
Neural Network Approaches to Medical Toponym
Recognition

MohammadReza Davari

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Computer Science at

Concordia University

Montréal, Québec, Canada

April 2020

© MohammadReza Davari, 2020

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: MohammadReza Davari

Entitled: Neural Network Approaches to Medical Toponym Recognition

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Charalambos Poullis

Examiner
Dr. Charalambos Poullis

Examiner
Dr. Tristan Glatard

Co-supervisor
Dr. Tien D. Bui

Co-supervisor
Dr. Leila Kosseim

Approved by
Dr. Lata Narayanan, Chair
Department of Computer Science and Software Engineering

2020
Dr. Amir Asif, Dean
Gina Cody School of Engineering and Computer Science

Abstract

Neural Network Approaches to Medical Toponym Recognition

MohammadReza Davari

Toponym identification, or place name recognition, within epidemiology articles is a crucial

task for phylogeographers, as it allows them to analyze the development, spread, and migration of

viruses. Although, public databases, such as GenBank (Benson et al., November 2012), contain

the geographical information, this information is typically restricted to country and state levels. In

order to identify more fine-grained localization information, epidemiologists need to read relevant

scientific articles and manually extract place name mentions.

In this thesis, we investigate the use of various neural network architectures and language rep-

resentations to automatically segment and label toponyms within biomedical texts. We demonstrate

how our language model based toponym recognizer relying on transformer architecture can achieve

state-of-the-art performance. This model uses pre-trained BERT as the backbone and fine tunes on

two domains of datasets (general articles and medical articles) in order to measure the generaliz-

ability of the approach and cross-domain transfer learning.

Using BERT as the backbone of the model, resulted in a large highly parameterized model

(340M parameters). In order to obtain a light model architecture we experimented with parame-

ter pruning techniques, specifically we experimented with Lottery Ticket Hypothesis (Frankle and

Carbin, May 2019) (LTH), however as indicated by Frankle and Carbin (May 2019), their pruning

technique does not scale well to highly parametrized models and loses stability. We proposed a

novel technique to augment LTH in order to increase the scalability and stability of this technique to

highly parametrized models such as BERT and tested our technique on toponym identification task.

The evaluation of the model was performed using a collection of 105 epidemiology articles from

PubMed Central (Weissenbacher et al., June 2015). Our proposed model significantly improves the

iii

state-of-the-art model by achieving an F-measure of 90.85% compared to 89.13%.

iv

Acknowledgments

I would like to thank Dr. Bui for his support and guidance.Under his supervision, I was able

to explore many domains and applications of artificial intelligence and eventually find my passion.

I would like to thank Dr. Kosseim for supporting my curiosities, while guiding me every step of

the way. I am forever grateful for the care and motherly love she has shown to me throughout my

studies. I would like to thank my lab colleague, Farhood Farahnak, for mentoring me. I learned a

lot from our discussion in the lab and I truly enjoyed your company outside of it.

Lastly, I would like to dedicate this thesis to my family and girlfriend Jia Lu. Jia has been

supportive of me and my dreams from the first day I have met her. Her valuable advices and her

encouragements were instrumental in my studies, and for that I am forever thankful. My parents

and my sister have always been the biggest fans of my work even if they had little idea of what

exactly I am doing. Words cannot express my gratitude to them.

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Motivation . 1

1.2 Goal of This Thesis . 4

1.3 Contributions . 4

1.4 Thesis Structure . 5

2 Related Work 6

2.1 Non-Neural Approaches . 6

2.2 Neural Approaches . 8

2.3 Neural Building Blocks . 9

2.3.1 Feed-Forward Neural Network . 9

2.3.2 Convolutional Neural Network . 10

2.3.3 Recurrent Neural Network . 11

2.4 Toponym Resolution in The Epidemiology Domain 16

2.5 Metrics . 17

2.6 Attention Mechanisms . 18

2.6.1 Motivation . 18

2.6.2 Origin of Attention Mechanism . 20

vi

2.6.3 Formal Definition . 22

2.6.4 Variations of Attention Mechanism . 24

2.7 Transformer . 26

2.7.1 Multi-Head Attention . 27

2.7.2 Model Architecture . 29

2.8 Tokenization . 31

2.9 Word Embeddings . 32

2.9.1 Word2Vec . 34

2.9.2 GloVe . 36

2.10 Generalized Language Models . 36

2.10.1 ELMo . 36

2.10.2 BERT . 37

2.11 Neural Network Compression . 41

3 Neural Network With Linguistic Insights 46

3.1 The DFFNN Model . 46

3.1.1 Embedding Layer . 46

3.1.2 The Architecture . 48

3.2 Experiments and Results . 49

3.2.1 Effect of Domain Specific Embeddings 50

3.2.2 Effect of Linguistic Features . 51

3.2.3 Effect of Window Size . 53

3.2.4 Effect of the Loss Function . 54

3.2.5 Overall Model Reliance on Linguistic Features 54

3.3 Discussion . 55

3.4 Conclusion . 57

4 Efficient Toponym Identifiers for Medical Domain Using BERT 58

4.1 TIMBERT Model . 59

4.1.1 Embeddings . 59

vii

4.1.2 Linguistic Features . 60

4.1.3 Contextual Information . 60

4.1.4 Network Pruning . 61

4.2 TIMBERT Architecture . 62

4.3 Experiments and Results . 62

4.3.1 Effect of Linguistic Features . 63

4.3.2 Effect of Network Pruning . 65

4.4 Discussion . 70

4.5 Conclusion . 71

5 Conclusion and Future Work 72

5.1 Summary . 72

5.2 Contributions . 73

5.3 Future Work . 74

Bibliography 76

viii

List of Figures

Figure 1.1 Ebola outbreak through air travel . 2

Figure 1.2 Early stages of ZIKV outbreak around the glob 2

Figure 1.3 Toponym detection input and output . 3

Figure 2.1 Feed-forward neural architecture . 10

Figure 2.2 Convolutional neural network architecture 11

Figure 2.3 Recurrent neural network architecture . 12

Figure 2.4 LSTM architecture . 13

Figure 2.5 GRU architecture . 15

Figure 2.6 Conceptual Visualization of Attention Mechanism 19

Figure 2.7 Conceptual Visualization of Attention in Natural Language 19

Figure 2.8 Encoder-decoder architecture . 21

Figure 2.9 NMT network architecture with attention 22

Figure 2.10 Matrix of the alignment scores in NMT . 24

Figure 2.11 Multi-head attention scores . 28

Figure 2.12 Multi-head attention architecture . 29

Figure 2.13 Transformer model architecture . 30

Figure 2.14 Word Embedding Similarity Expectation 33

Figure 2.15 Architecture of The Word2Vec Continuous Bag-of-Words Model 35

Figure 2.16 Architecture of The Word2Vec Skip-Gram Model 35

Figure 2.17 BERT input representation . 39

Figure 2.18 Fine-tuning BERT in downstream tasks. 42

ix

Figure 2.19 Fine Tuning on BERT . 43

Figure 3.1 Our proposed deep feed forward toponym recognition model 47

Figure 3.2 A comparison of the vocabulary size of word embedding models and their

percentage of OOV words with respect to the dataset. 51

Figure 3.3 Effect of word embeddings on the performance of our proposed model ar-

chitecture. 52

Figure 3.4 Context window influence on DFFNN . 54

Figure 3.5 DFFNN reliance on linguistic features . 55

Figure 3.6 Confidence of the DFFNN model and the baseline model in their categorical

prediction on four randomly selected words, Thailand (toponym), BioMed (non-

toponym), disease (non-toponym), and Nonthaburi (toponym). 56

Figure 4.1 TIMBERT model architecture . 62

Figure 4.2 An example of parameter scoring in IMPS. 67

Figure 4.3 Parameter pruning on TIMBERT with BERT initialization 68

Figure 4.4 Parameter pruning on TIMBERT with toponym identification initialization . 70

x

List of Tables

Table 2.1 Activation Functions . 9

Table 2.2 Statistics of the SemEval 2019 task 12 shared task (Weissenbacher et al., June

2019) dataset. 16

Table 2.3 Alignment Score Functions for an Attention Mechanism 25

Table 2.4 Examples of Target-Context pairs. 34

Table 2.5 Details of BERT model size variation. 38

Table 3.1 Optimal hyper-parameters of DFFNN model. 49

Table 3.2 Performance score of the baseline, our proposed model and its variations. . . 50

Table 4.1 Performance of TIMBERT based models 63

xi

Chapter 1

Introduction

1.1 Motivation

Phylogeographers, who study the geographic distribution of viruses, have long linked the in-

crease in the geographical spread of viruses (Gautret et al., October 2012; Green and Roberts,

November 2000) to the growth in global tourism and international trade of goods. Notable cases

include, the 2006 outbreak of Escherichia coli O157:H7 across multiple states in the United States

linked to spinach grown in California (Grant et al., October 2008). Due to cross border trade of

goods, this local outbreak of Escherichia coli soon became pandemic and affected 20 states and

infecting 205 people in the US (Grant et al., October 2008). In 2014, a few scattered cases of Ebola

were first reported in Guinea; then shortly after the virus made its ways to Lagos, Nigeria (ap-

proximately 2000km from Guinea) as well as Dallas, Texas (approximately 9000km from Guinea)

through air travel (World Health Organization, January 2015). This is shown in Figure 1.1.

Epidemiologists study and model the global impact of the spread of viruses by considering

information on the DNA sequence and structure of viruses, but also by relying on accurate metadata.

Although accurate localized geographical data is critical for their studies, most publicly available

data sets, such as GenBank (Benson et al., November 2012), provide insufficient details on the

matter, limited only to the country or state level. Therefore, a manual inspection of biomedical

articles is vital in order to obtain more fine-grained localization information. Figure 1.2 shows an

example of the process of modeling the global spread of ZIKV virus based on the epidemiology

1

Figure 1.1: Outbreak of Ebola through air travel. Yellow: virus first seen, Red: Virus reported due
to air travel.

Figure 1.2: (a) Reports on the spread of ZIKV1(b) a model presenting the spread of the decease.

reports on the evidence of this virus. In this example, the report indicates that:

(1) The first evidence that ZIKV could infect humans came from serological surveys conducted

in Uganda. Evidence of sporadic human infections was then demonstrated across Africa and

parts of South-East Asia (Boeuf et al., August 2016).

Epidemiologists studying and trying to model the spread of the ZIKV virus, would need to manually

extract the place names: Uganda, Africa, and South-East Asia to be able to model the global spread

of this virus.
1This example is taken from (Boeuf et al., August 2016)

2

Figure 1.3: An example of input and expected output of toponym detection task.

Toponym resolution can be regarded as a specific application of Named Entity Recognition

(NER), an active area of research in Natural Language Processing (NLP). NER addresses the prob-

lem of identifying and disambiguating phrases referring to entities (e.g. names of people, organi-

zations, and geographic locations) in texts (Chiu and Nichols, July 2016; Collobert and Weston,

July 2008; Lample et al., June 2016; Li et al., November 2015; Nadeau and Sekine, January 2007),

while toponym resolution focuses only on names of geographic locations (Magge et al., July 2018).

Toponym resolution hence refers to two problems: toponym identification and toponym disam-

biguation. Identifying the word boundaries of phrases that denote geographic expressions is the

concern of toponym identification. For example, as shown in Figure 1.3, given the sentence:

(2) We evaluated ear cartilage piercing practices in London, UK.2

The task of toponym detection is to identify London and UK as toponyms, and all other words as

non-toponym.

The task toponym disambiguation is to label each toponym with its geographic location. For

example in Example 2, toponym disambiguation should map the detected toponyms (London, UK)

to their corresponding geographical locations. For London alone, we have at least 11 choices of

locations around world (e.g. [London, UK], [London, Ontario], [London, West Virginia]). In this

example it is clear from the context of the sentence that the mention of London refers to the city in

the UK.

In recent years, toponym resolution has been the subject of a number of studies (e.g. (Ardanuy

and Sporleder, June 2017; DeLozier et al., February 2015; Taylor, December 2017)) which have

demonstrated that the task is highly dependent on the textual domain (Amitay et al., July 2004;

Purves et al., June 2007; Qin et al., November 2010; Kienreich et al., July 2006; Garbin and
2This example is taken from (Mandavia et al., June 2014).

3

Mani, October 2005). Previous methods used for toponym identification have relied on compre-

hensive gazetteers (Lieberman and Samet, December 2011) and hand crafted rules (Tamames and

de Lorenzo, June 2010), which require significant work and expertise to adapt across domains.

Hence, an automatic tool to detect and disambiguate toponyms for specific domains is necessary.

1.2 Goal of This Thesis

Motivated by recent research on the use of neural networks for NLP, the goal of this thesis

is to experiment with neural approaches for toponym identification within the medical domain.

Rather than relying on hand-crafting rules or on comprehensive gazetteers, this work investigates

the use of architectures that not only automatically learn such rules and structures, but are also better

predictors. In order to achieve this goal we used SemEval 2019 task 12 shared task (Weissenbacher

et al., June 2019) dataset which contains 105 annotated bio-medical articles from PubMed. We

approached the problem from two different angles:

(1) relying on transferred semantic information (i.e. word embeddings) coupled with specific

linguistic insights (e.g. part of speech tags).

(2) relying on transferred knowledge from a comprehensive model of the language, allowing the

language model to determine the needed linguistic features by itself.

1.3 Contributions

This thesis presents a number of contributions:

• a set of experiments evaluating the contribution of a variety of linguistic driven insights and

embedding representations for toponym detection, in the medical domain. This gave rise to a

paper at CICLing 2019 (Davari et al., April 2019).

• a novel approach to toponym detection in the medical domain, based on knowledge transfer

from language models which achieves the state-of-the-art performance.

4

1.4 Thesis Structure

This chapter briefly defined the task of toponym resolution as two sub-tasks (detection and dis-

ambiguation) and motivated its importance within the medical domain. Given the drawbacks of

previous conventional approaches, through this thesis, we investigated neural networks and lan-

guage models for toponym identification. The rest of this thesis is structured as follows: Chapter

2 reviews the datasets used in our work, previous work on toponym identification, and the neural

architectures used in Chapter 3 and 4. Chapter 3 presents and evaluates our first model: a feed for-

ward neural network enriched with linguistic insights. Chapter 4 then expands the model developed

in Chapter 3 with a language model based neural architecture for toponym identification and shows

a significant improvement in performance. Finally Chapter 5 summarizes the thesis and proposes

future work.

5

Chapter 2

Related Work

In Chapter 1, we briefly introduced the task of toponym identification: labeling each word of a

text as toponym or non-toponym. Previous work on toponym detection can be categorized as:

• Non-Neural Approaches:

(1) rule based approaches (e.g. (Tamames and de Lorenzo, June 2010))

(2) dictionary or gazetteer-driven (e.g. (Lieberman and Samet, December 2011))

(3) traditional machine learning approaches (e.g. (Santos et al., June 2015))

• Neural Approaches (e.g. (Magge et al., July 2018))

2.1 Non-Neural Approaches

The aim of rule based approaches is to manually record the contextual information and patterns

that are indicative of the presence of toponyms. However, such indicative structures are limited and

difficult to identify even by experts (Tamames and de Lorenzo, June 2010). Often, text samples

sparsely manifest useful contextual information, and even if a pattern is correctly identified and

captured, it may lead to false positive identifications, so its use should be evaluated. In addition,

these handwritten rules are not capable of characterizing all possible cases, therefore leading to a

number of false negative identifications.

6

Gazetteer based techniques (e.g. (Lieberman and Samet, December 2011)) rely on the existence

of comprehensive databases of geographic names (e.g. GeoNames 1 and Google Maps 2). These

approaches allow to reach high levels of recall but suffer from a large number of false positive

identification, resulting in a relatively low precision. This is because they are unable to correctly

identify and disambiguate the entities that belong to multiple classes of NER. For example in the

sentence,

(3) Alexander Hamilton was an American statesman and one of the Founding Fathers of the

United States.3

the word Hamilton will be recognized as a location name since it exists within the database of

geographic gazetteers; however, in the specific context of sentence (3), the entity is referring to a

person. To combat the relatively large number of such in-context false positive identification, hand-

written heuristics are typically used. However, defining heuristics requires accurate analysis of the

corpus and expertise in the domain. While these heuristics improve the precision of the model, they

decrease its generalizability, since these rules are mainly established from the patterns and statistics

exhibited by the corpus used.

A dramatic shift in NER research occurred around 2015 with the advent of deep learning ap-

proaches. Along with the wider NLP community, NER research moved from traditional machine

learning techniques to neural network approaches. By traditional machine learning techniques we

refer to non-neural network approaches, including conditional random fields (CRFs), support vec-

tor machines (SVMs) and naive Bayes classifiers. Approaching toponym recognition via traditional

machine learning techniques (e.g. (Santos et al., June 2015)) demands large, balanced, and accu-

rately annotated corpora. Such quality datasets are often not available, hence leading to relative

poor performance of this technique. Model training using this approach involves handcrafting rep-

resentative features, which is a time consuming task and requires expert knowledge of the domain.

Even with carefully engineered features, there is no guarantee that all relevant features have been

modeled, hence the optimal performance of the method is highly dependent on the quality of the
1http://geonames.org
2https://www.google.com/maps
3This example is taken from https://en.wikipedia.org/wiki/Alexander_Hamilton.

