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ABSTRACT 

An automatic 3D reconstruction approach for multi-level building spaces using 

3D point cloud data 

Amr Nabil Amer 

3D laser scanners provide accurate as-built conditions for the surrounding environment in the 

form of 3D point cloud data. Although this technology has had high attention from the construction 

industry for the as-built documentation of buildings, the reconstruction process, especially 

identification and segmentation of the building elements, still has manual and labor-intensive tasks 

leading to time-consuming and human errors. In addition, it has not reconstructed the building 

elements successfully yet in multi-level building spaces. In an effort to address these issues, this 

research proposes an automatic 3D reconstruction framework that identifies, segments, and 

reconstructs vertical and horizontal building elements from the point clouds of multi-level building 

spaces. The proposed framework composes of: (1) identifying locations, diameters, lengths and 

the number of vertical building elements using Hough line and circle transform; (2) comparing the 

dimensions of the walls to determine single- or multi-level building spaces; (3) developing the 

region of interest defined by the building codes; (4) implementing plane RANSAC for not only 

segmentation of the vertical building elements but also identification and segmentation of 

horizontal building elements; and (5) reconstructing the segmented building elements into simple 

forms. The effectiveness of the proposed methodology has been validated with high accuracy and 

low deviation in three different building spaces at Concordia University, Montreal, Canada. 
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CHAPTER 1: INTRODUCTION 1 

This research aims to propose a framework to automatically identify, segment and reconstruct 2 

building elements such as columns, walls, ceilings, floors, and stairs from 3D point cloud data 3 

(3D-PCD) using multiple algorithms such as Hough transform and RANSAC. The upcoming 4 

sections in this chapter describe the research background, motivation, objectives, contribution, and 5 

the organization of the thesis. 6 

1.1 Background and Motivation 7 

According to the investigation reported by Canadian home builders’ association in 2017, the 8 

building renovation and remodeling projects in Canada are total $ 77.9 billion and $ 41.3 billion 9 

USD in wages (association, 2019). A significant amount of these wages is attributed to reworks 10 

(e.g., building drawings) due to the lack of an accurate representation of the existing buildings at 11 

the early stage of projects. In addition, these challenges lead to exposing workers into hazard risks 12 

which are the main cause to record over 1,000 deaths and 800,000 injuries in the European Union 13 

(Rwamamara, Norberg, Olofsson, & Lagerqvist, 2010). Yet to date, all types of building spaces 14 

have not been rebuilt as 3D models yet since the labor-intensive, time-consuming and costly 15 

process is required. As a result of missing 3D representation of the buildings, especially the aged 16 

buildings which undergone multiple renovations and/or remodeling have a high probability of 17 

misrepresenting building elements due to the loss of building information and/or omitting the 18 

building elements. In this respect, there is a need to develop an efficient and effective way to obtain 19 

the geometrical information of building elements in a timely manner (Huber et al., 2011).  20 

An example of these aged buildings that were in dire need for 3D documentation is the Notre 21 

Dame Cathedral de Paris as shown in (Figure 1-1-a). The tragic accident of this 850-year-old 22 
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beautiful structure burning down rendered the world speechless (Figure 1- 1- b) (Eric Levenson, 23 

2019). After the accident France’s precedent Emmanuel Macron quickly vowed to rebuild the 24 

Notre Dame, moreover, multiple companies announced their support to aid this project (Lyons, 25 

2019). A detailed 3D model of the Notre Dame could help speed up the process of drafting, 26 

drawing, planning, and construction process. Luckily, the 3D model of the Notre Dame Cathedral 27 

was captured by Ubisoft to create a location in their published video game “Assassin creed unity” 28 

illustrated in (Figure 1-1-c).  The game artists designed the 3D model with immaculate attention 29 

to details for the interior and exterior of the building (Gilbert, 2019; Ubisoft, 2019). Another 3D 30 

model of the entire structure of the Cathedral is captured extensively in 2010 by Andrew Tallon, 31 

an Architectural historian and associate professor of Art at Vassar College using a 3D-laser scanner 32 

as shown in (Figure 1-1-d) (Tallon, 2014). These models provide accurate recreation of all the 33 

cathedral’s dimensions and surfaces. Notre Dame de Paris is lucky to have these models. However, 34 

this is not the case for all historical buildings, that might suffer a similar fate. 35 

 36 

(a)                                                                                  (b) 37 

 38 
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 39 

(c)                                                                                (d) 40 

Figure 1- 1: (a) Notre-Dame de Paris, (b) Tragic accident of the Notre-Dame burning down, (c) 41 

Notre-Dame 3D model in Assassins Creed game, and (d) Notre-Dame 3D-PCD (Eric Levenson, 42 

2019; Gilbert, 2019; Tallon, 2014; Ubisoft, 2019) 43 

3D laser scanner technology attracts the interest of the construction community due to its clear 44 

edge over manual or electronic measurement devices in terms of time requirement spent on -site 45 

and accuracy (Azhar, Khalfan, & Maqsood, 2012; S. Li, Isele, & Bretthauer, 2008; Wang, Tan, & 46 

Mei, 2019). Moreover, its versatility to work under different site conditions such as the levels of 47 

lightness and occlusion, the sizes of space areas, and complex space layouts is merit in the 48 

construction industry. The aforementioned reasons make the 3D laser scanner the preferred choice 49 

for heavily operated buildings (e.g., hospitals) and infrastructures (e.g., tunnels) that are not 50 

allowed to stop temporarily or have disturbances for a long period of time (Chida & Masuda, 2016; 51 

Wang et al., 2019). The information (e.g., dimensions and locations) of the building elements 52 

scanned by the 3D laser scanner is represented by a set of millions of data points formed as X, Y, 53 

Z coordinates in 3D space as shown in Figure 1- 2. As a result, the 3D-point cloud data (3D-PCD) 54 

highly represents the detailed 3D geometric information of the as-is state for the surrounding 55 

environment of the scanned locations.  56 
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 57 

Figure 1- 2: Concordia University EV building Entrance Hall 3D-PCD 58 

However, 3D-PCD usually involves: (1) unorganized, noisy and missing data due to occlusion 59 

and reflective or transparent surfaces of the building elements; and (2) the large volumes of the 60 

files required high computation processing performance to reconstruct accurate as-built 3D 61 

models. In this respect, manual processing procedures (also called as a reconstruction phase), 62 

which are mostly tedious, error-prone and time-consuming, are needed to develop the 3D building 63 

elements and associated properties based on the 3D-PCD. To eliminate these limitations, an 64 

automated approach is highly sought from both commercial software and academia (Pătrăucean et 65 

al., 2015). However, available commercial software such as CloudCompare and 3DReshaper is 66 

not able to identify, segment and reconstruct automatically the building elements such as walls, 67 

columns, and stairs yet (3DReshaper, 2019; Compare, 2019). In addition, researchers in the past 68 
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few years have been successful to reconstruct planar building elements such as walls, ceilings, and 69 

floors in single-level spaces based on approaches that involve two steps: 1) identification and 70 

segmentation of building elements; and 2) surface reconstruction. At this junction, it should be 71 

noted that the main focus of this research is to improve upon the identification and segmentation 72 

step, which is still a manual and labor-intensive task with high computation costs, to establish the 73 

automated reconstruction process using 3D-PCD. In this respect, previous researchers have 74 

introduced different methods of utilizing techniques such as region growing, RANSAC and 75 

machine learning algorithms to implement the identification and segmentation step (Chen, Cho, & 76 

Kim, 2018; Franz, Irmler, & Rüppel, 2018; M. Li, Wonka, & Nan, 2016; R. Lu, Brilakis, & 77 

Middleton, 2019; Macher, Landes, & Grussenmeyer, 2015, 2017; Murali, Speciale, Oswald, & 78 

Pollefeys, 2017; Oesau, Lafarge, & Alliez, 2014; Qi, Su, Mo, & Guibas, 2017; Tatarchenko, 79 

Dosovitskiy, & Brox, 2017; Thomson & Boehm, 2015). Based on the previous studies, it has been 80 

noted that RANSAC is one of the most commonly used techniques for the identification and 81 

segmentation of the building elements for its various benefits such as the ability to be applied for 82 

multiple types of the targeted building elements, fast processing time compared to region growing 83 

and p-linkage techniques when applied on huge data sets, and easy implementation (M. Li et al., 84 

2016; Murali et al., 2017).  85 

1.2 Problem Statement 86 

Previous approaches suggested by researchers utilizing RANSAC still have the following 87 

challenges: (1) RANSAC is inefficiently utilized, due to the arbitrary number of iterations defined 88 

by the user leading to the creation of  3D models that misrepresent the as-built conditions due to 89 

the over-segmentation, which segments 3D-PCD that do not belong to the building elements, or 90 

under-segmentation, which misses 3D-PCD belonging to the building elements; (2) lack of 91 
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consideration for RANSAC's feature to tend to estimate over or under-estimate the dimensions and 92 

orientations of the building elements when it is applied on large datasets; and (3) the proposed 93 

methods are limited in applicability since multi-level building spaces such as auditoriums and halls 94 

with multiple horizontal building elements are not considered. 95 

1.3 Research Hypothesis  96 

Several questions have arisen in this research hypothesis and they require to be resolved within 97 

this research, these questions are as follows:  98 

1. Is it possible to make RANSAC more efficient? In addition, How? 99 

2. Is it possible to make RANSAC more accurate and resilient to outliers? Moreover, How? 100 

3. Is it possible to make the reconstruction of point cloud more flexible to adapt to multi-101 

level rooms? 102 

4. Can we expand on the reconstructed elements existing in multi-level rooms? If yes, 103 

which elements are important? And How? 104 

1.4 Objectives and Scopes  105 

The main objectives of this research are to: 106 

1. Fully automate the process of identification, segmentation, and reconstruction of the 107 

building elements form 3D-PCD. 108 

2. Improving the efficiency of the utilization of RANSAC.  109 

3. Reducing errors and enhancing the accuracy of the reconstruction process. 110 

4. Expanding upon the applicability of the reconstruction process and creating a more 111 

accurate representation of the as-built condition, by not only taking into consideration 112 

multi-level space but also including more building elements such as columns and stairs. 113 
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Accordingly, to accomplish these objectives, this research overcomes these challenges and 114 

achieves these objectives by the proposed methodology involving the following procedures: 115 

