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Abstract 

Performance Enhancement of Cantilever Beam Piezoelectric Energy Harvesters 

 

Peyman Hajheidari, Ph.D. 

Concordia University, 2020 

 

During the last decade, driven by the need, energy harvesting has drawn considerable attention due to the 

cost-effectiveness and simplicity of the structure. The most important feature or advantage of energy 

harvesters is their energy sources which are coming from the energy that would be wasted otherwise to the 

ambient surroundings. Among the three types of energy conversion methodologies, piezoelectric energy 

harvesters (PEHs) have been highlighted as a self-power source of energy for small wireless sensors with 

low required power input due to their simple converting structure.  

While conventional piezoelectric materials possess ideal sensing properties, the microfabrication of 

these structures typically requires access to the sophisticated equipment and cleanroom facilities. Moreover, 

the fabrication process is time-consuming and expensive, researchers found it interesting to resort to micro-

electromechanical system (MEMS) designs with inexpensive, simple and green-based materials and simple 

fabrication techniques such as paper. 

Generally, the paper-based devices have offered significant benefits but their recorded performance is 

significantly below that of the ones of the commercial smart structures. Their development is still in the 

early stage of growth and they need to be properly designed to satisfy the general requirements of the 

commercial products. Geometry optimization, sizing and functionalizing are among the strategies which 

can be adopted to boost the performance of all types of piezoelectric energy harvesters including the paper-

based piezoelectric energy harvesters (PPEH).  

Therefore, the major contributions of this work are improvement of the performance of piezoelectric 

energy harvesters using the geometry modification, sizing analysis and functionalizing. In this work, the 

governing equations of piezoelectric cantilevers based on both Euler-Bernoulli and Timoshenko beam 

theories are developed and solved using one type of element with a great rate of convergence called 

superconvergent element (SCE). The theoretical analysis was validated against results published in the open 

literature and the results indicate that the proposed method yields higher accurate results. Further, the effect 

of non-uniformity on the electrical output and efficiency of Piezoelectric Energy Harvesters (PEH) are 

studied. Then, the influence of sizing and application of a series of piezoelectric cantilever energy harvesters 

on the performance of structure are studied. The effect of the shape of the piezoelectric elements is also 
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investigated below. Eventually, development of functionally graded piezoelectric materials (FGPMs) for 

non-uniform beams are presented to evaluate the effect of functionalizing.  



v 
 

Acknowledgment  

 

I’m indebted to my co-supervisors Dr. Stiharu and Dr. Bhat for providing the opportunity to work 

under their supervision. All of their encouragement, support, suggestions, and comments have helped 

me to conduct this research. I would like to express my sincere gratitude to Dr. Stiharu from whom I 

always found an open door to discuss this research. Thank you Dr. Stiharu and Dr. Bhat for your 

extremely valuable suggestions in pursuing this research.  

I would like to thank my family; I couldn’t have completed this research without them. My special 

thanks to my lovely wife, Maryam, for all her love and support. She is the force that helps me to make 

real all my dreams. Thanks to my parents especially my mother for all her prayers and moral support, 

she has always been an inspiration to me. I also would like to acknowledge my brothers for all their 

endless support. 

  



vi 
 

List of Contents 

List of Abbreviations ................................................................................................................................... ix 

List of Symbols ............................................................................................................................................. x 

List of Figures ............................................................................................................................................ xiii 

List of Tables ............................................................................................................................................. xvi 

Chapter 1  Introduction .............................................................................................................................. 1 

1.1 Introduction of energy harvesters ................................................................................................. 2 

1.2 Vibrational energy harvesters ....................................................................................................... 3 

1.2.1 Sources of vibration .............................................................................................................. 3 

1.2.2 Energy conversion................................................................................................................. 4 

1.2.3 Cantilever energy harvesters ................................................................................................. 6 

1.2.4 Modeling of cantilever energy harvesters ............................................................................. 7 

1.3 Cellulose (Paper) ........................................................................................................................... 7 

1.4 Development of existing mathematical modeling of PEH ............................................................ 9 

1.5 Objectives and thesis outline....................................................................................................... 11 

1.5.1. Chapter 1 ............................................................................................................................. 12 

1.5.2 Chapter 2 ............................................................................................................................. 13 

1.5.3 Chapter 3 ............................................................................................................................. 13 

1.5.4 Chapter 4 ............................................................................................................................. 14 

1.5.5 Chapter 5 ............................................................................................................................. 14 

1.5.6 Chapter 6 ............................................................................................................................. 14 

Chapter 2  Analysis of bimorph piezoelectric beam energy harvesters using superconvergent element 15 

2.1 Introduction ................................................................................................................................. 16 

2.2 Theoretical modelling ................................................................................................................. 19 

2.2.1 Kinetic and strain energy .................................................................................................... 22 

2.2.2 Spatial discretization using finite element method ............................................................. 25 

2.2.3 Superconvergent element (SCE) ......................................................................................... 25 

2.2.4 Solution of the electromechanical coupling equation ......................................................... 27 

2.3. Numerical solutions and validation ............................................................................................. 29 

2.4 Conclusions ................................................................................................................................. 39 

Chapter 3  Performance of tapered cantilever piezoelectric energy harvester based on Euler-Bernoulli 

and Timoshenko beam theories................................................................................................................... 41 

3.1 Introduction ................................................................................................................................. 42 

3.2 Electro-mechanical modelling .................................................................................................... 44 

3.2.1 Equations of non-uniform unimorph PEHs ......................................................................... 44 



vii 
 

3.2.2 Kinetic and strain energies .................................................................................................. 47 

3.2.3 Equations of non-uniform bimorph PEHs method .............................................................. 49 

3.3 Discretization of equations.......................................................................................................... 50 

3.3.1 Four-degree-of-freedom (DOF) model ............................................................................... 50 

3.3.2 Eight-degree-of-freedom (DOF) model .............................................................................. 50 

3.4 Solution of coupling equations ................................................................................................... 52 

3.5 Shape optimization ...................................................................................................................... 53 

3.6 Results and discussion ................................................................................................................ 54 

3.7 Conclusions ................................................................................................................................. 68 

Chapter 4  Performance enhancement of cantilever piezoelectric energy harvesters by sizing analysis 69 

4.1 Introduction ................................................................................................................................. 70 

4.2 Tapered energy harvester ............................................................................................................ 72 

4.2.1 Equations of motion for a tapered bimorph PEHs .............................................................. 73 

4.2.2 Discretization of equations using superconvergent element (SCE) .................................... 77 

4.2.3 Solution of the electromechanical coupling equations ........................................................ 78 

4.3 Expressions of power density and efficiency .............................................................................. 79 

4.4 Results and discussion ................................................................................................................ 80 

4.5 Conclusions ................................................................................................................................. 94 

Chapter 5  Performance of non-uniform functionally graded piezoelectric (FGP) energy harvester 

beams ................................................................................................................................................. 96 

5.1 Introduction ................................................................................................................................. 97 

5.2 Formulation ................................................................................................................................. 99 

5.2.1 Functionally graded piezoelectric model .......................................................................... 100 

5.2.2 Electromechanical coupling equations of non-uniform FGPEH ....................................... 101 

5.3 Discretization of equations using superconvergent element (SCE) .......................................... 103 

5.4 Frequency response of the coupling equations ......................................................................... 105 

5.5 Validation and parametric studies ............................................................................................. 106 

5.5.1 Validation of the present model ........................................................................................ 106 

5.5.2 The effects of non-uniformity on the performance of tapered FGPEHs ........................... 111 

5.5.3 Effects of volume fraction parameter on the performance of tapered FGPEHs ............... 114 

5.5.4 The effect of external load resistance on the performance of tapered FGPEHs ............... 118 

5.6 Conclusions ............................................................................................................................... 123 

Chapter 6  Summary, conclusions and future work ............................................................................... 125 

6.1 Summary ................................................................................................................................... 126 



viii 
 

6.2 Conclusions ............................................................................................................................... 127 

6.3 Particular contributions and future work................................................................................... 130 

References ............................................................................................................................................... 132 

Appendix A. Position of the neutral axis .................................................................................................. 140 

Appendix B . Detailed calculations of total kinetic and potential energies ............................................... 141 

Appendix C. Shape functions of the four-DOF (superconvergent element) ............................................. 142 

C1. Lagrange linear shape functions ..................................................................................................... 142 

C2. Cubic shape functions .................................................................................................................... 142 

C3. Quadratic shape functions .............................................................................................................. 142 

Appendix D. Shape functions of eight-DOF ............................................................................................. 144 

Appendix E. Matrices of the piezoelectric beam in flapping mode .......................................................... 145 

E1. Unimorph structure ......................................................................................................................... 145 

E2. Bimorph structure in series state .................................................................................................... 145 

E3. Bimorph structure in parallel state .................................................................................................. 146 

Appendix F. Fabrication process of paper-based piezoelectric materials ................................................. 147 

 

  



ix 
 

List of Abbreviations 

 

CFEM Conventional finite element method 

DOF Degree-of–freedom 

DPM Distributed parameter model 

EAPap Electro-active paper 

FD Frequency difference 

FEM Finite element method 

FGP Functionally graded piezoelectric 

FGPMs Functionally graded piezoelectric materials 

FGPEHs Functionally graded piezoelectric energy harvesters 

FRFs Frequency response functions 

MEMS Micro-electromechanical system 

MPGs micro-power generators 

PEHs Piezoelectric energy harvesters 

PPEH Paper-based piezoelectric energy harvesters 

RD Relative difference 

SCE Superconvergent element 

SDOF Single-degree-of–freedom 

SFEM Spectral finite element method 

  



x 
 

List of Symbols 

 

𝑎(𝑡) Generalized coordinates vector 

𝐴𝑝 The electrode area 

A The amplitude vector of generalized coordinates 

𝑏(𝑥) Width 

𝑏0 Initial width 

𝑪 Damping matrix 

𝐶𝑝 Capacitance of the one piezoelectric layer 

𝐶𝑝 Effective (equivalent) capacitance of the piezoelectric layers 

𝑑31 Piezoelectric strain coefficient 

𝐷3 The electric displacement 

𝐸 Young’s modulus 

𝐸3 The electrical field along the thickness direction 

𝑓𝑛 Natural frequency of nth mode 

F Dynamic force vector 

𝑔(𝑡) The translation part of base motion 

𝐺 Shear modulus 

ℎ𝑝 Piezoelectric layers’ thickness 

ℎ0 Initial thickness of substrate layer 

𝑖 Imaginary number 

𝐼(𝑡) Current output 

𝑘𝑠 Shear correction factor 

𝑲 Global stiffness matrix  

𝐿 Length of the beam 

𝑙𝑒 The length of one element 

𝑴 Global mass matrix 

n  Degree of the polynomial  

𝑵𝒘, 𝑵𝝓 Matrices of shape functions (1×4 for one element) 

𝑃𝑖𝑛 The input mechanical power 



xi 
 

𝑃𝑜𝑢𝑡 The output electrical power 

𝑄(𝑡) Electric charge output 

𝑹 Displacement vectors of the generic point S (3×1) 

𝑅𝑙 External load resistance 

𝑹̇ Velocity vector of the generic point S (3×1) 

𝑆 Generic point of the beam 

𝑆𝑟 Slenderness ratio 

𝑡 Time 

𝑇 Kinetic energy 

𝑢 Axial displacement 

𝑈 Potential energy 

𝑣 , 𝑤 Transversal displacements 

𝑉 Volume 

𝑣(𝑡) The generated piezoelectric voltage 

𝑢0, 𝑣0, 𝑤0 Displacements on the middle-plane 

𝑥, 𝑦, 𝑧 Positions of the point S in the relative coordinates system 

𝑋 The amplitude of the effective displacement, 𝑤𝑏 

𝑌̅ Location of the neutral axis 

𝜀33
𝑇  The dielectric permittivity of piezoelectric layer at constant stress 

𝜀33
𝑠  The dielectric permittivity of piezoelectric layer at constant strain 

𝜽 The electromechanical coupling vector (3×1 for one element) 

𝜙𝑥 The binding rotation of the cross section 

𝛾𝑥𝑧 , 𝛾𝑝 Transverse shear strains 

𝜀 Axial strain 

𝜎 Axial stress  

𝜏 Transverse shear stress  

𝜓𝑗
𝑒 , 𝜑𝑗

𝑒 Shape functions of 4-DOF element, 𝑗 = 1,… ,4 

 𝑓𝑗 Shape functions of 8-DOF element, 𝑗 = 1,… ,4 

𝑊𝑖
𝑒 , 𝜙𝑖

𝑒 , 𝑊i
′𝑒 ,  𝜙i

′𝑒(𝑡) Generalized coordinate elements, 𝑖 = 1, 2 

𝜌 Mass density 



xii 
 

Γ The efficiency of harvesting 

𝜔 Excitation frequency 

𝜇 Constant of mass proportionality 

𝛾 Constant of stiffness proportionality 

𝜁 Damping ratio 

𝛼𝑏 Width taper ratio 

𝛼ℎ Height taper ratio 

𝛿 The symbol of virtual work 

𝑊𝐼𝐸 The internal electrical energy 

𝑊𝑛𝑐 The non-conservative mechanical force 

( )𝑝 Piezoelectric layer properties 

( )𝑠 Substrate layer properties 

( )́  Partial differentiation with respect to x 

( )̇ Partial differentiation with respect to t 

 

  



xiii 
 

List of Figures 

Figure 2.1 A cantilever bimorph piezoelectric energy harvester. ............................................................. 20 

Figure 2.2 Two-node finite element with four DOF. ............................................................................... 26 

Figure 2.3 Tip velocity and voltage output FRF of the piezoelectric energy harvester, 𝑅𝑙 = 470 Ω. ..... 32 

Figure 2.4 Tip velocity and voltage output FRF of the piezoelectric energy harvester, 𝑅𝑙 = 1200 Ω. ... 32 

Figure 2.5 Tip velocity and voltage output FRF of the piezoelectric energy harvester, 𝑅𝑙 = 44.9 𝑘Ω. .. 32 

Figure 2.6 Tip velocity and voltage output FRF of the piezoelectric energy harvester, 𝑅𝑙 = 995 𝑘Ω. ... 33 

Figure 2.7 The effects of the slenderness ratio on the first three resonance frequencies in the open-circuit 

condition, 𝑅𝑙 = 10 𝑀Ω. .............................................................................................................................. 35 

Figure 2.8 The effects of the slenderness ratio on the difference between the calculated 1st natural 

frequency using both beam theories in the short-circuit condition, 𝑅𝑙 = 1𝑒 − 3 Ω. .................................. 36 

Figure 2.9 Voltage FRF for five different values of the load resistance. ................................................. 37 

Figure 2.10 Current FRF for five different values of the load resistance. .................................................. 38 

Figure 2.11 Power FRF for five different values of the load resistance. .................................................... 38 

Figure 2.12 A 3D FRF for a wide range of the load resistance and excitation frequency. ......................... 39 

Figure 3.1 A schematic of piezoelectric based cantilever energy harvester with non-uniform width and 

height. ................................................................................................................................................. 44 

Figure 3.2 (a) Cantilevered bimorph beam under series connection (b) cantilevered bimorph beam under 

parallel connection(c) cantilevered unimorph beam. .................................................................................. 46 

Figure 2.2 Two-node finite element with four DOF. ............................................................................... 51 

Figure 3.3 Validation of voltage FRF of a uniform bimorph piezoelectric energy harvester (𝑅𝑙 = 1000,

𝜉 = 0.027). ................................................................................................................................................. 57 

Figure 3.4  Voltage FRF curves for different degrees of polynomial (𝛼 = 𝛼𝑏 = 𝛼ℎ = 0.6). .................. 59 

Figure 3.5 Voltage FRF curves for quintic tapered beam in both directions (𝛼 = 𝛼𝑏 = 𝛼ℎ). ................. 60 

Figure 3.6 Voltage FRF curves for quintic tapered beam in width direction (𝛼ℎ = 𝛼, 𝛼𝑏 = 0). ............. 60 

Figure 3.7 Voltage FRF curves for quintic tapered beam in width direction (𝛼𝑏 = 𝛼, 𝛼ℎ = 0). ............. 61 

Figure 3.8 The variation of output voltage versus different degrees of polynomial function. ................. 64 

Figure 3.9 Tapering effects on unimorph PEH......................................................................................... 64 

Figure 3.10 Tapering effects on bimorph PEH with series connection. ..................................................... 65 

Figure 3.11 Tapering effects on bimorph PEH with parallel connection. .................................................. 65 

Figure 3.12 Efficiency alteration versus external load resistance at various operating frequencies. ......... 66 

Figure 3.13 Efficiency alteration versus tapering ratio in width direction (𝛼𝑏). ........................................ 66 

Figure 3.14 Efficiency alteration versus tapering ratio in height direction (𝛼ℎ). ....................................... 67 



xiv 
 

Figure 3.15 Efficiency alteration versus tapering ratio in height and width directions (𝛼). ....................... 67 

Figure 4.1 A 3D schematic model of piezoelectric based cantilever energy harvester with non-uniform 

width and height. ......................................................................................................................................... 73 

Figure 2.2 Two-node finite element with four DOF. ............................................................................... 77 

Figure 4.2 A 3D simulated structure of an array of diverging bimorph PEHs ......................................... 82 

Figure 4.3 Power output variation versus polynomial degree under different width taper ratios (𝛼𝑏). ... 85 

Figure 4.4 Power output variation versus polynomial degree under different height taper ratios (𝛼ℎ). .. 85 

Figure 4.5 Efficiency variation versus polynomial degree under different width taper ratios (𝛼𝑏). ........ 86 

Figure 4.6 Efficiency variation versus polynomial degree under different height taper ratios (𝛼ℎ). ....... 86 

Figure 4.7 A power FRF curves for quintic tapered beam in width direction. ......................................... 87 

Figure 4.8 A power FRF curves for quintic tapered beam in height directions. ...................................... 87 

Figure 4.9 A power FRF curves for tapered beam (𝛼𝑏 = 𝛼ℎ = 0.5) of different polynomial degrees. ... 88 

Figure 4.10 Comparison of power FRFs between one uniform beam and an array of multiple uniform 

beams. ................................................................................................................................................. 91 

Figure 4.11 Comparison of power FRFs per piezoelectric mass between different beam sizes. ............... 91 

Figure 4.12 Fundamental frequency as a function of piezoelectric/substrate layer thickness (ℎ𝑝 = ℎ𝑠). .. 92 

Figure 4.13 Comparison of power FRFs per piezoelectric mass between different beam sizes. ............... 92 

Figure 4.14 Comparison of maximum power output per piezoelectric mass between different beam 

ratios. ................................................................................................................................................. 93 

Figure 4.15 Comparison of power FRFs per piezoelectric mass between different length/width ratios. ... 93 

Figure 5.1 Cantilevered bimorph FGPEH under series connection. ...................................................... 100 

Figure 2.2 Two-node finite element with four DOF. ............................................................................. 104 

Figure 5.2 Validation of the power frequency response functions for different load resistances; (a) 

Voltage FRF for 1kΩ, (b) Voltage FRF for 33kΩ, (c) Voltage FRF for 470kΩ. ...................................... 109 

Figure 5.3 Frequency response of the average power under different damping ratios. .......................... 111 

Figure 5.4 Output voltage variation versus polynomial’s degree under different tapering ratios. ......... 112 

Figure 5.5 Output power variation versus polynomial’s degree under different tapering ratios. ........... 113 

Figure 5.6 Fundamental frequency variation versus polynomial’s degree under different tapering 

ratios. ............................................................................................................................................... 113 

Figure 5.7 Variation of output power per mass of piezoelectric parts versus different non-uniformity 

conditions. ............................................................................................................................................... 114 

Figure 5.8 Output voltage and frequency variation of FGPEH versus volume fraction parameter for 

quintic geometry (N=5). ............................................................................................................................ 115 



xv 
 

Figure 5.9 Output power and frequency variation of FGPEH versus volume fraction parameter for 

quintic geometry (N=5). ............................................................................................................................ 115 

Figure 5.10 Output power and frequency variation of diverging FGPEH (𝛼 = 0.6) versus volume fraction 

parameter under different polynomial degrees. ........................................................................................ 117 

Figure 5.11 Output power and frequency variation of converging FGPEH (𝛼 = −0.6) versus volume 

fraction parameter under different polynomial degrees. ........................................................................... 117 

Figure 5.12 Frequency difference variation versus volume fraction parameter under different tapering 

ratios. ............................................................................................................................................... 118 

Figure 5.13 Output power variation of a diverging FGPEH (𝛼 = 0.6 , 𝑁 = 5) under different external 

load resistances. ........................................................................................................................................ 119 

Figure 5.14 1st frequency variation of a diverging FGPEH (𝛼 = 0.6 , 𝑁 = 5) under short- and open-

circuit conditions. ...................................................................................................................................... 120 

Figure 5.15 Output power variation of a converging FGPEH (𝛼 = −0.6 , 𝑁 = 5) under different external 

load resistance. .......................................................................................................................................... 120 

Figure 5.16 1st frequency variation of a converging FGPEH (𝛼 = −0.6 , 𝑁 = 5) under short- and open-

circuit conditions. ...................................................................................................................................... 121 

Figure 5.17 Output power variation of FGPEH (𝑛 = 0.1 , 𝑁 = 5) versus external load resistance under 

different tapering ratios. ............................................................................................................................ 121 

Figure 5.18 Output power variation of FGPEH (𝑛 = 1 , 𝑁 = 5) versus external load resistance under 

different tapering ratios. ............................................................................................................................ 122 

Figure 5.19 Output power variation of FGPEH (𝑛 = 10,𝑁 = 5) versus external load resistance under 

different tapering ratios. ............................................................................................................................ 122 

Figure 5.20 Output power variation of FGPEH (𝑛 = 100,𝑁 = 5) versus external load resistance under 

different tapering ratios. ............................................................................................................................ 123 

Figure A1 (a) Cross section of the unimorph beam (b) the transformed cross section. ......................... 140 

  



xvi 
 

List of Tables 

Table 1.1 Acceleration magnitude and fundamental natural frequency of different low-level sources 

[5]. ................................................................................................................................................... 4 

Table 2.1 Properties of the bimorph piezoelectric cantilever beam. ....................................................... 30 

Table 2.2 Fundamental resonance frequency of piezoelectric energy harvester. .................................... 31 

Table 2.3 Properties of bimorph piezoelectric cantilever beam. ............................................................. 34 

Table 2.4 The fundamental resonance frequency of harvester in different conditions using both beam 

theories ................................................................................................................................................. 35 

Table 3.1 Properties of the bimorph piezoelectric cantilever beam. ....................................................... 54 

Table 3.2 Validation of piezoelectric energy harvester’s voltage for different tapering values. ............ 55 

Table 3.3 Validation of first three frequencies of uniform and non-uniform beams. ............................. 56 

Table 3.4 Piezoelectric energy harvester’s voltage for linear tapered beam (n=1). ................................ 57 

Table 3.5 Piezoelectric energy harvester’s voltage for cubic tapered beam (n=2). ................................ 58 

Table 3.6 Piezoelectric energy harvester’s voltage for quadratic tapered beam (n=3). .......................... 58 

Table 3.7 Piezoelectric energy harvester’s voltage for quartic tapered beam (n=4). .............................. 58 

Table 3.8 Piezoelectric energy harvester’s voltage for quintic tapered beam (n=5). .............................. 59 

Table 3.9 The electrical voltage of quintic tapered PEH for different slenderness ratios beam. ............ 62 

Table 2.1 Properties of the bimorph piezoelectric cantilever beam. ....................................................... 81 

Table 4.1 Fundamental resonance frequency of piezoelectric energy harvester without tip mass. ........ 81 

Table 4.2 Fundamental resonance frequency of piezoelectric energy harvester with tip mass (0.239g).82 

Table 3.1 Properties of the bimorph piezoelectric cantilever beam. ....................................................... 83 

Table 4.3 Validation of piezoelectric energy harvester’s voltage for different tapering values. ............ 83 

Table 5.1 Properties of the bimorph piezoelectric cantilever beam. ..................................................... 107 

Table 3.1 Properties of the bimorph piezoelectric cantilever beam. ..................................................... 110 

Table 4.3 Validation of piezoelectric energy harvester’s voltage for different tapering values. .......... 110 



1 
 

Chapter 1  Introduction 

 

This chapter provides an introductory overview of piezoelectric energy harvesters. The existing 

conversion methodologies, vibrational energy harvesters which include different sources of 

vibration, cantilever energy harvesters and modeling of vibration conversion are studied. Then 

introduction of cantilever beam-based piezoelectric energy harvesters and their developments are 

overviewed. Moreover, a literature review regarding these areas is presented in order to define 

the particular objectives of the research based on the existing gaps. It is important to point out 

that the main contribution of this research is to improve the performance of cantilever-based 

piezoelectric actuators and extend their capability to paper based beams so as to provide the same 

level of energy as the conventional piezoelectric structures. Finally, the contents of the following 

six chapters are outlined in the last section of this chapter.  

The results of this study have been presented in four journal articles which two of them have 

published in Journal of Intelligent Material Systems and Structures and other two articles are 

under the second review, one by the above mentioned journal and the other by the International 

Journal of Smart and Nano Materials. 
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1.1 Introduction of energy harvesters 

 

For a long period of time, humans have used energy from natural sources (renewable energy) 

such as from windmill, watermill, and solar energy. Compared to the limited fossil fuel there is 

not any limitation to scavenge energy from natural sources. This type of energy has proved itself 

as a source of energy for many types of applications. The harvesting plants are divided into two 

categories called macro and micro energy technologies. For the former, the level of generated 

power is kW or MW while there is the power in the level mW or 𝜇𝑊 for the latter. As already 

mentioned earlier, the existence of large amounts of mechanical vibrations in the surrounding 

environments are among the most plentiful sources. In order to scavenge the energy from these 

undying sources it is necessary to conceive, fabricate and implement energy harvesters [1]. 

Energy harvesting, also known as power harvesting or power scavenging, is a technology 

wherein the energy is captured from one or more external energy sources to be stored and 

eventually used for later applications. The subject has drawn considerable attention during the last 

decade due to the cost-effectiveness and simplicity of the structures employed to carry this out and 

eventually, their portability. It is evident that the most important feature or advantage of energy 

harvesters is their energy sources which are coming from the wasted free energy to the ambient 

surroundings. In comparison to the other common kinds of energy providers such as fuels, these 

types of power scavenging devices deal with wasted energy and are more environmentally-

friendly. This rich source of energy is available in most of the industrial plants, machinery, aerial 

and ground vehicles, and construction structures. Generally, there are three common sources of 

energy harvesting. They are based on the mechanical energy collected from sources such as 

vibration, mechanical stress and strain, the thermal energy coming from waste energy of furnaces, 

heaters, and friction sources and the light energy which is captured from sunlight or room light via 

photo sensors, photo diodes, or solar panels. The focus of this study is on the mechanical (or 

vibrational) energy harvesting. Invariably, the mechanical vibrations of the sources must be 

converted into electrical energy.  

Nowadays, owing to the noticeable advances in wireless technology the energy harvested from 

the harvesters have been known as an alternative source of energy like batteries for a wide variety 

of devices. It should be noted that since the amount of energy harvested is very small the 

technology is applicable for low power small electronic devices such as wireless sensors and 
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portable and wearable electronics. In addition to the weight and high maintenance cost , the short 

life of batteries represents the most important obstacle compared to the long working life of power 

scavengers. Although there is an opportunity to replace or recharge the batteries, this type of 

solution is inefficient and sometimes not feasible due to the poor access to their locations. As a 

result, power harvesters have been taken into consideration by many researchers as a self-power 

source of portable or wireless devices in different areas [1]. 

 

1.2 Vibrational energy harvesters 

 

Generally, there are two main modalities of energy harvesting which have been used to extract 

energy from a mechanical source called “inertial energy harvesting” and “kinematic energy 

harvesting”. The former relies on the resistance of a mass to the acceleration and the latter couples 

directly the energy harvester to the relative motion of different parts of a source such as energy 

harvested from the bending of a tire wall to monitor tire pressure or the flexing and extension of 

limbs to power mobile communication. In the inertial energy harvesters, excitations induce inertial 

force in the systems without directly deforming the active materials. Inertial energy harvesting 

systems are usually fixed on a vibration base such as human bodies, animals, machines, vehicles 

or buildings at a single point to harvest energy from the mechanical motions (vibrations) [2]. In 

contrast to the inertial state, the kinematic energy harvesting is not dependent on the inertia or 

resonance. In some cases, a tip mass (proof mass) is attached at the free end of the cantilever beam 

in order - not only to tune its fundamental natural frequency in accordance with the excitation 

frequency but also to improve the dynamic flexibility. By considering the proof mass there will be 

larger deflections of the tip and larger strains at the root which would result in power extraction 

enhancement [3]. It is worth mentioning that the tip of the cantilever is only under a small strain, 

so the main concentration needs to be taken near the root of the beam to have the most effective 

use of energy harvesters [4]. 

 

1.2.1 Sources of vibration 

 

Prior to design and fabrication of the energy harvesters, it is essential to study various sources 

of vibrations. This is a critical issue since the natural frequency of resonators should be matching 
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the excitation frequency to be able to extract the maximum amount of energy. Generally, the 

vibrations measured from commonly occurring sources can be classified into two categories called 

“low-level” vibrations resulting from large industrial machinery and “low-level” vibrations 

resulting from air movement and human body motion such as walking, chest and heartbeat motion. 

Both low-level vibrations are focused mainly on very small scale power generation to power small 

electronic devices such as wireless sensor nodes or wearable devices. There are two important 

factors that characterize all sources which are the natural frequency and the acceleration magnitude 

of the fundamental vibration mode. They are the crucial characteristics which determine the 

potential estimation of the power generation [5]. Information about the potential of different low-

level sources has been provided in Table 1.1.  

 

Table 1.1 Acceleration magnitude and fundamental natural frequency of different low-level sources [5]. 