7

http://geonames.org
https://www.google.com/maps
https://en.wikipedia.org/wiki/Alexander_Hamilton

engineered features.

2.2 Neural Approaches

State of the art approaches to NER (e.g. (Chiu and Nichols, July 2016; Collobert and Weston,

July 2008; Lample et al., June 2016; Li et al., November 2015; Wang et al., November 2015)) are

based on deep learning techniques. Compared to traditional machine learning approaches, deep

learning techniques require relatively smaller datasets, as the knowledge gained from one task can

be leveraged in another (Dai et al., June 2007; Wang et al., June 2016). Moreover, deep learning

techniques are robust to label noise, and achieve outstanding generalization without the need for

carefully annotated datasets (Rolnick et al., May 2017). These techniques learn to infer relevant

features automatically leading to competitive performances and better predictive generalization.

The most commonly used architectures include: multi-layer perceptrons (MLP) (e.g. (Xu et al.,

July 2017)), convolutional neural networks (CNN) (e.g. (Collobert et al., August 2011)), and re-

current neural networks (RNN) (e.g (Chiu and Nichols, July 2016)). MLP and CNN architectures

are used with the shared idea that only localized contextual information is needed for the prediction

task. These methods are trained via defining a sliding contextual window and dismiss any contex-

tual knowledge beyond the sliding window. MLP architectures are comprised of multiple layers of

densely connected feed forward networks which allows for complex function approximation (Pal

and Mitra, September 1992). CNN architectures reduce computational costs by taking advantage

of mathematical cross-correlation and capturing reusable, transferable, and localized features. Al-

though CNNs were originally designed as an architecture for computer vision tasks (LeCun et al.,

May 2010; Krizhevsky et al., December 2012; Oquab et al., June 2014), they have shown great

ability to capture localized linguistic features and improving performance across a variety of tasks

in NLP (Lopez and Kalita, March 2017; Mou et al., November 2016; Chen et al., August 2016).

RNN architectures differ from CNN and MLP as they aim to take advantage of all available con-

textual information within a meaningful instance of data by using its internal state in subsequent

processes of input sequences. In NLP, this meaningful structure is often the sentence, hence the

RNN architecture tries to capture the structure and the contextual knowledge of an entire sentence

8

Table 2.1: Popular activation functions.

Name Activation Function

Softmax Softmax(x)i =
exp(xi)∑
i exp(xi)

Sigmoid Sigmoid(x) =
1

1 + exp(−x)
Hyperbolic tangent tanh(x) =

exp(2x)− 1

exp(2x) + 1
Rectified Linear Units ReLU(x) = max(x, 0)

for its predictions.

2.3 Neural Building Blocks

In this section we will review the 3 neural architectures: feed-forward neural network (FFNN),

convolutional neural network (CNN), and recurrent neural network (RNN). These networks are the

building blocks of the more complex neural architectures used in this thesis (see Chapters 3 and 4).

2.3.1 Feed-Forward Neural Network

A feed-forward neural network is composed of one or many layers of fully or partially con-

nected neural nodes which allows for complex function approximation (Pal and Mitra, September

1992). Each layer is composed of one or many nodes where each node represents a non-linear

transformation function, the most popular of which are listed in Table 2.1.

Each layer receives as input a linear combination of the output of the previous layer. A non-

linear transformation is then performed on these inputs to produce the output of the layer. More

formally, let x be an n dimensional input vector of a layer (possibly from the output of the previous

layer) containing m nodes, and f be a non-linear function, then the m dimensional output y is

computed as:

y = f(Wx)

Where W is an n × m weight matrix learned during training. Figure 2.1 shows the architecture

of a fully connected feed-forward neural network. For most NLP tasks, having a neural network

9

Figure 2.1: Feed-forward neural network: (a) Previous layer (b) Current fully connected layer.

architecture exclusively comprised of a feed-forward network is not optimal due to expensive com-

putation cost of these networks and their inability to adjust to variable length input. The use of

Convolutional (CNN) and Recurrent neural networks (RNN) mitigate these problems, which we

will discuss further in Sections 2.3.2 and 2.3.3.

2.3.2 Convolutional Neural Network

Convolutional Neural Networks (CNN) were first proposed as an architecture in the domain of

computer vision and image processing (LeCun et al., October 1999). CNNs were developed with

the assumption that certain features are shared across the input and it suffices to learn these features

once and share them through the network. For example, in the context of computer vision, these

shared features could be edges, colors, and shadows. Since these fundamental features exist within

every portion of input images, the network can learn them by analysing each patch of the input.

Patches of input are connected to neurons by performing convolution, and as the weights of the

convolution matrix are shared, the network as a whole shares the knowledge. Figure 2.2 illustrates

10

Figure 2.2: Convolutional Neural Network (CNN): (a) Input (b) Convolutional feature map applied
on the input patches.

the convolution operation performed on an input.

Success of the CNNs in the image domain (LeCun et al., May 2010; Krizhevsky et al., December

2012; Oquab et al., June 2014) led to experimentation with this architecture for NLP tasks. CNNs

have shown great ability to capture localized linguistic features and improve performance across a

variety of tasks in NLP (Lopez and Kalita, March 2017; Mou et al., November 2016; Chen et al.,

August 2016). These networks significantly reduce the computation cost by learning shared features

across the network. However, they are not well suited to deal with variable length inputs such as

sentences. Recurrent neural networks are designed to remedy this issue, which we will discuss

further in the following section.

2.3.3 Recurrent Neural Network

A recurrent Neural Network (RNN) is a natural extension of feed-forward neural network, al-

lowing the layers to have connections to themselves in addition to the layers before and after them.

This unique characteristic of the RNNs makes them the perfect candidate for the processing of vari-

able length inputs since the design of the layers allows them to loop and consume the inputs. Fur-

thermore, the intra-layer connections of RNN allows the network to capture and learn the sequential

dependencies of the inputs, making them the preferred choice for any type of time series data (e.g.

11

Figure 2.3: Recurrent neural network: (a) Recurrent network presented with the self-loop (b)
Unrolled presentation of RNN with respect to time.

natural language text or speech). However, due to the sequential architecture of these network, train-

ing is not performed in parallel, leading to long training process for RNN based networks. Vaswani

et al. (January 2017) proposed the Transformer architecture to mitigate this problem, which will be

discussed in Section 2.7.

Due to the sensitivity of the network to the order of the input sequence, RNN networks are

implemented as either a: forward RNN or a backward RNN. The only difference between these

two types of RNNs, is the order in which the data is presented to the model. In the forward RNN,

the data is presented to the network from the first element to the last, which in the backward RNN,

the data is given to the network in reverse. For simplicity, from here on, when we refer to an RNN

we mean the forward RNN.

In order to formally describe the RNN architecture, we let x be the input to the RNN, and h the

output. For the time step t the network is defined as:

ht = f(Uxt +Wht−1) (1)

where U is the matrix of weights connecting the input to the RNN unit, W is the matrix of weights

used for the internal connections of the RNN, and f is some non-linearity (see Table 2.1). Figure 2.3

illustrates the general architecture of the RNN.

The most popular non-linearity for the RNN architecture (Equation 1) is the tanh function,

12

Figure 2.4: LSTM architecture.

leading to the so called “vanilla RNN”. Although RNNs are specialized in sequential inputs, the

vanilla RNN is incapable of processing long inputs due to the vanishing and exploding gradient

problems which prevents the system from learning (Bengio et al., March 1994; Hochreiter and

Schmidhuber, November 1997). In order to mitigate this problem, 2 models were proposed: Long

Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, November 1997) and Gated Recurrent

Unit (GRU) (Cho et al., October 2014).

Long Short-Term Memory

Long Short-Term Memory (LSTM) was proposed by Hochreiter and Schmidhuber (November

1997) to mitigate the vanishing and exploding gradient problems (Bengio et al., March 1994). The

proposed architecture augments the vanilla RNN with: an input gate, a forget gate, and an output

gate. These gates allow the LSTM to learn to reset its sates when necessary. Figure 2.4 shows the

architecture of an LSTM. In order to formally define LSTM, let the values of the input, forget, and

13

output gates, be labeled by i, f , and o respectively. These values are computed at time t as:

it = σ(U ixt +W iht−1)

ft = σ(Ufxt +W fht−1)

ot = σ(Uoxt +W oht−1)

where xt is the input at time iteration t, ht−1 is the output of the LSTM unit at the previous time

step, Us are the matrices of weights connecting the input to the LSTM unit, W s are the matrices of

weights used for the internal connections of the LSTM, and σ is the Sigmoid activation function.

The final output of the LSTM at time t, ht, is computed as:

ht = tanh(Ct)� ot

Where Ct is called the cell state and is computed via the following 2 equations:

C∗t = tanh(Ugxt +W ght−1)

Ct = σ(ft � Ct−1 + it � C∗t)

Although the LSTM is more robust towards the vanishing and exploding gradient problem (Hochre-

iter and Schmidhuber, November 1997), and performs relatively better when it is presented with

longer length inputs (Sutskever et al., December 2014), the additional parameters make it expensive

to train. GRUs (Cho et al., October 2014) were introduced as an alternative to LSTMs in order

to reduce the computation cost of the network while preserving the robustness of the model when

presented with longer sentences.

Gated Recurrent Unit

As mentioned in the previous section, GRUs (Cho et al., October 2014) were developed as an

alternative to LSTMs in order to reduce the computation cost, while preserving the robustness of

the model. GRUs augment vanilla RNNs with only two gates: an update and a reset gate. Figure 2.5

14

Figure 2.5: GRU architecture.

illustrates the architecture of GRUs.

In order to formally define GRUs, let z, r, and h∗ represent the value of the update gate, reset

gate, and the internal memory of GRU. Given input x at time step t, we have:

zt = σ(U zxt +W zht−1)

rt = σ(U rxt +W rht−1)

h∗t = tanh(Uhxt + (rt �W hht−1))

Where Us are the matrices of weights connecting the input to the GRU unit, W s are the matrices of

weights used for the internal connections of the GRU. The final output of the GRU is computed as:

ht = (1− zt)� ht−1 + zt � h∗t

15

Table 2.2: Statistics of the SemEval 2019 task 12 shared task (Weissenbacher et al., June 2019)
dataset.

Training Development Test Total
Size 2.8MB 0.5MB 1.5MB 4.8MB
Number of articles 63 10 32 105
Average size of articles (in words) 6422 5191 6146 6220
Average toponyms per article 43 44 50 45

2.4 Toponym Resolution in The Epidemiology Domain

Toponym resolution in the epidemiology domain is a relatively new research area. Previ-

ous attempts at developing an accurate toponym detector in this domain includes rule based ap-

proach (Weissenbacher et al., June 2015), Conditional Random Fields (Weissenbacher et al., Novem-

ber 2017), and a mixture of deep learning and rule based approaches (Magge et al., July 2018).

However, most recent work in the area has been done within the context of the SemEval 2019

shared task 12 (Weissenbacher et al., June 2019).

In order to provide a common comparison point, the shared task organizers of the SemEval

2019 task 12 (Weissenbacher et al., June 2019) provided a base model. This baseline uses the

Deep Feed Forward Neural Network (DFFNN) architecture of (Magge et al., July 2018) and is

composed of 2 hidden layers with 150 rectified linear unit (ReLU) activation functions per layer,

and a Softmax output layer. The baseline model is reported to have an F1 score of 69.84% with the

dataset provided.

This dataset contains 105 articles from PubMed annotated with toponym mentions and their

corresponding geographical locations. The dataset was split into 3 subsets: training, development,

and test set containing 60%, 10%, and 30% of the dataset respectively. Throughout this thesis

the same subsets were used to train, fine tune, and evaluate the performance of the models. More

detailed statistics of the dataset are presented in Table 2.2. The evaluation of the models presented

in this thesis has been done with the SemEval 2019 task 12 shared task (Weissenbacher et al., June

2019). Therefore, the training and performance evaluation of the models are performed using the

dataset and the scorer function4 provided by the organisers.
4https://competitions.codalab.org/competitions/19948#learn_the_

details-evaluation

16

https://competitions.codalab.org/competitions/19948#learn_the_details-evaluation
https://competitions.codalab.org/competitions/19948#learn_the_details-evaluation

2.5 Metrics

The standard metrics for the task of toponym detection are: precision, recall and F-measure.

These metrics can be measured in two ways: strict or overlapping measures. The strict measures,

consider that a prediction to match with the gold standard annotation if both point to the exact same

span of text. On the other hand, the overlapping measures, are more lenient as they consider a

prediction to match with the gold standard annotations when they share a common span of text. The

leniency of this measure depends on the size of the overlapping common span of the text between

the predictions and the gold standard annotations.

(4) San Diego is a city on the Pacific coast of California.

If the system only identifies Diego as toponym, the overlapping measure counts this prediction as a

success since it shares one common token with San Diego, a toponym. On the other hand, the strict

measure would count it as a fail, since the whole San Diego was not predicted as toponym.

Since the research community in toponym identification is more concerned with strict mea-

sures (Magge et al., July 2018), we will only report on the strict measures of precision, recall and

F-measure. We will compute the precision and recall for toponym detection using the standard

equations:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

where TP (True Positive) is the number of toponyms correctly identified by a toponym detector

in the corpus, FP (False Positive) the number of phrases incorrectly identified as toponyms by the

detector, and FN (False Negative) the number of toponyms not identified by the detector. As the

definition of the precision and recall entails, optimization of one measure, independent of the other

can lead to poor performance on the other measure. In order to have a single measure to represent

17

precision and recall, the F-measure was developed as:

Fα = (1 + α2)× Precision× Recall
(α2 × Precision) + Recall

where the parameter α indicates an importance of precision compared to recall. In order to have

both precision and recall to have equal weights the F1-measure is used:

F1 = 2× Precision× Recall
Precision + Recall

2.6 Attention Mechanisms

2.6.1 Motivation

Attention mechanisms in the topic of learning algorithms are motivated by how we, humans,

pay attention to different components of our sensory inputs. In the context of visual attention,

depending on our objective, we bring different components of our visual input to focus and blur the

rest (Hoffman and Subramaniam, January 1995). Figure 2.6 (a) shows an image of maple taffies

with a patch of the image masked. If we were to guess the content of the masked region, we would

pay more attention to certain areas of the image, while blurring out the rest of the regions. The pink

areas shown in Figure 2.6 (b), depicting the twisted fingers holding a popsicle stick, some maple

syrup on the snow, and a popsicle stick attached to the maple syrup, will lead us to guess that the

masked region must be covering a rolled up maple taffy. Other regions in Figure 2.6 (b) such as the

background or the color of the person’s sleeve (indicated by gray circles) do not contribute to our

decision making.

In the context of natural language, we perceive similar contextual correlation between different

components. For example in the sentence:

(5) I drank a glass of water.

We expect a liquid to appear in the sentence once we read the word drank. There is a strong

correlation between these two words in this sentence. Hence, as shown in Figure 2.7, the word

drank attends to the word water, however it does not directly attend to the word glass.

18

Figure 2.6: (a) Masked image (b) Attention to the pink circles help guess the content of the masked
region, while the gray regions receive no attention.

Figure 2.7: Solid arrows indicate high attention. Dashed arrow indicate low attention.

19

In the context of learning algorithms, attention is a mechanism that distributes importance

weights to the components of an input (e.g. pixels in the image domain and words in natural lan-

guage) in order to infer a target output. These importance weights indicate the correlation between

the input components and the target output or in other words they specify how strong the algorithm

should attend to different components of the input to infer the target output.

2.6.2 Origin of Attention Mechanism

In order to better understand the importance and advantages of attention mechanism, we first

need to look at the problem it tries to solve. For this purpose, we briefly examine the sequence to

sequence model architecture.

The sequence to sequence model or encoding-decoding architecture is an extension of the RNN.

It is the standard model architecture for many NLP tasks such as: language modeling (Sutskever

et al., December 2014), neural machine translation (Bahdanau et al., May 2015; Cho et al., Octo-

ber 2014), and syntactic constituency parsing (Vinyals et al., December 2015). This architecture,

transforms an input or source sequence to an output or target sequence. These sequences can be of

arbitrary length and not necessarily equal to each other. The architecture of sequence to sequence

model is composed of: an encoder mechanism and a decoder mechanism.

The encoder operates on the source sentence, and compresses it to a fixed length vector known as

the context vector or sentence embedding. The context vector is expected to be a rich representation

of the source sentence containing a sufficient summary of the source information. A classical choice

for the context vector is the last hidden state of the encoder (Cho et al., October 2014). The decoder

constructs the target sentence based on the context vector it receives from the encoder. Both encoder

and decoder architectures are based on RNNs i.e. using LSTM or GRU units (see Section 2.3.3).

Figure 2.8 shows the encoder-decoder model used in neural machine translation for the following

translation:

(6) English: Watermelon is delicious.

French: La pastèque est délicieuse.

Bahdanau et al. (May 2015) showed that a major drawback of using fixed-size context vector

20

Figure 2.8: Encoder-decoder architecture used in neural machine translation, translating the sen-
tence Watermelon is delicious to French.

is the limitation of this vector to summarize and remember all the necessary information in the

source sentence. Having a fixed-size context vector introduced a bottleneck on the performance of

sequence to sequence models. When the model is presented with longer length source sentences,

the model would simply forget some of the information from the earlier part of the source sentence.