1. pre-processing to prepare the 3D-PCD by removing outliers and transforming the 116 

coordinates of 3D-PCD. 117 

2. Transformation of the 3D-PCD to 2D images to identify the locations and numbers of 118 

the vertical building elements such as columns and walls automatically by implementing 119 

Hough circle and line transforms.  120 

3. Development of standard exploring areas to avoid identifying and segmenting the 121 

outliers of 3D-PCD when RANSAC is implemented. 122 

4. Reconstructing the 3D surface models of the building elements.  123 

As a validation, the proposed framework is tested on three cases, a multi-ceilings and columns 124 

entrance hall and a multi-floor auditorium with stairs, and the results are analyzed and assessed 125 

using an evaluation matrix that composes of seven parameters to evaluate the performances of the 126 

proposed method in reconstruction processes of 3D-PCD. 127 

1.5 Expected Contributions 128 

To overcome these limitations, this research proposes an automated reconstruction approach 129 

that encompasses the following features:  130 

1. Automatic identification and segmentation of the building elements with high accuracy 131 

and low interference by users;  132 

2. Competitive computation cost by defining the optimal number of iterations which is 133 

used to determine the number of runs for RANSAC.  134 
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3. The standard regions developed based on the building codes to prevent the use of the 135 

outliers and misrepresentation of the building elements during the identification and 136 

segmentation process during the implementation of RANSAC.  137 

4. Extensibility of the 3D point cloud-based reconstruction process based on the 138 

consideration of the multiple building elements in multi-level building spaces. 139 

1.6 Thesis Organization 140 

Table 1- 1: Titles and summary of each chapter of this Thesis 141 

Chapter Titles Summary  

1. Introduction 

This chapter provides the background and a summary of this 

thesis, also covers the hypothesis, the intended objectives and 

the expected contribution of this thesis. 

2. Literature Review 

This chapter discusses the recent studies, algorithms, and 

methods for each of the main steps of this Thesis. 

3. Methodology 
This chapter explains the proposed framework to achieve the 

objectives discussed in the introduction. 

4. Implementation 

This chapter discusses the equipment used for this framework, 

the three test cases used to validate the proposed framework, 

the results, and evaluation for the results.  

5. Conclusion 
This chapter summarizes the final output of the proposed 

framework and discusses the future works for it. 

 142 
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CHAPTER 2: LITERATURE REVIEW 143 

This chapter provides a comprehensive review of recent studies and techniques used to 144 

automatically identify, segment, and reconstruct building elements from 3D-PCD and their 145 

limitations. Reconstruction of  3D point clouds can be categorized mainly by two steps: 146 

1. Identification and segmentation of building elements. 147 

2. Surface reconstruction. 148 

Thus, this section discusses the recent studies in both areas to identify the state-of-art in 3D 149 

point cloud-based reconstruction. In the end, the research gaps identified will be discussed. 150 

2.1 Identification & Segmentation of Building Elements 151 

Automatic reconstruction of a building’s 3D-PCD is a valuable goal sought after by 152 

researchers, as the reconstruction process is a manual, tedious, time consuming and error-prone 153 

procedure. As discussed earlier the first step for the reconstruction process is the identification and 154 

segmentation of these structural building elements such as columns, walls, etc. from the 3D-PCD. 155 

In this respect, various techniques were utilized to located and segment these building elements 156 

from the 3D-PCD, such as Slices Comparing (R. Lu et al., 2019), Deep Learning (Qi et al., 2017; 157 

Tatarchenko et al., 2017), Region Growing (Dimitrov & Golparvar-Fard, 2015), p-linkage (X. Lu 158 

et al., 2016), Hough transform (Díaz-Vilariño, Conde, Lagüela, & Lorenzo, 2015), and RANSAC 159 

(Schnabel, Wahl, & Klein, 2007). These identification and segmentation techniques can be 160 

classified by general methods, feature-based methods, and geometric based methods.  161 
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2.1.1 General Methods 162 

General methods are broad techniques that can be adapted to work for indoor environments. An 163 

example of this method, Lu et al. have introduced a method to identify structural members in 164 

bridges such as columns and slabs. The proposed method is to take multiple slices through the 165 

height of the bridge in both directions (X and Y), compare the heights of the slices to identify the 166 

locations of slabs and piers as shown in Figure 2- 1. Although this method is introduced for the 167 

bridges, this technique could be adopted to identify slabs and columns in one-level rooms (R. Lu 168 

et al., 2019). However, this method is not efficient to identify the slabs and columns in the multi-169 

level rooms which have various heights of the building spaces since it is difficult to compare the 170 

lengths of the multiple slices. 171 

 172 

Figure 2- 1: Slicing the bridge’s 3D-PCD in the X direction (R. Lu et al., 2019) 173 



11 
 

Like other efforts, some researchers (Chen, Kira, & Cho, 2019; Qi et al., 2017; Tatarchenko 174 

et al., 2017) have used deep learning and neural networks techniques to identify different types of 175 

building elements and pieces of furniture from point clouds and voxels acquired in the indoor 176 

environment. Although these techniques provide robust and accurate results, they require high 177 

computational performance to train the model with large periods of time. Moreover, some of the 178 

proposed deep learning techniques suffer from over-segmentation. Furthermore, it is difficult to 179 

get annotated data to train the classification algorithm properly. Deep learning is a promising 180 

method for the identification and segmentation of building elements from the 3D-PCD since it is 181 

quite robust. However, to this point, there is not enough research done to optimize the usage of 182 

this method, since 3D-PCDs are large in storage size and require a long time to be annotated to 183 

train the models. Moreover, requires high computational time and effort to process. 184 

2.1.2 Feature-Based Methods 185 

In other efforts, some researchers have turned to feature-based methods. This method assesses 186 

some attributes such as surface normal and density of 3D-PCD to identify the building elements. 187 

These methods have two popular algorithms, namely Region Growing and p-linkage. 188 

 Region growing starts selecting one or more points, also called as seed points, which are used 189 

to identify the characteristics of the selected points such as normal and curvature. Then, it explores 190 

to find the neighbor points which have the same features as ones in the seed points (Grilli, Menna, 191 

& Remondino, 2017). Based on this concept, the region growing algorithm is used to not only 192 

identify structural members and elements of mechanical, electrical and plumbing (MEP) systems 193 

but also segments rooms as the 2D image slices retrieved from the 3D-PCD as shown in Figure 2- 194 

2 and Figure 2- 3 respectively (Dimitrov & Golparvar-Fard, 2015; Macher et al., 2015). On the 195 

other hand, p-linkage is a novel clustering algorithm that behaves similarly to the region growing 196 
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algorithm but considers the densities of the point clouds instead of the features of the points (X. 197 

Lu et al., 2016).  198 

 199 
(a)                           (b)                                       (c)                                            (d)  200 

Figure 2- 2: (a) Point Cloud, (b) Feature detection, (c) Region growing, and (d) Final 201 

segmentation (Dimitrov & Golparvar-Fard, 2015) 202 

                203 

(a)                                     (b)                                              (c)                             204 

Figure 2- 3: (a) Slice from the 3D-PCD at ceiling level, (b) generating the image, and (c) Region 205 

growing output (Macher et al., 2015) 206 

However, these techniques may have lower accuracy and efficiency than other techniques 207 

since they tend to not only use the outliers leading to segment the wrong 3D-PCD called over-208 

segmentation but also miss the data related to the building elements called as under-segmentation. 209 
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In addition, both algorithms require high computational costs in terms of performance and time 210 

when the feature-based methods are applied using a high volume of the point cloud data. 211 

2.1.3 Geometry-Based Methods 212 

Another approach explored by researchers is geometry-based methods. In comparison to the 213 

other two methods, this method usually exhibits the lowest computational time and most 214 

commonly used, therefore, it is the base for this research’s suggested framework. Since, almost all 215 

building elements (e.g., walls and columns) boil down to simple geometrical shapes consisting of 216 

planes and cylinders in 3D space or lines and circles in 2D space, researchers utilized this concept 217 

to locate the building elements (Chen et al., 2018). Previous works have used mainly Hough 218 

transform and RANSAC to identify the geometrical shapes of building elements in either 2D or 219 

3D space. Hough transform is a feature extraction method to find specific shapes such as circles, 220 

elapses and lines and their locations on the 2D images in computer vision and image processing 221 

(Díaz-Vilariño et al., 2015). Furthermore, the Hough transform detects multiple building elements 222 

in a single run without the influences of the occlusion (Grilli et al., 2017). Based on these benefits, 223 

researchers have expanded the utilization of Hough transform which is to identify the locations of 224 

building elements (Díaz-Vilariño et al., 2015; Oesau et al., 2014).  225 

RANSAC algorithm is an iterative technique used by researchers for the segmentation of 226 

building elements (i.e., walls) from the 3D-PCD based on the following procedures: (1) select 227 

subsets of points randomly associated with a building element from the 3D-PCD; (2) attempt 228 

iteratively to fit a 3D model such as planes or cylinders into the selected subset data; and (3) detect 229 

the outlier points that do not fit the model and remove them from the selected subset data. 230 

RANSAC has many descendants such as MILESAC and AMILESAC. Some of the descendants 231 

have improved the accuracy and others focus mainly on improving the robustness of RANSAC as 232 
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shown in Figure 2- 4  (Anagnostopoulos, Pătrăucean, Brilakis, & Vela, 2016 ; Choi, Kim, & Yu, 233 

