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ABSTRACT 

Automated Testing: Requirements Propagation via Model Transformation in Embedded 

Software 

Nader Kesserwan, Ph.D. 

Concordia University, 2020 

Testing is the most common activity to validate software systems and plays a key role in 

the software development process. In general, the software testing phase takes around 40-70% of 

the effort, time and cost. This area has been well researched over a long period of time. 

Unfortunately, while many researchers have found methods of reducing time and cost during the 

testing process, there are still a number of important related issues such as generating test cases 

from UCM scenarios and validate them need to be researched.  

As a result, ensuring that an embedded software behaves correctly is non-trivial, especially when 

testing with limited resources and seeking compliance with safety-critical software standard. It 

thus becomes imperative to adopt an approach or methodology based on tools and best 

engineering practices to improve the testing process. This research addresses the problem of 

testing embedded software with limited resources by the following.  

First, a reverse-engineering technique is exercised on legacy software tests aims to discover 

feasible transformation from test layer to test requirement layer. The feasibility of transforming 

the legacy test cases into an abstract model is shown, along with a forward engineering process 

to regenerate the test cases in selected test language.  

Second, a new model-driven testing technique based on different granularity level (MDTGL) to 

generate test cases is introduced. The new approach uses models in order to manage the 
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complexity of the system under test (SUT). Automatic model transformation is applied to 

automate test case development which is a tedious, error-prone, and recurrent software 

development task. 

Third, the model transformations that automated the development of test cases in the MDTGL 

methodology are validated in comparison with industrial testing process using embedded 

software specification. To enable the validation, a set of timed and functional requirement is 

introduced. Two case studies are run on an embedded system to generate test cases. The 

effectiveness of two testing approaches are determined and contrasted according to the 

generation of test cases and the correctness of the generated workflow. Compared to several 

techniques, our new approach generated useful and effective test cases with much less resources 

in terms of time and labor work.  

Finally, to enhance the applicability of MDTGL, the methodology is extended with the creation 

of a trace model that records traceability links among generated testing artifacts. The traceability 

links, often mandated by software development standards, enable the support for visualizing 

traceability, model-based coverage analysis and result evaluation. 
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Chapter 1 Introduction 

1.1 Research Motivation 

As software systems become increasingly complex, the demand for software verification 

grows. Testing is a major cost factor during software development, sometimes consuming more 

than 50% of the overall development effort [1], [2]. To address growing demand, many testing 

approaches and strategies have been developed with the aim of minimizing cost and achieving 

high fault detection capabilities. One of the most promising approaches is model-based testing 

(MBT). This approach can reduce test costs due to its ability to capture and validate system 

behaviour from an early stage of the software development cycle; it also promotes the use of 

tools to automate the process of test case generation, execution, and evaluation [3]. The process 

of MBT relies on building models to represent system requirements. These models, therefore, 

form an efficient source for deriving test cases. According to a 2011 survey in the car industry 

[4], “Model-based testing (i.e. the generation of test cases out of a test model) is currently not 

used intensively. Only 35% of the participants use it right now, but almost 50% plan to use it in 

the near future”.  

Another promising technique is model-driven testing [5] (MDT), which is an automation of MBT 

that uses model-transformation technology on formal models, their meta-models, and 

transformation rules defined in terms of mappings between the elements of meta-models. 

Automatic model transformations play a critical role in model-driven engineering (MDE) since 

they automate complex, tedious, error-prone, and recurrent software development tasks [6], [7], 

[8]. The key challenge of MDT is to transform higher-level models to platform-specific models 

that tools can use to generate code. Examples of transformations are a refinement of a design 

model by adding details pertaining to a particular target platform, refactoring a model by 

changing its structure to enhance design quality, or reverse engineering code to obtain an abstract 

model.  

A good candidate of a higher-level model is a one expressed in the modeling notation called Use 

Case Maps (UCM). This modeling language uses paths that causally link activities (called 

responsibilities), which can be bound to underlying organizational structures [9], [10]. The UCM 
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scenario meta-model can be used to model service requirements and high-level designs for 

reactive and embedded systems (ESs). It is, therefore, a natural candidate for use in the process of 

generating requirements-directed test suites. Goal models capture hierarchical representations of 

stakeholder objectives, requirements, possible solutions, and their relationships to help 

requirements engineers understand stakeholder goals and explore solutions based on their impact 

on these goals [11]. Although, several approaches have been suggested to improve UCM-based 

testing by deriving test goals [12], [13], [14], [15], [16] its abstraction level remains inappropriate 

for the generation of implementation-level test cases. The UCM models emphasize behavior 

rather than data, and also abstract from detailed communication mechanisms which make 

deriving executable test cases (ETC) a difficult activity. The abstraction gap that resides between 

the simple expression of a UCM test purpose and the complex coding of executable test scripts 

needs to be filled by an intermediate representation that can be the starting point for test 

automation. In [17], The traversal mechanism prototyped in jUCMNav’s tool [18] is used to 

transform the test purposes into test specification packages represented as XML elements. The 

exported representation did not handle the combinations of scenarios or alternative behavior nor 

has been validated or transformed into scripting language. Our approach and its supporting 

techniques have been validated against an industrial embedded system. The absence of an 

alternative element in the UCM scenario metamodel has been resolved. 

Another challenge besides transforming UCM scenario models to test cases in a scripting 

language is the validation of the transformation, both in terms of technical correctness and 

usefulness. The test case generation task is critical and thus the model transformations that 

automate it must be validated. A fault in a transformation can introduce a fault in the transformed 

model, which if undetected and not removed, can propagate to other models in successive 

development steps. As a fault propagates across transformations, it becomes more difficult to 

detect and isolate. Since model transformations are meant to be reused, faults present in them 

may result in many faulty models.  

The variety of different models produced in the transformation process discussed in the previous 

section poses challenges to requirements traceability and assessment. This diversity of artifacts 

results in an intricate relationship between requirements and the various models. The role played 

by relationships among artifacts to support automation of testing activities had long been 
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recognized; relationships from behavioral models to test cases and from test cases to test results 

support coverage measurement, result evaluation, and selective regression testing. The creation 

and maintenance of explicit relationships among test-related artifacts is, therefore, the main 

challenge to the automated support of such activities. Over the past years, traceability—the 

ability to describe and follow the life of software artifacts [19]— has gained in importance and 

used as a quality attribute for software. Requirements traceability is often mandated by software 

development standards. It is required to support activities such as result evaluation, regression 

testing, and coverage analysis. In addition to test generation, challenges to MBT include creation 

and maintenance of traceability information among test-related artifacts, time challenge and 

system safety that is set very high by regulatory authorities such as radio technical commission 

for Aeronautics (RTCA) [20]. 

As a result, there is an obvious need to generate executable test cases from UCM scenarios and to 

validate the model transformation from requirement level to implementation level via an 

intermediate level that bridges the gap between the two levels. Further research is also needed to 

link the intricate relationships among test-related artifacts, obtained as a product of the 

transformation, to support the automation of testing activities such as coverage measurement and 

result evaluation. 

In this context, the following issues should be addressed:  

▪ Construction of a test development process composed of three phases where each phase 

represents a different level of test abstraction expressed by an appropriate language. 

— UCM notation to model the complexity of the SUT (test purposes) used as a base to 

derive test specifications. 

— Test definition notation to specify test description (test specifications) such as the test 

description language (TDL) that can be used as a base to derive test cases. 

— Scripting language to implement and execute a test case (test implementation)  

▪ Development of model-driven testing methodology that generates test cases through a 

model transformation based on the selected languages  

— Determine and resolve the divergence that obstacles the transformations between the 

three languages. These obstacles can be related to a lack of suitable abstraction for 

specifying transformations. Consequently, transformations can be hard to write, 
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comprehend, and maintain. For instance, develop a data model to address the lack of 

data in the UCM scenario that is needed in a test case and resolve the differences 

between UCM, TDL, and TTCN-3 (test configuration and alternative behavior). In 

addition, performing a model transformation requires a clear understanding of the 

abstract syntax and semantics of both the source and target.  

— Demonstrate the feasibility of the transformation using industrial software tests. 

▪ Automation of the model transformation and prototyping it into tools. 

▪  Maintaining traceability links among generated test artifacts by developing a traceability 

framework that automatically links the intricate relationships among test-related artifacts. 

▪ Applying and validating the model transformation that generates the test cases to 

industrial ESs both in terms of technical correctness and usefulness. 

The aforementioned themes; (1) generate test cases in TTCN-3 from UCM models using model 

transformation, (2) validate the model transformation in the avionic industry, and (3) maintain 

traceability links among test-related artifacts play an important role in the thesis chapters and 

contents. The next section discusses the new approach and the objectives for conducting this 

study which leads to the set of stated contributions (Section 1.3). 

1.2 New Approach: MDTGL 

In this thesis, we present an innovative approach where we generate test cases in a language 

called testing and test control notation (TTCN-3) [21] from test specifications described by TDL 

[22]. The TDL test specifications in their turn are generated from test purposes enclosed in a 

semiformal visual notation for causal scenarios called UCMs. 

TTCN-3 is a test specification language designed for specifying test cases to be implemented and 

executed against SUT. TTCN-3 is selected for its industrial strength and for its applicability to a 

variety of application domains and levels of testing. 

 TDL can be used as an intermediate representation to describe scenarios on a lesser abstraction 

level than high-level test description but on a higher abstraction level than scripting languages. 

We believe that using TDL in a scenario-oriented approach help close the abstraction gap that 

resides between test purposes and test cases. 
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We believe that using UCMs in a scenario-oriented approach represents a judicious choice for the 

description of communicating and ESs. They fit well in the design approach proposed in this 

thesis, the MDTGL methodology.  

Considering the research motivation discussed in Section 1.1, the aim of this thesis is to provide 

techniques to generate test cases in a better way where resources are limited, through model 

transformation and refinement. It also intends to validate the generated artifacts in terms of 

usefulness and effectiveness and create traceability links among the generated artifacts. It should 

fill the gap between the stage where functional requirements are described abstractly and their 

implementation details handled by test cases. 

To fulfill this aim, a number of objectives are necessary: 

Objective 1: To determine the differences and obstacles that reside among the three languages; 

UCM, TDL, and TTCN-3. 

Objective 2: To resolve the obstacles and differences that exist among the three languages and 

demonstrate the approach feasibility. 

Objective 3: To generate test cases in TTCN-3 from UCM models via TDL based on 

requirement analysis, model transformation, and refinement process.  

Objective 4: To align the traceability requirement with generated test artifacts and testing. 

Objective 5: To validate the generated testing artifacts in terms of effectiveness and usefulness at 

the specification and implementation level.  

Objective 6: To develop and provide traceability evidence from requirements to tests for 

compliance with DO-178C standards. 

The thesis presents a methodology where the transformation of requirements to test cases is 

different from the one used by the most popular techniques. The approach focuses on 

transforming the highly abstract test goals into concrete test cases. A prime goal of this thesis is 

hence to enable the generation of test cases and validate them in terms of correctness, usefulness, 

and effectiveness. 
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MDTGL aims to improve the maturity of test case generation processes based on model 

transformation by introducing a model transformation technique among three languages 

representing tests from high-level abstraction to low-level scripting language. Figure 1.1 presents 

such an approach and introduces the main concepts behind the MDTGL. The key points of the 

MDTGL methodology are: (1) natural language (NL) requirements are described in UCM 

behavioral models; (2) These models are transformed to test goals, and then based on developed 

rules, to abstract test cases (ATC) in TDL notation that are completed manually with test 

objectives and data instances; and (3) the obtained ATCs are transformed, based on developed 

rules, along with concrete test data to test cases (TC) in TTCN-3 language.  

The approach can be seen as a process of successive refinements of specifications that involves 

model transformation and the insertion of additional information. 

Executable Test 

Cases
Level of details

during development

The requirements are given 
in natural language.

The requirements are modeled 
to Cockburn use case 
notation and mapped to UCM 
scenario models

The behavioral models are 
transformed to abstract test 
scenarios and enriched with 
abstract data.

Executable testcases are 
generated from abstract test 
scenarios and completed with 
concrete data  

Model 

 Requirements

Generate 

Executable

Tests

map

import

Transform

 Models

Extract Data 

Requirement

Behavioral 

Models

NL Requirements

Abstract Test 

Scenarios

Data

Model

Manual
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Figure 1.1: MDTGL methodology 

1.3 Thesis Contribution 

This thesis offers four main contributions: (1) the reverse engineering work to help build the 

MTDGL methodology from legacy software tests, (2) the development and the extension of the 
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MTDGL methodology, (3) a set of techniques to support the MTDGL cycles, and (4) the 

application of MTDGL to validate the generation of testing artifacts. 

1.3.1 Contribution 1: Reverse-Engineering the Legacy Software Tests to 
Model-Driven Testing 

In order to support test automation and to reduce the effort involved in testing, our starting point 

was to restructure legacy software tests developed manually to be driven from models. Our 

reverse-engineering process achieved the following goals:  

Help build the model-driven testing methodology: we automatically structured legacy software 

tests to a model-driven testing methodology, based on formalized test cases. The legacy test cases 

are initially translated to TTCN-3 code and then abstracted to TDL models. The goal here is to 

study model-driven test case generation from TDL and to evaluate TDL as a formal language for 

expressing test cases. Reaching this point, the feasibility of transforming TTCN-3 scripts into a 

TDL model is shown, and a forward engineering process to regenerate the test cases can be 

undertaken. 