Vibration Source Acceleration (m/s2) 1St Frequency 

Car engine compartment 12 200 

The base of 3-axis machine tool 10 70 

Blender casing 6.4 121 

Clothes dryer 3.5 121 

Person nervously tapping  heel 3 1 

Car instrument panel 3 13 

Door frame just after the door closes 3 125 

Small microwave oven 2.5 121 

HVAC vents in an office building 0.2-1.5 60 

Windows next to a busy road 0.7 100 

CD on notebook computer 0.6 75 

Second story floor of a busy office 0.2 100 

 

1.2.2 Energy conversion 

 

In the literature, three basic mechanisms have been considered to convert mechanical 

vibrations to electrical energy, namely, electro-magnetic, electrostatic and piezoelectric. As has 

been already stated, the primary focus of this study is on the piezoelectric conversion mechanism. 

Piezoelectric materials are the type of smart materials exhibiting electromechanical coupling 

which possess  the property to convert kinetic energy to electrical energy and vice versa [6]. They 

generate electric charge under the application of mechanical stress (direct piezoelectric effect) and 

creation of mechanical strain in response to an electric field (converse piezoelectric effect). 

Thermomechanical coupling is another feature of piezoelectric materials called the pyroelectric 

effect. Direct effect and converse effect could be used as an actuator and a sensor or energy 
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transducer, respectively. Due to their simple converting structure, piezoelectric energy harvesters 

have been highlighted as a self-power sources of energy for small wireless sensors with low 

required power input [7]. In order to fabricate the piezo MEMS, the piezoelectric materials 

prepared in thin-film must be integrated into MEMS using photolithography.  

Polyvinylidene fluoride (PVDF) and Pb(Zr,Ti)O3 (PZT) are the most popular piezoelectric 

materials which have been extensively considered for many applications. PVDF is a type of 

piezoelectric polymer which has been most frequently used. It is a semi-crystalline polymer with 

a flexible structure which is easy to be deformed. The noticeable flexibility feature of PVDF makes 

it resilient to mechanical motions which allows it to be easily mounted on flexible structures 

undergoing bending motions. The small densities of piezoelectric polymers compared to PZT 

ceramics (less than ¼ of that) make them desirable for lightweight piezoelectric elements. The 

piezoelectric strain constant coefficient (d31) of PVDF is in a lower range (12–23 pC/N) compared 

to PZT. Note that the value of piezoelectric constants strongly depend upon their fabrication and 

poling processes. The high amount of flexibility persuades researchers to investigate the 

application of PVDF for piezoelectric energy harvesting from wearable items, such as shoes and 

backpacks [8]. In this regard, Kendall [9] was the first to study PVDF as an energy harvesting 

material in the energy harvester shoes. They could harvest the mechanical energy from humans 

during walking.  

The amount of generated power from piezo MEMS is strongly dependent on the different 

factors including the applied load, the frequency of vibration, the geometric features, and the 

boundary conditions [10]. This technology opened plenty of application possibilities in a wide 

variety of areas such as actuators, sensors, acoustic resonators, quartz crystal microbalance, surface 

acoustic wave (SAW)-based chemical and biochemical sensors, accelerometer, ultrasonic 

transducers. While they are beneficial, the microfabrication of these structures typically requires 

the access to the sophisticated equipment and cleanroom labs. Moreover, the fabrication process 

is time-consuming and expensive. The environment protection imposes researchers to look for the 

new portable, low-cost and eco-friendly candidates to generate energy. Therefore, they found it 

interesting to resort to MEMS designs with inexpensive, simple and green-based materials and 

simple fabrication techniques. Paper or cellulose is a kind of green-based material which has a 

strong potential to fulfill the needs as a potent alternative. 
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1.2.3 Cantilever energy harvesters 

 

Micromachined cantilevers have been utilized as the mechanical energy harvester [11]. In other 

words, cantilever-based piezoelectric configuration represents a useful structure which can be 

exploited for direct energy harvesting from ambient vibrations to generate electrical energy for 

small devices such as autonomous wireless sensors [1]. A cantilever type vibration energy 

harvester is a simple structure which could generate maximum deflection (maximum strain) under 

vibration (deflection of the free end of the beam) which is why the cantilever beam has been used 

in most of the vibration energy harvesters. The ambient vibrational energy is saved from the 

resonant motion of the cantilever beams in different modes. It is obvious that the maximum tip 

deflection occurs in the first mode of vibration resulting in the highest amount of scavenged power 

[12]. In their structure, the piezoceramic layers are placed on the substrate layer as acting or sensing 

elements. They can be realized in different states including one layer of piezoceramic (unimorph), 

two layers of piezoceramic (bimorph) and even multilayers (multimorph) in which the kind of the 

exploited structure depends on the application under consideration. The energy harvester beam is 

connected to a vibrating host structure such as a shaker to excite the system with different 

excitation frequencies. By exciting the structure the dynamic strain induced in the piezoceramic 

layer(s) leads to an alternating electric charge across their electrodes [13, 14].  

According to Table 1.1, the frequency range of household appliances and everyday objects is 

lower than 200 Hz. Hence, to harvest the maximum power from the piezoelectric cantilevers they 

should be designed to exhibit a resonant frequency less than this frequency. Material specifications 

and geometrical dimensions are two essential parameters that can help one to reach the goal. Since 

200 Hz is rather a low natural frequency for a cantilever beam, small thickness and low modulus 

of elasticity play an important role to obtain lower natural frequencies. The soft piezoelectric 

polymer is a type of material that could be used for the fabrication of cantilever beams with a low 

resonance frequency and large strains because of low flexural rigidity. The advantage of polymeric 

resonators is that they can be fabricated inexpensively in a wide range of dimensions which is a 

desirable choice for low-cost vibrational energy harvesters. In this case, the use of cellulose would 

represent a great choice which has the potential to satisfy most of the above listed needs. 
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1.2.4 Modeling of cantilever energy harvesters 

 

There are two different configurations called lumped-parameter and distributed-parameter 

modelling which could be taken into consideration in order to characterize the vibration of 

cantilevered energy harvesters. The former which is also known as single-degree-of-freedom 

modelling, has been the most well-known procedure followed to model the base excitation in 

cantilevered beam energy harvesters. To model the system based on this approach the point of 

interest (usually the free end of the beam) must be firstly specified. Then, a description of the 

dynamics of the point in terms of certain lumped parameters including the equivalent mass, 

stiffness, and the damping of the beam is required. Compared to the former, the latter is another 

model which has been used to model the vibration of energy harvesters providing more precise 

solutions [3]. These methodologies have been widely employed by different researchers for not 

only modeling but also studying optimization and generation of the maximum power output from 

the system. The application of each approach depends on the assumptions, limitations and the 

required accuracy. In this study, for better accuracy the lumped-parameter modelling with the 

assumptions of both Timoshenko and Euler-Bernoulli beam theories have been separately 

presented to extract the coupled equations. To discretize the equations finite element method with 

the application of the superconvergent element (SCE) having eight- degree-of-freedom (DOF) 

model is presented. The excitation of the harvester is assumed to be due to the base motion in the 

form of vertical translation at the fixed end of the cantilever beam. Although during the 

discretization it is not assumed that the base motion must be restricted to the harmonic in time, the 

resulting expressions for the coupled mechanical response and the electrical outputs are reduced 

for the case of harmonic excitation in time.  

 

1.3 Cellulose (Paper) 

 

The objective of this section is to introduce paper as a structural material with suitable 

properties for cantilever beam energy harvesters. Cellulose is one of the most abundant organic 

polymers with a noticeable structure and exclusive features. It is environmentally friendly and 

biocompatible and is extracted from green plants. Cellulose has been used to produce different 

products particularly paperboard and paper derivatives [15]. The use of cellulose in the fabrication 
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of piezoelectric materials is one of the main recent advances. Paper is known as a potent biological 

material. The particular feature comprising biocompatibility for the immobilization of proteins and 

antibodies have introduced cellulose as a material for biosensors, as well as actuators [16]. 

Recently, electro-active paper (EAPap), covering the electro-mechanical coupling effects, has 

been introduced as a smart material. The reported smart material has exclusive merits in 

comparison to the commercial smart structures. It is lightweight, cost-effective, biodegradable, 

biocompatible, foldable, environmentally friendly, disposable, easy to fabricate, portable and 

flexible. Furthermore, compared to other flexible materials cellulose has a much lower coefficient 

of thermal expansion leading to high thermal stability of the final devices [17, 18].  

In comparison to PZT and PVDF, cellulose EAPap materials have low price, large 

displacement output because of low rigidity, low actuation voltage, low power consumption, 

biodegradable characteristics and also sensitive to humidity that would be practical to tune their 

natural frequencies based on our desired values. In other words, when paper imbibes water from 

different sources such as air humidity two natural phenomena occur. Firstly, as a result of an 

increased moisture content, the fibers of paper swell, leading to a strain called hygroexpansive 

strain. Secondly, while the content of moisture is growing up in the cellulose fiber structure, the 

bending stiffness of paper approaches a relaxation state resulting in changing the mechanical 

properties of the paper which could be used to tune the natural frequency of the EAPap energy 

harvester. Because of the above mentioned exclusive features of paper, it is an interesting to 

develop the application of paper in the fabrication of cantilevered piezoelectric energy harvesters 

with the tunability of the resonance frequency using the humidity modification. However, this 

feature of tuning properties based on the humidity modification can decrease the performance of 

system for the conditions with uncontrolled environmental humidity. Moreover, paper is a good 

candidate for functionalizing the structural properties, given the porous structure and the porous 

fibers [19]. 

Paper is the type of useful alternative which has proven its great potential in the production of 

electronic devices. Over the past two decades, there have been notable promising reports on 

electronic devices fabricated using different types of papers as the substrate layer [20]. These 

advances include transistors [21], transducers [22], energy storage devices [23], microfluidic 

devices [24, 25], strain sensors [16, 25, 26], gas sensors [27, 28], and actuators [29-33], energy 

harvesters [17, 22], lightweight speakers [34, 35] and so forth. Electro-active paper (EAPap) is 
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also attractive for artificial muscle applications in view of its piezoelectric effects causing 

extension and contraction (in-plane strains) during walking, running or other types of daily 

activities [16]. The activation mechanism of smart paper results from the ion migration effect of 

cellulose and piezoelectric effects of additives [36-38]. Although discovery of piezoelectricity of 

cellulose goes back to five decades [39], consideration of paper as a smart material goes back to 

the last decade. A number of researchers made efforts to align cellulose molecules with an electric 

field, magnetic field and also mechanically stretching but they could not clearly investigate the 

piezoelectric effect of naturally existing cellulose [40-43]. Alignment plays a key role in the 

fabrication process of EAPap since it can improve the mechanical and electrochemical properties 

[44]. 

According to the studies carried out, one of the main issues with cellulose EAPap materials is 

their small piezoelectric constants in comparison to the conventional piezoelectric materials. This 

significant difference has caused the degradation of their performance and efficiency. In order to 

be represented as a streamlined alternative some improvements are necessary. As a matter of fact, 

there are various strategies which can be adopted to improve the performance and efficiency of 

piezoelectric energy harvesters. Different design variables such as shape, size, material properties, 

electromechanical parameters and damping can be considered to achieve higher performance. 

Among these parameters, geometry modification and material functionalizing represent effective 

approaches which are the focus of this study. In order to look into this, it is firstly necessary to 

represent a valid mathematical modeling. Although the mathematical model is necessary to be 

simple it should be sophisticated enough to predict the dynamics of the physical system accurately 

in different applications [3]. The various modeling approaches considered by researchers are 

summarized in the following.  

 

1.4 Development of existing mathematical modeling of PEH  

 

So far, different models have been represented and developed to model PEH. In the first study, 

lumped-parameter model with a single mechanical degree of freedom was employed. The system 

was applied to predict the dynamic behavior of piezoelectric energy harvesters [10, 45]. Although 

this is a convenient modeling approach which can provide the initial insight into the problem, it 

has different significant drawbacks affecting the responses. Firstly, the achieved approximation is 
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limited to only one mode analysis. More importantly, owing to the considered simplifications the 

importance of noticeable aspects including the dynamic mode shapes and accurate strain 

distribution are overlooked [3].  

As the second model, an improved approach using the Rayleigh-Ritz method was presented by 

Hagood et al. [46] which was used by other researchers to model the behavior of cantilevered 

piezoelectric energy harvesters [10, 47, 48]. They developed the model based on the Euler-

Bernoulli beam theory. In comparison to the former approach with a single mechanical degree of 

freedom it is a more accurate model which gives a spatially discretized model of the distributed-

parameter system. The discretized model provides an approximation of the distributed parameter 

system by reducing its infinite mechanical degrees of freedom to a finite dimension [49].  

Although this can result in a more precise model, its accuracy strongly depends on the applied 

theory to model the beam. There are various theories regarding the description of beams, where 

the Euler-Bernoulli or classic beam theory is the oldest and most widely applied theory. Euler-

Bernoulli theory is utilized commonly because it provides reasonable solutions for many 

engineering problems. However, the Euler-Bernoulli model tends to slightly overestimate the 

natural frequencies and it is not an appropriate approach for describing the behavior of short beams 

owing to the existence of shear deformation in the cross section of the beam. Thus, it is necessary 

to apply higher order theories such as the Timoshenko beam theory to reach reasonable 

approximation. The Timoshenko or first order beam theory is the extended form of the Euler-

Bernoulli model wherein two additional effects including shearing force and rotary motion effects 

are considered. Since in this theory the shear stress distribution is assumed to be constant along 

the thickness, a Timoshenko shear coefficient is considered to reduce the error [50]. 

Another well-known approximate numerical model employs finite element method (FEM). 

The procedure in this method is based on variational principles wherein the differential equation 

is satisfied over an element or region. Fortunately, owing to availability of many standard software, 

it is possible to solve all types of problems by using FEM. In comparison to the Rayleigh Ritz 

method which uses global functions formulated over the entire domain of the structure the FEM 

uses the concept of dividing the structural domain into many small elements. As a result, Rayleigh 

Ritz method can sometimes be challenging because of the difficulty in obtaining appropriate 

admissible functions while FEM has narrow range of choices making it much easier. In other 

words, someone may not be able to guess the basic function or several piece-wise functions for 
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any given problem using the Rayleigh Ritz method while FEM enables users to come up with such 

functions called shape functions systematically. The accuracy of solutions in the FEM  strictly 

depends on both the type of applied elements and the number of them, which would be proportional 

to the cost of data processing [51]. Owing to more simplicity and broader usage of the FEM, this 

mathematical model is employed here to discretize the equations and analyze the structure. For 

discretization purposes, various types of elements can be used changing the accuracy of results. In 

the present research, two different types of elements including the super-convergent element (four-

degree-of-freedom) and the eight-degree-of-freedom element are developed and applied. For the 

former, the shape functions are obtained from the exact values of the nodal displacement for 

Timoshenko beam theory increasing the accuracy of the responses [52]. This kind of element is 

developed in this study for the first time to study the dynamic analysis of piezoelectric energy 

harvesters. Apart from the kind of element employed, the beam approach considered plays an 

important role as well as the accuracy of approximation is of great concern. In order to choose the 

most appropriate beam theory both Euler-Bernoulli and Timoshenko approaches are investigated 

in this study under different conditions including various beam sizes and non-uniform 

configurations.  

 

1.5 Objectives and thesis outline 

 

As it was already mentioned, although the paper-based devices have offered significant 

benefits and exclusive features, their performance is below the commercial smart structures. They 

are still in the early stage of development and need to be improved to satisfy the general 

requirements. In order to improve the performance of the system, it is first necessary to investigate 

the effects of different important parameters playing a key role in changing the operation of the 

system leading to enhancement of its efficiency. To study different aspects a 

theoretical/mathematical model should be available such that it could accurately model the system 

for different conditions. Therefore, representation of a satisfactory model and performance 

enhancement analysis of the piezoelectric structures using the shape optimization, sizing and 

changing the material configuration are the major contributions of this work. Through carrying out 

configuration modifications there is possibility to investigate the capability of shape alteration in 

the performance and efficiency of the conversion. This is the initial necessary step before paying 
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attention to the experimental part and the fabrication procedure of paper-based piezoelectric 

structures. Hence, the present work will focus on the fundamental aspects related to the 

effectiveness of cantilever type energy harvesters. Future work will focus on realization of paper-

based cantilever shape energy harvesters. 

As a matter of fact, there are different strategies which can be adopted to improve the 

performance and efficiency of piezoelectric energy harvesters. In fact, different design variables 

such as shape, size, material properties, electromechanical parameters and damping can be 

considered. Among these parameters, geometry modification and material functionalizing 

represent effective approaches which are the focus of this study. As a result of this, it is intended 

to design an optimized configuration with the maximum electrical output. Thus, the particular 

objectives of this research are:  

 

1) To develop a general model based on Timoshenko and Euler-Bernoulli beam theories for 

unimorph and bimorph configurations to investigate the effects of electromechanical 

parameters on the performance of the PEH.  

2) Modeling and studying the effects of non-uniformity on the performance and efficiency of 

PEH. In order to model the non-uniformity, the polynomial function with five different 

degrees changing from 1 to 5 is considered.  

3) Studying the effects of sizing and application of a series of PEHs instead of one single 

piezoelectric energy harvester. 

4) Investigation of non-uniform functionally graded piezoelectric energy harvesters 

(FGPEHs) and effects on non-uniformity and material characterization on the performance 

of structure. 

The accomplishment of these particular objectives as well as the conclusions of the present 

research are described in six chapters organized and summarized as follows: 

 

1.5.1. Chapter 1 

 

This chapter provides firstly the introductory overview of the energy harvesting technology. 

Secondly, different types of energy harvesters particularly the vibrational energy harvester and 

their conversion to the electrical output using different types of methodologies are described. Then, 
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the cellulose and evolution of paper-based piezoelectric energy harvesters are taken into 

consideration. In the following, a literature review regarding the application and development of 

PPEHs is presented in order to discover the existing gaps and define the particular objectives of 

the research subsequently.  

 

1.5.2 Chapter 2 

 

In this chapter, the cantilever-based piezoelectric energy harvesters are modelled based on both 

Timoshenko and Euler-Bernoulli beam theories. The electromechanical coupling equations for 

bimorph configuration are derived. In order to discretize the equation, finite element method with 

the application of a presented high convergent element is used. This model can be used for both 

beam theories without performing extra calculations. To validate the accuracy of the model, the 

results are firstly validated by the experimental results in the literature. Additionally, the electrical 

output frequency response functions (FRFs) for various circuit conditions changing from the short-

circuit (𝑅𝑙 → 0 ) to the open-circuit (𝑅𝑙 → ∞) conditions are determined. This enables us to 

evaluate the effects of load resistance on the resonance frequency, tip velocity and electrical 

outputs. Finally, the effects of slenderness ratio is investigated to figure out for which range of 

slenderness ratio it is necessary to switch between theories for higher accuracy.  

 

1.5.3 Chapter 3 

 

In this chapter, the non-uniform piezoelectric energy harvesters are modelled and the effects 

of tapering ratio and degree of non-uniformity on the performance and efficiency of the system are 

studied. The electromechanical coupling equations for three general states including unimorph, 

bimorph in series connection and bimorph in parallel connection are derived. Both Euler-Bernoulli 

and Timoshenko beam theories are chosen for the modeling. Also, it is assumed that the width and 

height of cantilever beam are changing based on polynomial function with different degrees 

changing from one to five. To solve the equations, finite element method with the application of 

two different elements including four-degree-of-freedom (DOF) model, and eight-DOF model are 

adopted. 
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1.5.4 Chapter 4 

 

In this chapter, the effects of sizing is investigated to reach a system rendering higher output 

power. To meet the power enhancement, the effects of non-uniformity on the performance of one 

single rectangular cantilever beam are initially studied. It is proved that converging beams with 

larger degree of non-uniformity can provide more power output. As a result, the new system 

proposed consists of a series of smaller trapezoidal beams (converging beams) connected in series. 

It should be pointed out that the natural frequency and the structure’s weight are kept constant in 

the designed system for more accurate comparison, although the system is delivering higher output 

power. Thus, performance enhancement is met with the same amount of piezoelectric material 

consumed.  

 

1.5.5 Chapter 5 

 

In this chapter, the behavior of non-uniform functionally graded piezoelectric energy harvester 

is investigated. The cantilever beams are modelled based on both beam theories. As the parametric 

study, the effects of tapering ratios, the degree of non-uniformity, load resistance, and the volume 

fraction parameter on the electrical outputs and the fundamental resonance frequency are studied. 

Volume fraction parameter is another important parameter with its influence on the output power 

and the natural frequency is examined.  

 

1.5.6 Chapter 6 

 

In this chapter, the conclusion of this research and the suggested future work are presented. 

The general conclusions are stated in the first section. The second section is devoted to the 

suggested future work. 
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Chapter 2  Analysis of bimorph piezoelectric beam energy harvesters 

using superconvergent element 

 

Cantilever-based piezoelectric energy harvesters (PEHs) have been utilized as structures to 

extract mechanical energy from the ambient mechanical vibrations and transfer it into the 

electrical output. In this chapter, the performance of bimorph piezoelectric beam energy 

harvesters is investigated. The cantilever beam is modelled by using both Timoshenko and Euler-

Bernoulli beam theories. The equations are discretized using the conventional finite element 

method (CFEM) and superconvergent element (SCE). Besides the high-rate of convergence, easy 

switching between the above beam theories is enabled by such element. The current model is 

presented for a Timoshenko beam model, but it could as well be used for a Euler–Bernoulli beam 

model. Additionally, voltage, current, and power frequency response functions (FRFs) for different 

ranges of load resistance varying from the short-circuit to the open-circuit conditions are 

determined to reach the maximum values. Effects of the slenderness ratio and the required beam 

model based on the geometric properties of the PEHs are discussed in the final part of this study. 

The results show that only for smaller values of the slenderness ratio (below 5) it is necessary to 

model the beam using the Timoshenko assumptions; otherwise both beam theories provide 

approximately the same responses. 
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2.1 Introduction 

 

Among different types of existing energy harvesters, piezoelectric energy harvester is one of 

the most common structures which has been used to scavenge ambient vibrational energy from the 

surrounding environments. Piezoelectric materials are among the various non-conventional energy 

storage devices converting mechanical energy into electrical energy (direct piezoelectric effect) 

and mechanical strain in response to an electric field (converse piezoelectric effect) [53]. Amount 

of the collected energy using piezoelectric energy harvesters represents a large enough source for 

low power small electronic and MEMS devices such as wireless sensor and portable and wearable 

electronics [5]. Wireless sensors have become popular devices in different areas such as structural 

health monitoring and medical equipment [54]. In comparison to the conventional battery usage, 

self-powered wireless sensors are more advantageous because they do not have the common 

limited lifetime restriction. Although there is the opportunity to replace or recharge the batteries, 

this type of solution is expensive and sometimes not feasible because of the poor access to their 

locations [1]. Hence, piezoelectric energy harvesters represent a desirable alternative to meet the 

needs.  

The cantilever beam is the most common structure utilized in mechanical energy harvesters. 

This is because of the maximum amount of electric output which could be extracted using the 

cantilever structure as a result of its maximum deflection at the free end. Piezoelectric cantilever 

energy harvesters work based on the resonance in order to scavenge the maximum power. There 

have been numerous studies reported about the application of cantilever structure as the vibrating 

configuration in the piezoelectric energy harvesting systems. These PEHs are ranging from micro 

to macro size depending on their applications [7, 10, 47, 55-59]. A comprehensive mathematical 

and experimental discussion has been presented for vibration-based PEHs by Erturk and Inman 

[3]. Typically, they considered two types of approaches including lumped-parameter model and 

distributed parameter model which can be adopted to mathematically model the system. The 

former formulates the harvester using a single-degree-of–freedom (SDOF) system. Subsequently, 

this provides a rough estimate of the maximum power extraction and it is limited to the single 

vibration mode. As a result, the latter has been proposed in which the structure is considered as a 

continuous system providing sufficient physical insight. For the latter, there are different well-

known beam theories such as Euler-Bernoulli, Rayleigh, and Timoshenko, which could be 
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exploited to derive the eletromechanical coupling equations. Regardless of the exact solution, the 

discretized electromechanical equations could be derived using Rayleigh–Ritz method and finite 

element method (FEM) wherein improved predictions of modal frequencies are presented [3, 54].  

Modelling the piezoelectric energy harvesters is an important step which needs to be 

comprehensively scrutinized given their complex fabrication process. Apart from that, by having 

a valid model one can evaluate the effects of different mechanical, geometric, and even electrical 

parameters on the performance of the system to achieve the optimized operation to yield maximum 

electrical output. Generally, a typical PEH consists of a cantilever beam as a substrate layer with 

one (unimorph), two (bimorph), or multi piezoceramic layers attached on its surfaces as the sensing 

or acting layers. The fixed end of the beam is attached to a base motion and there is a tip mass 

(proof mass) at the free end of the beam. The function of proof mass is to tune the fundamental 

natural frequency in accordance with the excitation frequency and improve the dynamic flexibility, 

as well. Up to now, several studies have been carried out to analyze the PEHs analytically and 

experimentally. Erturk and Inman [60] modelled a unimorph PEH as a continuous structure with 

Euler-Bernoulli beam assumptions and presented the exact analytical solution. They also 

compared their exact analytical solutions with the simple SDOF approach [61]. It was proved that 

the SDOF model may result in highly inaccurate solutions in comparison to the distributed 

parameter model (DPM). In addition, they explained that the inaccuracy of the obtained results 

using SDOF approach can be corrected by the addition of a large proof mass or by adding the 

correction factor [62]. In these studies, proportional damping was presented to model the effects 

of both the strain rate damping and the external air damping. Erturk and Inman [62] studied the 

performance of piezoelectric energy harvesters for the bimorph state based on Euler-Bernoulli 

assumptions. To achieve the electrical power output prediction, they analyzed the system for both 

parallel and series connections of piezoceramic layers on the top and bottom surfaces of the 

substrate layer. The validation was carried out through comparing the analytical results with the 

existing experimental data. They also investigated the effects of added tip mass which results in 

higher harvested electrical output. The experimental study was carried out by Fakhzan and 

Muthalif [63] to investigate the effect of tip mass on both voltage output and tip deflection. The 

experimental results were compared with the analytical ones using both Euler-Bernoulli and 

Timoshenko beam approaches. Dietl et al. [64] provided an exact formulation to calculate the 

amount of harvested voltage and tip deflection for a beam modeled based on Timoshenko beam 
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approach. By comparing the yield outputs with the results for the Euler-Bernoulli model, they 

figured out that considering both the rotary inertia and shear effects yield more accurate response. 

In fact, the simplified Euler-Bernoulli beam severely overpredicts the results and it can provide 

the same responses as by using Timoshenko beam theory when the length of the beam is quite 

significant (higher slenderness ratios). This result was obtained by Wang as well in [54]. Although 

the utilized distributed parameter model provides good predictions for both beam theories it cannot 

accurately predict the responses. The limitation is due to the considered shape functions which are 

derived for the uniform cantilever beam only under mechanical loading and not a coupled 

electromechanical system. From that point of view, it is necessary to come up with new methods 

to bridge the gap. Wang [54] presented spectral finite element method (SFEM) to predict the 

performance of bimorph piezoelectric energy harvesters using both beam theories and validated 

the numerical simulations using the available experimental data from the literature. Applying 

conventional finite element method is another solution. The most important problem associated 

with CFEM is their limited convergence rate. Application of superconvergent element represents 

one potential solution which has the required potential to tackle the above mentioned obstacle. 

Although both theories yield good convergence performance it is shown here that the percentage 

of relative errors of SCE is less than half of the one yielded by SFEM. Overall, SCE has three 

noticeable advantages mentioned as follows: (a) exact interpolation functions resulting from static 

equilibrium of the Timoshenko beam [52] (b) high rate of convergence rate so that only a small 

number of elements is required to reach the responses with high accuracy (c) it is easy to switch 

the beam model between Timoshenko and Euler-Bernoulli.  

To the best of our knowledge, the application of SCE for the analysis of PEHs has not been 

reported in the open literature. As a result, the potential of this type of element is investigated here. 

In this study, a SCE for bimorph PEHs is developed and the results are validated by using the 

experimental and analytical solutions from the literature. The electromechanical coupling 

equations are derived under the assumptions of linear piezoelectric constitutive and linear 

stress/strain relations and applying Timoshenko beam theory which can be easily transferred to the 

Euler-Bernoulli case by changing the value of a constant to zero in the shape functions of the 

element (Appendix C). The main purpose of this investigation is to assess the SCE capacity for 

the application to predict the output of PEHs. It is assumed that for the bimorph case, the top and 

bottom piezoelectric layers have identical geometry, mechanical and electrical properties. The only 
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difference consists of their poling directions which are opposite for the series case although they 

should have the same directions for the parallel configuration. Firstly, the total kinetic and potential 

energies are derived. Then, corresponding external virtual work performed with base excitation 

and voltage drop on a load resistance are calculated. By applying Hamilton’s principle and 

employing finite element method, the discretized governing equations for the coupled 

electromechanical system are defined. In the following, proportional damping is employed to 

account for both internal and external damping. After deriving the discretized equations for one 

element of the beam, the assembling procedure is carried out and subsequently the fixed boundary 

conditions are applied in MATLAB programming. By assuming harmonic excitation, voltage, 

current, and power response functions are determined for various ranges of load resistance 

changing from the short-circuit to open-circuit cases in order to extract the maximum values for 

each electrical output. Furthermore, the results of both beam theories are compared to identify 

which type of configuration provides more accurate predictions for different geometric conditions. 

In other words, the importance of the slenderness ratio of the beam on the applied beam theory is 

comprehensively investigated.  

 

2.2 Theoretical modelling 

 

A sketch of a cantilever bimorph piezoelectric beam which is subjected to flapping vibration 

is shown in Fig.2.1. As can be seen, ℎ𝑝 is the thickness of the piezoelectric layer,  ℎ𝑠 is the thickness 

of the substrate layer, L is the length of the cantilever beam and b is the width. For the sake of 

simplicity, two identical piezoceramic layers are assumed to be installed along the opposite poling 

directions because the series connection is investigated here. Moreover, the following assumptions 

are considered during modelling of the system: (a) Linear piezoelectric constitutive and linear 

strain/strain relations, (b) same transverse displacements for the three layers across the thickness 

of the beam, (c) no slide between the piezoceramic layers and the substrate layer (perfect bonding), 

(d) the beam is perfectly clamped at one end and the deflections are small compared with the 

thickness of the cantilever beam.  
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Figure 2.1 A cantilever bimorph piezoelectric energy harvester. 