In the context of neural machine translation, this led to poor and incoherent translations for longer

sentences (Bahdanau et al., May 2015). Attention mechanism was, therefore proposed by Bahdanau

et al. (May 2015) to remedy this issue.

In the context of Neural Machine Translation (NMT), Attention mechanism helps the encoder-

decoder network memorize longer length source sentences. Attention mechanism allows the context

vector to create links between the entire hidden representations of the source sentence, instead of

using a single fixed sized context vector from the last hidden state of the encoder. These links

are parameters learned by the network and they are adjusted for each output element in the target

sequence. Since the context vector has access to the entire source sentence, the performance of the

encoder-decoder network is not affected by the length of the source sentences.

21

Figure 2.9: Neural machine translation architecture used by Bahdanau et al. (May 2015)5.

2.6.3 Formal Definition

Since the attention mechanism was introduced in NMT, we will base the examples of this section

on this task, and we will focus on the encoder-decoder architecture that was proposed by Bahdanau

et al. (May 2015). Assume, that we have a source sequence x of length T and the target sequence y

of length M :

x = [x1, x2, . . . , xT]

y = [y1, y2, . . . , yM]

The encoder will receive the source sequence x and will produce hidden state representations hi at

time step i. As shown in Figure 2.9, in the architecture proposed by Bahdanau et al. (May 2015) the

encoder is a bidirectional RNN and h at time i is defined as:

22

hi =
[−→
hi ,
←−
hi

]
∀i ∈ {1, 2, . . . , T}

Where
−→
hi is the hidden state representations in the forward pass of the RNN and

←−
hi is the hid-

den state representations in the backward pass of the RNN. The decoder will produce hidden state

representations sj defined for time j as:

sj = f(sj−1, yj−1, cj) ∀i ∈ {1, 2, . . . ,M}

Where f computes the current hidden state given the previous hidden state, the previous output,

and the context vector. f can be either a vanilla RNN unit, a GRU, or an LSTM unit. The param-

eter cj is the context vector at time j computed as a weighted sum of the source sequence hidden

representations:

cj =

T∑
i=1

αjihi (2)

Where the weights αji for each source sequence hidden state representation, are alignment measures

indicating how well an input at position i and an output at position j match:

αji = align(yj , xi) (3)

The alignment measure is a probability distribution over a predefined alignment score function.

The score for the input at position i and output at position j is computed based on the hidden

representation of the input at position i, hi, and the hidden representation of the decoder at position

j − 1, right before emitting the output yi:

align(yj , xi) =
exp (score(sj−1, hi))∑T
r=1 exp (score(sj−1, hr))

In the architecture proposed by Bahdanau et al. (May 2015) a feed-forward neural network is used

to parametrize and learn the alignment scores. The feed-forward network is composed of a single
5Source of figure (Bahdanau et al., May 2015)

23

Figure 2.10: Matrix of alignment scores for the translation of “This will change my future with my
family,” the man said. to French, “Cela va changer mon avenir avec ma famille”, a dit l’homme.6

hidden layer with tanh activation function and is jointly trained with the other parts of the network.

Hence, the alignment scores are given by:

score(sj , hi) = v tanh (W [sj , hi])

Where v and W are weight matrices that will be learned by the network. These alignment scores

define how much of each of the source hidden states is needed to produce each of the target outputs

or in other words, how much the target words should attend to the source sequence in the decoding

process. This concept is captured by the matrix of the alignment scores, explicitly showing the

correlation between input and output words. Figure 2.10 shows the matrix of alignment scores for

an English-French translation.

2.6.4 Variations of Attention Mechanism

Success of the attention mechanism in NMT motivated researchers to use it in different do-

mains (e.g. computer vision (Xu et al., July 2015)) and experiment with various forms of this
6Source of figure (Bahdanau et al., May 2015)

24

Table 2.3: Popular Alignment Score Functions for an Attention Mechanism.

Name Alignment Score Function Used In
Content-based score(sj , hi) = cos(sj , hi) Graves et al. (December 2014)
Additive score(sj , hi) = vtanh (W [sj , hi]) Bahdanau et al. (May 2015)
Dot Product score(sj , hi) = sTj hi Luong et al. (September 2015)
General score(sj , hi) = sTj Whi Luong et al. (September 2015)
Location-base score(sj , hi) =Whi Luong et al. (September 2015)

Scaled Dot Product score(sj , hi) =
sTj hi

||hi|| Vaswani et al. (January 2017)

mechanism (Vaswani et al., January 2017; Luong et al., September 2015; Britz et al., September

2017). The first natural extension to this mechanism is the alignment score function.

As discussed in Section 2.6.3, Bahdanau et al. (May 2015) used a single feed-forward neural net-

work with a tanh activation function to compute the alignment scores. However other approaches

have been proposed for the alignment score function. Table 2.3 lists a few popular alignment score

functions.

Aimed to reduce the computation costs of attention mechanism, Xu et al. (July 2015) experi-

mented with two kinds of attention mechanism: soft attention and hard attention. Soft attention

is similar to the attention mechanism introduced by Bahdanau et al. (May 2015) as it assigns a

(soft) probability distribution to all the source hidden states, which makes the model smooth and

differential but costly in the computation time.

On the other hand , hard attention aims to reduce the computation cost of attention mechanisms

by only focusing on one single source hidden representation at a time. The attention mechanism

in this setting is representing a multinoulli probability distribution over all the source hidden states.

Therefore, the vector of the attention weights is a one-hot vector assigning a weight of 1 to the most

relevant source hidden state and 0 to the others.

The one-hot representation of the attention is non-differentiable hence it requires more compli-

cated techniques such as variance reduction or reinforcement learning to train (Luong et al., Septem-

ber 2015). In order to remedy the non-differentiability of hard attention, Luong et al. (September

2015) proposed the concept of local attention. In their work, they call the soft attention mecha-

nism, the global attention since it attends to all hidden states in the source sequence. The local

attention, on the other hand, only attends to a window of the source hidden states. This mechanism

first predicts a single aligned position for the current target word mimicking the behavior of the hard

25

attention. A window centered around the source position is then used to compute the context vector

similar to the mechanism of soft attention. The local attention mechanism perfectly blends soft and

hard attention together to save computation costs while preserving the differentiability of the model.

Self-attention or intra-attention is a special case of the attention mechanism where the source

and target sequence are the same sequence. The context vector formulation is the same as in Equa-

tion 2, however, the weights are formulated differently. As a result, the target sequence in Equation 3

is replaced by the source sequence leading to:

αji = align(xj , xi)

The attention mechanism in this setting will find the best correlation between each word in a sen-

tence and the others, making self-attention an integral part of the recent advancements in embedding

representations (Vaswani et al., January 2017; Devlin et al., June 2019; Yang et al., December 2019).

2.7 Transformer

In Section 2.3.3 we introduced RNNs. Due to their ability of processing sequential inputs of

variable length, these architectures have been the preferred building block for many NLP neural

approaches such as language modeling (Sutskever et al., December 2014), neural machine trans-

lation (Bahdanau et al., May 2015; Cho et al., October 2014), and syntactic constituency pars-

ing (Vinyals et al., December 2015). However, RNNs are only slightly parallelizable, that means

the computational resources cannot be fully utilized during training and hence, leading to a very

time consuming training process.

In order to mitigate this issue, Vaswani et al. (January 2017) proposed the Transformer ar-

chitecture. The Transformer model is solely based on the attention mechanism (see Section 2.6)

and uses self attention layers to learn word representations. In the context of sequential data, the

Transformer architecture is superior to the classical neural architecture approaches such as RNNs

or CNNs based on three important criteria: computation complexity, parallelizability, and long term

dependency modeling.

The computation complexity of Transformer models is O(n2.d) for a sequence of length n

26

and hidden representation of size d, as opposed to RNNs and CNNs which have a computation

complexity of O(n.d2) and O(k.n.d2) respectively, where k is the kernel size of the convolution.

The dominating factor determining computation complexity of the model is the dimension of the

hidden representation, since it is typically far larger than the sequence length or the kernel size.

Hence, the Transformer model is conserving computation complexity by O(d) compared to the

other two models.

As mentioned in Section 2.3.3, RNN computations are only slightly parallelizable, leading to a

sequential computation of O(n) on a sequence of size n, since the model essentially needs to loop

through the sequence. However, Transformer and CNN models are highly parallelizable by design,

having O(1) sequential computations.

Modeling long term dependencies of a sequence input is a challenging task (Bengio et al., March

1994; Bahdanau et al., May 2015). The length of the path between long range dependencies has

an inverse correlation with the ability of the model in learning these dependencies. Longer paths

prevent the gradient or learning signals to be transmitted smoothly (Bengio et al., March 1994).

Hence the shorter the path between long range dependencies, the better the model learns. CNNs

with a kernel of size k have a maximum path length of O(logk(n)) for a sequence of size n, while

RNNs have a maximum path length of O(n). Since Transformers are solely based on attention

mechanism, the maximum path length in this architecture is O(1), letting the model to seamlessly

capture long term dependencies of sequential inputs.

2.7.1 Multi-Head Attention

Vaswani et al. (January 2017) introduced the multi-head attention mechanism in order to jointly

attend to information from different representation sub-spaces at different positions. Rather than

only computing the attention once, the multi-head attention mechanism independently attends to the

source information multiple times in parallel and then concatenates the results to provide a richer

representation of the source sequence. This allows the attention model to capture different kinds of

dependencies within the source sequence such as: semantic dependencies, syntactic dependencies,

and grammatical gender dependencies. Figure 2.11 shows the different types of dependencies cap-

tured via 8 attention heads for the word because in the sentence The animal didn’t cross the street

27

Figure 2.11: Matrix of alignment scores of the multi-head self attention model for the word because
in the sentence The animal didn’t cross the street because it was too tired.7

because it was too tired. In particular, we will focus on the contingency dependency in this figure.

The word because is an explicit discourse marker which indicates a contingency relation. The blue

and green attention heads (marked with thicker borders) in Figure 2.11 have successfully captured

this dependency relation.

The scaled dot product attention is used in all instances of the attention mechanism in the Trans-

former model, since it can be implemented using highly optimized matrix multiplication algorithms.

Transformer views the encoded representation as key-value pairs (K,V) of dimension n, although

both the keys and values are the encoder hidden states, this distinction in notation helps with better

understanding of the model. The output of the decoder is represented by Q, the query, of size m.

The attention is defined as:

Attention(Q,K, V) = softmax

(
QKT

√
n

)
V

7The image was produced using the pre-trained Transformer via Tensor2tensor (Vaswani et al., March 2018)

28

Figure 2.12: Multi-head attention architecture.8

The multi-head attention with h heads performs the above operation h times, then concatenates the

outputs and performs a linear transformation for the final result, given as:

MultiHead(Q,K, V) = [head1, . . . , headh]W
O

where headi = Attention(QWQ
i ,KW

K
i , V W

V
i)

Where WO, WQ
i , WK

i , and W V
i are matrix projections to be learned. Figure 2.12 shows the multi-

head attention architecture.

2.7.2 Model Architecture

The Transformer model was developed specifically for the NMT and follows the same principles

of the sequence to sequence models (Sutskever et al., December 2014). The model is comprised of

two modules: the encoder and the decoder module.

The encoder module (shown in the left side of Figure 2.13) generates an attention-based repre-

sentation. It consists of a stack of 6 identical layers, where each layer is composed of 2 sub-layers:

a multi-head attention layer and a position-wise fully connected feed-forward network. In order to
8The image was taken from (Vaswani et al., January 2017)

29

Figure 2.13: Transformer model architecture.9

encourage gradient flow in each sub-layer, a residual connection (He et al., June 2016) is formed

followed by a normalization layer (Ba et al., July 2016), i.e. the output of each sub-layer is given

by:

Output = LayerNorm (x+ Sublayer(x))

Where Sublayer(x) is the function implemented by the sub-layer itself.

The decoder module (see the right side of Figure 2.13) also consists of a stack of 6 identical

layers. Similar to the encoder, each layer is composed of sub-layer, in addition to the two sub-

layers in each encoder layer, the decoder incorporates a third sub-layer, which performs multi-head

attention over the output of the encoder stack. Analogous to the encoder module, each sub-layer

adopts a residual connection and a layer normalization. The first multi-head attention sub-layer of

the decoder module is modified with a masking mechanism, in order to prevent the decoder to look

into the future.
9The image was taken from (Vaswani et al., January 2017)

30

The Transformer model does not contain any recurrence or convolution, hence the model is un-

aware of the order of the sequence. In order to augment the model with this information a positional

encoding is added to the input embeddings. The positional encoding captures the relative position-

ing of the elements of the sequence via sine and cosine functions of different frequencies. The ith

dimension of a positional encoding of size n for the jth position is defined as:

PositionalEncoding(j,2i) = sin

(
j

10000
2i
n

)
PositionalEncoding(j,2i+1) = cos

(
j

10000
2i
n

)

2.8 Tokenization

Classical approaches to tokenization in English rely on punctuation between words to constitute

token boundaries. This method of segmentation does not generalize well to languages where punc-

tuation between words does not exist or exists but on a very limited scale (e.g. Chinese, Japanese,

and Korean). Word representations obtained from this naive approach to segmentation result in a

large vocabulary that is domain specific, and it is unable to handle out-of-vocabulary (OOV) words.

Intuitively rare and unknown words can often be decomposed into multiple representative and

meaningful sub-word units. For example, morphologically complex words can easily be defined by

the sum of their morphemes. This idea is the main motivation behind sub-word tokenization, which

leads to a compact network vocabulary and improves cross domain generalizability (Sennrich et al.,

August 2016).

Embeddings based on sub-word tokenization such as BERT (see Section 2.10.2) assign unique

vector representations for more frequent words, whereas less frequent words will be decomposed

into and represented by sub-word units that best retain their meaning. For example, a conventional

word embedding model (Mikolov et al., May 2013) would learn four different vector represen-

tations for the words [high, higher, low, lower], but embeddings based on sub-word

tokenization could attain smaller neural vocabulary by taking advantage of the compositionality of

the language. In this example we could have three vectors for [high, low, er] and represent

every word in our corpus as a linear combination of these three vectors.

31

In this section we will briefly discuss two popular sub-word tokenization algorithms: Byte Pair

Encoding (BPE) algorithm (Sennrich et al., August 2016) and WordPiece algorithm (Wu et al.,

September 2016).

Sennrich et al. (August 2016) proposed Byte Pair Encoding (BPE) algorithm, which was origi-

nally proposed as a data compression algorithm (Gage, February 1994), to mitigate the OOV issue

in machine translation. Given a fixed final token vocabulary size and a corpus, the BPE algorithm

first splits all words into their characters and initializes the vocabulary with these characters (to-

kens). Next, it finds the most frequent co-occurrence of the tokens, merges those tokens, and adds

the newly formed token to the vocabulary. This increases the vocabulary size by one. The algorithm

repeats this procedure until it reaches the desired size limit of the vocabulary.

The WordPiece algorithm (Wu et al., September 2016) was proposed to solve the segmentation

problem of the Korean and Japanese languages. This algorithm is similar to the BPE algorithm

with the only the difference that WordPiece algorithm merges tokens together that could increase

the likelihood of a unigram language model instead of the most frequent token bigrams. In Sec-

tion 2.10.2 we will expand on the BERT model which is based on WordPiece and it is used in our

experiments in Chapter 4.

2.9 Word Embeddings

We, humans, use natural language to communicate information. The textual representation of

the language (characters, words, etc.) is comprehensible for us, however this is not the case for

machines and learning algorithms as their primary means of communication is numerical.

One of the simplest ways to translate textual data to numerical values is one-hot encoding. For a

vocabulary of size V , sorted in a given order, the one hot encoding of the ith word is a V dimensional

vector with a value of one in its ith dimension and zeros everywhere else.

Although simple, the one-hot encoding representation is not a scalable solution. As the vocab-

ulary size increases, the one-hot encoding representation requires much more memory and com-

putational resources (Bengio et al., February 2003) and the representation does not reflect syntac-

tic or semantic characteristics of the words. Embeddings (character (Kim et al., February 2016),

32

Figure 2.14: Word Embeddings are designed to capture semantic and syntactic relation between
words.

word (Mikolov et al., May 2013), and sentence (Kiros et al., December 2015), etc.) were introduced

to mitigate these problems by representing textual data via densely populated vectors and reducing

the dimensionality of the representation vectors.

Word embeddings are dense vector representation of words. They are designed to capture syn-

tactic and semantic similarities between words. Hence, as shown in Figure 2.14 similar words

occupy the same region of the embedding vector space. There are two major word embedding

model families in the literature: statistical based embeddings (Bullinaria and Levy, August 2007)

and context based embeddings (Bengio et al., February 2003; Mikolov et al., May 2013).

Statistical based approaches leverage global statistical information of the corpus in order to

form co-occurrence matrices with the assumption that words in the same contexts share similar

semantics. For example in Latent Semantic Analysis (LSA) (Deerwester et al., March 1990) the

matrices are of word-document type and in Hyperspace Analogue to Language (HAL) (Lund and

Burgess, June 1996) the matrices are of word-word type. These large matrices are then decomposed

to low-dimensional word representations through low-rank approximations.

Context based approaches (Bengio et al., February 2003; Mikolov et al., May 2013) learn word

representations through a predictive neural model. The model is trained to predict a target word

given a window of its local context (i.e. c words that appeared before and after the target word).

