Wijetunge et al. BMC Genomics 2015, 16(Suppl 12):512

http://www.biomedcentral.com/1471-2164/16/512/512
p BMC

Genomics

RESEARCH Open Access

A new peak detection algorithm for MALDI mass
spectrometry data based on a modified
Asymmetric Pseudo-Voigt model

Chalini D Wijetunge'’, Isaam Saeed', Berin A Boughton?, Ute Roessner?, Saman K Halgamuge'

From Joint 26th Genome Informatics Workshop and Asia Pacific Bioinformatics Network (APBioNet) 14th
International Conference on Bioinformatics (GIW/InCoB2015)
Tokyo, Japan. 9-11 September 2015

Abstract

Background: Mass Spectrometry (MS) is a ubiquitous analytical tool in biological research and is used to measure
the mass-to-charge ratio of bio-molecules. Peak detection is the essential first step in MS data analysis. Precise

estimation of peak parameters such as peak summit location and peak area are critical to identify underlying bio-
molecules and to estimate their abundances accurately. We propose a new method to detect and quantify peaks

respectively.

in mass spectra. It uses dual-tree complex wavelet transformation along with Stein’s unbiased risk estimator for
spectra smoothing. Then, a new method, based on the modified Asymmetric Pseudo-Voigt (mAPV) model and
hierarchical particle swarm optimization, is used for peak parameter estimation.

Results: Using simulated data, we demonstrated the benefit of using the mAPV model over Gaussian, Lorentz and
Bi-Gaussian functions for MS peak modelling. The proposed mAPV model achieved the best fitting accuracy for
asymmetric peaks, with lower percentage errors in peak summit location estimation, which were 0.17% to 4.46%
less than that of the other models. It also outperformed the other models in peak area estimation, delivering lower
percentage errors, which were about 0.7% less than its closest competitor - the Bi-Gaussian model. In addition,
using data generated from a MALDI-TOF computer model, we showed that the proposed overall algorithm
outperformed the existing methods mainly in terms of sensitivity. It achieved a sensitivity of 85%, compared to
77% and 71% of the two benchmark algorithms, continuous wavelet transformation based method and Cromwell

Conclusions: The proposed algorithm is particularly useful for peak detection and parameter estimation in MS data
with overlapping peak distributions and asymmetric peaks. The algorithm is implemented using MATLAB and the
source code is freely available at http://mapv.sourceforge.net.

Background

Matrix Assisted Laser Desorption Ionization - Mass spec-
trometry (MALDI-MS) is a well-established analytical
technique in biological research. In particular, it is being
widely used in proteomics, metabolomics and lipidomics
studies [1-4]. MALDI-MS can be used to measure
amounts of bio-molecules in complex biological matrices
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thereby discovering differentially expressed bio-
molecules. Over the past decade MALDI Imaging Mass
Spectrometry (IMS) approaches, which measure the
spatial distribution of bio-molecules in thin sections of
tissue, have been rapidly developed [5-7]. MALDI-IMS
relies upon collecting many MALDI-MS spectra in a
two dimensional array. A typical dataset generated by
these techniques may contain hundreds or thousands
of spectra, each with hundreds to thousands of inten-
sity measurements of peaks corresponding to various
bio-molecules.
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Detection of peaks in mass spectra is the initial step in
MALDI-MS data analysis. Enormous care should be
taken to perform this step as accurately as possible
because the errors that occur in this step highly affect
the performance of subsequent steps and can possibly
lead to wrong conclusions. In general, the peak detec-
tion procedure consists of three main steps namely: 1)
spectra smoothing, 2) baseline correction and 3) peak
picking [8,9].

Even though the peaks corresponding to bio-molecules
appear as local maxima in a spectrum, detecting these
peaks is a challenge due to the high background noise.
The background noise that is measured at the detector
will cause a non-uniform background in the acquired
spectra and the generation of confounding signals. These
signals can suppress the important low-amplitude peaks
corresponding to low-abundance bio-molecules in mass
spectra. Moreover, they can cause a decreasing curve in
the mass spectrum, which is known as baseline, making
the peak detection process a challenge. Therefore, it is
crucial to perform spectra de-noising and baseline cor-
rection prior to peak picking.