1.3.2 Contribution 2: MTDGL Methodology 

We claim that MTDGL methodology has several benefits, difficult to find all at once in other 

design and standardization processes: 

— Reducing Test Effort and Start Testing Early: since software requirements are 

described in UCM scenarios and transformed to test cases, the test development phase is 

minimized. The TCs are no longer written by hand or manually corrected, but generated 

using model transformation which reduces the number of iterations to get them correct. 

We validated the MTDGL methodology against an industrial embedded system. 

Furthermore, the test engineers don’t need to wait; they describe the requirements in the 

scenario model and then push a button to generate the tests.  

— Test Case Generation: scenarios guide the generation of test cases, hence allowing the 

verification of the prototype against the UCMs and its validation against the informal 

functional requirements. The test suite can itself be validated using structural coverage 

criteria on the model. It can be reused as a basis for functional or regression test suite in 
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the subsequent steps of the development process. The validation of the generated test 

cases is covered in Chapter 6. 

— Requirement Traceability: documentation can be generated from the model and is thus 

consistent with the tests. Since TCs are derived from the UCM models where 

requirements are described, any defect found during the execution of a TC can be traced 

back to its requirement. The section Traceability Links Framework in Chapter 5 extends 

the MDTGL methodology to create explicit relationships in a trace model among testing 

artifacts.  

— Systematic: with the help of the developed tools, repeated tests are enabled which ensures 

the robustness of the test results. The result obtained from the Experimental Method 

section in Chapter 6 demonstrates the robustness of the test results. 

— Design Documentation and System Understandability: the documentation of 

requirements and designs is done as we go along the development cycle. The generated 

test specification in TDL can be used mainly for communication between stakeholders as 

the basis for implementing concrete tests. It should also be understandable by non 

technical people who do not have to know every technical detail described in the test 

specifications. UCMs allow different specialists to become involved in discussions at 

different levels while sharing a common language and, hopefully, understanding. 

1.3.3 Contribution 3: Theories and Techniques Supporting 

Different theories and techniques are involved in the support of the MDTGL cycles. The 

developed techniques in this thesis are: 

Construction of TDL Specifications from UCMs: in his work, Boulet provided a mapping 

between UCM paths and TDL packages expressed as XML elements. This mapping is extended 

in this thesis to build a valid test specification based on TDL metamodel, which better reflect the 

test semantic, and to be used as a base to derive test cases. 

Automated the Absence of Alternative Behavior: In our approach, we resolved the absence of 

alternative elements in the UCM scenario metamodel. The metamodel of the UCM exported early 

in the process doesn’t have an alternative element that normally a test case has to handle alternate 

test behavior. We developed a technique to automate the post-processing of the interaction 
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behavior. Our automated tool selects the common interaction behavior that represents different 

responses to the tester and groups them in the alternative element.  

Automated Development of Testing Artifacts: the thesis presents a new technique for 

automatically generate test cases using model transformation between UCM, TDL, and TTCN-3. 

The differences and the abstraction that exits among the three languages are resolved and 

automated via transformation and refinement process.  

1.3.4 Contribution 4: Illustrative Experiments Validating MTDGL 

The MDTGL approach and its supporting techniques have been validated against an industrial 

ES. Chapter 5 includes results and lessons learned from real case study experiment: 

— Technical Feasibility: the technical feasibility of the MTDGL is demonstrated via a case 

study from the avionics public domain for the generation of TCs from TDL specifications. 

— Test Suite Validation: The evaluation of the MDTGL methodology is sampled with an 

industrial product from the private domain to validate the various test suites generated 

using the UCM scenarios. These experiments discuss the efficiency and performance of 

the test suites in comparison with the industrial testing approach according to three 

assessment criteria (requirement coverage, the correctness of generated workflow and its 

cost). Most of these experiments were done in collaboration with industrial partners, 

professors, and engineers. The MDTGL approach has been evaluated by our research 

partner to replace its current testing process. 

1.3.5 Issues Not Addressed in this Thesis 

There are a couple of important issues that the MDTGL methodology do not address in this 

thesis: 

— The automated generation of test input needed in test cases from UCMs is not a goal of 

this thesis. 

— The testing used here is functional (black-box). It is targeted towards the user-system 

level. Component or unit testing is not addressed in the thesis. 
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1.4 Thesis Outline 

The rest of the Thesis is structured as follows. 

Chapter 2 emphasizes the importance of testing ESs behaviour. The chapter defines testing and 

presents an overview of testing types according to the three-dimension model. Manual testing 

suffers from a high cost in terms of time, effort and resources due to the growing complexity of 

ESs. This suggests the potential benefits of applying modeling and model transformation in a 

testing context. MBT and MDT can thus be used to describe software specification in a 

behavioral model to automatically derive test cases. The latter are completed when necessary to 

be executed on the SUT with the aim to find any potential misbehavior.  

As an important activity to cut down the cost of manual testing, this chapter discusses test case 

generation techniques such as model-based, specification-based and natural language techniques. 

The chapter discusses the use of traceability in the context of requirements engineering and 

model-drive. Next, it highlights the importance of aligning the requirement traceability with 

testing. A set of related work for each testing activity; (1) model transformation, (2) test case 

generation, and (3) requirement traceability are presented and discussed to highlight the research 

motivation of this thesis. 

Chapter 3 introduces a background chapter where the three domain-specific languages used in 

the model transformation approach are introduced. The construct of each language is described 

extensively with examples.  

Chapter 4 in this chapter, a reverse engineering process to help build the new testing 

methodology is presented. The reverse engineering process started with a migration of legacy test 

cases, written as Ant/XML files, into the TTCN-3 code and are reengineered with data to a higher 

level of abstraction to obtain abstract test cases in TDL notation. Our overarching goal is to 

support test automation and discover a path from TDL to TTCN-3. 

Chapter 5 proposes a novel testing methodology to support the testing of ES by generating test 

cases from a description of the abstract tests (derived from behavioral models), and maintaining 

requirement traceability. The methodology called MDTGL and it is based on requirement 

analysis and model transformation where the main goal is to automate the generation of test 
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artifacts. The new technique develops and validates tools for automating the generation of test 

cases based on model transformation.  

The chapter presents and discusses the new approach in great details, it also demonstrates its 

feasibility by applying it to an avionic public case study. 

Chapter 6 The evaluation of the MDTGL methodology is sampled with an industrial product 

from the private domain to validate its efficiency and performance in comparison with the 

industrial testing approach according to three assessment criteria (requirement coverage, the 

correctness of generated workflow and its cost). As a result, the chapter presents an experiment 

applied to the avionics case study for estimating the assessment criterion. A discussion with 

generalization of the approach and set of lessons learned showing the difficulties encountered 

especially for testing ES is then highlighted. 

Chapter 7 summarizes the research contributions and findings. Finally, the chapter describes the 

limitations of this study and opportunities for future work. 
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Chapter 2 Literature Review 

2.1 Topic Overview 

The role of computing devices, embedded in everyday objects, has grown tremendously over 

the last two decades. Our modern society is hugely dependent on ESs to monitor or control 

different hardware infrastructures [23]. To give an example, a typical car produced at the 

beginning of the 1990-ies was largely a mechanical unit. Today, a large part of the development 

costs in a typical front-edge car manufacturing company are related to software development. 

‘Embedded system’ is a generic term that refers to computerized systems interacting closely with 

the real world through sensors, networks and actuators [24], [25]. Systems like mobile phones, 

flight management systems, air traffic control systems, patient monitoring systems, and many 

others can be considered as examples of ESs [26]. 

Software is one of the cores and most error-prone components of ESs. Any failures encountered 

can range from a slight system aberration (e.g., coffee machine malfunction) to financial loss and 

even loss of human life (e.g., in safety-critical systems) due to misbehavior. Thoroughly checking 

the correctness of ES’s software before deployment using various validation activities (e.g., 

testing) therefore becomes necessary [27]. 

The rest of the chapter is organized as follows. Section 2.2 introduces the concept of software 

testing. Section 2.3 highlights some of the testing categories according to the three-dimension 

model. Section 2.4 presents the principles of MDA whereas Section 2.5 presents the principles of 

MBT. Section 2.6 gives some definitions, presents model transformation categories along with 

design features and surveys work done on the UCM model transformation. Section 2.7 presents 

the various test case generation techniques that were used in the literature as a mechanism to 

automate the development of tests to overcome some testing problems such as high cost and 

labor-intensive. Section 2.8 discusses requirement traceability and its important role in coverage 

analysis and result evaluation. Section 2.9 concludes the chapter. 
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2.2 Software Testing 

Testing is a systematic process of finding software errors by running the software in a 

controlled environment and analyzing its outcomes before its deployment. The process of 

software testing involves the generation and execution of test cases on software [28]. The 

generated test cases need to be executed on the SUT to collect the produced outputs. The 

observed outputs are then analyzed and compared with those expected according to a derived test 

oracle. A test oracle can be defined as the rules by which the expected and actual outputs are 

compared to decide whether the SUT is correct or not [29]. 

One strategy which significantly reduces the test cost is to decrease human involvement and 

automate the test process through the use of verified testing tools [30] To address growing 

demand, several new technologies have emerged to help with the development and verification of 

high-quality systems. 

2.3 Testing Types 

Moreover, different test types can concentrate on various SUT aspects and can be performed 

at several levels to increase the overall confidence about its quality [31]. Figure 2.1 depicts 

different types of testing categorized in three dimensions (i.e., testing level, testing accessibility 

and testing aspects). Note that different types of testing can be performed together[32]. 

Level

Accessibility

Aspect

SUT

System

Integration

Component

Unit

White box         Black box

 

Figure 2.1: Testing types (Briones, 2007) 
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With respect to which level of the SUT testing is applied, four types of testing can be identified: 

unit, component, integration, and system-based testing. Unit testing checks the correctness of the 

smallest unit of the SUT alone (e.g., a procedure, function or method). Component testing 

concentrates on testing each subsystem individually. Integration testing checks the working order 

for a set of correct components interacting with each other. To check if the system works 

correctly as a whole, system testing is used. 

In addition to identifying which abstract layer of the SUT needs to be tested, deciding which 

aspects of the SUT are to be fully checked is equally important. Several testing types have been 

proposed that cover different aspects of the SUT, such as stress, robustness, performance, 

reliability, and conformance. Stress testing checks if the SUT has consistent behaviour under a 

heavy load. Robustness testing involves investigating the reaction of the SUT under unexpected 

circumstances such as inputs being out of range or hardware failure. Performance testing checks 

the execution time of tasks performed by the SUT. Reliability testing ensures that the SUT is 

almost fault-free before its deployment. Finally, conformance testing aims at testing the 

functionality of the SUT to determine whether its behaviour conforms to that specified [29], [32]. 

The third axis in Figure 2.1 shows two types of testing (white box and black-box) used according 

to the SUT visibility to the tester. White box testing is used to test the internal structure of the 

SUT whose algorithms and code are visible to the tester. Test cases are then designed using the 

information available about the SUT internal structure using different test selection methods. 

White box testing is supported by a Control Flow Graph (CFG) which graphically represents the 

code through its notations. As a result, test selection criteria can be complemented through the 

use of CFG. The oracle problem of white box testing concentrates on checking the correctness of 

SUT implemented behaviour at various levels such as unit-based or system-based. However, 

white box testing fails to check SUT behaviour according to a reference specification [29], [32]. 

On the other hand, black-box testing involves testing the functionality of the SUT according to a 

reference specification. The SUT internal structure (e.g., code) in black-box testing is not visible 

to the tester. The specification forms the source from which test cases are generated. Test cases 

are then sent to the SUT which emits output sequences. Several test selection strategies can be 

used in the case of black box testing such as adequacy criteria (e.g., state or transition coverage). 
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In contrast to white box testing, black-box testing is effective in testing SUT behaviour according 

to the specification but cannot guarantee whether SUT internal behaviour is correct [29], [32]. 

2.4 Model-Driven Architecture (MDA) 

As software systems become increasingly complex, new paradigms are needed for their 

construction. One of these new paradigms is model-driven architecture (MDA), which already 

has a demonstrable impact in reducing time to market and improving product quality. This 

particular paradigm concerned with the introduction of rigorous models throughout the 

development process, enabling abstraction and automation.  

The development of high-quality systems requires not only systematic development processes but 

also systematic test processes. Therefore, MDT is inspired by the philosophy of MDA [33]. 

As shown in Figure 2.2, platform-independent system design models (PIM) can be transformed 

into platform-specific system design models (PSM). While PIMs focus on describing the pure 

functioning of a system independently from potential platforms that may be used to realize and 

execute the system, the relating PSMs contain a lot of information on the underlying platform. In 

another transformation step, system code may be derived from the PSM. Certainly, the 

completeness of the code depends on the completeness of the system design model. 

System Design Models

Platform Independent
(PIM)

Platform Specific
(PSM)

System Code

Transformation

Transformation

MDA approach

Test Design Models

Platform Independent
(PIT)

Platform Specific
(PST)

Test Code

Transformation

Transformation

MDT approach

Transformation

Transformation

refinement

refinement

 

Figure 2.2: Model-driven architecture paradigm 
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The same abstraction in terms of platform-independent, platform-specific modeling and system 

code generation can be applied to test design models. 

Furthermore, test design models might be transformed from system design models directly. This 

enables the early integration of test development into the overall development process. Once the 

system design model is defined at the PIM level, a platform-independent test design model (PIT) 

can be derived. This model can be transformed either directly to test code or to a platform- 

specific test design model (PST) [34]. The same transformation technology can be used for 

deriving PSTs from the PSM. After each transformation step, the test design model can be 

refined and enriched with test specific properties. Although the transformed test design model 

may already contain static and dynamic aspects, the behavior has to be completed to cover 

unexpected system behavior as well. Also, test issues such as e.g. test control and deployment 

information have to be manually added to the test design model. At last, the test design model 

can be finally transformed into executable test code from either PST or PIT.  