 

Considering all the aforementioned assumptions, for a cantilever beam fixed at point O (Fig. 

2.1), the position vectors of a generic point S in flapping motion is represented by Eq. 2.1.  

 

𝑹 = 𝑅𝑥𝐼 + 𝑅𝑧𝐾̂ = 𝑢𝐼 + 𝑤𝐾̂ (2.1) 

 

where x is the position of the point S in the coordinate system XYZ and 𝑢 and 𝑤 are the 

displacements of a generic point of the deformed configuration measured with respect to the 

inertial frame. Consequently, the flexible displacement of a generic point of the cantilever beam 

based on the Timoshenko beam theory is defined by: 

 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑧𝜙𝑥(𝑥, 𝑡) (2.2) 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) = 0 (2.3) 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑡) + 𝑔(𝑡) (2.4) 

 

where 𝑢0, 𝑣0, and 𝑤0 are the displacements projected on the mid-plane, 𝜙𝑥 is the rotation of 

corresponding cross section at point x and time t relative to the moving base and 𝑔(𝑡) is the 

translation in the transverse direction resulting from the base motion.  

Taking into account the definition of the Lagrange strain tensor and Eqs. 2.2 and 2.4, the non-

zero components of the normal and shear strains in each layer are concluded. 
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{
 
 

 
 𝜖𝑝 =

𝜕𝑢

𝜕𝑥
= 𝑢́0 + 𝑧𝜙́𝑥                                       

ℎ𝑠
2
≤ 𝑧 ≤

ℎ𝑠
2
+ ℎ𝑝

𝜖𝑥𝑥 =
𝜕𝑢

𝜕𝑥
= 𝑢́0 + 𝑧𝜙́𝑥                                    −

ℎ𝑠
2
≤ 𝑧 ≤

ℎ𝑠
2
       

𝜖𝑝 =
𝜕𝑢

𝜕𝑥
= 𝑢́0 + 𝑧𝜙́𝑥                               −

ℎ𝑠
2
− ℎ𝑝 ≤ 𝑧 ≤ −

ℎ𝑠
2

 (2.5) 

{
 
 

 
 𝛾𝑝 =

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
= 𝜙𝑥 + 𝑤́0                            

ℎ𝑠
2
≤ 𝑧 ≤

ℎ𝑠
2
+ ℎ𝑝 

𝛾𝑥𝑧 =
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
= 𝜙𝑥 + 𝑤́0                          −

ℎ𝑠
2
≤ 𝑧 ≤

ℎ𝑠
2
        

𝛾𝑝 =
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
= 𝜙𝑥 + 𝑤́0                     −

ℎ𝑠
2
− ℎ𝑝 ≤ 𝑧 ≤ −

ℎ𝑠
2

 (2.6) 

 

With respect to the linear piezoelectric constitutive equations [53] and considering the only d31 

effect, the reduced piezoelectric constitutive equations of a thick beam based on the Timoshenko 

beam assumptions could be expressed using the following linear constitutive equations [3]: 

 

{

𝜖𝑝
𝛾𝑝
𝐷3

} =

[
 
 
 
 
 
1

𝐸𝑝
0 𝑑31

0
1

𝐾𝑠𝐺𝑝
0

𝑑31 0 𝜀33
𝑇 ]
 
 
 
 
 

{

𝜎𝑝
𝜏𝑝
𝐸3

} (2.7) 

 

where 𝜎𝑝 is the normal stress, 𝜏𝑝 is the shear stress, 𝜖𝑝 is the normal strain, 𝛾𝑝 is the shear strain, 

𝐺𝑝 is the shear modulus, 𝐸𝑝 is the elastic modulus, 𝐷3 is the electric displacement, d31 is the 

piezoelectric strain coefficient, 𝜀33
𝑇  is the dielectric permittivity of piezoelectric layer at constant 

stress, 𝐾𝑠 is the shear correction factor which is 5/6 for a beam with a rectangular cross section 

and finally E3 is the electrical field which can be written in terms of voltage 𝑣(t) across the 

electrodes as follows 

 

𝐸3(𝑡) = −
𝑣(𝑡)

ℎ𝑝
 (2.8) 

 

Based on the non-zero strains in Eqs. 2.5 and 2.6, structural relations for elastic isotropic 

substrate layer (Hooke’s Law) are as follow 
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𝜏𝑥𝑧 = 𝐾𝑠𝐺𝑠𝛾𝑥𝑧 = 𝐾𝑠𝐺𝑠(𝜙𝑥 + 𝑤́0) (2.9) 

𝜎𝑥𝑥 = 𝐸𝑠𝜖𝑥𝑥 = 𝐸𝑠(𝑢́0 + 𝑧𝜙́𝑥) (2.10) 

 

where 𝐸𝑠 and 𝐺𝑠 are Young’s modulus and shear modulus, respectively. 

 

2.2.1 Kinetic and strain energy 

 

Considering the stress and strains calculated, the strain and the kinetic energies of a 

piezoelectric energy harvester in the flapping mode can be defined as: 

 

𝑈 =
1

2
∫[𝜎𝑥𝑥𝜖𝑥𝑥 + 𝜏𝑥𝑧𝛾𝑥𝑧]𝑑𝑉𝑠 +

1

2
∫[𝜎𝑝𝜖𝑝 + 𝜏𝑝𝛾𝑝]𝑑𝑉𝑝 (2.11) 

𝑇 =
1

2
∫𝜌(𝑹̇. 𝑹̇)𝑑𝑉 (2.12) 

 

The subscripts s and p stand for substrate and piezo material, respectively, and the integrations 

are performed over the volume (V) of the respective material. In the above equations, dots and 

prime symbols identify derivatives with respect to time and space (i.e., x), respectively. By 

substituting the strains, stresses, and velocity into the previous equations the total energies are 

summarized as follows (more detailed calculations are provided in the Appendix B).  

 

𝑈 =
1

2
∫ [(𝐼0

𝐸𝑢́0
2 + 𝐼2

𝐸𝜙́𝑥
2
+ 2𝐼1

𝐸𝑢́0𝜙́𝑥) + 𝐼0
𝐺(𝑤́0

2 + 𝜙𝑥
2 + 2𝜙𝑥𝑤́0)]

𝐿

0

𝑑𝑥

+
1

2
∫ [(𝐽0

𝐸𝑢́0
2 + 𝐽2

𝐸𝜙́𝑥
2
+ 2𝐽1

𝐸𝑢́0𝜙́𝑥) + 𝐽0
𝐺(𝑤́0

2 + 𝜙𝑥
2 + 2𝜙𝑥𝑤́0)

𝐿

0

+
𝑑31
ℎ𝑝

𝐽0
𝐸𝑣(𝑡)𝑢́0 +

𝑑31
ℎ𝑝

𝐽1
𝐸𝑣(𝑡)𝜙́𝑥] 𝑑𝑥 

(2.13) 
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𝑇 =
1

2
∫ [𝐼0

𝜌
𝑢̇0

2 + 𝐼0
𝜌
𝑤̇0

2 + 2𝐼0
𝜌
𝑤̇0𝑔̇ + 𝐼0

𝜌
𝑔̇2 + 2𝐼1

𝜌
𝑢̇0𝜙̇𝑥 + 𝐼2

𝜌
𝜙̇𝑥

2
] 𝑑𝑥

𝐿

0

+
1

2
∫ [𝐽0

𝜌
𝑢̇0

2 + 𝐽0
𝜌
𝑤̇0

2 + 2𝐽0
𝜌
𝑤̇0𝑔̇ + 𝐽0

𝜌
𝑔̇2 + 2𝐽1

𝜌
𝑢̇0𝜙̇𝑥 + 𝐽2

𝜌
𝜙̇𝑥

2
] 𝑑𝑥

𝐿

0

 

(2.14) 

 

where 

 

𝐼𝑖
𝐸 ≜∬𝑧𝑖𝐸𝑠𝑑𝑦𝑑𝑧 ,   𝐼0

𝐺 ≜∬𝐾𝑠𝑧
𝑖𝐺𝑠𝑑𝑦𝑑𝑧 ,   𝐼𝑖

𝜌
≜∬𝑧𝑖𝜌𝑠𝑑𝑦𝑑𝑧 , 𝑖 = 0,1,2 (2.15) 

𝐽𝑖
𝐸 ≜∬𝑧𝑖𝐸𝑝𝑑𝑦𝑑𝑧 ,   𝐽0

𝐺 ≜∬𝐾𝑠𝑧
𝑖𝐺𝑝𝑑𝑦𝑑𝑧 ,   𝐽𝑖

𝜌
≜∬𝑧𝑖𝜌𝑝𝑑𝑦𝑑𝑧 , 𝑖 = 0,1,2 (2.16) 

 

The terms 𝐽0
𝐸 and 𝐽1

𝐸 are the piezoelectric coupling terms so that the former couples the voltage 

and the extension components and the latter couples the voltage and the curvature components. 

For the bimorph configuration (symmetric structure), the parameters 𝐽1
𝐸 , 𝐽1

𝜌
, 𝐼1
𝐸 𝐼1

𝜌
 give zero values 

due to the existing symmetry in the configuration of the structure, and hence, there is no coupling 

between the axial and the transverse displacements (i.e., 𝑢0 and 𝑤0). This means that in a 

symmetric structure the axial displacement cannot be excited under the displacement of the base 

excitation.  

The internal electrical energy in the piezoelectric layer is calculated according to Eq. 2.17. 

 

W𝐼𝐸 =
1

2
∫𝐸3𝐷3 𝑑𝑉𝑝 = −

1

2

𝑣(𝑡)

ℎ𝑝
∫[𝐸𝑝𝑑31(𝑢́0 + 𝑧𝜙́𝑥) −

𝑣(𝑡)

ℎ𝑝
𝜀33
𝑆 ] 𝑑𝑉𝑝

= −
1

2

𝑣(𝑡)

ℎ𝑝
𝑑31∫(𝐽0

𝐸𝑢́0 + 𝐽1
𝐸𝜙́𝑥)𝑑𝑥

𝐿

0

+
1

2
𝐶𝑝𝑣(𝑡)

2 

(2.17) 

 

where 𝐶𝑝 is the internal capacitance of the piezoceramic given by: 

𝐶𝑝 = 𝜀33
𝑆
𝐴𝑝

ℎ𝑝
 (2.18) 
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where 𝜀33
𝑆  and 𝐴𝑝 are the dielectric permittivity at constant strain and the electrode area, 

respectively.  

The relationship between the permittivity at constant strain and constant stress is provided by 

the following [53] 

 

𝜀33
𝑆 = 𝜀33

𝑇 − 𝑑31
2𝐸𝑝 (2.19) 

 

As is depicted in Fig. 2.1, the top and the bottom piezoelectric layers have the opposite poling 

directions. According to this configuration, the following equations represent the relationship 

between the characteristics of the piezoceramic layers including voltages, charges and 

piezoelectric strain coefficients in the serial connection.  

 

𝑣𝑇 = 𝑣𝐵 =
𝑣

2
   𝑎𝑛𝑑   𝑑31

𝑇 = −𝑑31
𝐵    𝑎𝑛𝑑   𝑄𝑇 = 𝑄𝐵 = 𝑄 (2.20) 

 

where superscripts T and B denote the top and the bottom piezoceramic layers, respectively.  

Damping is an important parameter which plays a key role in the performance of the dynamic 

systems. A combination of internal (strain-rate) and external (air) damping mechanisms exist for 

the undamped cantilever piezoelectric beam. They exhibit unavoidable effects on the frequencies 

of the system and subsequently the maximum power output. They should be accordingly 

considered carefully in order to have a more accurate model. To apply analytical modal analysis 

techniques, one of the ways to account for the effect of mechanical damping is usually restricted 

by the stiffness and mass proportional damping mechanisms. This type of model is referred to as 

Rayleigh damping which is especially employed in dynamic analysis of discrete systems [65]. 

Rayleigh damping is a damping matrix proportional to the resulting mass and stiffness matrices 

which is also employed here. At this point, without the existence of the mechanical dissipative 

effects, the extended Hamilton’s principle is expanded as follows:  

 

∫(𝛿𝑇 − 𝛿𝑈 + 𝛿𝑊𝐼𝐸 + 𝛿𝑊𝑛𝑐)𝑑𝑡

𝑡2

𝑡1

= 0 (2.21) 
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where 𝛿𝑇, 𝛿𝑈, 𝛿𝑊𝐼𝐸 and 𝛿𝑊𝑛𝑐 are the virtual works of the total kinetic energy, the strain energy, 

the internal electrical energy and the non-conservative mechanical force, respectively. The effect 

of base excitation is already considered in the total kinetic energy, so, the only remaining non-

conservative virtual work is the one due to the electric charge output 𝑄(𝑡). Therefore, for the non-

conservative virtual work of the bimorph piezoelectric beam one can write that: 

 

𝛿𝑊𝑛𝑐 = 𝑄(𝑡)𝛿𝑣(𝑡) (2.22) 

 

2.2.2 Spatial discretization using finite element method 

 

In this section the FEM is employed to discretize the coupled model. Various types of elements 

could be utilized for the discretization and in this chapter to increase the accuracy of results, 

superconvergent element comprising six-DOF is proposed (Fig. 2.2). 

To employ the FEM, the cross-section of the beam structure is assumed uniform in the planar 

beam elements. If a beam has a varying cross-section, the beam should be divided into shorter 

beam elements with a more uniform cross-section.  

 

2.2.3 Superconvergent element (SCE) 

 

To solve the equations using FEM, it is necessary to consider one element along with its 

associated shape functions defining the nodal displacements. The accuracy of solutions strictly 

depends on both the type of applied elements and the number of them, which would be proportional 

to the cost of data processing. To increase the accuracy, one element with a high convergence rate 

named superconvergent element is applied here in this study. In the SCE, the Hermite cubic 

interpolation of 𝑤0 and a related quadratic approximation of 𝜙𝑥 are considered. The approximate 

shape functions are derived using the solution of the equations of motion for the Timoshenko beam 

theory in the static case. Thus, the 4*4 system of equations obtained yield exact values of the nodal 

displacements. Because of the above-mentioned feature, the convergence rate of this element is 

much higher in comparison to the conventional finite element. In fact, for the conventional finite 

element, the admissible shape functions are only an approximate solution while the 

superconvergent element are the exact solution of the equations. Regarding the differences in 

matrices of conventional and superconvergent elements, they result in the same 4*4 matrices with 
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different shape functions (Appendix C). This type of element has two nodes and six degrees-of-

freedom (DOF), including two DOF in the transverse direction, two DOF in the rotational direction 

and two in the axial direction (Fig. 2.2). In this model, the shape functions are derived by using 

static equilibrium. By solving the equations corresponding to the static balance, Lagrange linear 

shape functions, cubic shape functions and quadratic shape functions are derived for the axial, 

transverse, and the bending rotation, respectively. One of the noticeable benefits of this sort of 

element is its simple transferring method from the Timoshenko to Euler-Bernoulli beam. In other 

words, the element model includes a coefficient showing the effect of shear at the cross-section of 

the beam. By setting this coefficient to zero (i.e., infinite shear modulus or 𝐺 → ∞), one can have 

the results for the Euler-Bernoulli beam theory without performing extra calculations [52]. 

Therefore, using the derived shape functions, the three mentioned parameters in terms of the nodal 

displacements are represented in Eq. 2.23.   

 

 

Figure 2.2 Two-node finite element with four DOF. 

 

[

𝑢0(𝑥, 𝑡)

𝑤0(𝑥, 𝑡)

𝜙𝑥(𝑥, 𝑡)
] = [

𝑁𝑢(𝑥)

𝑁𝑤(𝑥)

𝑁𝜙(𝑥)
] 𝑎(𝑡) (2.23) 

 

Also in the matrix form  

 

[

𝑢0(𝑥, 𝑡)

𝑤0(𝑥, 𝑡)

𝜙𝑥(𝑥, 𝑡)
] = [

𝜒1
𝑒(𝑥) 0 0  𝜒2

𝑒(𝑥) 0 0

0  𝜓1
𝑒(𝑥)  𝜓2

𝑒(𝑥) 0  𝜓3
𝑒(𝑥)  𝜓4

𝑒(𝑥)

0  𝜑1
𝑒(𝑥)  𝜑2

𝑒(𝑥) 0  𝜑3
𝑒(𝑥)  𝜑4

𝑒(𝑥)
]

[
 
 
 
 
 
 
𝑈1
𝑒(𝑡)

𝑊1
𝑒(𝑡)

 𝜙1
𝑒(𝑡)

 𝑈2
𝑒(𝑡)

𝑊2
𝑒(𝑡)

𝜙2
𝑒(𝑡) ]

 
 
 
 
 
 

 (2.24) 
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where 𝑁𝑢(𝑥), 𝑁𝑤(𝑥) and 𝑁𝜙(𝑥) are the shape functions (Appendix C), 𝑎(𝑡) is the unknown 

generalized coordinates. Substituting Eq. 2.24 into Eq. 2.21 and applying the integration by parts, 

the electromechanical coupling equations for a typical finite element in flapping mode is 

summarized in the following form: 

 

𝑴𝒆𝒂̈(𝒕) + 𝑪𝒆𝒂̇(𝒕) + 𝑲𝒆𝒂(𝒕) − 𝜽𝒆𝑣(𝑡) = 𝒇𝒆 (2.25) 

𝜽𝒆𝑻𝒂(𝒕) + 𝐶𝑝𝑣(𝑡) + 𝑄 = 0 (2.26) 

 

Taking the time derivative of Eq. 2.26 and using 𝐼 = 𝑄̇ = 𝑣/𝑅𝑙 (the current generated by the 

cellulose electro-active paper) gives it as the new form Eq. 2.27. At this stage, Rayleigh damping 

(proportional damping) is added to the equations to account for the mechanical dissipative effects 

by preserving the normal-mode system as shown in Eq. 2.28.  

 

𝐶𝑝𝑣̇(𝑡) +
𝑣(𝑡)

𝑅𝑙
+ 𝜽𝒆𝑻𝒂̇(𝒕) = 0 (2.27) 

 𝑪𝒆 = 𝜇𝑴𝒆 + 𝛾𝑲𝒆 (2.28) 

 

where 𝜇 and 𝛾 are the constants of mass and stiffness proportionality. Term 𝑴𝑒 is the mass matrix; 

𝑪𝑒  is the damping matrix; 𝑲𝑒  is the elastic stiffness; 𝜽𝑒 is the electromechanical coupling matrix 

and 𝒇𝑒  is the vector of dynamical forces corresponding to one element of the piezoelectric 

cantilever beam, and 𝐶𝑝 is the equivalent capacitance (presented in the Appendix E).  

 

 

2.2.4 Solution of the electromechanical coupling equation  

 

As the first step the type of base excitation input needs to be determined. By considering the 

input in the harmonic form 𝑔(𝑡) = 𝑋𝑒𝑖𝜔𝑡 and assembling the elements of the beam, the 

components of the forcing vector become:  
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  𝒇𝑒 = [𝜔2𝑋∫(𝐼0
𝜌
+ 𝐽0

𝜌
)𝑁𝑤

𝑇𝑑𝑥

𝑙𝑒

0

] 𝑒𝑖𝜔𝑡 (2.29) 

 

The steady-state response in generalized coordinates and the voltage output are defined as 

𝒂(𝒕) = 𝑨𝑒𝑖𝜔𝑡 and 𝑣 = 𝑉𝑒𝑖𝜔𝑡 in which elements A and V are complex values. Finally, the 

assembled steady-state forms of electromechanical coupling equations are expressed as follows: 

 

(−𝑴𝜔2 + 𝑖𝜔𝑪 + 𝑲)𝑨 − 𝜽𝑉 = 𝑭 (2.30) 

𝑖𝜔𝜽𝑻𝑨 + (𝑖𝜔𝐶𝑝 +
1

𝑅𝑙
) 𝑉 = 0 (2.31) 

 

From Eq. 2.31 

 

𝑉 = −𝑖𝜔 (𝑖𝜔𝐶𝑝 +
1

𝑅𝑙
)
−1

𝜽𝑻𝑨 (2.32) 

 

Substituting Eq. 2.32 into Eq. 2.30 the amplitude vector of generalized coordinates (A) is given 

as 

 

𝑨 = [−𝑴𝜔2 + 𝑖𝜔𝑪 + 𝑲 + 𝑖𝜔 (𝑖𝜔𝐶𝑝 +
1

𝑅𝑙
)
−1

𝜽𝜽𝑻]

−1

𝑭 (2.33) 

 

Also, substituting Eq. 2.33 into Eq. 2.31 yields the complex voltage as: 

 

𝑣(𝑡) = −𝑖𝜔 (𝑖𝜔𝐶𝑝 +
1

𝑅𝑙
)
−1

𝜽𝑻 [−𝑴𝜔2 + 𝑖𝜔𝑪 + 𝑲

+ 𝑖𝜔 (𝑖𝜔𝐶𝑝 +
1

𝑅𝑙
)
−1

𝜽𝜽𝑻]

−1

𝑭𝑒𝑖𝜔𝑡 

(2.34) 
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Eventually, by having the vector of generalized coordinates 𝒂(𝒕) = 𝑨𝑒𝑖𝜔𝑡 and substituting into 

Eq. 2.24 the axial displacement, the transverse displacement and the cross-section rotation are 

obtained as:  

 

[

𝑢0(𝑥, 𝑡)

𝑤0(𝑥, 𝑡)

𝜙𝑥(𝑥, 𝑡)
] = [

𝑁𝑢(𝑥)

𝑁𝑤(𝑥)

𝑁𝜙(𝑥)
]𝑨𝑒𝑖𝜔𝑡 (2.35) 

 

The last point consists of the evaluation of the short-circuit and open-circuit natural frequencies 

of the PEH. In general, the short-circuit and open-circuit natural frequencies can be obtained by 

setting the mechanical damping 𝑪 and applied force 𝑭 to zero and considering the 𝑅𝑙 → 0 and 

𝑅𝑙 → ∞ cases, respectively.  

 

2.3. Numerical solutions and validation 

 

In this section, a number of examples are studied to assess not only the predictions yielded by 

the model of a bimorph piezoelectric beam using the SCE, but also carry out the validation of the 

results by the experimental and analytical data existing in the literature to prove its potential and 

rate of convergence. The experimental and the analytical results presented by Erturk and Inman 

[3] have been validated by Wang using a spectral finite element method [54] and used in our work 

for validation of our results.  

In the first example, the convergence of the superconvergent element is verified by considering 

a bimorph cantilever beam investigated by Erturk and Inman [3]. The properties of the investigated 

bimorph piezoelectric beam are presented in Table 2.1. This is a brass-reinforced bimorph 

manufactured by Piezo Systems Inc. The substrate layer is made of brass material and its top and 

bottom surfaces are covered with lead zirconate titanate (PZT-5H). It is worth noting that the 

piezoelectric layers are connected in series. Based on Table 2.2, the piezoelectric energy harvester 

has a slenderness ratio over 36.  
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Table 2.1 Properties of the bimorph piezoelectric cantilever beam. 

Property Piezoelectric layer Substrate layer 

Material PZT-5H Brass 

Density 𝜌 (kg/mm3) 7500 9000 

Length (mm) 24.53 24.53 

Thickness (mm) 0.265 0.14 

Width (mm) 6.4 6.4 

Young’s modulus E (GPa) 60.6 105 

Piezoelectric strain coefficient d31(pC/N) -274 − 

Dielectric permittivity at constant strain 𝜀33
𝑆  (nF/mm) 25.55 − 

Shear modulus G (GPa) 23 40 

 

In this example, only one SCE is used to extract the mechanical and electrical results. To 

include the effect of mechanical damping,  proportional damping (modal damping) is considered 

with 𝜁 = 0.00874 as assumed by Erturk and Inman [3] for the first mode. Generally, for each and 

every mode of vibration the damping ratio must be firstly determined to be able to count the effect 

of dissipative damping. Half power bandwidth method has been used to estimate the modal 

damping ratio of the system for each natural mode from the frequency response function curve. 

For each resonance frequency, there is a peak in FRF amplitude so that 3 dB down from the peak 

there are two points corresponding to half power points. The distance between these points 

determines the amount of damping. In other words, the more the distance, the more the damping 

amount. Another common way to derive the damping ratio for the first natural mode of the systems 

is the logarithmic decrement method which can be applied here because in all of the calculations 

just the fundamental natural frequency with the maximum power output has been of interest [12].  

To validate, the fundamental resonance frequency of the PEH based on the Timoshenko beam 

theory under the short-circuit (𝑅𝑙 = 470 Ω) and open-circuit (𝑅𝑙 = 995 𝑘Ω) conditions is derived 

and compared with those in the literature, as summarized in Table 2.2. The exclusive convergence 

rate of this element is discernible from the results summarized in Table 2.2 in which using only 

one superconvergent element the difference between the experimental and theoretical values of 1st 

natural frequency is ignorable. The results prove that the relative errors between the predictions 

and the measured resonance frequency is less than 0.5% while this value was reported with 
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accuracy of 0.7-1.1% in another analytical study. Hence, the represented SCE has a very good rate 

of convergence in comparison to the spectral finite element method derived in the frequency 

domain [54]. It should be mentioned that in both the studies only one element is used to capture 

the dynamics of this electromechanically coupled system.  

 

Table 2.2 Fundamental resonance frequency of piezoelectric energy harvester. 

1st natural frequency 
Experimental 

(Hz) [3] 

SCE 

(Hz) 
Error (%) 

Ref 

[54] (Hz) 

Error(%) 

[54] 

Short circuit, (𝑅𝑙 = 470 Ω) 502.5 504.7 0.44 507.8 1.1 

Open circuit, (𝑅𝑙 = 995 𝑘Ω) 524.7 526.9 0.42 528.3 0.7 

SCE: superconvergent element 

 

As the second part of validation, the tip velocity and the voltage FRF results are compared with 

the experimental data under different resistance loading conditions varying from the short-circuit 

state to the open-circuit state. As it is cited in the literature [3], 𝑅𝑙 = 470 Ω and 𝑅𝑙 = 995 𝑘Ω are 

considered as the short-circuit and open-circuit conditions, respectively. It should be pointed out 

that the tip velocity measurement taken by Erturk and Inman [3] is the velocity response of the 

point located approximately 1.5 mm away from the free end of the cantilever beam. Depicted 

graphs prove that the predicted outputs using the superconvergent element is in  very good 

agreement with the experimental results although only one element was used in the SCE 

simulations in comparison to another analytical work [3] in which at least five mode shape 

functions were applied. The excellent correlation demonstrates the potential of the SCE to capture 

both mechanical and electrical responses. Figs. 2.3 to 2.6 show the experimental versus the 

solution achieved above for the beam tip velocity and voltage FRFs under different resistance 

loading conditions including 𝑅𝑙 = 470 Ω (short-circuit), 𝑅𝑙 = 1200 Ω, 𝑅𝑙 = 44.9 𝑘Ω, and 𝑅𝑙 =

995 𝑘Ω (open-circuit).  
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(a) 

 

(b) 

Figure 2.3 Tip velocity and voltage output FRF of the piezoelectric energy harvester, 𝑅𝑙 = 470 Ω. 

 

 

(a) 

 

(b) 

Figure 2.4 Tip velocity and voltage output FRF of the piezoelectric energy harvester, 𝑅𝑙 = 1200 Ω. 

 

 

(a) 

 

(b) 

Figure 2.5 Tip velocity and voltage output FRF of the piezoelectric energy harvester, 𝑅𝑙 = 44.9 𝑘Ω. 
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(a) 

 

(b) 

Figure 2.6 Tip velocity and voltage output FRF of the piezoelectric energy harvester, 𝑅𝑙 = 995 𝑘Ω. 

 

From the above graphs, it is obvious that both results are in a good agreement and the only 

significant difference (approximately 5%) between the predicted voltage and the experimental is 

corresponding to the open-circuit condition. In conclusion, the performance of the represented 

element is acceptable with the low percentage of error between the models and the experiments 

for the bimorph piezoelectric energy harvesters. Based on the obtained results by increasing the 

load resistance the frequency at which the peak of the graph (maximum values of both output 

voltage and tip velocity) is occurring is shifting little by little from 500 Hz to 600 Hz. Additionally, 

it can be seen that regardless of the value of the excitation frequency, increasing the load resistance 

could lead to increasing the output voltage. Therefore, the minimum and the maximum output 

voltages are achieved in the short-circuit and open-circuit cases, respectively. Last but not least, 

the open-circuit condition is providing the highest amount of output voltage while the maximum 

value of the tip velocity is associated with the short-circuit case although it yields a small difference 

with the open-circuit case (approximately 0.3 m/s/g). 

In the second example similar to the first one, a bimorph piezoelectric cantilever is assumed 

with the same electromechanical properties for the top and the bottom piezoceramic layers as listed 

in Table 2.3. The total length and width of the PEH are 100 mm and 20 mm, respectively. The 

substrate is made of aluminum with Young’s modulus of 70 GPa, shear modulus of 27 GPa and 

density of 2700 kg/m3. The thickness of the substrate is varying from 1.5 to 19.5 mm to cover a 

large range of values of the slenderness ratio. The predicted fundamental resonance frequency of 

the energy harvester using the proposed SCE is calculated analytically and provided in Table 2.4. 

It is noteworthy that Wang [54] examined the application of the both beam theories using the 

spectral finite element method.  
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In Table 2.4, the estimation of the first resonance frequency is obtained for both the short-

circuit and open-circuit conditions. Beam with a number of different slenderness ratios based on 

both the Timoshenko and Euler-Bernoulli beam assumptions is taken in this example. By 

comparing the results, it can be concluded that the higher slenderness ratio has a decreasing effect 

on the fundamental natural frequency of the PEH. 