In the literature, various methods such as Gaussian
filtering, Average filtering and several wavelet transforma-
tion based methods have been utilized in spectra de-noising
[9]. Usually, in mass spectra, noise decreases along the
spectrum and the peaks turn out to be shorter and wider at
higher masses. Therefore, simple fixed window based meth-
ods like Average and Gaussian filters often fail to produce
adequate results [10]. As an alternative, wavelet transforma-
tion based methods have also been used for spectra de-
noising [10-12]. Basically there are two types of wavelet
transformation based methods namely Discrete Wavelet
Transformation (DWT) and Continuous Wavelet Transfor-
mation (CWT). These methods transform mass spectra
into the wavelet domain and represent them in terms of
wavelet coefficients in multiple scales. CWT computes
wavelet transforms on every scale while capturing more
information regarding the peaks in the mass spectrum.
However, it is redundant and less efficient. On the other
hand, DWT is non-redundant as it operates only on the
required number of scales. However, it is shift-variant,
meaning that a small shift in the starting position of the
spectrum can cause a major drop in performance. In order
to overcome this limitation, Coombes et al. proposed
Undecimated Discrete Wavelet Transformation (UDWT),
which is an improved shift-invariant version of DWT, for
spectra de-noising [11].

After de-noising, baseline should be removed from
each spectrum. Various methods based on monotone
minimum, linear interpolation and moving average of
minima have been utilized in baseline estimation [9,11].
However, if CWT is used for spectra smoothing, a
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separate step for baseline removal is not required as it
has the ability to automatically remove the baseline [10].

After de-noising and baseline removal, peak picking
becomes less challenging. Numerous peak finding meth-
ods have been proposed in the literature. Some studies
define peaks as local maxima in a spectrum [2,11]. Signal
to noise ratio of peaks has also been widely used for defin-
ing peaks [2,11,13]. Du et al. proposed a method based on
ridge lines for peak picking after using CWT [10].

Precise estimation of peak parameters such as peak
summit location and peak area is of high importance.
Inaccurately estimated peak locations can cause pro-
blems when identifying underlying bio-molecules and
can possibly lead to wrong predictions. Also, peak area
is a better estimation for molecular abundance than the
peak intensity [14,15]. However, the above mentioned
peak picking methods provide less accurate estimations
for peak parameters. Therefore, in order to estimate
peak parameters more accurately, model-based peak
picking methods have also been used. These methods
use various model functions such as Gaussian and Lor-
entz to fit peaks [16,17]. These models produce inaccu-
rate results when the peaks are asymmetric. In order to
overcome this limitation, the Bi-Gaussian model has
been proposed [18]. However, it tends to perform poorly
when dealing with peaks that follow different shapes
other than Bi-Gaussian. Recently, Bayesian non-para-
metric models have also been proposed for peak detec-
tion in MALDI Time of Flight (TOF) mass spectra [19].
As these models have been developed incorporating the
properties restricted to the TOF analyser, unlike the
other algorithms, they cannot be used for peak detection
in other types of MALDI mass spectra. Also, the high
computational cost of these methods hinders their prac-
tical application.

This paper proposes a new peak detection algorithm
based on (i) dual-tree complex wavelet transformation
and Stein’s unbiased risk estimator for spectra smooth-
ing; (i) monotone local minimum curve fitting for base-
line correction and (iii) the modified Asymmetric
Pseudo-Voigt model together with hierarchical particle
swarm optimization for peak modelling and parameter
estimation.

Methods

Spectra smoothing

For spectra smoothing, we used an improved version of
the conventional DWT method namely Dual-Tree Com-
plex Wavelet Transformation (DT-CWT). The main
advantage of DT-CWT over DWT is its ability to
achieve near shift-invariance. Also, it is more efficient
than Undecimated Discrete Wavelet Transformation
(UDWT), which is another shift-invariant version of
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DWT, as the former has a relatively small redundancy
factor. Hence it has shown promising results in different
areas outperforming DWT and its other variants [20].

For DT-CWT, a g-shift Hilbert pair of wavelets was
used. Mostly in the wavelet domain, true peaks are
represented by relatively large wavelet coefficients and
noise is represented by relatively small wavelet coeffi-
cients. Therefore, after transforming mass spectra to the
wavelet domain, the coefficients below a certain thresh-
old were set to zero in order to eliminate noise and
then the resultant coefficients were transformed back
into the intensity domain. This threshold value should
be selected carefully because a lower threshold value
leads to under-smoothing and a higher threshold value
results in over-smoothing. In this study, Stein’s
Unbiased Risk Estimator (SURE) was used to calculate
the threshold value for each level in the wavelet
domain. SURE is an unbiased estimator that can be
used to get an estimate of the risk or the mean-squared
error for a threshold value [21]. Therefore, an optimal
threshold value can be selected by minimizing the esti-
mated risk. For detailed information about SURE, see
Appendix 1.

We observed in most mass spectrometry data, that the
noise decreases along the spectrum. Therefore, at the
beginning, the raw spectrum was split into 4 equal sec-
tions and each section was smoothed separately using
the DT-CWT method.