2.5 Model-Based Testing (MBT) 

MBT relates to a process of test generation from models of/related to a SUT by applying 

several sophisticated methods. Several authors such as Utting [35] and Kamga, Hermann, and 

Joshi [36] define MBT as testing in which test cases are derived in their entirety or in part from a 

model that describes some aspects of the SUT based on selected criteria. In MBT which has the 

highest focus, informal requirements of the system are the base for developing a test model which 

is a behavioral model of the system. This test model is used to automatically generate test cases 

[37]. One problem in this area is that the generated tests from the model cannot be executed 

directly against SUT because they are at the same level of abstraction as the model. The 

automation of an MBT approach depends on three key elements: (i) the model used for the 

software behavior description, (ii) the test-generation algorithm (criteria), and (iii) tools that 

generate supporting infrastructure for the tests. The authors in [38], [39] have worked on testing 

including MBT and are investigating new MBT and automation solutions. Others in [40], [41], 

and [42] describe MBT related surveys on test data generation techniques, supporting tools, and 

test case generation approaches respectively. However, no formal survey on the analysis of MBT 

approaches have been found. To our knowledge, this is the first scientific survey paper on MBT 

approaches using a formal methodology – Systematic Review [43]. Other important 
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characteristics are testing levels of MBT, automation levels, and complexity of non-automated 

steps. The process of model-based testing can cover various testing activities at different 

dimensions as depicted in Figure 2.3. 

 

Level

Accessibility

Aspect

conformance

system

Black box

 

Figure 2.3: MBT with relation to other testing types (Briones, 2007) 

MBT is considered as a form of black-box testing since test cases are generated from the 

specification model without accessing the implementation. MBT can also be used at any software 

level (e.g., component, integration or system). However, testing at the system level can be 

considered the most common use for MBT. Moreover, using MBT for testing other software 

aspects such as robustness is possible. The rationale for adopting MBT, however, is to examine 

conformance between SUT functional behaviour and a reference specification model. 

2.6 Model Transformation 

Model composition approaches automate the composition between heterogeneous models by 

relying on a matching and a merging operator [44]. Model-driven approaches move development 

focus from third-generation programming language code to models. The objective is to increase 

productivity and reduce time to market by enabling development and using concepts closer to the 

problem domain at hand, rather than those offered by programming languages. Model-driven 

development’s key challenge is to transform these higher-level models to platform-specific 

models that tools can use to generate code[45]. We can use models not only horizontally to 

describe different system aspects but also vertically, to be refined from higher to lower levels of 

abstraction. At the lowest level, models use implementation technology concepts. Working with 
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multiple, interrelated models requires significant effort to ensure their overall consistency. In 

addition to vertical and horizontal model synchronization, we can significantly reduce the burden 

of other activities, such as reverse engineering, view generation, application of patterns, or 

refactoring, through automation. Many of these activities are performed as automated processes 

that take one or more source models as input and produce one or more target models as output 

while following a set of transformation rules. We refer to this process as model transformation.  

Here, we give some model-driven engineering definitions, analyze current approaches to model 

transformation, and present the different design features for model transformation that can be 

used by modeling and design tools to automate tasks, thus significantly improving development 

productivity and quality. 

2.6.1 Definition 

Before classifying model transformation techniques, one should understand some model-driven 

engineering definitions [46], [47]. 

⎯ Definition 1 System Model: A system model is an abstract representation of certain 

aspects of the SUT. A typical application of the system model in the MBT process 

leverages its behavioral description for the derivation of tests. 

⎯ Definition 2 Model Transformation: transformation is the automatic generation of a 

target model from a source model, according to a transformation definition. 

⎯ Definition 3 Transformation Rule: is a description of how one or more constructs in the 

source language, left-hand side (LHS), can be transformed into one or more constructs in 

the target language right-hand side (RHS). 

⎯ Definition 4 Technical space: is a model management framework containing concepts, 

tools, mechanisms, techniques, languages, and formalisms associated with a particular 

technology. 

⎯ Definition 5 Endogenous transformation: is the transformation between models 

expressed in the same language. 

⎯ Definition 6 Exogenous transformation: is transformation between models expressed 

using different languages. 
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⎯ Definition 7 Horizontal transformation: is a transformation where the source and target 

models reside at the same abstraction level. 

⎯ Definition 8 Vertical transformation: is a transformation where the source and target 

models reside at different abstraction levels. 

2.6.2 Model Transformation Categories 

For the model-driven software development vision to become reality, tools must support this 

automation [48]. Development tools should let users not only apply predefined model 

transformations but also define their own. Performing a model transformation requires a clear 

understanding of the abstract syntax and semantics of both the source and target. Metamodeling 

is a common technique for defining the abstract syntax of models and the interrelationships 

between model elements. For visual modeling languages, there are several advantages in basing a 

tool’s implementation on the language’s metamodel. Such tools offer users three different 

architectural approaches for defining transformations [48]: 

⎯ Direct model manipulation: access to an internal model representation and the ability to 

manipulate the representation using a set of procedural APIs.  

One advantage of the direct-model manipulation approach is that the language used to access 

and manipulate the exposed APIs is commonly a general-purpose language such as Visual 

Basic or Java, so the developers need little or no extra training to write transformations. 

Furthermore, developers are generally more comfortable with encoding complicated 

(transformation) algorithms in procedural languages. Examples are Rational Rose, which 

offers a version of VB with a set of APIs to manipulate models, and Rational XDE, which 

exposes an extensive set of APIs to its model server that can be used from Java, VB, or C#. A 

disadvantage is that the APIs usually restrict the kind of transformations that can be 

performed. Also, because the programming languages are general-purpose, they lack suitable 

high-level abstractions for specifying transformations. Consequently, transformations can be 

hard to write, comprehend, and maintain. One proposal that promises to raise the level of 

abstraction of operations on UML models is UML’s action language. This special-purpose 

language has been proposed as a way to procedurally define UML transformations and 

manipulate UML models. However, the language still suffers, although less chronically, from 
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a lack of high-level abstractions for dealing with model transformations—for example, 

transformation composition. 

⎯ Intermediate representation: exporting of the model in a standard form, typically XML, so 

an external tool can transform it.  

For the intermediate-representation approach, many UML tools can export and import models to 

and from XMI, which is an XML-based standard for the interchange of UML models. Because a 

model is externalized into XML, it is possible to use existing XML tools, such as XSLT, to 

perform model transformations. Even though XSLT was defined specifically for describing 

transformations, it is nevertheless tightly coupled to the XML that it manipulates. Consequently, 

it requires experience and considerable effort to define even simple model transformations in 

XSLT. Another disadvantage of the approach is that transformations are performed in batch 

mode, which has two important consequences. First, transformations are hard to perform in an 

interactive dialogue with the user. Second, the tool still needs to reactively manage the 

synchronization between models after changes. For example, a long and complex transformation 

performed outside of the tools might be rejected because of the violation of cross model integrity 

constraints. 

⎯ Transformation language support: a language that provides a set of constructs for 

explicitly expressing, composing, and applying transformations. 

Transformation language support, as the name suggests, provides a specific language for 

describing model transformations. It offers the most potential of the three approaches because the 

language can be tailored for that purpose. In this context, you can use many languages to specify 

and execute model transformations, some of which offer visual constructs. These languages are 

either declarative, procedural, or a combination of both. For example, in [49] the author proposes 

a graphical language for describing model transformations that are principally procedural but also 

offers some declarative features. A tool that generates C++ code from the specification supports 

the approach. One limitation is its underlying assumption that you can easily express your choice 

of source model elements for the transformation in a general-purpose programming language, 

that is, C++. The Rational XDE’s pattern mechanism is a commercial example of a specialized 

transformation language. This mechanism is built on top of XDE’s model server API, so XDE 

supports both the direct model manipulation and transformation language support classifications. 
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XDE transformations are defined as model templates called patterns, which could contain 

parameters and arbitrary procedural code written in Java, VB, or C#. You can invoke patterns 

using a set of predefined callbacks; this effectively means you can make arbitrary “manual” 

model changes. The key drawback of the XDE’s pattern engine is that it provides limited 

capability to compose patterns. Another general approach is to treat UML models as graphs. 

Applying graph rewriting rules help identify graph transformations. A rule consists of a graph to 

match, commonly referred to as LHS, and a replacement graph, commonly referred to as RHS. If 

a match is found for the LHS graph, then the rule is fired. Consequently, the RHS graph replaces 

the matched subgraph of the graph under transformation. The author in [50] has also proposed the 

use of rewriting rules for UML model transformation in the context of logic languages. 

Beyond automating transformation execution, tools could suggest which model transformations a 

user might appropriately apply in a given context. In the next section, we present different design 

choices for model transformation. 

2.6.3 Design Features for Model Transformation 

In [47], the authors proposed a possible taxonomy for the classification of several existing and 

proposed model transformation approaches. The taxonomy is described with a feature model 

(Appendix E) that makes the different design choices for model transformations explicit. Each of 

the following subsections elaborates on one major area of variation from a feature model by 

describing the different choices and providing examples of approaches supporting a given 

feature. 

2.6.3.1 Transformation Rules 

As mentioned in the definition, a transformation rule consists of two parts: an LHS and an RHS. 

The LHS accesses the source model, whereas the RHS expands in the target model. Both LHS 

and RHS can be represented using any mixture of the following: 

Variables: Variables hold elements from the source and/or target models (or some intermediate 

elements). They are sometimes referred to as metavariables to distinguish them from variables 

that may be part of the transformed model (e.g., Java variables in transformed Java programs). 
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Patterns: Patterns are model fragments with zero or more variables. We can have string, term, 

and graph patterns. String patterns are used in textual templates. Model-to-model transformations 

usually use term or graph patterns. Patterns can be represented using the abstract or concrete 

syntax of the corresponding source or target model language, and the syntax can be textual and/or 

graphical. 

Logic: Logic expresses computations and constraints on model elements. Logic may be non-

executable or executable. Non-executable logic is used to specify a relationship between models. 

Executable logic can take a declarative or imperative form. Examples of the declarative form 

include object constraint language queries (OCL)-queries [51] to retrieve elements from the 

source model (e.g., XDE) [52] and the implicit creation of target elements through constraints. 

Imperative logic has often the form of programming language code calling repository APIs to 

manipulate models directly. For instance, the Java Metadata Interface [53] provides a Java API to 

access models in a MOF repository [54]. In the context of the QVT [55] standardization effort, 

the UML Action Semantic [56] can be used to specify imperative logic in a form that can be 

automatically mapped to different programming languages.  

Both variables and patterns can be untyped, syntactically typed, or semantically typed. In the case 

of syntactic typing, a variable is associated with a metamodel element whose instances it can 

hold. Semantic typing allows for stronger properties to be asserted.  

Four other aspects of transformation rules are: 

i. Syntactic Separation: The RHS and LHS may or may not be syntactically separated. In 

other words, the rule syntax may specifically mark RHS and LHS as such (as in classical 

rewrite rules), or there might be no syntactic distinction (as in a transformation rule 

implemented as a Java program. 

ii. Bidirectionality: A rule may be executable in both directions. 

iii. Rule parameterization: Transformation rules may have additional control parameters 

allowing configuration and tuning. 

iv. Intermediate structures: Some approaches e.g., VIsual Automated model 

TRAnsformations (VIATRA) and Graph Rewriting and Transformation Language 
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(GreAT) require the construction of intermediate model structures. This is particularly 

relevant when the model transformation happens in-place within a model. 

2.6.3.2 Rule Application Scoping 

Rule application scoping allows a transformation to restrict the parts of a model that participate in 

the transformation. Some approaches support flexible source model scoping using graphical 

languages such as Rational XDE [52] and GReAt where a scope smaller than the entire source 

model can be set. The latter can be important for performance reasons. The target scope is the 

scope of the target model, in which the RHS will be expanded (e.g., XDE). 

2.6.3.3 Relationship between Source and Target 

Some approaches mandate the creation of a new target model that has to be separate from the 

source (e.g., [57]). In some other approaches, source and target are always the same model, i.e., 

they only support in-place updates (e.g., VIsual Automated model TRAnsformations (VIATRA), 

GreAT). Yet other approaches (e.g., XDE) allow the target model to be a new model or an 

existing one, which could be the source model. The latter implies an in-place update. 

Furthermore, an approach could allow a destructive update of the existing target or update by 

extension only, i.e., where existing model elements cannot be removed. Approaches using non-

deterministic selection and fixpoint iteration scheduling may restrict in-place updates to extension 

in order to ensure termination (e.g., VIATRA). 

2.6.3.4 Rule Application Strategy 

A rule needs to be applied to a specific location within its source scope. Since there may be more 

than one match for a rule within a given source scope, we need an application strategy. The 

strategy could be deterministic, non-deterministic or even interactive. For example, a 

deterministic strategy could exploit some standard traversal strategy (such as depth-first) over the 

containment hierarchy in the source.  

Stratego [58] is an example of a term rewriting language with rich mechanisms to express 

traversal in tree structures. Examples of non-deterministic strategies include one-point 

application, where a rule is applied to one non-deterministically selected location, and concurrent 

application, where one rule is applied concurrently to all OOPSLA’03 Workshop [47] on 
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Generative Techniques in the Context of Model-Driven Architecture matching locations in the 

source (e.g., VIATRA). Sometimes, rule application is determined interactively (e.g. XDE). 