1997; Grilli et al., 2017; Hong et al., 2015; Jung et al., 2014; Tarsha-Kurdi, Landes, & 234 

Grussenmeyer, 2007).  235 

 236 

Figure 2- 4: RANSAC family (Choi et al., 1997) 237 

To address this limitation, previous researchers have introduced RANSAC-based methods 238 

with the Manhattan world assumption, in which all building elements are orthogonal to each other. 239 

In this respect, RANSAC is used as one of the steps to extract as many plane surfaces as possible 240 

that are perpendicular to each other (M. Li et al., 2016; Murali et al., 2017). As a result, this 241 

assumption reduces not only the computational time but also the viability of the proposed methods 242 

since not all building elements are perpendicular to each other (Delage, Lee, & Ng, 2007; 243 

Furukawa, Curless, Seitz, & Szeliski, 2009). In an effort to increase the viability and robustness 244 

of RANSAC, some researchers do not adhere to the Manhattan World assumption. These efforts 245 

utilized RANSAC or one of its descendants in a similar approach to the aforementioned method 246 

by giving them numerous iterations to detect as many walls, ceilings, and floors, as possible 247 



15 
 

without adhering to a specific orientation. this approach detects elements that are not orthogonal 248 

to each other, however, these approaches are more time consuming (Macher et al., 2015, 2017; 249 

Ochmann, Vock, & Klein, 2019; Schnabel et al., 2007; Thomson & Boehm, 2015).  250 

It is clear that the utilization of RANSAC so far still has some limitations such as: (1) the 251 

arbitrary number of iterations, which not only leads to the inefficient implementation of RANSAC 252 

in terms of computational time and performance but also, might lead to over or under 253 

segmentation; (2) RANSAC is affected by false data causing segmenting false 3D-PCD that do 254 

not belong to the targeted building element when applied in large 3D-PCD; and (3) inability to fit 255 

multiple types of 3D models such as cylinders and planes at the same time (Pérez-Sinticala et al., 256 

2019; Tarsha-Kurdi et al., 2007; Zhang, Huang, Zhang, & Luo, 2017). It should be noted that, 257 

based on the benefits exhibited by Hough transform and RANSAC, this research suggests a 258 

procedure that uses a Hough transform, Region of interest (ROI) and RANSAC in a manner to 259 

overcome RANSACS limitations mentioned earlier. 260 

2.2 Surface Reconstruction 261 

Surface reconstruction of building elements 3D-PCD is the second step for the automatic 262 

reconstruction of 3D-PCD. It is the creation of smooth surfaces and shapes that have the same size 263 

and location as the building element found in the point cloud (Berger et al., 2017). There are 264 

various efforts introduced in recent years to reconstruct indoor environments either after the 265 

segmentation step of the point cloud or straight forward from the original point cloud. Oesau et al. 266 

(Oesau et al., 2014) partitioned the bounding box of the 3D-PCD into volumetric cells and labeled 267 

these cells either full or empty spaces based on the locations of the building elements. Next, the 268 

reconstructed model is developed from these labeled volumetric cells. As a different effort, 269 

Thomson et al. (Thomson & Boehm, 2015) proposed a method in which relevant points that 270 
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represent the coordinates of the boundaries are collected, and used to reconstruct walls, ceilings 271 

and floors. The second method is the reverse of the aforementioned method. This method loads 272 

objects bounding boxes to the memory, then use these bounding boxes to reconstruct the point 273 

cloud. On the other hand, Macher et al. (Macher et al., 2017) exported the planes that represent 274 

walls, ceilings, and floors to OBJ format. Similarly to Oesau et al., Murali et al. (Murali et al., 275 

2017) used information gathered from the segmentation step to fit cuboids that represent rooms 276 

and find connections between them and cluster them together. Recently, Franz et al. (Franz et al., 277 

2018) suggested a novel method to reconstruct point cloud in real-time. The processing is done on 278 

the 2D horizontal section of the point cloud. The reconstruction process of the outer and inner 279 

walls takes place by using boundaries gathered from 2D horizontal sections.  280 

2.3 Research gaps and objectives 281 

The automatic reconstruction of 3D-PCD is supposed to improve efficiency, cost-282 

effectiveness and reduces the time compared to manual processing. Therefore, it has been the 283 

interest of many researchers to study this area. However, on the basis of the literature review, and 284 

to the best knowledge of the author, previous studies still need to be improved due to the following 285 

challenges: (1) manual tasks with high computation cost and error-prone in identification and 286 

segmentation process since RANSC is implemented by a random number of runs determined by 287 

users or a large number of experiences which may lead to failure to segment 3D-PCD belonging 288 

to the building elements by either over-segmenting the 3D-PCD or under-segmenting it; (2) a lack 289 

of considering a feature of RANSAC which tends to estimate over-or under-estimate dimensions 290 

and orientations of the building elements when it explores to identify and segment 3D-PCD of the 291 

building element in large areas; and (3) the lack of applicability in 3D reconstruction process for 292 
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multiple-level building spaces involving ceilings, floors, and stairs corresponding to the as-built 293 

conditions.  294 

Accordingly, this research study aims to overcome these challenges and fill these gaps by 295 

proposing a framework to automatically identify, segment and reconstruct building elements from 296 

3D-PCD. The objectives are achieved by the proposed methodology which can improve upon the 297 

efficiency of utilization of RANSAC by specifying the number of iterations instead of being given 298 

an arbitrary number of iterations. Moreover, the proposed method reduces the effect of outliers on 299 

RANSAC by specifying locations and areas where RANCAC will be utilized, which leads to a 300 

reduction in errors and an improvement to accuracy. Finally, widen the scope of applicability of 301 

the reconstruction process by adding more building elements such as stairs and columns, and 302 

considering multi-level space such as cinemas and auditoriums with multi-ceiling and/or floors, 303 

creating a more accurate representation for the as-built conditions. 304 

305 
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CHAPTER 3: METHODOLOGY 306 

This chapter describes the proposed method to automatically identify, segment and reconstruct 307 

the building elements from the 3D-PCD. Figure 3-1 presents the suggested framework, and the 308 

evaluation approaches used for the output. The framework consists of the following four steps: (1) 309 

pre-processing as 3D point cloud preparation; (2) transforming 3D point cloud to 2D image 310 

preparing for vertical building elements identification; (3) identification and segmentation of the 311 

building elements; and (4) surface reconstruction to develop a 3D model adopted by multiple 312 

software. It should be noted that the proposed method is fully automated after the Pre-processing 313 

step. The input of the proposed framework is the 3D-PCD obtained by multiple scans which are 314 

implemented by a 3D laser scanner to reduce the blind spots and increase the accuracy of 3D-PCD. 315 

The framework is developed in MATLAB and CloudCompare (Compare, 2019; The MathWorks, 316 

2019) to reconstruct a 3D model that can be adopted into Revit. To evaluate the proposed 317 

framework, the evaluation matrix including accuracy, difference, recall, deviation, processing 318 

time, precession and F1 score is developed and applied.  319 

 320 

Figure 3- 1: An overview of the proposed methodology  321 
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3.1 Pre-processing  322 

The objective of the pre-processing in this research is to ensure that 3D-PCD has sufficient 323 

quality before the transformation, Identification and segmentation, and surface reconstruction. In 324 

this respect, the targets of this step are: (1) prevention of blind spots; (2) outlier removal; and (3) 325 

3D-PCD leveling. It is important for the proposed method to capture building elements by multiple 326 

scans on different locations of the observation space (i.e., room) to not only ensure all sides of 327 

vertical building elements (e.g., columns) are visible but also minimize the loss of 3D-PCD. In this 328 

respect, the multiple scans are conducted and their 3D-PCD are combined using Trimble 329 

RealWorks 10.0 (Trimble, 2019) which is software associated with the 3D scanner used. Although 330 

the combination of multiple scans provides better quality of 3D-PCD, the other aspect of this work 331 

is to generate a large volume of the 3D-PCD size which leads to increase the processing time with 332 

the low computational performance. Therefore, it is necessary to downsize and clean the 3D-PCD 333 

by manual intervention using CloudCompare. The reduction of 3D-PCD size is achieved by sub-334 

sampling the 3D-PCD randomly and outlier removal. The subsampling is accomplished by 335 

CloudCompare arbitrarily picking a specified number of points from the 3D-PCD, this number is 336 

defined by the user based on the processing capabilities of the user's computing device. However, 337 

the number defined by the user should not be too low that it affects the quality of the 3D-PCD 338 

causing data loss and reduction in the accuracy of the proposed method.  339 

The existence of reflective or transparent objects such as windows and mirrors generally 340 

produce the outliers and false data in 3D-PCD which causes a reduction in the accuracy of the 341 

proposed method, especially in the identification and segmentation of  building elements step. 342 

Removing the outliers caused by these transparent surfaces is done manually by trimming the 343 

bounding box to get only the 3D-PCD of the observation space based on visual inspection. Outlier 344 
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detection was done manually through visual inspections. Figure 3-2 illustrates the 3D point cloud 345 

data before and after removing outliers. For successful transformation 3D-PCD to a 2D image, the 346 

coordinate transformation is implemented to identify the suitable dimension (length and width) of 347 

the 2D image which is determined by calculating the differences between the highest and lowest 348 

points in 3D-PCD. After filtering the 3D-PCD by removing the outlier, leveling it might be needed 349 

to ensure that the vertical elements are not tilted. This is to ensure the vertical elements are visible 350 

in the 2D images in the upcoming step. The leveling of the 3D-PCD is done manually utilizing 351 

CloudCompare, by defining three points on the surface by the user and cloud compare will use a 352 

transformation matrix to change the coordinates of the 3D-PCD. At this junction, it should be noted 353 

that the loss of 3D-PCD may occur when the suitable dimension of the 2D image is not designed 354 

since the 3D-PCD is projected to the 2D image in the transformation process. Furthermore, to 355 

reduce the computational times for the transformation process, the X, Y, and Z coordinates of the 356 