Baseline correction

In general, the baseline in MALDI-MS data decreases at
the beginning and then stays constant. Therefore, we
estimated the baseline by fitting a monotone local mini-
mum curve, which follows the spectrum when it is
decreasing and remains unchanged when the spectrum
is increasing, to the smoothed spectrum. For detailed
information about this method, see Yang et al. [9]. The
baseline estimated in this manner should be removed
from the smoothed spectrum.

Peak picking

After de-noising and baseline correction, the algorithm
used for peak picking and peak parameter estimation in
mass spectra can be summarized as follows:

1. Locate valleys (local minima) in the smoothed and
baseline-corrected spectrum and split the spectrum into
groups of data points at the valleys. Suppose the spec-
trum is split into k groups of data points.

2. For each group (j = 1,2,..., k) of data points in the
spectrum,

2.1 Fit a peak to the data points in component j,
using the modified Asymmetric Pseudo-Voigt (mAPV)
model.
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Let 8 = (H, 01,02, f1, f2,2) be the parameter
vector that needs to be optimized (these peak para-
meters are introduced in the next sub-section).

Use the Hierarchical Particle Swarm Optimiza-
tion (HPSO) method to obtain the optimized peak para-
meters (4 ) based on equation (1):

A

0 = argminF (0) . 1
F(0) is the objective function given by:

F©) =3[V (m,0) —S(m)]?, 2)

where S(m) is the actual intensity value at mass
m and V(m, 60) represents the fitted value.

(The mAPV model and the HPSO method are
explained in detail in the next two sub-sections.)

2.2 Calculate the area of the fitted peak and if it is
smaller than a threshold value, then eliminate compo-
nent j from further analysis.

2.3 Check the peak width. If it is greater than a
threshold value, there is a possibility that it contains
multiple overlapping peaks. Therefore, locate the valleys
between the starting and ending points and split compo-
nent j into subgroups at the valleys. For each subgroup
of data points, repeat steps 2.1, 2.2 and 2.5.

2.4 Check the level of peak asymmetry. If 0, and o,
denote the standard deviations of the two halves of the
peak, then peak asymmetry () can be determined as
follows:

max(o1,02)

u= 3)

min(al, 0'2) '

If the peak is highly asymmetric (¢ > 2), there is
a possibility that it contains multiple overlapping peaks.
Such overlapping peaks need to be decomposed accu-
rately. Therefore, if the peak is highly asymmetric and if
it is possible to locate valley points between the starting
and ending points, then split j into subgroups at the val-
leys. For each subgroup of data points, repeat steps 2.1,
2.2 and 2.5.

2.5 Record optimized peak

(é = H, 6'17 &Zr ﬂ,\ll ﬂAZI&)'

parameters

The modified Asymmetric Pseudo-Voigt (mAPV) peak
model

We propose the mAPV model, which is a linear com-
bination of Gaussian and Lorentz functions, to fit
MALDI-MS peaks (Figure 1). It has 6 parameters
namely height of the peak (H), location of the peak
summit (¢), the standard deviation of the first half of
the peak (o), that of the second half of the peak (03),
the fraction of Lorentz function used in the first half
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Figure 1 The modified Asymmetric Pseudo-Voigt Function.
H, a, 6, and o, represent the height of the peak, peak summit
location, standard deviation of the first half of the peak, and that of
the second half of the peak respectively.

of the peak (f;) and that of the Lorentz function used
in the second half of the peak (5). When this model
is used, the intensity values of a peak in a mass spec-
trum can be modelled as a function of mass values (m)
according to equation (4):

m] 2 +(1 —//,)iimm( o1 ” ;m<a
1+( o ) e . (4)
ml_a 2 +(1*/ﬁ)e[7mm< = )] im>a
)

Both f3; and B, lie in the range between 0 and 1.
Hence, (1 - B;) and (1 - B3,) represent the fractions of
Gaussian function used in the first and second halves of
the peak respectively.

The proposed mAPV model is a customization of the
Asymmetric Pseudo-Voigt (APV) function used in the
literature [22,23]. Since the standard APV function has
only one B parameter, it cannot adequately model mass
spectral peaks having dissimilar proportions of Lorentz
and Gaussian functions in the two halves of the peak
(m < a and m > a). In contrast, the two B parameters
allow the mAPV model to take dissimilar values for the
proportions of Lorentz and Gaussian functions in the
two halves of the peak.