The target location for a rule is usually deterministic. In the case of an in-place update, the source 

location becomes the target location (e.g. VIATRA or GreAT). In an approach with separate 

source and target models, traceability links can be used to determine the target (e.g. [57]): A rule 

may follow the traceability link to some target element that was created by some other rule and 

use the element as its target. 

2.6.3.5 Rule Scheduling 

Scheduling mechanisms determine the order in which individual rules are applied. The 

scheduling mechanism can vary in four main areas: 

Form: The scheduling aspect can be expressed implicitly or explicitly. Implicit scheduling 

implies that the user has no explicit control on the scheduling algorithm defined by the tool (e.g., 

BOTL and OptimalJ [59]). The only way a user can influence the system-defined scheduling 

algorithm is by designing the patterns and logic of the rules to guarantee certain execution orders. 

For example, a given rule could check for some information that only some other rule would 

produce. Explicit scheduling has dedicated constructs to explicitly control the execution order. 

Explicit scheduling could be internal or external. In external scheduling, there is a clear 

separation between the rules and the scheduling logic (e.g., in VIATRA, rule scheduling is 

provided by an external finite state machine). In contrast, internal scheduling would be a 

mechanism allowing a transformation rule to directly invoke other rules. 

Rule selection: Rules can be selected by an explicit condition (e.g. Jamda). Some approaches 

allow non-deterministic choices (e.g. BOTL). Alternatively, a conflict resolution mechanism 

based on priorities could be provided (although none of the investigated approaches implement 

conflict resolution). Interactive rule selection is also possible (e.g. XDE). 

Rule iteration: Rule iteration mechanisms include recursion, looping, and fixpoint iteration (i.e., 

repeated application until no changes detected). 
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Phasing: The transformation process may be organized into several phases, where each phase 

has a specific purpose and only certain rules can be invoked in a given phase. For example, 

structure-oriented approaches such as Optimal have a separate phase to create the containment 

hierarchy of the target model and a separate phase to set the attributes and references in the 

target. 

2.6.3.6 Rule Organization 

Rule organization is concerned with composing and structuring multiple transformation rules. We 

consider three areas of variation in this context: 

Modularity mechanisms: Some approaches allow packaging rules into modules (e.g., [60] and 

VIATRA). A module can import another module to access its content. 

Reuse mechanisms: Reuse mechanisms offer a way to define a rule based on one or more other 

rules. In general, scheduling mechanisms can be used to define composite transformation rules; 

however, some approaches offer dedicated reuse mechanisms such as inheritance between rules 

(e.g. rule inheritance in [60], derivation in [61], extension in [57], specialization in [62]), 

inheritance between modules (e.g., unit inheritance in [60]), and logical composition (e.g. [62]). 

Organizational structure: Rules may be organized according to the structure of the source 

language (as in attribute grammars, where actions are attached to the elements of the source 

language) or the target language, or they may have their independent organization. An example 

of the organization according to the structure of the target is. In this approach, there is one rule 

for each target element type and the rules are nested according to the containment hierarchy in 

the target metamodel. For example, if the target language has a package construct in which 

classes can be nested, the rule for creating packages will contain the rule for creating classes 

(which will contain rules for creating attributes and methods, etc.). 

2.6.3.7 Traceability Links 

Transformations may record links between their source and target elements. These links can be 

useful in performing impact analysis (i.e., analyzing how changing one model would affect other 

related models), synchronization between models, model-based debugging (i.e., mapping the 

stepwise execution of implementation back to its high-level model), and determining the target of 
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a transformation. Some approaches provide dedicated support for traceability (e.g., [61]), while 

others expect the user to encode traceability using the same mechanisms as for adding any other 

kinds of links in models (e.g., VIATRA, GreAT). Some approaches with dedicated support for 

traceability require developers to manually encode the creation of traceability links in the 

transformation rules, while others create traceability links automatically (e.g., [61]). In the case of 

automated support, the approach may still provide some control over how many traceability links 

get created (to limit the amount of traceability data). Finally, there is the choice of location where 

the links are stored, e.g., in the source and/or target, or separately. A preferable approach is to 

store a unique identifier in each model element and store the traceability information separate 

from the source and target. 

2.6.3.8 Directionality 

Transformations may be unidirectional or bidirectional. Unidirectional transformations can be 

executed in one direction only, in which case a target model is computed (or updated) based on a 

source model. Bidirectional transformations can be executed in both directions, which is useful in 

the context of synchronization between models. Bidirectional transformations can be achieved 

using bidirectional rules or by defining two separate complementary unidirectional rules, one for 

each direction.  

Transformation rules are usually designed to have a functional character: given some input in the 

source model, they produce a concrete result in the target model. A declarative rule (i.e., one that 

only uses declarative logic and/or patterns) can often be applied in the inverse direction, too. 

However, since different inputs may lead to the same output, the inverse of a rule may not be a 

function. In this case, the inversion could enumerate several possible solutions (this could 

theoretically be infinite), or just establish part of the result concretely (because the part could be 

the same for all solutions) and use variables, defaults, or values already present in the output for 

the other parts. The invertibility of a transformation depends not only on the invertibility of the 

transformation rules but also on the invertibility of the scheduling logic. Inverting a set of rules 

may fail to produce any result due to non-termination. Most of the investigated approaches do not 

provide for bidirectionality. Notable exceptions are [62], [63], [64]. The latter does not provide 

for general bidirectionality. Instead, a transformation can be described at different levels of 

abstraction, where one level is invertible and another is not.  
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2.6.4 Model Transformation from UCM 

UCM scenario notation can be used in the process of generating requirement-directed test suites. 

There are challenges to generate test cases from UCM models as they emphasize behavior rather 

than data, and they also abstract from detailed communication mechanisms. Therefore, UCM 

models are inappropriate for the derivation of implementation-level test cases. However, deriving 

test goals from UCM models can help improve UCM-based testing. 

Several approaches for deriving test goals from UCM models exist in the literature. We 

distinguish three main approaches based on: (1) testing patterns, (2) UCM scenario definitions, 

and (3) transformations to formal specifications (e.g., in LOTOS). 

1) Testing Based on UCM Testing Patterns: 

In Amyot Thesis [65], testing patterns are developed that target the coverage of scenarios 

described in terms of UCM. These patterns aim to cover functional scenarios at various levels of 

completeness: The rationale is that covering UCM paths leads to the coverage of the associated 

events and responsibilities (and of their relative ordering) forming the requirements scenarios. 

This approach helps engineers make informed decisions about the level of coverage they want at 

a given point in a UCM model. However, this process is entirely manual. 

2) Testing Based on UCM Scenario Definitions 

An instance of a UCM scenario can be extracted from a UCM model given a scenario definition, 

see metamodel in Appendix D, and a path traversal algorithm allowing for the semi-automatic 

generation of test goals. The first algorithm was proposed by Miga et al. and prototyped in 

UCMNAV [66]. It was used to support the understanding of complex UCM models by 

highlighting the paths traversed according to the scenario definition. It was then extended to 

generate a Message Sequence Chart (MSC) representing the scenario linearly.  

A new implementation of the traversal algorithm in UCMNAV was performed by Amyot [67] 

which decouples the result of the traversal (output in XML) from specific representations such as 

MSCs. 
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Amyot et al. [68], [69] developed a tool (UCMEXPORTER) that takes the resulting XML 

scenarios as input and converts them to MSCs (in Z.120 phrase representation [70]) or UML 1.5 

sequence diagrams (in XMI format [71]), with various options offered to the user. A prototype 

export filter that generates TTCN-3 test skeletons is also included. 

Patrice et al. used the traversal mechanism in jUCMNav to generate test purposes in TDL. In 

their transformation, they flattened the UCM scenario model to several scenario definitions where 

each scenario element is mapped to TDL elements. The result is several independent instances of 

TDL metamodel serialized in the XMI interchange format. The transformation plug-in is 

packaged with jUCMNav version 5.5.0 and above. The resulting format suffers from the 

following problems; (1) no support for alternative behaviour, (2) no concrete TDL syntax or 

grammar, and (3) no TDL semantic, the TDL elements are displayed as partial-order trace.  

Suitable scenario definitions still need to be provided manually, but then the generation of the test 

goal is automated, which is a significant advantage when the UCM model evolves. Scenario 

definitions have been used to explore various types of systems and to generate more detailed 

scenarios, with design level artifacts such as inter-component messages. He et al. [72] used MSC 

scenarios generated from a UCM model (via scenario definitions and UCMNAV) to explore the 

automated synthesis of SDL executable specifications. Klocwork’s MSC2SDL, part of Telelogic 

Tau 4.5, was used to synthesize the specification. However, the authors have not explored the use 

of this specification to generate test cases in TTCN. 

There is an obvious need to extend and validate the transformation much further, both in terms of 

technical correctness and usefulness. There exists a difference between a scenario, which is a 

(partial-order) trace in the UCM model, and a test case that can handle alternate test behavior, 

e.g., combinations of scenarios. 

3) Testing Based on UCM Transformations 

The third approach automates the generation of test goals by transforming a UCM model to the 

formal specification, e.g., in LOTOS.  

Automated Generation of LOTOS Scenarios and TTCN Test Cases: To generate test goals, 

Charfi uses an exhaustive path traversal algorithm, adapted from Miga’s original one, to traverse 

a UCM model augmented with key annotations in LOTOS [73]. This approach, prototyped in the 
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UCM2LOTOSTEST tool, produces an exhaustive collection of test goals described as partially-

ordered sequences of LOTOS events. The tool does not consider the path data model, instead it 

maps condition labels to LOTOS events. The generation of test goals is automated, but the size of 

the resulting test suite grows very quickly as the UCM model becomes more complex. The test 

goals can be used, in combination with the specification and the TGV toolkit [74], to generate 

acceptance test cases in TTCN. Several minor modifications to the test goals were however 

required to be compatible with the requirements of TGV. 

Automated Generation of LOTOS Specifications and Scenarios: Guan’s thesis work [75] had 

a different purpose, which was the generation of scenarios in the form of MSCs from UCM 

models, in assistance to the process of producing precise and consistent documentation for 

telecommunications standards. The author developed an automatic translator from a substantial 

subset of the UCM notation to LOTOS. This work, prototyped in the UCM2LOTOSSPEC, 

improves greatly upon the approach suggested by Charfi where the LOTOS specification is 

produced manually because the specification can be re-generated each time the UCM model 

changes.  

A companion tool based on the same principles, UCM2LOTOSSCENARIOS, can extract 

individual LOTOS scenarios or test goals from the UCM model. The generation of scenarios 

follows the structure of the UCM, in the sense that all possible paths in the UCM are traversed 

once. The generated test goals preserve the concurrency introduced in the UCM model (e.g., with 

AND-forks) using the LOTOS parallel operator (|||). The tool supports the generation of test goals 

from maps with loops and multiple start points. The LOTOS specification and the test goals so 

generated can be used to verify and validate UCM models. The research focuses on the 

translation algorithms and does not address the problems of scenario selection or elimination of 

unfeasible scenarios. Therefore, for complex UCMs, this method will produce large numbers of 

scenarios and many are likely to be unfeasible and will require a manual inspection to be 

detected. 

2.7 Test Case Generation 

A difficult part of software testing entails the generation of test cases which is one of the most 

intellectually demanding tasks and it is also of the most critical challenges since it can have a 
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strong impact on the effectiveness and efficiency of the whole testing process [76]; Test case 

generation is an important activity to cut down the cost of manual testing. It is no surprise that a 

great amount of research effort in the past few decades has been spent on automatic test case 

generation. As a result, a considerable number of different techniques for test case generation 

have been advanced and rigorously investigated.  

In general, test cases are generated from several types of software artifacts. The types of artifacts 

that have been used as the reference input to the generation of test cases include: the program 

structure and/or source code; the software specifications and/or design models; information about 

the input/output data space, and information dynamically obtained from program execution. 

There are several techniques for test case generation [42] such as MBT techniques, random 

approaches, specification-based techniques, source code-based techniques, NL, web application 

and combined.  

2.7.1 MBT Technique 

MBT techniques are used to generate test cases from models like UML diagrams [77], [78], [79]. 

Many diagrams are used in generating a set of test cases, such as use case diagram, activity 

diagram, and statechart diagram. The literature shows that UML diagrammatic technique is the 

most widely used in the software design phase. Several approaches for generating test cases from 

different UML diagrams are proposed. 

▪ In [80], the authors proposed an approach that links the requirement process with the 

testing process through a use case model. The approach creates system test cases based on 

two types of models: (1) UML use case models that describe the system requirements 

from test designers’ point of view; and (2) various forms of MBT. The approach requires 

additional behavioral modeling such as activity diagram, sequence diagram, and class 

diagram models. The approach focuses on data flows that require manual intervention by 

test designers to annotate UML diagrams with additional test data such as coverage 

requirements, constraints, and preconditions. 

▪ In [81], a model-driven process is proposed to generate automatically both formal models 

and test cases from the same UML model of the system under verification and validation 

and model transformation. The approach is applied to a railway control system that 
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features all the characteristics of a complex ES. The approach is based on formal methods 

to reduce the overall assessment effort and to support the validation against both 

functional and non-functional requirements. However, the formal models are time- 

consuming and expensive to generate and are difficult to be used as a communication 

mechanism for non-technical personnel.  