3D-PCD are required to move into the positive region in the three-dimensional space so that all of 357 

the coordinates have positive values. 358 

 359 

(a) Before removing outliers          (b) After removing outliers 360 

Figure 3- 2: 3D-point cloud data   361 
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3.2 Transforming 3D point cloud to 2D image  362 

After pre-processing, 3D-PCD is required to transform into a 2D image which is an essential 363 

input to identify and segmentation of the vertical elements (e.g., columns and walls). For the 364 

successful transformation and column segmentation, this research uses a method proposed by 365 

Vilarino et al. (Díaz-Vilariño et al., 2015) since it provides high accuracy and time-efficiency. 366 

However, previous research proposed the method to identif y and segment only the columns. In 367 

this respect, this research needs to modify the selected method to improve the extensibility which 368 

is required to identify all of the vertical building elements. As illustrated in as shown in Figure 3-369 

3, the transformation of 3D-PCD into the 2D image has the following procedures: (1) project 3D-370 

PCD on a 2D plane; (2) apply threshold and binary; and (3) conduct canny edge detection (Ding 371 

& Goshtasby, 2001).  372 

To project 3D-PCD on a 2D plane with short computational time based on preventing the loss 373 

of the data, proper width and height of the 2D plane are determined by identifying and calculating 374 

the differences between the maximum and minimum values of the X and Y coordinates. As shown 375 

in (Figure 3-3-b), 3D-PCD is projected on the 2D plane, also called as the histogram including a 376 

number of points at each pixel, after eliminating Z values of the points. Since all of the points, 377 

which represent vertical and horizontal building elements, are projected on the 2D plane, some 378 

pixels including vertical building elements have a large number of points compared to other pixels 379 

that involve the horizontal building elements such as floors and ceiling. Since the objective of 380 

transforming 3D-PCD into the 2D image is to identify the vertical building elements, the points 381 

related to the horizontal building elements must be removed from the 2D image. In this respect, a 382 

threshold depending on the size of 3D-PCD is defined by 30 points for small spaces such as the 383 

rooms, labs, washroom and 60 points for large areas such as entire houses and office buildings. 384 



22 
 

These thresholds are determined based on the experiments in this paper. That is, when the number 385 

of points at the pixels is less than the threshold, the number of points is defined as zero to remove 386 

the undesired building elements from the 2D image. Otherwise, as shown in (Figure 3-3-c), the 387 

number of points at the pixels is not changed and these pixels are considered as the vertical building 388 

elements which are columns represented as circles and walls represented as the straight lines. To 389 

illustrate the vertical building elements clearly in the 2D image for the shape identification 390 

algorithm (i.e., Hough Transform), an edge detection technique such as Canny, Prewitt, Roberts, 391 

and Sobel should be implemented to extract, smoothen and filter the edges in the binary image. In 392 

this respect, the 2D image is converted as a binary image which the white pixels regard as potential 393 

vertical elements and black pixels are the locations of no interest objects. At this junction, it should 394 

be noted that the canny edge detection technique provides the smoothest, single-pixel thickness 395 

and well-connected edges for lines and circles based on the experiments in this paper. Furthermore, 396 

the Canny edge detector is the best technique to collaborate with circle and line Hough transform 397 

in terms of accuracy of the shape identification. As shown in (Figure 3-3-d), the Canny edge 398 

detector produces the smooth 2D image by removing the noise using a Gaussian filter and fixing 399 

and improving the edges using a hysteresis threshold. More details could be found in Vilarino et 400 

al. (Díaz-Vilariño et al., 2015). 401 

 402 
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(a)                                                                  (b) 403 

 404 

 405 

(c)                                                              (d)         406 

Figure 3- 3: (a) 3D point cloud, (b) Projecting the 3D point cloud on a 2D plane, (c) Canny edge 407 

detection, and (d) Threshold and Binary 408 

3.3 Identification and segmentation 409 

The identification and segmentation are implemented based on the types of building elements 410 

which are horizontal and vertical elements. Furthermore, preliminary surfaces of segmented 411 

building elements are developed as a pre-requisition step for 3D model reconstruction. At this 412 

junction, it should be noted that to complete the identification and segmentation successfully, this 413 

research adopts a few algorithms: (1) Hough circle and line transform to identify vertical building 414 

elements, such as columns and walls; and (2) RANSAC cylinder and plane to not only identify 415 

and segment vertical and horizontal building elements such as walls, floors, and ceilings but also 416 

develop preliminary surface models for all types of building elements. In this respect, the main 417 

resources for this step are the 2D images for the identification of the vertical building elements 418 

and 3D-PCD for the segmentation of the building elements. 419 
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3.3.1 Vertical Plane Building Elements 420 

Based on the 2D image, Hough circle transform (HCT) identifies the column information 421 

including locations, number of columns, and radii from the 2D image. In terms of radii 422 

computation for columns,  HCT assumes the radii as the range of 9 to 50 cm since circular concrete 423 

columns usually have radii of 10 cm or more (Giakoumelis & Lam, 2004). Since all points on the 424 

2D image are represented as X and Y coordinates, as shown in (Figure 3- 4- a), the radius (𝑟𝑗), 425 

which is jth of the columns, is computed by the following procedures: (1) identify the center of the 426 

circle (C𝑥 , C𝑦); (2) calculate the distances between (C𝑥 , C𝑦) and the points (𝑃𝑥
𝑖 , 𝑃𝑦

𝑖); and (3) select 427 

the maximum value among the distances resulted by the step (2). Based on these procedures, the 428 

radii of the identified columns are determined satisfying Eq. (1). The number of columns is 429 

determined by the number of circles found by the HCT in the 2D image. 430 

                      𝑟𝑗 = 𝑀𝑎𝑥[√((𝑃𝑥
𝑖 − 𝐶𝑥)

2
+ (𝑃𝑦

𝑖 − 𝐶𝑦)
2

)]                i = 1, 2         j=1, 2          (1) 431 

Where i = a number of points in jth of columns; j= a number of columns. 432 

As a conservative process to prevent the loss of 3D-PCD, the region of interest (ROI) is defined 433 

as the structures located within a rectangular box centered on the center of the column, the length 434 

(𝐿𝑅𝑂𝐼) and width (𝑊𝑅𝑂𝐼) of which are made 3D PCD-specific according to the relationship, 𝐿𝑅𝑂𝐼, 435 

𝑊𝑅𝑂𝐼 = (1.3×2×𝑟𝑗) (Figure 3- 4- b). Once the locations, ROIs, and the number of columns is 436 

identified by HCT, this information projects into 3D-PCD for the segmentation of the columns. 437 

However, as shown in (Figure 3- 4- c), the segmented column has an uncompleted shape of the 438 

column which may lead to failing 3D model reconstruction. In this respect, the surface models 439 

illustrated in (Figure 3- 4- d), which are used as input for 3D model reconstruction is fitted utilizing 440 

cylinder RANSAC, are developed to recover uncompleted parts of the columns. It should be noted 441 
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that the height of the column is determined by measuring the distance between the maximum and 442 

minimum of Z coordinates on the ROI in 3D-PCD. 443 

 444 

(a)                                                                          (b) 445 

 446 

                        (c)                                                                                              (d)  447 

Figure 3- 4: Identification and segmentation of a column 448 

As a continuous work to reconstruct the vertical plane elements in the building, Hough line 449 

transform (HLT) is used to identify wall information such as the locations, lengths, and the number 450 

of lines in the 2D image. In terms of lengths and the number of lines for walls, HLT assumes that 451 
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the lengths of the walls should be at least 100 cm as a conservative measure since the minimum 452 

wall length in rooms (bathrooms) should not be less than 120 cm in the building code in Ontar io 453 

(Giakoumelis & Lam, 2004). Since all points on the 2D image are represented as X and Y 454 

coordinates, as shown in (Figure 3- 5- a), the number and lengths of the lines are computed by the 455 

following procedures: (1) calculate the distances (𝑑𝑘
𝑙 ) using Eq. (2) from the origin point (0, 0) to 456 

the closest points (𝑝𝑥
𝑙,𝑘 , 𝑝𝑦

𝑙,𝑘) on potential lines (k) generated by angles (𝜃𝑘
𝑙 ), which is a range [-90, 457 

90]. The potential lines must pass through pixels (l) located on a wall line; (2) map 𝑑𝑘
𝑙  and 𝜃𝑘

𝑙  on 458 

2D graph which x-and y-axis are 𝜃 and d, respectively; and (3) identify the points which have the 459 

same values of the 𝜃 and d. These points become wall lines that are used to determine the number, 460 

locations, and lengths of walls.                    461 

                                                 𝑑𝑘
𝑙 = 𝑝𝑥

𝑙,𝑘  𝑐𝑜𝑠𝜃𝑘
𝑙 + 𝑝𝑦

𝑙,𝑘  𝑠𝑖𝑛𝜃𝑘
𝑙                                                (2) 462 

Unlike the segmentation of columns, the identified walls are segmented by utilizing plane 463 

RANSAC algorithm instead of ROI to prevent to involve outliers and false data such as furniture 464 

into the wall dataset. However, one of the shortcomings commonly associated with using 465 

RANSAC is the arbitrary number of iterations for RANSAC given by the users, this migh t cause 466 

over or under segmentation of the given data leading to wastage of computational effort and time. 467 

