
 

 

Automated Bridge Inspection for Concrete Surface Defect Detection 

Using Deep Neural Network Based on LiDAR Scanning 

 

Majid Nasrollahi 

 

 

A Thesis 

in 

The Department 

of 

Building, Civil, and Environmental Engineering 

 

 

 

Presented in Partial Fulfillment of the Requirements 

for the Degree of Master of Applied Science (Building Engineering) at 

Concordia University 

Montreal, Quebec, Canada 

 

 

December 2019 

© Majid Nasrollahi, 2019



 

 

CONCORDIA UNIVERSITY 

School of Graduate Studies 

This is to certify that the thesis prepared 

By:                Majid Nasrollahi 

Entitled:       Automated Bridge Inspection for Concrete Surface Defect Detection Using  

                     Deep Neural Network Based on LiDAR Scanning 

    and submitted in partial fulfillment of the requirements for the degree of  

                                              Master of Applied Science (Building Engineering) 

complies with the regulations of the University and meets the accepted standards with respect to 

originality and quality.  

Signed by the final Examining committee: 

       Dr. Sang Hyeok Han                                  Chair 

       Dr. Ashutosh Bagchi                                  Examiner 

       Dr. Farnoosh Naderkhani                           Examiner 

       Dr. Amin Hammad                                    Supervisor 

 

Approved by            Dr. Michelle Nokken, Graduate Program Director  

                                 

December 2019        Dr. Amir Asif, Dean of Gina Cody School of Engineering and Computer Science 



iii 

 

ABSTRACT 

Automated Bridge Inspection for Concrete Surface Defect Detection Using 

Deep Neural Network Based on LiDAR Scanning 

Majid Nasrollahi 

Structural inspection and maintenance of bridges are essential to improve the safety and 

sustainability of the infrastructure systems. Visual inspection using non-equipped eyes is the 

principal method of detecting surface defects of bridges, which is time-consuming, unsafe, and 

encounters inspectors falling risks. Therefore, there is a need for automated bridge inspection. 

Recently, Light Detection and Ranging (LiDAR) scanners are used for detecting surface defects. 

LiDAR scanners can collect high-quality 3D point cloud datasets. In order to automate the 

process of structural inspection, it is important to collect proper datasets and use an efficient 

approach to analyze them and find the defects. Deep Neural Networks (DNNs) have been 

recently used for detecting 3D objects within 3D point clouds. PointNet and PointNet++ are deep 

neural networks for classification, part segmentation, and semantic segmentation of point clouds 

that are modified and adapted in this work to detect surface concrete defects. The research 

contributions are: (1) Designing a LiDAR-equipped UAV platform for structural inspection 

using an affordable 2D scanner for data collection, and (2) Proposing a method for detecting 

concrete surface defects using deep neural networks based on LiDAR generated point clouds. 

Training and testing datasets are collected from four concrete bridges in Montréal and annotated 

manually. The point cloud dataset prepared in five areas, which contain more than 51 million 

points and 2,572 annotated defects in four classes of crack, light spalling, medium spalling, and 

severe spalling. The accuracies of 75% (adapted PointNet) and 79% (adapted PointNet++) in 

detecting defects are achieved in binary semantic segmentation. 



iv 

 

ACKNOWLEDGMENT 

My greatest appreciation goes to my supervisor, Dr. Amin Hammad for his intellectual and 

personal support, encouragement and patience. His guidance, advice, and criticism were my most 

valuable asset during my studies. Overall, I feel very fortunate having the opportunity to know 

him and work with him.  

I would like to thank Mr. Raymond Bruton and Mr. Dmitry Rozhdestvenskiy for their help in the 

hardware integration for designing the LiDAR-equipped UAV platform. I would, also, like to 

thank my colleague, Mr. Yusheng Huang, for his help in piloting the UAV for the outdoor test of 

the platform. 

Furthermore, I would like to use this opportunity to thank my colleagues, Ms. Neshat Bolourian 

and Mr. Fardin Bahraini, for their help in data collection and manual annotation. 

A heartfelt thank you goes to my wife, Mahsa, my mother, Azam, and my dear brother, Hamid. 

They supported me with their encouragement, love, and support. 

 

 

 

 

 

 

 

 

 

 



v 

 

DEDICATION 

I would like to dedicate this thesis to my loving wife, Mahsa, for her endless support, many 

encouragements, and unconditional love that made it all possible. 

I would also like to dedicate this thesis to my dear mother, Azam, and my dear brother, Hamid. 

They always believed in me, even when I did not believe in myself. They are always in my 

thoughts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

TABLE OF CONTENTS 

LIST OF FIGURES ..................................................................................................................................... ix 

LIST OF TABLES ....................................................................................................................................... xi 

LIST OF ABBREVIATIONS ..................................................................................................................... xii 

CHAPTER 1 Introduction ....................................................................................................................... 1 

1.1 General Information ............................................................................................................................ 1 

1.2 Problem Statement .............................................................................................................................. 2 

1.3 Research Objectives ............................................................................................................................ 2 

1.4 Thesis Organization ............................................................................................................................ 2 

CHAPTER 2 Literature Review .............................................................................................................. 4 

2.1 Introduction ......................................................................................................................................... 4 

2.2 Bridge Structural Inspection ............................................................................................................... 4 

2.3 LiDAR Scanning Technology ............................................................................................................. 7 

2.3.1 SLAM .......................................................................................................................................... 8 

2.3.2 LOAM .......................................................................................................................................... 8 

2.4 Using UAV for Data Collection.......................................................................................................... 8 

2.5 Deep Neural Networks and Applications in Semantic Segmentation ................................................. 9 

2.5.1 Convolutional Neural Networks ................................................................................................ 10 

2.5.2 Object detection in 3D point cloud dataset ................................................................................ 14 

2.5.3 PointNet ..................................................................................................................................... 15 

2.5.4 PointNet++ ................................................................................................................................. 16 

2.5.5 Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS) ......................................................... 17 

2.6 Summary ........................................................................................................................................... 17 

CHAPTER 3 Designing LiDAR-equipped UAV Platform for Structural Inspection ........................... 18 

3.1 Introduction ....................................................................................................................................... 18 

3.2 Design Considerations ...................................................................................................................... 20 

3.2.1 Objectives .................................................................................................................................. 20 

3.2.2 Requirements ............................................................................................................................. 20 

3.2.3 Constraints ................................................................................................................................. 22 

3.2.4 Other Considerations.................................................................................................................. 23 

3.3 Platform Design ................................................................................................................................ 23 

3.3.1 Integration .................................................................................................................................. 25 

3.4 Case Study ........................................................................................................................................ 31 



vii 

 

3.4.1 Indoor Test ................................................................................................................................. 31 

3.4.2 Outdoor Test .............................................................................................................................. 33 

3.5 Summary and Conclusions................................................................................................................ 36 

CHAPTER 4 Concrete Surface Defect Detection Using Deep Neural Network Based on LiDAR 

Scanning ......................................................................................................................................... 37 

4.1 Introduction ....................................................................................................................................... 37 

4.2 Methodology ..................................................................................................................................... 38 

4.2.1 Data Collection .......................................................................................................................... 39 

4.2.2 Annotation .................................................................................................................................. 40 

4.2.3 Data Pre-Processing ................................................................................................................... 40 

4.2.4 Training and evaluation ............................................................................................................. 41 

4.2.5 Testing ........................................................................................................................................ 44 

4.3 Case study ......................................................................................................................................... 44 

4.3.1 Data Collection .......................................................................................................................... 45 

4.3.2 Annotation .................................................................................................................................. 50 

4.3.3 Data Pre-Processing ................................................................................................................... 52 

4.3.4 Validation of Binary Classes Semantic Segmentation ............................................................... 54 

4.3.5 Validation on Detecting Types of Defects Using Adapted PointNet++ Model ......................... 81 

4.3.6 Validation on Detecting Severity Levels of Defects Using Adapted PointNet++ Model .......... 86 

4.4 Summary and Conclusions................................................................................................................ 90 

CHAPTER 5 Summary, Conclusions and Future Work ....................................................................... 91 

5.1 Summary of Research ....................................................................................................................... 91 

5.2 Research Conclusion and Contributions ........................................................................................... 91 

5.3 Limitations and Future Work ............................................................................................................ 93 

REFERENCES ........................................................................................................................................... 94 

Appendices .................................................................................................................................................. 99 

Appendix A – Robot Operating System (ROS) ...................................................................................... 99 

A.1 ROS workspace (catkin workspace) .......................................................................................... 105 

A.2 Hector Slam ................................................................................................................................ 105 

A.3 Hokuyo node .............................................................................................................................. 106 

Appendix B - Hector Slam Example..................................................................................................... 106 

B.1 Creating a Map Using Hokuyo UTM-30LX .............................................................................. 109 

B.2 Recording the Data ..................................................................................................................... 112 

B.3 Mapping a Hallway Hsing Hokuyo ............................................................................................ 113 



viii 

 

B.4 Converting bag Files to Point Cloud .......................................................................................... 115 

Appendix C – Compute Canada............................................................................................................ 118 

C.1 Submitting a Job ......................................................................................................................... 119 

C.1 Installing TensorFlow................................................................................................................. 120 

C.2 SBATCH Command Options ..................................................................................................... 123 

Appendix D – Python Code for Flipping the Dataset ........................................................................... 125 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

LIST OF FIGURES 

Figure 2-1 ReLu activation function (Goodfellow et al., 2016) ................................................................. 12 

Figure 2-2 The effect of the momentum optimization method in learning (Goodfellow et al.,  2016) ...... 13 

Figure 2-3 PointNet (Qi et al. 2017a) ......................................................................................................... 16 

Figure 4-1. Scanner position on top of UAV in (a) and (b), and under UAV in (c) ................................... 21 

Figure 4-2 Some specifications of the LiDAR ............................................................................................ 23 

Figure 4-3 Design of interfacing parts for 3D printing, (a) Part for holding the servo, (b) Part for holding 

the scanner, (c) Part for attaching the servo vertically, and (d) Part for attaching the servo inclined ........ 26 

Figure 4-4 Hardware integration ................................................................................................................. 27 

Figure 4-5 LiDAR-equipped UAV platform .............................................................................................. 29 

Figure 4-6 The initial test’s results: (a) The generated point cloud by the designed platform, (b) A 

segment of the point cloud, (c) The reference segment using FARO, (d) The comparison distance 

distribution histogram (m), and (e) The compared segment colored based on distances from the reference 

segment ....................................................................................................................................................... 33 

Figure 4-7 The location of the outdoor test in Montreal, QC, Canada ....................................................... 34 

Figure 4-8 Outdoor test ............................................................................................................................... 34 

Figure 4-9 The outdoor test’s results: (a) The overlapped point clouds of the designed platform, and 

FARO, (b) A segment of the overlapped point clouds, and (c) The comparison distance distribution 

histogram (m) .............................................................................................................................................. 35 

Figure 5-1. The proposed method ............................................................................................................... 39 

Figure 5-2 Location of the bridges in, Montreal, QC, Canada: (1) Guy Street, (2) Lucian L’Allier Street, 

(3) Atwater Avenue, and (4) Pierre-Dupuy Avenue ................................................................................... 47 

Figure 5-3 Scanning positions on the western side of Bridge 1 (Guy Street) ............................................. 48 

Figure 5-4 Scanning positions on the eastern side of Bridge 1 (Guy Street) .............................................. 49 

Figure 5-5 (a) An original point cloud sample, (b) An annotated point cloud sample. No-defect is yellow, 

crack is blue, light spalling is pink, medium spalling is green, severe spalling is red ................................ 50 

Figure 5-6 The structure of preparing the dataset ....................................................................................... 51 

Figure 5-7 (a) Sample of annotated original points segment, (b) Flipped segment .................................... 53 

Figure 5-8 Evaluation mean loss of the models .......................................................................................... 58 

Figure 5-9 Evaluation accuracies of defect class, no-defect class, and overall .......................................... 58 

Figure 5-10. Modified PointNet network .................................................................................................... 59 

Figure 5-11 The chart of output results of the detecting defects (Adapted PointNet). ............................... 63 

file:///F:/MajidN/Thesis/Thesis-Draft-49-Nov22.docx%23_Toc25678137
file:///F:/MajidN/Thesis/Thesis-Draft-49-Nov22.docx%23_Toc25678138
file:///F:/MajidN/Thesis/Thesis-Draft-49-Nov22.docx%23_Toc25678143
file:///F:/MajidN/Thesis/Thesis-Draft-49-Nov22.docx%23_Toc25678146
file:///F:/MajidN/Thesis/Thesis-Draft-49-Nov22.docx%23_Toc25678147
file:///F:/MajidN/Thesis/Thesis-Draft-49-Nov22.docx%23_Toc25678148
file:///F:/MajidN/Thesis/Thesis-Draft-49-Nov22.docx%23_Toc25678148
file:///F:/MajidN/Thesis/Thesis-Draft-49-Nov22.docx%23_Toc25678148
file:///F:/MajidN/Thesis/Thesis-Draft-49-Nov22.docx%23_Toc25678150
file:///F:/MajidN/Thesis/Thesis-Draft-49-Nov22.docx%23_Toc25678150
file:///F:/MajidN/Thesis/Thesis-Draft-49-Nov22.docx%23_Toc25678151
file:///F:/MajidN/Thesis/Thesis-Draft-49-Nov22.docx%23_Toc25678152
file:///F:/MajidN/Thesis/Thesis-Draft-49-Nov22.docx%23_Toc25678153
file:///F:/MajidN/Thesis/Thesis-Draft-49-Nov22.docx%23_Toc25678153
file:///F:/MajidN/Thesis/Thesis-Draft-49-Nov22.docx%23_Toc25678154
file:///F:/MajidN/Thesis/Thesis-Draft-49-Nov22.docx%23_Toc25678155


x 

 

Figure 5-12 Adapted PointNet++ network.................................................................................................. 67 

Figure 5-13 The chart of output results of the detecting defects (Adapted PointNet++). ........................... 69 

Figure 5-14 Accuracies of the studied cases based on block sizes ............................................................. 77 

Figure 5-15 Accuracies of the studied cases based on the number of points in each block........................ 77 

Figure 5-16 Accuracy of detecting defects compared to the sizes of defects ............................................. 79 

Figure 5-17 Effect of changing density on the accuracy of defects ............................................................ 80 

Figure 5-18 Number of points of annotated classes. ................................................................................... 82 

Figure 5-19 Chart of the output results of the testing on detecting types of defects (Adapted PointNet++)

 .................................................................................................................................................................... 85 

Figure 5-20 Number of points of the defect classes. ................................................................................... 87 

Figure 5-21 Chart of the output results of the testing on detecting types and severity levels of defects 

(Adapted PointNet++) ................................................................................................................................. 89 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

file:///F:/MajidN/Thesis/Thesis-Draft-49-Nov22.docx%23_Toc25678164


xi 

 

LIST OF TABLES 

Table 2-1 Scaling severity levels based on the depth of loss of surface mortar (OSIM, 2008) .................... 5 

Table 2-2 Delamination severity levels based on the dimensions of the delaminated area (OSIM, 2008) .. 5 

Table 2-3 Spalling severity levels based on the dimensions of the spalled area and depth (OSIM, 2008)... 6 

Table 2-4 Cracking severity levels based on the width of the crack (OSIM, 2008). .................................... 6 

Table 4-1 UAV specifications .................................................................................................................... 24 

Table 4-2 Scanner specifications ................................................................................................................ 24 

Table 4-3 Summary table of hardware components ................................................................................... 28 

Table 5-1 Defects severity based on the depth of loss (d), width and height of the affected area (w, h) 

(Ministry of Transportation 2008) .............................................................................................................. 38 

Table 5-2 FARO Focus3D LiDAR scanner specifications (Faro 2012) ..................................................... 46 

Table 5-3 Scanning information ................................................................................................................. 46 

Table 5-4 Statistics datasets used in training, evaluation, and testing processes ........................................ 52 

Table 5-5 Details on the trained and evaluated models for optimization.................................................... 57 

Table 5-6 PointNet model’s hyperparameters ............................................................................................ 60 

Table 5-7 Results of training and evaluation of the selected model ........................................................... 61 

Table 5-8 The output results of the detecting defects (Adapted PointNet) ................................................. 62 

Table 5-9 Results of training and evaluation of the selected model ........................................................... 64 

Table 5-10 PointNet++ model’s hyperparameters ...................................................................................... 65 

Table 5-11. The output results of the detecting defects (Adapted PointNet++). ........................................ 68 

Table 5-12 Binary semantic segmentation results ...................................................................................... 70 

Table 5-13 Density ratio of the raw dataset ................................................................................................ 75 

Table 5-14 Annotated defects dimensions .................................................................................................. 75 

Table 5-15 Results of the sixteen studied cases .......................................................................................... 76 

Table 5-16 Accuracy of defect detection based on the depth of defects ..................................................... 79 

Table 5-17 Cost weight of the tree classes .................................................................................................. 82 

Table 5-18 Results of training and evaluation on detecting types of defects (adapted PointNet++) .......... 83 

Table 5-19 Output results of the testing on detecting types of defects (Adapted PointNet++) .................. 84 

Table 5-20 Cost weight of the four classes ................................................................................................. 87 

Table 5-21 Results of training and evaluation on detecting severity levels of defects (PointNet++) ......... 87 

Table 5-22 Output results of the testing on detecting types and severity levels of defects (Adapted 

PointNet++) ................................................................................................................................................ 88 

 



xii 

 

LIST OF ABBREVIATIONS  

Abbreviation Description 

2D Two-Dimensional 

3D  Three-Dimensional  

4D Four-Dimensional 

ADAM Adaptive Momentum 

CAR Canadian Aviation Regulations 

CNN Convolutional Neural Network 

CPU Central Processing Unit 

DNN Deep Neural Network 

DOF Degrees of Freedom 

FOV Field of View 

GPS Global Position Systems 

GPU Graphical Processing Unit 

HDF Hierarchical Data Format 

IMU Inertial Measurement Unit 

LiDAR Light Detection and Ranging 

LOAM LiDAR Odometry and Mapping 

MLP Multi-Layer Perceptron 

OSIM Ontario Structure Inspection Manual 

PCD Point Cloud Data 

PCL Point Cloud Library 



xiii 

 

PS Phase Shift 

ReLu Rectified Linear unit 

RGB Red Green Blue 

ROS Robot Operating System 

S3DIS Stanford Large-Scale 3D Indoor Spaces Dataset 

SFOC Special Flight Operation Certification 

SGD Stochastic Gradient Descent 

SLAM Simultaneous Localization and Mapping 

TLS Terrestrial Laser Scanning 

TOF Time-of-Flight 

UAV Unmanned Aerial Vehicle 

VO Visual Odometry 

 

 

 

 

 



 

 1 

 

CHAPTER 1 Introduction 

1.1 General Information 

Efficient inspection and maintenance of bridges and other structures are vital for improving the 

safety and sustainability of infrastructure systems, such as bridges. Traditionally, visual 

inspection using non-equipped eyes and manual measurements are used for detecting surface 

defects, which may lead to subjective results. This approach is time-consuming and unsafe, 

especially for inspecting the inaccessible elements of a bridge (Kim et al., 2014; Guldur et al., 

2015).   

Recently, 3D Light Detection and Ranging (LiDAR) scanners (Liu et al., 2011) and cameras 

(Adhikari et al., 2014) are used for detecting surface defects (e.g. cracks) using computer vision 

methods. LiDAR scanners can collect high-quality 3D point cloud datasets. In order to automate 

the process of structural inspection, it is important to collect proper datasets and use an efficient 

approach to analyze them and find the defects. The LiDAR scanner can be mounted on a tripod 

(Kim et al., 2014) (i.e. terrestrial scanning) or on an Unmanned Aerial Vehicle (UAV) (Freimuth 

et al., 2017; Yoder & Sebastian, 2016) (i.e. aerial scanning).  Although terrestrial scanning 

provides high stability for the scanner and less vibration, it is not time efficient. The aerial 

scanning provides easier access to most parts of the structure. 

Deep Neural Networks (DNNs) have been recently used for detecting 3D objects within 3D point 

clouds. In order to automate the process of structural inspection, a DNN is used to detect defects 

in the point clouds of concrete bridges. In this research, PointNet (Qi et al. 2017a) and 



 

 

2 

 

PointNet++ (Qi et al. 2017b) are adapted to detect surface defects using point cloud datasets 

from scanning bridge surfaces. 

1.2 Problem Statement 

Visual inspection using non-equipped eyes is the principal method of inspecting surface defects 

of bridges. This approach is time-consuming, unsafe, and encounters inspectors falling risks in 

the cases of inspecting the inaccessible elements of bridges. Therefore, there is a need for an 

automated data collection for bridge inspection. In addition, an automated method for detecting 

bridge’s surface defects from the collected datasets is inevitable to fulfill the requirements of 

having a unified framework. 