Hx {p
V (m) =

Hx 15

Hierarchical particle swarm optimization (HPSO)

Peak fitting using the mAPV model is basically an optimi-
zation problem. It is required to minimize the difference
between the fitted values and the actual values. Hence, the
objective function is defined as in equation (2).
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We used the HPSO method proposed by Ratnaweera
et al., which is an improved version of the conventional
Particle Swarm Optimization (PSO) algorithm, to obtain
the optimized peak parameters [24]. It is a population-
based optimization technique which starts by randomly
initializing the population of particles in the search
space. Then, it finds the global best solution by adjust-
ing the path of each particle, towards its own best loca-
tion and the best particle of the entire swarm. At each
time step, this best particle of the entire swarm is found
according to a user defined objective function [24].

Let n be the number of particles in the swarm and d
be the dimensionality of the search space. In this appli-
cation, d equals to 6 since there are 6 peak parameters
that need to be optimized. In the d dimensional search
space, each particle i (1 < i < n) has the following fea-
tures: its position vector X; = (xi1, Xi2, ..., Xiq), its velo-
city vector V; = (vi1,vi2,...,via) and its personal best
positionP; = (pilz bizs ..o, pid) . Let Py = (PglngZr cees pgd)
be the best particle found so far. Then, this method
updates the velocities and positions of the particles
according to the following pseudocode:

for(d=1t06)
via = c1 x rand () x (pia — xig) + c2 x Rand () x (pga — xia)
Xid = Xid + Vid

end

where rand(-) and Rand(-) are two random numbers in
the range [0,1] that are separately generated using the
uniform distribution. ¢; and c, are calculated according
to equations (5) and (6) respectively:

iter
c1 = (cif —cni) MAXITR T € (5)
iter 6
¢ = (c25 — c2i) MAXITR © 2 (6)

where iter denotes the present iteration number,
MAXITR denotes the maximum number of acceptable
iterations and cyp5 c1; cor and cy; are constants. In this
study, we used the best values suggested by Ratnaweera
et al. for these constants [24]. The complete pseudocode
of the HPSO algorithm is available in Appendix 2.

Dataset 1: Simulation data to evaluate the mAPV model

A comprehensive simulation study was conducted in order
to assess the performance of the proposed mAPV peak
model. It was compared with three other widely used peak
models namely Gaussian, Lorentz and Bi-Gaussian (see
Appendix 3). In order to generate data for this comparison
study, an approach similar to Yu and Peng, where the data
were simulated using a 3-component Bi-Gaussian mixture
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model was used [18]. In this study, the data were gener-
ated using a 2-component mAPV model. The 12 para-
meters used in this simulation study along with their
values are listed in Additional file 1. By varying 7 out of
those 12 parameters, 2700 parameter combinations were
created in order to assess the peak fitting accuracy at dif-
ferent levels of peak asymmetry and peak overlap. In each
parameter setting, the intensity values of each component
(peak) were obtained from the mAPV function in equation
(4). Then, the intensity values of both components were
added together and noise was introduced in order to make
the peak fitting process more challenging. In this study,
each parameter setting was tested 100 times.

Dataset 2: Simulation data generated from the MALDI-
TOF computer model

It is difficult to evaluate the performance of the proposed
overall algorithm using real MS data as the true peak
parameters are usually not known. Therefore, in order to
validate the competency of the proposed peak detection
algorithm, we used a publicly available simulation dataset
[12,15]. It consists of 25 groups of data each containing
100 spectra. This simulation dataset was created using a
computer model that incorporates the physical properties
of MALDI Time-of-Flight (TOF) MS [15]. Given a list of
peaks with mass-to-charge (#1/z) values and abundances,
this computer model produces a virtual spectrum. There-
fore, the true peak list corresponding to each generated
spectrum is known. Coombes et al. showed that the spec-
tra simulated from this model reflect the important char-
acteristics of real MALDI-TOF-MS spectra [15].

Results and discussion

Performance assessment of the mAPV model against the
other peak models

Using the first simulation dataset, we compared the mean
percentage error in estimating the peak summit location
between the Gaussian, Lorentz, Bi-Gaussian and the
mAPV models (Figure 2, Table 1). HPSO was used with
all these models for peak fitting in order to make this
comparison unbiased. The proposed mAPV model
showed an advantage over the other peak models when
the peaks were asymmetric, delivering lower mean per-
centage errors which were 0.17% to 4.46% less than that
of the other models. Especially when the peaks were
highly asymmetric (p = 2), the benefit of the mAPV
model was quite evident as it estimated the peak summit
locations with a mean percentage error of 4.77%, in com-
parison with 9.23%, 8.03% and 4.95% of Gaussian, Lor-
entz and Bi-Gaussian models respectively. However,
when the peaks were symmetric, Gaussian and Lorentz
functions delivered less mean percentage errors than the
mAPV model. The mean percentage error values deliv-
ered by the mAPV model were 0.16% to 0.25% less than