Therefore, this research overcomes these issues by defining the number of iterations of RANSAC 468 

as the number of walls identified from HLT. RANSAC segments the 3D-PCD of walls based on 469 

the following procedures: (1) randomly selecting a subset of points of the 3D-PCD; (2) fitting a 470 

vertical plane model in the selected subset; (3) finding the number of inliers and outliers of the 471 

plane model based on a threshold defined by the user equal to 0.04 cm; (4) repeating the previous 472 

steps till finding the plane model with the most inliers. Once the vertical plane models with most 473 

inliers are located by RANSAC illustrated in (Figure 3- 5- b), the inlier points are segmented and 474 
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labeled as walls represented in (Figure 3- 5- c). Information about the dimensions of the segmented 475 

walls and their plane models are used not only to identify the ceiling, floors, and stairs but also in 476 

surface reconstruction steps.  477 

 478 

(a)                                                                 (b) 479 

 480 

(c) 481 

Figure 3- 5: Identification and segmentation of walls 482 

 483 
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3.3.2 Horizontal Plane Building Elements 484 

For the identification and segmentation process of horizontal plane elements such as ceilings, 485 

floors, and stairs, this research uses a heuristic approach which implements plane RANSAC 486 

iteratively in the ROIs defined in the 3D-PCD. The proposed heuristic approach is implemented 487 

by the following procedures: (1) the heights of the walls segmented in the previous step are 488 

identified and compared; (2) when there are different heights on the walls, there are multiple floors 489 

and connected by stairs; (3) the wall with the lowest height is used as a datum for defining the 490 

ROIs of the horizontal plane elements; (4) the ROIs are subdivided into sub-ROIS, the sizes of the 491 

sub-ROIs are determined based on the height of the ROI and the type of the horizontal plane 492 

elements; (5) horizontal and vertical plane RANSAC is utilized in each sub-ROI to identify, 493 

segment and create preliminary surface for the horizontal plane elements in it; and (6) the x, y, z 494 

coordinates of the segmented 3D-PCD are compared in each iteration of RANSAC to the 495 

predecessor iteration to eliminate the repeated 3D-PCD which have the same values of the 496 

coordinates. 497 

The ROI is the area where the targeted horizontal plane elements may exist in the 3D-PCD. 498 

In this respect, according to the types of horizontal building elements, defining these ROIs is 499 

crucial to not only improve the accuracy but also reduce the computation times in the identification  500 

process. The ROIs are determined based on the types of the horizontal plane elements, Z-501 

coordinates of the 3D-PCD, and the logical locations of the building elements. For example, the 502 

floors are logically located in the lowest level of the building and connected to the bottom of the 503 

walls. Therefore, the ROI of the floors is defined from the minimum Z coordinate (Zmin) of the 3D-504 

PCD to the lowest Z coordinate (Wmin) among the walls adding 25 cm. At this junction, it should 505 

be noted that this research uses 25 cm for a safety measure. To identify potential locations of the 506 
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ceilings in the 3D-PCD, the ROI is defined from 200 cm above the Wmin to the highest Z coordinate 507 

(Zmax) among the 3D-PCD. This research uses 200 cm as the starting level for the identification of 508 

the ceilings to satisfy the following requirements: (1)  the minimum height of a room which is 210 509 

cm in the building code, Ontario in Canada  (ONTARIO, 2017); and (2) a conservative process to 510 

prevent the loss of the 3D-PCD. At this junction, it should be noted that the ROIs of the ceilings 511 

and floors are defined by a location of a wall, which is the lowest height among the walls 512 

segmented by the previous step in order to ensure the robustness of the proposed method  in the 513 

multiple-level building spaces. In addition, comparing the heights of walls provides whether there 514 

are multiple floors in the building space or not. For instance, the proposed method considers that 515 

there are multiple floors in the space which requires the stairs to allow people to access to the 516 

floors when the heights of the walls are different. Depending on the number of different wall 517 

heights, the number of floors is determined. That is, as shown in (Figure 3- 6- a), the proposed 518 

method compares the heights of the walls and identifies that there are two different wall heights. 519 

Due to these different wall heights, this space requires two floors and one staircase to build one 520 

single space.  521 

Based on this information, the staircase ROI is defined between these two floors. However, in 522 

the multi-level building cases, the ROIs are generally large areas involving multiple ceilings and/or 523 

floors which lead to not only reduce the accuracy but also increase the computation times in the 524 

reconstruction process since the RANSAC tends to identify and segment the incorrect horizontal 525 

plane elements using outliers and false 3D-PCD which are not parts of the target horizontal 526 

building elements. To address this limitation for the accuracy improvement and the reduction of 527 

the computation times, this research divides these ROIs into sub-ROIs to reduce the area in which 528 

the horizontal plane RANSAC is applied to identify and segment the multiple ceilings and floors. 529 
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These sub-ROIs are defined using an interval that is 200cm for the ceiling and floors based on the 530 

number of experiments implemented by authors. At this junction, it should be noted that the sub-531 

ROIs are not necessary when the ROI dimension (e.g., heights and lengths) is less than 200cm. On 532 

the other hand, the interval for the staircase sub-ROI is 20 cm which is determined based on the 533 

maximum height of the rise in the building code, Ontario (ONTARIO, 2017). 534 

Horizontal plane RANSAC is implemented at each of the sub-ROIs to identify, segment and 535 

construct the preliminary surfaces of the ceilings and floors. In the case of stairs, horizontal and 536 

vertical plane RANSAC are used to identify, segment and construct the preliminary surfaces of 537 

the stairs including the run and rise components. However, this heuristic approach might segment 538 

the same 3D-PCD multiple times during the iterations when the ceiling and floors 3D-PCD are 539 

located in the multiple sub-ROIs. To prevent this multiple uses, the proposed method compares 540 

the x, y, and z coordinates among the 3D-PCD identified and segmented by plane RANSAC at 541 

each of the sub-ROIs in order to ensure the only one single use of the 3D-PCD by eliminating the 542 

other 3D-PCD which has the same values of the coordinates. Identification and segmentation of 543 

the horizontal building elements such as floors, ceilings, and stairs provide the following outputs: 544 

(1) the segmented 3D-PCD; (2) plane models which are mainly used in the reconstruction process; 545 

and (3) the region between the multiple floors in one single space to identify the stairs rise and run. 546 

As a result, the process flow of identifying and segmenting the horizontal building elements is 547 

described as the pseudo-code presented in (Figure 3- 6- b).  548 
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 549 

(a)  550 

 551 
(b) 552 

Figure 3- 6: (a) Horizontal plane elements region of interests and (b) Pseudocode of process flow 553 

A: Original 3D-PCD  

Wmin: Min (Z-coordinates of walls) 

Zmax = Max (Z-coordinate of A) 

Zmin = Min (Z-coordinate of A) 

C = [ ] /* Empty list for surface models of ceilings */ 

F = [ ] /* Empty list for surface models of floors */ 

S = [ ] /* Empty list for surface models of stairs */ 

IF the identification and segmentation of ceilings  

     FOR  R=( Wmin +200cm) to Zmax: 

       CeilingExploring = R + 200cm   

       If CeilingExploring ≠ Zmax 

            Implement RANSAC planes horizontally between R and CeilingExploring 

            Develop the surface model of ceiling (SPC) 

            Append SPC to C 
Elseif the identification and segmentation of floors  

     FOR  Zmin to ( Wmin +25cm): 

        FloorExploring = Zmin + 200cm   

        If FloorExploring ≠ ( Wmin +25cm) 

            Implement RANSAC planes horizontally between Zmin and FloorExploring 

            Develop the surface model of floor (SPF)  

            Append SPF to F 

Elseif a number of different wall heights > 1 for the identification and segmentation of stairs  

     Fmin = Min (Z-coordinates of F) 

     Fmax = Max (Z-coordinates of F) 

     FOR  Fmin to Fmax  

         StairsExploring = Fmin +20cm 

         If StairsExploring ≠ Fmax 

                  Implement RANSAC planes vertically and horizontally between Fmin and StairsExploring 

            Develop the surface model of the stair (SPS) 

            Append SPS to S  

END 



32 
 

3.4 Surface Reconstruction  554 

Since columns might have different diameters and heights in the buildings, an automated 555 

model-fitting algorithm is needed to reconstruct the columns from the 3D-PCD. In this respect, 556 

RANSAC is deployed to fit cylinder models in the segmented 3D-PCD belonging to the columns 557 

from step 3.3. The cylinder models created by RANSAC can adapt the heights and diameters of 558 

the columns’ 3D-PCD. The cylinder models created in this step with the plane models developed 559 

in previous steps are used to develop stereolithography (STL) models. The STL file format is 560 

chosen as an exporting format for the 3D models, as it can be imported by many software and 561 

flexible to be converted to other formats. To create an STL file for a model, a triangulated mesh 562 

grid is used to represent it. Therefore, the suggested method uses the plane and cylinder models 563 

created in previous steps as a base to fit a triangulated mesh grid shown in (Figure 3- 7- a). These 564 

mesh grids create the STL files for each of the building elements a shown in (Figure 3- 7- b) which 565 

are able to be transformed as a DWG file format using CloudCompare a shown in (Figure 3- 7- c) 566 

to establish the flexibility so that reconstructed models can be imported into CAD software such 567 

as Autodesk AutoCAD and Revit a shown in (Figure 3- 7- d).  568 

 569 

(a) Mesh Surfaces Creation                                                  (b) STL Files Creation 570 
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 571 

(c) Transforming STL Files to DWG                             (d) Importing to Revit 572 

Figure 3- 7: Surface reconstruction procedure 573 

3.5 Evaluation Matrix 574 

In terms of identification and segmentation of the building elements, the proposed 575 

methodology is evaluated by the following four criteria: accuracy, recall, precision, and F1 score. 576 

In addition, the capability of the proposed methodology to reconstruct suitable and accurate 3D 577 

representations for the building elements is evaluated by calculating the difference and deviation 578 

between the reconstructed models and the original 3D-PCD. Before explaining the identification 579 

and segmentation evaluation matrix, the parameters as input in the evaluation matrix are defined: 580 

(1) true positives (TP) are the number of building elements which are identified correctly; (2) false 581 

negatives (FN) are the number of existing building elements which are existed but not identified; 582 

(3) false positives (FP) are the number of building elements which do not exist but identified; and 583 