As already expected in the literature the natural frequencies predicted using the Timoshenko 

assumptions  give  smaller values in comparison to the Euler-Bernoulli configuration because in 

the latter theory the shear modulus is considered infinite (𝐺𝑠 → ∞) resulting in smaller stiffness 

values and subsequently smaller natural frequencies. Moreover, it can be observed that the 

resonance frequency in the open-circuit condition is slightly larger than of the short-circuit mode 

while the slenderness ratio is increasing. By comparting the results, the effect of the employed 

beam theory on the first resonance frequency is recognizable for the smaller slenderness ratio so 

that the maximum error is approximately 4% for 𝑆𝑟 = 5. In other words, for thicker or shorter 

beams the Timoshenko approach should be employed while for longer or narrower beams 

application of the Timoshenko assumptions is not necessary and the acceptable outputs could be 

expected by use of the Euler-Bernoulli approach.  

 

Table 2.3 Properties of bimorph piezoelectric cantilever beam. 

Property Piezoelectric layer Substrate layer 

Material PZT-5H Aluminum 

Density 𝜌 (kg/m3) 7500 2700 

Length (mm) 100 100 

Thickness (mm) 0.25 Variable 

Width (mm) 20 20 

Young’s modulus E (GPa) 60.6 70 

Piezoelectric strain coefficient d31(pC/N) -274 − 

Dielectric permittivity at constant strain 𝜀33
𝑆  (nF/m) 25.55 − 

Shear modulus G (GPa) 23 27 
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Table 2.4 The fundamental resonance frequency of harvester in different conditions using both beam theories 

Short-circuit (𝑅𝑙 = 10−3 Ω) Open-circuit (𝑅𝑙 = 10 𝑀Ω) 

𝑆𝑟 =
𝐿
ℎ⁄  𝑓1 (Hz) Timoshenko Euler-Bernoulli Timoshenko Euler-Bernoulli 

5 Present 1574.4 1595.6 1579.8 1601.2 

 Ref [54] 1552 1602 1557 1608 

 Error (%) 1.4 0.4 1.5 0.4 

10 Present 779.9 782.6 785.2 787.9 

 Ref [54] 774 781 780 786 

 Error (%) 0.8 0.2 0.7 0.2 

20 Present 373.2 373.5 378.1 378.4 

 Ref [54] 371 372 376 377 

 Error (%) 0.6 0.4 0.6 0.4 

50 Present 132 132 135.8 135.8 

 Ref [54] 131.5 131.5 135 135 

 Error (%) 0.4 0.4 0.6 0.6 

 

 

Figure 2.7 The effects of the slenderness ratio on the first three resonance frequencies in the open-circuit 

condition, 𝑅𝑙 = 10 𝑀Ω. 
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Figure 2.8 The effects of the slenderness ratio on the difference between the calculated 1st natural frequency 

using both beam theories in the short-circuit condition, 𝑅𝑙 = 1𝑒 − 3 Ω. 

 

Fig. 2.7 shows the effects of the slenderness ratio on the first three resonance frequencies of 

the energy harvester in the open-circuit condition. Three superconvergent elements are applied 

during the assembly for the prediction of resonance frequencies. Obviously, as the slenderness 

ratio is increasing the natural frequencies are decreasing. Meanwhile, the effects of the employed 

beam theory on the fundamental natural frequency of the beam can be seen in Fig. 2.8. It could be 

concluded that the increasing slenderness ratio has a decreasing effect on the difference between 

the obtained results using both beam theories. Based on Fig. 2.8, the variation between the 

predicted frequencies is negligible for slenderness ratio 𝑆𝑟 ≥ 5. Regarding the capacity of the 

piezoelectric energy harvesters, investigation of the resulting electromechanical FRFs including 

the voltage output, the current output, and the power output are important aspects. Since the value 

of the load resistance 𝑅𝑙 has an important role in the determination of the output of the harvester, 

the FRFs for five different values of the load resistance ranging from 106 Ω (close to the short-

circuit case) to 102 Ω  (close to the open-circuit case) are plotted in Figs. 2.9-2.11. Based on the 

derived formula for the output voltage, it has a direct relationship with the load resistance 𝑅𝑙 while 

it is inverted for the current output because it is determined by dividing the voltage FRF by the 

load resistance. Hence, the current output is decreasing as the load resistance 𝑅𝑙 is increased. 
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Finally, since power output is the product of the two FRFs which exhibit the opposite behaviors, 

the behavior of the power output FRF could not be easily predicted. For every excitation frequency 

the maximum voltage and current outputs are obtained when the system is within the open-circuit 

and close-circuit cases, respectively. With regard to the power output, it is obvious from Fig. 2.11 

that the power output FRF does not exhibit a monotonic behavior with increasing (or decreasing) 

the load resistance similar to the other two FRFs. In summary, Fig. 2.11 represents that among the 

five considered load resistances 𝑅𝑙 = 104 Ω could provide the highest amount of power extraction 

for the designed energy harvester. It should be pointed out that in order to extract the values, three 

superconvergent elements are used with the Timoshenko beam assumptions and the geometric 

property 𝑆𝑟 = 50. Finally, in Fig. 2.12 a 3D image of the output power for different values of the 

excitation frequency and load resistance is shown. As can be seen, the maximum state is occurring 

for 𝑅𝑙 = 10
3 − 104 Ω as was depicted in Fig. 2.11, as well. The excitation frequency associated 

with the highest resistance value is 131.83 𝐻𝑧 which results in the peak of the power output, 

0.0159. Hence, the optimized condition is more near to the short-circuit condition although one 

cannot surely reach to the highest voltage and current outputs in this case. In conclusion, based on 

our objective function the optimized values of the variables need to be changed. In other words, 

there is no possibility to optimize the three mentioned objective functions simultaneously.  

 

 

Figure 2.9 Voltage FRF for five different values of the load resistance. 
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Figure 2.10 Current FRF for five different values of the load resistance. 

 

 

Figure 2.11 Power FRF for five different values of the load resistance. 
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Figure 2.12 A 3D FRF for a wide range of the load resistance and excitation frequency. 

 

2.4 Conclusions 

 

In this chapter, finite element method with the application of the superconvergent element is 

employed to study the characteristics of the bimorph piezoelectric energy harvesters based on both 

the Timoshenko and Euler-Bernoulli beam theories. The current model is presented for a 

Timoshenko beam, but could be extended for the Euler–Bernoulli beam, as well. During the 

derivation, both linear piezoelectric and linear strain/stress relations are assumed. The harvester 

beam is assumed to be excited due to the vertical motion of its base at the root of the cantilever 

beam. The bending motion of the harvester at different excitation frequencies corresponds to the 

flapping vibration mode. In the mechanical modeling, the effects of both strain rate damping and 

external air damping are accurately treated in the final discretized equations by defining the 

proportional damping. The mechanical damping ratio could be identified from the experimental 

measurements including the half power bandwidth method or the logarithmic method which is 

working only for the first vibration mode.  

The eletromechanical coupling equations are firstly derived for the general state of base 

excitations but after that they are extended only for the case of harmonic base motions. The derived 

analytical equations are then used to analyze the effects of different parameters on the output and 

the capacity of the harvester. The electrical outputs of the system are strictly dependent on the 

excitation frequency and the load resistance. To observe the frequency response behavior of the 
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electrical outputs, the FRFs for voltage, current and power outputs are identified and depicted. 

These three FRFs are plotted for five different orders of magnitude of the load resistance. 

Regardless of the electrical parameters, mechanical properties including natural frequencies and 

tip velocity of the energy harvester are obtained and the results are compared with the literature. 

For the purpose of validation, several examples are discussed. Validation of the results proves that 

SCE is an excellent element with very good rate of convergence. The shape functions adopted in 

finite element method are the exact solutions resulting from static equilibrium of the Timoshenko 

beam approach. This is why the SCE can more accurately follow the experimental results in 

comparison to the other methods. In other words, if one does not have the capability to formulate 

the characteristic functions as exact solutions, it is expected that those results be less accurate. In 

SCE only very few elements are required to capture the outputs, which significantly reduces the 

time and the cost of computation. Although this element is derived from static equilibrium, it has 

shown its capability for the analysis of dynamic problems.  

Calculation of the relative errors in the different assessed examples represent that in the worst 

case the maximum percentage of error between the predicted values and the experimental ones is 

less than approximately 5%. Also, the effect of slenderness ratio is investigated showing that only 

for the smaller values of slenderness ratio (less than 5) it is more suitable to model the beam using 

the Timoshenko assumptions. Thus, the kind of applied beam theory strongly depends on the 

geometric parameters of the energy harvester so that the inclusion of the shear deformation and 

the rotary inertia in modelling is negligible for large beams.  
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Chapter 3  Performance of tapered cantilever piezoelectric energy 

harvester based on Euler-Bernoulli and Timoshenko beam theories 

 

The cantilever beam configuration plays an important role on the power extracted from the 

vibration based piezoelectric energy harvesters (PEHs). Although it has already been proven that 

triangular and trapezoidal shapes optimize and improve the electrical output of the PEHs, the 

impact of other shapes have not been considered. It is necessary to figure out which shape can 

provide the maximum amount of power and efficiency, as well. In this chapter, a complete study 

regarding the influence of non-uniform theories using both Timoshenko and Euler-Bernoulli 

beams for both unimorph and bimorph states is carried out. The width and height of the cantilever 

beams are changed based on the degree of polynomial functions. To solve the equations, finite 

element method (FEM) with the application of two different elements including four-degree-of-

freedom (DOF) model, and eight-DOF model is adopted. Based on the analysis, it can be 

concluded that by increasing the degree of non-uniformity and slenderness ratio the amount of 

harvested electrical output rises. Moreover, the difference between two beam theories is 

significant for thick beams with small slenderness ratios. Additionally, the effects of non-

uniformity including the tapering ratio described by polynomial functions on the efficiency of 

PEHs are studied.  
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3.1 Introduction 

 

There are three basic mechanisms which have been used to convert mechanical vibrations to 

electrical energy, namely, electro-magnetic, electrostatic and piezoelectric [6]. Among these three 

methods, piezoelectric PEHs have received consideration owing to its simple structure, high 

electrical output, and efficiency. Although there are different boundary conditions for the system, 

the cantilever configuration is the most effective option due to its maximum deflection in 

comparison to other beam boundary conditions. To model the PEHs there are two basic options 

namely unimorph (one layer of piezoelectric), and bimorph (two layers of piezoelectric) with 

parallel and series circuits. Many studies have been carried out to analyze the power scavenged 

from the rectangular energy harvesters using the above configurations [3, 54, 60, 62, 66, 67].  

The need for improvements in power generation has pushed researchers forward to find ways 

to reach higher efficiency. Optimization methods have been adopted to improve the efficiency of 

systems. To optimize PEHs, different design variables such as shape, size, material properties and 

damping can be considered. Shape optimization or geometry modification represents an effective 

approach  because it is possible to enhance the deflection of the free end of cantilever beam using 

diverging beams which result in uniform strain distribution along the beam’s length and higher 

power extraction [68]. In this regard, Goldschmidtboeing and Woias [69] studied different 

triangular-shaped and rectangular-shaped beams, showing that using triangular state the excitation 

amplitude and maximum output power  increases  dramatically. Two optimized trapezoidal 

configurations were identified and validated experimentally by Benasciutti et al. [70]. In another 

study the effects of varying cross-sectional area of bimorph configuration on the electromechanical 

behavior of PEHs was discussed analytically and experimentally [71]. To calculate the power 

generated for non-uniform beams, Salmani et al. [72] presented an exact analytical solution for the 

exponentially tapered piezoelectric beam with tip mass in both unimorph and bimorph with parallel 

and series connections. They also verified the results both numerically and experimentally. 

Siddiqui et al. [73] carried out an extensive experimental characterization of tapered bimorphs with 

varying sizes and also with and without the presence of a tip mass. In addition to the tapered width, 

varying thickness is another practical method which was adopted to improve the power output of 

PEHs [74, 75]. It is noteworthy that a taper in thickness of a cantilever has a more significant 

contribution on the beam’s stiffness than that from the taper in width owing to the more significant 
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impact of thickness on the second moment of area.  In a recent work, Sahoo and Pandey [76] 

investigated the performance of non-uniform cantilever beams with linearly and quartic varying 

widths in a unimorph condition. They proved that the diverging beam with tapering parameter can 

produce an enhanced power output in comparison to that of uniform beam. However, if increasing 

the frequency of the structure is the goal the converging beam should be taken into consideration.  

Analysis of non-uniform beams for the various degrees of polynomial function describing the 

non-uniformity has not been reported so far. More importantly, all the studies have been carried 

out assuming Euler-Bernoulli beam theory, although for short beams consideration of higher 

theory, namely Timoshenko, is essential due to the noticeable effect of shear stress. To conduct 

the analysis, the mathematical modeling of system with non-uniform width and height is expanded 

following  the Rayleigh–Ritz method based on distributed parameter model developed for uniform 

structures [3]. The eletromechanical equations are derived for both unimorph and bimorph PEHs 

subjected to base excitation.  Although the damping ratio of non-uniform and uniform beams are 

different, they  are assumed to be the same for the analysis since  the focus of study  is on the 

assessment of frequency and the electrical output. However, in order to improve the results, the 

actual variation of damping ratios should be included. To solve the governing equations of the 

system different methods have been followed. Earlier studies have evaluated the system’s 

performance numerically [3, 70-80], analytically [3, 60, 69, 71, 72, 81], and experimentally [3, 67, 

70-73]. Since there are no analytical solutions for the beam with the varying width and thickness, 

finite element method is applied to calculate the natural frequency and FRFs for electrical outputs. 

In fact, after derivation of the total energy of the system, Hamilton’s principle and finite element 

method are applied to obtain the discretized governing equations of the coupled electromechanical 

system. The frequency response functions (FRF) of the voltage is defined by assuming harmonic 

excitation. Furthermore, the results of both beam theories are compared to conclude which type of 

configuration provides more accurate predictions for different geometric parameters. In this study, 

in order to reach more accurate results two different elements including four-degree-of-freedom 

(DOF) model [52], and eight-DOF model [82] for the Euler and Timoshenko beams have been 

applied, respectively. Both elements have high convergence rates such that using the small number 

of elements provide responses with high accuracy. Since the convergence rate of eight-DOF is 

high for Timoshenko beam this is used [83]. To validate the results, the numerical solutions are 

verified using the experimental, analytical, and also numerical results of other studies reported in 
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the literature. Finally, to better evaluate the effect of non-uniformity on the performance of 

structure, the variation of efficiency for a wide range of tapering ratios and polynomial degrees is 

investigated.  

 

3.2 Electro-mechanical modelling 

 

In this section, the theoretical modelling of the cantilever beam with non-uniform width, b(x), 

and height, h(x), is presented in Fig. 3.1. It is assumed that there is no slip between the 

piezoceramic layers and the substrate layer (perfect bonding). Since two different models, namely 

unimorph and bimorph, are studied here, this section is divided into two subsections to derive the 

equations separately.  

 

 

Figure 3.1 A schematic of piezoelectric based cantilever energy harvester with non-uniform width and height. 

 

3.2.1 Equations of non-uniform unimorph PEHs 

 

To derive the governing equations of piezoelectric cantilever beam with the varying  thickness 

and width, the same procedure as Erturk and Inman [3] is followed. The only difference is the 
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cross section which is changing along the beam’s length. The unimorph piezoelectric beam is 

shown in Fig.3.2. In the figure, ℎ𝑝 is the thickness of the piezoelectric layer, ℎ𝑠(𝑥) is the thickness 

of the substrate, 𝑏𝑝(𝑥) is the width of piezoelectric layer, 𝑏𝑠(𝑥) is the width of substrate layer and 

L is the length of the cantilever beam. For the flapping mode, the position vectors of a generic 

point on the cantilever beam is represented by Eq. 2.1. Eqs. 2.1 -2.4 are repeated below for 

convenience. 

 

𝑹 = 𝑅𝑥𝐼 + 𝑅𝑧𝐾̂ = 𝑢𝐼 + 𝑤𝐾̂ (2.1) 

 

Considering a Timoshenko beam, the displacement of a generic point can be defined by:  

 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑧𝜙𝑥(𝑥, 𝑡) (2.2) 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) = 0 (2.3) 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑡) + 𝑔(𝑡) (2.4) 

 

where 𝑢0, 𝑣0, and 𝑤0 are the displacements projected on the mid-plane, 𝜙𝑥 is the rotation of 

corresponding cross section at point x and time t relative to the moving base and 𝑔(𝑡) is the 

translation in the transverse direction resulting from the base motion.  

Using the definition of Lagrange strain tensor and using the non-zero components of the 

flexible displacement, the normal and shear strains are obtained as 

 

{
𝜖𝑝 =

𝜕𝑢

𝜕𝑥
= 𝑢́0 + 𝑧𝜙́𝑥                                                       ℎ𝑠 − 𝑌 ≤ 𝑧 ≤ ℎ𝑠 + ℎ𝑝 − 𝑌  

𝜖𝑥𝑥 =
𝜕𝑢

𝜕𝑥
= 𝑢́0 + 𝑧𝜙́𝑥                                                                    −  𝑌 ≤ 𝑧 ≤ ℎ𝑠 − 𝑌   

 (3.1) 

{
𝛾𝑝 =

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
= 𝜙𝑥 + 𝑤́0                                            ℎ𝑠 − 𝑌 ≤ 𝑧 ≤ ℎ𝑠 + ℎ𝑝 − 𝑌 

𝛾𝑥𝑧 =
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
= 𝜙𝑥 + 𝑤́0                                                         −  𝑌 ≤ 𝑧 ≤ ℎ𝑠 − 𝑌  

 (3.2) 

 

where 𝑌 is the location of neutral axis. The calculations associated with the position of the neutral 

axis of the asymmetric unimorph structure are provided in Appendix A. equations separately.  
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Figure 3.2 (a) Cantilevered bimorph beam under series connection (b) cantilevered bimorph beam under parallel 

connection(c) cantilevered unimorph beam. 

 

With the assumption of linear piezoelectric constitutive equations [53], the reduced 

piezoelectric constitutive equations of a Timoshenko beam could be expressed using the following 

constitutive equations [3, 84] (Equations 2.7 – 2.22 are repeated as such for convenience) 

 

{

𝜖𝑝
𝛾𝑝
𝐷3

} =

[
 
 
 
 
 
1

𝐸𝑝
0 𝑑31

0
1

𝐾𝑠𝐺𝑝
0

𝑑31 0 𝜀33
𝑇 ]
 
 
 
 
 

{

𝜎𝑝
𝜏𝑝
𝐸3

} (2.7) 

 

where 𝜎𝑝 is the normal stress, 𝜏𝑝 is the shear stress, 𝜖𝑝 is the normal strain, 𝛾𝑝 is the shear strain, 

𝐺𝑝 is the shear modulus, 𝐸𝑝 is the elastic modulus, 𝐷3 is the electric displacement, d31 is the 

piezoelectric strain coefficient, 𝜀33
𝑇  is the dielectric permittivity of piezoelectric layer at constant 
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stress. Additionally, 𝐾𝑠 is the shear correction factor which is 5/6 for a beam with a rectangular 

cross section and 𝐸3is the electric field across the piezoelectric layer which can be defined based 

on Eq. 2.8.  

𝐸3(𝑡) = −
𝑣(𝑡)

ℎ𝑝
 (2.8) 

 

Considering the non-zero strains in Eqs. 3.1 and 3.2 and application of Hooke’s Law, structural 

relations for the substrate layer are as follows  

 

𝜏𝑥𝑧 = 𝐾𝑠𝐺𝑠𝛾𝑥𝑧 = 𝐾𝑠𝐺𝑠(𝜙𝑥 + 𝑤́0) (2.9) 

𝜎𝑥𝑥 = 𝐸𝑠𝜖𝑥𝑥 = 𝐸𝑠(𝑢́0 + 𝑧𝜙́𝑥) (2.10) 

 

where 𝐸𝑠 and 𝐺𝑠 are Young’s modulus and shear modulus, respectively. 

 

3.2.2 Kinetic and strain energies 

 

In order to arrive at the governing equations of the system, it is necessary to firstly calculate 

the kinetic and strain energies of the entire structure using the following equations.  

 

𝑈 =
1

2
∫[𝜎𝑥𝑥𝜖𝑥𝑥 + 𝜏𝑥𝑧𝛾𝑥𝑧]𝑑𝑉𝑠 +

1

2
∫[𝜎𝑝𝜖𝑝 + 𝜏𝑝𝛾𝑝]𝑑𝑉𝑝

=
1

2
∫ [(𝐼0

𝐸𝑢́0
2 + 𝐼2

𝐸𝜙́𝑥
2
+ 2𝐼1

𝐸𝑢́0𝜙́𝑥)

𝐿

0

+ 𝐼0
𝐺(𝑤́0

2 +𝜙𝑥
2 + 2𝜙𝑥𝑤́0)] 𝑑𝑥

+
1

2
∫ [(𝐽0

𝐸𝑢́0
2 + 𝐽2

𝐸𝜙́𝑥
2
+ 2𝐽1

𝐸𝑢́0𝜙́𝑥) + 𝐽0
𝐺(𝑤́0

2 + 𝜙𝑥
2 + 2𝜙𝑥𝑤́0)

𝐿

0

+
𝑑31
ℎ𝑝

𝐽0
𝐸𝑣(𝑡)𝑢́0 +

𝑑31
ℎ𝑝

𝐽1
𝐸𝑣(𝑡)𝜙́𝑥] 𝑑𝑥 

(2.13) 
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𝑇 =
1

2
∫𝜌(𝑹̇. 𝑹̇)𝑑𝑉

=
1

2
∫ [𝐼0

𝜌
𝑢̇0

2 + 𝐼0
𝜌
𝑤̇0

2 + 2𝐼0
𝜌
𝑤̇0𝑔̇ + 𝐼0

𝜌
𝑔̇2 + 2𝐼1

𝜌
𝑢̇0𝜙̇𝑥

𝐿

0

+ 𝐼2
𝜌
𝜙̇𝑥

2
] 𝑑𝑥

+
1

2
∫ [𝐽0

𝜌
𝑢̇0

2 + 𝐽0
𝜌
𝑤̇0

2 + 2𝐽0
𝜌
𝑤̇0𝑔̇ + 𝐽0

𝜌
𝑔̇2 + 2𝐽1

𝜌
𝑢̇0𝜙̇𝑥

L

0

+ 𝐽2
𝜌
𝜙̇𝑥

2
] 𝑑𝑥 

(2.14) 

 

where  

 

𝐼𝑖
𝐸 ≜∬𝑧𝑖𝐸𝑠𝑑𝑦𝑑𝑧 ,   𝐼0

𝐺 ≜∬𝐾𝑠𝑧
𝑖𝐺𝑠𝑑𝑦𝑑𝑧 ,   𝐼𝑖

𝜌
≜∬𝑧𝑖𝜌𝑠𝑑𝑦𝑑𝑧 , 𝑖 = 0,1,2 (2.15) 

𝐽𝑖
𝐸 ≜∬𝑧𝑖𝐸𝑝𝑑𝑦𝑑𝑧 ,   𝐽0

𝐺 ≜∬𝐾𝑠𝑧
𝑖𝐺𝑝𝑑𝑦𝑑𝑧 ,   𝐽𝑖

𝜌
≜∬𝑧𝑖𝜌𝑝𝑑𝑦𝑑𝑧 , 𝑖 = 0,1,2 (2.16) 

 

The terms 𝐽0
𝐸 and 𝐽1

𝐸 are the piezoelectric coupling terms so that the former couples the voltage 

and the extension components and the latter couples the voltage and the curvature components. 

Eq. 2.17 represents the calculation of the internal electrical energy in the piezoelectric layer  

 

W𝐼𝐸 =
1

2
∫𝐸3𝐷3 𝑑𝑉𝑝 = −

1

2

𝑣(𝑡)

ℎ𝑝
∫[𝐸𝑝𝑑31(𝑢́0 + 𝑧𝜙́𝑥) −

𝑣(𝑡)

ℎ𝑝
𝜀33
𝑆 ] 𝑑𝑉𝑝

= −
1

2

𝑣(𝑡)

ℎ𝑝
𝑑31∫(𝐽0

𝐸𝑢́0 + 𝐽1
𝐸𝜙́𝑥)𝑑𝑥

L

0

+
1

2
𝐶𝑝𝑣(𝑡)

2 

(2.17) 

 

The parameter 𝐶𝑝 is the internal capacitance of the piezoceramic calculated as follows:  

 

𝐶𝑝 = 𝜀33
𝑆
𝐴𝑝

ℎ𝑝
 (2.18) 

 



49 
 

where 𝜀33
𝑆  and 𝐴𝑝 are the dielectric permittivity at constant strain and the electrode area, 

respectively. 

 

The energy expressions are used in the extended Hamilton’s principle as follows: 

 

∫(𝛿𝑇 − 𝛿𝑈 + 𝛿𝑊𝐼𝐸 + 𝛿𝑊𝑛𝑐)𝑑𝑡

𝑡2

𝑡1

= 0 (2.21) 

 

where 𝛿𝑇, 𝛿𝑈, 𝛿𝑊𝐼𝐸 and 𝛿𝑊𝑛𝑐 are the virtual works of the total kinetic energy, the strain energy, 

the internal electrical energy and the non-conservative mechanical force, respectively. The only 

non-conservative virtual work is resulted from the electric charge output 𝑄𝑢(𝑡) which is defined 

as follows 

 

𝛿𝑊𝑛𝑐 = 𝑄𝑢(𝑡)𝛿𝑣𝑢(𝑡) (2.22) 

 

To have a precise model, it is necessary to add the effects of damping for the analysis of the 

performance of the dynamic systems. The present study uses stiffness and mass proportional 

damping, namely, Rayleigh damping [65]. 

 

3.2.3 Equations of non-uniform bimorph PEHs method 

 

For a unimorph beam including two layers of piezoelectric and one layer of substrate, there are 

two different ways of connection, namely, parallel and series schemes between the top and the 

bottom layers [3].  The relationships between the characteristics of the piezoceramic layers 

including voltages, charges and piezoelectric strain coefficients in the serial and the parallel 

connections are as follows, respectively.  

 

𝑣𝑇 = 𝑣𝐵 =
𝑣

2
   𝑎𝑛𝑑   𝑑31

𝑇 = −𝑑31
𝐵    𝑎𝑛𝑑   𝑄𝑇 = 𝑄𝐵 = 𝑄 (3.3) 

𝑣𝑇 = −𝑣𝐵 = 𝑣   𝑎𝑛𝑑   𝑑31
𝑇 = 𝑑31

𝐵    𝑎𝑛𝑑   𝑄𝑇 = −𝑄𝐵 =
𝑄

2
 (3.4) 
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where superscripts T and B denote the top and the bottom piezoceramic layers, respectively. 

 

3.3 Discretization of equations 

 

In order to discretize the coupled model, FEM with two different elements, including four-

DOF and eight-DOF, are employed. 

 

3.3.1 Four-degree-of-freedom (DOF) model 

 

This type of element contains two nodes and four degrees-of-freedom (DOF), including two 

DOF in the transverse direction and two DOF in the rotational direction (Fig. 2.2). The shape 

functions are derived by using static equilibrium (Appendix C). As a significant benefit, this 

element has simple transferring method from the Timoshenko to the Euler-Bernoulli beam such 

that by changing the value of one coefficient one can analyze both beam theories without 

performing extra calculations [52].  

Using these shape functions for the element, the displacement parameters in terms of the nodal 

displacements are represented in Eq. 2.24.  

 

[

𝑢0(𝑥, 𝑡)

𝑤0(𝑥, 𝑡)

𝜙𝑥(𝑥, 𝑡)
] = [

𝜒1
𝑒(𝑥) 0 0  𝜒2

𝑒(𝑥) 0 0

0  𝜓1
𝑒(𝑥)  𝜓2

𝑒(𝑥) 0  𝜓3
𝑒(𝑥)  𝜓4

𝑒(𝑥)

0  𝜑1
𝑒(𝑥)  𝜑2

𝑒(𝑥) 0  𝜑3
𝑒(𝑥)  𝜑4

𝑒(𝑥)
]

[
 
 
 
 
 
 
𝑈1
𝑒(𝑡)

𝑊1
𝑒(𝑡)

 𝜙1
𝑒(𝑡)

 𝑈2
𝑒(𝑡)

𝑊2
𝑒(𝑡)

𝜙2
𝑒(𝑡) ]

 
 
 
 
 
 

 (2.24) 

 

3.3.2 Eight-degree-of-freedom (DOF) model  

 

This element was proposed by Reddy [85] for a rectangular beam while it is used here for a 

non-uniform Timoshenko beam. The element has two nodes and every node has four DOF. In fact, 

the nodal displacement vector consists of transverse displacement node, bending rotation, and their 

derivatives, as well. In this element, Hermitian shape functions are employed for the estimations 

of transverse displacement and bending rotation (Appendix D).  
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Taking these shape functions into consideration, the displacement parameters in terms of the 

nodal displacements are represented in Eq. 3.5. 

 

[

𝑢0(𝑥, 𝑡)

𝑤0(𝑥, 𝑡)

𝜙𝑥(𝑥, 𝑡)
] = [

𝑁𝑢(𝑥)

𝑁𝑤(𝑥)

𝑁𝜙(𝑥)
] 𝑎(𝑡)

= [

𝜒1
𝑒(𝑥) 0 0 0 0  𝜒2

𝑒(𝑥) 0 0 0 0
0 𝑓1 0 𝑓2 0 0 𝑓3 0 𝑓4 0
0 0 𝑓1 0 𝑓2 0 0 𝑓3 0 𝑓4

]

[
 
 
 
 
 
 
 
 
 
 
𝑈1
𝑒(𝑡)

𝑊1
𝑒(𝑡)

 𝜙1
𝑒(𝑡)

𝑊1
′𝑒(𝑡)

 𝜙1
′𝑒(𝑡)

𝑈2
𝑒(𝑡)

𝑊2
𝑒(𝑡)

 𝜙2
𝑒(𝑡)

𝑊2
′𝑒(𝑡)

 𝜙2
′𝑒(𝑡)]

 
 
 
 
 
 
 
 
 
 

 

(3.5) 

 

 

Figure 2.2 Two-node finite element with four DOF. 