1.3 Research Objectives 

The main objectives of this research are defined as:  

1) Designing a platform for LiDAR-equipped UAV for structural inspection using an 

affordable 2D scanner. 

2) Developing a proper 3D annotated dataset of bridge’s surface defects for analyzing. 

3) Developing a method for detecting concrete surface defects using a Deep Neural Network 

(DNN) based on LiDAR scanning.  

1.4 Thesis Organization 

This research is organized as follows: 

CHAPTER 2 Literature Review: In this chapter, the new methods in bridge inspection 

and the current stage of using LiDARs and DNNs are discussed. 



 

 

3 

 

CHAPTER 3 Designing LiDAR-equipped UAV Platform for Structural Inspection: This 

chapter explains the design process, requirements and other design considerations of a 

LiDAR-equipped UAV platform for structural inspection using an affordable 2D 

scanner. The initial test results of the platform are also discussed in this chapter. 

CHAPTER 4 Concrete Surface Defect Detection Using Deep Neural Network Based on 

LiDAR Scanning: This chapter proposes a method for detecting surface defects of 

concrete bridges using LiDAR generated point clouds and DNN. The process of 

collecting and annotating the datasets and the promising initial results are explained in 

this chapter. 

CHAPTER 5 Summary, Conclusions and Future Work: This chapter summarizes the 

present research and concludes the findings. Moreover, the limitations of the current 

study are investigated followed by the suggestions for future work. 



 

 4 

 

CHAPTER 2 Literature Review 

2.1 Introduction 

This chapter presents the literature review of various subjects, including bridge inspection 

methods, LiDAR scanning technologies, using UAVs for data collection and Deep Neural 

Networks and their applications in point cloud semantic segmentation. First, the state of the 

bridge structural inspection is explained, and then the available related state of the art 

technologies are studied. The technologies and methods that are discussed in this chapter support 

this research’s ideas.  

2.2 Bridge Structural Inspection 

The traditional visual inspection is the most common method of inspecting structural 

infrastructures, such as bridges. For visual inspection, it may be necessary to stop the traffic on 

the bridge fully or partially to allow the inspection to access different parts of the bridge. This 

process is unsafe, time-consuming, expensive and subjective to human errors (Guldur et al., 

2015). Manual inspection is dangerous, especially in the case of inspecting the hard-to-access 

elements of infrastructure (e.g. underneath the surface of a bridge superstructure) (Guldur et al., 

2015). 

Using the collected data of discrete sensors attached to a bridge is another way of assessing the 

health of a structure. Guldur et al. (2015) explained that the collected data cannot represent the 

behavior of all the parts of a structure due to discrete locations of sensors. Also, the sensors’ 

accuracy and method of data collection have challenges. 

Defects related to reinforced concrete bridge elements are spalling, exposed rebars, rust staining, 

cracking, distortions, and settlements (Koch et al., 2016). Much of the research in defect 



 

 

5 

 

detection for reinforced concrete bridges have focused on cracks (Koch et al., 2015). The size of 

the bridge’s defect is a vital factor in deciding if it is necessary to go further than the visual 

method (Koch et al., 2015). 

Regular concrete surface defects on bridges are cracks, spalling, scaling, and delamination. 

Scaling is the flaking or peeling of the surface of the concrete as a result of exposure to freezing 

and thawing (Ontario Structure Inspection Manual (OSIM), 2008). Table 2-1 classifies the 

scaling defect severities based on the depth of loss of the surface of the concrete. Delamination is 

separating the surface layer of concrete, which is not completely detached (Table 2-2). 

Continuing of delamination until detaching causes spalling and spall is a detached part of a 

concrete mass (OSIM, 2008) (Table 2-3). Fracture in concrete happens as a result of tensile 

stresses in the concrete member (OSIM, 2008). The severity of cracks is classified based on the 

width of the cracks (Table 2-4).  

Table 2-1 Scaling severity levels based on the depth of loss of surface mortar (OSIM, 2008) 

Severity Depth (d) of loss of surface mortar 

Light d ≤ 5mm 

Medium 6mm ≤ d ≤ 10mm 

Severe 11mm ≤ d ≤ 20mm 

Very Severe 20mm < d 

 

Table 2-2 Delamination severity levels based on the dimensions of the delaminated area (OSIM, 

2008) 

Severity Dimensions of  delaminated area (a, b) 

Light a, b < 150mm 

Medium 150mm ≤ a, b < 300mm 

Severe 300mm ≤ a, b < 600mm 

Very Severe 600mm ≤ a, b 

 



 

 

6 

 

Table 2-3 Spalling severity levels based on the dimensions of the spalled area and depth (OSIM, 

2008) 

Severity Dimensions of palled area (a, b) Depth (d)  

Light a, b < 150mm d < 25mm 

Medium 150mm ≤ a, b < 300mm 25mm ≤ d < 50mm 

Severe 300mm ≤ a, b < 600mm 50mm ≤ d < 100mm 

Very Severe 600mm ≤ a, b 100mm ≤ d 

 

Table 2-4 Cracking severity levels based on the width of the crack (OSIM, 2008). 

Severity Wide (w) 

Hairline cracks w < 0.1 mm 

Narrow cracks 0.1 mm ≤ w < 0.3 mm 

Medium cracks 0.3 mm ≤ w < 1.0 mm 

Wide cracks 1.0 mm ≤ w 

 

There are two main approaches to detect concert surface defects. The first is based on geometry 

analysis and the second is based on artificial intelligence methods. In the geometry analysis 

approach, volume losses are calculated using Gaussian curvature distribution (Teza et al., 2009) 

and crossing section method (Olsen et al., 2009). Armesto-Gonzalez et al.  (2010) proposed an 

automated classification algorithm in order to detect moisture-based defects. Girardeau-Montaut 

et al.  (2005) detected volume changes in excavation using an octree-based comparison between 

average and Hausdorff distance. Liu et al. (2011) presented an algorithm to detect defects based 

on distance and gradient criteria of concrete bridge surface. Tsai et al.  (2012) detected cracks in 

asphalt paving based on dynamic optimization and linear buffered Hausdorff scoring. Laefer et 

al. (2014) contributed a mathematical basis for using Terrestrial Laser Scanning (TLS) to detect 

cracks in unit-block masonry (i.e. stone, brick, or concrete masonry units). A new and automated 

technique that can simultaneously localize and quantify spalling defects on the concrete surface 

using TLS was proposed by Kim et al. (2014). Guldur et al. (2015) developed a strategy to define 



 

 

7 

 

an appropriate threshold considering Red, Green, and Blue (RGB) color values of point clouds or 

intensity values to detect defect objects. Once the objects are detected their geometrical features 

are extracted from point clouds. The geometrical features of point clouds, which are the most 

valuable information of point clouds, are not used in the object detection process of their work. 

The artificial intelligence methods are discussed in Section 2.5. 

2.3 LiDAR Scanning Technology 

Light detection and ranging (LiDAR) scanning technology is a remote sensing method to 

measure distances. The two main approaches to detecting distances that a LiDAR can use are 

time-of-flight technique and phase-based technique. In the time-of-flight technique, a LiDAR 

emits a light beam with a known traveling speed. It measures the distance by multiplying the 

time spent by the light pulse to reach a rigid surface, reflect, and come back to the scanner, by 

the traveling velocity of the pulse. In phase-shift technology, a LiDAR emits a light beam and by 

comparing the reflected beam phase with the reference phase, it measures the distance from the 

scanner to the pointed surface (Liu et al., 2011). 

The output of a LiDAR is point cloud, a 3D dataset that contains geometrical information of the 

sparse captured points from a 3D space. The geometrical information (x, y, z) of points is 

calculated based on the measured distances of the scanned objects or surfaces from the LiDAR’s 

location. To generate point clouds while a scanner is moving in an environment, it is important to 

have continuous LiDAR’s location.  



 

 

8 

 

2.3.1 SLAM 

For scanning in GPS-denied environments, localizing the LiDAR’s position is an important 

issue. A solution of simultaneous localization and mapping (SLAM) problem helps overcome 

this issue. It gives the ability to an autonomous system to start from an unknown position in an 

unknown environment, map the environment by scanning, and simultaneously use the generated 

map to localize itself. A SLAM solution converges the relative observed maps and finds the error 

in the locations of the landmarks. The landmarks are considered static, so the convergence error 

is about the scanner’s movement and it is possible to localize the scanner simultaneously 

(Dissanayake et al., 2001).  

2.3.2 LOAM 

LiDAR odometry and mapping (LOAM) is a real-time solution to localize a 2-axis moving 

LiDAR. LOAM tries to solve the SLAM problem in a 3D environment by using two algorithms. 

One algorithm performs odometry to evaluate the LiDAR’s velocity and the other algorithm 

registers the scanned 2D maps to generate 3D point clouds (Zhang & Singh, 2014).  

2.4 Using UAV for Data Collection 

The LiDAR scanner can be mounted on a tripod (i.e. terrestrial scanning) (Kim et al., 2014)  or 

on an Unmanned Aerial Vehicle (UAV) (i.e. aerial scanning) (Freimuth et al., 2016). Terrestrial 

scanning provides high stability for the scanner and less vibration, but it is not time efficient to 

scan large areas using terrestrial scanners from various points of view. The aerial scanning 

provides easier access to most parts of a large structure and can fly close to the structure. 



 

 

9 

 

Consequently, higher coverage of the inspected surfaces and more accurate results can be 

achieved.    

In addition, a LiDAR-equipped UAV eliminates the inspectors’ falling risks encountered in the 

traditional inspection method. The risk of damages caused by the UAV is low because of its size, 

weight, and controllability (Zink & Barritt, 2015). LiDAR-equipped UAVs are used in different 

applications such as surveying (Wallace et al., 2012), inspection (Guldur et al., 2015), navigation 

(Bachrach et al., 2011), and agriculture (Honkavaara et al., 2012). There are two types of mobile 

LiDAR scanners: two dimensional (2D) and three dimensional (3D). A 2D scanner is more 

affordable, but it can only scan points on a plane, while a 3D scanner can capture the point cloud 

of the surrounding space, which makes the data more accurate. However, a 2D scanner can be 

transferred into a 3D scanner by rotating the scanner using a servo motor (Zhang & Singh, 2014) 

or by moving the scanner on a robot/UAV while collecting the point cloud (Winkvist & 

Rushforth, 2013). 

2.5 Deep Neural Networks and Applications in Semantic Segmentation 

Deep neural networks, also known as multi-layer perceptron’s (mlps), or deep feedforward 

networks, are deep learning models with the ultimate goal of approximating a function f  based 

on the input data for the use cases (e.g. classifying data). A deep neural network tries to map 

y=f(x;θ) by learning the value of the parameters θ from the best function approximation f over 

the input values of x. A deep neural network is created by combining many functions as links of 

a chain, and the length of the chain is the depth of the network and the links are the hidden layers 

of the network (Goodfellow et al., 2016).   



 

 

10 

 

An epoch is a process of going through all the training samples once. The training samples are 

distributed in mini-batches and training over a mini-batch is a step (iteration). So, the number of 

steps of an epoch is equal to the number of all the data samples (data size) divided by the number 

of data samples in a mini-batch (batch size). 

2.5.1 Convolutional Neural Networks 

Convolutional Neural Network (CNN) is a class of deep forward networks, which is inspired by 

biological processes in the connectivity patterns between neurons (LeCun & Bengio, 1995). A 

CNN contains input, convolutional, subsampling, and output layers. The input layer receives 

size-normalized and centered images. Each layer receives inputs by means of local receptive 

fields from the previous layer. Using local receptive fields, neurons extract elementary geometric 

features such as edges, boundaries, and corners. Local receptive fields are known as filters or 

kernels. A simple feature detector, which is suitable on a part of an input image, is expected to be 

useful for the whole image. By convolving a kernel using a unique weight vector over the entire 

image, a feature map would be generated. Typically, a convolutional layer generates several 

feature maps in order to extract several features from the input image (LeCun & Bengio, 1995). 

Each feature map has an identical weight vector, which will improve during the backpropagation 

process. 

In the traditional neural networks, matrix multiplication is used on the whole input data in one 

step to create an output unit, but a CNN uses a kernel, which is smaller than the input, and it 

causes fewer operations (Goodfellow et al., 2016). In the layers of a CNN, a weight vector is 

used repeatedly while computing the output of a layer, this process is parameter sharing. It does 

not affect the forward propagation time but has large effects on memory requirements and 



 

 

11 

 

efficiency of the model (Goodfellow et al., 2016). The idea of parameter sharing minimizes the 

number of free parameters and it directly improves the generalization ability of a model (LeCun, 

1989). Convolutional is dramatically more efficient than the traditional neural networks in the 

volume of computations (Goodfellow et al., 2016).  

The quality of data plays an important role in finding a proper fit function for any neural 

network. Therefore, collecting adequate datasets is necessary to achieve an accurate model. The 

datasets should represent the appropriate parameters and include different cases based on the 

requirements.  

The process of multiplying a weight vector to the input data by convolving a kernel and creating 

linear activations in a feature map is the first stage of a convolutional neural network 

(Goodfellow et al., 2016). Nonlinear activation and subsampling feature map by applying 

pooling functions are the other two stages. 

2.5.1.1 Activation functions 

As mentioned above, a deep neural network is a combination of functions derived from the 

hidden layers. Equation 2-1 refers to a simple network with two hidden layers. If the first derived 

function (f (1)) is a linear function, then the whole model would remain linear to the input x. 

However, in most cases, the answer of a problem is not a linear predictive function (Goodfellow 

et al., 2016). 

𝐲 = 𝐟(𝐱; 𝛉) =  𝐟(𝟐)(𝐟(𝟏)(𝐱))                            2-1 

Therefore, a nonlinear function has to help the model describe the features of the input data. This 

nonlinear function is called the activation function. Rectified linear unit (ReLu) function is the 

most common activation function used in deep neural networks (Figure 2-1). ReLu is a nonlinear 



 

 

12 

 

function that is so close to linear (containing two linear pieces). It is helpful for both linear and 

nonlinear models (Goodfellow et al., 2016). 

 

 

 

 

 

 

 

 

 

2.5.1.2 Pooling 

The pooling process summarizes the elements of a feature map over a specified neighborhood 

(e.g. 2 by 2 or 3 by 3). Pooling (subsampling) makes a model invariance with small geometric 

transformations or distortions of objected features in the input (LeCun & Bengio, 1995), which 

significantly improves the efficiency of the network (Goodfellow et al., 2016). Max pooling and 

mean pooling are two popular pooling functions. Max pooling extracts the maximum element of 

a rectangular neighborhood of feature map elements; and means pooling computes the mean of 

the elements in the neighborhood (Goodfellow et al., 2016). Scherer et al. (2010) evaluated that 

max-pooling works better than mean pooling in CNN for object detection. 

2.5.1.3 Optimization 

A deep neural network needs an optimization algorithm to train the predictor weight vectors.  In 

order to reach the best approximation of function f in y=f(x; θ) (Section 2.5), a cost function J(θ) 

is defined based on measuring the performance of the function f in each iteration. An 

Figure 2-1 ReLu activation function (Goodfellow et al., 2016) 



 

 

13 

 

optimization algorithm is responsible for finding the parameters θ, which significantly reduces 

the value of cost function J(θ) (Goodfellow et al., 2016).  

Optimization algorithms that process all the training examples at the same time are named batch 

gradient methods and optimization algorithms that use only a part of the dataset at a time are 

minibatch stochastic methods. The stochastic gradient descent (SGD) method is the most basic 

and regular method of optimization. SGD works by setting an initial parameter θ, computes 

gradient estimate of minibatch of m, and updates parameter θ using a learning rate parameter in 

each step. The learning rate is the most important parameter in SGD. Momentum (Polyak, 1964) 

is another optimization method, which defined a new parameter of momentum (α) to accelerate 

the process of learning by exponentially decaying α over steps (Figure 2-2). Adam (adaptive 

moments) (Kingma & Ba, 2014) is an adaptive learning rate optimization algorithm. It has the 

features of a momentum optimizer plus a decay rate (ρ) parameter to adapt the learning rate 

parameter over the training steps (Goodfellow et al., 2016; Polyak, 1964). 

 

Figure 2-2 The effect of the momentum optimization method in learning (Goodfellow et al.,  2016) 



 

 

14 

 

2.5.1.4 Batch normalization 

In processing DNNs, every hidden layer takes input data from the output of the previously hidden 

layer and applies its own computation to output a vector for feeding the next sequential layer. In this 

process, some internal covariant shift appears in the data and makes the distribution of nonlinearity 

unstable for different layers (Ioffe & Szegedy, 2015). Each layer in the sequential system of DNNs is 

not aware of other previous layers, but the previous one. Normalizing the values of parameters, by 

initializing to zero means and unit variance, smooth the process of learning in a DNN (Ruder, 2016). 

Batch normalization is the process of normalizing parameters in each mini-batch (Ioffe & Szegedy, 

2015). It affects the activator’s output and by normalizing the distribution, preserves the 

representation abilities.  

2.5.1.5 Dropout 

Overfitting is one of the serious issues in large deep neural networks. Dropout (Srivastava et al., 

2014) addresses this issue by randomly dropping units from the network during the training 

process. This technique avoids the model from co-adopting too much to the training data. It helps 

the model overcome the issue of overfitting and improve the generalization performance of the 

model.  

2.5.2 Object detection in 3D point cloud dataset 

A point cloud is a 3D dataset that contains geometric information of sparse points captured from 

a 3D space. Point cloud datasets may also contain RGB and density information. Based on the 

3D data representation, CNN approaches are classified into three main groups: pixel-based 

approaches, voxel-based approaches, and 3D point-based approaches. In pixel-based approaches 

(Su et al. 2015), 3D data are converted to 2D projection. Voxels are generated from the 3D 



 

 

15 

 

points (Brock et al. 2016). In 3D point-based approaches, Qi et al. (2016) presented the very first 

novel approach to point cloud processing using 3D CNN and applying 3D recognition tasks 

containing object classification, part segmentation, and semantic segmentation. 

Due to the popularity of the pixel- and voxel-based methods, 3D point cloud datasets are 

typically transformed into images or 3D-voxel grids in order to be used in deep learning. The 

transformation results in voluminous data with unclear invariances in some cases. Moreover, 

learning from point cloud sets is easier than meshes due to their simplicity and unified structure. 

Meshes are complex and have combinatorial irregularities (Qi et al. 2017a). 

2.5.3 PointNet 

PointNet is a state of the art CNN model for point cloud analysis which can be applied in 

classification, part segmentation, and semantic segmentation directly based on 4-Dimensional 

(4D) tensor data (Figure 2-3). This network was proposed in 2017 in order to overcome the 

problems related to voxelization and rendering point clouds (Qi et al. 2017a). The input of 

PointNet is a subset of points (point clouds), which has three main characteristics. First, these 

points are unordered. Interaction among neighbored points is the second important characteristic 

of these datasets. The points are not isolated and the local structure of the combination of 

neighboring points affects the semantic information of the point sets. The third characteristic of 

point clouds is being invariant under transformation. These three characteristics are considered in 

designing the architecture of PointNet. Qi et al. (2017a) used Stanford Large-Scale 3D Indoor 

Spaces Dataset (S3DIS) to validate the semantic scene segmentation part of the PointNet 

algorithm (Armeni et al. 2016). 



 

 

16 

 

 

Figure 2-3 PointNet (Qi et al. 2017a) 

2.5.4 PointNet++ 

PointNet normalizes the number of points in pre-defined geometrical blocks in order to feed the 

neural network. Points have various densities in different parts of a point cloud; Although this 

process may affect the segmentation process and loses potential information. PointNet++ feeds 

the neural network with a combination of non-uniform density samples of the input point clouds. 

To reach the ideal goal of capturing the fine details of every single class in point sets, it is 

necessary to look at the smallest possible portions of point sets. However, in the low-density 

parts of the point clouds, the small portions do not give useful information. Therefore, looking at 

larger portions is necessary too. PointNet++ extracts local features from small portions of the 

point set and group them together in larger portions and continues this process to reach the local 

features of the whole point set. This multi-scale grouping method is very effective and important 

for semantic segmentation with multiple labels, and especially for segmenting objects with small 

sizes (Qi et al., 2017b).  



 

 

17 

 

2.5.5 Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS) 

Armeni et al. (2016) proposed a new method in parsing large-scale point clouds and prepared 

Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS). S3DIS covers 6 large-scale indoor 

areas from three different buildings, which are collected using RGB-D technology with 

Matterport Camera.  