The learned hidden parameters of this model constitute dense vector embeddings of the words in

the vocabulary. The next sections will review work in context-based approaches as these have been

used in our work (see Chapter 3).

33

Table 2.4: Examples of Target-Context pairs.

Target Context
all good, things
good all, things, come
things all, good, come, to
come good, things, to, an
to things, come, an, end
an come, to, end
end to, an

2.9.1 Word2Vec

Mikolov et al. (May 2013) proposed a shallow, two layer neural network to learn dense em-

bedding representations for words. This context based approach to word embeddings aims to map

words that share common contexts in the corpus to locations in the vector space that are close to

one another. The training is performed using either of these two model architectures: continuous

bag-of-words (CBOW) or skip-gram. Due to the low computational complexity of these shallow

architectures, Word2Vec models can be trained on a large corpus in a short time (billions of words

in hours) (Mikolov et al., May 2013).

Both the CBOW and the skip-gram models are given a fixed sized window of (2× c+1) words

in a sentence. The word in the middle is called the target word and the words around it (i.e the c

words before and after the target word) are called the context words. For example, Table 2.4 lists all

the target-context pairs for a context window of size 2, for the sentence:

(7) All good things come to an end.

The CBOW model training objective is to predict the target word given the context around

it. Assume we have a vocabulary of size V and we aim to learn unique dense word embeddings

of length N for this vocabulary. Figure 2.15 shows the architecture of the CBOW model. In this

model, the one hot representations of context words (of length V) constitute the input and the model

output is the one-hot encoding of the target word.

The inputs will then be multiplied by a matrix of size V ×N , the embedding matrix, where each

row corresponds to the embedding of a word in the vocabulary. The output of this multiplication is

then passed to a hidden layer of sizeN followed by another matrix multiplication in order to produce

34

Figure 2.15: Architecture of The Word2Vec Continuous Bag-of-Words Model

Figure 2.16: Architecture of The Word2Vec Skip-Gram Model

a probability distribution over the vocabulary for the most likely target word. CBOW models are

fast to train and are suitable for large datasets (Mikolov et al., September 2013).

The training objective of the skip-gram model is to predict the context words of a given target

word. Supposed as before, that we have a vocabulary of size V and we aim to learn unique dense

word embeddings of lengthN for them. Figure 2.16 shows the architecture of the skip-gram model.

In this model, the one-hot encoding of the target word constitutes the input and the output of the

model is the context words. The model outputs a probability distribution over the entire vocab-

ulary for each of the context words. For example, in the first row of Table 2.4, the target word

all and the context words good and things, result in two training samples (i.e. [all,good] and

[all,thing]) for which the model would need to produce two probability distributions over the

vocabulary with highest values on the words good and things. The skip-gram model produces better

quality embeddings when the training corpus is small (Moen and Ananiadou, December 2013).

35

2.9.2 GloVe

Pennington et al. (October 2014) proposed the Global Vector (GloVe) model in order to com-

bine the statistical-based matrix factorization and the context-based skip-gram model together. The

model aims to directly capture the global statistics of the corpus by modeling word embedding

vectors through the ratio of word-word co-occurrence probabilities rather than the probabilities

themselves. Similarly to the Word2Vec (see Section 2.9.1), the GloVe model captures the semantic

relations of the words, but unlike Word2Vec, GloVe models these semantic relations based on the

global co-occurrence of the words.

2.10 Generalized Language Models

In Section 2.9 we discussed two approaches to create word embeddings. The main shortcoming

of these approaches is their inability to represent words in context. For example, in Sentences 8 and

9, the word duck has two different syntactic roles and meanings. In Sentence 8, the word duck is

a noun and refers to a bird; on the other hand, in Sentence 9, the word duck is a verb and refers to

the act of lowering head or one’s body quickly. The approaches to word embeddings discussed in

Section 2.9 would create the same vector for both instances of the word duck. In this section, we

will discuss two approaches that were proposed to turn embeddings to a dynamic function of the

context and make them more efficient in downstream NLP tasks.

(8) I fed the duck.

(9) I saw you duck a punch.

2.10.1 ELMo

Peters et al. (June 2018) proposed a multi-layer bidirectional LSTM based model that learns

contextualized word embedding representations by pre-training a language model on a large corpus

of data. The pre-training phase is an unsupervised training during which the model learns to predict

the probability of next token given the past and future tokens. The pre-training phase can be scaled

36

up since its learning objective is an unsupervised task and the unlabeled corpora can easily be

expanded.

The hidden layers of the ELMo model constitute the word embeddings, which leads to word

representations that are functions of the entire input sentence. For each specific downstream task, a

model learns a linear combination of the hidden states of the ELMo model i.e. the learned weights

of the linear combination of the ELMo layers indicate the needed task-specific modifications to the

ELMo embeddings.

Peters et al. (June 2018) investigated the nature of the linguistic structures captured via ELMo

embeddings by applying the model to semantic intensive and syntax intensive tasks. The ELMo

embeddings were applied to word sense disambiguation (WSD) and part-of-speech (POS) tagging.

The WSD experiments showed that the top layers of the model better capture semantic information

of the language; on the other hand, the POS tagging experiments indicated that the lower layers

of the model better represent syntactic information of the language. Since different layers of the

embedding model represent different types of linguistic information and each downstream task has

different linguistic needs, all layers of the ELMo model are always present in a new task. However, a

task-customized model would need to learn a linear combination of these layers in order to optimize

performance.

ELMo embeddings improve the performance of supervised learning tasks with small datasets.

However, this embedding model relies on task-customized model architectures to learn and optimize

the weights of the linear combination of the embedding hidden layers. This means that for every

downstream task, a significant effort needs to be spent on searching for a good model architecture.

In order to mitigate this issue, other language models such as ULMFiT (Howard and Ruder, July

2018), GPT (Radford et al., June 2018), and BERT (Devlin et al., June 2019) introduced the concept

of fine-tuning, which we will discuss further in the next section.

2.10.2 BERT

In Section 2.10.1 we discussed the motivation behind the ELMo embedding model. This model

transfers the contextualized embeddings to downstream tasks through customized task-specific neu-

ral architectures. This means that for every downstream task, significant effort is required to search

37

Table 2.5: Details of BERT model size variation.

Model Transformer Layers Self-attention Heads Hidden Size Total Parameters
BERT-Base 12 12 768 110M
BERT-Large 24 16 1024 340M

for a good model architecture. In order to mitigate this problem, Howard and Ruder (July 2018)

proposed the ULMFiT model and explored the idea of using a pre-trained language model coupled

with fine-tuning the same base model for all end tasks.

Following the same philosophy of ULMFiT, the GPT (Radford et al., June 2018), and later the

BERT (Devlin et al., June 2019) models were proposed to eliminate the search for task-specific

model architectures and instead use the pre-trained language model directly for all end tasks. These

models follow a two step mechanism: pre-training and fine-tuning. In the pre-training step, the

model is trained in an unsupervised fashion on a large corpus of data targeting language modeling

tasks. In the fine-tuning step, the language model is augmented with a small neural structure and

trained on task-specific data. In this section we will explain BERT as it was used in our work (see

Chapter 4).

Devlin et al. (June 2019) proposed BERT, short for Bidirectional Encoder Representations from

Transformers, a language model based entirely on the Transformer (see Section 2.7) architecture.

The BERT architecture is comprised of multi-layer bidirectional Transformer encoder (the left side

of Figure 2.13). BERT was introduced through two model sizes with the same architecture: BERT-

Base and BERT-Large. Table 2.5 shows the main differences between these two variations.

Input Representation

As shown in Figure 2.17, the input to the model is represented as the sum of three embeddings:

token embeddings, segmentation embeddings, and position embeddings.

Token embeddings are the WordPiece tokenization embeddings (see Section 2.8) which allows

words to have variable length representations based on their morphemes and phonemes. In this

approach words are seen as the sum of smaller sub-word units, allowing the model to better handle

rare or unknown words.
10The image was taken from (Devlin et al., June 2019).

38

Figure 2.17: BERT input embeddings consisting of token embeddings, segmentation embeddings
and position embeddings.10

Segmentation embeddings are motivated by the fact that many downstream tasks (e.g. Question

Answering (QA), or Natural Language Inference (NLI)) are interested in the relation between two

sequences, say sequence A and sequence B. The segmentation embedding forms an embedding for

sequenceA and sequenceB separated by the special token [SEP]. If the downstream task contains

only one sequence at each input, sequence A representation would correspond to the input, and

sequence B would be ∅.

The BERT model essentially applies multiple Transformer blocks over the input sequences. In

Section 2.7, we mentioned that the Transformer architecture does not contain any recurrence or

convolution, hence this architecture is unaware of the order of the sequence. In order to augment

the model with this information a positional embedding is added to the input embeddings.

The special token [CLS] is added at the beginning of each input in order to be used later for

prediction in downstream tasks. The final hidden state corresponding to this token is used as the

aggregate sequence representation for classification tasks.

Pre-Training Phase

During the pre-training step, BERT is trained on two language model tasks: mask language

model (MLM) and next sentence prediction (NSP).

MLM is designed to capture the word representations based on the context around a word (i.e.

before and after). In this task, some tokens are masked and the model is trained to predict the masked

tokens. Devlin et al. (June 2019) masked 15% of the tokens of each sequence, however replacing

39

a token with special token [MASK] results in a mismatch between the pre-training phase and fine

tuning phase since [MASK] does not appear during the fine-tuning step. In order to mitigate this

issue, BERT uses the following heuristics during masking:

(1) Replace the chosen token with [MASK] token with the probability of 80%.

(2) Replace the chosen token with a random token with the probability of 10%.

(3) Keep the chosen token as is with the probability of 10%.

The output of the model is a sequence of tokens that the model predicts to be the masked tokens

(i.e. the model does not reconstruct the entire input sequence), hence the output length is 15% of

the input length.

NSP is motivated by the fact that many downstream tasks (e.g. QA, or NLI) are based on

understanding the relationship between two sentences. In order to capture this relationship, BERT

is pre-trained to predict whether one sentence is the next sentence of the other. For a sample sentence

pair (A,B), half of the time B follows A and half of the time it does not. The output of the model

for this task is a binary label indicating whether B follows A or not.

The training loss of the model is the sum of the mean MLM likelihood and the mean NSP like-

lihood. The pre-training phase can be scaled up, since its learning objectives are two unsupervised

tasks and the the training data for both of these tasks can be trivially generated from any monolingual

corpus.

Fine-Tuning Phase

The fine-tuning phase is seamless with only a few new parameters added to the pre-trained

model. Figure 2.18 shows how the augmented pre-trained model converts the Transformer hidden

states to the desired output of a downstream task.

For single sentence classification or sentence pair classification tasks (Figure 2.18.a and b), the

final hidden representation of the special first token [CLS], h[CLS], is linearly transformed (i.e.

multiplied by a weight matrixW) and passed to a Softmax function to predict the probability output

classes (Softmax(h[CLS].W)).

40

For the QA task (Figure 2.18.c), two probability distributions are defined over each tokens in

the given paragraph of a given question in order to define the boundaries of the answer text span.

One probability distribution estimates the probability of a token being the start of the text span

and the other models the probability of a token being the end of the text span. The final hidden

representation of the tokens of the paragraph will be multiplied by a weight matrix and passed

through a Softmax function to determine the start and end tokens.

For token classification tasks (Figure 2.18.d) such as NER (see Chapter 4), a similar augmen-

tation as the one for QA is performed. In token classification tasks, each output token belongs to

either of k available classes, hence we need to define a probability distribution over the possible

classes for each token in the output. The final hidden representation of the tokens will be multiplied

by a weight matrix and Softmax function would determine the class of each token.

2.11 Neural Network Compression

Transferring knowledge from a pre-trained neural model, such as BERT (see Section 2.10.2) for

NLP and VGG (Simonyan and Zisserman, September 2014) for computer vision, to a wide variety

of downstream tasks is an effective method for improving the performance of learning algorithms.

These models are pre-trained on large amounts of data, over tasks designed to capture the general

structure of their target domain. They are then fine tuned on a small amount of downstream data,

in order to bring their focus on a specific task. For example, as shown in Figure 2.19, a pre-

trained BERT model can be fine tuned with an added layer to produce sate-of-the-art results for

Named Entity Recognition (NER), Neural Machine Translation (NMT), or Question Answering

(QA). (Devlin et al., June 2019).

The significant performance enhancement of fine tuning based models come at a cost of memory

and computation complexity. Intuitively, each downstream task only needs a subset of the informa-

tion which is learned and offered by the pre-trained model. Identification of the necessary informa-

tion needed by a downstream tasks leads to smaller models and more efficient learning algorithms

since we can discard the excess and unwanted information.
11The image was taken from (Devlin et al., June 2019).

41

Figure 2.18: Fine-tuning BERT in downstream tasks with few new training parameters added to
the base model and slightly modified training objective.11

42

Figure 2.19: Pre-trained BERT model can be fine tuned with an added layer to produce sate-of-the-
art results for Named Entity Recognition (NER), Neural Machine Translation (NMT), or Question
Answering (QA).

Pruning unnecessary structures from the neural networks is a technique to reduce the memory

and computational costs of the neural models without harm to performance (LeCun et al., Novem-

ber 1990; Han et al., December 2015). Pruning approaches can be categorized in two categories:

structural pruning and parameter pruning.

Structural pruning modifies the structure of the network in order to reach smaller sub-networks

while preserving performance. Structural pruning questions the importance of each neuron in the

network and trims the less important neurons based on a criterion or a heuristic in order to achieve

a lighter network (Molchanov et al., June 2019).

Parameter pruning reduces the number of weights or parameters of the network by removing

the less important links in the network (Hassibi and Stork, December 1993; Li et al., April 2017).

This technique preserves the general topology of the network, while producing a sub-network with

sparse weight matrices. In this thesis we focus on parameter pruning (see Chapter 4).

Once the unwanted structures are removed from the model, the sub-network is retrained to

adapt to the changes. However, training these sub-models from scratch (i.e. randomly initializing

the weights that survived pruning) is not effective and usually leads to a lower performance than the

43

original network (Li et al., April 2017). Initializing the connections of the network that survived

pruning with the values of the initial training phase typically leads to better performance (Han

et al., December 2015). This could be seen as a form of pre-training and fine tuning, in which the

initialization schema of the network is equivalent to pre-training phase, and the fine tuning is the

pruning task.

Frankle and Carbin (May 2019) showed that only a subset of the network parameters have

impact on the model performance and thus the rest can be discarded. They formulated their findings

as the Lottery Ticket Hypothesis, stating that a randomly initialized dense networks contains several

sparse sub-networks, with varying performances, among which only a subset, the winning tickets

can outperform all others when trained in isolation. Frankle and Carbin (May 2019) proposed the

following iterative magnitude pruning (IMP) algorithm for finding the wining tickets:

(1) Randomly initialize a neural network with initialization values θ0.

(2) Train the network for j iterations to reach an optimal performance with parameter configura-

tion θj .

(3) Prune p% of the parameters (the ones with negligible weights) creating a mask m.

(4) The winning ticket initialization value is given by m� θ0.

The pruning algorithm proposed by Frankle and Carbin (May 2019) was able to recover the

wining tickets on relatively small networks targeting vision tasks. However, they showed that the

method is not able to find the winning tickets for larger networks without certain manipulations of

the learning rate.

Frankle et al. (June 2019) augmented the IMP algorithm with a rewinding mechanism (IMPR)

to mitigate the scalability and stability of IMP. In their approach the winning ticket initialization

values are not necessarily a subset of θ0 (see Step 4), but rather a subset of some θk, where k is

some number of training iterations.

Their results underline the importance of the winning ticket initialization in highly parametrized

networks. Their results suggest that the winning ticket initialization can be found early on during

44

the training (0.1% to 7% through) and further training of the network does not have any significant

impact on these initial values.

Frankle and Carbin (May 2019) and Frankle et al. (June 2019) conducted their search for win-

ning tickets while training networks from scratch. In the context of transfer learning, where a

network inherits most or all of its parameters from a well trained network, the concept of rewinding

to an early stage of training for scalability and stability of IMP becomes irrelevant as the initializa-

tion are well trained in this context. In our work (see Chapter 4) we investigate the application of

IMP in the context of transfer learning and therefore we will not use the rewinding mechanism in

our experiments.

Frankle and Carbin (May 2019) and Frankle et al. (June 2019) have underlined the importance

of the Lottery Ticket Hypothesis in achieving high performance light neural networks, however,

their studies were focused on neural networks targeting vision tasks. To the best of our knowledge,

there has not been any investigation on the performance of this conjecture on NLP oriented tasks. In

Chapter 4, we will study the effect of Lottery Ticket Hypothesis on a highly parameterized network

(BERT) targeting an NLP task (toponym detection) and propose a novel approach to insure stability

and scalability of the IMP proposed by Frankle and Carbin (May 2019).

45

Chapter 3

Neural Network With Linguistic

Insights

Our first attempt at toponym detection is based on the work of (Magge et al., July 2018),

which constitutes the baseline system at SemEval 2019 shared task 12 (Weissenbacher et al., June

2019). We developed a Deep Feed-forward Neural Network (DFFNN) that uses domain-specific

information as well as specific linguistic features. When evaluated with the SemEval 2019 shared

task 12 test set (Weissenbacher et al., June 2019), its performance exceeded the baseline model’s

performance by 10.29% in F1 measure.