 

where 𝑁𝑤(𝑥) and 𝑁𝜙(𝑥) are the shape functions and 𝑎(𝑡) is the unknown generalized coordinates. 

By substitution of Eq. 3.5 or 2.24 into Eq. 2.21 and by performing integration by parts, the 

electromechanical coupling equations for a typical finite element is summarized in Eqs. 2.25 and 

2.26. To complete the modelling, Rayleigh damping (proportional damping) is added to the 

equations at this stage to account for the mechanical dissipative effects (Eq. 2.28). 

 

𝑴𝒆𝒂̈(𝒕) + 𝑪𝒆𝒂̇(𝒕) + 𝑲𝒆𝒂(𝒕) − 𝜽𝒆𝑣(𝑡) = 𝒇𝒆 (2.25) 

𝐶𝑝𝑣̇𝑢(𝑡) +
𝑣(𝑡)

𝑅𝑙
+ 𝜽𝒖

𝒆𝑻𝒂̇(𝒕) = 0 (2.27) 

𝑪𝒆 = 𝜇𝑴𝒆 + 𝛾𝑲𝒆 (2.28) 
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where 𝜇 and 𝛾 are the constants of mass and stiffness proportionality. Terms 𝑴𝑒, 𝑪𝑒, 𝑲𝑒 ,  𝜽𝑒, 𝒇𝑒 

are, respectively, the mass matrix; the damping matrix; the elastic stiffness matrix; the 

electromechanical coupling matrix and the vector of dynamical forces corresponding to one 

element of the piezoelectric cantilever beam, and 𝐶𝑝 is the equivalent capacitance (Appendix E). 

 

3.4 Solution of coupling equations  

 

In this section, the solution of electromechanical coupling equations is presented. Assembling 

the elements of the beam and considering the input in the harmonic form 𝑔(𝑡) = 𝑋𝑒𝑖𝜔𝑡 the 

components of the forcing vector become:  

 

𝒇𝑒 = [𝜔2𝑋∫(𝐼0
𝜌
+ 𝐽0

𝜌
)𝑁𝑤

𝑇𝑑𝑥

𝑙𝑒

0

] 𝑒𝑖𝜔𝑡 (2.29) 

 

By definition of the steady-state response and the voltage output as 𝒂(𝒕) = 𝑨𝑒𝑖𝜔𝑡 and 𝑣 =

𝑉𝑒𝑖𝜔𝑡, the assembled steady-state forms of electromechanical coupling equations are expressed as 

follows: 

 

(−𝑴𝜔2 + 𝑖𝜔𝑪 + 𝑲)𝑨 − 𝜽𝑉 = 𝑭 (2.30) 

𝑖𝜔𝜽𝑻𝑨 + (𝑖𝜔𝐶𝑝 +
1

𝑅𝑙
) 𝑉 = 0 (2.31) 

 

By extracting the amplitude vector from Eq. 2.30 and substituting in Eq. 2.31, the complex 

voltage is obtained as 

 

𝑣(𝑡) = −𝑖𝜔 (𝑖𝜔𝐶𝑝 +
1

𝑅𝑙
)
−1

𝜽𝑻 [−𝑴𝜔2 + 𝑖𝜔𝑪 + 𝑲

+ 𝑖𝜔 (𝑖𝜔𝐶𝑝 +
1

𝑅𝑙
)
−1

𝜽𝜽𝑻]

−1

𝑭𝑒𝑖𝜔𝑡 

(2.34) 
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3.5 Shape optimization 

 

Different types of measurements have been used for the assessment of the performance 

piezoelectric energy harvesters. Output electrical power extracted from the piezoelectric structures 

is one of the important parameters which has been widely used. Although application of output 

power is a useful method to evaluate the performance of PEHs, its direct relevance as the 

comparing metric is not sufficient because the value strongly depends on different parameters 

including the size, vibration environment and circuit conditions. Hence, other parameters such as 

the power density and efficiency have drawn considerable attention among researchers. Efficiency 

is a strong indication of the amount of energy that a piezoelectric structure can convert from the 

input mechanical power (𝑃𝑖𝑛) into the output electrical power (𝑃𝑜𝑢𝑡). Here, the efficiency of 

harvesting structure is defined as:  

 

Γ =
𝑃𝑜𝑢𝑡
𝑃𝑖𝑛

 (3.6) 

 

where 𝑃𝑖𝑛 comes from the base excitation (shaker). Based on the electromechanical coupling 

equations, the provided energy by the base excitation is thus [86]  

 

𝑃𝑖𝑛 = 𝒇𝒆𝒂̇(𝒕) (3.7) 

 

By expressing the amount of extracted output power and the provided input energy, the 

efficiency of system is resulted as Eq. 3.8.  

 

Γ = |
𝒗(𝒕)𝑰(𝒕)

𝒇𝒆𝒂̇(𝒕)
|

=
|

|
[−𝑖𝜔 (𝑖𝜔𝐶𝑝 +

1
𝑅𝑙
)
−1

𝜽𝑻 [−𝑴𝜔2 + 𝑖𝜔𝑪 + 𝑲 + 𝑖𝜔 (𝑖𝜔𝐶𝑝 +
1
𝑅𝑙
)
−1

𝜽𝜽𝑻]

−1

]

2

𝑭𝟐

𝑖 [−𝑴𝜔2 + 𝑖𝜔𝑪 + 𝑲 + 𝑖𝜔 (𝑖𝜔𝐶𝑝 +
1
𝑅𝑙
)
−1

𝜽𝜽𝑻]

−1

𝑅𝑙𝑭𝟐𝜔
|

|
 

(3.8) 
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3.6 Results and discussion  

 

The validation of the numerical solution is firstly carried out by comparing the calculated 

voltage and fundamental frequency for non-uniform beams with those available in the literature. 

Subsequently, the effects of Timoshenko beam theory for various geometries in the three 

configurations are investigated. Additionally, the influence of non-uniformity for different degrees 

of polynomial functions are studied to identify which function can provide the maximum desired 

electrical output. Eventually, the study is completed by investigation of the non-uniform geometry 

on the efficiency of structure for a wide range of external loads. It should be pointed out that all of 

the analytical results are obtained using Matlab. 

In the first example, the convergence of 4-DOF element is verified by considering a non-

uniform cantilever beam investigated by Salmani et al [72] wherein the width of the beam is 

varying exponentially through the length by 𝑏(𝑥) = 𝑏0𝑒
−𝑐𝑥. The properties of the studied 

piezoelectric beam are presented in Table 3.1. The substrate layer is made of steel which is covered 

with PZT-4 as the piezoelectric material. For this verification example, the output voltage 

generated for the three configurations are derived for five different tapering parameter, c, and listed 

in Table 3.2. In this example, the electrical resistance is taken to be 1000 Ω, and the damping ratio 

is assumed to be 1 percent. It is worth mentioning that to calculate the results only one 4-DOF 

element is used. 

 

Table 3.1 Properties of the bimorph piezoelectric cantilever beam. 

Property Piezoelectric layer Substrate layer 

Material PZT-4 Steel 

Density 𝜌 (kg/𝑚3) 7960 7800 

Length (mm) 60 60 

Thickness (mm) 0.6 0.7 

Initial width 𝑏0 (mm) 10 10 

Young’s modulus E (GPa) 81.3 200 

Piezoelectric strain coefficient d31(pC/N) -123 − 

Dielectric permittivity at constant strain 𝜀33
𝑆  (nF/m) 13.059 − 

Shear modulus G (GPa) 31.3 76.9 
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Table 3.2 Validation of piezoelectric energy harvester’s voltage for different tapering values. 

C 0 5 10 15 20 

Unimorph      

Analytic (V/g) [72] 0.5711 0.499 0.438 0.3842 0.3377 

4-DOF element (V/g) 0.5704 0.499 0.438 0.3856 0.3403 

Difference (%) 0.12 0 0 0.36 0.77 

Bimorph (series)      

Analytic (V/g) [72] 0.6252 0.5479 0.4802 0.4214 0.3704 

4-DOF element (V/g) 0.6252 0.5470 0.4800 0.4225 0.3729 

Difference (%) 0 0.16 0.042 0.26 0.67 

Bimorph (parallel)      

Analytic (V/g) [72] 1.156 1.011 0.8847 0.7751 0.6805 

4-DOF element (V/g) 1.154 1.009 0.8842 0.7772 0.6849 

Difference (%) 0.17 0.20 0.057 0.27 0.65 

 

It can be seen from Table 3.3 that, both analytical and numerical results are in good agreement 

such that in the worst case the maximum difference between these two methods is less than 1%. It 

means that 4-DOF element has the potential to predict the tapered piezoelectric energy harvester’s 

behavior quite well. Additionally, the results show that by increasing tapering parameter the 

generated voltage per exciting acceleration decreases while leading to lighter structure. Therefore, 

based on the objective function one can optimize the mass or the desired electrical output.  

In the second example, the validation of the presented 4-DOF element is performed for non-

uniform beam with linearly and quartic varying width [76]. The first three frequencies of unimorph 

beam with varying width are calculated and are provided in Table 3.3. The width of the beam is 

changing according to 𝑏(𝑥) = 𝑏0(1 ± 𝛼
𝑥

𝑙
)𝑛, where, n=1 for linearly varying beam, n=4 for quartic 

varying beams and eventually n=0 for uniform beams. The negative and positive signs represent 

the converging and diverging tapered beams, respectively.  
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Table 3.3 Validation of first three frequencies of uniform and non-uniform beams. 

f 
Uniform 

𝛼 = 0 

Linear 

𝛼 = −0.2 

Linear 

𝛼 = 0.2 

Quartic 

𝛼 = −0.2 

Quartic 

𝛼 = 0.2 

𝑓1(𝐻𝑧) [76] 47.82 50.97 45.16 62.40 38.07 

𝑓1 (4-DOF) 48.80 52.29 46.09 63.98 38.69 

Difference (%) 2.1 2.6 2.1 2.5 1.6 

𝑓2(𝐻𝑧)  [76] 299.67 306.31 294.78 325.86 279.68 

𝑓2 (4-DOF) 302.53 308.69 297.60 327.97 283.26 

Difference (%) 0.95 0.78 0.96 0.65 1.3 

𝑓3(𝐻𝑧)  [76] 839.25 845.65 834.46 865.24 820.48 

𝑓3 (4-DOF) 851.07 856.45 847.09 874.71 836.63 

Difference (%) 1.4 1.3 1.5 1.1 1.9 

 

The computation shows that the presented 4-DOF can well predict the frequencies of tapered 

PEH with maximum 2.6% percentage error although only three 4-DOF elements are used. It is 

obvious for the converging beam that the frequencies increase while they decrease for the 

diverging beam with constant resistive load. 

In the last part of validation, the accuracy of the present numerical solution is verified by 

analyzing a uniform bimorph cantilever beam experimentally investigated by [62]. The frequency 

response functions (FRFs) of output voltage using the experimental analysis and the present 

method are compared and depicted in Fig. 3.3. From the graphs it is visible that the results are in 

great agreement.  
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Figure 3.3 Validation of voltage FRF of a uniform bimorph piezoelectric energy harvester (𝑅𝑙 = 1000, 𝜉 =
0.027). 

 

To optimize the output of system, the effects of different tapering functions are investigated in 

the next example. The properties of the studied non-uniform bimorph beams in series state are the 

same as in example one, as listed in Table 3.1. The maximum output voltage for different types of 

non-uniform beams where the width and height are varying according to the polynomial functions 

with five different polynomial functions. The results are computed and summarized in Tables 3.4-

3.8 for the electrical resistance 1000Ω and damping ratio 0.01. 

 

Table 3.4 Piezoelectric energy harvester’s voltage for linear tapered beam (n=1). 

 𝛼𝑏a -0.6 -0.4 -0.2 0.2 0.4 0.6 

𝛼ℎb        

-0.2  0.442 0.502 0.560 0.670 0.724 0.776 

-0.4  0.435 0.494 0.551 0.659 0.711 0.762 

-0.6  0.428 0.486 0.542 0.648 0.699 0.749 

0.2  0.453 0.516 0.576 0.691 0.747 0.802 

0.4  0.459 0.523 0.584 0.701 0.758 0.814 

0.6  0.464 0.529 0.591 0.711 0.769 0.826 

a: Tapering parameter of width, b: Tapering parameter of height 
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Table 3.5 Piezoelectric energy harvester’s voltage for cubic tapered beam (n=2). 

 𝛼𝑏a -0.6 -0.4 -0.2 0.2 0.4 0.6 

𝛼ℎb        

-0.2  0.321 0.408 0.503 0.720 0.841 0.969 

-0.4  0.312 0.397 0.491 0.701 0.817 0.941 

-0.6  0.302 0.386 0.478 0.684 0.797 0.918 

0.2  0.339 0.430 0.532 0.768 0.901 1.043 

0.4  0.348 0.442 0.549 0.797 0.937 1.088 

0.6  0.357 0.455 0.567 0.827 0.976 1.136 

a: Tapering parameter of width, b: Tapering parameter of height 

 

Table 3.6 Piezoelectric energy harvester’s voltage for quadratic tapered beam (n=3). 

 𝛼𝑏a -0.6 -0.4 -0.2 0.2 0.4 0.6 

𝛼ℎb        

-0.2  0.238 0.333 0.454 0.776 0.981 1.220 

-0.4  0.226 0.320 0.438 0.750 0.947 1.175 

-0.6  0.215 0.308 0.424 0.730 0.922 1.144 

0.2  0.260 0.361 0.493 0.858 1.098 1.382 

0.4  0.271 0.378 0.519 0.919 1.184 1.500 

0.6  0.282 0.396 0.549 0.983 1.274 1.620 

a: Tapering parameter of width, b: Tapering parameter of height 

 

Table 3.7 Piezoelectric energy harvester’s voltage for quartic tapered beam (n=4). 

 𝛼𝑏a -0.6 -0.4 -0.2 0.2 0.4 0.6 

𝛼ℎb        

-0.2  0.179 0.273 0.410 0.837 1.150 1.546 

-0.4  0.165 0.258 0.392 0.806 1.106 1.483 

-0.6  0.155 0.246 0.378 0.784 1.077 1.445 

0.2  0.206 0.306 0.458 0.965 1.356 1.864 

0.4  0.218 0.326 0.494 1.073 1.525 2.120 

0.6  0.229 0.347 0.531 1.172 1.677 2.342 

a: Tapering parameter of width, b: Tapering parameter of height 
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Table 3.8 Piezoelectric energy harvester’s voltage for quintic tapered beam (n=5). 

 𝛼𝑏a -0.6 -0.4 -0.2 0.2 0.4 0.6 

𝛼ℎb        

-0.2  0.136 0.225 0.371 0.906 1.354 1.975 

-0.4  0.122 0.208 0.351 0.869 1.298 1.891 

-0.6  0.113 0.197 0.338 0.846 1.267 1.848 

0.2  0.167 0.262 0.426 1.093 1.695 2.562 

0.4  0.179 0.284 0.471 1.259 1.985 3.041 

0.6  0.188 0.302 0.506 1.373 2.177 3.353 

a: Tapering parameter of width, b: Tapering parameter of height 

 

 

Figure 3.4  Voltage FRF curves for different degrees of polynomial (𝛼 = 𝛼𝑏 = 𝛼ℎ = 0.6). 
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Figure 3.5 Voltage FRF curves for quintic tapered beam in both directions (𝛼 = 𝛼𝑏 = 𝛼ℎ). 

 

 

Figure 3.6 Voltage FRF curves for quintic tapered beam in width direction (𝛼ℎ = 𝛼, 𝛼𝑏 = 0). 
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Figure 3.7 Voltage FRF curves for quintic tapered beam in width direction (𝛼𝑏 = 𝛼, 𝛼ℎ = 0). 

 

According to Tables 3.4-3.8 and Fig. 3.4, it can be concluded that the degree of polynomial 

has an increasing effect on the output voltage such that by changing the degree from one to five 

for both width and height, the maximum value of the voltage output rises by 306%. In fact, by 

changing the degree and tapering parameter it is possible to optimize the frequency and the desired 

electrical output. Additionally, from Fig. 3.5 and Table 3.8 it is obvious that changing the tapering 

parameter from the minimum value (𝛼 = −0.6) to maximum value (𝛼 = 0.6) results in increasing 

the maximum output voltage by 2867.3%. Last but not least, from Figs. 3.5-3.7 it is noted that by 

increasing the tapering parameter (converging to diverging) the first natural frequency of tapered 

beam in longitudinal and transversal directions decreases and increases, respectively, while the 

double-tapered beam (tapered in two directions) behaves differently (Fig. 3.5). Modelling PEHs 

using the appropriate beam theory plays an important role in achieving accurate results. Here the 

effects of two different beam theories are investigated to figure out the difference. The properties 

of the considered bimorph PEH in series state are the same as previous examples. The only 

difference is the length of the beam which is variable here. 
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Table 3.9 The electrical voltage of quintic tapered PEH for different slenderness ratios beam. 

𝑆𝑟

=
𝐿

(2ℎ𝑝 + ℎ0)
 

Beama -0.6 -0.4 -0.2 0 0.2 0.4 0.6 

2 P1 0.0045 0.0084 0.0154 0.0272 0.0475 0.0782 0.1091 

 P2 0.0050 0.0089 0.0159 0.0280 0.0486 0.0822 0.1323 

RD (%)  11.11 5.95 3.25 2.94 2.32 5.12 21.26 

5 P1 0.0150 0.0277 0.0497 0.0858 0.1507 0.2649 0.4176 

 P2 0.0151 0.0274 0.0493 0.0857 0.1472 0.2489 0.4121 

RD (%)  0.67 1.08 0.80 0.12 2.23 6.04 1.32 

10 P1 0.0333 0.0613 0.1095 0.1866 0.3272 0.5870 0.9677 

 P2 0.0333 0.0610 0.1090 0.1864 0.3221 0.5522 0.8899 

RD (%)  0 0.49 0.46 0.11 1.56 5.93 8.04 

20 P1 0.0702 0.1293 0.2304 0.3897 0.6821 1.234 2.074 

 P2 0.0702 0.1291 0.2300 0.3895 0.6781 1.198 1.921 

RD (%)  0 0.15 0.17 0.051 0.59 2.92 7.38 

50 P1 0.1813 0.3341 0.5938 0.9998 1.746 3.178 5.384 

 P2 0.1812 0.3340 0.5938 1.0001 1.746 3.154 5.254 

RD (%)  0.055 0.03 0 0.03 0 0.76 2.41 

a P1=Euler-Bernoulli beam theory, P2=Timoshenko beam theory, b Relative difference 

 

Table 3.9 indicates the effect of slenderness ratio on the electrical voltage of bimorph PEH in 

series connection. In this example, one 4-DOF element and one 8-DOF element are applied to 

compute the electrical output for Euler-Bernoulli and Timoshenko beam theories, respectively. It 

is obvious that for small slenderness ratios and larger values of tapering parameters the relative 

difference between two chosen beam theories is noticeable. From these results the difference is 

noticeable when the slenderness ratio is less than 10.  

In the next part, the effects of degree of the polynomial and tapering parameters on the output 

voltage of tapered Euler-Bernoulli PEH for three different states including unimorph and bimorph 

with series and parallel connections are studied and depicted in Figs. 3.8-3.11. For three 

connections the maximum taper parameter (𝛼 = 0.6) with the slender ratio 𝑆𝑟 = 30 is considered. 

Since a large slenderness ratio is taken, the Euler-Bernoulli beam theory is applied to compute the 
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results. Analyzing the results expresses that higher degree leads to extracting higher voltage from 

the energy harvester. Although the difference between the output voltage of unimorph structure 

and bimorph in series connection is not significant, the values of bimorph in parallel connection 

are 150% larger. 

The last part of this study is devoted to the evaluation of efficiency at various tapering 

parameters for the bimorph piezoelectric PEH in series connection. In the first step, the effects of 

load resistance is studied and depicted in Fig. 3.12. As it can be seen, the same trend is happening 

for all excitation frequencies so that the efficiency increases up from zero to certain locations and 

then decreases to reach a stabilization point when electrical resistance increases. With the 

consideration of the optimum load resistances, it also is obvious that the maximum efficiency is 

not exactly occurring at the open circuit or short circuit frequencies while these two important 

conditions were pointed to be the locations where maximum power is extracted [48, 62, 87, 88]. 

The maximum value takes places at the frequency ratio located between the resonant frequency 

(short circuit condition) and anti-resonant frequency (open circuit condition). Another noticeable 

aspect is that the efficiency peak for the open and short circuit conditions are approximately the 

same while there is a huge decrease when the input excitation frequency is out of this range. In 

fact, small deviations from the optimal frequency range will cause the device to perform with much 

diminished effectiveness. Here, the variation of efficiency is demonstrated for 𝜔 = 287.9 𝐻𝑧 

which is the average of open-circuit and short circuit frequencies. In the next step, the effect of 

non-uniformity is investigated and displayed in Figs. 3.13-3.15. By comparing the results, it can 

be concluded that by increasing the degree of polynomial function and application of converging 

beam the efficiency increases by 22%. Moreover, the results express that the effect of 𝛼𝑏 is much 

stronger than 𝛼ℎ so that the maximum increase of 5% is achievable by changing 𝛼ℎ while the 

difference is 22% for 𝛼𝑏 maintained under the same conditions. Thus, with the efficiency as the 

objective, only alteration of 𝛼𝑏 could yield a feasible solution to noticeably improve the output 

and for this it is not necessary to converge beam in the height direction. 
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Figure 3.8 The variation of output voltage versus different degrees of polynomial function. 

 

 

Figure 3.9 Tapering effects on unimorph PEH. 
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Figure 3.10 Tapering effects on bimorph PEH with series connection. 

 

 

Figure 3.11 Tapering effects on bimorph PEH with parallel connection. 
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Figure 3.12 Efficiency alteration versus external load resistance at various operating frequencies. 

 

 

Figure 3.13 Efficiency alteration versus tapering ratio in width direction (𝛼𝑏). 
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Figure 3.14 Efficiency alteration versus tapering ratio in height direction (𝛼ℎ). 

 

 

Figure 3.15 Efficiency alteration versus tapering ratio in height and width directions (𝛼). 

 

 



68 
 

3.7 Conclusions 

 

In this chapter, a numerical solution for tapered energy harvesting beam with different degrees 

of non-uniformity and tapering parameter has been presented. Here, two different beam theories 

including Euler-Bernoulli and Timoshenko have been considered to examine which one can more 

accurately model the system for different geometrical properties. To calculate the frequency and 

output voltage of the PEH with elements having 4-DOF and 8-DOF are applied for Euler-Bernoulli 

and Timoshenko configurations, respectively. The proposed elements are used to calculate the 

output voltage of unimorph and bimorph with parallel and series connections. Additionally, the 

efficiency of the above discussed smart structures for various non-uniformity conditions and 

external load resistance is obtained. Comparing the results with the literature proves the validity 

of the proposed elements. From the results it is obvious that when the degree of polynomial’s 

function increases the output voltage rises as well so that changing the degree from one to five 

results in enhancement of electrical voltage by 306%. Additionally, increasing the tapering 

parameter from the minimum value (𝛼 = −0.6) to maximum value (𝛼 = 0.6) leads to increasing 

the maximum output voltage by 2867.3%. Therefore, it is feasible to improve the output voltage 

of the PEH by tapering it using polynomial function with higher degrees of non-uniformity. 

Geometric study demonstrates that for the beams with the small slenderness ratio (< 10) the 

difference between two above-mentioned theories is noticeable so that it is necessary to employ 

Timoshenko’s formulation rather than Euler-Bernoulli to achieve more accurate results. 

Eventually, the results indicate that the maximum efficiency is occurring when the value of 

excitation frequency is ranging between the open-circuit and short-circuit conditions. Tapering 

ratio and degree of polynomial function have an increasing effect on the efficiency of PEH such 

that by converging the beam and raising n from 1 to 5 the efficiency can be improved by 22%.  
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Chapter 4  Performance enhancement of cantilever piezoelectric energy 

harvesters by sizing analysis 

 

This chapter presents the results of the performance of piezoelectric cantilever beams in relation 

to their size and geometrical configuration. The power produced by cantilever beams which 

occupy same area and contain same amount of piezoelectric material are analyzed. The total 

produced power represents the main indicator of performance of a piezoelectric harvesting system 

while the area of the beams stays constant. Lightweight design is an important aspect in any 

industry, mainly in the aerospace. In this study, the effects of tapered shape on the efficiency and 

power output are studied. Finite element method with the application of superconvergent element 

is adopted here to solve the equations. It is observed that the trapezoidal geometry (converging 

beam) provides a higher output power while the efficiency decreases. Moreover, in order to prove 

that the power enhancement is achievable while the amount of piezoelectric material consumed is 

constant the new configuration is proposed. In the configuration an array of tapered beams 

connected in series is used instead of one single uniform rectangular beam. The proposed setting 

generates an output power of 1.817 mW at a resonant frequency of 284.6 Hz when excited by an 

input acceleration of 1 g. The only challenge is the fundamental frequency difference which is met 

with the application of thinner substrate and piezoelectric layers.  
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4.1 Introduction 

 

Energy harvesting is a type of technology wherein the energy is captured from one or more 

external energy sources to be stored and eventually used for later applications. The subject has 

attracted considerable attention during the last decade due to the cost-effectiveness and efficiency 

of the system. The most important feature of power scavengers is their free energy sources usage 

which is collected from the wasted energy of the ambient surroundings. In comparison to the other 

common kinds of energy providers such as fossil fuels, they are environmentally-friendly and cost-

effective. This rich source of energy is available in most of the industrial plants, machinery, 

vehicles of all types, and industrial machinery.  

Nowadays, the energy scavenged from the harvesters have been known as an alternative source 

of energy. It has been considered as a support of the electric batteries supplying power for a wide 

variety of devices such as small wireless sensors and portable and wearable electronics owing to 

the noticeable advances in wireless technology [5, 7]. In addition to the weight addition and the 

high cost of maintenance, short life of batteries represents the most important obstacle compared 

to the long working life of power scavengers. Although there is an opportunity to replace or 

recharge the batteries, this type of solution is inefficient and sometimes not feasible because of the 

poor access to their locations. Hence, local recharging from scavenging the free released energy 

represents a feasible alternative for solving this problem. As a result, power harvesters have been 

taken into consideration by many researchers as a renewable-power source of portable or wireless 

devices in different areas [1]. Among the three types of converters including electromagnetic, 

electrostatic and piezoelectric, piezoelectric converters are advantageous structures with high 

electromechanical coupling [89]. As an exclusive advantage, they do not need any external voltage 

source and are a promising choice for the Micro-electromechanical systems (MEMS) application 

specially wireless sensor nodes [90]. The amount of generated power from these useful structures 

strongly depends on the different factors including the applied load, the frequency of vibration, the 

geometric features, and the boundary conditions [10].  

Regarding the development of MEMS power generators, fixed or narrow operation frequency 

range and low power output are the most important challenges [72]. To address the issue, 

researchers always have been attempting to reach higher performance using different practical 

methods such as modification of shape, size, material properties and damping [81, 91-94]. 
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Optimization of the active electrode area in order to maximize output is another important strategy 

illustrated by [95-97]. Another effective method is the application of an array of piezoelectric 

cantilevers instead of one single beam [98]. It not only covers a higher range of ambient 

frequencies, but also can help to improve the output power. To prove the efficiency of the strategy, 

Soliman et al. [99] presented a new architecture for wideband vibration-based micro-power 

generators (MPGs) with higher bandwidth compared to a traditional MPG. Also, Liu et al. [100] 

investigated a MEMS power generator array based on thick-film piezoelectric cantilever to 

improve both output power and frequency bandwidth. These cantilevers are tunable for the desired 

low frequencies in the 200-400 Hz range. As an optimization method, a new architecture consisting 

of an array of trapezoidal cantilevers on a circular rim was proposed [101]. They could increase 

the output power and decrease the natural frequency using the diverging beam and tip mass [2, 91, 

102, 103]. The effectiveness of tapered beam configuration can also be seen in other research [11, 

81, 104, 105]. Changing the thickness of the substrate layer or mounting a tip mass are two 

practical methods  which have been exploited to change the resonance frequency of the cantilever 

energy harvesters [72]. Other studies were carried out to improve the output power and decrease 

the fundamental frequency through  the application of a parallel or series array of piezoelectric 

energy harvesters (PEHs) [98, 106]. Splitting the piezoelectric layer into smaller segments is 

another strategy which was implemented to change the resonant frequency of a cantilever energy 

harvester [107].  In order to cover a wide range of excitation frequencies and attain higher output 

power, a piezoelectric generator was fabricated by multiple circular diaphragm array. [108]. They 

used four circular diaphragm piezoelectric harvesters with various tip masses which covered the 

resonance frequencies from 120 Hz to 225 Hz. Additionally, an AIN-based MEMS piezoelectric 

cantilever array including five piezoelectric cantilever beams and a single proof mass in series 

connection were presented to increase the output voltage and reduce the loss in a management 

circuit [109]. Although by the application of series and parallel connections there is possibility to 

improve the desired electrical output, utilization of more piezoelectric material is unavoidable. As 

a matter of fact, mass of the piezoelectric part plays an important role in the microfabrication cost 

of the energy harvesters. In fact, although conventional piezoelectric materials including PZT and 

PVDF are useful, their fabrication process is time-consuming and expensive. More importantly, 

they are not environmentally friendly materials. Thus, there is a need to improve the efficiency 

and electrical output without changing the used amount of piezoelectric material. In this chapter, 
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the effects of the tapered structure is investigated on the efficiency and power output of PEHS with 

the scope to figure out which structure provides the maximum efficiency or power. The beam is 

modeled as Timoshenko beam but it can be easily switched to the Euler-Bernoulli beam with the 

application of superconvergent element (SCE). Secondly, enhancement power is met with the 

application of an array of cantilever beams although the same amount of piezoelectric layer is 

consumed. This new design leads to 15.64% substrate weight reduction, as well. In order to tune 

the fundamental frequency, the thinner substrate and piezoelectric layers are applied. Overall it is 

shown by sizing a beam, modelled using the SCE model, it is possible to improve the power 

produced by the structure without alteration of the operation natural frequency of main system and 

total structure weight. 