Page 5 of 12

—— mAPV
[ Gaussian
Lorentz
Bi-Gaussian

Mean percentage error(%)

1 1.25 15 1.75 2
Level of peak asymmetry

Figure 2 Performance of the mAPV, Gaussian, Lorentz and Bi-
Gaussian models in peak summit location estimation. Mean
percentage errors of the four models at different levels of peak
asymmetry are shown.

that of the Bi-Gaussian model. In MS peak detection, this
difference in peak summit location estimation is practi-
cally important as it could lead to the misidentification of
an isotope or a completely different bio-molecule. In
many cases, mass accuracy of more than two decimal
places is essential for identifying the underlying bio-
molecule accurately. For example, the exact mass of pur-
ine (CsH4N,) is 120.0436 mass units (u) and that of acet-
ophenone (CgHgO) is 120.0575u. Hence, their exact mass
difference is 0.0139u [25]. Moreover, two amino acids
namely lysine (CsH;4N,0,) and glutamine (CsH;oN,O3)
differ in exact mass by only 0.036u [26]. In both these
cases, at least a mass accuracy of up to 2 decimal places
is required, in order to allow unambiguous assignment of
molecular formula which aids in identification.

Secondly, we compared the mean percentage error in
peak area quantification between the four peak models
(Table 2). Compared to the other peak models, the mAPV
model yielded much smaller mean percentage errors of
2.47%, 2.33% and 2.26% for symmetric (1 = 1), moderately
asymmetric (4 = 1.5) and highly asymmetric (1 = 2) peaks
respectively. These mean percentage error values were

Table 1. Performance of the mAPV model against the
other peak models in peak summit location estimation

Peak asymmetry Mean percentage error (%)

(v
Gaussian Lorentz  Bi-Gaussian mAPV
1 059 + 001 065+ 002 244 +005 227 +005
125 238 £003 210+ 004 307 +007 282+006
15 468 + 006 407 £006 370+ 008 353+ 008
1.75 698 £ 008 603 +008 435+£010 419=+0.10
2 923 +011 803+0.10 495+0.11 477 +0.11

Values are expressed as mean + standard error (SE).
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Table 2. Performance of the mAPV model against the
other peak models in peak area estimation

Peak asymmetry Mean percentage error (%)

(W

Gaussian Lorentz  Bi-Gaussian mAPV
1 358 £ 007 444 +£011 3204005 247 +006
1.25 349 £ 006 421 +£0.10 313+005 236006
1.5 354 £007 395+£008 305+005 233+£005
1.75 365+ 007 353+007 304+006 230+005
2 378 £008 3.13+006 298+ 006 226+ 005

Values are expressed as mean + SE.

about 0.7% less than that of its closest competitor - the Bi-
Gaussian model. Therefore, when the peak area estimation
was considered, the proposed peak model outperformed
all the other models in all scenarios. Since the mAPV
model can represent Gaussian, Lorentz and Bi-Gaussian
models individually as well as various combinations of
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them, it is obvious that it outperforms or at least equally
performing as one of the three methods.

Figure 3 illustrates the peak fitting accuracies of the
four models on two asymmetric and overlapped peaks.
The proposed mAPV model delivered the best fit for
both peaks compared to the other peak models. It can
be clearly seen that the two symmetric peak models,
Gaussian and Lorentz, have failed to provide a better fit
to the two asymmetric peaks, and have estimated the
peak summit locations less accurately. The Bi-Gaussian
model appears to perform well for the second peak.
However, in comparison to the proposed mAPV model,
the Bi-Gaussian model has delivered a less accurate fit
to the second half of that peak, which appears to follow
the Lorentzian shape.

The precise estimation of peak summit location and
peak area are of high importance in order to identify the
corresponding bio-molecules and to determine their
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Intensity
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o o
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m/z

Gaussian models on two asymmetric and overlapped peaks is shown.

Figure 3 Performance comparison of the peak models. The peak fitting performance of (A) mAPV, (B) Gaussian, (C) Lorentz and (D) Bi-
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abundances accurately. Therefore, the above results vali-
date the use of the mAPV model for MS peak modelling.

Comparison of the performance of the proposed
algorithm against other peak detection algorithms

Using the simulation datasets generated from the MALDI-
TOF computer model, we performed a comparison
between the proposed algorithm and two other widely
used peak detection algorithms. The first benchmark algo-
rithm uses CWT along with ridge lines for peak detection
[10]. After a comprehensive study of various peak detec-
tion algorithms, Yang et al. demonstrated the advantages
of using this method [9]. The second benchmark algo-
rithm, which is known as Cromwell, is mainly based on
UDWT and signal to noise ratio of peaks [11]. It also has
been widely used in MS peak detection. Therefore, we
selected these two algorithms as benchmarks in order to
evaluate the performance of the proposed algorithm.