S3DIS used a canonical coordinate system for all the spaces to facilitate utilizing the recurrent 

structure of the indoor spaces in the detected point cloud of the building. In the canonical 

coordinate system, (Z) axis is aligned to the gravitational axis, (X) axis is aligned along the 

entrance surface of the room, and (Y) axis is aligned perpendicular to the entrance wall (Armeni, 

et al., 2016). 

2.6 Summary 

This chapter reviewed the concepts, methods, and technologies that are used in the current 

research. Based on the literature, the LiDAR and UAV technologies can solve the data collection 

issues for bridge inspection, especially for the inaccessible elements of bridges. The integration 

of these two technologies aims to define an automated method for the bridge’s data collection. 

Moreover, point cloud analysis using deep learning methods can semantically segment LiDAR 

generated point clouds, which is the core method of this research for concrete surface defect 

detection. 

 

 

 



 

 18 

 

CHAPTER 3 Designing LiDAR-equipped UAV Platform for Structural 

Inspection 

3.1 Introduction 

Efficient inspection and maintenance of bridges and other structures are vital for improving the 

safety and sustainability of infrastructure systems. Traditionally, visual inspection using non-

equipped eyes and manual measurements are used for detecting surface defects, which may lead 

to subjective results. This approach is time-consuming and unsafe, especially for inspecting the 

inaccessible elements of a bridge (Kim et al., 2014).  

Recently, 3D Light Detection and Ranging (LiDAR) scanners (Liu et al., 2011) and cameras 

(Adhikari et al., 2014) are used for detecting surface defects (e.g. cracks) using computer vision 

methods. In general, LiDAR technology is more expensive than cameras, and defect detection 

results may miss some edge points. However, it is a promising method, not only for detecting the 

location and size of the defects but also for computing their depth and volume (Teza et al., 2009; 

Olsen et al., 2009). Also, unlike digital images, the generated point clouds are not affected by 

lighting, and their analysis does not require supplementary information (Laefer et al., 2014). 

The LiDAR scanner can be mounted on a tripod (Kim et al., 2014) (i.e. terrestrial scanning) or 

on an Unmanned Aerial Vehicle (UAV) (Freimuth et al., 2017; Yoder & Sebastian, 2016) (i.e. 

aerial scanning). Although terrestrial scanning provides high stability for the scanner and less 

vibration, it is not time efficient. The aerial scanning provides easier access to most parts of the 

structure and can fly close to the structure. Consequently, higher coverage of the inspected 

surfaces and more accurate results can be achieved.    



 

 

19 

 

In addition, the LiDAR-equipped UAV eliminates the inspectors’ falling risks encountered in the 

traditional inspection method. The risk of damages caused by the UAV is low because of its size, 

weight, and controllability (Zink & Barritt, 2015). The Special Flight Operation Certification 

(SFOC), required by the Canadian Aviation Regulations, includes the plan of operation 

respecting specific safety rules, such as the distance between the operators and UAV, keeping 

people away from the flight site, and flying the UAV in the Line of View (LoV) (Canadian 

Aviation Regulations (CARs) and standards, 2017).  

LiDAR-equipped UAVs are used in different applications such as surveying (Wallace et al., 

2012), inspection (Guldur et al., 2015), navigation (Bachrach et al., 2011), and agriculture 

(Honkavaara et al., 2012). There are two types of mobile LiDAR scanners: two dimensional (2D) 

and three dimensional (3D). A 2D scanner is more affordable, but it can only scan points on a 

plane, while a 3D scanner can capture the point cloud of the surrounding space, which makes the 

data more accurate. However, a 2D scanner can be transferred into a 3D scanner by rotating the 

scanner using a servo motor (Zhang & Singh, 2014) or by moving the scanner on a robot/UAV 

while collecting the point cloud (Winkvist & Rushforth, 2013). The accurate rotational positions 

of the servo or the Simultaneous Localization And Mapping (SLAM) algorithm can be used to 

register the collected data. For example, in the research of Winkvist et al. (Winkvist & 

Rushforth, 2013) and Bachrach et al. (Bachrach et al., 2011), a 2D LiDAR is mounted on the top 

of a UAV, and SLAM is used for generating the point cloud taking advantage of the vertical 

movement of the UAV. In order to increase the Field of View (FoV) of the scanner, in the ARIA 

project (Zhang & Singh, 2014) a servo mounted on the UAV is used to rotate the scanner while 

the UAV is flying, which leads to collecting 3D point clouds for inspection and navigation 



 

 

20 

 

purposes. However, the details of the platform design for integrating the UAV, the servo and the 

scanner are not available in the literature. 

The objective of this part of the research is to design a platform for LiDAR-equipped UAV for 

structural inspection using an affordable 2D scanner. The remaining sections of this chapter are 

as follows: First, the requirements and other design considerations are introduced in Section 3.2. 

Section 3.3 provides the design details and the hardware and software integration steps. Section 

3.4 provides an initial test of the platform. Section 3.5 provides a conclusion and summary of 

future work. 

3.2 Design Considerations 

In order to have a successful design of the LiDAR-equipped UAV, the following should be 

considered: 

3.2.1 Objectives 

The maximum coverage of the surface of the inspected structure and the minimum cost are the 

two main objectives of an efficient inspection using the LiDAR-equipped UAV. The main costs 

of this method are the equipment cost and the flight cost. The flight cost depends on the time of 

the flight. The full coverage may not be achieved because of the obstacle near the inspected 

structure, which can limit the visibility of the LiDAR. So, the path planning goal is finding a 

collision-free path with minimum time-of-flight and maximum coverage. 

3.2.2 Requirements 

In order to choose the most appropriate LiDAR-equipped UAV, all the following requirements 



 

 

21 

 

should be considered with respect to the budget.  

(1) Mounting location: Most of the commercially available solutions have the scanner mounted 

under the UAV because they are designed for surveying purposes (Figure 3-1(c)). However, for 

structural inspection purposes, the LiDAR can be mounted either on top (Figure 3-1(a) and (b)) 

or under the UAV depending on the location of the inspected area of the structure. 

 

Figure 3-1. Scanner position on top of UAV in (a) and (b), and under UAV in (c) 

(2) Metrology method: There are two types of metrology methods for LiDAR: Time-of-Flight 

(ToF) and Phase Shift (PS). ToF is used for a long-range of measurement with an accuracy of 4-

10 mm at 100 m. Unlike ToF, PS is practical for short-range measurement with 2-4 mm at 20 m 

(Kim et al., 2014). 

 (3) Maximum payload: The maximum payload is the weight that the UAV is capable to carry. 

Therefore, the weight of all carried devices (e.g. scanner, minicomputer, batteries, and GPS) 

should not exceed this threshold. The payload affects the UAV time of flight because carrying a 

heavier payload consumes more energy. As the weight of the scanner is one of the major weights 

(a) MIT RANGE (Bachrach et al., 2011)                                           (b) CMU ARIA (Huber, 2014) 

(c) Stormbee (Stormbee demo days, 2017) 



 

 

22 

 

in the payload of the UAV, it should be carefully considered. Providing a lightweight and 

accurate scanner is expensive, and choosing the best option depends on the available budget. 

Moreover, extra batteries are needed to supply the power for the scanner and other electronic 

parts attached to the UAV (e.g. servo, microcomputer, etc.). 

(4) Size of UAV: The UAV should be big enough to carry the scanner and other equipment, and 

small enough to fly safely as close as possible to the inspected surface. 

3.2.3 Constraints 

There are several constraints that should be considered during planning.   

(1) Minimum and maximum distances: A specific distance range should be considered during 

inspection based on safety and the characteristics of the scanner. The density of the scanned 

point cloud decreases with longer distances. 

(2) Battery capacity: The battery capacity has effects on the time of flight. As mentioned above, 

although adding more batteries helps the UAV to fly further, it increases the weight of the 

system. 

(3) Vibration: The vibration of the LiDAR-equipped UAV during inspection causes errors. A 

suitable design of a LiDAR-equipped UAV, which includes designing an appropriate engine and 

body shape, installing dampers, etc., can decrease the vibration (Li et al., 2015). 

(4) Degrees of Freedom (DoFs): Each UAV has six DoFs: three displacements (x, y, and z) and 

three rotations (roll, pitch, and yaw). In general, the pitch and roll of the UAV are constrained to 

keep the UAV in a horizontal position. 

(5) LiDAR parameters: The 2D and 3D scanners have one and two FoVs, respectively. The 

FoV is an important parameter in the visibility analysis. Furthermore, other important parameters 



 

 

23 

 

of the scanner are the angular resolution (∆𝜃), incidence angle (𝜃), and beam diameter (Figure 

3-2). The LiDAR light beam reflects in two ways of specular and diffuse reflection after hitting 

an object (Jiang et al., 2017). The accuracy of a point cloud is mainly related to the measurement 

resolution, angular resolution, and scanning speed. In the case of the 2D scanner integrated with 

a servo, the angular resolution and the speed of the servo affect the accuracy of the generated 

point cloud. 

 

Figure 3-2 Some specifications of the LiDAR 

3.2.4 Other Considerations 

(1) Safe operation: Mounting additional devices should not change the center of gravity of the 

UAV because it affects the stability of the UAV. Also, the additional devices should not interrupt 

the GPS signals.  

(2) Real-time:  The LiDAR-equipped UAV platform has to collect a large amount of point cloud 

data to be used in real-time for path planning and obstacle detection. 

3.3 Platform Design 

UAV selection 

DJI Matrice 100 (MATRICE 100, 2016) is used in this platform because it is customizable and 



 

 

24 

 

has expansion bays to mount the scanner and other devices on top or below the UAV. Also, its 

radius is less than one meter, which makes it agile and able to enter narrow spaces near the 

inspection surfaces. The specifications of this UAV are shown in Table 3-1. The maximum 

payload is about 1.2 Kg. 

Table 3-1 UAV specifications 

 

LiDAR selection 

Hokuyo UTM-30LX 2D laser range finder is used for data collection because of its lightweight 

and affordable price. The specifications of this scanner are shown in Table 3-2 (HOKUYO 

AUTOMATIC, 2014). 

Table 3-2 Scanner specifications 

 

Servo selection 

In order to enable the scanner to generate a 3D point cloud, a servo is used to rotate it. 

Dynamixel MX-28T is a robotic actuator servo that can control the movement of the scanner 

with a minimum step of 0.088º, which means the angular resolution of the platform is 0.088º. By 

Specification Value 

Max Takeoff Weight 3.60 Kg 

Net weight 2.43 Kg 

Battery 5700 mAh – 22.8V 

Diameter 996 mm 

Hovering Time (no payload) 28 minutes 

Specification Value 

Detection range 0.1 ~ 30m 

Accuracy ±30mm (under 10m) 

Horizontal FoV 270º 

Angular resolution 0.25º 

Scan speed 43,200 points per second 

Weight 210 g (without cables) 



 

 

25 

 

rotating the scanner 180º, the vertical FoV of the scanning becomes 360º. 

The servo uses an adapter (USB2Dynamixel) to connect to the microcomputer and another 

adapter (SMPS2Dynamixel) to connect to the battery. Both the servo and the scanner need a 12V 

power supply. 

Microcomputer selection 

To control the scanner and the servo, and to collect data from them in real-time, the DJI 

MANIFOLD microcomputer is selected in this platform because it is compatible with the UAV 

(MANIFOLD). The power for MANIFOLD is supplied directly from the UAV.  

Electronic connectors 

An isolated voltage regulating board is designed and built to convert the 25V power of UAV’s 

port into 12V. This board makes it possible to run the scanner and servo without adding an extra 

battery. The weight of the voltage regulating board is 72 g. 

Interfacing parts using 3D printing 

Although previous research exists about interfacing a servo with 2D LiDAR (Bogosian et al., 

2016), the integration with the UAV requires additional interfaces to control the direction of the 

scanning. Three different interfacing parts are designed and 3D printed to attach the scanner and 

the servo to each other and to the UAV. The designed parts are shown in Figure 3-3. Figure 3-3 

(c) and (d) show the parts for attaching the servo to the UAV in vertical or inclined positions, 

respectively. 

3.3.1 Integration 

To integrate the components, hardware and software integrations are required. These are 

discussed in the following sections. 



 

 

26 

 

 

Figure 3-3 Design of interfacing parts for 3D printing, (a) Part for holding the servo, (b) Part for 

holding the scanner, (c) Part for attaching the servo vertically, and (d) Part for attaching the servo 

inclined 

3.3.1.1 Hardware Integration 

Figure 3-4 shows the integration of the hardware components of the platform. Table 3-3 shows 

the summary of hardware specifications and their connectivity to each other. The total weight of 

the integrated platform is 3.13 Kg, which is less than the maximum takeoff weight of the UAV. 

In this platform, the scanner rotates 180º (from -90º to 90º). It stops for 0.1 s when changing 

direction from clockwise to counterclockwise. This stop causes some errors in the registration 

process of the point cloud. It is possible to rotate the scanner continuously in one direction by 

adding a slip-ring between the scanner and the servo to eliminate the rotation of the cables of the 

scanner. Figure 3-5 shows the interfacing part for mounting the servo on the UAV vertically or 

with inclination, and the corresponding configurations of the LiDAR-equipped UAV platform. 

    (a)                     (b)         (c)                (d)  

 

 



 

 27 

 

 

DC jack barrel (Male) 

SMPS2Dynamixel 

Adapter 

Robot Cable 

3pin (Male) 

 

Robot Cable 

3pin (Male) 

 Dynamixel 

MX-28T Servo 

Hokuyo UTM-30LX 

USB2Dynamixel 

Adapter 

XT30 (Male) 

DJI MATRICE 100 
DJI MANIFOLD 

XT30 (Male) 

Grove 4pin connector 

(Male) 

 

Figure 3-4 Hardware integration 



 

 

28 

 

Table 3-3 Summary table of hardware components 

Component Function Voltage (V) Current (A) Weight (g) Attached to 

Hokuyo UTM-30LX Laser Scanning 12 1.0 210 
MANIFOLD, Voltage Regulator 

Board 

MANIFOLD 
Controlling  scanner 

and Servo 
14-26 Up to 10 197 

UAV, USB2Dynamixel Adapter,  

scanner 

Dynamixel MX28T Rotating  scanner 12 1.4 72 
USB2Dynamixel Adapter, 

SMPS2Dynamixel Adapter 

USB2Dynamixel 

Adapter 

Connect servo to 

MANIFOLD 
N/A N/A 28 Servo, MANIFOLD 

SMPS2Dynamixel 

Adapter 

Power supply for 

servo 
12 1.4 14 Servo, Voltage Regulator Board 

Voltage Regulator 

Board 

Regulate the voltage 

to 12V 
9-36 3.3 72 

SMPS2Dynamixel Adapter,  

scanner, UAV 

Part for holding the 

servo 

Connect servo and  

scanner to UAV 
N/A N/A 45 UAV, 3D printed servo part 

Part for attaching  

servo vertically 

Connect the servo to 

the table part 
N/A N/A 26 Servo, 3D printed table part 

Part for attaching  

servo inclined 

Connect the servo to 

the table part 
N/A N/A 29 Servo, 3D printed table part 

Part for holding the 

scanner 

Connect the scanner 

to the servo 
N/A N/A 31 Servo,  scanner 



 

 29 

 

 

Figure 3-5 LiDAR-equipped UAV platform 

 (b) Platform with vertial LiDAR 

(c) Interfacing part for inclined mounting 

Hokuyo LiDAR 

MANIFOLD 
Voltage regulator board 

Holding servo 

Holding LiDAR 

Attaching servo vertically 

 

Servo 

Attaching servo with an angle  

 

(a) Interfacing part for vertically mounting 

 (d) Platform with inclined LiDAR 



 

 30 

 

3.3.1.2 Software Integration 

Spin Hokuyo Robot Operating System (ROS) software package is installed on the microcomputer 

to create 3D point clouds in real-time (Bertussi et al., 2017). This software works under Ubuntu 

operating system and contains the code to control the servo and the scanner to generate a 3D 

point cloud. Spin Hokuyo has five nodes for the following purposes: (1) two nodes (tilt motor 

and tilt transform) for controlling the servo and assembling point cloud messages; (2) one node 

(Hokuyo robot filter) to remove unnecessary points that are related to the body of the operating 

robot. It eliminates all the points inside the radius of 50 centimeters; (3) one node (scan to PCL 

(Point Cloud Library)) to convert the scanned data into point cloud messages; and (4) one node 

(PCL assembler client) to combine all the published point cloud messages into one point cloud 

message. Spin Hokuyo can adjust the initial, start and end positions of the servo and its rotation 

speed. The SLAM algorithm can be used in the software package to enable the platform to scan 

during the UAV flight. 

After scanning, the point cloud that is generated by Spin Hokuyo can be visualized in Rviz (ROS 

3D visualization tool) (Hershberger et al., 2018). Rosbag package records the output messages of 

spin Hokuyo and saves them as Bag file (Field et al., 2010). There is a node named Bag to PCL 

in PCL-ROS package, which reads the Bag file and converts ROS point cloud messages to PCD 

(Point Cloud Data) files (FARO, 2012) CloudCompare software can open and visualize PCD 

point cloud files, and convert them to other point clouds file formats, such as LAS, LAZ, and 

E57 (Venator, 2015).  

In this work, Spin Hokuyo is used in a stationary mode for initial testing as explained in Section 

4. When integrated with In the case of flying on a UAV, because the GPS signals may not be 



 

 

31 

 

available when the UAV is flying under a bridge., Therefore, other localization methods can be 

investigated, such as integrating an onboard Inertial Measurement Unit (IMU) with Visual 

Odometry (VO), Simultaneous Localization and Mapping (SLAM) algorithms, or Lidar 

Odometry and Mapping (LOAM) (Zhang & Singh, 2014). 

3.4 Case Study 

In order to validate the performance of the designed platform, two tests are implemented. The 

first test is performed in an indoor environment to realize the LiDAR system. The second test is 

performed in an outdoor environment to investigate the LiDAR-equipped UAV platform’s 

performance when it is flying. 

3.4.1 Indoor Test 

Before moving to outdoor flying tests of the designed platform, the initial test is performed in an 

indoor environment, and it is limited to testing the LiDAR system (LiDAR, servo, 

microcomputer, battery, interface elements, and connectors) when the drone is stationary. The 

width, length, and height of the room are 4, 7 and 3 m, respectively. The generated point cloud is 

shown in Figure 3-6 (a). The color distribution of the point cloud is based on elevation. The 

horizontal and vertical FoVs of the LiDAR system in this test are 270º and 360º, respectively. 

The LiDAR scans the environment in 2D lines, and each line contains 1,080 points. The number 

of lines of scanning in a sweep is dependent on the rotation speed of the servo. In this test, the 

rotation speed was set on 0.5 radians per second. Each sweep is π radians, so, one sweep was 

taken about 6.28 s to complete. The LiDAR scans 40 lines in a second, so, one sweep should 

contain about 251 lines and almost 270,000 points. The point cloud is shown in Figure 3-6 (a) is 



 

 

32 

 

generated by 13 sweeps and contains 3.2 million points. Each sweep has about 250,000 points. 

Some points are eliminated by the filtering node. 

In order to check the accuracy of the collected point cloud, the same space was scanned with a 

higher accuracy 3D LiDAR scanner (FARO Focus3D) to generate a ground truth point cloud. 

FARO Focus3D is a 3D laser scanner with an accuracy of 2 mm, which can scan about one 

million points per second (FARO, 2012; Bogosian et al., 2016). 

A segment of the ceiling with the dimensions of 2.3 m × 4.7 m is selected (Figure 3-6 (b)) and 

compared as a cloud-to-cloud distance comparison by CloudCompare software, where the 

distance of each point of the compared cloud is measured to its nearest neighbor in the reference 

cloud.  

The two point clouds were aligned to each other manually in CloudCompare by picking five 

equivalent point pairs. Each segment contains about 250,000 points. The segment point cloud 

from FARO (Figure 3-6 (c)) is considered as the reference cloud. The distance distribution 

histogram of the comparison is shown in Figure 3-6 (d). Gaussian distribution is used in this 

computation, and the mean of the distribution is 1.4 cm with a standard deviation of 0.6 cm. 

As shown in Figure 3-6 (e), the gaps between the drop ceilings tiles of the room are visible. The 

width of these gaps is about 2 cm, which is greater than the calculated error. Assuming that these 

gaps are similar in size to some large cracks that could be detected on the actual structure during 

an inspection, the accuracy of the point cloud collected by the platform can be considered 

enough to detect this size of cracks. 



 

 

33 

 

 

Figure 3-6 The initial test’s results: (a) The generated point cloud by the designed platform, (b) A 

segment of the point cloud, (c) The reference segment using FARO, (d) The comparison distance 

distribution histogram (m), and (e) The compared segment colored based on distances from the 

reference segment 

3.4.2 Outdoor Test 

After performing the stationary indoor test, an outdoor test is executed to validate the designed 

platform when it is flying. The test is executed on the 6th of March, 2019, in a park in Nuns' 

Island, Montreal (Figure 3-7). This location is selected due to the UAV flying restrictions in an 

outdoor public environment. The LiDAR-equipped UAV scanned a small building during flying 

using the LOAM method. Also, in order to check the accuracy of the collected point cloud, the 

same building is scanned using FARO Focus3D (a higher accuracy 3D LiDAR scanner) (Figure 3-8).   