(4) total number (TN) is total number of each type of the building elements. It should be noted that 584 

the results for accuracy, recall, precision, and F1 range from 0 to 1 where 0 is a failure and 1 is a 585 

total success. Accuracy is the ratio between the correctly identified building element and the total 586 

number of building elements satisfying Eq. (3). Accuracy is the simplest measure of performance 587 

since it provides a general overview of how the proposed method is performing. However, it does 588 

not provide important information in which the proposed methodology misidentifies the building 589 

elements.  590 



34 
 

                                                        𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑇𝑁 
                                                                    (3) 591 

Precision calculated by Eq. (4) is the ratio between the correctly identified building elements 592 

and the summation of both the correctly and incorrectly identified building elements. The precision 593 

indicates the capability of the proposed methodology which is to reconstruct the number of the 594 

building elements without the reconstruction of the false-positive building elements. 595 

                                                 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃 
                                                                     (4) 596 

The recall satisfying Eq. (5) represents the ability of the proposed methodology which 597 

identifies the same number of the building elements as ones existed in the building. That is, this 598 

criterion is reduced when the proposed methodology does not identify the existing building 599 

elements.  600 

                                               𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁 
                                                                             (5) 601 

F1 score calculated by Eq. (6) is to measure the overall accuracy of the proposed method based 602 

on the consideration of FP and FN building elements. In other words, it is a more detail level of 603 

accuracy whether or not the proposed methodology misidentifies and/or misses the building 604 

elements.  605 

                                             𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                                (6) 606 

To evaluate the capability of the proposed methodology to develop suitable and accurate 3D 607 

representations for the building elements, this research uses two criteria which are size differences 608 

and deviations (i.e., orientation and location) between the 3D-PCD of the building elements and 609 

the reconstructed 3D model. The 3D-PCD was used as the ground truth in this comparison since 610 
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the laser scanner utilized to capture this data is highly accurate with an error margin of millimeters. 611 

Furthermore, the accuracy of the laser scanner was tested manually to ensure the measurements of 612 

the dimensions are as accurate as possible to the as-built conditions. More details about the laser 613 

scanner are available in the implementation section. In terms of the size differences, As shown in 614 

Table 3- 1, the parameters depending on the types of the building elements are evaluated between 615 

the building element’s 3D-PCD and the reconstructed 3D model. For example, the columns are 616 

evaluated by the differences of the diameters and heights between 3D-PCD and the reconstructed 617 

3D model. The deviation is computed to identify the differences in locations and orientations of 618 

the building elements between the building elements 3D-PCD and the reconstructed mesh. 619 

Accordingly, CloudCompare is utilized to determine the mean distance (MD) which is an average 620 

value of the maximum and minimum distances between the building elements in 3D-PCD and the 621 

reconstructed 3D mesh. Consequently, a high deviation in terms of location or/and orientation 622 

between the 3D-PCD and reconstructed model leads to an increase in the MD measured by 623 

CloudCompare. 624 

Table 3- 1: Parameters of each building element 625 

Building element  Size Difference Deviation 

Height Diameter  Length Width Location Orientation 

Columns ✓ ✓   ✓ ✓ 

Walls ✓  ✓  ✓ ✓ 

Ceilings   ✓ ✓ ✓ ✓ 

Floors   ✓ ✓ ✓ ✓ 

Staircase (Runs)   ✓ ✓ ✓ ✓ 

Staircase (Rises) ✓  ✓  ✓ ✓ 

 626 
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CHAPTER 4: IMPLEMENTATION AND RESULTS 627 

This chapter describes the application, validation and evaluation results of the proposed 628 

methodology in the previous chapter. To do so, three different real-life cases were chosen to 629 

validate the effectiveness of the proposed methodology. The proposed methodology 630 

implementation and results will be presented in the upcoming sections.  631 

4.1 Implementation 632 

To achieve the targeted objectives by this research and to test the validity of the proposed 633 

method, the case studies, equipment and software used, need to be defined. This section will 634 

describe the chosen cases to test the proposed method, the equipment used for data collection and 635 

the required software for processing the 3D-PCD.   636 

4.1.1 Environments 637 

The proposed method is validated using three different sites at Gina Cody School of 638 

engineering and computer science building, Concordia University, Sir George Williams Campus, 639 

Montreal, Quebec, Canada (see Figure 4- 1). Each site is chosen to test a certain aspect of the 640 

framework: (1) the lab office to test the proposed method in small simple spaces with low number 641 

of features as shown in (Figure 4- 2- a); (2) the EV building entrance hall to test its ability to work 642 

with multiple ceilings and columns with different dimensions and locations as shown in (Figure 643 

4- 3- a); and (3) an auditorium to validate its capability to work with multiple floors and the stairs 644 

illustrated in (Figure 4- 4- a). Table 4-1 summarizes the number of scans and reference targets 645 

required, information about the 3D-PCD and the existing building elements, and the processing 646 

time spent to run the proposed method. A different number of scans were required to generate the 647 

3D-PCD for each of the 3 case studies and the reasons as follows: (1) for the lab, it is a small 648 
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confined space with only one column, therefore, only two scans were required at both sides of the 649 

column to minimize the blind spots caused by the column preventing loss of 3D-PCD. (2) for the 650 

entrance hall, it is a larger space with 6 columns, therefore, five scans were required from different 651 

angles in the space to minimize the blind spots caused by the columns preventing loss of 3D-PCD. 652 

(3) for the auditorium, three scans were required from different angles and elevations in the space 653 

to minimize the blind spots caused by the chairs preventing loss of 3D-PCD. For visualization, 654 

(Figure 4- 2- b), (Figure 4- 3- b), and (Figure 4- 4- b) show the locations of setting up the 3D Laser 655 

scanner to capture the as-built condition for the spaces and acquire the 3D-PCD that the proposed 656 

method will be validated and evaluated by, more details about the laser scanner will be discussed 657 

in the upcoming section.  658 

              659 

(a)                                                                             (b) 660 

Figure 4- 1: (a) EV building, and (b) EV building location in SGW Campus (Concordia 661 

University, 2019) 662 
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 663 

(a)                                                                             (b) 664 

Figure 4- 2: (a) Lab office 3D-PCD, and (b) Lab office 2D plane and scan locations  665 

 666 

(a)                                                                             (b) 667 

Figure 4- 3: (a) EV entrance hall 3D-PCD, and (b) EV entrance hall 2D plane and scan locations 668 

 669 

(a)                                                                             (b) 670 

Figure 4- 4: (a) Auditorium 3D-PCD, and (b) Auditorium 2D plane and scan locations 671 
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Table 4- 1: Case study information 672 

Location 

# of 

walls 

# of 

columns 

# of 

ceilings 

# of 

floors 

# of stairs 

steps 

# of 

Points 

# of 

Scans 

# of reference 

spheres  

Lab 4 1 1 1 0 4,658,215 2 3 

EV Hall 3 6 2 1 0 4,568,841 5 5 

Auditorium 6 0 1 2 9 9,364,616 3 5 

 673 

4.1.2 Hardware 674 

This section will discuss the equipment required for data collection of the as-built conditions 675 

of the three test cases in the form of 3D-PCD, and for 3D-PCD processing and applying the 676 

proposed methodology. These pieces of equipment are as follow: 677 

1. Equipment used for 3D-PCD collection: 678 

 To generate the 3D-PCD for the three test cases, a laser scanner “Faro Focus 3D x 130” was 679 

used. This laser scanner was chosen to collect the 3D-PCD as it was available in the lab. The 680 

accuracy of the scans collected by this laser scanner was compared to other 3D-PCD collection 681 

methods (i.e., stitching images). It was clear that the accuracy of the laser scanner was higher than 682 

the other methods. Therefore, it was chosen as the data collection method for the proposed method 683 

since it was important to accurately collect the dimensions of the building elements. The laser 684 

scanner was deployed to scan the three test cases and collect 3D point clouds by scanning multiple 685 

times in each case to cover the whole scanned space. To combine these multiple scans (also called 686 

as registration process) reference targets were needed, therefore spherical targets were utilized in 687 

the test cases to combine and align the 3D-PCDs. It is important to note that the spherical reference 688 



40 
 

targets should be on different planes and at least three of them are visible by the scanner in each 689 

scan, this is for the alignment and combination process of the 3D-PCD (Faro Inc., 2020).  690 

Technical specifications for the laser scanner that affected this research are available in Table 691 

4-2 (Faro Inc., 2020; Lafi, 2017). The range of the laser scanner is 130 m which is the reason for 692 

the naming, which was sufficient for the chosen case studies spaces, however, it was noticed in 693 

the case of EV entrance hall, columns at larger heights had sparse 3D-PCD. The ranging error of 694 

the laser scanner is ±2 mm, which is enough to measure the dimensions of the building elements 695 

existing int the 3D-PCD. The field of view (FOV) of the laser scanner covers the entire horizontal 696 

angles. however, the FOV for the vertical angle is 300° the missing part is in the form of the 697 

circular hole beneath the laser scanner, therefore, to fill these holes, multiple scans in the spaces. 698 

 699 

Figure 4- 5: Laser scanner and spherical reference targets deployment  700 

 701 

 702 

 703 

 704 
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Table 4- 2: Technical specifications for the laser scanner (Faro Inc., 2020; Lafi, 2017) 705 

Laser Scanner  Faro Focus 3D x 130  

Range  0.6 - 130 m 

Measurement speed 122,000 - 976,000 pts/sec 

Ranging error  ±2 mm  

Field of view (vertical/horizontal)  300° / 360°  

 706 

2. Equipment used for 3D-PCD processing: 707 

To process the 3D-PCD gathered by the laser scanner, and to apply the proposed method to 708 

reconstruct it, Razer Blade 15 laptop was used. This laptop was used to register the multiple scans 709 

gathered by the laser scanner, clean the 3D-PCD from outliers, and finally develop, apply and 710 

evaluate the proposed method. Technical specifications for the laptop used in this research are 711 

available in Table 4- 3. 712 

Table 4- 3: Technical specifications for the Laptop (Faro Inc., 2020; Lafi, 2017) 713 