▪ The authors of [82] proposed an MDT approach for testing applications designed in a 

model-driven development context (MDE). Their work focuses on the separation of 

generating test cases and oracles, and the execution of these tests on different target 

platforms. However, the work considers a specific issue and explicitly addresses the 

problem of test generation in MDE context. 

▪ In [83], the authors propose a methodology TOTEM for system testing to derive system 

test requirements from early UML artifacts such as use case, class, and sequence 

diagrams. The authors propose to express the sequential constraints of the use cases with 

an extended activity diagram that are transformed into a weighted graph. The regular 

expressions that correspond to use case sequences are extracted from the weighted graph. 

The derivation of test artifacts from test requirements is delayed till the low-level design 

becomes complete, and when detailed information becomes available regarding 

application domain and solution domain classes. 

▪ The authors of [84] propose to use restricted natural language for the specification of use 

cases. The use cases are mapped to a formal model (FSM) and test scenarios are generated 

by traversing the FSM based on coverage criteria. In this approach, there is a substantial 

overhead for diagram creation and modification of the use case description to the 

restricted natural language format.  

▪ Another important approach to generate test cases from use cases is presented in [85]. The 

approach generates test cases in two phases. In the first phase, the approach describes 

system requirements via use case diagram, scenario, and contracts. Each use case is 

enhanced with contracts that are expressed in first-order logical expression to specify the 

preconditions and post-conditions. Next, the enhanced use cases are transformed to test 

objectives using a transition system known as Use Case Transition System (UCTS) that 

can represent all valid sequences of the use case. In the second phase, the test objectives 
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are transformed to test scenarios. Sequence diagrams are attached as additional artifacts to 

obtain sequences of message calls on the SUT. The approach requires working with 

various UML diagrams and formal methods. 

▪ The authors of [86], have explored the automated generation of TDL Test Descriptions 

from requirements expressed as UCM scenario models using the jUCMNav tool. This 

transformation enables the exploration of model-based testing where the use of TDL 

models simplifies the generation of tests in various languages such as TTCN-3. The 

authors determined the basic differences between scenarios and test cases in the handling 

of alternative paths that result from UCM alternatives. They concluded that the use of 

scenarios for test case generation is feasible, but requires either a different traversal 

mechanism with a different scenario metamodel or post-processing of scenarios to merge 

those that constitute alternate test behaviors. 

▪ In [87], the authors introduced an automatic test generation approach that provides more 

natural and standardized ways of writing requirements using document templates. These 

templates are extended to allow include and extension relations between use cases and to 

include data elements as user-defined types, variables, and parameters. The approach uses 

the use case templates that capture control flow, state, input and output as source for the 

generation of formal models. Unfortunately, it only generates non-ETCs. 

The major advantages of model-based are that shifting the testing activities to an earlier part of 

the software development process and generating test cases that are independent of any particular 

implementation of the design [88]. The following paragraphs describe existing specification-

based techniques that have been proposed since 2000. 

2.7.2 Specification-Based Technique 

Specification-based techniques are methods to generate a set of test cases from specification 

documents such as a formal requirements specification (Cunning and Rozenblit, 1999; Tran, 

2001; Rayadurgam and Heimdahl, 2001a; Nilsson et al., 2006; Tsai et al., 2005), Z-specification 

(Huaikou and Ling, 2000; Jia and Liu, 2002; Jia et al., 2003) and Object Constraint Language 

(OCL) specification (Antonio et al., 2006). The drawbacks of the specification-based technique 

with formal methods are: (1) the difficulty of conducting formal analysis and the perceived or 
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actual payoff in the project budget and (2) there is greater manual effort or processes in 

generating test cases, compared with techniques involving automatic generation processes. The 

following describes existing specification-based techniques that have been proposed since 1997. 

▪ Kancherla (1997) used a form of specification-based testing that employs the use of an 

automated theorem prover to generate test cases. A similar approach was developed using 

a model checker on state-intensive systems. The method applies to systems with 

functional rather than state-based behaviors. The approach allows for the use of 

incomplete specifications to aid in the generation of tests for potential failure cases. He 

suggested a new method of testing software based on the formal specification. He used 

the Prototype Verification System (PVS) and its in-built theorem prover to derive test 

cases corresponding to the properties stated in the requirements. 

▪ Cunning and Rozenblit (1999) were interested in the model-based co-design of real-time 

ESs. It relies on system models at increasing levels of fidelity to explore design 

alternatives and to evaluate the correctness of these designs. As a result, the tests that they 

desire should cover all system requirements in order to determine if all requirements have 

been implemented in the design. The set of generated tests is maintained and applied to 

system models of increasing fidelity and to the system prototype to verify the consistency 

between models and physical realizations. In the co-design method, test cases are used to 

validate system models and prototypes against the requirements specification. In the 

study, they presented continuing research toward automatic generation of test cases from 

requirements specifications for event-oriented, real-time ESs. They used a heuristic 

algorithm to the automatically generate test cases in their works. The heuristic algorithm 

uses the greedy search method followed by a distance-based search if needed. The 

algorithm with pseudo code is addressed (Cunning and Rozenblit, 1999). 

2.7.3 NL Technique 

Most of the software industry works with requirements expressed in NL. Several approaches are 

proposed 

▪ The approach in [78] presents a method (SCENT) to create scenarios from NL and 

formalize them in state charts. An annotation technique is then used to enrich the 

statecharts with helpful information. A path traversal algorithm is employed in the 



Traceability 

34 

 

statecharts to determine concrete test cases. The test suite is further enhanced by 

generating test cases from dependency charts that are modeled from dependencies 

between scenarios. SCENT requires two different representations of the scenarios, which 

makes it rather costly in terms of the testing effort. 

▪ The approach in [89] generates test cases based on NL requirements’ specifications using 

a tool. The tool models the NL requirements into UML activity diagrams to support 

automated testing. This approach requires using a scenario language [90] that references 

relevant words from the application with lexicon symbols. 

In the conclusion, there are three major sources used to generate test cases, which are: (1) 

requirements expressed in UML diagrams, (2) formal requirement specifications and (3) 

requirements expressed in natural language. 

2.8 Traceability 

The largest part of traceability research so far has been done in the last two decades by the 

requirements engineering community [91]. Over the past years, it has gained in importance, and 

traceability topics have become subject to research in many other areas of software development. 

One of these areas is model-driven development (MDD), an area where parts of the software 

development process are executed automatically using model transformations [91], [92]. 

2.8.1 Requirement Traceability 

In the domain of requirements engineering, the term traceability is usually defined as the ability 

to follow the traces (or, in short, to trace) to and from requirements. Two common definitions of 

requirements traceability are given by Pinheiro [93] as the ability to define, capture, and follow 

the traces left by requirements on other elements of the software development environment and 

the traces left by those elements on requirements. And by Gotel and Finkelstein [94] as the ability 

to describe and follow the life of a requirement, in both a forwards and backward direction (i.e., 

from its origins, through its development and specification, to its subsequent deployment and use, 

and periods of on-going refinement and iteration in any of these phases). 
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2.8.2 Traceability in MDD  

In the context of MDD, traces partially fulfill the same purpose as in requirements engineering 

because in many tasks, MDD is simply an automation of software engineering. The special 

characteristic of MDD is the usage of models and automated transformations. So, the artifacts 

under study are mainly (intermediate) models. This context influences the definitions and 

semantics of the terms known from requirements traceability and software engineering in general. 

In addition, the “MDD way” to define terms is often to simply define models and metamodels in 

which they occur. This is why most publications either do not refer to an explicit definition of 

traceability at all or only refer to the general IEEE definition cited above. Also, since traceability 

cannot be modeled intuitively, most definitions refer to traceability links. An example of a 

model-like definition for the term traceability is the rather technical and narrow definition that is 

given by the OMG [95]: A trace records a link between a group of objects from the input models 

and a group of objects in the output models. This link is associated with an element from the 

model transformation specification that relates the groups concerned. A commonality between 

MBT and traceability is required to manage relationships among artifacts. Relationship 

management should assist conception, persistence, preservation, and destruction of meaningful 

relationships across software artifacts [96]. 

2.8.3 Alignment of Requirements Traceability and Testing 

In a recent study [97], the authors highlight the importance of aligning the activities of 

requirement traceability to testing to improve system quality and project cost. The study 

concluded that organizations are becoming more interested in linking requirements and testing, 

but often the link is not provided and there is a gap between them. 

Several researches in the study were identified that focus on the alignment of requirements 

specification and testing. In MBT-based approaches, the generated test data cannot be executed 

directly on SUT because they are at the same level of abstraction as the model. In formal 

approaches, representing requirements in a formal language is time-consuming and requires 

expertise. 

Traceability links can be visualized in a traceability matrix, as cross-references in the table-view 

or in a model- or graph-like diagram. In order to support relationship management among 
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requirements and test cases, several approaches use the traceability matrix and MBT to represent 

the relationships that exist.  

2.8.4 Matrix Approach 

A traceability matrix is a two-dimensional grid that represents traceability links that exist 

between two sets of artifacts, such as requirements, design elements, etc. The rows and columns 

of the grid are associated with the artifacts, and marks at the intersections represent the existence 

of a link.  

While early forms of traceability matrices only provided support for a single type of mark 

representing the existence or non-existence of a link between two artifacts, traceability matrices 

today can be enhanced to include additional information about artifacts and links [93]. For 

example, an artifact in the matrix is usually referenced using an identifier but modern user 

interfaces can provide popup windows directly showing an artifact’s meta-information or content 

if needed. Furthermore, link types or other information could be encoded using different colors or 

symbols [98]. 

▪ One example of a semi-automatic solution [99] creates a traceability matrix from 

requirements to test cases during the test generation process. The formal models are 

annotated with requirements identifiers. When the test cases are generated from the 

models, the identifiers are used to create the traceability matrix relating requirement 

identifiers to test cases identifiers.  

▪ Spanoudakis and Zisman [96] also provide a matrix containing pairs of artifacts and 

traceability link classes. This matrix gives an overview of which traceability links can 

connect with which artifacts according to the literature. A similar list has also been 

created by Espinoza et al. [100]. 

▪ A hierarchical classification has been created by Dahlstedt and Persson [101]. They base 

their classification on the first level of structural, constrain, and cost/value 

interdependency types. According to their classification, structural types, such as refined- 

to or similar- to denote structural cross-references. 
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2.8.5 MBT Approach 

Automated MBT approaches exploit two types of relationships; (1) implicit relationships that are 

embedded in the tool’s algorithms and models, (2) explicit relationships that are either 

automatically created and made explicit by the tool, or created by the users. Several approaches 

[102], [103] use implicit relationships to support test generation, execution and evaluation; while 

others [104] use implicit relationships to support regression testing. Further approaches use 

explicit relationships to support test generation [105], test execution and evaluation [106], [107]  

[108], or coverage analysis. In MDD, traceability links are often expressed as part of a model, 

and even in the requirements domain, traceability schemes are usually described as metamodels. 

▪ N aslavsky et al. [109] use one kind of behavioral UML model for test generation. A 

control-flow representation is used along with domain analysis of the parameters of the 

sequence diagram. 

▪ Basanieri et al. [105] use a tool (COW_SUITE) that loads UML models to create explicit 

relationships as edges in hierarchical trees among them. 

▪ The authors in [110] adopt the tool (AGEDIS) that uses explicit relationships created by 

the user to execute and evaluate the test scripts. The created relationships map abstract 

stimuli to method invocations, and abstract observations to value checking. The tool also 

expresses relationships between abstract test suites and test trace results during test 

execution. Manual coverage analysis is supported via visualization of test traces and the 

abstract test suite that generated them.  

▪ In [107], the (AsmL) tool uses explicit relationships created by the user to execute and 

evaluate the abstract test scripts. The use of relationships in AsmL tool supports the 

parallel execution of the model and its implementation by relating them and comparing 

their states. 

▪ Abbors et al. [111] present an approach for requirements traceability across an MBT 

process and the tools that are used for each phase. Some prior researches address 

requirement-based testing to facilitate traceability between requirements and testing. 
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▪ Arnold et al. propose a scenario-driven approach [112] that supports the traceability 

between generated and executed test cases, and the executions of an IUT. Their approach 

supports both FRs and NFRs. 

▪ Goel et al. [113] propose a model-driven approach in which the strengths of both 

scenarios-based and state-based modeling styles are combined. Their tool makes it 

possible to trace from requirements to testing and vice versa in a round-trip engineering 

approach. 

▪ Pfaller et al. propose [114] using different levels of abstraction in the development 

process to derive test cases and link them with the corresponding user requirements 

▪ Boulanger and Dao propose an approach [115] in which RE is done in different phases of 

the V-model to facilitate requirements validation and traceability. 

▪ Felderer et al. focus on model–driven testing of service-oriented systems in a test–driven 

manner [110]. They believe that Telling TestStories tool could support traceability 

between all kinds of modeling and system artifacts. 

▪ Marelly et al. extend sequence charts (LSCs) with symbolic instances and symbolic 

variables [107] to reach linking requirements and testing. 

2.8.6 Formal Approach 

▪ Post et al. focus on translating requirements into scenario-based formal language which in 

turn could be linked to software verification [116].  

▪ Bouquet et al. use a subset of UML 2.0 diagrams and Object Constraint Language (OCL) 

operators to formalize the expected system behavior [117]. The model is used for 

automatically generating executable test scripts. 