Well established performance measures such as sensi-
tivity, FDR and F1-score were used to evaluate and com-
pare the performance of this new pipeline. We applied
all three algorithms to 2500 simulated spectra and cal-
culated the above measures for each algorithm on each
spectrum. The sensitivity is defined as the percentage of
correctly identified peaks out of the total number of real
peaks, whereas FDR is the percentage of incorrectly
identified peaks out of the total number of identified
peaks. The Fl-score, which combines both sensitivity
and FDR, is defined as follows [9]:

2 x (1 — FDR) x Sensitivity
1 — FDR + Sensitivity

F1 — score =

(7)

In this comparison study, peaks that were located
within +1% error range of a known m/z value corre-
sponding to a real peak were considered as true peaks.
Moreover, both algorithms need some parameters to be
set. In this study, the parameter values recommended by
Yang et al. were used [9].

For these simulated spectra, Table 3 demonstrates that
the performance of the proposed algorithm is better than
the other benchmark methods in terms of sensitivity. It
achieved a sensitivity of 85%, in comparison with 77%
and 71% of CWT and Cromwell methods respectively.
The utilization of an additional step to decompose broad

Table 3. Performance of different peak detection
algorithms in terms of sensitivity, FDR and F1-score

Method Sensitivity (%) FDR (%) F1-score (%)
CWT 76.74 = 0.14 3147 £ 036 70.77 £ 0.19
Cromwell 70.76 £ 0.13 4992 £ 0.10 58.50 = 0.09
New Algorithm 84.66 £ 0.10 3270 £ 022 7436 + 0.15

Values are expressed as mean + SE.
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and highly asymmetric peaks improved the sensitivity of
the proposed algorithm. In particular, it facilitates the
identification of most of the peaks corresponding to the
observed isotopologue distribution for any particular bio-
molecule. Isotopologues of an individual molecule vary
only in terms of isotopic compositions. The peaks corre-
sponding to isotopologues may have overlapping distri-
butions to other molecules with very close mass causing
the algorithm to detect a single highly asymmetric peak.
Such peaks need to be decomposed accurately to identify
all of the isotopologues and to provide accurate measure-
ments of peak areas. If not, the peak detection algorithms
with symmetric peak models would fail to identify any of
the peaks in the overlapping distribution. Algorithms,
which use asymmetric peak models, would detect only
the highest abundant isotopologue, however, an inaccu-
rate value would be given as its abundance.

The problem of having overlapped peaks is quite com-
mon in data obtained through MS instruments with low
resolving power. The modern instruments with high
resolving power have the ability to distinguish all peaks
in mass spectra from each other without generating
overlapped peaks, thereby avoiding the need for peak
decomposition [25]. However, the inability of most of
the TOF MS instruments to attain this level of resolving
power, calls for efficient peak detection algorithms that
address this issue.

When compared to the CWT method, a slight increase
in FDR was observed in the proposed algorithm. There-
fore, we used the F1-score, which combines both sensitiv-
ity and FDR, to compare the performances of the three
algorithms. The proposed new algorithm delivered the
highest F1-score of 74% compared to 71% and 58% of the
CWT and Cromwell algorithms respectively. The 3.59%
difference in F1-score between the proposed algorithm
and its closest competitor - the CWT method, was found
to be statistically significant through a t-test (p-value <
0.05). The scatter plots of sensitivity and FDR illustrate the
complete behaviour of the three algorithms (Figure 4). The
proposed algorithm appears to maintain a higher sensitiv-
ity in peak detection across all spectra. These results vali-
date the use of the proposed peak detection algorithm in
MALDI-MS data analysis.

Moreover, we observed that more than 42% of the false
peaks detected by the proposed algorithm lie in the m/z
range below 5000, which is the range affected by the base-
line in this dataset. Therefore, we suggest improving the
proposed algorithm by incorporating advanced baseline
removal techniques in order to reduce the FDR. The pro-
posed algorithm took about 8 minutes to detect peaks in a
mass spectrum containing around 70 peaks on average, on
a Windows 7 (64-bit) operating system running on a
Core™j7-2600 CPU at 3.40GHz with 8.0GB Random
Access Memory.
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Figure 4 Performance comparison of the peak detection algorithms. Performance of (a) the proposed algorithm, (b) CWT based algorithm
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In order to reduce the computational overhead, some
studies have proposed to incorporate the average spec-
trum of each dataset for peak detection [12,19]. There-
fore, we further evaluated the performance of the peak
detection algorithms using the average spectra corre-
sponding to the 25 simulated datasets. For this compari-
son, we used the previously selected two benchmark
algorithms as well as another two recently proposed
Bayesian nonparametric models namely LARK-HP (Levy
Adaptive Kernel Regression with highest posterior reali-
zation) and LARK-MA (Levy Adaptive Kernel Regres-
sion with local modes under model averaging) proposed
by House et al. for peak detection in MALDI-TOF-MS
data [19]. These models need many parameters to be
set. In this study, the parameter values recommended by
House et al. were used and both algorithms were run
for one hundred thousand iterations on each average
spectrum [19].