Laptop  Razer Blade 15 

Processor Intel Core i7 CPU @ 2.20 GHz 

RAM memory 16.0 GB (2 x 8.0 GB) DDR4 

Storage space 512 GB (SSD) 

Graphics Card NVIDIA GeForce GTX 1070 Max-Q Design  

Operating system  Windows 10 Home 64-bit operating system 

 714 
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4.1.3 Software 715 

To align and combine (register) all the scans gathered by the laser scanner and create the 3D-716 

PCD, Trimble Real works 10.0.4 was used since it was the software associated with the laser 717 

scanner (Trimble, 2019). CloudCompare 2.10.2 was used for a multiple of reasons throughout the 718 

research: (1) Downsizing and cleaning the 3D-PCD as mentioned in the methodology chapter; (2) 719 

measuring the dimensions of the building elements in the 3D-PCD for evaluation; and (3) 720 

calculating the mean distances between the reconstructed model and the 3D-PCD (Compare, 721 

2019). The methods introduced in this research are developed and applied using MATLAB 722 

R2017a, using some toolboxes and functions available in the MathWorks library (The MathWorks, 723 

2019). Finally, Blender 2.81 was used to give thickness and colors to each of the building elements 724 

for better visualization as shown in Figure 4- 8 (Blender Org., 2020). 725 

 726 

Figure 4- 6: Registering the 3D-PCD using Trimble Real Works software  727 

 728 
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Figure 4- 7: Cleaning the 3D- PCD from outliers using CloudCompare software 729 

 730 

Figure 4- 8: Applying colors to the final 3D reconstructed model using Blender software 731 

4.2 Results 732 

This section will discuss the application, results, and evaluation of the proposed method on 733 

the three test cases. It should be noted that this research does not represent the procedures for the 734 

transformation of the 3D-PCD to 2D image and 3D reconstruction since this research follows the 735 

common procedures in 3D reconstruction studies. 736 

4.2.1 Vertical plane building elements  737 

EV building entrance hall is used to test the capability of the proposed method to identify, 738 

segment, and reconstruct columns involving different dimensions. Based on the 2D image, as 739 

shown in (Figure 4- 9- a), Hough circle transform (HCT) captures the column information such as 740 

the number of columns which are six columns, their locations and center points, and radii. This 741 

information is used to define the region of interests (ROIs) located on the center points of the 742 

columns in order to not only prevent the loss of 3D-PCD but also facilitate the segmentation of the 743 

columns. In this respect, since the ROIs are represented as rectangular boxes, the dimensions of 744 

the ROIs (the lengths and widths) are 78 cm × 78 cm and 104 cm × 104 cm when the radii of the 745 

columns are 30 cm and 40cm, respectively. These ROIs are projected into the 3D-PCD to identify 746 
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and select the columns-related 3D-PCD as shown in (Figure 4- 9- b) and to segment them 747 

illustrated in (Figure 4- 9- c). Instead of the number of iterations defined by users manually for the 748 

segmentation, this study uses six times determined by the number of columns resulted from the 749 

HCT. In this respect, as illustrated in (Figure 4- 9- d) RANSAC is deployed six times to fit cylinder 750 

surface models in the segmented 3D-PCD of columns adapting to the dimensions of the columns. 751 

 752 

(a)                                                                      (b) 753 

 754 

(c)                                                                                (d) 755 

Figure 4- 9: Identification and segmentation of columns 756 
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As one of the vertical plane building elements, the walls in the auditorium are identified, 757 

segmented, and reconstructed. Since the walls are represented as lines in the 2D image, Hough line 758 

transform (HLT) is implemented to identify the wall information including the number of walls 759 

where are six, locations, and the lengths which are from 160 cm to 1480 cm. To develop the 760 

automated segmentation of the walls using the vertical plane RANSAC, the number of iterations 761 

is defined as six which are the same as the number of walls identified by the HLT. As a result, 762 

plane RANSAC segments and build wall plane models that involve the same dimensions and 763 

locations as ones in real. However, walls #5 and #6 were segmented together, and the last iteration 764 

of RANSAC segmented the screen in the auditorium. 765 

4.2.2 Horizontal plane building elements 766 

EV building entrance hall is used to validate the capability of the proposed method to identify, 767 

segment, and reconstruct multiple ceilings, while the auditorium case was utilized for multiple 768 

floors and stairs. As discussed earlier, the horizontal plane building elements are identified and 769 

segmented by a heuristic approach that implements vertical and/or horizontal plane RANSAC 770 

iteratively on the ROIs of the 3D-PCD in accordance with the types of the building elements. In 771 

this respect, the ceiling ROI is defined from 200 cm above the lowest Z coordinate among the 772 

walls, which is Wmin = 0 cm, to Zmax = 1640 cm which is the highest Z coordinate among the 3D-773 

PCD. As a result, the height of the ceiling ROI is 1440 cm which is relatively a large area including 774 

two ceilings. As represented in (Figure 4- 10- a), the ROI of the ceilings is subdivided by 200 cm. 775 

In this respect, there are a total of seven sub-ROIs that have the same height but the last one is 40 776 

cm. In addition, the number of the sub-ROIs is used to determine the number of iterations to run 777 

the horizontal plane RANSAC (eight iterations) in order to not only identify and segment multiple 778 

ceilings but also constructing preliminary surface models utilized for the reconstruction process. 779 
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(Figure 4- 10- b) represents a result of ceiling identification, segmentation and surface 780 

development.  781 

 782 
(a)                                                                             (b) 783 

Figure 4- 10: Identification and segmentation of ceilings 784 

The identification and segmentation of the floors are implemented based on similar procedures 785 

to ones used in the ceiling identification and segmentation. However, the auditorium case involves 786 

six walls which are used to determine whether or not there are multiple floors and staircase based 787 

on the comparison of the wall heights. Since there are different wall heights, 800 cm, and 450 cm, 788 

the auditorium space has two floors and one staircase. In this respect, the floor ROI is defined from 789 

0 cm which is the lowest Z coordinate of the 3D-PCD to 375 cm which is calculated by adding 25 790 

cm from the lowest Z coordinate among six walls (Wmin = 350 cm). As shown in (Figure 4- 11- a), 791 

this ROI is subdivided into two sub-ROIs which have 200 cm and 175 cm heights. The horizontal 792 

plane RANSAC has been run twice in accordance with the number of the sub-ROIs to identify and 793 

segment the floors represented in (Figure 4- 11- b). To allow people access to these floors, the 794 

stairs consisting of the nine runs and rises, illustrated in (Figure 4- 11- c), are identified and 795 
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segmented by the vertical and horizontal plane RANSAC running eighteen times each which are 796 

a number of the staircase sub-ROIs divided the staircase ROI (0 cm to 350 cm) by 20 cm. 797 

 798 

Figure 4- 11: Floors and stairs identification and segmentation  799 

4.2.3 Evaluation 800 

Although the proposed method identifies, segments and reconstructs the building elements 801 

successfully, the reconstructed models are shown in Figure 4- 12 should be evaluated by the 802 

proposed matrix to validate the effectiveness of the proposed method. In terms of the total 803 

computation time, the proposed method takes approximately 125, 130, and 500 seconds to 804 

reconstruct 3D models for lab office, EV entrance hall and auditorium cases respectively. The 805 

increase in the processing time for the case of the auditorium is due to the existence of stairs which 806 

requires to run vertical and horizontal plane RANSAC eighteen times, respectively. To evaluate 807 

(b) 

(c) 

(a) 
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the performance of the proposed identification and segmentation, four criteria, which are accuracy, 808 

recall, precision, and F1 score, are measured based on one column, ceiling, floor and four walls in 809 

the lab office,  six columns and two ceilings in the EV entrance hall and two floors, six walls and 810 

a staircase with 9 stairs in the auditorium. As shown in Table 4- 4, columns, ceilings, stairs, and 811 

floors have the highest scores among the four criteria in which the proposed method is 812 

implemented efficiently and effectively without identification and segmentation of false positive 813 

and negative building elements. However, the walls in the auditorium have 0.83 in precision since 814 

plane RANSAC recognizes wall #5 and #6 as one wall and the screen (vertical planar shape) as 815 

the other wall even though the Hough line transform identifies six walls accurately. Due to the 816 

reconstruction of the false-positive wall, the F1 score is reduced as 0.91. However, the recall and 817 

accuracy are not affected by the precision and F1 score since all the walls are identified, segmented 818 

and reconstructed.  819 

820 

 821 



49 
 

Figure 4- 12: Reconstruction results of Lab office, EV entrance hall, and auditorium (sidewall #4 822 

is removed for visualization in both the lab and auditorium case studies) 823 

Table 4- 4: Results of the evaluation matrix 824 

Test Case Building Element Accuracy Precision Recall F1 score 

Lab Office Column 1 1 1 1 

Floor 1 1 1 1 

Ceiling 1 1 1 1 

Walls 1 1 1 1 

EV Entrance 

Hall 

Column 1 1 1 1 

Ceiling 1 1 1 1 

Auditorium Stairs 1 1 1 1 

Floor 1 1 1 1 

Walls 1 0.83 1 0.91 

 825 

Although the performance of the proposed methodology is evaluated by the criteria described 826 

above, there is not sure whether or not the 3D reconstructed models are built corresponding to the 827 

building elements in 3D-PCD in terms of dimensions, locations, and orientations. In this respect, 828 

the size differences and deviation are measured based on the result of the 3D reconstruction process 829 

and the 3D-PCD. The different types of size differences are used in accordance with the types of 830 

building elements. As a result, the size differences and deviation are represented in Table 4- 5. The 831 

positive values indicate that the building elements in 3D-PCD are larger than the reconstructed 3D 832 

model while the negative values are vise versa. The minimum size differences are represented in 833 
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the diameters of the columns and heights and lengths of the walls. In this respect, the size 834 

difference ranges between 1 cm and 10 cm which are relatively lower than 90 cm in other studies 835 