▪ Kelleher and Simonss propose a new requirement modeling approach [118] in which use 

cases are replaced with use-case classes in UML 2.0. Use case classes are formal 

templates for describing rules on modeling requirements with instances. This 

replacement, together with utilizing explicit traceability links, facilitates bridging the gap 

between requirements and testing. 
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▪ Sabetta et al. discuss [119] that sometimes it might be needed to transform UML models 

into different analysis models which could each be used to verify (in a formal way) one 

kind of NFR. Some of these models are Petri nets, queueing networks, formal logic, etc. 

For this purpose, their abstraction approach can transform UML models into different 

kinds of analysis models in different formalisms. 

▪ Hussain and Eschbach present a model-based safety analysis approach [120] that 

automatically composes formal models of the system and produces a fault tree that can be 

used to generate test cases for the software system. Therefore, test cases can be directly 

bound to the safety requirements and assure traceability between testing activity and 

safety requirements. 

2.8.7 Meta-Model Approach 

▪ Ibrahim et al. construct a meta-model with top-down and bottom-up traceability support 

[121]. The authors developed an approach that gathers traceability relations from different 

sources. Requirements and test cases are connected while analyzing system 

documentation. Test cases and methods are linked via test execution, where methods and 

classes are linked by static program analysis. The traceability approach provides some 

leverage. However, the bottom-up traceability provides less accuracy and requires more 

maintenance effort. 

▪ Dubois et al. propose a meta-model called DARWIN4REQ which aims to keep the 

traceability link between three phases of requirement elicitation, design, and V&V of 

requirements [122]. The authors investigated strategies for requirements traceability based 

on models but focusing on subdomains of embedded systems. 

2.8.8 Test Case Approach 

▪ Nebut et al. concentrate on a guideline for automatic test case generation on ESs that are 

based on object-oriented concepts [85] The system requirements are described via use 

cases, contracts, and scenarios. If any other information for the requirements is needed, it 

is provided by different UML artifacts like sequence diagrams.  

▪ Whalen et al. mention several problems of measuring the adequacy of black-box testing 

using executable artifacts [123]. They also present coverage metrics based on formal 
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high-level software requirements. Conrad et al. presented a test case generation strategy 

that has been in use in an automotive company [124].  

▪ Siegl et al. are also interested in the automotive industry proposed Extended Automation 

Method (EXAM) for automatic generation of test cases, and the Timed Usage Model 

process for derivation of test cases from requirements [86]. 

▪ Riebisch and Hubner concentrate on the first step of test case generation [125]. In this 

step, their proposed method uses a description of the natural language and transforms it 

into an expression with formally defined syntax and semantics. 

2.9 Summary of Literature Review 

Testing embedded systems software has become a costly activity as these systems become 

more complex to fulfill rising needs. Testing processes should be both effective and efficient. An 

ideal testing process should begin with validated requirements and begin as early as possible so 

that requirements defects can be fixed before they propagate and become more difficult to 

address. 

Among a range of testing activities, test case generation is one of the most intellectually 

demanding tasks and it is also of the most critical challenges since it can have a strong impact on 

the effectiveness and efficiency of the whole testing process.  

Since traceability is mainly achieved by documenting different aspects of (usually manual) 

transformations of software development artifacts, MDD seems to be able to leverage traceability 

by automatically generating these documentations. However, traceability practices, in general, 

are far from mature, benefits are to a large part not conceived in the industry, and we are still 

standing at the beginning of an emerging discipline. A lot of research—both fundamental and 

applied—has still to be done. This is a challenge, not only because of the difficult research 

questions, but also because researchers in the field of traceability are usually part of very 

different larger research communities (such as requirements engineering, modeling, or program 

understanding), and there is only little communication between these communities. 



Use Case Maps (UCM) 

41 

 

Chapter 3 Domain Specific Languages (DSLs) 

In the last few years, domain-specific language (DSL) has been getting more and more attention 

in the software industry. DSL is a small, usually declarative, language that offers expressive 

power focused on a particular problem domain. One of the main goals of DSLs is to enable the 

developer to define completely new languages that have more appropriate concepts for special 

domains. Furthermore, developers get the advantages of development activities on a higher level 

of abstraction. Languages are represented in different ways: by metamodels specified in some 

data modeling technique or by formal grammars. Although many DSLs have been designed and 

used over the years, the systematic study of DSLs has only started more recently. 

In this Chapter, we introduce three DSLs that we used in our approach to (1) capture functional 

requirements in terms of causal scenarios, (2) describe the software ATCs as scenarios and (3) 

implement TCs and execute them against SUT. 

3.1 Use Case Maps (UCM) 

UCM: a visual notation for describing, in a high-level way, how the organizational structure of a 

complex system and the emergent behaviour of that system are intertwined. UCM [8] as part of 

the User Requirements Notation standard was suggested to represent the behaviour of a system as 

a visual use case, i.e. a scenario model. UCM is a scenario-based notation enabling the 

description and analysis of use cases and scenarios. It has been used to capture functional 

requirements in terms of causal scenarios composed of responsibilities that can be attached to 

underlying abstract components. UCM models have maps that contain any number of paths and 

components. The core notation of UCM has the following fundamental elements. Paths express 

causal sequences starting at start points and ending at endpoints, which respectively capture 

triggering and resulting conditions/events. Along a path, responsibilities describe the required 

activities to fulfill a scenario. Paths can be combined as alternatives with guarded OR-forks and 

merged with OR-joins, while AND-forks and AND-joins depict concurrency. Loops can be 

modeled implicitly with OR-joins and OR-forks. Joins and forks may be freely combined. 

Waiting places and timers denote locations on the path where the scenario stops until a condition 

is satisfied. UCM models can be decomposed using stubs (static or dynamic), that contain sub-
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maps. Components are used to specify the structural aspects of a system. Map elements that 

reside inside a component are said to be bound to it. Components, which can be of different types 

(not shown here), can also contain sub-components, recursively. UCM models can be edited, 

analyzed and transformed with the jUCMNav tool [18]. One of its main features is a UCM 

traversal mechanism that takes as input a model and a scenario definition (start points triggered, 

and initial values assigned to the model variables used in OR-fork/timer/stub conditions) and 

produces as output a scenario that contains the UCM elements traversed. Generated scenarios are 

partial orders containing sequenced and concurrent responsibilities only; all conditions and 

alternatives have been resolved during the traversal. A scenario can be used to highlight the paths 

traversed on the visual model itself (e.g., in red or grey).  

In Figure 3.1, we find a model with one map contains: a Causal path represented by a wiggly 

line, two rectangular boxes that represent components (Tester and SUT) four responsibilities 

bound to components along the path, and one highlighted scenario. 

 

Figure 3.1: UCM core notation 

The responsibilities elements in UCM are abstract and can represent actions or tasks to be 

performed by the components. The components themselves are also abstract and can represent 

software entities (objects, processes, network entities, etc.) as well as non-software entities (e.g. 

users, actors, processors). The concrete metamodel of the UCM notation is shown in Appendix A 

where the UCM quick reference guide is shown in Appendix F. 
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3.2 Test Description Language (TDL) 

TDL: TDL is a standardized scenario-based approach proposed by the European 

Telecommunications Standards Institute (ETSI) to describe software test cases as scenarios. TDL 

is a new language created for specifying “formally defined test descriptions used as the starting 

point for test automation. It allows describing scenarios on a higher abstraction level than 

programming or scripting languages. Furthermore, TDL can be used as an intermediate 

representation of tests generated from other sources, e.g. simulators, test case generators, or logs 

from previous test runs.” [126]. TDL is a general formal language for representing test 

descriptions which are used mainly for communication between stakeholders as the basis for 

implementing concrete tests. The TDL design is centered on three separate concepts: (1) The 

metamodel principle that expresses its abstract syntax; (2) Concrete Syntax, which is user-defined 

for different application domains; and (3) the TDL semantics that can be found in meta-model 

elements. The main TDL structure elements expressed in italic are shown in Figure 3.2. 

 

Figure 3.2: Major parts of a TDL specification 

a) A Test Objective that states the reason for designing either a Test Description or a particular 

behaviour of a Test Description. It can be written as a simple text in natural language. 

b) A set of typed Data Sets used in the interactions between components in a Test Description; 

Exchanged 

in

TDL Specification
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c) A Test Configuration consisting of at least one tester and at least one SUT component and 

connections among them reflecting the test environment. 

d) A set of Test Descriptions to describe one or more test scenarios based on the interactions of 

data exchanged between the Tester and the SUTs. It also contains behavioral elements that 

operate on time. The control flow of a Test Description is expressed in terms of the 

composition of operations such as sequential, parallel, alternative, iterative, etc. 

Using these major ingredients, a TDL specification is abstract in the following sense: 

▪ Interactions between tester and SUT components of a test configuration are considered to 

be atomic and not detailed further. For example, an interaction can represent a message 

exchange, a remote function/procedure call, or a shared variable access. 

▪ All behavioural elements within a test description are ordered unless it is specified 

otherwise. That is, there is an implicit synchronization mechanism assumed to exist 

between the components of a test configuration. 

▪ The behaviour of a test description represents the expected, foreseen behaviour of a test 

scenario assuming an implicit test verdict mechanism if it is not specified otherwise. If the 

specified behaviour of a test description is executed, the 'pass' test verdict is assumed. 

Any deviation from this expected behaviour is considered to be a failure of the SUT, 

therefore the 'fail' verdict is assumed. There is a possibility for explicit verdict assignment 

if in a certain case there is a need to override this implicit verdict setting mechanism (e.g. 

to assign 'inconclusive' or any user-defined verdict values). However, there is no 

assumption about verdict arbitration, which is implementation-specific. 

▪ The data exchanged via interactions and used in parameters of test descriptions are 

represented as name tuples without further details of their underlying semantics, which is 

implementation-specific. 

A TDL specification represents a closed system of tester and SUT components. That is, each 

interaction of a test description refers to one source component and at least one target component 

that is part of the underlying test configuration a test description runs on. The actions of the 

actors (entities of the environment of the given test configuration) can be indicated informally. 
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Time in TDL is considered to be global and progresses in discrete quantities of arbitrary 

granularity. Progress in time is expressed as a monotonically increasing function. Time starts 

with the execution of an unreferenced ('base') test description. TDL can be extended with tool, 

application, or framework-specific information by use of annotations. 

The TDL elements are explained with an example based on the Internet’s Domain Name System 

(DNS) that aims at verifying that a DNS server can properly resolve hostnames to their 

corresponding IP addresses. The Test Configuration element that is composed of a set of two 

interacting components is shown in Figure 3.3. 

TestConfiguration: DomainNameServer

SUT

DNSServer:CompType

Tester

DNSClient:CompType

  

Figure 3.3: TDL Test Configuration element 

The Test Description element represents the expected behaviour based on the Test Objective and 

expresses the test in terms of Data Set instances exchanged as shown in Figure 3.4.  

TestDescription:VerifyDNSServer

Tester

DNSClient:CompType

SUT

DNSServer:CompType

RequestResolveDNS(hostName)

DNSResolved(IPAddress)

TestObjective

Description  Verify that a DNS server is able to properly resolve host names to 

their corresponding IP addresses 

 

Figure 3.4: TDL Test Description element 

Appendix B and Appendix C show the metamodel of Test Configuration and Test Description. 

Interested readers can refer to [126], [127] that discuss the application of TDL to several common 

application scenarios. 
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3.3 Testing and Test Control Notation (TTCN-3) 

TTCN-3: a standard language for test specification that is widespread and well-established. The 

core language has to be transformed to a programming language such as Java, C, C++ or C#. 

There are number of commercial and non-commercial tools that provide supports to the language 

[128]. TTCN-3 is meant for specifying collections of test cases, Abstract Test Suites (ATS). To 

be able to execute the test cases within an ATS, a tool (compiler, interpreter) is required to 

transform the ATS into an executable test suite. In the following, TTCN-3 Core language is 

explored. 

Module: the TTCN-3 language element called module corresponds to a compilation unit in 

traditional programming languages. It can be analyzed, compiled or interpreted, it may contain a 

single or several test cases, and it can be used as a library by other modules. Each module is 

divided into two parts, definitions part and control part, both of which are optional. The 

definitions part contains top-level definitions, such as type definitions, data (template) and 

constant definitions, port and component definitions, and function and test case definitions. The 

control part can be seen as the "main function" of the module and its purpose is to call the test 

cases defined in the part of the definitions. It contains the logic for executing the test cases in a 

certain order, it can apply execution time restrictions to the test cases, and it can use the 

definitions specified in the definitions part of the module to specify local variables. It is possible 

to specify parameters for a module, meaning that when a test case or the control part of the 

module is executed, it can read these parameters and behave according to them. The parameters 

are like module global constants, whose values are set at the start of the execution. 

Test case: a test case can be seen as the main function of a single case, and of any other 

functionality executed in parallel with the test case. A test case is always executed within an 

entity called component, and it can call normal functions and altsteps to extend its behavior. The 

result of executing a test case is a verdict, which tells whether the system under test passed the 

test. A test case can be both a message- and a procedure-based.  

Message-based testing consists of sending messages to the SUT, receiving messages from it, 

checking whether messages were not received in time, and checking whether the received 

messages are in the right order and that they contain the right values. Procedure-based testing 
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consists of calling functions of the SUT, receiving return values and exceptions, receiving 

function calls, and of passing function return values and raised exceptions to the SUT. 

Components, Ports, and Test Configurations: the behavior of a single test case consists of 

executing functionality (test cases and functions) in one or more components. A component is a 

user-specified entity, which contains user-defined ports, via which the component can interact 

with other components and the SUT with message and procedure operations. In addition to the 

ports, the component may contain private variables and timers. The component itself does not 

specify any kind of behavior but it provides an environment for it. This means that one can start 

functionality in the component and this functionality can then use the ports, variables, and timers 

of the component. The functionality that can be started in the component can be either a test case 

or a function, see Figure 3.5. 