                 (d)       (e)  
 

               (a)                (b)            (c)  



 

 

34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3-7 The location of the outdoor test in Montreal, QC, Canada 

The LiDAR-equipped UAV 

FARO terestrial LiDAR 

Figure 3-8 Outdoor test 



 

 

35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(a) (b) 

Figure 3-9 The outdoor test’s results: (a) The overlapped point clouds of the designed platform, 

and FARO, (b) A segment of the overlapped point clouds, and (c) The comparison distance 

distribution histogram (m) 

(c) 



 

 

36 

 

The two point clouds are aligned with each other manually in Figure 3-9 (a). Figure 3-9 (b) 

shows a part of the aligned point clouds. This part is a section of a wall of the scanned building. 

Two point clouds segments in the part are compared as a cloud-to-cloud distance comparison. 

The distance distribution histogram of the comparison is shown in Figure 3-9 (c). The mean of 

the distribution is 13.3 cm with a standard deviation of 11.3 cm. The accuracy of the point cloud 

collected by the platform is not enough to detect surface defects smaller than 10cm. The reasons 

of platform’s low accuracy when it is flying are: (1) The low accuracy of the 2D scanner, (2) The 

inaccuracy of matching the scanned lines during rotation of the 2D scanner that multiples by the 

inaccuracy value of the 2D scanner, (3) The inaccuracy of matching the scanned point clouds 

during flying, which also multiples by the inaccuracy value of the 2D scanner and matching 

scanned lines, and (4) The weather condition (wind).  

3.5 Summary and Conclusions 

A LiDAR-equipped UAV platform is designed to collect 3D point cloud data using a 2D LiDAR 

scanner. The design satisfies the main identified requirements and constraints for structural 

inspection and the platform is realized and tested in an indoor environment in a stationary mode. 

The results of an outdoor test in flying mode show that the point clouds’ accuracy is not enough 

to detect surface defects smaller than 10 cm. The platform can generate point clouds with higher 

accuracy using an accurate light-weighted 3D LiDAR but this solution is very expensive at the 

current time. Therefore, our future work includes validating the designed LiDAR-equipped UAV 

platform using a more accurate light-weighted 3D LiDAR. 



 

 37 

 

CHAPTER 4 Concrete Surface Defect Detection Using Deep Neural 

Network Based on LiDAR Scanning 

4.1 Introduction 

As mentioned in CHAPTER 1, the structural inspection of bridges is essential to improve the 

safety of infrastructure systems, such as bridges. Visual inspection is the traditional method of 

detecting surface defects of bridges. This process can be unsafe, time-consuming, expensive and 

subjective to human errors (Guldur et al. 2015). In order to automate the process of structural 

inspection, it is important to collect proper datasets and use an efficient approach to analyze them 

and find the defects. Recently, 3D Light Detection and Ranging (LiDAR) scanners (Liu et al. 

2011) are used for detecting surface defects (e.g. cracks) using computer vision methods. LiDAR 

scanners can collect high-quality 3D point cloud datasets.  

The objective of this chapter is to develop a method for detecting concrete surface defects using 

a DNN (Section 2.5) based on LiDAR scanning. In the developed method, PointNet (Qi et al., 

2017a) is adapted to detect surface defects using point cloud datasets from scanning bridge 

surfaces. The reason for selecting PointNet is that it is robust to missing and corrupted data. 

PointNet++ (Qi et al., 2017b) is also adapted to detect concrete surface defects. It is applied to 

detect types and severity levels of the structural defects in point cloud datasets. PointNet++ uses 

PointNet units in its hierarchical network and takes advantage of PointNets robustness. It also 

extracts point’s features from various sample scales, which makes it more accurate on 

segmenting adjacent or relatively small objects. 



 

 

38 

 

4.2 Methodology 

As explained in Section 2.2, regular concrete surface defects on bridges are cracks, spalling, 

scaling, and delamination. Scaling is the flaking or peeling of the surface of the concrete as a 

result of exposure to freezing and thawing. Delamination is separating the surface layer of 

concrete, which is not completely detached. The prolonged delamination until detaching causes 

spalling and spall is a detached part of a concrete mass (Ministry of Transportation, 2008). Table 

4-1 shows the severity of defects, which is categorized into four levels of light, medium, severe, 

and very severe, based on the depth and area of the defects. 

Table 4-1 Defects severity based on the depth of loss (d), width and height of the affected area (w, h) (Ministry 

of Transportation 2008) 

Type of defect Light* Medium* Severe* Very Severe* 

Scaling     d < 5     5 ≤    d   < 10   10 ≤    d   < 20   20 ≤ d 

Delamination w, h < 150 150 ≤ w, h < 300 300 ≤ w, h < 600 600 ≤ w, h 

Spalling 
w, h < 150 

     d < 25 

150 ≤ w, h < 300 

  25 ≤    d   < 50 

300 ≤ w, h < 600 

  50 ≤    d   < 100 

600 ≤ w, h 

100 ≤ d 
* All of the dimensions are in mm 

 

This section explains the steps of applying the CNN approach on 3D point cloud datasets to 

recognize concrete surface defects. Two networks of PointNet and Pointnet++ are used in this 

study, which are point cloud analysis solutions using CNN. These networks are adapted to solve 

the structural defect detection problem. The performance of the networks is improved by 

modifying their algorithms (e.g. modifying the network topology, changing the loss function, 

adding the dropout layers) and by improving the dataset (e.g. collecting more data, annotating in 

multi-classes, adding data by flipping). Moreover, the details of the CNN architecture are 

explained in Section 4.3. There are five main steps in this method: (1) data collection, (2) manual 

annotation, (3) data pre-processing, (4) training and evaluation, and (5) testing (Figure 4-1). 



 

 

39 

 

Data 

Collection
Annotation

Adding label to 

points

Splitting points 

to blocks
Training Testing

Data Pre-Processing

Adding Flipped 

Data

 

Figure 4-1. The proposed method 

The adapted semantic segmentation parts of PointNet and PointNet++  are used for binary 

classes’ semantic segmentation. These networks are originally designed to detect indoor building 

elements. In this chapter, they are adapted to detect surface defects using point cloud datasets 

from scanning bridge surfaces. The results of applying adapted PointNet and PointNet++ are 

compared in the binary classes’ semantic segmentation. 

The adapted semantic segmentation model of PointNet++ is also used in a part of the method for 

multi-classes’ semantic segmentation. This network is used in this work because it has 

PointNet’s advantages of being robust to missing and corrupted data and directly applying on 

point datasets. Also, it is more efficient in segmenting classes with small geometries.  

4.2.1 Data Collection 

The process of accurate data collection is an important aspect of reaching valuable output results 

of a CNN algorithm. The geometric features of defects, especially the depth, play an important 

role in extracting useful features using the neural network.  Terrestrial laser scanning provides 

high stability and accuracy compared to other methods of laser scanning (Nasrollahi et al. 2018). 

The position of the LiDAR scanner affects the visibility of defects in the collected point clouds. 

In addition, the fine registration process results in having reliable datasets to feed CNN. 



 

 

40 

 

4.2.2 Annotation 

In addition to collecting accurate datasets, the annotation process is vital for reaching a 

satisfactory CNN trained model. The annotation process is manual and is based on the structural 

definitions of concrete surface defects as shown in Table 4-1. The datasets are annotated into five 

main classes of crack, light spalling, medium spalling, severe spalling, and no-defect. 

4.2.3 Data Pre-Processing 

PointNet and PointNet++ semantic segmentation are based on feeding the input data with the 

structure of S3DIS; so the training and testing datasets of this work are prepared in the same 

structure. Point clouds are distributed manually into different areas and each area has different 

parts. The Z-axis of the canonical coordinate system is set in the vertical direction. The X-axis is 

along the concrete surface of the bridge, and the Y-axis is perpendicular to the concrete surface 

(inside direction). This setting makes the depths of the defects’ Y values positive. The 

convolutional process is 2D and performs on the XZ surface of the dataset; so the 3D blocks of 

points are selected on this surface with the specified dimensions in the X and the Z directions. 

The depth of the dataset is the third dimension Y. By choosing the dimensions and number of 

points of the 3D blocks, points are downsampled or upsampled as required, based on the density 

of the input datasets. The effect of changing the density on the results is discussed in Section 

4.3.4.4. 

In the data pre-processing step, the annotated point clouds are converted to Hierarchical Data 

Format (HDF). HDF is an abstract data managing and storing model (HDF-Group, 2018). Points 

are wrapped and normalized inside the blocks and saved in HDF5 format. In this process, a 

channel adds to each point’s information. This channel is the normalized location value of the 



 

 

41 

 

points in dimension Y and with respect to the point cloud. For each part, the point with the 

minimum coordinate value is set to the origin of a local coordinate system and the normalized 

value of all the points is calculated as follows (Qi et al., 2017a):  

𝐍𝐲𝐢
=

𝐲𝐢 

𝐘
                    4-1  

where Y is the maximum value in the specific part. The value of Ny is distributed from 0 to 1. By 

adding Ny, each point is represented as a 7-dimensional vector of XYZ, RGB, and Ny. In the 

original PointNet network, three channels of the normalized location values for XYZ dimensions 

are calculated and added to each point’s information, but the normalized location values on XZ 

surface are not useful for defect detection. A point location value in Y-axis is a piece of valuable 

information and helps the network to learn how to detect defects points. 

4.2.4 Training and evaluation 

In this part, PointNet and PointNet++ are adapted to detect the surface concrete defects. The 

numbers of points in the defect classes of the dataset of this study are much less than the number 

of no-defect points, which is known as the issue of “imbalanced dataset”. There are two main 

categories of methods for addressing the imbalance issues of datasets; data-level methods and 

classifier-level methods (Buda et al., 2018). Data-level methods are oversampling the small-sized 

classes or undersampling the large-sized classes. Thresholding and cost-sensitive learning are 

classifier-level methods. In this study, cost-sensitive learning is selected to overcome the dataset 

unbalanced issue. In a regular loss function, the effect of miss-predicting a point on the learning 

predictor is equal, regardless of the size of the class. By using a weighted loss function, the 

effective weight of points of each class on the correcting process of backpropagation can be 



 

 

42 

 

adjusted. Weighted sparse softmax cross-entropy loss function is used in this study, which is 

discussed in Section 4.3. 

4.2.4.1 Adapted PointNet 

The training model has two main parts: (1) classification network and (2) segmentation network, 

which are explained in the following sections. The generated blocks of points in data pre-

processing step are fed into the CNN as input data. The number of points in each block in the 

original PointNet is 1,024 with a block size of 1 m × 1 m on the XY surface for rooms with a 

height of 3 m. This is assumed as a very low density of points for detecting most types of defects 

(e.g.  Medium-sized spalls). Therefore, the selected block sizes are less than 50 cm × 50 cm on 

the XZ surface, with the depth of the defects as the third dimension, which is less than 10 cm. 

Choosing the same number of points (i.e. 1,024) with the new block size can increase the density 

of points by more than 100 times. A weighted loss function is used to adapt the model to our 

dataset. The original PointNet receives 9-dimensional input vectors that contain normalized 

location values over X, Y, and Z directions (NxNyNz). As mentioned in Section 4.2.3, just the Ny is 

calculated for our dataset because the relative location values of defects’ points over X and Z 

direction are not valuable in detecting them and mislead the learning process. 

Since the number of the defect points are less than the points belonging to the non-defect parts of 

the point cloud, which is known as the issue of “Imbalanced Datasets”, a weighted softmax loss 

function is used and the corresponding weight vector is defined based on the points distribution 

on the classes. 

4.2.4.1.1 Classification network 



 

 

43 

 

The classification network has two sets of MLP. The first set of MLP accepts blocks of points as 

input and every layer extracts detailed features of points by convolving on the blocks. Every 

hidden layer includes batch normalization and the ReLU activation function. The main goal of 

this set of MLP is to extract the local features per point from the 7-dimensional input vectors of 

points. The output of the first set of MLP is a vector of all input points, where every point has a 

weight. This vector represents the extracted local features of points. A max-pooling layer is 

applied to the feature vector to down-sample the features, followed by the second set of MLP in 

order to extract the global features of each point. 

4.2.4.1.2 Segmentation network 

This part of the network has a set of MLP that is fed by concatenation of the extracted local and 

global features. Each convolutional layer in this set of MLP is followed by a dropout layer, 

except the last one. Every hidden layer includes batch normalization and the ReLU activation 

function. The output of this network is a vector of predicted probabilities of belonging to each 

class for every point.  

4.2.4.2 Adapted PointNet++ 

The training model has a hierarchical feature learning architecture and uses mini-PointNet units 

in every set of feature abstraction. The first hidden layer of PointNet++ has sub-layers of 

sampling and extracting features by applying PointNet CNN on them. The sub-layers work 

recursively.  The second hidden layer of PointNet++ has sub-layers of grouping and applying 

PointNet CNN recursively. In each sub-layer, two output feature vectors of the first hidden 

layers’ sub-layers are concatenated. The last set of layers are fully connected with a dropout 



 

 

44 

 

layer in the middle. Every hidden layer (and sub-layer) includes batch normalization and the 

ReLU activation function. 

A weighted loss function is also used in PointNet++ to overcome the imbalanced dataset issue. 

In PointNet++ the weight vector of classes is calculated for every set of batches separately. It 

enables the model to learn as robustly as possible from various classes because every set of 

batches may have different weight distribution. 

4.2.5 Testing 

The testing process uses a part of the datasets, which is not seen by the model in the training and 

the evaluation processes to validate the accuracy of the model. 

4.3 Case study 

In the case study, several datasets are collected using a terrestrial LiDAR and annotated 

manually into the five main classes of cracks, light spalling, medium spalling, severe spalling, 

and no-defect. In the first part of the case study, all the defects, regardless of the types and 

severity levels, are categorized as one class (defect), in order to get the initial validation of the 

proposed CNN approaches. The adapted PointNet and PointNet++ models are applied, and the 

results are compared. Also, the adapted PointNet++ model is applied to the multi-classes dataset 

in two steps. In the first step, it is evaluated on detecting types of defects (crack and spalling) and 

in the second step on detecting the severity of the spalling defects. 



 

 

45 

 

4.3.1 Data Collection 

In CNN, a large dataset is required to train an accurate model. However, in this study, four 

reinforced concrete bridges in Montréal are scanned using a FARO Focus3D scanner (FARO, 

2012) in order to collect accurate point cloud datasets. The specifications of this LiDAR are 

presented in Table 4-2. The locations of the scanned bridges are shown in Figure 4-2. In order to 

cover all the lower parts of the bridges, they are scanned from various stations. The positions of 

the stations in the first scanning of bridge one are shown in Figure 4-3 and Figure 4-4. In all the 

scanning stations the LiDAR is positioned in a way the points on the scanning surfaces are not 

further than 10m. 

The scanning parameters, such as the fields of view (FoVs), resolution, quality, and the number 

of scanned points are in Table 4-3. Quality setting can be set between 1x and 8x, which affects 

the quality of the point cloud by reducing noises in the scan data. Ranging noise has two effects: 

(1) The higher the ranging noise is, the thicker the scan point cloud on a flat object will be, and 

(2) The higher the ranging noise is, the fewer scan points will remain on far distance objects 

(FARO, 2017). 

The major contributor to the ranging noise is the sensor electronics, where the incoming signal is 

evaluated to determine the distance. One way to increase the signal strength is to increase the 

observation time. The quality factor 1x has the smallest observation time of 1 µs per scan point 

and 4x has 8 µs per scan point (FARO, 2017). In other words, by increasing the quality factor, 

the observation time will be increased, the incoming signals will be stronger, and the effective 

number of scanned points will be higher. 



 

 

46 

 

The resolution parameter can be set between 1 and 1/32. It declares the fraction of the number of 

points that will be detected over the number that can be detected. Resolution 1 means 710.7 

million points in a 360º scan and 1/8 means 11.1 million points in a full scan (FARO, 2017). In 

other words, the resolution factor directly affects the distances between scanned points. 

Table 4-2 FARO Focus3D LiDAR scanner specifications (Faro 2012) 

LiDAR 
Points per 

Second 

Field of View 
Angular Resolution Accuracy 

Measurement 

Range Vertical Horizontal 

FARO Focus 3D 976,000 305° 360° 0.009° ±2mm 1.5m - 120m 

 

Table 4-3 Scanning information 

 Scan 1 Scan 2 Scan 3 Scan 4 Scan 5 

Bridge 1 1 2 3 4 

Stations 8 4 6 4 2 

Horizontal FoV  23° to 259°  23° to 259 °  0° to 360°   0° to 360°  0° to 360° 

Vertical FoV -42.5° to 71° -42.5° to 71° -60° to 90° -45° to 71° -60° to 90° 

Resolution 1/4 1/4 1/1 1/2 1/2 

Quality 6x 6x 2x 4x 4x 

Number of Points (Mpts) 25.5 25.5 710.7 134.5 177.7 

 

 



 

 47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-2 Location of the bridges in, Montreal, QC, Canada: (1) Guy Street, (2) Lucian L’Allier Street, (3) Atwater Avenue, and (4) Pierre-Dupuy Avenue 

(1) (2) 

(3) (4) 



 

 

48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3 Scanning positions on the western side of Bridge 1 (Guy Street) 



 

 

49 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4 Scanning positions on the eastern side of Bridge 1 (Guy Street) 



 

 50 

 

4.3.2 Annotation 

The point clouds are split into several parts considering the following specified rules: (1) the 

number of points in each part must be in a specific range (between 150,000 pts to 400,000 pts); 

(2) since the blocks have a box shape, the scanned surfaces are divided into rectangular parts; 

and (3) the size of each part should be big enough to contain different sizes of defects and small 

enough not to contain more points than the maximum number, especially in the areas with a 

higher density of points. Moreover, annotating the defects based on their expected patterns leads 

to more effective learning. Annotation is done in CloudCompare software (Girardeau-Montaut 

2015). The prepared dataset contains 193 parts (with the flipped data that will be discussed in 

Section 4.3.3.1) from the scanned bridges that are categorized into 5 areas and contain 51 million 

points. 2,572 defects are annotated in the dataset. These defects contain more than 4.1 million 

points. Figure 4-5 shows a sample of an annotated segment. Figure 4-6 shows the structure of the 

prepared dataset and the statistical information is given in Table 4-4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5 (a) An original point cloud sample, (b) An annotated point cloud sample. No-defect is 

yellow, crack is blue, light spalling is pink, medium spalling is green, severe spalling is red 

(a) (b) 



 

 51 

 

 

 

Figure 4-6 The structure of preparing the dataset 

Area 1 

Area 2 

Area 3 

Area 4 

Area 5 

Part 1 

. 

. 

. 

Part 2 

Part 3 

Segment 1 

. 

. 

. 

Segment 2 

Segment 3 
Dataset 



 

 52 

 

Table 4-4 Statistics datasets used in training, evaluation, and testing processes 

Datasets (%) Area 
Number of 

Parts 
Number of points 

 Defects 

Number 
Number of 

points 
Percentage 

Training (70.0) 

 

1 19 6,221,356 281 496,351 8.0% 

1-Flipped 19 6,221,356 281 496,351 8.0% 

2 23 5,889,032 304 266,470 4.5% 

2-Flipped 23 5,889,032 304 266,470 4.5% 

3 24 5,796,043 291 511,606 8.8% 

3-Flipped 24 5,796,043 291 511,606 8.8% 

Evaluation 

(24.3) 

4 25 6,200,503 330 687,986 11.1% 

4-Flipped 25 6,200,503 330 687,986 11.1% 

Testing (5.6) 5 10 2,878,367 160 262,847 9.1% 

Total (100) 193 51,092,235 2,572 4,187,673 8.2% 

4.3.3 Data Pre-Processing 

The annotated dataset is distributed in three categories for training, evaluation, and testing as 

shown in Table 4-4. As discussed before, CNN needs a large dataset to train an accurate model. 

In order to enlarge the dataset, an oversampling method of flipping the point cloud data is used in 

this case study. 

4.3.3.1 Oversampling Data by Flipping 

The point clouds are flipped with respect to the YZ surface (Figure 4-7). Python code is written 

for this case study (Appendix D – Python Code for Flipping the Dataset) to flip the training and 

evaluation parts of the dataset. The flipped data is not used in the testing process. The flipped 

point clouds of Areas 1 to 4 are added to double the size of the dataset. In this research, 70% of 

the dataset is set as the training part, 24.4% for evaluation and 5.6% of the dataset is kept unseen 

to validate the trained model. 