3.1 The DFFNN Model

The architecture of our first toponym recognition model is shown in Figure 3.1. The model

pipeline is comprised of 2 main modules: an embedding layer, and a deep feed-forward network.

3.1.1 Embedding Layer

As shown in Figure 3.1, a word (e.g. cartilage) and its context (i.e. c words around it) constitute

the input of the model. An embedding representation is constructed for each word in a document

along with its context. More precisely, the embedding representation is comprised of a combination

of word embeddings and feature embeddings.

46

Figure 3.1: Our DFFNN toponym recognition model: A fixed context window of words is ex-
tracted, (a) an embedding is constructed for them, (b) then sent to a feed-forward neural network
for predictions.

The model uses the pretrained Wikipedia-PubMed embeddings1 for its word embedding compo-

nent. Wikipedia-PubMed is trained on a corpus of 201, 380 words and it projects the representation

vector on a 200 dimensional feature space. In order to capture more domain specific information

(see Section 3.2) we used this embedding model as opposed to more generic embeddings such as

Word2vec (Mikolov et al., May 2013) or GloVe (Pennington et al., October 2014) since the corpus

used for training the Wikipedia-PubMed embedding consists partly of PubMed articles (Moen and

Ananiadou, December 2013). This implies that the embeddings would be more appropriate when

processing biomedical texts, and domain specific words. Moreover, the embedding model can bet-

ter capture and represent the semantic association, closeness, and relation of words in biomedical

articles. In order to form a single word embedding vector, the word embeddings of the target word

and its context words are concatenated, resulting in a vector of size 200 × (2c + 1), where c is the

context size.

Previous works in toponym detection have shown how effective the use of particular linguistic

features can be in this task (Magge et al., July 2018; Lieberman and Samet, December 2011). In

order to leverage this information, our model is augmented with embedding for these features.
1http://bio.nlplab.org/

47

http://bio.nlplab.org/

As shown in Figure 3.1, these include a capitalization feature, which captures whether a word is

capitalized, uncapitalized, or written in uppercase letters (e.g. USA). Other linguistic features we

observed to be useful (see Section 3.2) include punctuation, stop words, part of speech tags, and the

word embedding of the lemma of the word. These linguistic features are encoded using a binary

vector representation, for example in the case of capitalization feature, if a word is capitalized, its

feature embedding is [1, 0] otherwise it is [0, 1] and if it is written in all uppercase letters, then

its feature embedding is [1, 1]. The final embedding representation of the input is made of the

concatenation of the word embedding vector and the feature embedding of the input word and its

context words. As shown in Figure 3.1, this embedding representation, is passed to the next layer

of the model, the DFFNN.

3.1.2 The Architecture

The DFFNN receives the concatenated embedding representation formed in the embedding layer

(see Section 3.1.1) and performs a binary classification. This component contains 3 hidden layers

and one output layer, where each hidden layer contains 500 ReLU activation nodes (see Table 2.1).

Upon receiving an input vector x the output h(x) of a hidden layer h is computed as:

h(x) = ReLU(Wx+ b) (4)

Recursive application of the above equation for all 3 hidden layers defines the DFFNN model. A 2

dimensional softmax activation function forms the output layer of the network, which produces the

output O(x) upon receiving the input x as follows:

O(x) = Softmax(Wx+ b) (5)

The Softmax function was used at the output layer since this function provides a categorical proba-

bility distribution over the available classes for an input x, i.e.:

p(x = toponym) = 1− p(x = non-toponym) (6)

48

Table 3.1: Optimal hyper-parameters of DFFNN model.

Parameters Value
Learning Rate 0.01
Batch Size 32
Optimizer SGD
Momentum 0.1
Loss Weighted Categorical cross-entropy
Loss weights (2, 1) for toponym vs. nontoponym

In order to prevent overfitting, we employed two mechanisms: drop-out and early-stopping. Early-

stopping prevents over-fitting and poor generalization by stopping the training process if the loss on

the development set (see Section 3.2) starts to rise. Drop-out aims to avoid the inner dependencies

between neurons in the network, leading to a more robust and stable training, the probability of

drop-out was set to 0.5 in our training. Norm clipping (Pascanu et al., June 2013), which scales

the gradient when its norm exceeds a certain threshold, was also used to prevent the occurrence of

exploding gradient. We experimentally found the best performing threshold for norm clipping to be

1 for our model.

In our experiments, we investigated the performance of various model architectures both in

depth and number of hidden units per layer as well as other hyper-parameters listed in Table 3.1.

We observed that deepening the model leads to immediate over-fitting due to the small size of the

dataset (Hinton et al., July 2012) (see Section 3.2) even with the presence of a drop-out function to

prevent it. Table 3.1 presents the optimal hyper-parameter configuration with the development set

used to fine tune them.

3.2 Experiments and Results

For comparative purposes, as indicated in Section 2.4, a baseline model for toponym detection

was provided by the organizers of SemEval 2019 shared task 12 (Weissenbacher et al., June 2019).

The baseline, inspired by (Magge et al., July 2018), also uses a DFFNN architecture comprised of

only 2 hidden layers and 150 ReLU activation functions per layer.

Table 3.2 shows the performance of our basic model presented in Section 3.1.2 (see row #4)

compared to the official SemEval baseline (row #3). A series of experiments was carried out

49

Table 3.2: Performance score of the baseline, our proposed model and its variations. The suffixes
represent the presence of a feature, P: Punctuation marks, S: Stop words, C: Capitalization fea-
tures, POS: Part of speech tags, W: Weighted loss, L: Lemmatization feature. For example DFFNN
Basic+P+S+C+POS refers to the model that only takes advantage of punctuation marks, stop
words, capitalization feature, and part of speech tags.

Model Context Precision Recall F1
8 DFFNN Basic+P+S+C+POS+L+W 5 80.69% 79.57% 80.13%
7 DFFNN Basic+P+S+C+POS+L 5 77.57% 73.44% 75.45%
6 DFFNN Basic+P+S+C+POS 5 77.55% 70.37% 73.79%
5 DFFNN Basic+P+S+C 2 78.82% 66.69% 72.24%
4 DFFNN Basic+P+S 2 79.01% 63.25% 70.26%
3 SemEval Baseline 2 73.86% 66.24% 69.84%
2 DFFNN Basic+P 2 74.70% 63.57% 68.67%
1 DFFNN Basic+S 2 64.58% 64.47% 64.53%

to evaluate the influence of a variety of parameters on the performance of the model, which are

described in the next sections.

3.2.1 Effect of Domain Specific Embeddings

As indicated by much work in this field of research (e.g. (Amitay et al., July 2004; Purves

et al., June 2007; Qin et al., November 2010; Kienreich et al., July 2006; Garbin and Mani, October

2005)), the task of toponym detection is highly dependent on the discourse domain. Due to this, our

basic model employs the Wikipedia-PubMed embeddings. In order to measure the effect of such

domain specific information, we experimented with 2 other pretrained word embedding models:

Google News Word2vec (Google, 2019), and a GloVe model trained on Common Crawl (Penning-

ton et al., 2014). As shown in Figure 3.2, although, the Wikipedia-PubMed has a smaller vocabulary

in comparison to the other embedding models, with the SemEval dataset, it suffers significantly less

from out of vocabulary words (OOV) since it was trained on a closer domain.

We experimented with our DFFNN model using each of these embeddings and optimized the

context window size to achieve the highest F-measure on the development set. Figure 3.3 shows

the performance of these models on the test set. As expected, the Wikipedia-PubMed performs

better than the other embedding models. This is likely due to its small number of OOV words (see

Figure 3.2) and its domain-specific knowledge. As Figure 3.3 shows, the performance of the GloVe

model is quite close to the performance of Wikipedia-PubMed. In order to investigate this further,

50

201,380

2,200,000

3,000,000

28.61% 29.84%

44.36%

Word Embedding Models

V
oc

ab
ul

ar
y

S
iz

e

P
er

ce
nt

ag
e

of
 O

O
V

 W
or

ds

0M

1M

2M

3M

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

Wikipedia-PubMed Common Crawl GloVe Google News Word2vec

Vocabulary Size OOV words

Vocabulary Size vs OOV Words

Figure 3.2: A comparison of the vocabulary size of word embedding models and their percentage
of OOV words with respect to the dataset.

we trained another model on the combination of the two embeddings. As shown in Figure 3.3,

the performance of this combined model (Wikipedia-PubMed + GloVe) is higher than the GloVe

model alone but lower than the Wikipedia-PubMed. The observed decrease in performance can

be attributed to the dilution of the domain specific information captured by the Wikipedia-PubMed

embeddings, since GloVe embeddings provide relatively more general representations, hence when

the network is presented with a combination of the two embeddings, it will try to adapt a more

unified predictive strategy, leading to loss in performance. Because of this, from here on, our

experiments were carried exclusively using Wikipedia-PubMed word embeddings.

3.2.2 Effect of Linguistic Features

Although deep learning approaches have lead to significant improvements in many NLP tasks,

simple linguistic features are often very useful. In the case of NER, punctuation marks constitute

strong signals (Gelernter and Balaji, January 2013). In order to investigate the effect of punctuation

marks on our model, we retrained the DFFNN Basic without punctuation information. As Ta-

ble 3.2 (row #1) shows, the removal of punctuation marks, decreased the F-measure from 70.26%

51

79.01% 73.09% 75.40% 75.14%

63.25% 67.22% 64.05%
58.96%

70.26% 70.03% 69.25%
66.07%

2 2

1

3

Word Embedding Models

P
er

fo
rm

an
ce

O
pt

im
al

 C
on

te
xt

 W
in

do
w

 S
iz

e

0.00%

20.00%

40.00%

60.00%

80.00%

0

1

2

3

Wikipedia-PubMed Wikipedia-PubMed +
GloVe

Common Crawl
GloVe

Google News
Word2vec

Precision Recall F1 Context Window

Effect of Word Embeddings on Performance

Figure 3.3: Effect of word embeddings on the performance of our proposed model architecture.

to 64.53%. A manual error analysis showed that many toponyms appear inside parenthesis, near a

dot at the end of a sentence, or after a comma. Hence, as suggested in (Gelernter and Balaji, January

2013) punctuation is a good indicator of toponyms and should not be ignored.

As Table 3.2 (row #2) shows, the removal of stop words, does benefit the performance of the

model. In fact it leads to a notable decrease in F-measure performance of the model (from 70.26%

to 68.67%). We hypothesize that some stop words such as in do help the system detect toponyms

as they provide a learnable structure for detection of toponyms and that is why the model accuracy

suffered once the stop words were removed.

As seen in Table 3.2 (row #4) although our basic model has a high precision of 79.01%, it does

suffer from a low recall of 63.25%. A manual inspection of the toponyms in the dataset revealed that

either their first letter is capitalized (e.g. Canada) or they are written in all uppercase letters (e.g.

USA). In an attempt to help the DFFNN learn more structure from the small dataset, we provided

the model with this information (see Section 3.1.1). As a result the recall increased from 63.25% to

66.69% and the F1 performance increased from 70.26% to 72.27% (see Table 3.2 #5).

We experimented with the use of part of speech (POS) tags as part of our feature embeddings

52

to assist the neural network better understand and model the structure of sentences. We used the

NLTK POS tagger (Bird et al., June 2009) which uses the Penn Treebank tagset. As indicated in

Table 3.2 (row #6), the POS tags significantly improve the recall of the network (from 66.69% to

70.37%) hence leading to a higher performance in F1 (from 72.24% to 73.79%). We observed that

the presence of the POS tags help the DFFNN to better learn the structure of the sentences and take

advantage of more contextual information (see Section 3.2.3) in its predictions.

Neural networks require large datasets to learn structures and they learn better if the dataset con-

tains similar examples so that the system can cluster them in its learning process. Since our dataset

is small and the Wikipedia-PubMed embeddings suffer from 28.61% OOV words (see Table 3.2),

we tried to help the network better cluster the data by adding the lemmatized word embeddings of

the words to the feature embeddings and see how our best model reacts to it. As shown in Table 3.2

(row #7), this improved the F1 measure significantly (from 73.79% to 75.45%).

3.2.3 Effect of Window Size

We experimented with the amount of contextual information presented to the network by vary-

ing the size of the context window. As seen in Figure 3.4, the best performance of our Basic Model

is achieved with c = 2. Providing the model with more contextual information (i.e. considering

c > 2) leads to overfitting as the model is unable to extract any meaningful structures from the

extra information. The small size of the data set does not allow the DFFNN to learn the structure

and composition of the sentences, hence increasing the context window alone does not help the

performance. However, a window size of c = 2 allows the model to focus on the local structure

of the named entities. In order to help the neural network better understand and use the contextual

structure in its predictions, we experimented with part of speech (POS) tags as part of our feature

embeddings. As shown in Figure 3.4, the POS tags help the DFFNN to take advantage of more con-

textual information, as a result the DFFNN with POS embeddings achieves a higher performance on

larger window sizes. The context window for which the DFFNN achieved its highest performance

on the development set was c = 5, and on the test set the performance was increased from 72.24%

to 77.10% (see Table 3.2 #6).

53

Context Window Size

F1
 S

co
re

0.00%

20.00%

40.00%

60.00%

80.00%

0 1 2 3 4 5 6 7 8 9

F1 score with POS F1 score without POS Highest F1 score with POS Highest F1 score without POS

Optimal Context Window Size

Figure 3.4: Effect of the context window on the performance of the DFFNN model with and without
POS features. (DFFNN Basic+P+S and DFFNN Basic+P+S+C+P)

3.2.4 Effect of the Loss Function

As shown in Table 3.2 most models suffer from a lower recall than precision. The main cause

of this gap in performance is the highly unbalanced distribution of samples, i.e. the number of

non-toponym words are much higher than toponyms (99% vs 1%). Therefore, the neural network

prefers to optimize its performance by concentrating its efforts on correctly predicting the labels for

the dominant class (non-toponym). To address this, we experimented with a weighted loss function

to minimize the gap between the recall and precision of the models. We adjusted the importance

of predicting the correct labels experimentally and found that by weighing the toponyms 2 times

more than the non-toponyms, the system reaches an equilibrium between the precision and recall

measures, leading to a higher F1 performance. This is indicated by “W” in Table 3.2 row #8.

3.2.5 Overall Model Reliance on Linguistic Features

Section 3.2.2 demonstrated the influence of certain linguistic features on the performance of the

model. Table 3.2 shows the influence of these features on performance as the model parameters

are iteratively changed. However, it does not indicate the final contribution of the features to the

model, since certain features can overlap on the hidden structures they represent. In this section, we

measure the reliance of the final learned model on these linguistic features. To do this, we used the

54

Model Reliance Ratio

Fe
at

ur
es

POS

Lemmatization

Capitalization

Stop Words

Punctuation

0 0.25 0.5 0.75 1 1.25 1.5

Model Reliance on Linguistic Features

Figure 3.5: Model reliance of the DFFNN model on the linguistic features ranked in order of de-
creasing reliance.

unbiased statistical measure for model reliance (MR) introduced in (Fisher et al., October 2019).

The MR of feature f is defined as:

MR(f) =
epermuted(f)

eoriginal
(7)

In this equation, eoriginal refers to an error measure such as (error = 1 − F1score) over the test

set. The epermuted(f) is the error measure over the test set while the feature f is randomized by

permutation over all samples, and other features are untouched. An MR ratio of 1 or close to 1 for

a feature f indicates that the learned model does not rely on f to make its predictions. Figure 3.5

shows the MR of our proposed model. The MR value of the features was used to rank the importance

of these features to the final prediction of the model. As Figure 3.5 shows, the most reliable features

are grammatical in nature (POS and Lemma) whereas punctuation constituted the least reliable

feature.

3.3 Discussion

Overall our best model (DFFNN #8 in Table 3.2) is composed of the basic DFFNN plus all lin-

guistic features and a weighted loss function. The experiments and results described in Section 3.2

55

Confidence

W
or

ds
Thailand

BioMed

disease

Nonthaburi

0.00% 20.00% 40.00% 60.00% 80.00%

Toponym: Our Model Toponym: Baseline Non-toponym: Our Model Non-toponym: Baseline

Confidence in Prediction

Figure 3.6: Confidence of the DFFNN model and the baseline model in their categorical pre-
diction on four randomly selected words, Thailand (toponym), BioMed (non-toponym), disease
(non-toponym), and Nonthaburi (toponym).

underline the importance of domain specific word embedding models. These models reduce OOV

words and also present us with embeddings the capture the relation of the words and relevant knowl-

edge they represent in the specific domain of study.

Our experiments also underline the importance of linguistic insights in the task of toponym

detection. These insights and features should ideally be learned by the system itself, however, when

the data is scarce, as it was in our case, we should take advantage of the hidden linguistic structures

of the data for better performance. Moreover, in order to visualize and compare the confidence of

our proposed model with the baseline model in their prediction as given by the softmax function

(see Equation 5), we randomly picked 2 toponyms (Thailand and Nonthaburi) and 2 non-toponyms

(BioMed and disease) and investigated the results. As Figure 3.6 shows, our model produces much

sharper confidence in comparison to the baseline model.