 

Figure 3.5: Model component 

Verdict: every component that exists during a test case has a local object called verdict, which it 

can set (setverdict) based on how it experiences the behavior of the other components and the 

SUT. Components can also read their current verdict value (getverdict). The possible verdict 

values a component can set are none, pass, inconc, and fail. Once a component has set a value for 

its verdict, it can only "worsen" the verdict value. 

Function: a normal function can have input parameters, output parameters, input-output 

parameters, and it can return a value. It is also possible to specify that the function can only be 

called or started within a component of a certain type, which makes the internal definitions of the 

component visible to the function (ports, timers, and variables). 

Altstep: used for specifying action whose execution is triggered by some "receiving" event or 

operation, such as a timeout or receipt of a message, it can be given access to the internal 

definitions of the component. 
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Types and Values: TTCN-3 provides a set of basic and structured types, from which the user 

can derive own sub-types by restricting their values.  

Template: a template is a data structure, that can be "used to either transmit a set of distinct 

values or to test whether a set of received values matches the template specification". When a 

template is used in the receiving direction to match with received values, each template can 

specify a set of values that it matches with.  

Communication operations: TTCN-3 has both message- and procedure-based communication 

operations with which components can interact with each other and with the SUT.  

Alternative behavior: in a test case, it is not always known beforehand in which order certain 

events occur. The SUT can have several legal actions it may perform, and it can behave 

completely erroneously. The situations in which several alternative events are possible are 

handled by TTCN-3 alt statement. The alt statement specifies a list of receiving operations 

(alternatives) The receiving operations are receive, getcall, getreply, catch, trigger, and check 

(explained in the previous section), with the addition of done and timeout. If the alternative 

matches with an event, then the code block following the alternative is executed, after which the 

execution continues after the alt statement, unless a repeat statement is encountered. If the 

alternative does not match, then all the following alternatives are tried in the order in which they 

are listed within the alt statement. 

Altstep: altstep is a function like an element in TTCN-3 that can be used instead of the receiving 

operations in the alt statement. 

Timers: TTCN-3 provides at language level syntax for specifying both implicit and explicit 

timers. The implicit timers are the timers whose values specify maximum execution time for test 

cases and function calls. These timers cannot or need to be started, read, or stopped by the user. 

Explicit timers are the user-created timers that can be started, read, and stopped, their timeout can 

be waited for, and they can be given as parameters to functions and altsteps. In the previous 

section, a timer was used in the context of the alt statement, to specify maximum time how long 

the component waits for messages to be received from the specified ports until it continues its 

execution. 
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Summary: TTCN-3 is a test specification language developed by ETSI that applies to a variety 

of application domains and levels of testing. TTCN-3 [26] was selected for this research study for 

its industrial strength to implement and execute TCs against SUT. It is designed for specifying 

collections of test cases in ATS that are then used to test the SUT. The top-level unit of TTCN-3 

is a module that corresponds to a compilation unit in traditional programming languages. The 

module may contain a single case or several test cases that can be compiled or interpreted. A test 

case can be seen as the main function of a single case; it is always executed within an entity 

called a component to express its behaviour. The result of executing a test case is a verdict that 

determines if the SUT has passed the test. Listing 3-1 shows a test case that implements the DNS 

request introduced in the previous section.  

  

Listing 3-1: TTCN-3 test case 

A component should be defined (DNSClient) with a single port (clientPort) to communicate with 

the DNS server (SUT). The clientPort sends a data instance (hostName) to the SUT (line 4). 

Directly after, a timer is started (line 5) and set to run for 10 seconds. If the clientPort receives 

(line 7) the expected data instance (IPAddress) within 10 seconds, the test case passes. If the 

clientPort receives anything other than IPAddress (line 9) or the DNSTimer times out (line 11) 

the test case fails. 

1.  testcase VerifyDNSServer() runs on DNSClient { 

2.   template String hostName := "MyHostName"; 

3.   template String IPAddress:= "192.124.135.56"; 

4.   clientPort.send(hostName); 

5.   DNSTimer.start(10.0); 

6.   alt { 

7.     [] clientPort.receive(IPAddress) { 

8.        setverdict (pass); } 

9.     [] clientPort.receive { 

10.        setverdict (fail); }  

11.     [] DNSTimer.timeout { 

12.                setverdict(fail) }  

13.   } 

14.  } 
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3.4 The Specification Level of the three Languages 

The UCM language is used to describe the SUT behavior on requirement level (test goals), the 

resulting models abstract from detailed communication mechanisms and data which makes 

deriving executable test cases a difficult activity. On the other hand, TTCN-3 language is meant 

for specifying collections of test cases at the implementation level. The TTCN-3 test cases are 

developed and executed on the SUT when data becomes more subdivided and specific. This gap 

that exists between UCM models and TTCN-3 test cases can be filled by TDL language which 

allows describing tests on a higher abstraction level than a scripting language. Therefore, the 

TDL models can be used as an intermediate representation.  

Each granular model of the three languages can be used to characterize a certain level of testing 

details. In particular, UCM models are developed at the requirement layer to abstractly formalize 

the functional requirement as test goals. The resulting test goals convey information to help 

develop some of the test specifications where test components and their interactions can be 

identified at the design layer. Finally, TTCN-3 test case implementation, developed at the test 

scripting layer, can be generated based on the obtained test specification. We claim that vertical 

transformation from the abstract test goals to a concrete test implementation can be achieved 

using the three languages. Figure 3.6 shows the link between the three languages and the models 

during model transformation activities. 

UCM

TTCN-3

TDL

Modeling language to represent 
SUT requirements (scenario)

Description language to represent 
test specification (test configuration, 
behavior, data instance and objectives)

Scripting language to represent 
test implementation (data oracle)

Test goal

Test 
specification

Test 
implementation

Scenario
Refinement

Test data

Model TransformationDSL

 

Figure 3.6: Link between the three languages and model transformation 
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3.5 Summary of Domain Specific Language 

There are challenges in generating test cases from UCMs models as they reside at different 

abstraction levels from test cases. At first, tests need to be re-targetable and readable by test 

equipment, as supported by languages such as TTCN-3. Since UCM scenarios are abstract, there 

is a need to transform them to an intermediate level that help bridge the gap with the test cases in 

TTCN-3. In particular, the absence of elements such as alternative behavior and data in the UCM 

scenario metamodel makes generating test cases difficult as these elements are required for 

proper execution. Another challenge is the validation of generated test cases (TTCN-3) in terms 

of technical correctness, effectiveness and usefulness.  

As a result, research is needed to explore and resolve the basic differences between UCM models 

and test cases in TTCN-3. Further research is also needed on when and how to introduce concrete 

data in the generation of executable test cases in TTCN-3, and how to link the generated artifacts 

among each other for traceability purposes. 
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Chapter 4 Towards Building a New Test Case Generation 
Approach 

4.1 Research Questions 

The conducted research and development study tackled the following problems: (1) difficulties in 

generating TTCN-3 test cases from abstract UCM models (2) delay in starting testing activities 

(3) substantial number of generated test cases to be checked, (4) weak links between requirement 

traceability with testing, and (5) high cost in achieving compliance with regulations and standard. 

The conducted research explored a model-driven testing paradigm to build a new testing 

methodology that covers two testing activities; (1) test case generation and (2) test case 

traceability.  

The conducted research raised several questions that are centered on generating test cases and 

improving the testing process in terms of time and labor work:  

Research Question 1: “how an existing legacy software tests can help in developing model 

transformation?”  

Research Question 2: “what are some of the design factors a model transformation should have 

to bridge the abstraction gaps between UCM and TTCN-3 models to enable the generation of test 

cases?” 

Research Question 3: “how do we assess the correctness of a test case generation process and 

how to evaluate its efficiency?” 

Research Question 4: “how to align the activities of requirement traceability to testing to 

improve project cost and comply with DO-178C standards?” 

The remainder of this chapter is organized as follows. The motivation to reengineer legacy 

software tests is first introduced in Section 4.2.1. The reengineering of legacy software tests 

activities to model-driven testing is presented in 4.2.2. This Section has two activities; the 

migration of legacy code to TTCN-3 code is presented in Section 4.2.2.1. Followed by code to 
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model activity presented in Section 4.2.2.2. Lesson learned from the reengineering activities is 

presented in Section 4.2.3. Section 4.2.4 concludes the chapter. 

4.2 Reengineering Legacy Software Tests to MDT 

The development of the test case generation process started by a modernization stage— 

reengineering the legacy software tests to model-driven testing. In particular the reengineering of 

the legacy test implementation to TTCN-3 and abstracting them to test specification in TDL 

models. 

4.2.1 Motivation  

At our research partner premises, the testing process (non-model based) to measure the quality of 

its prime product Flight Management System (FMS) is labor-intensive and error-prone. The FMS 

is a dynamical system i.e., system that evolves with time, a characteristic of such systems is the 

high dependency between events, the large amount of input and output data, making the test 

phase particularly challenging without the use of automation. The software test to verify the 

functionality of the FMS is developed manually from requirements. These requirements are 

expressed in NL and are layered as high-level requirements (HLR) and low-level requirements 

(LLR) in separate artifacts. The requirements are subsequently used as the basis, along with test 

engineer knowledge (implicit), for writing abstract test cases in NL, and then manually 

developing executable test cases using Eclipse Ant/XML software to test the SUT.  

In this Chapter, we propose an approach, work published in a conference [129], that starts with 

the code migration of these legacy test cases to the TTCN-3 language, which in turn will be 

reverse-engineered into abstract TCs in TDL. Once the reengineering of the software tests is 

completed, new TCs can be captured directly in TDL, and these abstract TCs can be used to 

generate executable TCs in TTCN-3 or any other desired scripting language. Furthermore, when 

new requirements emerge to demand the evolution of the software tests, this software evolution 

can take place at the model level. 

The ultimate goal in the reverse engineering process is to enable the automatic generation of the 

executable TCs and to have them migrate to a more standard testing language to benefit from its 
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important features. The next subsections explain the reengineering activities enclosed in the 

reverse engineering process, code-to-code migration and code-to-model. 

4.2.2 Reengineering Activities  

The reengineering of legacy software tests aims to discover feasible transformation from the test 

layer to test requirement layer, work presented in ETSI conference [130]. Furthermore, it is used 

to help build the model transformation, generate TTCN-3 test cases from TDL models, and show 

its feasibility. Then, after showing that TTCN-3 test cases can be derived from TDL models, the 

approach is extended with the requirement layer which describes software specifications in UCM 

scenarios where test objectives can be driven and transformed into TDL models. Reaching this 

point, the feasibility of transforming TTCN-3 scripts into a TDL model is shown, and a forward 

engineering process to regenerate the test cases can be undertaken.  

Figure 4.1 shows two phases of the reverse-engineering process. The feasibility of transforming 

the legacy test cases into an abstract model is shown, along with a forward engineering process to 

regenerate the test cases in selected test language such as TTCN-3.  

Modernization

Process

Legacy Process

(1) code-to-code

(2) code-to-model 

ETC 

(ant/XML)

---------------

---------------

---------------

ATC (NL)

---------------

---------------

---------------

Software 

Requirements

(4)  

Automatic

Generation

(3) extract test 

objectives,

enhance & check

ETC 

(TTCN-3)

-------------

-------------

-------------

ETC 

(any)

------------

------------

------------

ATC  

(TDL)

---------------

---------------

---------------

Any: Ant, 

TTCN-3

Manual

Auto

 

Figure 4.1: Modernization of legacy software tests 
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4.2.2.1 Code-to-Code Migration:  

We developed a language translator tool to migrate the ETCs automatically to three TTCN-3 

modules. This code migration is performed only once to obtain equivalent semantic code in 

TTCN-3. Figure 4.2 shows the architecture of the translator tool that generates three modules. 

The resulting modules along with a fourth module (Type module) constitute an executable 

TTCN-3 TC that is equivalent to the Ant/XML TC. The Type module is produced manually by 

analyzing the SUT inputs and outputs and the legacy. The architecture of the translator tool 

combines the following elements: 

⎯ Transformation Rules: several defined rules before the transformation of each Ant/XML 

construct to one or more equivalent constructs in TTCN-3. (one-to-many transformations 

are possible) 

⎯ Parser: reads legacy TC to generate syntactic element tokens encountered in the TP. 

⎯ Converter: based on transformation rules, it transforms the syntactic element, returned by 

the Parser, to functionally-equivalent code to the generator. 

⎯ Generator: writes the generated TTCN-3 code, produced by the Converter, dispatched in 

each of the corresponding modules. 

Translator Tool

Parser

Converter

Generator

Analysis of 

legacy code Transformation Rule #1

Transformation Rule #2

  

Transformation Rule #n

TTCN-3

Data

TTCN-3

Component

TTCN-3

Behavior

TTCN-3

Type 

module

TC 

(Ant/XML)

---------------

---------------

---------------

 

Figure 4.2: Language Translator Tool 
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Table 4-1 shows the transformation rules. The third column describes how the legacy ETC 

semantic is preserved using TTCN-3 syntax. 

Table 4-1: Transformation rules to convert Ant/XML to TTCN-3 languages along with 

transformation rules 

Legacy code element Equivalent construct in TTCN-3 Transformation rules 

<project name = “str”> 

module <str_Template> { } 

module <str_Behavior> { } 
module <str_Configuration> { }  

Rule # 1: project element is translated to three module constructs which 

together compose a full TP in TTCN-3. The project name = str is used 
as a prefix with “Template”, “Behavior” or “Configuration” to designate 

each TTCN-3 module. If the project name contains special characters 

such as dot or space, they are replaced by underscores.  