 

 

53 

 

 

 

 

 

 

 

The next steps of data pre-processing are adding the annotated labels (L) to the point’s arrays and 

splitting them into blocks. After adding labels to points, the output files are 2D matrices, with 

each row having seven parameters (XYZRGBL) for each point (Qi et al. 2017a). Every part is 

split into blocks (saved in HDF5 files) and is prepared for the CNN training process. The sizes of 

blocks of points are defined based on the sizes of the structural defects discussed in Section 4.3.2 

(Table 4-1). 

The surface density of points varies in different parts of point clouds because of the change in the 

angle of incidence. This issue has two effects on the processing methods. The first issue is that 

CNN needs equal-sized input data. PointNet normalizes the number of points in each block to a 

unique number. This process requires downsampling or upsampling. The second issue is about 

the difficulty of extracting features from small portions of the dataset using CNN. PointNet++ 

solves this issue by extracting features from different scales of the input point cloud. 

(a) (b) 

Figure 4-7 (a) Sample of annotated original points segment, (b) Flipped segment 



 

 

54 

 

4.3.4 Validation of Binary Classes Semantic Segmentation 

In this part of the case study, all the points of the dataset are split into two classes of defect and 

no-defect, regardless of the types and severity levels of defects. The goal of this section is to 

validate the proposed method of detecting the defected areas of concrete surfaces of bridges. 

In all of the validation parts of this study the accuracy is calculated using Equation 4-2. This 

equation is selected because the main goal of this study is detecting defect points, which are true 

positive points (TP) and to minimize the number of points that are labeled as defect and detected 

as no-defect, which are false negative points (FN). The summation of TP and FN points is the 

number of points that labeled as defect. 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷

𝑻𝑷+𝑭𝑵
                                 4-2 

4.3.4.1 Adapted PointNet 

4.3.4.1.1 Training and Evaluation 

In order to find an appropriate model for detecting defects in point clouds, several models with 

different network topologies are trained and evaluated (Table 4-5). Modifying the network’s 

topology is experimental and based on the results and is explained in this section. The evaluation 

mean loss, the accuracies of defect detection, no-defect detection, and overall accuracy of the 

models are shown in Figure 4-8 and Figure 4-9. 

Model 1 is applied to PointNet with the initial network topology. The overall accuracy is 88.2% 

and the defect accuracy is 41.1%. As mentioned in Section 4.2.4, since the percentage of the 

defect points is almost 14% of the whole point cloud and is much less than the no-defect points 

(86%), a weighted softmax loss function is used in Model 2. The corresponding weight vector is 



 

 

55 

 

defined based on the points distribution of the classes, which is [0.86, 0.14]. In Model 2, if the 

evaluation model predicts a point as no-defect by mistake, the weight of its effect is 0.14 on the 

process of minimizing the calculated loss values and correcting the predictors in the 

backpropagation process. The defect accuracy in model 2 increased to 64.2%, but the no-defect 

accuracy decreased from 98.2% to 91.9%. In Model 3, a dropout layer is added and the no-defect 

accuracy increased by 1.4%. Different combinations of hidden layers, number of neurons, and 

number of dropout layers are used in Models 4 to 9, but the results did not show any significant 

improvements. In Model 10, a pyramid shape network topology is used by increasing the number 

of neurons in the first hidden layer of the third set of MLP to be equal to two times the number of 

neurons in the last hidden layer of the first set of MLP. This modification increased the accuracy 

of detecting defects to 70.3%. In Model 11, the input points variables are changed from a 9-

dimensional vector to a 7-dimensional vector (the normalized location values of the x-axis and z-

axis are removed as explained in section 4.2.3). This modification improved the accuracy of 

detecting defects to 75.4%, with an overall accuracy of 86.7%. Model 11 is selected as the best 

model.  

In the best model (Figure 4-10), the first MLP in the classification part has six hidden layers with 

numbers of neurons 64, 64, 64, 128, 256, and 512. The second MLP has two fully connected 

layers with numbers of neurons 128, and 64. The local features vector has 512 elements and the 

global features vector has 64 elements. By concatenating these vectors, an n×576 vector is fed to 

the segmentation network. The segmentation network is changed to a pyramid neural network 

and the feature map of dimension n×576 is expanded to n×1024 to extract more features. The 

segmentation network has four convolutional hidden layers and three dropout layers. The testing 

results are in Section 4.3.4.1.2. The hyper-parameters of the training network include epoch 



 

 

56 

 

number, size of blocks, number of points in each block, number of batches for computing at the 

same time, filter stride size, and learning rate. The size of blocks changed from 1m to 0.1m 

because the size of the defects is smaller than the size of the building elements. The number of 

points remained 1,024 but the density increased because of the change in the size of the blocks. 

The size of the network increased from 8 hidden layers to 11 hidden layers. The number of 

elements of the local features decreased from 1,024 to 512 and the number of elements of the 

global features decreased from 128 to 64. The number of batches indicates how many blocks of 

points are analyzed for learning at the same time. A higher number of batches improves the 

performance of the model, but the available memory on the hardware constraints the possible 

volume of computation. A Compute Canada cluster is used to implement this case study. Two 

NVIDIA P100 Pascal GPUs, 32 CPUs, and 120 GB of memory are used for the training process. 

The output results of training and evaluation are in Table 4-7. 



 

 57 

 

Table 4-5 Details on the trained and evaluated models for optimization 

M
o
d

el  

Loss function 

Weight for 

the loss 

function 

Number 

of input 

variables 

Classification Network Segmentation Network 

First MLP 
Second 

MLP 
Third MLP 

Number of 

Dropouts 

1 Softmax N/A 9 5 (64,64,64,128,1024) 2 (256,128) 3 (512,256,2) N/A 

2 Weighted Softmax [0.86, 0.14] 9 5 (64,64,64,128,1024) 2 (256,128) 3 (512,256,2) N/A 

3 Weighted Softmax [0.86, 0.14] 9 5 (64,64,64,128,1024) 2 (256,128) 3 (512,256,2) 1 

4 Weighted Softmax [0.86, 0.14] 9 6 (64,64,128,256,512,1024) 2 (256,128) 5 (512,256,64,16,2) 1 

5 Weighted Softmax [0.86, 0.14] 9 6 (64,64,128,256,512,1024) 2 (256,128) 5 (512,256,64,16,2) 3 

6 Weighted Softmax [0.86, 0.14] 9 5 (64,64,64,128,512) 2 (128,64) 3 (256,128,2) 1 

7 Weighted Softmax [0.86, 0.14] 9 5 (64,64,64,128,512) 2 (128,64) 3 (256,128,2) 2 

8 Weighted Softmax [0.86, 0.14] 9 6 (64,64,64,128,256,512) 2 (128,64) 4 (256,128,32,2) 3 

9 Weighted Softmax [0.86, 0.14] 9 4 (64,64,128,512) 2 (128,64) 3 (256,128,2) 1 

10 Weighted Softmax [0.86, 0.14] 9 6 (64,64,64,128,256,512) 2 (128,64) 4 (1024,512,128,2) 3 

11 Weighted Softmax [0.86, 0.14] 7 6 (64,64,64,128,256,512) 2 (128,64) 4 (1024,512,128,2) 3 



 

 58 

 

 

Figure 4-8 Evaluation mean loss of the models  

 

Figure 4-9 Evaluation accuracies of defect class, no-defect class, and overall 

0.42

0.21 0.21 0.22 0.22 0.23 0.21 0.21 0.22
0.18

0.16

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 5 6 7 8 9 10 11

M
ea

n
 l

o
ss

Models

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1 2 3 4 5 6 7 8 9 10 11

Defect class

No-defect class

Overall



 

 59 

 

 

n
x
7

mlp (64,64,64,128, 256, 512)

n
x
5

1
2

M
ax

 p
o

o
l 

FC mlp (128, 64)

64

mlp (1024, dp, 512, dp, 128, dp, 2)

n
x

2

In
p

u
t 

p
o

in
ts

O
u

tp
u

t 
sc

o
re

s

Global features

Local features

 n x 576

Classification Network

Segmentation Network

 

 

Figure 4-10. Modified PointNet network 

 



 

 

60 

 

Table 4-6 PointNet model’s hyperparameters 

Parameter PointNet Modified Network 

Convolving direction XY surface XZ surface 

Size of blocks (X,Y,Z) 1m , 1m , Zmax 0.1m , Ymax , 0.1m 

Number of points in each block 1,024 1,024 

Size of the network 8 layers (1 dropout) 11 layers (3 dropouts) 

Local / Global features 1024 / 128 512 / 64 

Number of epochs 50 50 

Learning rate 
1e-3 (decays exponentially to 

 minimum of 1e-5) 

1e-3 (decays exponentially to minimum  

of 1e-5) 

Optimizer Adam Adam 

Weight vector for loss function Softmax cross entropy Weighted Softmax cross entropy [0.86, 0.14] 

Flipping training dataset N/A Yes 

 



 

 61 

 

Table 4-7 Results of training and evaluation of the selected model 

Process  Value 

Training 
Mean loss 0.051 

Overall accuracy 0.911 

Evaluation 

Mean loss 0.160 

Overall accuracy 0.867 

Accuracy of defect 0.754 

4.3.4.1.2 Testing 

The number of points in each block and the block size of the testing process must be the same as 

those of the training process. The dataset of Area 5 is used for testing the trained model. 

The statistical results of the testing are shown in Table 4-8 and Figure 4-11. Ten parts are used as 

the testing area. Each part has defects with different depths. The depth of the part’s bounding box 

is assumed as the maximum depth of the segment’s defects. The accuracies of the detected 

defects of the ten parts are shown in Table 4-8. The parts are sorted based on the depth of the 

defects. As expected, the detection results are better in the case of deeper defects. The accuracies 

of detecting defects in the first two parts, which have defects with the depth of less than 2 cm, 

are less than 20%. For the parts with deeper defects, the accuracy gets larger than 50% and 

reaches the value of 89.2% for the part with deepest defects. The overall trend show the value 

accuracy increase by increasing the depth of the defects (as it will be discussed in Section 

4.3.4.4) but there are some fluctuations in different parts (e.g. from part 4 to part 5). The average 

accuracy of detecting defects is 74.9%. The results of the test are visualized in Table 4-12. 



 

 62 

 

 
Table 4-8 The output results of the detecting defects (Adapted PointNet) 

Part 
Number 

of defects 

Number 

of points 

Area 

(cm2) 

Depth 

(cm) 

Mean 

loss 
Accuracy 

Accuracy 

of defects 

Accuracy of 

non-defects 

IOU of 

defects 

Precision 

of defects 

F1 score 

of defects 

  1 30 327,777   6,248 1.5 0.162 0.884 0.132 0.935 0.067 0.122 0.126 

  2 16 195,140   5,957 1.6 0.328 0.863 0.195 0.958 0.150 0.395 0.261 

  3   5 153,353 18,490 2.6 0.035 0.949 0.523 0.961 0.223 0.280 0.365 

  4 24 486,062   6,607 2.8 0.120 0.749 0.661 0.758 0.199 0.221 0.332 

  5 10 166,446 19,338 3.5 0.168 0.904 0.537 0.940 0.337 0.475 0.504 

  6 15 166,667 16,152 3.7 0.139 0.790 0.596 0.819 0.268 0.328 0.423 

  7 19 184,671 20,104 4.1 0.228 0.773 0.735 0.789 0.494 0.602 0.662 

  8   5 291,776 13,756 5.1 0.050 0.943 0.667 0.955 0.325 0.387 0.490 

9 13 259,111 42,174 6.0 0.080 0.858 0.869 0.856 0.462 0.496 0.632 

10 16 278,342 47,597 8.1 0.104 0.852 0.892 0.846 0.466 0.494 0.636 

Weighted average   0.862 0.749 0.875 0.408 0.473 0.580 

 
 
 
 
 
 
 



 

 

63 

 

 

Figure 4-11 The chart of output results of the detecting defects (Adapted PointNet). 

 

0%

20%

40%

60%

80%

100%

1.5 1.6 2.6 2.8 3.5 3.7 4.1 5.1 6 8.1 All parts

A
cc

u
ra

cy

Depth of the defects (cm)

Accuracy of defects

Accuracy of no-defects



 

 64 

 

4.3.4.2 Adapted PointNet++ 

4.3.4.2.1 Training and Evaluation 

PointNet++ is also adapted to detect defects in point clouds. The neural network topology of 

PointNet++ is kept as-is because it is working properly with the same adapted data-preprocessing 

used for PointNet (4.3.3). The network is fed by 7-dimensional input data. The adapted 

PointNet++ (Figure 4-12) has two main sets of hidden layers. The first hidden layer has four sub-

layers; each applies a sampling method and a mini-PointNet unit recursively. The sampling sizes 

of 5, 10, 20, and 30 centimeters were used. Each one is followed by three-layer PointNet to 

extract the feature vectors. The second hidden layer contains four sets of grouping algorithms; 

each one is followed by a two-layer PointNet unit. The grouping units concatenate the outputs of 

the sampling units. The network is followed by two fully connected layers with a dropout in the 

middle and extracts the kernel values for each class. The training and evaluation results are in 

Table 4-9. As shown, by using PointNet++ the training overall accuracy, the evaluation overall 

accuracy, and the accuracy of detecting defects increase respectively 7.7%, 10%, and 6.4% 

compared to the adapted PointNet results. The hyperparameters of the PointNet++ model are in 

Table 4-10. 

Table 4-9 Results of training and evaluation of the selected model 

Process  Value 

Training 
Mean loss 0.052 

Overall accuracy 0.988 

Evaluation 

Mean loss 0.114 

Overall accuracy 0.967 

Accuracy of defect 0.818 

 

 



 

 65 

 

 

 

Table 4-10 PointNet++ model’s hyperparameters 

Parameter PointNet++ Modified Network 

Convolving direction XY surface XZ surface 

Size of blocks (X,Y,Z) 1.5m , 1.5m , Zmax 0.4m , Ymax , 0.4m 

Input variables 9-dim (XYZRGBNxNyNz) 7-dim (XYZRGBNy) 

Number of points in each block 8,192 12,288 

Sampling sizes (m) 0.1, 0.2, 0.4, 0.8 0.5, 0.1, 0.2, 0.3 

Number of epochs 200 50 

Learning rate 
1e-3 (decays exponentially to 

 minimum of 1e-5) 

1e-3 (decays exponentially to 

 minimum of 1e-5) 

Optimizer Adam Adam 

Weight vector for loss function Weighted Softmax cross entropy Weighted Softmax cross entropy 

Flipping training dataset N/A Yes 

 



 

 66 

 

4.3.4.2.2 Testing 

The accuracies of the detected defects of the ten parts are shown in Table 4-11 and Figure 4-13. 

Each part has defects with different depths. The results of this model also show the expected 

sensitivity to the depth of the defects. The accuracies of detecting defects on the first four parts, 

which have defects with the depth of less than 3 cm, are less than 20%. The accuracies increase 

to more than 60% for parts with deeper defects up to 93.4%. There is a jump in the accuracy of 

detecting defects in Figure 4-13 after Part 4. The results compared to the adapted PointNet model 

(Figure 4-11) show good improvement in the average accuracy and accuracies of the deepest six 

parts but for the first four parts adapted PointNet is performing better. The average accuracy of 

detecting defects on all the ten parts is 78.8%, which is 3.9% more than the adapted PointNet 

model. The average accuracy of detecting defects on the six deepest parts is 86.2% and 7.4% 

more than the average of all the ten parts. 

The results of the test are visualized in Table 4-12. As shown the results of the adapted 

PointNet++ network are more precise than the adapted PointNet network in detecting the edges 

of the defects (last six parts). PointNet++ uses the point’s information from four different scales 

and extracts local features from these different scales. It enables the model to learn geometrical 

features precisely, even for small size defects. Also, as shown in Table 4-12, the results of the 

first four parts are not good. It is expected that by increasing the size of the dataset it may work 

better on detecting defects with a depth of less than 3 cm too.   



 

 67 

 

 

 

n
x

7 PointNet

mlp (32,32,64)

nxm

In
p

u
t 

p
o
in

ts

Output scores

Layer One

Sampling

5cm

PointNet

mlp (64,64,128)

Sampling

10cm

PointNet

mlp (128,128,256)

Sampling

20cm

PointNet

mlp (256,256,512)

Sampling

30cm

Layer Two

PointNet

Fully Connected (128)

PointNet

Fully Connected (m)

Dropout 

(0.5)

PointNet

mlp (256,256)
Grouping

PointNet

mlp (256,256)
Grouping

PointNet

mlp (256,128)
Grouping

PointNet

mlp (128,128,128)
Grouping

 

 

Figure 4-12 Adapted PointNet++ network 



 

 

68 

 

 

 

 

 

Table 4-11. The output results of the detecting defects (Adapted PointNet++). 

Part 
Number 

of defects 

Number 

of points 

Area 

(cm2) 

Depth 

(cm) 

Mean 

loss 
Accuracy 

Accuracy 

of defects 

Accuracy of 

non-defects 

IOU of 

defects 

Precision 

of defects 

F1 score 

of defects 

  1 30 327,777   6,248 1.5 0.072 0.964 0.071 0.980 0.020 0.028 0.040 

  2 16 195,140   5,957 1.6 0.766 0.910 0.024 1.000 0.024 0.856 0.047 

  3   5 153,353 18,490 2.6 0.266 0.950 0.192 0.986 0.148 0.388 0.257 

  4 24 486,062   6,607 2.8 0.358 0.932 0.122 0.998 0.119 0.801 0.212 

  5 10 166,446 19,338 3.5 0.291 0.903 0.639 0.930 0.376 0.478 0.547 

  6 15 166,667 16,152 3.7 0.239 0.857 0.691 0.869 0.252 0.284 0.403 

  7 19 184,671 20,104 4.1 0.335 0.798 0.888 0.765 0.544 0.585 0.705 

  8   5 291,776 13,756 5.1 0.060 0.970 0.798 0.983 0.560 0.652 0.718 

  9 13 259,111 42,174 6.0 0.140 0.917 0.881 0.923 0.583 0.633 0.737 

10 16 278,342 47,597 8.1 0.172 0.915 0.934 0.912 0.577 0.601 0.732 

Weighted average   0.917 0.788 0.932 0.482 0.563 0.656 

Weighted average of the six deepest parts  0.900 0.862 0.905 0.567 0.862 0.684 

 
 

 

 



 

 

69 

 

 

 

 

 
 

Figure 4-13 The chart of output results of the detecting defects (Adapted PointNet++). 

 

 

 

0%

20%

40%

60%

80%

100%

1.5 1.6 2.6 2.8 3.5 3.7 4.1 5.1 6 8.1 All parts

A
cc

u
ra

cy

Depth of the defects (cm)

Accuracy of defects

Accuracy of no-defects



 

 

70 

 

Table 4-12 Binary semantic segmentation results 

 

  

Part Original point cloud             Manual annotation Adapted PointNet Adapted PointNet++ 

1 

    

2 

    

3 

    



 

 

71 

 

Table 5-13 Binary semantic segmentation results (continue) 

 

  

Part Original point cloud             Manual annotation Adapted PointNet Adapted PointNet++ 

4 

    

5 

    

6 

    



 

 

72 

 

Table 5-13 Binary semantic segmentation results (continue) 

  

Part Original point cloud             Manual annotation Adapted PointNet Adapted PointNet++ 

7 

    

8 

    



 

 

73 

 

Table 5-13 Binary semantic segmentation results (continue) 

Part Original point cloud             Manual annotation Adapted PointNet Adapted PointNet++ 

9 

    

10 

    



 

 74 

 

4.3.4.3 PointNet Sensitivity Analysis 

The main goal of the sensitivity analysis in this study is to determine the impact of different 

input variables on the results based on the quantitative information. A 3D point cloud dataset has 

various volume density and surface density rates in every specific segment. The overall density 

of a point cloud depends on the LiDAR scanner resolution. For every segment, the density of the 

points also depends on the angle of view of the LiDAR. To apply the convolutional network on 

point clouds, PointNet equalizes the surface density rates of blocks, by defining the size of 

blocks and the number of points in each block. In the sensitivity analysis of the proposed model, 

hyper-parameters of the number of points and block size are studied. Also, the effect of changes 

in point density ratio is studied. This ratio is calculated by dividing the number of points in each 

block over the surface area of the block (Equation 4-3). 