 

4.2 Tapered energy harvester 

 

In this section, the theoretical model of the tapered energy harvester is presented. The 

cantilever beam has a non-uniform width, b(x), and height, h(x), varying according to the 

polynomial function, as shown in Fig. 4.1. It is assumed that perfect bonding is performed such 

that there is no slip between the piezoceramic layers and the substrate layer. 
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Figure 4.1 A 3D schematic model of piezoelectric based cantilever energy harvester with non-uniform width and 

height.  

 

 

 

4.2.1 Equations of motion for a tapered bimorph PEHs 

 

By the assumption of a Timoshenko beam, the displacement of a generic point can be described 

by: 

 

𝑹 = {

𝑅𝑥
𝑅𝑦
𝑅𝑧

} = {

𝑢(𝑥, 𝑦, 𝑧, 𝑡)

𝑣(𝑥, 𝑦, 𝑧, 𝑡)

𝑤(𝑥, 𝑦, 𝑧, 𝑡)
} = {

𝑧𝜙𝑥(𝑥, 𝑡)
0

𝑤0(𝑥, 𝑡) + 𝑔(𝑡)
} (4.1) 

 

where 𝑤0 are the displacements projected on the mid-plane, 𝜙𝑥 is the rotation of the corresponding 

cross section at point 𝑥 and time 𝑡 relative to the moving base, and 𝑔(𝑡) is the transverse translation 
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coming from the base motion. Using the definition of Lagrange strain tensor and using the non-

zero components of the flexible displacement, the normal and shear strains are obtained as 

 

{
 
 

 
 𝜖𝑝 =

𝜕𝑢

𝜕𝑥
= 𝑧𝜙́𝑥                                                  

ℎ𝑠
2
≤ 𝑧 ≤

ℎ𝑠
2
+ ℎ𝑝

𝜖𝑥𝑥 =
𝜕𝑢

𝜕𝑥
= 𝑧𝜙́𝑥                                              −

ℎ𝑠
2
≤ 𝑧 ≤

ℎ𝑠
2
       

𝜖𝑝 =
𝜕𝑢

𝜕𝑥
= 𝑧𝜙́𝑥                                         −

ℎ𝑠
2
− ℎ𝑝 ≤ 𝑧 ≤ −

ℎ𝑠
2

 (4.2) 

{
 
 

 
 𝛾𝑝 =

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
= 𝜙𝑥 + 𝑤́0                            

ℎ𝑠
2
≤ 𝑧 ≤

ℎ𝑠
2
+ ℎ𝑝 

𝛾𝑥𝑧 =
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
= 𝜙𝑥 + 𝑤́0                          −

ℎ𝑠
2
≤ 𝑧 ≤

ℎ𝑠
2
        

𝛾𝑝 =
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
= 𝜙𝑥 + 𝑤́0                     −

ℎ𝑠
2
− ℎ𝑝 ≤ 𝑧 ≤ −

ℎ𝑠
2

 (4.3) 

 

With the assumption of linear piezoelectric constitutive equations [53], the calculated 

piezoelectric constitutive equations are summarized in Eq. 2.7 [3], as.  

 

{

𝜖𝑝
𝛾𝑝
𝐷3

} =

[
 
 
 
 
 
1

𝐸𝑝
0 𝑑31

0
1

𝐾𝑠𝐺𝑝
0

𝑑31 0 𝜀33
𝑇 ]
 
 
 
 
 

{

𝜎𝑝
𝜏𝑝
𝐸3

} (2.7) 

 

where 𝜎𝑝 is the normal stress, 𝜏𝑝 is the shear stress, 𝜖𝑝 is the normal strain, 𝛾𝑝 is the shear strain, 

𝐺𝑝 is the shear modulus, 𝐸𝑝 is the elastic modulus, 𝐷3 is the electric displacement, d31 is the 

piezoelectric strain coefficient, 𝜀33
𝑇  is the dielectric permittivity of the piezoelectric layer at 

constant stress and finally 𝐾𝑠 and 𝐸3 are the shear correction factor and the electric field across the 

piezoelectric layer, respectively.  

The next step through the derivation of governing equations is the application of the 

Hamilton’s principle (Eq. 2.21).  
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∫(𝛿𝑇 − 𝛿𝑈 + 𝛿𝑊𝐼𝐸 + 𝛿𝑊𝑛𝑐)𝑑𝑡

𝑡2

𝑡1

= 0 (2.21) 

 

where 𝛿𝑇, 𝛿𝑈, 𝛿𝑊𝐼𝐸 and 𝛿𝑊𝑛𝑐 are the virtual works of the total kinetic energy, the strain energy, 

the internal electrical energy and the energy corresponding to non-conservative mechanical force, 

respectively.  

The kinetic and strain energies of the entire structure are described using the following 

equations. 

 

𝑈 =
1

2
∫[𝜎𝑥𝑥𝜖𝑥𝑥 + 𝜏𝑥𝑧𝛾𝑥𝑧]𝑑𝑉𝑠 +

1

2
∫[𝜎𝑝𝜖𝑝 + 𝜏𝑝𝛾𝑝]𝑑𝑉𝑝

=
1

2
∫ [𝐼2

𝐸𝜙́𝑥
2
+ 𝐼0

𝐺(𝑤́0
2 + 𝜙𝑥

2 + 2𝜙𝑥𝑤́0)]

𝐿

0

𝑑𝑥

+
1

2
∫ [𝐽2

𝐸𝜙́𝑥
2
+ 𝐽0

𝐺(𝑤́0
2 + 𝜙𝑥

2 + 2𝜙𝑥𝑤́0) +
𝑑31
ℎ𝑝

𝐽1
𝐸𝑣(𝑡)𝜙́𝑥]

𝐿

0

𝑑𝑥 

(2.13) 

𝑇 =
1

2
∫𝜌(𝑹̇. 𝑹̇)𝑑𝑉 +

1

2
𝑀𝑡[(𝑤̇0 + 𝑔̇)|𝑥=𝑙]

2 +
1

2
𝐼𝑡[𝜙̇𝑥|𝑥=𝑙]

2

=
1

2
∫ [𝐼0

𝜌
𝑤̇0

2 + 2𝐼0
𝜌
𝑤̇0𝑔̇ + 𝐼0

𝜌
𝑔̇2 + 𝐼2

𝜌
𝜙̇𝑥

2
] 𝑑𝑥

𝐿

0

+
1

2
∫ [𝐽0

𝜌
𝑤̇0

2 + 2𝐽0
𝜌
𝑤̇0𝑔̇ + 𝐽0

𝜌
𝑔̇2 + 𝐽2

𝜌
𝜙̇𝑥

2
] 𝑑𝑥

L

0

+
1

2
𝑀𝑡[(𝑤̇0 + 𝑔̇)|𝑥=𝑙]

2 +
1

2
𝐼𝑡[𝜙̇𝑥|𝑥=𝑙]

2
 

(4.4) 

 

where 𝑀𝑡 and 𝐼𝑡 are the tip mass and its associated moment of inertia. Other coefficients are also 

defined as follows  

 

𝐼𝑖
𝐸 ≜∬𝑧𝑖𝐸𝑠𝑑𝑦𝑑𝑧 ,   𝐼0

𝐺 ≜∬𝐾𝑠𝑧
𝑖𝐺𝑠𝑑𝑦𝑑𝑧 ,   𝐼𝑖

𝜌
≜∬𝑧𝑖𝜌𝑠𝑑𝑦𝑑𝑧 , 𝑖 = 0,1,2 (2.15) 
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𝐽𝑖
𝐸 ≜∬𝑧𝑖𝐸𝑝𝑑𝑦𝑑𝑧 ,   𝐽0

𝐺 ≜∬𝐾𝑠𝑧
𝑖𝐺𝑝𝑑𝑦𝑑𝑧 ,   𝐽𝑖

𝜌
≜∬𝑧𝑖𝜌𝑝𝑑𝑦𝑑𝑧 , 𝑖 = 0,1,2 (2.16) 

 

Additionally, the internal electrical energy in the piezoelectric layer can be calculated as 

follows 

 

W𝐼𝐸 =
1

2
∫𝐸3𝐷3 𝑑𝑉𝑝 = −

1

2

𝑣(𝑡)

ℎ𝑝
∫[𝐸𝑝𝑑31(𝑧𝜙́𝑥) −

𝑣(𝑡)

ℎ𝑝
𝜀33
𝑆 ] 𝑑𝑉𝑝

= −
1

2

𝑣(𝑡)

ℎ𝑝
𝑑31∫𝐽1

𝐸𝜙́𝑥𝑑𝑥

𝐿

0

+
1

2
𝐶𝑝𝑣(𝑡)

2 

(4.5) 

 

where 𝐶𝑝 is the internal capacitance of the piezoceramic defined by Eq. 2.18: 

 

𝐶𝑝 = 𝜀33
𝑆
𝐴𝑝

ℎ𝑝
 (2.18) 

 

where 𝜀33
𝑆  is the dielectric permittivity at constant strain and 𝐴𝑝 is the electrode area.  

In the above equations, dots and prime symbols identify derivatives with respect to time and 

space (i.e.. x), respectively. The only non-conservative virtual work is owing to the electric charge 

output 𝑄𝑢(𝑡) which is defined in Eq. 2.22 

 

𝛿𝑊𝑛𝑐 = 𝑄(𝑡)𝛿𝑣(𝑡) (2.22) 

 

To complete the modeling, the effects of damping should be taken into consideration. In this 

study, the proportional damping (Rayleigh damping) is applied [65]. 

Regarding the connection of top and bottom piezoelectric layers, there are two different 

configurations named parallel and series schemes [3]. The relationships between the characteristics 

of the piezoceramic layers including voltages, charges and piezoelectric strain coefficients specify 

the type of scheme.  
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4.2.2 Discretization of equations using superconvergent element (SCE) 

 

The final step is discretization of the coupled model. Finite element model (FEM) with the 

application of superconvergent element is employed here. This type of element contains two nodes 

and four degrees-of-freedom (DOF) which include two DOF in the transverse direction and two 

DOF in the rotational direction (Fig. 2.2). The element provides the precise response with the 

minimum number of elements since the shape functions are derived by using static equilibrium 

(Appendix C). One of the most important advantages of this practical element is the simple 

transferring method. In fact, it is possible to switch readily from the Timoshenko to the Euler-

Bernoulli by changing the value of one coefficient (𝛽). Hence, analysis based on both beam 

theories can be carried out without performing extra calculations [52]. Using the calculated shape 

functions available in Appendix C, the displacement parameters in terms of the nodal 

displacements are represented in Eq. (4.6). 

 

[
𝑤0(𝑥, 𝑡)

𝜙𝑥(𝑥, 𝑡)
] = [

𝑁𝑤(𝑥)

𝑁𝜙(𝑥)
] 𝑎(𝑡) = [

 𝜓1
𝑒(𝑥)  𝜓2

𝑒(𝑥)  𝜓3
𝑒(𝑥)  𝜓4

𝑒(𝑥)

 𝜑1
𝑒(𝑥)  𝜑2

𝑒(𝑥)  𝜑3
𝑒(𝑥)  𝜑4

𝑒(𝑥)
]

[
 
 
 
𝑊1

𝑒(𝑡)

 𝜙1
𝑒(𝑡)

𝑊2
𝑒(𝑡)

𝜙2
𝑒(𝑡) ]

 
 
 

 (4.6) 

 

 

Figure 2.2 Two-node finite element with four DOF. 

 

where 𝑁𝑤(𝑥) and 𝑁𝜙(𝑥) are the shape functions and 𝑎(𝑡) is the unknown generalized coordinates. 

By substitution of Eq. (4.6) into Eq. (2.21) and by performing integration by parts, the 

electromechanical coupling equations for a typical finite element result in Eqs. (2.25) and (2.27).  

Addition of the Rayleigh damping accounting for the mechanical dissipative effects is the last 

stage of modelling (Eq. (2.28)). 
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𝑴𝒆𝒂̈(𝒕) + 𝑪𝒆𝒂̇(𝒕) + 𝑲𝒆𝒂(𝒕) − 𝜽𝒆𝑣(𝑡) = 𝒇𝒆 (2.25) 

𝐶𝑝𝑣̇(𝑡) +
𝑣(𝑡)

𝑅𝑙
+ 𝜽𝒆𝑻𝒂̇(𝒕) = 0 (2.27) 

𝑪𝒆 = 𝜇𝑴𝒆 + 𝛾𝑲𝒆 (2.28) 

 

where 𝜇 and 𝛾 are the constants of mass and stiffness proportionality. Terms 𝑴𝑒, 𝑪𝑒, 𝑲𝑒 ,  𝜽𝑒, 𝒇𝑒 

are, respectively, the mass matrix; the damping matrix; the elastic stiffness matrix; the 

electromechanical coupling matrix and the vector of dynamical forces corresponding to one 

element of the piezoelectric cantilever beam, and 𝐶𝑝 is the equivalent capacitance (Appendix E). 

 

4.2.3 Solution of the electromechanical coupling equations 

 

By the assumption of the input in the harmonic form, (𝑡) = 𝑋𝑒𝑖𝜔𝑡 , and assembling the elements 

of the cantilever energy harvester the components of the forcing vector become: 

 

  𝒇𝑒 = [𝜔2𝑋∫(𝐼0
𝜌
+ 𝐽0

𝜌
)𝑁𝑤

𝑇𝑑𝑥

𝑙𝑒

0

] 𝑒𝑖𝜔𝑡 (2.29) 

 

The assembled steady-state forms of electromechanical coupling equations can be achieved as Eqs. 

2.30 and 2.31 by the definition of the steady-state response and the voltage output. These two 

parameters are considered 𝒂(𝒕) = 𝑨𝑒𝑖𝜔𝑡 and 𝑣 = 𝑉𝑒𝑖𝜔𝑡, respectively.  

 

(−𝑴𝜔2 + 𝑖𝜔𝑪 + 𝑲)𝑨 − 𝜽𝑉 = 𝑭 (2.30) 

𝑖𝜔𝜽𝑻𝑨 + (𝑖𝜔𝐶𝑝 +
1

𝑅𝑙
) 𝑉 = 0 (2.31) 

 

After solving the above equations, the complex voltage is obtained as  
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𝑣(𝑡) = −𝑖𝜔 (𝑖𝜔𝐶𝑝 +
1

𝑅𝑙
)
−1

𝜽𝑻 [−𝑴𝜔2 + 𝑖𝜔𝑪 + 𝑲

+ 𝑖𝜔 (𝑖𝜔𝐶𝑝 +
1

𝑅𝑙
)
−1

𝜽𝜽𝑻]

−1

𝑭𝑒𝑖𝜔𝑡 

(2.34) 

 

 

4.3 Expressions of power density and efficiency 

 

To compare the performance of different systems and structures it is necessary to define one 

type of measurements. Regarding the piezoelectric energy harvesters, electrical output power 

extracted from the structure is one kind of calculation which has been widely used. Although this 

is a practical measurement, it cannot provide a precise and correct evaluation because the value 

strongly depends on the size, vibration environment and circuit conditions [87]. In fact, application 

of a larger beam can result in higher output power. For the comparison of two different 

configurations the mechanical input power is one important factor which should not be neglected. 

In this regard, there are other measurement parameters including the power density (output power 

divided by the piezoelectric layer volume) and efficiency which have been of primary interest. In 

this chapter, both parameters are taken into consideration for the comparison target and their results 

are analyzed and compared. 

Efficiency specifies the amount of the input mechanical energy (𝑃𝑖𝑛) which can be converted 

into the output electrical power (𝑃𝑜𝑢𝑡) (Eq. 3.6).  

 

Γ =
𝑃𝑜𝑢𝑡
𝑃𝑖𝑛

 (3.6) 

 

where 𝑃𝑖𝑛 is the energy coming from the shaker which creates the excitation. Thus, the amount of 

input energy can be written as [86] 

 

𝑃𝑖𝑛 = 𝒇𝒆𝒂̇(𝒕) (3.7) 

 

By having the input and output energies, the harvesting efficiency is defined as  
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Γ = |
𝒗(𝒕)𝑰(𝒕)

𝒇𝒆𝒂̇(𝒕)
|

=
|

|
[−𝑖𝜔 (𝑖𝜔𝐶𝑝 +

1
𝑅𝑙
)
−1

𝜽𝑻 [−𝑴𝜔2 + 𝑖𝜔𝑪 + 𝑲 + 𝑖𝜔 (𝑖𝜔𝐶𝑝 +
1
𝑅𝑙
)
−1

𝜽𝜽𝑻]

−1

]

2

𝑭𝟐

𝑖 [−𝑴𝜔2 + 𝑖𝜔𝑪 + 𝑲 + 𝑖𝜔 (𝑖𝜔𝐶𝑝 +
1
𝑅𝑙
)
−1

𝜽𝜽𝑻]

−1

𝑅𝑙𝑭𝟐𝜔
|

|
 

(3.8) 

 

4.4 Results and discussion  

 

Before the parametric study of the energy harvester is carried out, there is a need to validate 

the numerical solution. To satisfy the requirement, the output voltage and fundamental frequency 

of uniform and non-uniform beams are firstly compared with those available in literature. After 

that, the influence of non-uniformity on both the power and efficiency are studied to figure out 

which configuration (converging or diverging beams) can result in the maximum desired 

measurement parameters. Finally, the application of an array of PEHs (Fig. 4.2) instead of having 

one single cantilever energy harvester is proposed as the array has the capability to harvest more 

power.  

In the first example, the convergence of the superconvergent element is verified by considering 

a bimorph cantilever beam investigated by Erturk and Inman [3] for both with and without the tip 

mass. The properties of the investigated bimorph piezoelectric beam which are connected in series 

are summarized in Table 2.1.  
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Table 2.1 Properties of the bimorph piezoelectric cantilever beam. 

Property Piezoelectric layer Substrate layer 

Material PZT-5H Brass 

Density 𝜌 (kg/𝑚3) 7500 9000 

Length (mm) 24.53 24.53 

Thickness (mm) 0.265 0.14 

Width (mm) 6.4 6.4 

Young’s modulus E (GPa) 60.6 105 

Piezoelectric strain coefficient d31(pC/N) -274 − 

Dielectric permittivity at constant strain 𝜀33
𝑆  (nF/m) 25.55e3 − 

Shear modulus G (GPa) 23 40 

 

To be able to compare and validate the results the short-circuit and open-circuit conditions are 

considered as 𝑅𝑙 = 470 Ω and 𝑅𝑙 = 995 𝑘Ω, respectively. In fact, these values are in agreement 

with the ones proposed in the open literature [3]. The fundamental resonance frequency of the PEH 

based on the Timoshenko beam theory for two types of considerations are provided in Tables 4.1-

4.2. 

 

Table 4.1 Fundamental resonance frequency of piezoelectric energy harvester without tip mass. 

1st natural frequency Experimental (Hz) [3] SCE (Hz) RD (%) 

Short circuit, (𝑅𝑙 = 470 Ω) 502.5 504.7 0.44 

Open circuit, (𝑅𝑙 = 995 𝑘Ω) 524.7 526.9 0.42 
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Table 4.2 Fundamental resonance frequency of piezoelectric energy harvester with tip mass (0.239g). 

1st natural frequency Experimental (Hz) [3] SCE (Hz) RD (%) 

Short circuit, (𝑅𝑙 = 470 Ω) 338.4 338.7 0.089 

Open circuit, (𝑅𝑙 = 995 𝑘Ω) 356.3 355.6 0.2 

 

The excellent convergence rate of SCE is obvious from the results in which using only one 

superconvergent element the difference between the experimental and theoretical values for both 

conditions is negligible (less than 0.5%). Hence, the represented SCE has a very good rate of 

convergence for the study of piezoelectric energy harvesters.  

 

 

Figure 4.2 A 3D simulated structure of an array of diverging bimorph PEHs 

 

As the second part of validation, the output voltage of one non-uniform PEH is compared with 

the literature [72]. They assumed that the width of the beam is varying exponentially through the 

length by 𝑏(𝑥) = 𝑏0𝑒
−𝑐𝑥. The properties of studied PEH are listed in Table 3.1. The output voltage 

for five different tapering parameters are calculated and provided in Table 4.3. The electrical 

resistance and damping ratio are taken 1000 Ω and 1 percent, respectively.  

 

 

 

 

 



83 
 

Table 3.1 Properties of the bimorph piezoelectric cantilever beam. 

Property Piezoelectric layer Substrate layer 

Material PZT-4 Steel 

Density 𝜌 (kg/mm3) 7960 7800 

Length (mm) 60 60 

Thickness (mm) 0.6 0.7 

Initial width 𝑏0(mm) 10 10 

Young’s modulus E (GPa) 81.3 200 

Piezoelectric strain coefficient d31(pC/N) -123 − 

Dielectric permittivity at constant strain 𝜀33
𝑆  

(nF/m) 
13.059 − 

Shear modulus G (GPa) 
 

31.3 76.9 

 

Table 4.3 Validation of piezoelectric energy harvester’s voltage for different tapering values. 

c 0 5 10 15 20 

Analytical (V/g) [72] 0.6252 0.5479 0.4802 0.4214 0.3704 

SCE element (V/g) 0.6252 0.5470 0.4800 0.4225 0.3729 

RD (%) 0 0.16 0.042 0.26 0.67 

 

It can be concluded again that SCE has a great rate of convergence so that with the application 

of only one SCE the relative error between the numerical and analytical results is less than 0.7 

percent.  

In the next example, the effects of tapering ratio on the power density and efficiency of the 

PEH is analyzed. The energy harvester has the same properties as described in the previous 

example. To optimize the system, the effects of tapering ratio (𝛼) and the degree of polynomial 

function are investigated and depicted in Figs. 4.3-4.6. The results show that by increasing the 

tapering ratio (application of diverging beam) the power output increases while the efficiency 

decreases. Obviously, increasing the content of piezoelectric material enables the increasing 

pattern of the output power. The input absorbed energy from the environment will yield more 

power at the cost of reduced efficiency for the diverging beams. In other words, for the diverging 

beam the amount of input absorbed energy is higher in comparison to converging structure, leading 

to smaller efficiency. Additionally, by the comparison of graphs associated with 𝛼𝑏 and 𝛼ℎ 
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illustrated in Figs. 4.3-4.6 it is concluded that the effects of tapering ratio in width direction (𝛼𝑏) 

yields more power output and higher efficiency. It is necessary to point out that the variation of 

efficiency and the power output are investigated here for the fixed value of load resistance 

providing small values. In order to maximize the parameters the value of external load resistance 

should be optimized as well [3].  

To study the influence of tapered beam on the performance, the variation of power FRF curves 

for both tapering parameters is shown separately in Figs. 4.7-4.8. It can be found that the peak 

voltage of power significantly increases by 2038% while the tapering ratio changes from 𝛼𝑏 =

−0.6 to 𝛼𝑏 = 0.6. Although the power output escalates, the fundamental natural frequency 

decreases significantly. As the tapering parameter varies from 0.6 for diverging beam to -0.6 for 

converging beam, the resonance frequency increases by 522% from 147.58 Hz to 917.81 Hz. 

Consequently, we get variation in frequency range and the peak of output power when 𝛼ℎ is 

changing but the changes are not as dramatic as the 𝛼𝑏 case. The degree of polynomial function is 

another determining parameter for the output power as the influence is depicted in Fig. 10. The 

power output is increased by 1744.5% for tapered beam with n=5 with respect to uniform beam 

for which 𝛼𝑏 = 𝛼ℎ = 0. The enhancement of electrical output is due to increasing the surface of 

the structure. In fact, since the piezoelectric layer is the part contributing to the generation of power 

output, increasing the polynomial degree results into the expansion of the surface of cantilever 

beam covered by the piezoelectric material and exposed to strain. This will be resulting in higher 

electrical output. Thus, the above analysis and investigation shows while the power output 

increases for the diverging beam the frequency reduces.  
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Figure 4.3 Power output variation versus polynomial degree under different width taper ratios (𝛼𝑏). 

 

 

Figure 4.4 Power output variation versus polynomial degree under different height taper ratios (𝛼ℎ). 
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Figure 4.5 Efficiency variation versus polynomial degree under different width taper ratios (𝛼𝑏). 

 

 

Figure 4.6 Efficiency variation versus polynomial degree under different height taper ratios (𝛼ℎ). 
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Figure 4.7 A power FRF curves for quintic tapered beam in width direction.  

  

 

Figure 4.8 A power FRF curves for quintic tapered beam in height directions. 
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Figure 4.9 A power FRF curves for tapered beam (𝛼𝑏 = 𝛼ℎ = 0.5) of different polynomial degrees. 

 

In the next example the amount of power output per volume of piezoelectric layers is 

investigated using the application of an array of PEHs instead of having one single beam. The 

properties of the PEHs are the same as in previous examples. Since the effects of sizing is important 

the ratio of length over width of the beam is kept constant for comparison. Application of smaller 

beams will result in the increased fundamental frequency. This frequency difference for the beams 

with the smaller size should be surmounted since the target is maximization of output power 

without the change of operation frequency. Application of tip mass has been one of the simplest 

and most useful methods used to tune the frequency. Selection of an appropriate tip mass could 

change the mass of system to meet the desirable natural frequency. The tip mass attached to the 

tip of the cantilever PEH such that the center line of the cube is at the tip of the beam [3]. The 

variation of power for different arrays of beams with the same volume is shown in Figs. 4.10-4.11. 

By analyzing the results, it can be concluded that the application of smaller cantilever beams and 

tip masses (for the frequency tuning) provides the possibility to increase the power noticeably. 

Decreasing the size of the beams resulted in increasing the output power. For example, by the 
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application of 25 beams connecting in series the corresponding power increases by 958% with 

respect to that of the uniform beam although the operation frequency remains constant, around 

284.6 Hz which was considered for validation purposes. Here series connection is considered since 

it can render higher extracted output power and voltage in comparison to the parallel connection 

[109]. Although the smaller size has an increasing effect on the power output the amount of 

required tip mass for the beam with this small size is not feasible. In fact, this tiny beam cannot 

withstand the 𝑀𝑡 = 47.7 𝑔. Moreover, addition of this amount of mass to the structure will result 

in escalating the total mass. Thus, the modification should be made to decrease the amount of 

required proof mass or even remove it entirely. To satisfy the requirement application of thinner 

beam method is employed. 

Reducing the thickness of piezoelectric and substrate layers is the desired method considered 

here. From Fig. 4.7 it appears that increasing the tapering ratio not only results in the reduction of 

resonance frequency, but also amplification of the electrical power output. This kind of useful 

feature is used to remove the tip mass completely. The new structure consists of an array of tapered 

beams (𝛼𝑏 = 0.6 , 𝛼ℎ = 0 , n = 5). The thickness of the piezoelectric and substrate layers are 

considered to be the same, as well. In order to find a suitable value for the thickness its effect on 

the natural frequency should be firstly analyzed. This analysis is necessary to figure out for which 

thickness one can reach the desired resonant frequency of 284.6 Hz. The effect of increasing 

thickness for the array of beams is shown in Fig. 4.12. The active/passive layer thickness is varied 

from 0.1 mm to 0.5 mm. As it was expected the graphs show that there is a linear relationship 

between the frequency and the thickness. Hence, for every array of the beams with specific size 

there is an optimal thickness value. The comparison of power FRFs per unit mass of piezoelectric 

layers between the original rectangular beam and the modified tapered beams is represented in Fig. 

4.13. The results show that the new designed systems are capable of scavenging more power but 

the fundamental natural frequency is the same for all structures. The overlapping of the curves 

indicate that the analyzed configurations provide the same amount of power. The produced output 

power per unit mass is 88.32 mW/kg under 1.0 g which is 29.5% higher with respect to the one 

provided by a single uniform beam. Although the structure harvests more energy there is still room 

to increase the output by the change of length-to-width ratio.  

As the last step, the effects of ratio of the length over the width of the tapered beam (𝛼𝑏 =

0.6 , 𝛼ℎ = 0 , n = 5) is investigated to find the optimum value. As is obvious from Fig. 4.14, 
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decreasing the ratio can result in increasing the maximum output power of the system. It is worth 

mentioning that the resonant frequency is kept the same for all ratios. By reducing the ratio from 

12 to 3 there is a possibility to enhance the output power by 267%. It is noticeable that the width 

at the free end of the beam is the limiting factor. In other words, since the converging tapered beam 

is considered the ratio should be a feasible value in order to achieve an acceptable structure. The 

comparison of power FRFs per mass of the piezoelectric material between the primary uniform 

beam and the new designed tapered ones with different lengths over width ratios is calculated and 

represented in Fig. 4.15. As the completing part, a performance comparison between an array of 

14 tapered bimorph cantilever beams with the geometry: 𝛼𝑏 = 0.6 , 𝛼ℎ = 0 , n = 5 , 𝑙 =

15mm , 𝑏0 = 5mm , ℎ𝑝 = ℎ𝑠 = 0.077mm  and the primary uniform cantilever beam is analyzed 

and shown in Fig. 4.16. The curves reveal that the output power dramatically increases from 0.391 

mW to 0.940 mW (140% more power). In this enhanced design not only the amount of 

piezoelectric material consumed is constant, but the mass of the substrate layer is reduced by 

15.64%.  