56

3.4 Conclusion

This chapter presented our linguistic enhanced deep learning approach for toponym identifica-

tion. The approach was evaluated using the dataset of the SemEval task 12 shared task on toponym

resolution (Weissenbacher et al., June 2019). Our best DFFNN approach took advantage of domain

specific embeddings as well as linguistic features and achieved a significant increase in F-measure

compared to the shared-task baseline system (from 69.74% to 80.13%).

We chose the feed-forward architecture based on the hypothesis that localized contextual in-

formation is sufficient to identify the toponyms. In Chapter 4, our second attempt at toponym

detection, we will experiment with neural architectures that considered all available contextual in-

formation (Vaswani et al., January 2017; Lan et al., September 2019) within a meaningful unit of

language.

57

Chapter 4

Efficient Toponym Identifiers for

Medical Domain Using BERT

In our second attempt at toponym detection, we used the BERT model (Devlin et al., June 2019)

(see Section 2.10.2) as the backbone of our toponym identifier system. We created a family of

Toponym Identification Models based on BERT (TIMBERT) as the core of the network, in order

to learn directly in an end-to-end fashion the mapping from the input sentence to the associated

output labels. When evaluated with the SemEval 2019 shared task 12 test set (Weissenbacher et al.,

June 2019), our best model achieves an F1 score of 90.85%, a significant improvement compared to

our DFFNN (see Chapter 3) model’s performance of 80.13% and the state-of-the-art 89.10% (Wang

et al., June 2019; Magnusson and Dietz, June 2019).

The significant performance enhancement of our BERT based model comes at a cost of mem-

ory and computation complexity. Pruning unnecessary structure from neural networks has been a

popular way to reduce the memory and computational costs of the neural models without harm to

accuracy (see Section 2.11). In this chapter we propose a novel algorithm for parameter pruning

and investigate its application on the toponym recognition task.

58

4.1 TIMBERT Model

In Chapter 3, we presented our DFFNN approach for toponym identification. This model relied

on domain specific embeddings, linguistic insights, and localized contextual information. TIM-

BERT was developed in order to sidestep these brittle design choices and to learn directly in an

end-to-end fashion the mapping from an input sentence to the associated output labels while main-

taining a compact structure.

4.1.1 Embeddings

Previous attempts to toponym detection in medical domain have confirmed the benefits of us-

ing domain specific word embeddings, specifically Wikipedia-PubMed embeddings1 (Davari et al.,

April 2019; Wang et al., June 2019; Magnusson and Dietz, June 2019). This embedding model

closely captures the semantic association, closeness, and relation of words in medical articles. How-

ever, there are two limitations to this approach:

• This approach views the task of toponym detection as highly dependent on the textual domain.

Hence, it reduces the generalizability of the model to other domains and requires domain

specific word embeddings for each domain of interest.

• The pretrained embeddings suffer from a significant number of out of vocabulary words. In

our case, (see Section 3.2.1), 28.61% of the corpus vocabulary were OOV words and were

mapped to a single token ([UNK]), which provides the system with no information about the

initial token.

In order to mitigate these problems, we used the pretrained BERT model (Devlin et al., June 2019)

(see Section 2.10.2) as the backbone of our architecture. In the pretraining phase, BERT learns a

general representation of the language. This general representation is then fine-tuned for a specific

task and domain. Fine tuning allows BERT to generalize across different domains, while other

approaches (eg. Word2Vec (Mikolov et al., May 2013), GloVe (Pennington et al., October 2014)

(see Section 2.9)) fail to do so and require a single language model for each domain to achieve

optimal performance.
1http://bio.nlplab.org/

59

http://bio.nlplab.org/

In this chapter, we treat the problem of toponym detection as an open vocabulary problem,

allowing words to have variable length representations based on their morphemes and phonemes.

We use WordPiece embeddings (Wu et al., September 2016) (see Section 2.8) with a 30,000 token

vocabulary. Representing morphologically complex words as the sum of their morphemes leads

to a compact network vocabulary and improves cross domain generalizability of the model (Sen-

nrich et al., August 2016). For example, a conventional word embedding model (Mikolov et al.,

May 2013) would learn a vector representations for the word biology, but WordPiece based embed-

dings (Wu et al., September 2016) would treat it as:

Biology = Bio + logy

The WordPiece approach, would learn embedding representations for the sub-words bio (life) and

logy (denoting a subject of study or interest). It then represents the word biology as the concatenation

of the learned sub-word embeddings.

4.1.2 Linguistic Features

As shown in Chapter 2, previous works on toponym detection in the medical domain have

typically taken advantage of handcrafted features to achieve competitive performance (Magge et al.,

July 2018; Davari et al., April 2019; Wang et al., June 2019; Magnusson and Dietz, June 2019).

BERT has demonstrated great capability to capture linguistic features (Clark et al., August 2019) and

transferring the learned knowledge to downstream tasks. Aimed to develop an end-to-end toponym

detection model with minimal reliance on feature engineering, we chose BERT as the backbone

of our second model. We experimented with the influence of different linguistic features on the

performance of the model, to verify whether the model needed additional linguistic features or not.

4.1.3 Contextual Information

In Chapter 3, the DFFNN model was based on the hypothesis that only localized contextual in-

formation is needed for the identification of the toponyms. Our experiments were based on a model

60

that had only access to a sliding window of information. In this chapter we were motivated to exper-

iment with neural architectures that considered all available contextual information (Vaswani et al.,

January 2017; Lan et al., September 2019) within a meaningful unit of language. In Section 2.7

we discussed the Transformer model and its ability to deal with variable length inputs, while being

much more parallelizable in comparison to RNNs. Hence, we decided to base the architecture of

TIMBERT on the Transformer model. As discussed in Section 2.10.2, the BERT architecture is

based on the Transformer model, therefore we chose to have it as the backbone of our architecture.

4.1.4 Network Pruning

Pre-trained language representations such as GPT (Radford et al., June 2018), BERT (Devlin

et al., June 2019), and XLNET (Yang et al., December 2019) have shown substantial performance

improvements in a variety of NLP tasks. Knowledge transfer from these language representations

to downstream tasks is seamless by adding a single task-specific output layer to the base structure.

However, the significant performance enhancement of these pre-trained language representations

comes at a cost of memory and computation complexity. For example, the BERT-Base model and

BERT-Large model contain 110M and 340M parameters respectively.

Intuitively, each downstream task only needs a subset of the information which is learned and

offered by the pre-trained language model. For example, some tasks may require more semantic in-

formation (e.g. word sense disambiguation) and some task may require more syntactic information

(e.g. part-of-speech (POS)) (Peters et al., June 2018). Identification of the necessary information

needed by a downstream task leads to smaller and more efficient learning algorithms since we can

discard the excess and unwanted information.

Motivated by this intuition, we experimented with an iterative magnitude pruning (IMP) algo-

rithm (see Section 2.11) to identify the unnecessary information and discard them. In our experi-

ments, we augmented this algorithm for better stability and performance (see Section 4.3.2).

61

Figure 4.1: TIMBERT model architecture.

4.2 TIMBERT Architecture

The architecture of our toponym recognition model is shown in Figure 4.1. The WordPiece

tokenization of a sentence constitutes the input of the model. These tokens are then passed to a pre-

trained BERT network (see Section 2.10.2). The output of the network along with certain linguistic

features are then passed to a fully connected layer which determines the labels of each token. We call

our model TIMBERT: Toponym Identification Model based on BERT. In our experiments, we used

two variations of the BERT model: BERT-Base, and BERT-Large (see Section 2.10.2). The respec-

tive TIMBERT models are called TIMBERT-Base and TIMBERT-Large. Since the BERT-Large

model is much more computationally expensive than BERT-Base, we tried to limit the experiments

involving this model.

4.3 Experiments and Results

For comparative purposes, we will use the DFFNN model developed in Chapter 3 as a baseline

for toponym detection. Table 4.1 shows the performance of our basic model i.e. TIMBERT-Base

without any linguistic features that was presented in Section 4.2 (see row #6) compared to the

62

Table 4.1: Performance of the baseline DFFNN model (see Chapter 3), and the TIMBERT based
models.

Model Precision Recall F1
1 TIMBERT-Large-CoNLL-w/-Orthographic-Pruned 90.51% 91.19% 90.85%
2 TIMBERT-Large-CoNLL-w/-Orthographic 89.73% 90.23% 89.98%
3 TIMBERT-Large-w/-Orthographic-Pruned 83.76% 86.89% 85.25%
4 TIMBERT-Large-w/-Orthographic 83.41% 86.88% 85.11%
5 TIMBERT-Base-w/-Orthographic 82.61% 83.19% 82.90%
6 TIMBERT-Base 82.59% 80.17% 81.36%
7 TIMBERT-Base-w/-POS 81.96% 80.08% 81.01%
8 DFFNN 80.69% 79.57% 80.13%
9 TIMBERT-Base-w/o-Punctuation 80.04% 78.75% 79.39%
10 TIMBERT-Base-w/o-Stop-Words 72.14% 72.01% 72.08%

baseline (see row #8). A series of experiments was carried out to evaluate the influence of a variety

of parameters on the performance of the model, which are described in the next sections.

4.3.1 Effect of Linguistic Features

Previous works on the SemEval 2019 shared task 12 dataset (Weissenbacher et al., June 2019)

have underlined the importance of carefully handcrafted linguistic features in order to achieve com-

petitive performance (Magge et al., July 2018; Davari et al., April 2019; Wang et al., June 2019;

Magnusson and Dietz, June 2019). In this section we examine the influence of selected linguistic

features on the performance of TIMBERT-Base (see Table 4.1 row #6).

4.3.1.1 Orthographic Features

The orthographic features we experimented with target the capitalization of the letters within a

token word. This feature is presented to the model as a one-hot vector and it captures whether a word

is capitalized (e.g. Canada), uncapitalized (e.g. city), or written in uppercase letters (e.g. USA).

Since in the preprocessing of the data, all tokens are brought to lowercase, the TIMBERT-Base is

unaware of this feature. Our experiments showed that augmenting the model with the orthographic

information results in the increase of the F1 performance from 81.36% to 82.90% (see Table 4.1

row #5).

63

4.3.1.2 Part of Speech Tags

Our experiments in Chapter 3 indicated that augmenting the model with part of speech (POS)

tags results in an improvement in the performance of the model. On the other hand, the BERT

model has shown a great ability to capture a number of linguistic features and transferring them to

downstream tasks (Clark et al., August 2019). Since BERT constitutes the backbone of TIMBERT,

we investigated whether or not our model is aware of POS tags.

We used the NLTK POS tagger (Bird et al., June 2009) which uses the Penn Treebank tagset (Mar-

cus et al., June 1993). As indicated in Table 4.1 (row #7), including the POS tags reduced the per-

formance of the model from the F1 of 81.36% to 81.01%. This suggests that the TIMBERT-Base

model is already aware of the POS tags since the augmentation of the model with POS tags does

not affect its performance to any statistical significance. Although statistically insignificant, the

slight decrease in the performance could be due to the errors introduced by the NLTK POS tagger

model (Bird et al., June 2009) and the disagreement between the domain that the tagger was trained

on (Brown Corpus (Francis and Kucera, 1964), news paper articles) and the domain that it was

tested on (medical journal articles).

4.3.1.3 Stop Words

As Table 4.1 (row #10) shows, the removal of stop words using the NLTK stop words cor-

pus (Bird et al., June 2009) of 179 words, does not benefit the performance of the model. In fact

it leads to a significant decrease in F1 performance of the model (from 81.36% to 72.08%). We

hypothesize that some stop words such as in do help the system detect toponyms as they provide

a learnable structure for detection of toponyms and that is why the model accuracy suffered once

the stop words were removed. Moreover, the BERT model has evolved to capture contextual in-

formation and language structures. Therefore, to observe its true power, it should be given fully

comprehensible and structured sentences. stop words removal distorts sentence structure and there-

fore harms the model performance.

64

4.3.1.4 Punctuation

In order to investigate the effect of punctuation marks on our model, in the preprocessing step

we removed all punctuation marks. We then trained the TIMBER-Base without any punctuation

information. As Table 4.1 (row #9) shows, the removal of punctuation marks, decreased the F1 from

81.36% to 79.39%. A manual error analysis showed that many toponyms appear inside parenthesis,

near a dot at the end of a sentence, or after a comma (e.g. (Montreal, Canada)). Hence, as suggested

in (Davari et al., April 2019; Gelernter and Balaji, January 2013) punctuation is a good indicator of

toponyms and should not be ignored.

4.3.2 Effect of Network Pruning

Experiments on the General Language Understanding Evaluation (GLUE) benchmark (Wang

et al., November 2018), which is a collection of diverse natural language understanding tasks,

have shown great performance gains when the backbone model was switched from BERT-Base

to BERT-Large (Devlin et al., June 2019). Motivated by these findings, we investigated the impact

of BERT-Large for our task. We substituted the BERT-Base backbone module with BERT-Large

in our best performing model from Section 4.3.1 (i.e. TIMBER-Base-w/-Orthographic). As indi-

cated in Table 4.1 (row #4), the resulting model, TIMBER-Large-w/-Orthographic, improved the

F1 performance from 82.90% to 85.11%.

The significant performance enhancement of this model came at a cost of memory and com-

putation complexity. As indicated in Section 2.10.2, BERT-Large has 340M parameters which is 3

times more than BERT-Base. In an effort to find lighter models while preserving performance, we

experimented with the iterative magnitude pruning (IMP) algorithm outlined by Frankle and Carbin

(May 2019) (see Section 2.11).

4.3.2.1 Sensitivity of IMP towards the ordering of the training data

Recall from Section 2.11, that the iterative magnitude pruning (IMP) algorithm identifies and

removes unnecessary model parameters by training the model and scanning for parameters with zero

or close to zero weights. In our experiments, we did not use a fixed number of training iterations

65

and instead used early stopping to end the training process. The weights of the trained model were

then ordered and the top p% of the smallest weights were removed. However, we realized that the

weight ordering is highly dependent on the training dataset order and the optimization method, i.e.

shuffling the dataset and repeating the experiment resulted in different weight orderings.

In order to have a measure for this observation, we trained a total of eleven models, and sorted

the trained weights. We kept the weight ordering of one trained model as the reference and computed

our statistics using the weight ordering of the other ten trained models (repeated trials). Let W ref

and W t be the sets of all trained parameters for the reference model and tth repeated trial model

respectively. Let f : w → f(w) be the function that maps a weight w to its position in the ordered

list. Using Equation 8, we found that, on average, a weight parameter moves by 4.62% ± 3.47%

from its original place in the ordered list with larger weights being more stationary compared to

smaller weights.

Ewi∈W ref

Et∈Trials

∣∣∣f(wref

i)− f(wt
i)
∣∣∣

||W ref ||

 (8)

In order to improve the robustness of IMP towards the ordering of the training data and the

influence of the stochastic gradient decent, we proposed and experimented with an augmented IMP

algorithm. We augmented the iterative magnitude pruning algorithm with a scoring mechanism

(IMPS) in order to centralize the weight magnitude distribution in the ordered list.

We trained K instances of the same model with different training data orderings which resulted

in K different ordered parameter lists. For each model parameter wi, its score was defined using

Equation 9.

Score(wi) =

∑
k∈K f

(
wk
i

)
K

(9)

In this definition, the score of each parameter is the observed expected value of its position over

the K trained instances. The final ordered parameter list is obtained based on the score of each

parameter. In Figure 4.2, an example of this process is shown for the weight magnitude distribution

of three trained instances and the final ordered list that is obtained from them.

66

Figure 4.2: An example of parameter scoring in IMPS.

Although generally the law of large numbers entails a large value of K (repeated trials) in order

to have convergence between the observed and the theoretical expected value of model parameters

positions, due to limited computational powers, in all of our experiments with IMPS, we used

five instances of the trained models to find the pruning parameter candidates. The details of these

experiments are given in Sections 4.3.2.2 and 4.3.2.3.

4.3.2.2 TIMBERT With BERT Initialization

In this section we discuss the details of our experiments on TIMBER-Large-w/-Orthographic

(see Table 4.1 row #4) in order to achieve a lighter model while preserving its performance. We ex-

perimented with parameter pruning using the IMP algorithm (Frankle and Carbin, May 2019), IMPS

(see Section 4.3.2.1), and random pruning. In these experiments, the initialization and rewinding

values of the backbone of the network are set to the values of the pretrained BERT-Large network.

The initialization and rewinding values of the last layer of the network, the prediction layer, are set

following the Glorot Initialization method (Glorot and Bengio, May 2010) and are kept the same

for all pruning algorithms.

As shown in Figure 4.3.a, we can compress the model to extreme degrees with little loss in

performance. Removing 60% of the model parameters results in only 0.8% loss of performance.

Figure 4.3.b shows the performance gains of IMPS over the simple IMP. For most parts, these

two approaches behave similarly and the issues discussed in Section 4.3.2.1 seem to have little to

no effect on the performance of the pruned sub-networks. However, the impact of the observed

67

0 10 20 30 40 50 60 70 80 90
Percentage of Pruned Weights

50

55

60

65

70

75

80

85

Te
st

 F
1

(a)

Pruning Method
IMPS
IMP
Unpruned
Random

0 10 20 30 40 50 60 70 80 90
Percentage of Pruned Weights

0

5

10

15

20

25

30

Te
st

 F
1

(b)
Compared to
IMP
Random

Figure 4.3: Parameter pruning on TIMBER-Large-w/-Orthographic with BERT-Large initialization
values. (a) Shows the effect of different parameter pruning algorithms on performance. (b) Shows
the relative performance gains of the IMPS algorithm compared to IMP and random pruning.

sensitives of IMP becomes visible in sever pruning regimes. At 80% and 90% pruning, IMPS

outperforms IMP by 2.62% and 14.60% respectively, indicating the pruning stability of IMPS over

IMP.