𝑫𝒆𝒏𝒔𝒊𝒕𝒚 𝑹𝒂𝒕𝒊𝒐 =  
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒐𝒊𝒏𝒕𝒔

(𝑩𝒍𝒐𝒄𝒌 𝒔𝒊𝒛𝒆)𝟐
                      4-3  

Table 4-13 shows the areas, number of points, and the density ratios of all the areas of the raw 

dataset. Mean density ratio is 11.425 pts/cm2. The “number of points” parameter in the 

sensitivity analysis has to be chosen based on the density ratio of the raw datasets to decrease the 

probability of upsampling in the data pre-processing step (4.2.3). In order to estimate the proper 

values for the block size parameter, the average size of the annotated defects bounding boxes of 

the first four areas (used for training and evaluation) are calculated (Table 4-14). The last column 

of Table 4-14 is showing the square root of the related area. It shows the regulated dimension of 

the defect if we assume it as a square. The average width, height and regulated dimensions of the 

defects are 23.3, 18.7, and 22.4 centimeters respectively. 



 

 

75 

 

Table 4-13 Density ratio of the raw dataset 

Dataset Surface area (cm2) Number of points (pts) Density ratio (pts/cm2) 

Area1 251,168 2,991,923 11.912 

Area2 313,029 3,077,769 9.832 

Area3 154,294 2,239,013 14.511 

Area4 263,598 2,522,791 9.571 

Area5 217,881 2,878,641 13.212 

Total 1,199,971 13,710,137 11.425 

Table 4-14 Annotated defects dimensions 

 Dataset Width(cm) Height(cm) Area(cm2) Dimension(cm) 

Area1 33.6 14.8 561.4 23.7 

Area2 12.3 20.9 555.0 23.6 

Area3 8.0 6.0 74.8 8.6 

Area4 39.4 33.1 819.6 28.6 

Average 23.3 18.7 502.7 22.4 

Sixteen cases are defined for four different numbers of points (1024, 2048, 4096, 6144) and four 

block sizes (10, 20, 30, 40 centimeters). Selected values for these two parameters are related to 

the values of the raw dataset for the sensitivity analysis. In these cases, the stride size is equal to 

the block size, which means there is no overlapping in the training datasets and convolutions. 

The number of batches is 24 and the initial learning rate is 0.001. The learning rate decays 50% 

every 8 epochs until it reaches the minimum value of 1e-5. The calculated accuracies and mean 

losses for training, validation, and testing processes are shown in Table 4-15. As shown before 

(Table 4-6) there are several hyperparameters in the model. The size of the block and the number 

of points in each block are the two hyperparameters that used in this sensitivity analysis. All the 

other hyperparameters are not changed from the best modified model (Figure 4-10). The average 

accuracies are compared to each other based on the block sizes and the numbers of points in 

Figure 4-14 and Figure 4-15 respectively. 



 

 76 

 

Table 4-15 Results of the sixteen studied cases 
C

as
e 

Parameters Train Evaluation Test (Weighted average)    

B
lo

ck
 s

iz
e 

(c
m

) 

N
u

m
b

er
 

o
f 

p
o

in
ts

 

D
en

si
ty

 

ra
ti

o
 

(p
ts

/c
m

2
) 

A
cc

u
ra

cy
 

M
ea

n
 L

o
ss

 

A
cc

u
ra

cy
 

M
ea

n
 L

o
ss

 

D
ef

ec
t 

A
cc

. 

N
o

n
-D

ef
ec

t 

A
cc

. 

A
cc

u
ra

cy
 

D
ef

ec
t 

A
cc

. 

N
o

n
-D

ef
ec

t 

A
cc

. 

D
ef

ec
t 

Io
U

 

D
ef

ec
t 

P
re

ci
si

o
n

 

D
ef

ec
t 

F
1
 

A 10 1,024 10.2 0.911 0.051 0.867 0.160 0.754 0.891 0.862 0.744 0.878 0.393 0.455 0.564 

B 10 2,048 20.5 0.908 0.054 0.869 0.148 0.756 0.893 0.857 0.740 0.873 0.383 0.443 0.554 

C 10 4,096 41.0 0.910 0.053 0.867 0.166 0.722 0.899 0.848 0.723 0.865 0.363 0.422 0.533 

D 10 6,144 61.4 0.908 0.053 0.863 0.157 0.739 0.889 0.850 0.741 0.865 0.373 0.429 0.543 

E 20 1,024 2.6 0.914 0.048 0.839 0.162 0.725 0.863 0.857 0.672 0.883 0.361 0.438 0.531 

F 20 2,048 5.1 0.914 0.049 0.824 0.169 0.706 0.850 0.859 0.648 0.887 0.355 0.439 0.524 

G 20 4,096 10.2 0.914 0.050 0.839 0.162 0.749 0.858 0.849 0.713 0.867 0.361 0.422 0.530 

H 20 6,144 15.4 0.918 0.047 0.822 0.176 0.747 0.840 0.845 0.718 0.866 0.347 0.422 0.525 

I 30 1,024 1.1 0.910 0.054 0.813 0.168 0.699 0.834 0.859 0.568 0.897 0.314 0.413 0.478 

J 30 2,048 2.3 0.914 0.052 0.834 0.147 0.728 0.855 0.855 0.630 0.884 0.330 0.409 0.496 

K 30 4,096 4.6 0.911 0.050 0.818 0.152 0.752 0.830 0.864 0.617 0.896 0.339 0.430 0.507 

L 30 6,144 6.8 0.908 0.053 0.810 0.158 0.733 0.824 0.842 0.628 0.870 0.311 0.381 0.474 

M 40 1,024 0.6 0.910 0.053 0.782 0.173 0.703 0.796 0.849 0.650 0.875 0.334 0.408 0.501 

N 40 2,048 1.3 0.908 0.054 0.777 0.155 0.669 0.797 0.861 0.584 0.898 0.330 0.431 0.496 

O 40 4,096 2.6 0.902 0.054 0.732 0.161 0.723 0.734 0.845 0.610 0.876 0.314 0.393 0.478 

P 40 6,144 3.8 0.907 0.729 0.777 0.157 0.700 0.791 0.862 0.614 0.894 0.340 0.432 0.507 



 

 77 

 

 

Figure 4-14 Accuracies of the studied cases based on block sizes 

 

Figure 4-15 Accuracies of the studied cases based on the number of points in each block 

9
0

.9
%

9
1

.5
%

9
1

.1
%

9
0

.7
%

8
6

.7
%

8
3

.1
%

8
1

.9
%

7
6

.7
%

7
4

.3
%

7
3

.2
%

7
2

.8
%

6
9

.9
%

8
5

.4
%

8
5

.2
%

8
5

.5
%

8
5

.4
%

7
3

.7
%

6
8

.8
%

6
1

.1
%

6
1

.4
%

0%

20%

40%

60%

80%

100%

10 20 30 40

A
cc

u
ra

cy

Block size (cm)

Training Accuracy

Evaluation Accuracy

Evaluation Defect

Accuracy

Testing Accuracy

Defect Recall

9
1

.1
%

9
1

.1
%

9
0

.9
%

9
1

.0
%

8
2

.5
%

8
2

.6
%

8
1

.4
%

8
1

.8
%

7
2

.0
%

7
1

.5
%

7
3

.7
%

7
3

.0
%

8
5

.7
%

8
5

.8
%

8
5

.1
%

8
5

.0
%

6
5

.8
%

6
5

.0
%

6
6

.6
%

6
7

.5
%

0%

20%

40%

60%

80%

100%

1024 2048 4096 6144

A
cc

u
ra

cy

Block size (cm)

Training Accuracy

Evaluation Accuracy

Evaluation Defect

Accuracy

Testing Accuracy

Defect Recall



 

 

78 

 

4.3.4.4 Effect of the depth of defects 

Ten parts are used as the testing area of the dataset. Each part has defects with different depths. 

The depth of the segment’s bounding box is assumed as the maximum depth of the part’s 

defects. Accuracies of the detected defects of all the 16 cases are shown in Table 4-16. Average 

accuracies of defect detection are compared based on the sizes of defects in Figure 4-16. As 

shown in the figure, the detection is better in large-sized defects. This is expected because the 

main feature of the defects is geometry and it is learned by the model in the training step. In this 

sensitivity analysis, all kinds of defects are categorized into one class, which has different 

dimensions. As an example, the size and depth of a crack are much smaller than a spalling 

defect. By adding more classes to the training datasets, this method would perform better in 

detecting the specified defects. 

 

 

 

 



 

 79 

 

Table 4-16 Accuracy of defect detection based on the depth of defects 

 
 

Case 
Average 

A B C D E F G H I J K L M N O P 

D
ep

th
 (

cm
) 

D>6 0.788 0.660 0.616 0.688 0.487 0.671 0.696 0.659 0.764 0.819 0.815 0.831 0.892 0.902 0.903 0.912 0.756 

6≥D>5 0.674 0.565 0.579 0.624 0.795 0.857 0.755 0.802 0.731 0.677 0.774 0.796 0.768 0.762 0.784 0.778 0.733 

5≥D>4 0.608 0.494 0.509 0.583 0.493 0.540 0.548 0.551 0.535 0.490 0.638 0.481 0.634 0.600 0.539 0.556 0.550 

4≥D>3 0.403 0.400 0.425 0.423 0.568 0.537 0.548 0.622 0.531 0.482 0.581 0.599 0.566 0.541 0.531 0.533 0.518 

3≥D 0.477 0.578 0.417 0.534 0.449 0.404 0.298 0.396 0.504 0.477 0.490 0.529 0.378 0.403 0.415 0.454 0.450 

 

Figure 4-16 Accuracy of detecting defects compared to the sizes of defects 

0.450
0.518

0.550

0.733
0.756

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

D ≤ 3cm 3cm < D ≤ 4cm 4cm < D ≤ 5cm 5cm < D ≤ 6cm 6cm < D

Average



 

 80 

 

To find out the impact of density changes on the results, the 16 cases with different settings of 

block’s point densities (between 0.6 and 61.4 pts/cm2) are studied. Figure 4-17 shows the impact 

of the changes in the block densities on the accuracy of defects with respect to the minimum 

density. By increasing the density, first, the accuracy of the defects extremely fluctuates. After 

reaching about 10 pts/cm2, a steady trend appears within the range of 10 to 15% higher accuracy. 

Since the average point density of the raw dataset is 11.4 pts/cm2, it can be concluded that 

increasing the block’s density more than the density of the actual dataset (upsampling) does not 

have a considerable effect on the results. The maximum accuracy in detecting defects happens in 

Case G that has a point density of 10.2 pts/cm2. 

  

Figure 4-17 Effect of changing density on the accuracy of defects 

 

 

 

 

-15%

-10%

-5%

0%

5%

10%

15%

20%

0% 1000% 2000% 3000% 4000% 5000% 6000% 7000% 8000% 9000% 10000%P
er

ce
n

t 
o
f 

ch
a
n

g
es

 i
n

 t
h

e 
a
cc

u
ra

cy
 o

f 

d
ef

ec
ts

Percent of changes in the density



 

 

81 

 

4.3.5 Validation on Detecting Types of Defects Using Adapted PointNet++ Model 

The dataset is annotated into five categories of crack, light spalling, medium spalling, severe 

spalling, and no-defect. In this part of the case study, the points of the dataset are split into three 

classes of crack, spalling, and no-defect. It means that the severity level of the spalling defects is 

not considered and all of them are considered as one class. The goal of this section is to validate 

the proposed method of detecting the type of defects of concrete surfaces of bridges. As shown 

in Figure 4-18, the number of cracks points is much less than the other two classes, especially the 

no-defect class. Cracks, spalling, and no-defect classes have 0.8%, 7.4%, and 91.8% of all the 

points. The method of using a cost-sensitive loss function is chosen to deal with this imbalanced 

class issue in PointNet++ method. Equation 4-4 indicates the function that is used for calculating 

the weight of classes in evaluation. In the equation, wi is the weight of class i. The resulted cost 

weights of the classes are tabulated in Table 4-17. It means that the calculated loss value of each 

class is multiplied by this number, so the effect of the smaller class is more than the larger one. 

This process makes the model learn from each class equally, despite the number of points of the 

classes. 

𝑪𝒐𝒔𝒕 𝑾𝒆𝒊𝒈𝒉𝒕𝒊 =  
𝟏

𝐥𝐨𝐠(𝟏.𝟎𝟓+𝒘𝒊)
                                     4-4 

 

 

 



 

 

82 

 

 

Figure 4-18 Number of points of annotated classes. 

 

Table 4-17 Cost weight of the tree classes 

Class Crack Spalling No-Defect Summation 

Number of points 413,110 3,774,563 46,904,562 51,092,235 

Number of points weight 0.008 0.074 0.918 1.0 

Cost weight 40.8 19.7 3.4 NA 

 

 

 

 

 

 

413,110 

3,774,563 

46,904,562 

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

Crack Spalling No-Defect

N
u

m
b

er
 o

f 
P

o
in

ts

Type of Defect



 

 

83 

 

The statistics of the output results of the training and evaluation are in Table 4-18 and the testing 

are in Table 4-19 and Figure 4-19. The performance of the model is not good for the first four 

parts. The parts are sorted by the maximum depth of the parts’ defects. So, the model does not 

perform well on the parts with defects with a depth of fewer than three centimeters. The accuracy 

of detecting cracks on the parts deeper than three centimeters is 47%. The numbers of points of 

cracks data are very small in the training, evaluation, and even testing area. So, it was expected 

to not have satisfying results in this class. Accuracy of detecting cracks on parts number 9 and 10 

are higher than 65%. It shows the model is potentially able to detect cracks and differentiate 

between crack and spalling. With a larger dataset or larger data in the class of cracks, the results 

may be better in detecting cracks.  

Results show the accuracy of detecting spalling increases in parts with deeper defects up to 

93.2%. The average accuracy is 87.9% and it shows the model is working well on detecting 

spalling on parts with defects deeper than three centimeters.  

 

 

Table 4-18 Results of training and evaluation on detecting types of defects (adapted PointNet++) 

Process  Value 

Training 
Mean loss 0.083 

Overall accuracy 0.988 

Evaluation 

Mean loss 0.099 

Overall accuracy 0.970 

Accuracy of cracks 0.522 

Accuracy of spalling 0.704 



 

 84 

 

Table 4-19 Output results of the testing on detecting types of defects (Adapted PointNet++) 

 

Part 
Number of 

defects 

Number of 

points 

Area 

(cm2) 

Depth 

(cm) 

Mean 

loss 

Accurac

y 

Accuracy of 

cracks 

Accuracy of 

spallings 

Accuracy of no-

defects 

  1 30 327,777   6,248 1.5 0.059 0.992 0.000 0.000 0.999 

  2 16 195,140   5,957 1.6 0.534 0.913 0.000 0.108 0.999 

  3   5 153,353 18,490 2.6 0.281 0.946 0.265 0.000 0.982 

  4 24 486,062   6,607 2.8 0.475 0.931 0.001 0.075 0.997 

  5 10 166,446 19,338 3.5 0.280 0.911 0.092 0.616 0.953 

  6 15 166,667 16,152 3.7 0.227 0.908 0.381 0.458 0.943 

  7 19 184,671 20,104 4.1 0.313 0.805 0.000 0.930 0.762 

  8   5 291,776 13,756 5.1 0.225 0.948 0.000 0.836 0.973 

  9 13 259,111 42,174 6.0 0.148 0.928 0.662 0.927 0.937 

10 16 278,342 47,597 8.1 0.207 0.909 0.663 0.932 0.911 

Weighted average   0.914 0.357 0.838 0.935 

Weighted average of the six deepest parts  0.914 0.460 0.879 0.918 



 

 

85 

 

 

Figure 4-19 Chart of the output results of the testing on detecting types of defects (Adapted PointNet++)  

0%

20%

40%

60%

80%

100%

1.5 1.6 2.6 2.8 3.5 3.7 4.1 5.1 6 8.1 All parts

A
cc

u
ra

cy

Depth of the defects (cm)

Crack

Spalling

No-Defect



 

 86 

 

4.3.6 Validation on Detecting Severity Levels of Defects Using Adapted PointNet++ Model 

In this part of the case study, the points of the dataset are split into four classes. They are crack, 

medium spalling, severe spalling, and no-defect. It means that the severity level of the spalling 

defects is considered in two groups. The light and medium spalling annotations are considered as 

the medium spalling class. The goal of this section is to see the performance of the proposed 

method of detecting the severity levels of concrete surface defects. 

As shown in Figure 4-20, the defect classes of cracks, spalling, and no-defect classes have 

respectively 0.8%, 3.3%, 4.1%, and 91.8% of all the points. The same method of applying a cost-

sensitive loss function is used here and the overall resulted cost weights of the classes are 

tabulated in Table 4-20. In this case effect of imbalanced classes would be more than the 

previous one because an imbalanced class is added and two classes (medium and severe spalling) 

have the same texture and it makes the learning process more complex than before. 

The statistics of the output results of the training and the evaluation are in Table 4-21 and the 

testing are in Table 4-22 and Figure 4-21. As expected, the performance of the model is not 

acceptable. The three defect classes are not detected together in the first four parts, which have 

defects with a depth of fewer than three centimeters. From part five, the model started to detect 

points of defect classes and the accuracies rise by increasing the depth value of the parts’ defects. 

The maximum accuracy of detecting cracks and severe spalling belongs to part 10 with a depth 

of 8.1 centimeters and they are 69.4% and 80.6% respectively. The accuracies of detecting 

medium spalling were less than 40% in all parts. The average accuracies of detecting cracks, 

medium spallings, severe spallings, and no-defects are respectively 37%, 16.5%, 59.6%, and 



 

 

87 

 

95.3%, and 48.1%, 19.7%, 59.6%, 94.1% for the parts with defects deeper than three 

centimeters. It is expected to reach better results by increasing the size of the training dataset. 

 

Figure 4-20 Number of points of the defect classes. 

Table 4-20 Cost weight of the four classes 

Class Crack 
Medium 

spalling 

Large 

spalling 
No-Defect Summation 

Number of points 413,110 1,682,781 2,091,782 46,904,562 51,092,235 

Number of points weight 0.008 0.033 0.041 0.918 1.0 

Cost weihgt 40.8 28.9 26.4 3.4 NA 

Table 4-21 Results of training and evaluation on detecting severity levels of defects (PointNet++) 

Process  Value 

Training 
Mean loss 0.097 

Overall accuracy 0.987 

Evaluation 

Mean loss 0.177 

Overall accuracy 0.958 

Accuracy of cracks 0.539 

Accuracy of medium spalling 0.172 

Accuracy of severe spalling 0.680 

413,110 
1,682,781 2,091,782 

46,904,562 

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

Crack Medium spalling Severe spalling No-Defect

N
u

m
b

er
 o

f 
P

o
in

ts

Classes of Defect



 

 88 

 

Table 4-22 Output results of the testing on detecting types and severity levels of defects (Adapted PointNet++) 

Part 
Number of 

defects 

Number of 

points 

Area 

(cm2) 

Depth 

(cm) 

Mean 

loss 
Accuracy 

Accuracy of 

cracks 

Accuracy of 

medium 

spallings 

Accuracy 

of severe 

spallings 

Accuracy of 

no-defects 

  1 30 327,777   6,248 1.5 0.055 0.993 0.036 0.000 N.A. 1.000 

  2 16 195,140   5,957 1.6 0.694 0.909 0.000 0.000 N.A. 1.000 

  3   5 153,353 18,490 2.6 0.271 0.948 0.240 0.000 N.A. 0.984 

  4 24 486,062   6,607 2.8 0.563 0.930 0.000 0.082 N.A. 0.996 

  5 10 166,446 19,338 3.5 0.523 0.875 0.073 0.058 0.101 0.955 

  6 15 166,667 16,152 3.7 0.318 0.894 0.466 0.200 N.A. 0.941 

  7 19 184,671 20,104 4.1 0.763 0.745 0.000 0.383 0.390 0.879 

  8   5 291,776 13,756 5.1 0.191 0.957 0.001 0.270 N.A. 0.991 

  9 13 259,111 42,174 6.0 0.235 0.917 0.686 0.193 0.735 0.956 

10 16 278,342 47,597 8.1 0.287 0.897 0.694 0.065 0.806 0.926 

Weighted average    0.370 0.165 0.596 0.953 

Weighted average of the six deepest parts   0.460 0.879 0.596 0.918 



 

 

89 

 

 

Figure 4-21 Chart of the output results of the testing on detecting types and severity levels of defects (Adapted PointNet++) 

 

  

0%

20%

40%

60%

80%

100%

1.5 1.6 2.6 2.8 3.5 3.7 4.1 5.1 6 8.1 All parts

A
cc

u
ra

cy

Depth of the defects (cm)

Crack

Medium spalling

Severe spalling

No-Defect



 

 90 

 

4.4 Summary and Conclusions 

This chapter proposed a method for detecting surface defects of concrete bridges using point 

clouds and DNN. The proposed method is based on PointNet and PointNet++, which are adapted 

to detect defects in LiDAR scanned datasets. Training and testing datasets are collected from 

four concrete bridges in Montréal and annotated manually. The point cloud dataset prepared in 

five areas, which contain more than 51 million points and 2,572 annotated defects. Points are 

annotated into five classes, crack, light spalling, medium spalling, severe spalling, and no-defect. 