By and large, it has been shown that by the adoption of sizing analysis and application of an 

array of beams in series connection instead of one single beam one can noticeably improve the 

power output of the system. It should be pointed out that the amount of used active material and 

fundamental natural frequency remain constant for the comparison. To offset the tip mass concern 

the thinner layers can be used but the acceptable amount of thickness reduction depends on the 

fabrication limitation and the stability of the structure. In other words, it is not possible to decrease 

the thickness more below the limit of buckling or to the level that the beam could wrinkle. Another 

practical way which can help in the tuning target is the application of substrate layer with lower 

modulus of elasticity resulting in lower natural frequencies. This is for further analysis which can 

be considered to achieve more power output with less amount of required tip mass. Paper-based 

piezoelectric structures are among the potential structures which can be used to satisfy the 

requirements [110]. In other words, these advantages can be adopted to not only improve the output 

power, but also keep the fundamental frequency small is the application of paper-based 

piezoelectric structures. Although the new designed PPEHs have the electrical properties in the 

same range of conventional piezoelectric materials (PVDF and PZT), their mechanical properties 

such as modulus of elasticity is much smaller resulting in lower natural frequency. The fabrication 

procedure of these kinds of piezoelectric materials is explained in Appendix F. 
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Figure 4.10 Comparison of power FRFs between one uniform beam and an array of multiple uniform beams. 

 

 

Figure 4.11 Comparison of power FRFs per piezoelectric mass between different beam sizes. 
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Figure 4.12 Fundamental frequency as a function of piezoelectric/substrate layer thickness (ℎ𝑝 = ℎ𝑠). 

 

 

Figure 4.13 Comparison of power FRFs per piezoelectric mass between different beam sizes. 
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Figure 4.14 Comparison of maximum power output per piezoelectric mass between different beam ratios. 

 

 

Figure 4.15 Comparison of power FRFs per piezoelectric mass between different length/width ratios. 
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Figure 4.16 Comparison of power FRFs between the primary uniform beam and an array of tapered beams. 

 

4.5 Conclusions 

 

In this chapter, the effects of tapered beam on both the efficiency and the power output of PEHs 

were investigated. The influence of sizing on the amount of scavenged power was also studied and 

an enhanced system consisting of an array of uniform beams was proposed. For the analysis of the 

structure the superconvergent beam was taken into consideration. To validate the accuracy of the 

element the results available in the literature were compared. Application of this proposed element 

provided the great possibility of switching readily from the Timoshenko to the Euler-Bernoulli by 

changing the value of one coefficient (𝛽).  

Analysis of the non-uniform beams showed that when the tapering ratio increases (diverging 

beam) the output power rises while the efficiency decreases, and vice versa. Expanding the degree 

of polynomial function also intensified the increasing/decreasing pattern. For example, changing 

the degree from 𝑛 = 0 to 𝑛 = 5 for the tapered beam with the tapering properties 𝛼𝑏 = 𝛼ℎ = 0.5 

resulted in the power output increase by 1644.5%. The mentioned paradox for the trends of 

efficiency and power is originated from different amounts of input energy. It should be pointed 

out that changing the geometry of the beam (application of converging or diverging beam) changes 
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the fundamental resonance frequency of the structure, as well. It is feasible to improve the 

objective target (efficiency or power) by tapering according to a polynomial function. It can be 

concluded that although application of diverging beam results in the power output enhancement it 

increases the weight which is an important subject in different industries such as aerospace. In 

order to save more material, the sizing analysis and application of an array of beams was targeted 

as the second feasible concept.  

In order to improve the power output with the same amount of material a new system consisting 

of an array of tapered beams (diverging beams) was proposed. In the new architecture although 

the same amount of piezoelectric material was used the harvested electrical power output increased 

significantly by 140%. Additionally, the weight of substrate layer is reduced by 15.64% by the 

application of thinner substrate layer. The results showed that in order to increase the power output 

it is not always necessary to employ thicker piezoelectric layers. The power output strongly 

depends on the properties of the system, especially the external load resistance. For the design of 

the new system the operation frequency (fundamental natural frequency) was kept constant. To 

tune the natural frequency of the smaller arrays of tapered beams to the original uniform beam the 

thinner layers were employed. Therefore, the new proposed architecture could provide a solution 

for the challenging task of recharging the batteries in wireless sensor nodes. 
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Chapter 5  Performance of non-uniform functionally graded 

piezoelectric (FGP) energy harvester beams 

 

 

The appearance of functionally graded piezoelectric materials (FGPMs) has solved the lamination 

problem of the conventional piezoelectric structures. FGPMs are the new materials with 

unexplored capabilities. This chapter theoretically investigates the effects of non-uniformity on the 

performance of the FGPM cantilever beams subjected to harmonic excitation. The governing 

equations are derived based on Timoshenko and Euler-Bernoulli beam theories. The finite element 

method with the application of superconvergent element is employed here for the discretization 

and the vibration analysis of the system. The present model is validated by comparing the 

numerical results with the experimental results of piezoelectric energy harvesters of conventional 

shapes available in the open literature. Parametric studies are carried out with respect to the 

effects of tapering ratios, the degree of non-uniformity, load resistance, and the volume fraction 

parameter on the electrical output power and the fundamental resonance frequency.  It was 

observed that the application of diverging beams noticeably enhances the power output per mass 

of piezoelectric element extracted while decreases the natural frequency which is advantageous 

for scavenging energy from ambient surroundings. The results reveal that there is an optimal value 

for the non-homogeneous parameter leading to the maximized harvested energy under different 

operating conditions.  
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5.1 Introduction 

 

Energy harvesting and scavenging from external surrounding sources has become an 

interesting subject of research recently because the source of energy is freely available and its 

recuperation is environmentally friendly. Nowadays, the attention towards this subject has greatly 

increased owing to the simplicity and cost-effectiveness of the structure. In order to scavenge 

energy, the mechanical vibrations must be converted into electrical energy. This objective can be 

met through one of the three major conversion mechanisms including electrostatic, 

electromagnetic, and piezoelectric [5].  

Piezoelectric energy harvester is one of the useful structures employed for direct energy 

harvesting from ambient vibrations to generate electrical energy. In comparison to electrostatic 

and electromagnetic approaches, the piezoelectric approach has high power conversion potential 

from the systems with small sizes [111]. These features exclude the application of piezoelectric 

energy harvesters (PEHs) to generate electrical energy for small devices such as autonomous 

wireless sensors [1]. A conventional piezoelectric energy harvester usually consists of a cantilever 

beam with a proof mass attached at the free end of the beam used for frequency tuning and 

increased deflection. The piezoelectric layers are glued on the top and bottom surfaces of the 

substructure. Based on the number of attached piezoelectric layers they are categorized into 

unimorph (one layer) and bimorph (two layers) configurations [6]. The conventional piezoelectric 

structures consist of a substrate and piezo layers. This configuration might lead to the existence of 

lamination problem owing to the stress discontinuity at the interface. To address the lamination 

problem while satisfying the high thermal and mechanical resistance properties functionally 

graded materials were developed by the Japanese in the 1960s [112]. They developed types of 

composites having a smooth variation of material properties from one surface to another. The 

concept has drawn attention for the design of piezoelectric energy harvesters.  

Functionally graded piezoelectric materials (FGPMs) have been developed to remove 

discontinuity and render the sensing and actuating structures with a low level of stress 

concentration. By optimizing the volume fraction of two constituent phases it is possible to 

produce larger displacements resulting in higher output power [113]. The principle can also help 

designers to increase the lifetime of energy harvesting devices. This is a new type of practical 

approach requiring more attention and study. 
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So far, relatively limited studies have been carried out on the piezoelectric energy harvesters 

with various designs and represented approaches. The finite element modeling of functionally 

graded piezoelectric (FGP) cantilever beams in unimorph or bimorph configurations subjected to 

harmonic input was presented by [114]. They assumed the material properties of both the 

substructure and piezoelectric layers are graded across the thickness showing the power generated 

by functionally graded harvester is greater than the generated power by flexible PVDF harvester. 

They subsequently analyzed the time domain frequency of FGPMs subjected to random vibration 

[115]. Dealing with nonlinear vibration of bimorph FGPMs is another study carried out with some 

research team [113]. They considered the geometrical nonlinear terms (von Kármán nonlinearities) 

with the assumption of the Rayleigh beam theory. The theoretical results were validated using 

finite element simulation showing excellent agreements. Additionally, the new analytical model 

for the development of a functionally graded piezoelectric energy harvester (FGPEH) accounting 

the general nonlinear geometry was presented recently [116]. The need for systems with more 

scavenged power has pushed forward researchers to look for solutions. Parametric study and 

optimization of the design parameters are the strategies which can be adopted to improve the 

performance of piezoelectric energy harvesters. In this regard, [117] investigated theoretically the 

optimized energy harvesting characteristics of FGPM  under harmonic excitation. It was revealed 

that the FGPM energy harvesters have superiority over the conventional structures so that by the 

optimization of the volume fraction parameter one can maximize the amount of scavenged energy 

under different operating conditions. One of the common approaches to enhance the power is the 

geometry modification of cantilever beams. This approach can create uniform strain distribution 

through the length of the beam and eventually higher electrical power output [72]. This is the kind 

of optimization process which has not taken into consideration about FGPEHs. Hence, further 

insight into the subject needs to be provided to be able to render higher electrical outputs. 

In this chapter, the energy harvesting characteristics of tapered FGP cantilever beams subjected 

to harmonic excitation are investigated. The electromechanical coupling equations are derived 

using Hamilton’s principle based on Timoshenko beam theory. Although the structure is modeled 

based on the first-order beam theory it can be easily converted to the Euler-Bernoulli beam theory 

with the application of superconvergent element considered here developed for FGPMs [52]. The 

studied system consists of a tapered bimorph beam in a series configuration wherein the width of 

the beam is changing based on the polynomial function with various degrees, ranging from one to 
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five. Firstly, in order to validate the results, the numerical solution is validated by the theoretical 

and experimental results in the literature. Furthermore, the parametric study is carried out to find 

the optimized system for different operating conditions. Tapering ratio, degree of the polynomial 

function, load resistance and volume fraction parameter are the design parameters and their effects 

on the performance of the structure are analyzed. 

 

5.2 Formulation 

 

A sketch of tapered FGP cantilever beam is shown in Fig. 5.1. The system is composed of a 

substrate layer covered by piezoelectric layers connected in series. The beam is excited at its base 

and it is assumed that there is a perfect bonding between the layers. The beam width varies along 

its length represented by 𝑏(𝑥), as explained in Eq. (5.1). A proof mass is also attached on the end 

of the beam for the fundamental frequency regulation. 

 

𝑏(𝑥) = 𝑏0 (1 ± 𝛼
𝑥

𝐿
)
𝑛

 (5.1) 

 

where 𝛼 and n are the tapering ratio and polynomial function’s degree, respectively. 
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Figure 5.1 Cantilevered bimorph FGPEH under series connection. 

 

5.2.1 Functionally graded piezoelectric model 

 

In the considered system, the substrate layer is assumed to be made of pure metallic constituent 

while the piezoelectric layers are composed of both metallic and piezoelectric materials. The 

physical properties of each point of the functionally graded material obey the power-law function 

[113], expressed as: 

 

𝑝(𝑧) = 𝑝𝑝 + (𝑝𝑠 − 𝑝𝑝) (1 +
ℎ𝑠 − 2|𝑧|

2ℎ𝑝
)

𝑁

 (5.2) 
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where the subscripts p and s represent the piezoelectric and metallic phase, respectively. In Eq. 

(2), 𝑝(𝑧) denotes a typical material property (such as Young’s modulus, density or piezoelectric 

constants) and the power N could be a variable, N ≥ 0. It is noticeable that when 𝑁 → ∞ the 

functionally graded parts are converging into pure piezoelectric layers. 

 

5.2.2 Electromechanical coupling equations of non-uniform FGPEH 

 

In order to derive the constitutive equations, at the outset it is necessary to calculate the total 

internal and external energies of the system. Based on Timoshenko beam theory, the displacement 

of a generic point is described by Eq. (4.1).  

 

𝑹 = {

𝑢(𝑥, 𝑦, 𝑧, 𝑡)

𝑣(𝑥, 𝑦, 𝑧, 𝑡)

𝑤(𝑥, 𝑦, 𝑧, 𝑡)
} = {

𝑧𝜙𝑥(𝑥, 𝑡)
0

𝑤0(𝑥, 𝑡) + 𝑔(𝑡)
} (4.1) 

 

In Eq. (4.1), the variable 𝑤0 is the displacements projected on the mid-plane, 𝜙𝑥 is the rotation 

of corresponding cross section at point 𝑥 and time 𝑡 relative to the moving base and 𝑔(𝑡) is the 

transversal translation coming from the base motion. 

With the assumption of  Lagrange strain tensor and linear piezoelectric constitutive equations 

[53], the kinetic and strain energies of the entire structure are described using the following 

equations. 

 

𝑈 =
1

2
∫[𝜎𝑥𝑥𝜖𝑥𝑥 + 𝜏𝑥𝑧𝛾𝑥𝑧]𝑑𝑉𝑠 +

1

2
∫[𝜎𝑝𝜖𝑝 + 𝜏𝑝𝛾𝑝]𝑑𝑉𝑝

=
1

2
∫ [𝐼2

𝐸𝜙́𝑥
2
+ 𝐼0

𝐺(𝑤́0
2 + 𝜙𝑥

2 + 2𝜙𝑥𝑤́0)]

𝐿

0

𝑑𝑥

+
1

2
∫ [𝐽2

𝐸𝜙́𝑥
2
+ 𝐽0

𝐺(𝑤́0
2 + 𝜙𝑥

2 + 2𝜙𝑥𝑤́0) +
𝑑31
ℎ𝑝

𝐽1
𝐸𝑣(𝑡)𝜙́𝑥]

𝐿

0

𝑑𝑥 

(2.13) 
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𝑇 =
1

2
∫𝜌(𝑹̇. 𝑹̇)𝑑𝑉 +

1

2
𝑀𝑡[(𝑤̇0 + 𝑔̇)|𝑥=𝑙]

2 +
1

2
𝐼𝑡[𝜙̇𝑥|𝑥=𝑙]

2

=
1

2
∫ [𝐼0

𝜌
𝑤̇0

2 + 2𝐼0
𝜌
𝑤̇0𝑔̇ + 𝐼0

𝜌
𝑔̇2 + 𝐼2

𝜌
𝜙̇𝑥

2
] 𝑑𝑥

𝐿

0

+
1

2
∫ [𝐽0

𝜌
𝑤̇0

2 + 2𝐽0
𝜌
𝑤̇0𝑔̇ + 𝐽0

𝜌
𝑔̇2 + 𝐽2

𝜌
𝜙̇𝑥

2
] 𝑑𝑥

L

0

+
1

2
𝑀𝑡[(𝑤̇0 + 𝑤̇𝑏)|𝑥=𝑙]

2 +
1

2
𝐼𝑡[𝜙̇𝑥|𝑥=𝑙]

2
 

(4.4) 

 

where 𝜎𝑝 is the normal stress, 𝜏𝑝 is the shear stress, 𝜖𝑝 is the normal strain, 𝛾𝑝 is the shear strain, 

𝐺𝑝 is the shear modulus, 𝐸𝑝 is the elastic modulus, 𝐷3 is the electric displacement, 𝑑31 is the 

piezoelectric strain coefficient, 𝜀33
𝑇  is the dielectric permittivity of piezoelectric layer at constant 

stress and finally 𝐾𝑠 and 𝐸3 are the shear correction factor and the electric field across the 

piezoelectric layer. Additionally, 𝑀𝑡 and 𝐼𝑡 are the tip mass and its associated moment of inertia. 

The integral coefficients are also defined in the following 

 

𝐼𝑖
𝐸 ≜∬𝑧𝑖𝐸𝑠𝑑𝑦𝑑𝑧 ,   𝐼0

𝐺 ≜∬𝐾𝑠𝑧
𝑖𝐺𝑠𝑑𝑦𝑑𝑧 ,   𝐼𝑖

𝜌
≜∬𝑧𝑖𝜌𝑠𝑑𝑦𝑑𝑧 , 𝑖 = 0,1,2 (2.15) 

𝐽𝑖
𝐸 ≜∬𝑧𝑖𝐸𝑝(𝑦)𝑑𝑦𝑑𝑧 ,   𝐽0

𝐺 ≜∬𝐾𝑠𝑧
𝑖𝐺𝑝(𝑦)𝑑𝑦𝑑𝑧 ,   𝐽𝑖

𝜌
≜∬𝑧𝑖𝜌𝑝(𝑦)𝑑𝑦𝑑𝑧 , 𝑖

= 0,1,2 

(5.3) 

 

It should be pointed out that the material properties 𝐸𝑝, 𝐺𝑝, and 𝜌𝑝 are defined using Eq. (5.2). 

The internal electrical energy is defined as follows: 

 

W𝐼𝐸 =
1

2
∫𝐸3𝐷3 𝑑𝑉𝑝 = −

1

2

𝑣(𝑡)

ℎ𝑝
∫[𝐸𝑝𝑑31(𝑧𝜙́𝑥) −

𝑣(𝑡)

ℎ𝑝
𝜀33
𝑆 ] 𝑑𝑉𝑝

= −
1

2

𝑣(𝑡)

ℎ𝑝
𝑑31∫𝐽1

𝐸𝜙́𝑥𝑑𝑥

𝐿

0

+
1

2
𝐶𝑝𝑣(𝑡)

2 

(4.5) 
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where 𝐶𝑝 is the internal capacitance of the piezoceramic parts. The capacitance for one layer of 

piezoelectric material is calculated as in Eq. (2.18). 

 

𝐶𝑝 = 𝜀33
𝑆
𝐴𝑝

ℎ𝑝
 (2.18) 

 

where 𝜀33
𝑆  is the dielectric permittivity at constant strain and 𝐴𝑝 is the electrode area. 

The only remaining part is the calculation of the non-conservative virtual work owing to the 

electric charge output 𝑄𝑢(𝑡) defined in Eq. (2.22). 

 

𝛿𝑊𝑛𝑐 = 𝑄(𝑡)𝛿𝑣(𝑡) (2.22) 

 

By having all of the energy parts, the governing equations can be derived by the application of 

Hamilton’s principle (Eq. 2.21). 

 

∫(𝛿𝑇 − 𝛿𝑈 + 𝛿𝑊𝐼𝐸 + 𝛿𝑊𝑛𝑐)𝑑𝑡

𝑡2

𝑡1

= 0 (2.21) 

 

where 𝛿𝑇, 𝛿𝑈, 𝛿𝑊𝐼𝐸 and 𝛿𝑊𝑛𝑐 are the virtual works of the total kinetic energy, the strain energy, 

the internal electrical energy and the energy from non-conservative mechanical force, respectively. 

Analyzing the effects of damping structure is the completing part required to be added to the 

equations to increase the accuracy of modeling. The proportional damping (Rayleigh damping) is 

applied here [65]. 

 

5.3 Discretization of equations using superconvergent element (SCE) 

 

In order to derive the coupling equations, it is necessary to discretize the coupled model. There 

are different methods which can be adopted to meet the requirements. Finite element model (FEM) 

is the kind of useful method employed here. Regarding FEM, the superconvergent element is 

considered for higher accuracy. This type of element contains two nodes and four degrees-of-
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freedom (DOF), including two DOF in the transverse direction and two DOF in the rotational 

direction (Fig. 2.2). As one of the noticeable advantages, the element provides a precise response 

with the minimum number of elements since the shape functions are derived by using static 

equilibrium (Appendix C). Another remarkable advantage of this practical element is the simple 

switching method between the Timoshenko and Euler-Bernoulli beam theories. In fact, it is 

possible to switch readily from the Timoshenko to the Euler-Bernoulli by changing the value of 

one coefficient (𝛽), as described in Appendix C. Hence, application of this element results in an 

analysis of both beam theories without the need of extra calculations [52]. Considering the shape 

function of the SCE, the displacement parameters in terms of the nodal displacements are 

represented in Eq. (4.5). 

 

[
𝑤0(𝑥, 𝑡)

𝜙𝑥(𝑥, 𝑡)
] = [

𝑁𝑤(𝑥)

𝑁𝜙(𝑥)
] 𝑎(𝑡) = [

 𝜓1
𝑒(𝑥)  𝜓2

𝑒(𝑥)  𝜓3
𝑒(𝑥)  𝜓4

𝑒(𝑥)

 𝜑1
𝑒(𝑥)  𝜑2

𝑒(𝑥)  𝜑3
𝑒(𝑥)  𝜑4

𝑒(𝑥)
]

[
 
 
 
𝑊1

𝑒(𝑡)

 𝜙1
𝑒(𝑡)

𝑊2
𝑒(𝑡)

𝜙2
𝑒(𝑡) ]

 
 
 

 (4.5) 

 

 

Figure 2.2 Two-node finite element with four DOF. 

 

where 𝑁𝑤(𝑥) and 𝑁𝜙(𝑥) are the shape functions and 𝑎(𝑡) is the vector of unknown generalized 

coordinates. By substitution of Eq. (4.5) into Eq. (2.21), addition of the Rayleigh damping and 

performing integration by parts, the electromechanical coupling equations for a typical finite 

element is obtained in Eqs. (2.25) and (2.27). The damping parts accounts for the mechanical 

dissipative effects (Eq. (2.28)). 

 

𝑴𝒆𝒂̈(𝒕) + 𝑪𝒆𝒂̇(𝒕) + 𝑲𝒆𝒂(𝒕) − 𝜽𝒆𝑣(𝑡) = 𝒇𝒆 (2.25) 

𝐶𝑝𝑣̇(𝑡) +
𝑣(𝑡)

𝑅𝑙
+ 𝜽𝒆𝑻𝒂̇(𝒕) = 0 (2.27) 
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𝑪𝒆 = 𝜇𝑴𝒆 + 𝛾𝑲𝒆 (2.28) 

 

where 𝜇 and 𝛾 are the constants of mass and stiffness proportionality. Terms 𝑴𝑒, 𝑪𝑒, 𝑲𝑒 ,  𝜽𝑒, 𝒇𝑒 

are, respectively, the mass matrix; the damping matrix; the elastic stiffness matrix; the 

electromechanical coupling matrix and the vector of dynamical forces corresponding to one 

element of the piezoelectric cantilever beam, and 𝐶𝑝 is the equivalent capacitance (Appendix E). 

 

5.4 Frequency response of the coupling equations 

 

Assume the FGPEH is exposed to a harmonic base displacement 𝑔(𝑡) = 𝑋𝑒𝑖𝜔𝑡, where 𝜔 is 

the excitation frequency. Using this assumption, the forcing vector is calculated as 

 

  𝒇𝑒 = [𝜔2𝑋∫(𝐼0
𝜌
+ 𝐽0

𝜌
)𝑁𝑤

𝑇𝑑𝑥

𝑙𝑒

0

] 𝑒𝑖𝜔𝑡 (2.29) 

 

Since the applied force is assumed to be harmonic, the nodal displacement and the output 

voltage can be defined as 𝒂(𝒕) = 𝑨𝑒𝑖𝜔𝑡 and 𝑣 = 𝑉𝑒𝑖𝜔𝑡, respectively. Therefore, the assembled 

steady-state forms of electromechanical coupling equations can be summarized as Eqs. (2.30) and 

(2.31). 

 

(−𝑴𝜔2 + 𝑖𝜔𝑪 + 𝑲)𝑨 − 𝜽𝑉 = 𝑭 (2.30) 

𝑖𝜔𝜽𝑻𝑨 + (𝑖𝜔𝐶𝑝 +
1

𝑅𝑙
) 𝑉 = 0 (2.31) 

 

Solving the above equation simultaneously derives the output voltage explicitly as follows 

 

𝑣(𝑡) = −𝑖𝜔 (𝑖𝜔𝐶𝑝 +
1

𝑅𝑙
)
−1

𝜽𝑻 [−𝑴𝜔2 + 𝑖𝜔𝑪 + 𝑲

+ 𝑖𝜔 (𝑖𝜔𝐶𝑝 +
1

𝑅𝑙
)
−1

𝜽𝜽𝑻]

−1

𝑭𝑒𝑖𝜔𝑡 

(2.34) 
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5.5 Validation and parametric studies 

 

In this section, initially, the validation part is carried out to verify the accuracy of the present 

structure and the considered element. Subsequently, the effects of different parameters including 

the external load resistance, volume fraction parameter, tapering ratio and the degree of non-

uniformity are investigated to arrive at the optimal system rendering the highest amount of 

electrical power. 

 

5.5.1 Validation of the present model 

 

Like the first part, the convergence of the superconvergent element and the accuracy of the 

present numerical solution is validated by investigating two different systems. The first system 

consists of a uniform bimorph cantilever beam as previously reported  [62]. As is already 

mentioned, the present theory of FGPEH can be easily reduced into that of conventional 

piezoelectric laminate beams by setting the parameter 𝑛 → ∞. The mechanical and electrical 

properties of the bimorph piezoelectric beam connected in series are listed in Table 5.1. Other 

calculating parameters are 𝑅𝑙 = 1000𝛺, 𝑀𝑡 = 12𝑔, 𝐼𝑡 = 0, 𝜉 = 0.027. The frequency response 

functions (FRFs) of output voltage using the experimental analysis and the present method are 

compared and depicted in Fig. 5.2. From the graphs it is seen that the results are in very good 

agreement. 
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Table 5.1 Properties of the bimorph piezoelectric cantilever beam. 

Property Piezoelectric layer Substrate layer 

Material PZT-5H Brass 

Density 𝜌 (kg/𝑚3) 7800 9000 

Length (mm) 50.8 50.8 

Thickness (mm) 0.26 0.14 

Width (mm) 31.8 31.8 

Young’s modulus E (GPa) 66 105 

Piezoelectric strain coefficient d31(pC/N) -190 − 

Dielectric permittivity at constant strain 𝜀33
𝑆  

(nF/m) 
13.28 − 

 

The numerical fundamental frequency calculated using the present model is 45.7 Hz which is 

in agreement with the experimental frequency (45.6 Hz). This comparison proves the excellent 

convergence rate of SCE in which, by using only one superconvergent element the difference 

between the experimental and theoretical values is extremely low (0.22%). 
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(a)  
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(b) 

 

(c) 

Figure 5.2 Validation of the power frequency response functions for different load resistances; (a) Voltage FRF 

for 1kΩ, (b) Voltage FRF for 33kΩ, (c) Voltage FRF for 470kΩ. 

 

In the second part of the validation, the output voltage of one non-uniform PEH is analyzed 

[72]. It was assumed that the width of the beam is varying exponentially through the length given 

by 𝑏(𝑥) = 𝑏0𝑒
−𝑐𝑥. The electrical resistance and damping ratio are taken 1000 Ω and 1 percent, 

respectively, and other properties are listed in Table 3.1. The output voltage for different geometric 

conditions are achieved and provided in Table 5.1. As can be seen, the relative error between the 

numerical and analytical results is less than 0.7 percent although only one SCE is employed. 
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Table 3.1 Properties of the bimorph piezoelectric cantilever beam. 

Property Piezoelectric layer Substrate layer 

Material PZT-4 Steel 

Density 𝜌 (kg/𝑚3) 7960 7800 

Length (mm) 60 60 

Thickness (mm) 0.6 0.7 

Width (mm) 10 10 

Young’s modulus E (GPa) 81.3 200 

Piezoelectric strain coefficient d31(pC/N) -123 − 

Dielectric permittivity at constant strain 𝜀33
𝑆  

(nF/m) 
13.059 − 

 

Table 4.3 Validation of piezoelectric energy harvester’s voltage for different tapering values. 

c 0 5 10 15 20 

Analytic (V/g) [72] 0.6252 0.5479 0.4802 0.4214 0.3704 

SCE element (V/g) 0.6252 0.5470 0.4800 0.4225 0.3729 

Difference (%) 0 0.16 0.042 0.26 0.67 

 

In the last part of validation the results of the present study for the uniform functionally graded 

beam are compared with the results presented by [117]. The verifications are carried out under two 

different damping ratios in the case of 𝑛 = 1. As shown in Fig. 5.3, the predicted frequency 

responses of the average output power are in good agreement with that in the open literature. The 

figure indicates that with increasing the damping ratio a dramatic reduction occurs in the peak 

value of the average power. 
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Figure 5.3 Frequency response of the average power under different damping ratios. 

 

5.5.2 The effects of non-uniformity on the performance of tapered FGPEHs 

 

To optimize the performance, the effects of different parameters need to be investigated. In the 

first part, in order to investigate the effects of non-uniformity one bimorph non-uniform beam with 

the properties listed in Table 3.1 is considered. It is assumed that there is pure piezoelectric layers 

for the piezoelectric part (𝑁 → ∞). The maximum output voltage and power for different types of 

non-uniform beams are calculated, as shown in Figs. 5.4-5.5. Additionally, the variation of the 

fundamental natural frequency is plotted in Fig. 5.6. The results are computed for the electrical 

resistance of 1000Ω and the damping ratio of 0.01. 

As shown, there are similar changing patterns in the curves of output voltage and power. By 

increasing the degree of polynomial function and tapering ratio the electrical output increases. As 

an example, changing the polynomial degree from zero (straight beam) to five for the highest 

tapering ratio case (𝛼 = 0.6) can result in 246.5% and 1100.9% improvement in voltage and 

power, respectively. Conversely, the fundamental frequency would decrease if the polynomial 

degree increases for the diverging beams (𝛼 > 0). This kind of pattern is useful for the design of 
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energy harvesters which scavenge energy from the ambient surroundings in which the fundamental 

frequency is lower than 200 Hz [5]. Hence, application of the diverging beams can result in not 

only increasing the electrical output, but also decreasing the fundamental resonance frequency. 

Admittedly, the desirable resonance frequency determines the optimal non-uniformity values. 

To prove the enhancement efficiency of diverging beams the normalized output power 

variation of FGPEH (power per mass of piezoelectric parts) for different non-uniformity 

conditions is plotted in Fig. 5.7. It is clear from the figure that the normalized power increases 

monotonically with increasing tapering ratio along with the polynomial degree. For example, 

application of a converging beam with the properties 𝛼 = 0.6 and 𝑁 = 5 leads to 174% normalized 

power enhancement. 

 

 

Figure 5.4 Output voltage variation versus polynomial’s degree under different tapering ratios. 
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Figure 5.5 Output power variation versus polynomial’s degree under different tapering ratios. 

 

 

Figure 5.6 Fundamental frequency variation versus polynomial’s degree under different tapering ratios. 
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Figure 5.7 Variation of output power per mass of piezoelectric parts versus different non-uniformity conditions. 

