean log, 1 log unit lower 

RS0.5: SD, 0.5 log unit lower 

RS1.0: SD, 1 log unit lower  

 

Consumer Consumer campaign aiming at improving 

the probability of cross-contamination in 

domestic kitchens 

RiskPert  

(18%; 38%; 81%) 

Hygiene 5%:*  

RiskPert (13%, 33%, 75%); Assuming 

~ 5% point decrease in the probability 

of cross-contamination in domestic 

kitchens. 

* This scenario implies a 5% point decrease (the value of the mean goes from 38% to 33%, which is relatively a 13% decrease).  
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Fig. 4. Sensitivity analysis of the output variable probability of illness predicted for Campylobacter 

consumed in a serving of cross-contaminated salad after handling of fresh chicken meat 
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Fig. 5. Relative risk reduction in the probability of illness (campylobacteriosis) per a serving of cross-

contaminated salad after handling of fresh chicken meat. The different scenarios reflect the effect of 

intervention-based hypothetical targets on P ill-riskserv after implementation of the control measure and 

before (baseline model).    
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HIGHLIGHTS 

- The first published QMRA model for Campylobacter in Australian chicken meat 

- The model predicts the probability of illness per serving of salad cross-contaminated after 

handling chicken 

- The model was utilized to estimate the likely impact of some intervention scenarios 

- The present QMRA is presented to help risk managers in deciding strategies to reduce 

campylobacteriosis 
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