Our experiments with parameter pruning, could be seen as a permanent dropout which increases

regularization and results in better generalization performance (Srivastava et al., June 2014). It can

also be seen as a form of L0 regularization since it encourages sparse model representations which

has shown to improve generalization performance (Louizos et al., April 2018). Our experiments

confirm these views; we found that the compressed TIMBER-Large-w/-Orthographic model via the

IMP algorithm outperformed the uncompressed model at 10% pruning level with an F1 of 85.21%.

The compressed model via IMPS algorithm outperformed the original model at pruning levels of

10% and 20% having F1 of 85.25%. Further details on the performance of the model obtained from

the 20% pruning level is given in Table 4.1 (row #3).

4.3.2.3 TIMBERT With Toponym Identification Initialization

Previous work on the IMP algorithm (Frankle and Carbin, May 2019; Frankle et al., June 2019)

has shown the importance of the network initialization and rewinding values in the stability and

scalability of the Lottery Ticket Hypothesis. In the experiment of Section 4.3.2.2, the initialization

and rewinding values came from a pre-trained language model designed to handle a variety of NLP

tasks. In this section we investigate the effect of task specific initialization and rewinding values

on the performance of the sub-networks derived from the IMP algorithm (Frankle and Carbin, May

68

2019), IMPS (see Section 4.3.2), and random pruning.

In order to fine-tune our model to a general domain toponym identifier, we used the CoNLL-

2003 dataset (Tjong Kim Sang and De Meulder, May 2003) which contains four types of named

entities: persons, locations, organizations and names of miscellaneous entities that do not belong

to the previous three groups. We filtered the dataset to only include instances of location names in

English and established a training set with 8.5k data points.

We fine-tuned our best performing model architecture i.e. TIMBER-Large-w/-Orthographic on

this dataset and used early stopping to end the training process. The weights of this trained model

constitute the initialization and rewinding values of our experiments in this section.

Using these initialization values, we further trained the network with the SemEval 2019 shared

task 12 dataset (Weissenbacher et al., June 2019) and observed a significant improvement in the

model performance, from 85.25% to 89.98% (see Table 4.1 row #3 and #2). We then repeated the

same experiments described in Section 4.3.2.2 to observe the effect of task specific initialization on

the performance of the pruned sub-models.

As shown in Figure 4.4.a, removing 60% of the network parameters results in negligible perfor-

mance reduction (0.8% F1), which is consistent with our findings from Section 4.3.2.2. Figure 4.4.a

also shows the robustness of IMPS and IMP in extreme levels of pruning. Figure 4.4.b, shows that

the sub-networks derived from IMPS outperform those from IMP at all levels of pruning, although

the performance gains are not significant at lower levels of pruning, we can clearly see the advan-

tage of IMPS in extreme cases of pruning, outperforming IMP at 80% and 90% sparsity levels by

5.54% and 20.59% respectively. These findings, empirically confirm the stability and robustness of

IMPS over the IMP algorithm.

We again observed that the compressed models outperformed the original uncompressed mod-

els. Compressing via IMP outperformed the original model at 10% and 20% sparsity levels with

90.18% and 90.08% F1 respectively. Compression via IMPS outperformed the original model at

10% and 20% pruning level with 90.85% and 90.37% F1 respectively. Further details on the best

performing pruned model is given in Table 4.1 (row #1).

69

0 10 20 30 40 50 60 70 80 90
Percentage of Pruned Weights

60

65

70

75

80

85

90

Te
st

 F
1

(a)

Pruning Method
IMPS
IMP
Unpruned
Random

0 10 20 30 40 50 60 70 80 90
Percentage of Pruned Weights

0

5

10

15

20

25

30

35

Te
st

 F
1

(b)
Compared to
IMP
Random

Figure 4.4: Parameter pruning on TIMBER-Large-w/-Orthographic with toponym identification
initialization values. (a) Shows the effect of different parameter pruning algorithms on performance.
(b) Shows the relative performance gains of the IMPS algorithm compared to IMP and random
pruning.

4.4 Discussion

Our search for a toponym identifier for the medical domain with little to no task-specific design

choices, led us to the development of the TIMBERT models. Our experiments with BERT as the

backbone of our models detailed in Section 4.3.1 confirmed that certain linguistic insights such as

POS tags are seamlessly transferred to downstream tasks while certain others such as Orthographic

Features (see Section 4.3.1.1) need to be implemented as part of the model.

Our efforts to find a compact model while taking advantage of a memory and computationally

intensive backbone model such as BERT led us to a recently proposed parameter pruning algo-

rithm (Frankle and Carbin, May 2019), IMP, and we studied its application in a large scale NLP

task. To the best of our knowledge, our study constitutes the first analysis of the impact of IMP in

large scale NLP task. Our results of Section 4.3.2.2 showed that only a subset of the BERT model

is needed to achieve competitive performance in a downstream task and the rest can be discarded

with very little loss of performance.

Our experiments with IMP led to a novel algorithm, IMPS, that empirically is more stable

and scalable in comparison to IMP. As shown in Section 4.3.2.2, sub-models produced from 90%

pruning by IMP and IMPS lost 24.63% and 15.10% in performance respectively compared to the

original unpruned models which confirms the superiority of IMPS. The same pattern emerged in our

experiments in Section 4.3.2.3, when sub-models produced from 90% pruning by IMP and IMPS

70

lost 24.87% and 9.92% respectively, indicating the robustness of IMPS.

Comparing our results from Sections 4.3.2.2 and 4.3.2.3 underlines the importance of network

initialization in finding the winning tickets and suggests that task-specific fine-tuning could help to

reduce the margin of performance loss. Furthermore, sub-models obtained from performing IMP

and IMPS on a task specific backbone model achieved better performance in comparison to the ones

gained from the general language model initialization.

4.5 Conclusion

In this chapter, we presented a compact and efficient model for toponym identification in the

medical domain which significantly improves the state-of-the-art performance. Our approach suc-

cessfully eliminated many design choices (e.g. network architecture and embedded linguistic fea-

tures) and barriers (e.g. OOV and domain specific embeddings). Our search for the efficiency of the

model led us to the development of a novel approach to parameter pruning and our results underlines

the significance of our algorithm in severe pruning regimes.

71

Chapter 5

Conclusion and Future Work

5.1 Summary

This thesis explored the recognition of toponyms within the medical domain via neural net-

works. The goal of this thesis was to develop an automated mechanism for toponym detection

within medical journals and reports. This task is beneficial to phylogeographers and epidemiolo-

gists who study and model the development and the global impact of the spread of viruses.

We trained and developed our models using the SemEval 2019 shared task 12 dataset (Weis-

senbacher et al., June 2019). The evaluation of the models were performed using the evaluation

script provided by the SemEval 2019 shared task 12 organizers (Weissenbacher et al., June 2019)

which reports the performance of the models on a predefined test set.

In Chapter 3, we presented and evaluated our first model: a deep feed-forward neural net-

work (DFFNN) enriched with linguistic insights and domain specific embeddings. We chose the

feed-forward architecture based on the hypothesis that localized contextual information is sufficient

to identify the toponyms. When evaluated on the SemEval 2019 shared task 12 test set (Weis-

senbacher et al., June 2019), the DFFNN exceeded the baseline model’s performance by 10.29%

in F1 measure. These results showed the importance of domain specific word embeddings and cer-

tain linguistic features in identifying toponyms within the medical domain. Our results underlined

the significance of knowledge transfer from domain specific word embeddings to downstream tasks

within the medical domain.

72

In Chapter 4, our second attempt at toponym detection, we were motivated to experiment with

neural architectures that considered all available contextual information (Vaswani et al., January

2017; Lan et al., September 2019) within a meaningful unit of language. We used the BERT

model (Devlin et al., June 2019) as the backbone of our toponym identifier system. We created

a family of Toponym Identification Models based on BERT (which we call TIMBERT) as the core

of the network, in order to learn directly in an end-to-end fashion the mapping from the input sen-

tence to the associated output labels. When evaluated with the SemEval 2019 shared task 12 test

set (Weissenbacher et al., June 2019), our best model achieved an F1 score of 90.85%, a significant

improvement compared to our DFNN model’s performance of 80.13% and the state-of-the-art of

89.10% (Wang et al., June 2019; Magnusson and Dietz, June 2019).

The significant performance enhancement of our BERT based model came at a cost of memory

and computation complexity. In order to reduce the computation costs of TIMBERT we experi-

mented with parameter pruning and proposed a novel algorithm, IMPS, for large scale parameter

pruning of neural networks, then investigated its application in the toponym recognition task.

Our experiments with parameter pruning resulted in compressed TIMBERT models that consis-

tently outperformed the uncompressed models at 10% pruning level. Extreme regimes of pruning,

such as 90% parameter reduction, via our proposed IMPS algorithm led to minimal loss of perfor-

mance which underlines the significant ability of our pruning algorithm in finding the less essential

structures within a neural network and removing them.

In Chapter 4, we also examined the effect of parameter pruning in the transfer learning do-

main. Our results showed the importance of network initialization values in finding the optimal

compressed neural network from an uncompressed base model and suggested that task-specific

fine-tuning of the base model prior to its knowledge transfer to a downstream task could help to

reduce the margin of performance loss.

5.2 Contributions

This thesis presented a number of theoretical and practical contributions, including:

73

• the implementation of different feed-forward neural networks enriched with linguistic in-

sights for toponym identification within the medical domain for the SemEval 2019 shared

task 12 (Weissenbacher et al., June 2019). This led to two publications: Davari et al. (April

2019) and Davari et al. (to appear 2020). (see Chapter 3)

• a novel approach to toponym detection in the medical domain, based on knowledge transfer

from language models which achieves the state-of-the-art performance on the SemEval 2019

shared task 12 test set (Weissenbacher et al., June 2019). (see Chapter 4)

• a novel parameter pruning algorithm, based on the Lottery Ticket Hypothesis (Frankle and

Carbin, May 2019) algorithm, for large scale neural networks which leads to minimal loss of

performance even in severe pruning regimes. (see Chapter 4)

• insights into the benefits of tasks-specific fine-tuning of large scale language models prior to

their knowledge transfer to downstream tasks. (see Chapter 4)

5.3 Future Work

In Chapter 3, we developed a toponym detection model and showed that the presence of certain

linguistic features improve the model performance. More specifically, we investigated the effect of:

removal of punctuation marks, removal of stop words, orthographic features, part of speech tags,

and lemmatization. An in-depth investigation of the influence of other linguistic features that we

did not examine, would reveal further insights on the task of toponym detection. As a result, future

neural models could leverage these insights to enhance their performance.

In Chapter 3, our experiments with deeper neural models were fruitless due to the small size

of the dataset. The models could be extended for better performance provided more human an-

notated data. However, since human annotated data is expensive to produce, we suggest distant

supervision (Krause et al., November 2012) to be explored to further improve results in the task.

Furthermore, in Section 4.3.2.3, we saw the benefits of task-specific transfer learning. It would be

interesting to see whether task-specific transfer learning could further improve the performance of

the model we developed in Chapter 3.

74

In Chapter 4, we developed a family of Toponym Identification Models based on BERT (TIM-

BERT) as the backbone of the network. In future studies, we would like to investigate the effects of

other language models, such as XLNET (Yang et al., December 2019), RoBERTa (Liu et al., July

2019), and ALBERT (Lan et al., September 2019), for the backbone of TIMBERT and study the

behaviour of parameter pruning algorithms on these models.

In Chapter 4, we proposed a novel iterative parameter pruning algorithm (IMPS), based on

the Lottery Ticket Hypothesis (LTH) (Frankle and Carbin, May 2019) algorithm, augmented with

a scoring mechanism to centralize parameter ranking. We applied our algorithm in the domain

of transfer learning to a large scale natural language processing (NLP) task and found empirical

evidence of stability and robustness of IMPS over the LTH algorithm.

Future studies on other NLP tasks is needed in order to confirm the performance gains of IMPS

over LTH that we observed for the toponym identification task. Moreover, we would also like to

see whether this pattern continues in other domains that leverage transfer learning such as computer

vision.

An additional research direction is the performance and stability analysis of IMPS compared

to LTH when applied to neural networks for which the learning process does not involve transfer

learning. For this specific setting, Frankle et al. (June 2019) (see Section 2.11) have introduced a

more stable and scalable variation of LTH. The main idea of our algorithm could easily be integrated

with this work and it would be interesting to see whether any performance improvement can be

achieved.

Overall, the main objective of this thesis was to make use of the current developments in the field

of deep learning and natural language processing (NLP) to further facilitate the automation of text

based processes in the biomedical domain. NLP in the biomedical domain faces many challenges

such as: the small number of publicly available datasets, the relatively small training samples per

dataset, the domain specific vocabulary, etc. Considering the problems surrounding the field of NLP

in the biomedical domain and the relatively recent interest in applying neural network techniques to

bridge the gap between model performance in the general English domain and biomedical domain,

much more research still remains.

75

Bibliography

Einat Amitay, Nadav Har’El, Ron Sivan, and Aya Soffer. Web-a-where: geotagging web content.

In Proceedings of the 27th International ACM Conference on Research and Development in In-

formation Retrieval (SIGIR 2004), pages 273–280, Sheffield, UK, July 2004. ACM.

Mariona Coll Ardanuy and Caroline Sporleder. Toponym disambiguation in historical documents

using semantic and geographic features. In Proceedings of the 2nd International Conference on

Digital Access to Textual Cultural Heritage, pages 175–180. ACM, June 2017.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint

arXiv:1607.06450, July 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly

learning to align and translate. In 3rd International Conference on Learning Representations

(ICLR 2015), San Diego, USA, May 2015.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic

language model. Journal of machine learning research, 3:1137–1155, February 2003.

Yoshua Bengio, Patrice Simard, Paolo Frasconi, et al. Learning long-term dependencies with gra-

dient descent is difficult. IEEE transactions on neural networks, 5(2):157–166, March 1994.

Dennis A Benson, Mark Cavanaugh, Karen Clark, Ilene Karsch-Mizrachi, David J Lipman, James

Ostell, and Eric W Sayers. Genbank. Nucleic Acids Research, 41(D1):D36–D42, November

2012.

76

Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python: analyzing

text with the natural language toolkit. O’Reilly Media, Inc., June 2009.

Phillipe Boeuf, Heidi E Drummer, Jack S Richards, Michelle JL Scoullar, and James G Beeson.

The global threat of zika virus to pregnancy: epidemiology, clinical perspectives, mechanisms,

and impact. BMC medicine, 14(1):1–9, August 2016.

Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc Le. Massive exploration of neural

machine translation architectures. In Proceedings of the 2017 Conference on Empirical Meth-

ods in Natural Language Processing (EMNLP 2017), pages 1442–1451, Copenhagen, Denmark,

September 2017. Association for Computational Linguistics.

John A Bullinaria and Joseph P Levy. Extracting semantic representations from word co-occurrence

statistics: A computational study. Behavior research methods, 39(3):510–526, August 2007.

Danqi Chen, Jason Bolton, and Christopher D. Manning. A thorough examination of the CNN/daily

mail reading comprehension task. In Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics (ACL 2016), pages 2358–2367, Berlin, Germany, August 2016.

Association for Computational Linguistics.

Jason PC Chiu and Eric Nichols. Named entity recognition with bidirectional LSTM-CNNs. Trans-

actions of the Association for Computational Linguistics, 4:357–370, July 2016.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-

ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder

for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods

in Natural Language Processing (EMNLP 2014), pages 1724–1734, Doha, Qatar, October 2014.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What does BERT look

at? an analysis of BERT’s attention. In Proceedings of the 2019 ACL Workshop BlackboxNLP:

Analyzing and Interpreting Neural Networks for NLP (ACL 2019), pages 276–286, Florence,

Italy, August 2019. Association for Computational Linguistics.

77

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep

neural networks with multitask learning. In Proceedings of the 25th International Conference on

Machine Learning (ICML 2008), pages 160–167, Helsinki, Finland, July 2008. ACM.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel

Kuksa. Natural language processing (almost) from scratch. Journal of Machine Learning Re-

search, 12(Aug):2493–2537, August 2011.

Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong Yu. Boosting for transfer learning. In Pro-

ceedings of The 24th International Conference on Machine Learning (ICML 2007), pages 193–

200, Corvallis, USA, June 2007. ACM.

MohammadReza Davari, Leila Kosseim, and Tien D Bui. Toponym identification in epidemiol-

ogy articles–a deep learning approach. In Proceedings of The 20th International Conference on

Computational Linguistics and Intelligent Text Processing (CICLing 2019), La Rochelle, France,

April 2019.

MohammadReza Davari, Leila Kosseim, and Tien D Bui. Toponym mention identification in

biomedical texts. In Biomedical Literature Mining: Methods and Protocols. Springer Nature,

to appear 2020.

Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and Richard Harshman.

Indexing by latent semantic analysis. Journal of the American Society for Information Science,

41(6):391–407, March 1990.