For binary segmentation, all the defects are considered as one class. The dataset split over three 

parts of training (70%), evaluation (24%), and testing (6%). 

The following conclusions can be stated: (1) The trained models performed better in detecting 

the deeper defects, (2) The adapted PointNet++ performed better than the adapted PointNet on 

detecting defects in binary classes segmentation. The adapted PointNet++ reached the accuracy 

of 78.8% and the adapted PointNet could reach the accuracy of 74.9%; (3) Applying the 

sensitivity analysis on the adapted PointNet showed increasing the block’s density more than the 

density of the actual dataset does not affect the results in PointNet method, and (4) PointNet++ 

applied on detecting the types (the accuracies of 35.7% for cracks and 83.8% for spalling are 

achieved), and the severity levels of defects (the accuracies of 37% for cracks, 16.5% for 

medium spalling, and 59.6 for severe spalling are achieved). There are two limitations in this 

study: (1) The training datasets are small, and (2) all kinds of defects are categorized in only one 

class. As future work, preparing more annotated LiDAR scanned point clouds of bridges to 

expand the training datasets is expected to increase the accuracy of defect detection. In addition, 

by adding more classes to the training datasets, this method would perform better in detecting the 

specified defects.  



 

 

91 

 

CHAPTER 5 Summary, Conclusions and Future Work 

5.1 Summary of Research 

This chapter reviewed the concepts, methods, and technologies that are used in the current 

research. Based on the literature, the LiDAR and UAV technologies can solve the data collection 

issues for bridge inspection, especially for the inaccessible elements of bridges. The integration 

of these two technologies aims to define an automated method for the bridge’s data collection. 

Moreover, point cloud analysis using deep learning method can semantically segment LiDAR 

generated point clouds, which is the core idea of this research’s concrete surface defect detection 

method. 

A LiDAR-equipped UAV platform is designed to collect 3D point cloud data using a 2D LiDAR 

scanner. The design satisfies the main identified requirements and constraints for structural 

inspection. The platform is realized and tested in an indoor and outdoor environment.  

A method for detecting surface defects of concrete bridges using point clouds and DNN is 

proposed. The method is based on PointNet and PointNet++, which are adapted to detect defects 

in LiDAR scanned datasets. Five areas of the point cloud datasets (containing three flipped 

datasets) are used in training, evaluation, and testing.  

5.2 Research Conclusion and Contributions 

The results of an outdoor test of the designed LiDAR-equipped UAV platform in flying mode 

show that the point clouds’ accuracy is not enough to detect surface defects smaller than 10 cm, 

which is mainly because of the low accuracy of the available light-weighted LiDAR scanner. A 

high resolution terrestrial 3D LiDAR (FARO Focus 3D) is used to generate point clouds for the 



 

 

92 

 

rest of the study and validate the proposed method for detecting surface defects of concrete 

bridges. 

The following conclusions can be stated for the proposed DNN based defect detection method: 

(1) The trained models performed better in detecting the deeper defects, (2) PointNet++ 

performed better than PointNet on detecting defects in binary classes segmentation, (3) 

Increasing the block’s density more than the density of the actual dataset does not affect the 

results in PointNet method, and (4) PointNet++ can segment defects based on types and severity 

levels.  

The research contributions are: (1) Proposing a method for data collection using LiDAR and 

UAV to increase the accessibility to most parts of bridges for inspection and automate the 

process of bridge inspection, (2) Proposing a DNN-based method to process the collected bridge 

point clouds without converting them to other visual representations (e.g. images, voxels). The 

proposed model is validated on real collected point clouds in detecting defects. Promising results 

have been obtained despite the small-sized training dataset. The accuracies of 74.9% (adapted 

PointNet) and 78.8% (adapted PointNet++) in detecting defects are achieved in binary semantic 

segmentation. In detecting types of defects, the accuracies of 83.8% and 35.7% in detecting 

spalling defects and crack defects, respectively, are achieved. Also, the accuracies of 87.9% and 

46.0% in detecting spalling defects and crack defects deeper than 3cm are achieved. Moreover, 

in detecting the severity levels of defects, the accuracies of 59.6%, 16.5%, and 37.0% are 

achieved in detecting severe spalling, medium spalling, and crack defects. Also, the accuracies of 

59.6%, 87.9%, and 46.0% are achieved in detecting severe spalling, medium spalling, and crack 

defects deeper than 3cm. 



 

 

93 

 

5.3 Limitations and Future Work 

Our limitation for the LiDAR-equipped UAV platform is the quality of the available LiDAR. 

Also, the weather conditions (e.g. wind) affect the accuracy of the results. 

The future work is validating the designed LiDAR-equipped UAV platform using a more 

accurate light-weighted 3D LiDAR to reach more accurate point clouds. Velodyne Puck LITE 

(Velodyne LiDAR, 2019) is a light-weighted available 3D LiDAR, which is weighted by almost 

590 grams. It may be used on the designed LiDAR-equipped UAV. This LiDAR is 3D and 

replace the 2D LiDAR and the servo motor. When we use a LiDAR with acceptable accuracy, 

the designed platform will use to validate the UAV path planning part (Bolourian & Hammad, 

2019). 

The limitation in point cloud analysis part of the study is the small-size training dataset. 

Moreover, there is no previous work on concrete surface defect detection using point clouds 

without converting them to images, so, it is not possible to compare the results to other related 

methods. 

As future work, preparing more annotated LiDAR scanned point clouds of bridges to expand the 

training datasets is expected to increase the accuracy of defect detection. In addition, by adding 

more data to the training datasets, this method would perform better in detecting the types and 

severity levels of the specified defects. Also, in future work, the results of the defect detection 

method will be used to locate the defects in the bridge information model (BrIM) by using the 

clustering methods and the industry foundation class (IFC).   



 

 94 

 

REFERENCES 

(PCA), P. C. (n.d.). Concrete Information. Portland Cement Association (PCA). 

About ROS. (n.d.). Retrieved from ROS: http://www.ros.org/about-ros/ 

Adhikari, R. S., Moselhi, O., & Bagchi, A. (2014). Image-based retrieval of concrete crack properties for 

bridge inspection. Automation in construction, 39, 180-194. 

Armeni, I., Sener, O., Zamir, A. R., Jiang, H., Brilakis, I., Fischer, M., & Savarese, S. (2016). 3d semantic 

parsing of large-scale indoor spaces. IEEE Conference on Computer Vision and Pattern 

Recognition, (pp. 1534-1543). Las Vegas Valley. 

Armesto-González, J., Riveiro-Rodríguez, B., González-Aguilera, D., & Rivas-Brea, M. T. (2010). 

Terrestrial laser scanning intensity data applied to damage detection for historical buildings. 

Journal of Archaeological Science, 37(12), 3037-3047. 

Bachrach, A., Samuel, P., He, R., & Roy, N. (2011). RANGE–Robust autonomous navigation in GPS‐

denied environments. Journal of Field Robotics, 28(5), 644-666. 

Bags. (n.d.). (ROS) Retrieved from ROS wiki: http://wiki.ros.org/Bags 

Bertussi, S., Szenher, P., & Bai, S. (2017). spin_hokuyo. (GitHub Inc.) Retrieved from GitHub: 

https://github.com/RobustFieldAutonomyLab/spin_hokuyo 

Bogosian, B., Gharakhanian, N., Khanoyan, G., Toorian, A., & Ohanian, R. (2016). 3D Scanning 

Assembly. Glendale: Glendale Community College. 

Bolourian, N., & Hammad, A. (2019). Path Planning of LiDAR-Equipped UAV for Bridge Inspection 

Considering Potential Locations of Defects. Advances in Informatics and Computing in Civil and 

Construction Engineering, (pp. 545-552). 

Brock, A.; Lim, T.; Ritchie, J.M; Weston, N. (2016). Generative and discriminative voxel modeling with 

convolutional neural networks. arXiv: 1608.04236(2). 

Buda, M., Maki, A., & Mazurowski, M. (2018). A systematic study of the class imbalance problem in 

convolutional neural networks. Neural Networks, 249-259. 

Canadian Aviation Regulations (CARs) and standards. (2017). Transport Canada. 

Chen, Xiaozhi, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. (2017). Multi-view 3d object detection network 

for autonomous driving. Computer Vision and Pattern Recognition (CVPR).  

Dissanayake, M. G., Newman, P., Clark, S., Durrant-Whyte, H. F., & Csorba, M. (2001). A solution to 

the simultaneous localization and map building (SLAM) problem. IEEE Transactions on robotics 

and automation, 229-241. 



 

 

95 

 

Engelcke, M., Rao, D., Wang, D. Z., Tong, C. H., & Posner, I. . (2017). Vote3deep: Fast object detection 

in 3d point clouds using efficient convolutional neural networks. International Conference on 

Robotics and Automation (ICRA), (pp. 1355-1361). Singapore. 

FARO. (2012). FARO Laser Scanner Focus3D X130. (FARO Technologies Inc.) Retrieved from FARO: 

https://www.faro.com/products/construction-bim-cim/faro-focus/ 

FARO. (2017). Quality Setting Function on the Focus3D. (FARO) Retrieved from 

https://knowledge.faro.com/Hardware/3D_Scanners/Focus/Quality_Setting_Function_on_the_Fo

cus3D 

Field, T., Leibs, J., & Bowman, J. (2010). Rosbag Package. Retrieved from ROS Wiki: 

http://wiki.ros.org/rosbag/ 

Freimuth, H., Müller, J., & König, M. (2017). Simulating and executing UAV-assisted inspections on 

construction sites. The 34th International Symposium on Automation and Robotics in 

Construction (ISARC).  

Girardeau-Montaut, D. (2015). CloudCompare. Retrieved from http://www.cloudcompare.org/ 

Girardeau-Montaut, D., Roux, M., Marc, R., & Thibault, G. (2005). Change detection on points cloud 

data acquired with a ground laser scanner. International Archives of Photogrammetry, Remote 

Sensing and Spatial Information Sciences, 36(3), W19. 

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Convolutional Networks. In Deep learning. 

Cambridge: MIT press. 

Guldur, B., Yujie, Y., & Hajjar, J. F. (2015). Condition assessment of bridges using terrestrial laser 

scanners. Structures Congress, (pp. 355-366). Portland. 

HDF-Group. (2018). HDF5 User's Guide. Retrieved from 

https://portal.hdfgroup.org/display/HDF5/HDF5+User%27s+Guide 

Hendrix, A. (2014). Ubuntu ARM install of ROS Indigo. Retrieved from 

http://wiki.ros.org/indigo/Installation/UbuntuARM 

Hershberger, D., Gossow, D., & Faust, J. (2018). rviz Package Summary. (Robotic Operating System) 

Retrieved from ROS: http://wiki.ros.org/rviz 

HOKUYO AUTOMATIC, C. (2014). Distance Data Output/UTM-30LX. Retrieved 2017, from 

https://www.hokuyo-aut.jp/search/single.php?serial=169 

Honkavaara, E., Kaivosoja, J., Mäkynen, J., Pellikka, I., Pesonen, L., Saari, H., . . . Rosnell, T. (2012). 

Hyperspectral reflectance signatures and point clouds for precision agriculture by light weight 

UAV imaging system. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci 7, (pp. 353-358). 

Melbourne. 



 

 

96 

 

Huber, D. (2014, 04 11). Futuristic infrastructure inspection in Pennsylvania. Retrieved from 

http://aria.ri.cmu.edu/archives/category/media 

Hugh Durrant-Whyte, Tim Bailey. (2006). Simultaneous Localisation and Mapping (SLAM): Part I The 

Essential Algorithms. IEEE Robotics & Automation Magazine, 9. 

Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing 

Internal Covariate Shift. International Conference on Machine Learning, (pp. 448-456). 

Jiang, J., Miyagusuku, R., Yamashita, A., & Asama, H. (2017). Glass confidence maps building based on 

neural networks using laser range-finders for mobile robots. IEEE/SICE International Symposium 

on System Integration, (pp. 405-410). 

Kim, M. K., Sohn, H., & Chang, C. C. (2014). Localization and quantification of concrete spalling defects 

using terrestrial laser scanning. Journal of Computing in Civil Engineering, 29(6), 04014086. 

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint 

arXiv:1412.6980. 

Koch, C., Georgieva, K., Kasireddy, V., Akinci, B., & Fieguth, P. (2015). A review on computer vision 

based defect detection and condition assessment of concrete and asphalt civil infrastructure. 

Advanced Engineering Informatics, 29(2), 196-210. 

Kohlbrecher, S. (2011). Mapping Using Logged Data. Retrieved from ROS Wiki: 

http://wiki.ros.org/hector_slam/Tutorials/MappingUsingLoggedData 

Laefer, D. F.; Truong-Hong, L.; Carr, H.; Singh, M. (2014). Crack detection limits in unit based masonry 

with terrestrial laser scanning. NDT & E International, 62, 66-76. 

LeCun, Y. (1989). Generalization and network design strategies. Connectionism in perspective, 143-155. 

LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time series. The 

handbook of brain theory and neural networks. 

Li, Z., Y. Yan, Y. Jing, and S. G. Zhao. (2015). The Design and Testing of a LiDAR Platform for a UAV 

for Heritage Mapping. The International Archives of Photogrammetry, Remote Sensing and 

Spatial Information Sciences, 40.  

Lidar, V. (2019). Velodyne Puck LITE. Retrieved from Velodine Lidar. 

Liu, W., Chen, S., & Hauser, E. (2011). LiDAR-based bridge structure defect detection. Experimental 

Techniques, 35(6), 27-34. 

Maekawa, D. (n.d.). Daiki Maekawa. Retrieved from GitHub: https://github.com/DaikiMaekawa 

MANIFOLD. (n.d.). (SZ DJI Technology Co., Ltd.) Retrieved from https://www.dji.com/manifold 

MATRICE 100. (2016). (SZ DJI Technology Co., Ltd.) Retrieved from 

https://www.dji.com/matrice100/info 



 

 

97 

 

Nasrollahi, M; Bolourian, N.; Zhu, Z.; Hammad, A. (2018). Designing LiDAR-equipped UAV Platform 

for Structural Inspection. International Symposium on Automation and Robotics in Construction 

(ISARC). Berlin. 

Olsen, M. J.; Kuester, F.; Chang, B. J.; Hutchinson, T. C. (2009). Terrestrial Laser Scanning-Based 

Structural Damage Assessment. Journal of Computing in Civil Engineering, 24( 3), 264-272. 

(2008). Ontario Structure Inspection Manual (OSIM). St. Catharines, ON: Ministry of Transportation. 

pcl_ros. (n.d.). (ROS) Retrieved from ROS wiki: http://wiki.ros.org/pcl_ros 

Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. USSR 

Computational Mathematics and Mathematical Physics, 1-17. 

Qi, C. R., Su, H., Mo, K., & Guibas, L. (2017). Pointnet: Deep learning on point sets for 3d classification 

and segmentation. Computer Vision and Pattern Recognition (CVPR), (pp. 4-23). Honolulu, 

Hawaii. 

Qi, C. R., Yi, L., Su, H., & Guibas, L. J. (2017). Pointnet++: Deep hierarchical feature learning on point 

sets in a metric space. Advances in neural information processing systems. 

Qi, C. R.; Su, H.; Nießner; M., Dai, A.; Yan, M.; Guibas, L. J. (2016). Volumetric and multi-view CNNs 

for object classification on 3D data. IEEE conference on computer vision and pattern recognition, 

(pp. 5648-5656). 

Rehman, S. K., Ibrahim, Z., Memon, S. A., & Jameel, M. (2016). Nondestructive test methods for 

concrete bridges: A review. Construction and Building Materials, 107, 58-86. 

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint 

arXiv:1609.04747. 

Scherer, D., Müller, A., & Behnke, S. (2010). Evaluation of Pooling Operations in Convolutional 

Architectures for Object Recognition. International Conference on Artificial Neural Networks. 

Thessaloniki, Greece. 

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple 

way to prevent neural networks from overfitting. The journal of machine learning research, 

1(15), 1929-1958. 

Stormbee demo days. (2017). (STORMBEE CO.) Retrieved from http://www.stormbee.eu/ 

Su, H., Maji, S., Kalogerakis, E., & Learned-Miller, E. (2015). Multi-view convolutional neural networks 

for 3D shape recognition. IEEE international conference on computer vision, (pp. 945-953). 

Santiago, Chile. 

Teza, G., Galgaro, A., & Moro, F. (2009). Contactless recognition of concrete surface damage from laser 

scanning and curvature computation. NDT & E International, 42(4), 240-249. 



 

 

98 

 

Tsai, Y. J. and Li, F. (2012). Critical assessment of detecting asphalt pavement cracks under different 

lighting and low intensity contrast conditions using emerging 3D laser technology. Journal of 

Transportation Engineering, 138(5), 649-656. 

Venator, E. (2015). Point Cloud Library (PCL). (Robot Operating System) Retrieved 02 20, 2015, from 

http://wiki.ros.org/pcl 

Wallace, L., Arko, L., Christopher, W., & Darren, T. (2012). Development of a UAV-LiDAR system with 

application to forest inventory. Remote Sensing, 4(6), 1519-1543. 

Winkvist, S., & Rushforth, E. (2013). Towards an autonomous indoor aerial inspection vehicle. The 

Industrial Robot, 40(3), 196-207. 

Wise, M. (2009). Using The Hokuyo Node. Retrieved from ROS Wiki: 

http://wiki.ros.org/hokuyo_node/Tutorials/UsingTheHokuyoNode 

Yoder, L., & Sebastian, S. (2016). Autonomous exploration for infrastructure modeling with a micro 

aerial vehicle. Field and service robotics, 113, 427-440. 

Zhang, J., & Singh, S. (2014). LOAM: Lidar Odometry and Mapping in Realtime. Robotics: Science and 

Systems. Berkeley. 

Zhou, Y., & Tuzel, O. (2018). Voxelnet: End-to-end learning for point cloud based 3d object detection. 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 4490-

4499). 

Zink, J., & Barritt, L. (2015). Unmanned aerial vehicle bridge inspection demonstration project. No. 

MN/RC 2015-40. 

 

 



 

 99 

 

Appendices 

Appendix A – Robot Operating System (ROS) 

The Robot Operating System (ROS) is a flexible framework for writing robot software. It is a 

collection of tools, libraries, and conventions that aims to simplify the task of creating complex 

and robust robot behavior across a wide variety of robotic platforms (http://www.ros.org/about-

ros/). ROS website documented the installation tutorial on its website. Here is the link of ROS 

Indigo installation: 

http://wiki.ros.org/indigo/Installation/Ubuntu 

For installing on Manifold use: 

http://wiki.ros.org/indigo/Installation/UbuntuARM 

Necessary steps and probable errors that may occur in ROS Indigo installation have explained in 

this section. 

1. On the Ubuntu desktop, the taskbar is in the left side. The first icon is “Search”, select it 

and type “terminal” : 

 

 

 

 

 

2. Open “Terminal” and type this command and press Enter to setup the sources list: 

$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb

_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list' 

Figure A-1 

http://www.ros.org/about-ros/
http://www.ros.org/about-ros/
http://wiki.ros.org/indigo/Installation/Ubuntu
http://wiki.ros.org/indigo/Installation/UbuntuARM


 

 

100 

 

 

 

 

 

 

Then type Ubuntu password:  

 

 

 

3. Type this command and press Enter to set up your keys: 

$ sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:

80 --recv-key 421C365BD9FF1F717815A3895523BAEEB01FA116 

 

 

 

 

 

 

4. Type this command and press Enter to make sure the Debian package index is up-to-date : 

$ sudo apt-get update 

Some operations similar to the following figure will appear: 

 

 

 

 

 

 

 

Figure A-2 

Figure A-3 

Figure A-4 



 

 

101 

 

 

 

 

 

 

 

 

 

 

 

 

5. Type the following command, in order to install the full package of ROS Indigo. 

$ sudo apt-get install ros-indigo-desktop-full 

Answer “Y” to the following question: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-5 

Figure A-6 



 

 

102 

 

 

If in this step you faced an error, try to install desktop version by: 

$ sudo apt-get install ros-indigo-desktop 

 

6. Type this command and press Enter to initialize rosdep : 

$ sudo rosdep init 

 

 

 

 

 

 

 

 

 

 

If you faced “rosdep: command not found” error, then install new commands by these two 

commands respectively: 

$ sudo apt-get install python-pip 

$ sudo apt-get install python-rosdep 

 

Now try again to initialize rosdep. 