 

5.5.3 Effects of volume fraction parameter on the performance of tapered FGPEHs 

 

As the second part of study, the influence of volume fraction parameter on the natural 

frequency and the electrical outputs are investigated. The variation of parameters is illustrated in 

Figs. 5.8-5.9. As is obvious from the graphs, the curves of electrical outputs obey similar changing 

rules. They start from zero, which corresponds to pure metallic phase (N=0), and as n increases, 

both curves rise to the maximal values to hit a plateau. Unlike the electrical output parameters, the 

fundamental natural frequency decreases as the volume fraction parameter goes up. Increasing the 

parameter n has a decreasing effect so that the figures indicate a dramatic reduction in the peak 

values when n changes from 0.1 to 10. The decreasing pattern continues to the point that the values 

reach a minimum value while n is around 15 and then experiences a period of stability. There is a 

trade-off between the output power and frequency for the design of an optimized system. Thus, 

when the operating frequency is pre-determined, there is an optimal volume fraction value 

corresponding to the maximal energy harvesting performance. 
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Figure 5.8 Output voltage and frequency variation of FGPEH versus volume fraction parameter for quintic 

geometry (N=5). 

 

 

Figure 5.9 Output power and frequency variation of FGPEH versus volume fraction parameter for quintic 

geometry (N=5). 
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To better understand the effects of non-uniformity, the variation of the electrical power output 

and fundamental natural frequency for two tapered FGPEH versus a wide range of volume fraction 

parameter is depicted in Figs. 5.10-5.11. The variation is calculated for three different degrees of 

polynomial function. Figs. 5.10-5.11 show the variation behavior for a diverging beam (𝛼 = 0.6) 

and a converging beam (𝛼 = −0.6), respectively. As to be expected, by increasing the volume 

fraction parameter the electrical output increases to reach a stable value. Conversely, the 

fundamental resonance frequency decreases to experience a minimum value around 15 Hz and 

remain constant as N rises. The variation pattern for the converging beam is the same as the 

diverging geometry while increasing n leads to higher and lower power outputs for diverging and 

converging beams, respectively. 

In the last part of this section the variation of the difference between the open-circuit and short-

circuit frequencies versus the functionally graded parameter n is analyzed, as depicted in Fig. 5.12. 

The results for both the converging and diverging beams with different tapering ratios are 

computed. The percentage of frequency difference is defined in Eq. 5.4. It can be concluded from 

the figure that the frequency difference rises as the volume fraction parameter increases. The 

maximum difference belongs to the pure piezoelectric constituent. Additionally, the higher the 

tapering ratio is, the larger the frequency difference would result. 

 

𝐹𝐷 =
[𝜔𝑜𝑝𝑒𝑛−𝑐𝑖𝑟𝑐𝑢𝑖𝑡 − 𝜔𝑠ℎ𝑜𝑟𝑡−𝑐𝑖𝑟𝑐𝑢𝑖𝑡]

𝜔𝑠ℎ𝑜𝑟𝑡−𝑐𝑖𝑟𝑐𝑢𝑖𝑡
× 100 (5.4) 
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Figure 5.10 Output power and frequency variation of diverging FGPEH (𝛼 = 0.6) versus volume fraction 

parameter under different polynomial degrees. 

 

 

Figure 5.11 Output power and frequency variation of converging FGPEH (𝛼 = −0.6) versus volume fraction 

parameter under different polynomial degrees. 
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Figure 5.12 Frequency difference variation versus volume fraction parameter under different tapering ratios. 

 

5.5.4 The effect of external load resistance on the performance of tapered FGPEHs 

 

The following part will focus on the effects of the external load resistance on the energy 

harvesting performance of non-uniform FGPEHs. Firstly, the effects of load resistance on the 

electrical output and resonance frequency of a converging and a diverging beam are investigated, 

as shown in Figs. 5.13-5.16. The load resistance selection covers the short-circuit and open-circuit 

cases. Setting 𝑅𝑙 to be 102 and 106 represent the short-circuit and open-circuit cases, respectively 

[62]. As the results show, with the volume fraction parameter increasing, the output power 

increases to reach a maximum value and remain constant. Additionally, by raising the employed 

load resistance the output power gradually increases until the open-circuit condition case for which 

the output power tends to be stable during the whole range of employed volume fraction parameter. 

Figs. 5.13 and 5.15 illustrate that the variation pattern of output power should be divided into two 

separate areas. The first area belongs to 𝑛 < 0.02 in which the rise of the load resistance has an 

increasing effect on the output power. For the second section (𝑛 > 0.02) there is an optimal 
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resistance value in the range 104-106 corresponding to the maximal harvested power. The 

predicted changing patterns are in agreement with the results presented by [117]. Conversely, the 

short-circuit and open-circuit frequencies reduce gradually from the maximum value associated 

with 𝑛 = 0 to the minimum values when 𝑛 → ∞. 

In the second part of this section, the effects of external load resistance on the output power of 

tapered FGPEHs are examined in Figs. 5.17-5.20. Four different cases with n=0.1, 1, 10, and 100 

are considered.  From the results of the analysis, it is obvious that for every considered condition 

there is an optimal load resistance leading to the highest amount of scavenged energy. As the load 

resistance increases from zero the output power increases dramatically to reach a peak and 

plunging down after passing the optimal value. As was expected, the peak values of diverging 

beams are larger than converging beams while their resonance frequencies are lower. It is also 

noticeable that increase of n pushes back the peak values towards the lower external load 

resistance. 

 

 

Figure 5.13 Output power variation of a diverging FGPEH (𝛼 = 0.6 , 𝑁 = 5) under different external load 

resistances. 
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Figure 5.14 1st frequency variation of a diverging FGPEH (𝛼 = 0.6 , 𝑁 = 5) under short- and open-circuit 

conditions.  

 

 

Figure 5.15 Output power variation of a converging FGPEH (𝛼 = −0.6 , 𝑁 = 5) under different external load 

resistance. 
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Figure 5.16 1st frequency variation of a converging FGPEH (𝛼 = −0.6 , 𝑁 = 5) under short- and open-circuit 

conditions. 

 

 

Figure 5.17 Output power variation of FGPEH (𝑛 = 0.1 , 𝑁 = 5) versus external load resistance under different 

tapering ratios. 
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Figure 5.18 Output power variation of FGPEH (𝑛 = 1 , 𝑁 = 5) versus external load resistance under different 

tapering ratios. 

 

 

Figure 5.19 Output power variation of FGPEH (𝑛 = 10,𝑁 = 5) versus external load resistance under different 

tapering ratios. 
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Figure 5.20 Output power variation of FGPEH (𝑛 = 100, 𝑁 = 5) versus external load resistance under different 

tapering ratios. 

 

5.6 Conclusions 

 

In this chapter, the performance variation of non-uniform bimorph FGPEHs under different 

design parameters are analyzed. To numerically calculate the desired outputs a 4-DOF 

superconvergent element is employed. The presented element has the potential to examine both 

Euler-Bernoulli and Timoshenko beam theories. In fact, by changing one parameter of this element 

one can switch from the Timoshenko beam theory to the Euler-Bernoulli theory (Appendix A). It 

can provide the numerical results for different geometrical properties with a high degree of 

accuracy in good correlation to the experimental ones. To prove the accuracy of results, the 

numerical results are first validated for particular cases with other theoretical and experimental 

results from the open literature. In the following, the effects of different parameters including the 

degree of polynomial function, tapering ratio, external load resistance and volume fraction on the 

electrical outputs and fundamental natural frequency are examined. From the results, it is obvious 

that the degree of non-uniformity and the ratio of volume fraction of two constituent phases play 

an important role in the amount of scavenged energy and the first resonance frequency. The results 

show that the energy harvesting efficiency of FGPEHs can be easily controlled by adjusting the 
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non-uniformity and inhomogeneous parameters. Based on the investigations, the most important 

conclusions could be briefly listed as follows: 

►The fundamental frequency increases with decreasing tapering ratio (application of 

converging beams) and this effect can be intensified by increasing the degree of polynomial 

function and vice versa for the diverging beams. 

► Application of converging and diverging beams result in lower and higher electrical output 

power, respectively. Like the resonance frequency, the decreasing (increasing) influence can be 

amplified by the application of higher polynomial function degrees.  

► Application of the diverging beams can result in not only increasing the electrical output, 

but also decreasing the fundamental resonance frequency which represents an advantageous 

geometry for scavenge energy from the ambient surroundings with low fundamental frequencies 

disturbance.  

► For FGPEHs, the fundamental frequency decreases uniformly as the material volume 

fraction rises. Conversely, the volume fraction parameter has an increasing effect on the output 

power so that the maximum values belong to the pure piezoelectric constituent. 

► For tapered FGPEH, the increasing load resistance has an enhancing effect on the output 

power and decreasing effect on the fundamental natural frequency for both converging and 

diverging beams. 

► By increasing the volume fraction parameter the difference between the short-circuit and 

open-circuit frequencies increase to reach to the highest value for the pure piezoelectric condition 

(𝑛 → ∞).  

► The largest frequency difference between the short-circuit and open-circuit cases belongs 

to the converging beams.  

► Raising the volume fraction parameter moves back the peak values of output power towards 

the lower external load resistances.  

► Under a predetermined operating frequency, there is an optimal volume fraction parameter 

and tapering geometry providing the maximal output power.  
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Chapter 6  Summary, conclusions and future work 

 

The conclusions of this research as well as the suggested future work are presented in this chapter. 

Firstly, the general conclusions are stated in the first section. The suggested future work is covered 

in the second section. 
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6.1 Summary 

 

Paper-based smart systems are new and presented with their advantages along with their 

parametric studies. These systems are still in their early stages of development. The introdctory 

review of smart materials especially paper-based piezoelectric energy harvetsers is completely 

covered in the first chapeter. They possess exclusive merits in comparison to the conventional 

piezoelectric smart systems made entirely of PVDF or PZT. Unlike the conventioal piezoelectric 

materials they are lightweight, cost-effective, biodegradable, biocompatible, foldable, 

environmentally friendly, disposable, inexpensive to fabricate, portable and flexible. Additionally, 

compared to other flexible materials cellulose has a much lower coefficient of thermal expansion 

leading to the high thermal stability of final devices [17]. The only deficiency which needs to be 

surmounted is the lower performance. Based on the experimental research presented in the 

literature, the amount of extracted power from these smart materials are much lower than the 

regular piezoelectric energy harvesters. Hence, there is a need to study these structures to find out 

ways to improve the performance and efficiency enhancement. To satisfy the need, there are 

different venues which can be pursued including the enhancement of piezoelectric properties 

through functionalizing paper, geometry modification, and sizing. In this research, these solutions 

are separately considered and investigated. As there is no experimental work on paper based 

cantilever type piezoelectric energy harvesters, the validation of the proposed models made from 

PZT are available in the open literature. A first step in this investigation is the validation of the 

models and the concepts presented in the above work. This step has been completed and further 

investigations on paper based piezo cantilever like energy harvesters are now feasible. 

In order to study the effects of different parameters, it is first necessary to formulate a 

theoretical model which can accurately predict the behavior of the system. Moreover, to solve the 

governing equations an efficient and accurate solution method is essential. Hence, the second 

chapter of this study is devoted to address these issues. In the second chapter, the structure of 

cantilever piezoelectric energy harvester is first modelled based on Euler-Bernoulli and 

Timoshenko beam theories. After that, finite element method with the application of a 

superconvergent element is applied to discretize the governing equations. The validation of the 

results using SCE shows a very good rate of convergence and excellent agreement between the 
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theoretical and experimental results reported in literature. The material presented in the chapter 

was published in the Journal of Intelligent Material Systems and Structures. 

As the second step, in order to study the influence of the geometry modification, the behavior 

of cantilever piezoelectric energy harvesters under bending motion is modelled and investigated 

in the third chapter. Polynomial function with different degrees of non-uniformity introduced by 

changing their highest degree term from one to five is the kind of structure considered. The results 

indicate that improvement of the electrical output is feasible using polynomial function with higher 

degrees of non-uniformity. Efficiency is another important factor scrutinized in this chapter 

showing that its enhancement is achievable using the application of non-uniform geometries. The 

material presented in the chapter was published in the Journal of Intelligent Material Systems and 

Structures. 

Sizing is one of the most important factors which needs to be considered for the performnce 

enhancement and weight reduction simultaneously. By sizing, it is possible to improve the desired 

output power without the application of extra piezoelectric material. This important issue is 

addressed in the third chapter. Here, a new system consisting of an array of tapered beams 

(diverging beams) was presented. In the new system although the same amount of piezoelectric 

material was used the harvested electrical power output and the weight of substrate layer increased 

and reduced, respectively. It is worth mentioning that the operation frequency was kept constant 

for the design of the new system. The material presented in this chapter was submitted to 

publication to the International Journal of Smart and Nano Materials 

To complete the study, the effect of functionalizing is studied in the 5th chapter. In this chapter, 

the performance analysis of non-uniform bimorph functionally graded piezoelectric energy 

harvesters are analyzed. Study indicates that the degree of non-uniformity and the ratio of volume 

fraction play important roles in the 1st resonance frequency and subsequently the amount of 

scavenged energy. The material presented in this chapter was submitted to publication to the 

Journal of Intelligent Material Systems and Structures.  

 

6.2 Conclusions 

 

As it has been mentioned in the abstract, one of the main objective of this study is the performance 

enhancement piezoelectric energy harvesters which is met using the geometry modification, sizing 



128 
 

analysis and functionalizing the structure. Based on the investigations carried out in each chapter 

devoted to every recommended solution, the main conclusions could be briefly listed below: 

● SCE is an element with a great range of convergence which only requires very few 

elements to capture the output resulting in the reduction of time and the cost of 

computation. 

● It is more suitable to model the beam using the Timoshenko assumptions only for smaller 

values of slenderness ratio (less than 5). 

● The degree of polynomial function has an increasing effect on the output voltage so that 

changing the degree from one to five results in enhancement of electrical voltage by 306%. 

● Changing the geometry from a converging beam (𝛼 = −0.6) to a diverging beam (𝛼 =

0.6) leads to increasing the maximum output voltage by 2867.3%. 

● Application of the diverging beams can both increase the electrical output and decrease 

the fundamental resonance frequency, respectively. This is an advantageous feature for 

scavenge energy from sources with low fundamental frequencies. 

● The maximum output voltage is produced by the bimorph structure in parallel 

connection. 

● By converging the beam and raising the power “n” from 1 to 5 the efficiency can be 

improved by 22%. 

● The results indicate that the maximum efficiency is located between the open-circuit and 

short-circuit frequencies. 

● By the application of a series of beams with optimized sizing the harvested electrical 

power output increased significantly by 140% although the same amount of piezoelectric 

material was used. Additionally, the weight of substrate layer is reduced by 15.64% by the 

application of thinner substrate layer. 

● The fundamental frequency decreases uniformly as the material volume fraction rises 

while the output power rises such that the maximum values belong to the pure piezoelectric 

constituent. 

● Increasing the volume fraction parameter widens the frequency gap difference between 

the short-circuit and open-circuit frequencies. In other words, the maximum amount of 

frequency difference occurred for the pure piezoelectric condition (𝑛 → ∞). 
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● Rising the volume fraction parameter pushes the peak values of output power towards 

the lower external load resistances. 

● For each excitation frequency there is always an optimal volume fraction parameter and 

tapering geometry leading to the maximal output power. 
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6.3 Particular contributions and future work 

 

In this thesis, different gaps associated with the knowledge of piezoelectric energy harvesters 

were addressed in order to enhance the performance of PPEHs. In the following, the suggested 

future work regarding the improvement of the structures are listed.  

 

1) Experimental validation of the achieved theoretical results for extended ranges of 

parameters. 

2) Parameter optimization regarding the geometry and sizing of the structure. 

3) Type and size of the selected electrodes are effective parameters which could change the 

amount of scavenged energy from the structure. 

4) Owing to the nature of cantilever beams the volumetric strain is higher near the root of the 

beam (clamped end) while vibrating [96]. Thus, the non-uniformly distributed strain 

phenomenon along the length of the cantilever beam can yield an optimal value for the area 

of piezoelectric layer(s). Thus, optimization of piezoelelectrode coverage is another aspect 

that needs to be studied. In fact, performance anlysis of partially covered piezoelectric 

energy harvesters is of importance to maximize the scavenged output power.  

5) It is worthwhile to carry out more investigations on the system comprising small 

piezoelectric patches placed at different locations of the substrate layer rather than wholly 

covered substrate layers. 

6) Study of the fabrication of paper-based piezolectric energy harvesters is essential. Fiber 

cellulose impregnated with piezolectric materials can be tailored so as to fulfill specific 

needs such as requisite hydrophilicity, permeability, reactivity, functionality, piezoelectric 

properties etc. Based on the range of excitation frequencies there is the possibility to 

functionalize the paper-based smart structures such that it works with the maximum 

efficiency within the specified range. In other words, changing the percentage of 

component parts or the effective working conditions such as humidity are the influential 

parameters which can help one to  achieve the goal.  

7) Modeling and analysis of multilayer piezoelectric energy harvesters (stack of piezoelectric 

layers) is another effective strategy in the way of performance enhancenment. By 



131 
 

increasing the piezoelectric layers one may be able to  enhance the efficiency and 

performance of structures.  

8) Develop a mathematical/theoretical model –with emphasis on the physics- to accurately 

predict the results of paper-based mechanical energy harvesters as the one layer structure.  
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Appendix A. Position of the neutral axis 

 

Consider the rectangular cross section of a beam as shown in Fig. A1. (a). The width of the 

substrate and the piezoelectric layers are denoted by 𝑏𝑠 and 𝑏𝑝, respectively. Moreover, ℎ𝑠 and ℎ𝑝 

show their uniform thickness across the cross section. The procedure of finding the position of the 

neutral axis of the composite structures consisting different types of material is described in the 

elementary strength of material texts [118]. Based on the procedure, transforming the cross section 

of the beam to a homogenous cross section with only one single Young’s modulus (E) is required. 

In this regard, firstly the Young’s moduli ratio n is defined and determined. In the transformed 

cross section, the width of the material with the lower Young’s modulus is widened (𝑛𝑏𝑠) if the 

ratio is larger than one and narrowed if the ratio is smaller than one. Since in the case study 

considered the modulus of elasticity of the substrate is always larger than that of the piezoelectric 

one (𝐸𝑠 > 𝐸𝑝), widening state is occurring. Fig. A1 (b) represents the transformed cross section 

of the unimorph beam. Taking into account the Young’s moduli, the position of the neutral axis 

can be defined using the following equation.  

 

 

Figure A1 (a) Cross section of the unimorph beam (b) the transformed cross section. 

 

𝑌 =
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Appendix B . Detailed calculations of total kinetic and potential energies 

 

The total potential and kinetic energy expressions are given by 

𝑈 =
1

2
∫ [𝐸𝑠(𝑢́0 + 𝑧𝜙́𝑥)

2
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After more simplifying 
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Appendix C. Shape functions of the four-DOF (superconvergent element) 

 

The three shape functions for this type of element are as follows: 

 

C1. Lagrange linear shape functions 

 

𝜒1
𝑒 = (1 − 𝜂) (C1) 

𝜒2
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C2. Cubic shape functions 
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C3. Quadratic shape functions 
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 (C11) 
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where 𝑙𝑒 is the length of a typical element of the beam. In the previous shape functions, if 𝛽 =  0 

(or in other words 𝐽0
𝐺  → ∞ and 𝐼0

𝐺  → ∞, i.e., the assumption of no-shear-deformation theory), shape 

functions corresponding to the Euler–Bernoulli beam are obtained and the interpolating functions 

are reduced to cubic and quadratic Hermitian polynomials. 
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Appendix D. Shape functions of eight-DOF 

 

𝑓1 = 1 − 3𝜂2 + 2𝜂3 (D1) 

𝑓2 = 𝜂 − 2𝜂2 + 𝜂3 (D2) 

𝑓3 = 3𝜂2 − 2𝜂3 (D3) 

𝑓4 = −𝜂2 + 𝜂3 (D4) 
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Appendix E. Matrices of the piezoelectric beam in flapping mode 

 

E1. Unimorph structure 

 

𝑴𝒆 = ∫(𝐼0
𝜌
+ 𝐽0

𝜌
)𝑁𝑢

𝑇𝑁𝑢𝑑𝑥

𝑙𝑒

0

+∫(𝐼0
𝜌
+ 𝐽0

𝜌
)𝑁𝑤

𝑇𝑁𝑤𝑑𝑥

𝑙𝑒

0

+∫(𝐼2
𝜌
+ 𝐽2

𝜌
)𝑁𝜙

𝑇𝑁𝜙𝑑𝑥

𝑙𝑒

0

 

+∫ 𝐽1
𝜌
𝑁𝜙

𝑇𝑁𝑢𝑑𝑥

𝑙𝑒

0

+∫ 𝐽1
𝜌
𝑁𝑢

𝑇𝑁𝜙𝑑𝑥

𝑙𝑒

0

 

(E1) 

𝑲𝒆 = ∫(𝐼0
𝐸 + 𝐽0

𝐸)𝑁́𝑢
𝑇
𝑁́𝑢𝑑𝑥

𝑙𝑒

0

+∫(𝐼2
𝐸 + 𝐽2

𝐸)𝑁́𝜙
𝑇
𝑁́𝜙𝑑𝑥

𝑙𝑒

0

+∫ 𝐽1
𝐸𝑁́𝜙

𝑇
𝑁́𝑢𝑑𝑥

𝑙𝑒

0

 

+∫ 𝐽1
𝐸𝑁́𝑢

𝑇
𝑁́𝜙𝑑𝑥

𝑙𝑒

0

+∫(𝐼0
𝐺 + 𝐽0

𝐺)𝑁́𝑤
𝑇
𝑁́𝑤𝑑𝑥

𝑙𝑒

0

+∫(𝐼0
𝐺 + 𝐽0

𝐺)𝑁𝜙
𝑇𝑁𝜙𝑑𝑥

𝑙𝑒

0

 

+∫(𝐼0
𝐺 + 𝐽0

𝐺)𝑁𝜙
𝑇𝑁́𝑤𝑑𝑥

𝑙𝑒

0

+∫(𝐼0
𝐺 + 𝐽0

𝐺)𝑁́𝑤
𝑇
𝑁𝜙𝑑𝑥

𝑙𝑒

0

 

(E2) 

𝒇𝒆 = −∫(𝐼0
𝜌
+ 𝐽0

𝜌
)𝑁𝑤

𝑇𝑔̈𝑑𝑥

𝑙𝑒

0

 (E3) 

𝜽𝑒 = −∫
𝑑31
ℎ𝑝

𝐽1
𝐸𝑁́𝜙

𝑇
𝑑𝑥

𝑙𝑒

0

   𝑎𝑛𝑑   𝐶𝑝 = 𝐶𝑝 (E4) 

 

E2. Bimorph structure in series state 

 

𝑴𝒆 = ∫(𝐼0
𝜌
+ 2𝐽0

𝜌
)𝑁𝑤

𝑇𝑁𝑤𝑑𝑥

𝑙𝑒

0

+∫(𝐼2
𝜌
+ 2𝐽2

𝜌
)𝑁𝜙

𝑇𝑁𝜙𝑑𝑥

𝑙𝑒

0

 (E5) 
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𝑲𝒆 = ∫(𝐼2
𝐸 + 2𝐽2

𝐸)𝑁́𝜙
𝑇
𝑁́𝜙𝑑𝑥

𝑙𝑒

0

+∫(𝐼0
𝐺 + 2𝐽0

𝐺)𝑁́𝑤
𝑇
𝑁́𝑤𝑑𝑥

𝑙𝑒

0

+∫(𝐼0
𝐺 + 2𝐽0

𝐺)𝑁𝜙
𝑇𝑁𝜙𝑑𝑥

𝑙𝑒

0

+∫(𝐼0
𝐺 + 2𝐽0

𝐺)𝑁𝜙
𝑇𝑁́𝑤𝑑𝑥

𝑙𝑒

0

+∫(𝐼0
𝐺 + 2𝐽0

𝐺)𝑁́𝑤
𝑇
𝑁𝜙𝑑𝑥

𝑙𝑒

0

 

(E6) 

𝒇𝒆 = −∫(𝐼0
𝜌
+ 2𝐽0

𝜌
)𝑁𝑤

𝑇𝑔̈𝑑𝑥

𝑙𝑒

0

 (E7) 

𝜽𝑒 = −∫
𝑑31
ℎ𝑝

𝐽1
𝐸𝑁́𝜙

𝑇
𝑑𝑥

𝑙𝑒

0

   𝑎𝑛𝑑   𝐶𝑝 =
𝐶𝑝

2
 (E8) 

 

E3. Bimorph structure in parallel state 

 

𝑴𝒆 = ∫(𝐼0
𝜌
+ 2𝐽0

𝜌
)𝑁𝑤

𝑇𝑁𝑤𝑑𝑥

𝑙𝑒

0

+∫(𝐼2
𝜌
+ 2𝐽2

𝜌
)𝑁𝜙

𝑇𝑁𝜙𝑑𝑥

𝑙𝑒

0

 (E9) 

𝑲𝒆 = ∫(𝐼2
𝐸 + 2𝐽2

𝐸)𝑁́𝜙
𝑇
𝑁́𝜙𝑑𝑥

𝑙𝑒

0

+∫(𝐼0
𝐺 + 2𝐽0

𝐺)𝑁́𝑤
𝑇
𝑁́𝑤𝑑𝑥

𝑙𝑒

0

+∫(𝐼0
𝐺 + 2𝐽0

𝐺)𝑁𝜙
𝑇𝑁𝜙𝑑𝑥

𝑙𝑒

0

+∫(𝐼0
𝐺 + 2𝐽0

𝐺)𝑁𝜙
𝑇𝑁́𝑤𝑑𝑥

𝑙𝑒

0

+∫(𝐼0
𝐺 + 2𝐽0

𝐺)𝑁́𝑤
𝑇
𝑁𝜙𝑑𝑥

𝑙𝑒

0

 

(E10) 

𝒇𝒆 = −∫(𝐼0
𝜌
+ 2𝐽0

𝜌
)𝑁𝑤

𝑇𝑔̈𝑑𝑥

𝑙𝑒

0

 (E11) 

𝜽𝑒 = −2∫
𝑑31
ℎ𝑝

𝐽1
𝐸𝑁́𝜙

𝑇
𝑑𝑥

𝑙𝑒

0

   𝑎𝑛𝑑   𝐶𝑝 = 2𝐶𝑝 (E12) 
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Appendix F. Fabrication process of paper-based piezoelectric materials 

 

The material preparation of piezoelectric papers has been investigated in different studies. To 

prepare the structure different ingredients and procedures have been taken into consideration. The 

fabrication process differs based on the applied ingredients. Here, one of the common methods is 

considered and described in detail. The procedure comprises of a number of steps brought in the 

following. The main ingredients consist of cotton pulp, lithium chrloride (LiCl) and anhydrous 

DMAc (N,N -dimethyl acetamide) with different fractions. As the first step, the cotton pulp (MVE, 

DPw 4580) with the degree of polymerization, 4500 is torn in small pieces. As the next step one 

treatment named the pretreatment process should be performed to guarantee the dissolution of the 

cellulose samples in the solvent. As the pretreatment operation, the cellulose samples are 

conditioned by being immersed in a solution including water (1×), acetone (2×) and DMAc (2×) 

at room temperature [119]. After pretreatment, in order to remove the remnant water inside, the 

cotton pulp and lithium chloride (LiCl/Junsei Chemical) are heated in oven at the conditions 100℃ 

and low pressure for 30 minutes. After that, the smallest pieces of the cotton pulp are dissolved 

with LiCl/anhydrous DMAc (N,N -dimethyl acetamide) in proportion of cotton cellulose 

pulp/LiCl/DMAc to 2/8/90. The cellulose is dissolved in the solvent by heating at 155℃ with 

mechanical stirring according to the solvent exchange technique [120]. To reach a homogeneous 

solution, the mixture was stirred using magnetic bar stirrer as solvent exchange process until LiCl 

and the raw cotton pulp completely dissolved. The cellulose solution are spin coated on a silicon 

wafer or a piece of glass by a spin coater. The layer is approximately 20 µm in thickness. Then, it 

is treated in solvent mixture with a 50:50 (v/v) mixture of deionized (DI) water and Isopropyl 

alcohol (IPA), for 10 minutes to effectively eliminate Li+ ions as well as DMAc [121]. The cured 

film was rinsed in DI water. To align cellulose chains with uniaxial direction, the film is drawn at 

wet state by designed stretching system with different drawing ratio. The film is dried by exposing 

the film to infrared ray for approximately one hour. For the stretching process, different stretching 

ratios (SRs) are taken from including 1, 1.5, 1.6, 1.8, and 2. The stretching ratio is defined as the 

ratio between the original length of the cellulose before the stretching and the length of the 

stretched cellulose. To be able to measure the output voltage, the EAPap is fabricated by coating 

gold electrode on both sides of the cellulose film by a thermal evaporator. Typically, the thickness 

of the cellulose EAPap ranges from 15 μm to 30 μm. Finally, the poling procedure should be 
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applied to the structure to improve the piezoelectric properties. In fact, after the completion of 

fabrication process the orientation of the individual electric dipoles in a piezoelectric material is 

disordered which needs to be aligned for the material to exhibit strong electromechanical coupling. 

As the poling process the piezoelectric material is heated up above its Curie temperature and then 

placed in a strong electric field [53]. In order to remove the effects of moisture on the properties 

the EAPap sample can be coated by a thin laminating film on the top and bottom surfaces for 

packaging. Another potential option is the use of a piezoelectric nanomaterial such as ZnO which, 

after dispersion in a liquid phase and sonicated, it would be imbibed in the paper matrix. The 

nanoparticles will orient as dipoles [please add the reference sent along with the thesis] when the 

paper and nanoparticles are places in an electrostatic field. Stacks of such layers may improve the 

efficiency of the piezoelectric energy harvesters.  

 

 