Grant DeLozier, Jason Baldridge, and Loretta London. Gazetteer-independent toponym resolution

using geographic word profiles. In Proceedings of 29th Annual Conference of Association for the

Advancement of Artificial Intelligence (AAAI 2015), pages 2382–2388, Austin, USA, February

2015.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep

bidirectional transformers for language understanding. In 2019 Annual Conference of the North

American Chapter of the Association for Computational Linguistics (NAACL-HLT 2019), Min-

neapolis, USA, June 2019.

78

Aaron Fisher, Cynthia Rudin, and Francesca Dominici. All models are wrong, but many are useful:

Learning a variable’s importance by studying an entire class of prediction models simultaneously.

Journal of Machine Learning Research, 20(177):1–81, October 2019.

W Nelson Francis and Henry Kucera. Brown corpus. Department of Linguistics, Brown University,

Providence, Rhode Island, 1, 1964.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural

networks. In The 7th International Conference on Learning Representations (ICLR 2019), New

Orleans, USA, May 2019.

Jonathan Frankle, G Karolina Dziugaite, DM Roy, and M Carbin. Stabilizing the lottery ticket

hypothesis. arXiv, page, June 2019.

Philip Gage. A new algorithm for data compression. The C Users Journal, 12(2):23–38, February

1994.

Eric Garbin and Inderjeet Mani. Disambiguating toponyms in news. In Proceedings of the Confer-

ence on Human Language Technology and Empirical Methods in Natural Language Processing

(HLT/EMNLP 2005), pages 363–370, Vancouver, Canada, October 2005. Association for Com-

putational Linguistics.

P. Gautret, E. Botelho-Nevers, P. Brouqui, and P. Parola. The spread of vaccine-preventable diseases

by international travellers: A public-health concern. Clinical Microbiology and Infection, 18:77

– 84, October 2012. ISSN 1198-743X.

Judith Gelernter and Shilpa Balaji. An algorithm for local geoparsing of microtext. GeoInformatica,

17(4):635–667, January 2013.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural

networks. In Proceedings of the 13th International Conference on Artificial Intelligence and

Statistics (AISTATS 2010), pages 249–256, Sardinia, Italy, May 2010.

Google. Pretrained word and phrase vectors. https://code.google.com/archive/p/

word2vec/, 2019. Accessed: 2019-01-10.

79

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/

Juliana Grant, Aaron M Wendelboe, Arthur Wendel, Barbara Jepson, Paul Torres, Chad Smelser,

and Robert T Rolfs. Spinach-associated escherichia coli o157: H7 outbreak, utah and new mex-

ico, 2006. Emerging infectious diseases, 14(10):1633, October 2008.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint

arXiv:1410.5401, December 2014.

A. D. Green and K. I. Roberts. Recent trends in infectious diseases for travellers. Occupational

Medicine, 50(8):560–565, November 2000. doi: 10.1093/occmed/50.8.560. URL http://dx.

doi.org/10.1093/occmed/50.8.560.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for

efficient neural network. In Advances in Neural Information Processing Systems (NIPS 2015),

pages 1135–1143, Montreal, Canada, December 2015.

Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal brain

surgeon. In Advances in Neural Information Processing Systems (NIPS 1993), pages 164–171,

Denver, USA, December 1993.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-

nition. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition

(CVPR 2016), pages 770–778, Las Vegas, USA, June 2016.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdi-

nov. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint

arXiv:1207.0580, July 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):

1735–1780, November 1997.

James E Hoffman and Baskaran Subramaniam. The role of visual attention in saccadic eye move-

ments. Perception & psychophysics, 57(6):787–795, January 1995.

80

http://dx.doi.org/10.1093/occmed/50.8.560
http://dx.doi.org/10.1093/occmed/50.8.560

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification.

In The 56th Annual Meeting of the Association for Computational Linguistics (ACL 2018), pages

328–339, Melbourne, Australia, July 2018. Association for Computational Linguistics.

W. Kienreich, M. Granitzer, and M. Lux. Geospatial anchoring of encyclopedia articles. In Proceed-

ings of the 10th International Conference on Information Visualisation (IV 2006), pages 211–215,

London, UK, July 2006.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. Character-aware neural language

models. In Proceedings of the 13th Conference of Association for the Advancement of Artificial

Intelligence (AAAI 2016), AAAI’16, pages 2741–2749, Phoenix, USA, February 2016. AAAI

Press.

Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba,

and Sanja Fidler. Skip-thought vectors. In Advances in Neural Information Processing Systems

(NIPS 2015), pages 3294–3302. Curran Associates, Inc., Montreal, Canada, December 2015.

Sebastian Krause, Hong Li, Hans Uszkoreit, and Feiyu Xu. Large-scale learning of relation-

extraction rules with distant supervision from the web. In Proceedings of The 11th Interna-

tional Semantic Web Conference (ISWC 2012), pages 263–278, Boston, USA, November 2012.

Springer.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-

lutional neural networks. In Advances in Neural Information Processing Systems (NIPS 2012),

pages 1097–1105, Lake Tahoe, USA, December 2012.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer.

Neural architectures for named entity recognition. In Proceedings of The 15th Annual Conference

of The North American Chapter of The Association for Computational Linguistics (HLT-NAACL

2016), San Diego, USA, June 2016.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-

cut. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint

arXiv:1909.11942, September 2019.

81

Yann LeCun, Koray Kavukcuoglu, and Clément Farabet. Convolutional networks and applications

in vision. In Proceedings of The 2010 IEEE International Symposium on Circuits and Systems,

pages 253–256, Paris, France, May 2010. IEEE.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in Neural

Information Processing Systems (NIPS 1990), pages 598–605, Denver, USA, November 1990.

Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. Object recognition with gradient-

based learning. In Shape, contour and grouping in computer vision, pages 319–345. Springer,

October 1999.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for effi-

cient convnets. In The 5th International Conference on Learning Representations (ICLR 2017),

Toulon, France, April 2017.

Lishuang Li, Liuke Jin, Zhenchao Jiang, Dingxin Song, and Degen Huang. Biomedical named

entity recognition based on extended recurrent neural networks. In Proceedings of the IEEE In-

ternational Conference on Bioinformatics and Biomedicine (BIBM 2015), pages 649–652, Wash-

ington, USA, November 2015.

Michael D Lieberman and Hanan Samet. Multifaceted toponym recognition for streaming news. In

Proceedings of the 34th International ACM Conference on Research and Development in Infor-

mation Retrieval (SIGIR 2011), San Francisco, USA, December 2011. ACM.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike

Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining

approach. arXiv preprint arXiv:1907.11692, July 2019.

Marc Moreno Lopez and Jugal Kalita. Deep learning applied to NLP. arXiv preprint

arXiv:1703.03091, March 2017.

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through

l 0 regularization. In 6th International Conference on Learning Representations (ICLR 2018),

Vancouver, Canada, April 2018.

82

Kevin Lund and Curt Burgess. Producing high-dimensional semantic spaces from lexical co-

occurrence. Behavior research methods, instruments, & computers, 28(2):203–208, June 1996.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-based

neural machine translation. In Proceedings of the 2015 Conference on Empirical Methods in

Natural Language Processing (EMNLP 2015), pages 1412–1421, Lisbon, Portugal, September

2015.

Arjun Magge, Davy Weissenbacher, Abeed Sarker, Matthew Scotch, and Graciela Gonzalez-

Hernandez. Deep neural networks and distant supervision for geographic location mention ex-

traction. Bioinformatics, 34(13):i565–i573, July 2018.

Matthew Magnusson and Laura Dietz. UNH at SemEval-2019 task 12: Toponym resolution in sci-

entific papers. In Proceedings of the 13th International Workshop on Semantic Evaluation (Se-

mEval 2019), pages 1308–1312, Minneapolis, USA, June 2019. Association for Computational

Linguistics.

R Mandavia, K Kapoor, J Ouyang, and H Osmani. Evaluating ear cartilage piercing practices in

London, UK. The Journal of Laryngology & Otology, 128(6):508–511, June 2014.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated

corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330, June 1993.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-

tations in vector space. In Yoshua Bengio and Yann LeCun, editors, 1st International Conference

on Learning Representations (ICLR 2013), Scottsdale, USA, May 2013.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. Exploiting similarities among languages for ma-

chine translation. arXiv preprint arXiv:1309.4168, September 2013.

SPFGH Moen and Tapio Salakoski2 Sophia Ananiadou. Distributional semantics resources for

biomedical text processing. In Proceedings of the 5th International Symposium on Languages in

Biology and Medicine (LBM 2013), pages 39–43, Tokyo, Japan, December 2013.

83

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation

for neural network pruning. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR 2019), pages 11264–11272, Long Beach, USA, June 2019.

Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu, Lu Zhang, and Zhi Jin. How transferable are neural

networks in NLP applications? In Proceedings of the 2016 Conference on Empirical Methods in

Natural Language Processing (EMNLP 2016), pages 479–489, Austin, Texas, November 2016.

Association for Computational Linguistics.

David Nadeau and Satoshi Sekine. A survey of named entity recognition and classification. Lingvis-

ticae Investigationes, 30(1):3–26, January 2007.

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-level im-

age representations using convolutional neural networks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR 2014), pages 1717–1724, Columbus, USA,

June 2014.

Sankar K Pal and Sushmita Mitra. Multilayer perceptron, fuzzy sets, and classification. IEEE

Transactions on neural networks, 3(5):683–697, September 1992.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural

networks. In International Conference on Machine Learning (ICML 2013), pages 1310–1318,

Atlanta, USA, June 2013.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word

representation. https://nlp.stanford.edu/projects/glove/, 2014. Accessed:

2019-01-10.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word rep-

resentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP 2014), pages 1532–1543, October 2014.

84

https://nlp.stanford.edu/projects/glove/

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and

Luke Zettlemoyer. Deep contextualized word representations. In Proceedings of the 2018 Con-

ference of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (NAACL 2018), pages 2227–2237, New Orleans, USA, June

2018. Association for Computational Linguistics.

Ross S Purves, Paul Clough, Christopher B Jones, Avi Arampatzis, Benedicte Bucher, David Finch,

Gaihua Fu, Hideo Joho, Awase Khirni Syed, Subodh Vaid, et al. The design and implementation

of spirit: a spatially aware search engine for information retrieval on the internet. International

journal of geographical information science, 21(7):717–745, June 2007.

Teng Qin, Rong Xiao, Lei Fang, Xing Xie, and Lei Zhang. An efficient location extraction algorithm

by leveraging web contextual information. In Proceedings of the 18th International Conference

on Advances in Geographic Information Systems (SIGSPATIAL 2010), pages 53–60, San Jose,

USA, November 2010. ACM.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language un-

derstanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-

assets/researchcovers/languageunsupervised/language understanding paper. pdf, June 2018.

David Rolnick, Andreas Veit, Serge Belongie, and Nir Shavit. Deep learning is robust to massive

label noise. arXiv preprint arXiv:1705.10694, May 2017.

João Santos, Ivo Anastácio, and Bruno Martins. Using machine learning methods for disambiguat-

ing place references in textual documents. GeoJournal, 80(3):375–392, June 2015.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words

with subword units. In Proceedings of the 54th Annual Meeting of the Association for Compu-

tational Linguistics (ACL 2016), pages 1715–1725, Berlin, Germany, August 2016. Association

for Computational Linguistics.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556, September 2014.

85

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.

Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning

Research, 15:1929–1958, June 2014.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural net-

works. In Advances in Neural Information Processing Systems (NIPS 2014), pages 3104–3112,

Montreal, Canada, December 2014.

Javier Tamames and Victor de Lorenzo. Envmine: A text-mining system for the automatic extraction

of contextual information. BMC bioinformatics, 11(1):294, June 2010.

Mike Taylor. Reduced Geographic Scope as a Strategy for Toponym Resolution. PhD thesis, North-

ern Arizona University, December 2017.

Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003 shared task:

Language-independent named entity recognition. In Proceedings of the 7th Conference on Natu-

ral Language Learning at (HLT-NAACL 2003), pages 142–147, Edmonton, Canada, May 2003.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-

mation Processing Systems (NIPS 2017), pages 5998–6008, Long Beach, USA, January 2017.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Francois Chollet, Aidan Gomez, Stephan Gouws,

Llion Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki Parmar, Ryan Sepassi, Noam Shazeer, and

Jakob Uszkoreit. Tensor2Tensor for neural machine translation. In Proceedings of the 13th

Conference of the Association for Machine Translation in the Americas (AMTA 2018), pages

193–199, Boston, MA, March 2018. Association for Machine Translation in the Americas.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey Hinton. Gram-

mar as a foreign language. In Advances in Neural Information Processing Systems (NIPS 2015),

pages 2773–2781, Montreal, Canada, December 2015.

86

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:

A multi-task benchmark and analysis platform for natural language understanding. In Proceed-

ings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks

for NLP, pages 353–355, Brussels, Belgium, November 2018. Association for Computational

Linguistics.

Faqiang Wang, Wangmeng Zuo, Liang Lin, David Zhang, and Lei Zhang. Joint learning of single-

image and cross-image representations for person re-identification. In Proceedings of The 29th

IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), pages 1288–1296,

Las Vegas, USA, June 2016.

Peilu Wang, Yao Qian, Frank K Soong, Lei He, and Hai Zhao. A unified tagging solution: Bidirec-

tional LSTM recurrent neural network with word embedding. arXiv preprint arXiv:1511.00215,

November 2015.

Xiaobin Wang, Chunping Ma, Huafei Zheng, Chu Liu, Pengjun Xie, Linlin Li, and Luo Si.

DM NLP at SemEval-2018 task 12: A pipeline system for toponym resolution. In Proceedings

of the 13th International Workshop on Semantic Evaluation (SemEval 2019), pages 917–923,

Minneapolis, USA, June 2019. Association for Computational Linguistics.

Davy Weissenbacher, Tasnia Tahsin, Rachel Beard, Mari Figaro, Robert Rivera, Matthew Scotch,

and Graciela Gonzalez. Knowledge-driven geospatial location resolution for phylogeographic

models of virus migration. Bioinformatics, 31(12):i348–i356, June 2015.

Davy Weissenbacher, Arjun Magge, Karen O’Connor, Matthew Scotch, and Graciela Gonzalez-

Hernandez. SemEval-2019 task 12: Toponym resolution in scientific papers. In Proceedings of

the 13th International Workshop on Semantic Evaluation (SemEval 2019), Minneapolis, USA,

June 2019. Association for Computational Linguistics.

Davy Weissenbacher, Abeed Sarker, Tasnia Tahsin, Matthew Scotch, and Graciela Gonzalez. Ex-

tracting geographic locations from the literature for virus phylogeography using supervised and

distant supervision methods. Proceedings of the AMIA Summits on Translational Science, 2017:

114, November 2017.

87

World Health Organization. Factors that contributed to undetected spread of the ebola virus and

impeded rapid containment, January 2015. URL https://www.who.int/csr/disease/

ebola/one-year-report/factors/en/.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,

Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine trans-

lation system: Bridging the gap between human and machine translation. arXiv preprint

arXiv:1609.08144, September 2016.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich

Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual

attention. In Proceedings of the 32nd International Conference on Machine Learning (ICML

2015), volume 37, pages 2048–2057, Lille, France, July 2015.

Mingbin Xu, Hui Jiang, and Sedtawut Watcharawittayakul. A local detection approach for named

entity recognition and mention detection. In Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics (ACL 2017), volume 1, pages 1237–1247, Vancouver,

Canada, July 2017.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V

Le. Xlnet: Generalized autoregressive pretraining for language understanding. In H. Wallach,

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, The 33rd annual

conference in Advances in Neural Information Processing Systems (NIPS 2019), pages 5753–

5763. Curran Associates, Inc., Vancouver, Canada, December 2019.

88

https://www.who.int/csr/disease/ebola/one-year-report/factors/en/
https://www.who.int/csr/disease/ebola/one-year-report/factors/en/

	List of Figures
	List of Tables
	Introduction
	Motivation
	Goal of This Thesis
	Contributions
	Thesis Structure

	Related Work
	Non-Neural Approaches
	Neural Approaches
	Neural Building Blocks
	Feed-Forward Neural Network
	Convolutional Neural Network
	Recurrent Neural Network

	Toponym Resolution in The Epidemiology Domain
	Metrics
	Attention Mechanisms
	Motivation
	Origin of Attention Mechanism
	Formal Definition
	Variations of Attention Mechanism

	Transformer
	Multi-Head Attention
	Model Architecture

	Tokenization
	Word Embeddings
	Word2Vec
	GloVe

	Generalized Language Models
	ELMo
	BERT

	Neural Network Compression

	Neural Network With Linguistic Insights
	The DFFNN Model
	Embedding Layer
	The Architecture

	Experiments and Results
	Effect of Domain Specific Embeddings
	Effect of Linguistic Features
	 Effect of Window Size
	Effect of the Loss Function
	Overall Model Reliance on Linguistic Features

	Discussion
	Conclusion

	Efficient Toponym Identifiers for Medical Domain Using BERT
	TIMBERT Model
	Embeddings
	Linguistic Features
	Contextual Information
	Network Pruning

	TIMBERT Architecture
	Experiments and Results
	Effect of Linguistic Features
	Effect of Network Pruning

	Discussion
	Conclusion

	Conclusion and Future Work
	Summary
	Contributions
	Future Work

	Bibliography