7. The following command is necessary during initializing rosdep : 

Figure A-7 



 

 

103 

 

$ rosdep update 

 

 

 

 

 

 

 

 

 

 

8. Type following commands separately for environment setup : 

$ echo "source /opt/ros/indigo/setup.bash" >> ~/.bashrc 

$ source ~/.bashrc 

 

 

 

 

9. Getting rosinstall (frequently used command-line tool in ROS) is the last step of 

installing ROS. Type this command and press Enter : 

$ sudo apt-get install python-rosinstall 

 

 

 

Figure A-8 

Figure A-9 



 

 

104 

 

 

 

 

 

 

By typing “Y”, accept to continue: 

 

 

 

 

  

 

 

 

 

 

If you want to install ROS on an ARM-based CPU computer (like MANIFOLD) do not forget to 

unset GTK_IM_MODULE environment variable set by this code: 

 unset GTK_IM_MODULE 

Otherwise, you cannot run RViz and you face to “segment fault” error. 

Figure A-11 



 

 

105 

 

A.1 ROS workspace (catkin workspace) 

Catkin workspace is a directory where you modify, build, and install catkin packages 

(http://wiki.ros.org/catkin/workspaces). To create and build a catkin workspace using the “mkdir” 

command. It makes the folders: 

$ mkdir -p ~/catkin_ws/src 

Then go into the folder by: 

$ cd ~/catkin_ws/ 

And create the workspace by typing: 

$ catkin_make 

You can see this folder (catkin_ws) in the “home” directory. It contains three folders, ‘build’, 

“devel” and “src”. The “catkin_make” command creates a “CMakeLists.txt” link in the “src” 

folder. Inside the “devel” folder, there are several setups.*sh files. Sourcing any of these files 

will overlay this workspace on top of your environment. Before continuing, source the new 

setup.bash file: 

$ source devel/setup.bash 

 

A.2 Hector Slam 

In order to use the Hokuyo laser scanner, it is necessary to add some packages to ROS. Hokuyo 

UTM-30LX is a 2D laser detector that does not have an internal GPS, so we should use SLAM 

http://wiki.ros.org/catkin/workspaces


 

 

106 

 

(Simultaneous Localization and Mapping) technology to create a map by laser scanning. We 

should install “hector_slam”, “hector_mapping” and “hokuyo_node” packages.  

It is necessary to run this code in a Terminal it at first to run ROS: 

$  roscore 

While ROS is running, in a new Terminal install “hector SLAM” package: 

$ sudo apt-get install ros-indigo-hector-slam 

“Hector SLAM” is a full package that installs “hector mapping” and “hector geotiff” with itself 

that is necessary for creating a map using a laser scanner. Each package has one or some launch 

files. For example, the hector SLAM package has nine launch files and ‘tutorial.launch’ is the 

one for launching created maps. 

A.3 Hokuyo node 

Install “hokuyo_node” package using this command: 

$ sudo apt-get install ros-indigo-hokuyo-node 

 

 

Appendix B - Hector Slam Example 

Now all the packages that are necessary to use Hokuyo UTM-30LX are installed, just it is 

necessary to make a launch file to use hector SLAM, hector mapping, and Hokuyo node in order 

to create a map. One option is to edit “tutorial.launch” file that is in the hector SLAM package 



 

 

107 

 

and the other option is to use pre-written packages. A related example made by Daiki Maekawa 

(https://github.com/DaikiMaekawa/hector_slam_example) gets used in this survey. 

Extract the zipped folder, rename it to “hector_slam_example” and copy it into the “src” folder 

in the “catkin_ws” folder.  

In a new Terminal type: 

$ source ~/catkin_ws/devel/setup.bash 

Now install hector SLAM example: 

$ rosdep install hector_slam_example 

 

In the case of facing an error on installing the package, there is another way of installation. In 

this way, before downloading the “hector_slam_example” package, it is recommended to install 

the newly released “catkin-tools” package that has a “catkin build” command for making new 

packages instead of “catkin_make”. So, use this command line to install “catkin-tools”: 

$ sudo apt-get install python-catkin-tools 

Open the package’s link (https://github.com/DaikiMaekawa/hector_slam_example), click on “Clone 

or download”, click on “Copy to clipboard”.  

 

 

 

 

 

Figure B-1 

https://github.com/DaikiMaekawa/hector_slam_example
https://github.com/DaikiMaekawa/hector_slam_example


 

 

108 

 

 

 

 

After the clone link copied to the clipboard, go to ROS, create a folder named “git” by this 

command line: 

$ mkdir -p ~/git 

Then go into the folder by: 

$ cd ~/git/ 

Type “git clone” as a new command and paste the copied link of “hetor_slam_example” after 

that: 

 

 

 

The package is in the “git” folder now and next step in to link it to the catkin workspace source 

folder. So go into catkin workspace source folder: 

$ cd ~/catkin_ws/src/ 

Then use this command: 

$ ln –s ~/git/hector_slam_example/ 

Figure B-2 



 

 

109 

 

Then type “ls” in the command line, and see the list of folders and files in the source folder. 

Make sure that “hector_slam_example” is not in red color, and if it is, a mistake occurred in the 

previous steps. Check again from the cloning step to find the source of error. 

By this command, go back to catkin workspace root: 

$ cd ~/catkin_ws/ 

Then build a package by: 

$ catkin build hector_slam_example 

These notes will appear if everything goes well. 

 

 

B.1 Creating a Map Using Hokuyo UTM-30LX 

Turn Hokuyo on and plug in its USB. Make sure that the power light is on. In a Terminal type: 

$ ls -l /dev/ttyACM0 

You will see something similar to: 

Figure B-3 



 

 

110 

 

crw-rw-XX- 1 root dialout 166, 0 2009-10-27 14:18 /dev/ttyACM0 

If XX is rw: the laser is configured properly. 

If XX is --: the laser is not configured properly and it is necessary to: 

$ sudo chmod a+rw /dev/ttyACM0 

For the hokuyo_node to work properly, a ROS core must be running. In a new terminal: 

$ roscore 

In a new terminal type: 

$ source ~/catkin_ws/devel/setup.bash 

Now run ‘Hector SLAM example’ by: 

$ roslaunch hector_slam_example hector_hokuyo.launch 

The lunch file will open RViz software that shows the scanned area and create a map. 

 

 

 

 

 

 

 



 

 

111 

 

 

 

 

 

 

 

 

 

 

 You can move the laser to map the room. As this software plot the map in 2D, you should move 

Hokuyo just vertically to scan the surfaces parallel to the ground surface and do not turn it or 

pitch it during scanning.  

 

 

 

 

 

 

 

 

 

 

 

Figure B-4 

Figure B-5 



 

 

112 

 

B.2 Recording the Data 

While RViz is running and the scanner is scanning, you can record the data and the map while 

creating by “rosbag” command. At first, you should create a folder for bag files: 

$ mkdir ~/bagfiles 

Go into the folder by: 

$ cd ~/bagfiles 

While RViz is scanning and you are in bag files folder type this command in a new terminal 

(Field, Leibs, & Bowman, 2010): 

$ rosbag record -a 

After scanning, stop recording by pressing Ctrl+C in the recording terminal. Pressing Ctrl+C in a 

terminal stops a command that is running. You can find the recorded file (.bag file) in the bag 

files folder. 

 

 

 

 

 

 

 

 

 
Figure B-6 



 

 

113 

 

It is possible to play it with rosbag command, but before that, it is necessary to open an RViz 

window: 

$ roslaunch hector_slam_launch tutorial.launch 

When the RViz window opened, in a new terminal type: 

$ rosbag play <your bag file name> 

You should write the full name of the bag file, for example, 2017-09-13-11-34-56.bag 

Each bag file name contains the exact date and time of the start of recording. 

You can find the information about a bag file by this command: 

rosbag info <your bagfile> 

Size of a bag file of 548 seconds scanning is around 1,346 MB, a bag file of 496 seconds of 

scanning is 1,298 MB and a bag file of 93 seconds of scanning is 66 MB. 

B.3 Mapping a Hallway Hsing Hokuyo 

Hokuto UTM-30LX got tested to create a map of EV-Building 8th floor’s hallway two times. In 

the first experiment, Hokuyo is connected to a Laptop and in the second time, it connected to the 

MANIFOLD microcomputer that we plan to use it on the drone. 

Hokuyo UTM-30LX Laser Range finder, Lenovo Thinkpad Core i7 processor Laptop, and a 12V 

ANKER power bank (to support power for Hokuyo) is used on a cart and scanned hallway of 

EV-Building 8th floor. 



 

 

114 

 

The experiment took around 6 minutes and you can see the created map on the next page. I 

should add that in this case, ROS works on virtual Ubuntu OS that uses 5 processors of an Intel 

Core i7 processor and 24 GB memory as RAM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hokuyo UTM-30LX Laser Range finder, MANIFOLD ARM MPcore processor microcomputer, 

DJI MATRICE 100 drone (to supply power for MANIFOLD) and a 12V ANKER power bank 

(to support power for Hokuyo) is used on a cart and scanned the hallway of EV-Building 8th 

floor. 

Figure B-7 



 

 

115 

 

The experiment took around 8 minutes and you can see the created map here. It should be added 

that in this case, ROS worked on Ubuntu OS that uses Quad-core 4-Plus-1 ARM MPcore 

processors and 2 GB memory as RAM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.4 Converting bag Files to Point Cloud 

“Bag” is a ROS file format and named because of .bag extension. Bag files store ROS messages 

data. While recording output of Hokuyo laser scanner, bag files record “sensor_msgs/LaserScan” 

and “sensor_msgs/PointCloud” messages. To see a bag file information use this command line: 

Figure B-8 



 

 

116 

 

$ rosbag info session*.bag 

 

 

 

Bag files can just visualize in ROS Rviz and need to convert to other popular point cloud formats 

like .pcd and .ply to open in other software. There is a package named “pcl_ros” that has a 

“bag_to_pcd” node for converting bag files to PCD (Point Cloud Data) files. This is the 

command line for “bag_to_pcd”: 

$ rosrun pcl_ros bag_to_pcd <input_file.bag> <topic> <output_dir

ectory> 

As “pcl_ros” tries to convert “pointcloud2” messages as a point cloud file, it seems that it cannot 

convert manifold bag files to a pcd file. 

Figure B-9 



 

 

117 

 

The old format “sensor_msgs/PointCloud” is not supported in PCL. The “laser_assembler” 

package changes laser messages to “PointCloud2”. As the “PointCloud” message is old, it is 

necessary to make ROS publish laser scanner messages as “PointCloud2”. “laser_assembler” and 

“laser_geometry” are so recommended by ROS users in order to publish messages in a 3D view 

(by using “PointCloud2” messages). Both of them are under the category of the “laser_pipeline” 

package. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

118 

 

Appendix C – Compute Canada 

Compute Canada enables Canadian researchers to perform world-class research using Advanced 

Research Computing (ARC) strategies. The organization helps researchers who need ARC in all 

disciplines and at all scales; from individual researchers to some of the largest international 

research collaborations in the world. 

Compute Canada is in partnership with regional organizations ACENET, Calcul Québec, 

Compute Ontario and WestGrid. 

https://www.computecanada.ca/ 

 

Cedar (located in Simon Fraser University) and Graham (located in Waterloo University) are 

general purposes clusters composed of a variety of nodes including large memory nodes and 

nodes with accelerators. They went into service in the summer of 2017. You can log in to either 

one using SSH and the same password you use at ccdb.computecanada.ca. A home directory will 

be automatically created for you the first time you log in. 

Download MobaXterm (that supports SSH) from this link and run it: 

https://mobaxterm.mobatek.net/download.html 

Start a local terminal and write one of these SSH commands to log in to a cluster: (Use ccdb 

username in the command lines) 

$ ssh <username>@graham.computecanada.ca 

$ ssh <username>@cedar.computecanada.ca 

https://www.computecanada.ca/
https://docs.computecanada.ca/wiki/Graham
https://mobaxterm.mobatek.net/download.html


 

 

119 

 

The password of the login is the same as the ccdb account (for both Cedar and Graham). If the 

“Welcome message” is shown, you are logged in successfully. 

C.1 Submitting a Job 

Right-click on the left sidebar and choose “New empty file” to create a “sh” file to define a 

command line as a job. Write a name that ends with “.sh” (name-of-the-job.sh) and double click 

on the created sh file. Start to write your job in MobaTextEditor. 

A simple sh job: 

#!/bin/bash  

#SBATCH --time=00:01:00  

echo 'Hello, world!'  

sleep 30 

Save the written file and remember its path address. In the terminal, go into the folder of the 

saved job by “cd” command (eg cd tensorflow/pointnet). The terminal is in “/home/username/” 

by default. 

1. Use sbatch to run the job: 

[<username>@gra-login3 ~]$  sbatch <job name>.sh 

2. If you faced an error about the account, add this line to the .sh file: 

#SBATCH --account=def-hammad 

If submission worked, you will see: 

Submitted batch job 3130294 

This number (3130294) is the job ID. 



 

 

120 

 

3. To see the running/pending jobs: 

[<username>@gra-login3 ~]$ squeue -u <username> 

4. Information about a completed job: 

[<username>@gra-login3 ~]$ sacct -j <job ID> 

5. To cancel a running/pending job: 

[<username>@gra-login3 ~]$ scancel <job ID> 

 

By default the output is placed in a file named "slurm-", suffixed with the job ID number and 

".out", e.g. “slurm-123456.out”, in the directory from which the job was submitted. You can use 

the “--output” command in sh file to specify a different name or location. 

C.1 Installing TensorFlow 

There is a tutorial for installing TensorFlow: 

https://docs.computecanada.ca/wiki/Tensorflow 

Summary: (some parts are from other documentations) 

1. You can see where you are by: 

[<username>@gra-login3 ~]$ pwd 

/home/<username> 

2. To see all the available modules: (look at the core modules part) 

[<username>@gra-login3 ~]$ module avail 

3. Find the version of the python you want to work on and load it: 

https://docs.computecanada.ca/wiki/Tensorflow


 

 

121 

 

[<username>@gra-login3 ~]$ module load python/3.6.3 

4. Create a new Python virtual environment: 

[<username>@gra-login3 ~]$ virtualenv tensorflow 

5. Activate your newly created Python virtual environment: 

[<username>@gra-login3 ~]$ source tensorflow/bin/activate 

And see: 

(tensorflow) [<username>@gra-login3 ~]$ 

6. Install TensorFlow into your newly created virtual environment: 

(tensorflow) [<username>@gra-login3 ~]$ pip install tensorflow-gpu 

Now, TensorFlow is installed and a directory named “tensorflow” should have appeared.  

7. Go into the tensorflow folder: 

(tensorflow) [<username>@gra-login3 ~]$ cd tensorflow 

8. In the left panel, right click and create a “New empty file” and name it “tensorflow-

test.py”. Open it (by double click) and write these lines and save it: 

import tensorflow as tf 

node1 = tf.constant(3.0, dtype=tf.float32) 

node2 = tf.constant(4.0) # also tf.float32 implicitly 

print(node1, node2) 

sess = tf.Session() 

print(sess.run([node1, node2])) 

 

9. Create another “New empty file” and name it “tensorflow-test.sh” for running the job. 

Open it (by double click) and write these lines into it and save it: 



 

 

122 

 

#!/bin/bash 

#SBATCH --gres=gpu:1        # request GPU "generic resource" 

#SBATCH --cpus-per-task=6   # maximum CPU cores per GPU request: 6 on Cedar, 16 on Graham. 

#SBATCH --mem=32000M        # memory per node 

#SBATCH --time=0-03:00      # time (DD-HH:MM) 

#SBATCH --output=%N-%j.out  # %N for node name, %j for jobID 

 

module load cuda cudnn python/3.6.3 

source ~/tensorflow/bin/activate 

python ./tensorflow-test.py 

 

Don’t forget to wait till it will completely upload. Don’t forget to specify the exact python 

version that is loaded. 

10. Then write: 

(tensorflow) [<username>@gra-login3 tensorflow]$ sbatch tensorflow-test.sh 

If it works, you should see: 

Submitted batch job 3132013 

This number (3132013) is the job ID.  

A file named “gra956-3132013.out” will appear, right click on it and choose “Open with default 

text editor”. It should be like this: 

2018-03-01 20:41:50.604981: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1212] 

Found device 0 with properties:  

name: Tesla P100-PCIE-12GB major: 6 minor: 0 memoryClockRate(GHz): 1.3285 

pciBusID: 0000:83:00.0 

totalMemory: 11.91GiB freeMemory: 11.62GiB 



 

 

123 

 

2018-03-01 20:41:50.605045: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1312] 

Adding visible gpu devices: 0 

2018-03-01 20:41:51.025649: I tensorflow/core/common_runtime/gpu/gpu_device.cc:993] 

Creating TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 11250 MB 

memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-12GB, pci bus id: 0000:83:00.0, 

compute capability: 6.0) 

Tensor("Const:0", shape=(), dtype=float32) Tensor("Const_1:0", shape=(), dtype=float32) 

[3.0, 4.0] 

C.2 SBATCH Command Options 

All the SBATCH command options are explained in https://slurm.schedmd.com/sbatch.html. Some 

important options are explained here. 

#SBATCH --account=<account> 

This line is to specify an account for the job. The account name is something like “def-hammad” 

under the “Group Name” in the “Account details” on Compute Canada. 

#SBATCH --begin=<time> 

Submit the batch script to the Slurm controller immediately, like normal, but tell the controller to 

defer the allocation of the job until the specified time. 

   --begin=16:00 

   --begin=now+1hour 

   --begin=now+60           (seconds by default) 

   --begin=2010-01-20T12:34:00 

#SBATCH --cpus-per-task=<ncpus> 

Number of CPUs you want to allocate to the job. It is recommended to use maximum 6 for Cedar 

and 16 for Graham per GPU. 

https://slurm.schedmd.com/sbatch.html


 

 

124 

 

#SBATCH --deadline=<OPT> 

To remove the job if no ending is possible before this deadline (start > (deadline - time[-min])). 

Default is no deadline. Valid time formats are:  

HH:MM[:SS] [AM|PM]  

MMDD[YY] or MM/DD[/YY] or MM.DD[.YY]  

MM/DD[/YY]-HH:MM[:SS]  

YYYY-MM-DD[THH:MM[:SS]]] 

#SBATCH --gres=<list> 

--gres=gpu:1 

--gres=gpu:2,mic=1 

--gres=gpu:kepler:2 

#SBATCH --mem=<size[units]> 

Specify the real memory required per node. Default units are megabytes. Different units can be 

specified using the suffix [K|M|G|T].  

#SBATCH --output=<filename pattern> 

--output=Class-%N-%j.out  # %N for node name, %j for jobID 

 

 

 

 

 

 

 

 

 

 

 



 

 

125 

 

Appendix D – Python Code for Flipping the Dataset 

import os 

import glob 

import sys 

import numpy as np 

BASE_DIR = os.path.dirname(os.path.abspath(__file__)) 

ROOT_DIR = os.path.dirname(BASE_DIR) 

sys.path.append(BASE_DIR) 

 

data_dir = os.path.join(ROOT_DIR, 'data') 

flipped_dir = os.path.join(data_dir, 'mirrored') 

if not os.path.exists(flipped_dir): 

    os.mkdir(flipped_dir) 

anno_paths = [line.rstrip() for line in open(os.path.join(BASE_DIR, 

'meta/anno_paths.txt'))] 

 

 

for anno_path in anno_paths: 

    print(anno_path) 

    elements = anno_path.split('/') 

    area = os.path.join(flipped_dir+'/'+elements[-3]) 

    if not os.path.exists(area): 

        os.mkdir(area) 

    part = os.path.join(area+'/'+elements[-2]) 

    if not os.path.exists(part): 

        os.mkdir(part) 

    output_dir = os.path.join(part+'/'+'Annotations') 

    if not os.path.exists(output_dir): 

        os.mkdir(output_dir) 

    input = np.loadtxt(data_dir+'/'+'bridge'+'/'+elements[-

3]+'/'+elements[-2]+'/'+elements[-2]+'.txt', dtype=np.float, delimiter=' 

') 

    num=len(input) 

    out = input 

    for i in range(num): 

        out[i,0] = -input[i,0] 

    np.savetxt(part+'/'+elements[-2]+'.txt', out, fmt='%.3f %.3f %.3f %d 

%d %d') 

    for f in glob.glob(os.path.join(data_dir, 'bridge', anno_path, 

'*.txt')): 

        out_filename = os.path.basename(f) 

        input = np.loadtxt(f, dtype=np.float, delimiter=' ') 

        print (f) 

        num=len(input) 

        print (num) 

        out = input 

        for i in range(num): 

            out[i,0] = -input[i,0] 

        np.savetxt(output_dir+'/'+out_filename, out, fmt='%.3f %.3f         

%.3f %d %d %d') 