Table 4 summarizes the peak detection performance of
the proposed algorithm and four benchmark algorithms
on average spectra. The average sensitivities of the pro-
posed algorithm and the CWT method were decreased
with the use of average spectra. However, the FDRs of
these two algorithms were also reduced by 18.61% and
29.80% respectively. Although the Cromwell algorithm
obtained a higher average sensitivity of 74% on average
spectra, its FDR (38.76%) is 18.01% to 37.09% higher than

Table 4. Performance of different peak detection
algorithms on average spectra in terms of sensitivity,
FDR and F1-score

Method Sensitivity (%) FDR (%) F1-score (%)
CwWT 65.84 £ 0.64 167 £ 045 7881 + 044
Cromwell 7440 + 0.99 38.76 + 0.59 67.11 + 0.62
LARK-HP 65.73 + 0.85 20.75 £ 1.72 71.58 £ 0.85
LARK-MA 56.16 + 0.57 1765 £ 1.75 66.59 + 0.75
New Algorithm 68.96 + 0.72 14.09 £ 047 7646 + 0.54

Values are expressed as mean + SE.

that of the other algorithms. LARK-HP and LARK-MA
methods attained lower FDRs when compared to the
Cromwell algorithm. However, these two Bayesian non-
parametric models failed to outperform the other algo-
rithms in terms of sensitivity. These results suggest
applying the proposed algorithm and the CWT method
on individual spectra, to achieve better peak detection
results in terms of sensitivity. However, in order to obtain
a lower FDR, these algorithms, particularly the CWT
method, can be applied on average spectra.

Dual-tree complex wavelet transformation (DT-CWT) for
spectra smoothing

As the threshold value at each level in the wavelet
domain is determined using SURE, the proposed spectra
smoothing method does not require any parameter to
be set by the user, thereby avoiding the additional over-
head of customizing the method for different datasets.
Moreover, the noise in a mass spectrum decreases along
the spectrum. Hence the use of a global threshold value
calculated using the entire spectrum can result in either
over-smoothing or under-smoothing. Figure 5 shows
smoothing results obtained using two different threshold
values. The smaller threshold value works well for the
peaks at lower masses. However, it tends to under-
smooth the peaks at higher masses. Conversely, the lar-
ger threshold value yields better smoothing results for
the peaks at higher masses while over-smoothing the
peaks at lower masses. This problem could be reduced
by dividing each spectrum into 4 equal segments and
calculating the threshold values for each segment sepa-
rately. Figure 6 shows a spectrum smoothed using this
method along with the corresponding baseline-corrected
spectrum.

The modified Asymmetric Pseudo-Voigt (mAPV) function
for modelling MS peaks

Symmetric Gaussian and Lorentz functions have been
used in the context of MS peak modelling. The Voigt
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reduce the computational overhead.

Moreover, most of the existing studies use symmetric
peak models assuming all the peaks in mass spectra to
be symmetric. However, asymmetric peaks can also be
observed in mass spectra [10]. Figure 7 shows an exam-
ple of a real MALDI-TOF mass spectrum containing
asymmetric and overlapping peaks. This spectrum,
which represents the serum protein profile of a colorec-
tal cancer patient, was extracted from a dataset provided
in Alexandrov et al. [1]. The symmetric peak models
produce inaccurate estimations for peak parameters of
these asymmetric peaks.
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Figure 7 A real MALDI-TOF mass spectrum containing
asymmetric and overlapping peaks. The zoomed region shows
asymmetric and overlapping peaks in the higher mass range. This
spectrum was extracted from the dataset provided in Alexandrov