(Franz et al., 2018; Murali et al., 2017; Valero, Adán, & Bosché, 2016). Even though the size 836 

difference exhibited by the proposed method is an improvement compared to previous approaches, 837 

to the best knowledge of the author, there is no standardized threshold or a technique that can be 838 

used to know whether this size difference is acceptable or not. Other size differences of the 839 

building elements are measured largely with high variances even though the type of the building 840 

elements is the same and located in the same building space. For example, the height differences 841 

of the columns are varied from 4 cm to 45 cm in the case of the EV entrance hall due to the large 842 

scale of the building space and occlusion during the scanning. However, in the lab office which is 843 

smaller and more confined space compared to the EV entrance hall, the column exhibited a low 844 

size difference of less than 1 cm. Moreover, although the floor #1 is reconstructed successfully 845 

with low size differences, 5 cm in length and 13 cm in width, the floor #2 has high size differences, 846 

93 cm in length and 36 cm in width, due to the chairs shown in Figure 4- 11 leading to consider as 847 

a part of the floor by the planar RANSAC. Within this reason, the size differences of the runs and 848 

rises in the staircase range from 0 cm to 45 cm. In terms of the deviation, the proposed 849 

methodology reconstructs the 3D building elements with a relatively low deviation ranging from 850 

0.6 cm to 9 cm. Based on the consideration of the multi-level building spaces, the proposed 851 

methodology has a lower location (LOC) and orientation (ORI) deviation in the ceilings, floors, 852 

and runs and rises in the staircase than ones in the columns and walls.  853 

854 
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Table 4- 5: Results of the size difference and deviation 855 

 Test Case 
Building element  Size Difference Deviation 

H (cm) D (cm) L (cm) W (cm) LOC (cm) ORI (cm) 

Lab office Ceiling - - -3 -2 0.8 - 

Floor - - -6 -6 - 0.6 

Column  -0.3 -0.5 - - 2.8 - 

Wall #1 -1  - -5 - - 2.1 

Wall #2 4 - -9 - 3.2 - 

Wall #3 3 - -5 - 1.8 - 

Wall #4 -3 - 1 - 0.9 - 

EV 

Entrance 

Hall 

 

Column #1 15  3  - - 7.7 - 

Column #2 4  1  - - 7.0 - 

Column #3 35  -1  - - 6.0 - 

Column #4 45  2  - - 3.0 - 

Column #5 30  1  - - 6.0 - 

Column #6 34  -1  - - 9.0 - 

Ceiling #1 - - -27 -7 3.0 - 

Ceiling #2 - - 18 38 1.8 - 

Auditorium 

 

Wall #1 -4 - 3  - - 2.8  

Wall #2 3  - -8  - 0.5 - 

Wall #3 2  - -4  - - 2.4 

Wall #4 6 - -6   - 0.6 - 

Wall #5 & #6 7 - -10  - 2.8 - 

Floor #1 - - 5  13 0.3 - 

Floor #2 - - -93  36 0.4 - 

Staircase (Rise) 4 (0) * - 45 (1) * - - 5.0 (1.0) * 

Staircase (Run) - - 30 (2) * 10 (1) * 0.6 (0.3) * - 

*The values of the staircase indicate the maximum and minimum 856 

857 
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CHAPTER 5: CONCLUSION AND FUTURE WORKS 858 

5.1 Summary 859 

Accurate 3D representation for as-built conditions of buildings is essential in the renovation 860 

and remodeling industry to develop as-built 3D models used to generate the shop drawings with 861 

time and cost-saving. In this respect, the reconstruction procedures generally consist of: (1) 862 

identification and segmentation of building elements; and (3) reconstructing the segmented 863 

building elements 3D-PCD. However, these procedures, especially identification and 864 

segmentation, tend to be tedious, manual, error-prone and time-consuming tasks due to the 865 

perception-based number of iterations, over‒ or under‒segmentation of the building elements from 866 

3D-PCD, and uncertainty to reconstruct the 3D building elements in multi-level building space. In 867 

this respect, this research proposes an automatic 3D geometric reconstruction approach which 868 

mainly focuses on developing the efficient and effective identification and segmentation process 869 

using Hough circle and line transform techniques, region of interest, and plane RANSAC. The 870 

proposed 3D-PCD reconstruction system consists of the following steps: (1) cleaning and 871 

preparing the 3D-PCD; (2) transforming 3D-PCD to a 2D image; (3) identification and 872 

segmentation of building elements; and (4) reconstructing the segmented building elements 3D-873 

PCD into simple forms such as planes and cylinders. The proposed method offers the following 874 

benefits: (1) the fully automated process with very little input by the user, able to identify, segment 875 

and reconstruct building elements such as columns, stairs, walls, ceilings, and floors.; (2) 876 

efficiency improvement by defining the number of iterations for RANSAC, instead of being 877 

arbitrarily given by the user while retaining high accuracy in terms of identification and 878 

segmentation; (3) error reduction and accuracy improvement of the reconstruction process by 879 
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defining the locations and small areas where RANSAC will be implemented, reducing the effect 880 

of outliers on it; and (4) expanding upon the applicability of the reconstruction process by taking 881 

into consideration multi-level space such as cinemas and auditoriums with multi-ceiling and/or 882 

floors, stairs and columns. The end-user for the proposed method is expected to be the modeling 883 

architect who is tasked to construct a 3D model that represent the as-built conditions and later on 884 

use it for remodeling or apply changes to the scanned environment. The effectiveness of the 885 

proposed framework is evaluated in accuracy, precision, recall, and F1 score. The proposed 886 

method was able to identify and segment almost all targeted building elements in the three cases 887 

studies used to test the proposed method. In the detail level of the evaluation, the ceilings, floors, 888 

and stairs in multi-level building spaces are reconstructed successfully with low location and 889 

orientation deviation.   890 

5.2 Future Works 891 

In the future, the proposed methodology could be improved by: (1) reconstruct window walls 892 

such as glass facades in the building; (2) improve the size difference and deviation between the 893 

3D-PCD and the reconstructed model are required to improve caused by furniture existing in the 894 

scanned space; (3) investigate different 3D scanners and/or methods to improve the quality of the 895 

scanned 3D-PCD; (4) taking into consideration slanted ceilings, walls, columns, and floors would 896 

improve the applicability of the proposed method; (5) expanding on the identified elements by 897 

adding openings such as windows and doors for better representation of the as-built conditions of 898 

the scanned environment; (6) creating connections between building elements and creating the IFC 899 

models for the development of the building information modeling (BIM); (7) identifying the 900 

materials of the building elements based on the RGB information of the 3D-PCD ; (8) exploring 901 

the benefits of combining multiple data acquisition methods such as stitching digital images and 902 
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laser scanner; and (9) exploring the possibility of adding structural information such as steel rebars 903 

existing in the concrete building elements. 904 

905 
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APPENDIX 1048 

1. Reconstruction results utilizing available software: 1049 

Table 6- 1: Software results in the reconstruction process 1050 

 CloudCompare  3DReshaper Trimble Real Works 

Mesh 

  

NA* 

Cylinder 

fitting NA* 

  

Horizontal 

plane 

fitting 

 

NA* 

 

Vertical 

plane 

fitting   

NA* 

*Not an option available in the software 1051 

 1052 

 1053 

 1054 

 1055 

 1056 
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2. Results and Flowcharts of the applied methodology: 1057 

 1058 

Figure 6- 1: Results of each step in the Proposed methodology for the lab office case study  1059 



64 
 

 1060 

 1061 

Figure 6- 2: Flowchart for the case of lab office case study 1062 

 1063 
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 1064 

Figure 6- 3: Results of each step in the Proposed methodology for the EV entrance hall case 1065 

study 1066 

 1067 
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 1068 

Figure 6- 4: Flowchart for the case of EV entrance hall case study 1069 
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 1070 

Figure 6- 5: Results of each step in the Proposed methodology for auditorium case study 1071 

 1072 

 1073 
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 1074 

Figure 6- 6: Flowchart for the case of auditorium case study 1075 

 1076 

 1077 

 1078 

 1079 

 1080 

 1081 
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3. Building elements characteristics and methods of I&S: 1082 

Table 6- 2: Building elements characteristics 1083 

Type Columns Walls 
Stairs Ceilings 

Floors 
Rise Run  

Dimensions 
Considered 

10 (min) 
D 

120 
(min) 
L/W 

20 
(max) 

H 

35.5 
(NI*) 
L/W 

120*120 (NI)  
L&W 

120*120 (NI) 
L&W 

ROI/Location 
Based on 

CHT 
Based on 

LHT 
Between 

Floors 

( W
min 

+100cm) 

to Z
max

 

        

 Z
min

 to (W
min

 

+100cm) 

Shape Circular Plane 

Parameters  
Diameter 

& Height  
Length & Height Length & Width 

Orientation  Vertical Horizontal 

Method of I&S 
Hough Transform + 

RANSAC 
RANSAC (Heuristic Approach)  

*Not important for the proposed method  1084 

4. Building Code of Ontario: 1085 

Table 6- 3: Building Code of Ontario (ONTARIO, 2017) 1086 

Room Area Walls Height 

Main Bedroom 9.8 m2 (with Closets)  

8.8 m2 (without) 

2.7 m 2.1 m 

Secondary Bedroom 7.0 m2 (with Closets)  

6.0 m2 (without) 

2.0 m  2.1 m  

Dining room  3.25 m2 2.3 m 2.1 m  

Living room 13.5 m2 3.0 m 2.1 m  

Bathroom - 1.2 m  2.1m 

Kitchen  4.2 m2  - 2.1 m  

Doors - 0.76 m (width) 1.98m 

 1087 