et al. [1].
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The mAPV model proposed in this paper has a char-
acteristic shape (Figure 1) and it is not a black box
model where there is no physical meaning to the para-
meters. There is an important application specific rea-
son behind the introduction of each parameter to this
model. For example, 6; and 6, were used instead of one
o parameter in order to account for asymmetric peaks
and ; and B, parameters were introduced to the model
to provide a better fit for peaks with different shapes.
The proposed mAPV model is different to the APV
function used in the literature because unlike the latter
the former can have different proportions of the Lorentz
and Gaussian functions for the two halves of the peak.
Sometimes in mass spectra, peaks can be found in
which one half of the peak can be modelled accurately
using the Gaussian function and the other half of the
peak can be accurately modelled using the Lorentz func-
tion. For such peaks, the mAPV function provides a bet-
ter fit as it can represent both Gaussian and Lorentz
functions individually as well as various combinations of
them. Figure 8 shows an asymmetric peak in which the
first half follows the Gaussian shape and the second half
follows the Lorentzian shape. It can be clearly seen that
the APV function has failed to provide an adequate fit
for this peak, as it assumes the proportions of the Gaus-
sian and Lorentz functions to be same for both halves
of the peak. In contrast, the additional parameter has
allowed the mAPV model to provide a better fit for this
asymmetric peak.
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Conclusions

This paper presents a new peak detection and parameter
estimation algorithm for MALDI-MS data. It incorpo-
rates DT-CWT along with SURE for spectra smoothing
thus avoiding the overhead of customizing the method
for different datasets by setting parameters. It also pro-
poses the mAPV model to fit MS peaks more accurately.

We have successfully applied the proposed unsuper-
vised algorithm on MS data, generated from a MALDI-
TOF computer model, to detect peaks and to estimate
the peak parameters. In particular, it has been demon-
strated that the proposed mAPV model with an optimi-
zation algorithm is a promising method to model peaks
in MS data, which aids in identifying underlying bio-
molecules and determining their abundances accurately.
The proposed algorithm has a potential advantage over
the existing methods for low resolution MS data having
overlapped peak distributions and asymmetric peaks,
which is quite common in metabolomics and proteo-
mics studies.

We believe that these results can be further improved
by incorporating the available important details regard-
ing the dataset under study. Although we propose this
algorithm for peak detection in MALDI-MS data, we
believe that it can also be used for data generated by
other types of MS instruments such as LC-MS and
SELDI-MS. We also suggest improving the proposed
algorithm to be used for peak detection in MALDI-IMS
data, incorporating the additional information about the
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spatial distribution of bio-molecules generated by this
technology.

Appendix
Appendix 1: Stein’s Unbiased Risk Estimator (SURE)

Let u=(u1, 2, ...
Xx=(x1,%X2,...,X3) be a
wherex; ~ N (,ui, 02). If h(x) is an estimator of y such

,itq) be a parameter vector and

measurement vector

thath (x) = x + g(x), g = (gi)il and g(x) is weakly differ-
entiable, SURE is defined as follows [21]:

d
0
SURE (h) = do” +1Ig(x)*ll + 202> i (x),
i M

where ||-|| is the Euclidean norm.

Appendix 2: Pseudocode of the Hierarchical Particle
Swarm Optimization (HPSO) algorithm
Let n be the number of particles in the swarm and d be
the dimensionality of the search space. Moreover, sup-
pose Xi = (x;1, Xj,... X;4) is the position of the i particle,
Vi = (vi1, Vins Vig) 1s its velocity vector, Pi = (pj, pinsr
Dia) is its personal best position and Py = (pg1, Pg2ser Pga)
is the best particle found so far. The pseudocode of the
HPSO algorithm is as follows [24]:
Begin
Initialize the population
while (termination condition = false) do
for (i = 1 to n)
Evaluate fitness
Update p;,
Update pgy
for (d = 1 to dimensionality of the search
space)
Calculate v;;
Update x;,;
end for
end for
end while
End.

Appendix 3: Gaussian, Lorentz and Bi-Gaussian functions
Gaussian function

Gaussian function has 3 parameters namely height of
the peak (H), location of the peak summit (¢) and stan-
dard deviation of the peak (o). When this function is
used to model peaks in mass spectra, the intensity
values of a peak can be modelled as a function of mass
values (m) as follows:

G (m) = H x e[_mm(’”; a”
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Lorentz function

Lorentz function has 3 parameters namely height of the
peak (H), location of the peak summit (&) and standard
deviation of the peak (o). When this function is used to
model peaks in mass spectra, the intensity values of a
peak can be modelled as a function of mass values ()
as follows:

L(m)=H x

Bi-Gaussian function

Bi-Gaussian function has 4 parameters namely height of
the peak (H), location of the peak summit (¢), standard
deviation of the first half of the peak (0;) and that of
the second half of the peak (0,). When this function is
used to model peaks in mass spectra, the intensity
values of a peak can be modelled as a function of mass
values (m) as follows:

[ m—a\

—ln(Z)( ) sm<a

Hxe o1
(") e
—ln(2)( ) sm>a

Hxe g2

B(m) =

Additional material

Additional file 1: Supplementary Information. This file contains
detailed information about the simulation dataset used to evaluate the
proposed mAPV peak model.
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