<target name = “str”> 

testcase <target_str> runs on 
MTCType system SystemType  

Rule # 2: target element is translated to a testcase construct, and the 

target name is prefixed with the string target_ 

The testcase will contain the action and verify constructs (stimulus and 

response) 

<target name= “all” 

depends = “str1, str2, 

…, strn”/> 

control { 

 execute (target_str1() ); 

 execute (target_str2() ); 
 execute (target_strn() ); 

} 

Rule # 3: target name = all is translated to a control construct, and the 

intermediate targets, str1, str2, … separated by commas, identified in 

depends are translated to a sequence of execute statements such as 

execute (target_str1() ); in the control construct. 

interface port = “name” 

type port interface_name message { 

 in sending_msg; 
 out receiving_msg; } 

type component interfaceType { 

 port interface_x interface; } 

Rule # 4: Every interface is mapped to a message-based port and 

attached to a component.  

The interface port = name is translated to a type port message-based 

construct and attached to a type component construct.  

 

 

<action key = “str1”, 

“str2”, …, strn /> 

 

function action (name, command, 

str1, …, strn ) runs on 

componentType { 
…. 

portName.send(command, str1, …, 

strn); 
…. 

} 

 

Rule # 5: action elements are translated to functions and function calls 

constructs. The action parameters command, name, str1, …, strn are 

passed as formal parameters to the function definition. The parameter 
name represents the interface name where command represents the input 

to send. Some actions take additional parameters to send the command, 

they can be represented by str1, …, strn. The parameter portName 
represents the port via which the input to SUT is sent. The action with 

its arguments in the legacy TP represent a stimulus to send to the SUT 

 

< verify query = “str1” 

value= “str2” /> 

template component type verifyStep 
:= {str1 := pattern str2 } 

function matchResult(verify, 

portName) runs on componentType 
{  

alt {  

[] portName.receive(verify) {    
  setverdict(pass);    }  

[] portName.receive {  

  setverdict(fail);    } 
[] replyTimer.timeout { 

  setverdict(inconc, "No response 

from  
   SUT")   } } 

Rule # 6: verification is translated to template construct named verify. 
One template can host several verifications for a given step. Then, the 

construct verify is translated to a function to handle the alternative 

sequences. In the legacy TP, a comparison between the expected value 

and returned one is performed: verify query = “str1” value= “str2” 

The TTCN-3 TP migrates the expected values and store them in 

templates w.r.t to REGEXP used in the legacy. Then, the returned 

values are matched against the expected ones to issue a verdict.  

< macrodef name = 

“MacroN” /> 

action 

<MacroN interface = 
“interface_name, para1, 

para2, …, paran” /> 

function MacroN (interface_name, 

para1, para2, …, paran) runs on 
componentType { 

…} 

MacroN( interface_name, para1, 
para2, …, paran); 

Rule # 7: macros elements are translated to functions and function 

calls constructs. The macros parameters interface_name, para1, para2, 
…, paran are passed as formal parameters to the function definition. A 

macro may contain control statement such as looping, if, else. These 

statements are mapped to their equivalent in TTCN-3 

4.2.2.2 Code to Model  

In the second phase of the reengineering process, we obtain the ATCs in TDL by reverse-

engineering the migrated ETCs in TTCN-3. In most industrial domains, a test can be conceived at 
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two levels of abstraction: a test specification (or test case) and a test implementation (a test 

script). Our goal is to abstract the latter to obtain the former. Here, the test implementation is the 

migrated ETCs containing concrete information. It is often considered useful to express ETCs as 

stimulus-response scenarios. This is the path that we explore here using TDL. 

Let’s consider the modules of a ETC. 

⎯ The Test Behavior module is composed of test events (stimuli and responses as 

interactions) that express the test behavior. 

⎯ The Test Data module contains information about the test input and the expected test 

output. 

⎯ The Test Component module consists of a set of inter-connected test components with 

well-defined communication ports and an explicit test system interface. 

An ATC should use abstract types and instances to refer to test data, and should describe the 

system components and their actions and interactions with a minimum of details. In our study, to 

raise the level of test specification, we choose the TDL notation. The TDL language was 

designed on three central concepts: (1) a Meta-Modeling principle that expresses its abstract 

syntax, (2) a user-defined Concrete Syntax for different application domains, and (3) the TDL 

semantics that can be associated to the meta-model elements. Any minimal TDL specification 

consists of the following major elements: 

⎯ A set of Test Objectives that specify the reason for designing either a Test Description or 

a particular behavior of a Test Description. It can be written as a simple text in NL and it 

can be complemented with tables and diagrams; 

⎯ A Test Configuration, which is a set of interacting components (tester and SUT) and their 

interconnection; 

⎯ A set of Data Instances used in the interactions between components in a test description.; 

and 

⎯ A set of Test Descriptions to describe one or more test scenarios based on the interactions 

of data exchanged between tester and SUT. 

To obtain the ATC (TDL specification) from the ETC (TTCN-3 modules), we developed 

transformation rules to define ATC elements from the TTCN-3 ETCs’. These rules are meant for 

human processing; they are based on the equivalence between elements of both languages. The 
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rules aim to remodel the TTCN-3 modules into more abstract TDL elements. The language-

sensitive editor understands the concrete TDL syntax, based on the TDL meta-model.  

Next, we show how each TDL element is derived from its corresponding TTCN-3 module by 

applying these rules. However, extracting the TDL Test Objectives cannot be rule-based since the 

TTCN-3 ETCs do not have a concrete representation of the Test Objective. Nevertheless, the test 

objectives can be extracted from the legacy ATCs and copied in TDL corresponding elements. 

I. Remodel Test Data Set 

The concrete data definition, stored in the TTCN-3 Test Data module (TestData.ttcn3), is mapped 

to TDL Data Instances using TDL elements that link the data aspects between TDL and TTCN-3. 

These Data Instances are grouped in Data Sets and are considered as an abstract representation of 

the corresponding concepts in a concrete type system. 

II. Remodel Test Configuration 

In a TDL specification, the Test Configuration element consists of a Tester, SUT components and 

a Gate. The corresponding TTCN-3 Component module contains equivalent objects with many 

more details. Specifically, it consists of a set of interconnected test components with well-defined 

communication ports and an explicit test system interface. TDL does not have a receive 

construct, instead it uses a send construct for the interaction between a Tester and the SUT. 

Therefore, the mapping of TDL Tester and SUT components is validated with the TTCN-3 

interaction. 

III. Remodel Test Description 

The Test Description element in the TDL specification language defines ATC behavior. The 

enclosed scenario is mainly composed of actions and interactions between the Tester and the 

SUT components. 

In the TTCN-3 Test Behavior module, the action is a function implementation or physical setup. 

The interaction is represented as a message being sent (from a source) or received (from the 

target). We remodeled the interaction and the action to their equivalent in TDL by applying the 

rules listed in Table 4-2. In the Test Behavior module, numerous sequences of events are 

possible due to the reception and handling of communication timer events. The possible events 

are expressed as a set of alternative behaviors and denoted by the TTCN-3 alt statement. Each 
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TTCN-3 object in the Test Behavior is remodeled to an equivalent TDL construct by applying the 

transformation rules. In our experimentation, we used a TDL Editor to edit and validate the 

syntax of the TDL specifications. 

Table 4-2: Transformation rules from TTCN-3 to TDL based on the proposed concrete 

syntax 

TDL Meta-model 

elements 

(abstract syntax) 

TTCN-3 statements 
 Our proposed TDL  

concrete syntax 

Description of transformation 

from TTCN-3 to TDL  

TestConfiguration module <tc_name> { } Test Configuration <tc_name> 
Map to a Test Configuration statement with the 

name < td_name > 

GateType 
type port <port_type> message 

{ 

 } 

Gate Type <port_type> accepts 

<Data_Set_name>  

Map to a Gate Type statement with the name 

<port_type> that accepts Data Set elements  

ComponentType 

type component comp_type{ 

 port <port_type> 

<port_name>; 

} 

Component Type <comp_type> { gate 

types : <port_type> Map to a Component Type statement with the 

name <comp_type> and associate a 

<port_type> to it.  
instantiate <comp_instance> as Tester of 

type <comp_type> having { gate 

<gate_name> of type <port_type> ; } 

ComponentType 

type component 

system_comp_type{ 

 port <port_type> 

<port_name>; 

} 

Component Type <comp_type> { gate 

types : <port_type> 
Map to a Component Type statement with the 

name <system_comp_type> and associate a 

<port_type> as a port of the test system 

interface to it. 

instantiate <system_comp_type> as SUT of 

type <comp_type> having { gate 

<gate_name> of type <port_type> ; } 

Connection 
map (mtc: <comp_type>, 

system <system_comp_type>) 

connect <comp_type> to 

<system_comp_type > 

Map to a connect statement where a test 

component is connected to test system 

component.  

TestDescription 

module <td_name> { 

import from <dataproxy> all; 

import from <tc_name> all; 

} 

Test Description(<dataproxy) <td_name> {  

 use configuration: <tc_name>; { } 

} 

Map to a Test Description statement with the 

name <td_name >. The <DataProxy> element 

passed as formal parameters (optional) is 

mapped from an import statement of the 

<DataProxy> to be used in the module. The 

import statement of the Test Configuration 

<tc_name> is mapped to use configuration 

property that is associated with the 

'TestDescription'  

Alternative 

Behaviour 
alt {} alternatively { } Map to alternatively statement  

Interaction 

<comp_name_source>.send(<c

oncreteData>) 

<comp_name_source> sends instance < 

data_name > to <comp_name_target> 

Map to a sends instance statement with respect 

to the sending component 

<comp_name_source>.receive(

<concreteData>) 

<system_comp_name_source> sends 

instance < data_name > to 

<comp_name_target> 

Map to a sends instance statement when the 

sending source is SUT component 

VerdictType verdicttype <verdict_value> Verdict <verdict_value> 

Map <verdict_value> that contains the values: 

{inconclusive, pass, fail}to its corresponding 

value 

TimeUnit 
time_unit {1E-9,1E-6, 1E-3, 

1E0, 6E1, 36E2  
Time Unit <time_unit> 

<time_unit> contains the following values: 

{tick,nanosecond,microsecond,miliisecond,sec

ond,minute,hour} 

VerdictAssignment setverdict (<verdict_value>) set verdict to <verdict_value> Map to a set verdict to statement  

Action function <action_name>() perform action <action_name> Map to perform action statement 

Stop stop stop 
Map to a stop statement within alternatively 

statement 

Break break break 
Map to a break statement within alternatively 

statement 

TimerStart <timer_name>.start(time_unit); start <timer_name> for (time_unit) Map to a start statement 

TimerStop <timer_name>.stop; stop <timer_name> Map to a stop statement 

TimeOut <timer_name>.timeout; <timer_name> times out Map to a times out statement 

Quiescence/Wait 
timer <timer_name> 

<timer_name>.start(time_unit); 

<timer_name>.timeout 

is quite for (time_unit) 

waits for (time_unit) 
Map to is quit for statement or to waits for  

InterruptBehaviour stop interrupt Map to interrupt statement 
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TDL Meta-model 

elements 

(abstract syntax) 

TTCN-3 statements 
 Our proposed TDL  

concrete syntax 

Description of transformation 

from TTCN-3 to TDL  

BoundedLoop 

Behaviour 
repeat repeat <number> times 

Map to repeat statement. The repeat is used as 

the last statement in the alternatively behavior.  

DataInstance var type <data_name> 
Data Set <the_set> { 

 instance <data_name> } 

Map any <variable> to an instance and group it 

in Data Set element 

This approach is suitable for automated ETCs as tests can be derived from the scenarios and 

automated.  

4.2.3 Lesson Learned 

There are some difficulties with the legacy process deployed, the test engineer spends a lot of 

time transforming LLR into executable test cases. There is a large gap in the abstraction level 

between the LLR and the executable test cases. The legacy scripts can be very large, difficult to 

maintain and hard to compose into complex scenarios involving parallelism. Their migration to 

TTCN-3 enforced coding standards and offered a more readable, simple to modify and easy to 

understand test code.  

Formalizing LLR into TDL models for representing test descriptions allowed to validate easily 

the test requirements. Furthermore, as the detail level is low in the LLR, but very high in the 

scripts TDL models narrowed this gap by providing more formal details about the test interaction 

and configuration. The cost maintaining the migrated software tests becomes lower and less 

error-prone. In addition, TDL models are used both for communication between stakeholders and 

as the basis for implementing concrete tests. 

Migration to a standards-based and more efficient software testing environment is appealing to 

organizations seeking to reduce costs, and to benefit from the continuing advancements in 

technology. 

4.2.4 Conclusion 

The modernization of software tests to a new platform is often pressured by business 

requirements to reduce the cost and effort of testing. In this study, we automatically restructured 

legacy test implementation, written as Ant/XML files into the TTCN-3 language that provides 

strong typing, structured constructs and modular code. Next, we reengineered the code and data 
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to a higher level of abstraction to obtain (model-driven) test implementation. Our overarching 

goal is to support test automation and to reduce the effort involved in testing.  

The reverse engineering activities answered the research question RQ1: “how an existing legacy 

software tests can help in developing model transformation?” 
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Chapter 5 An MDTGL Approach for Testing Embedded 
Systems 

5.1 Topic Overview 

In this chapter, we proposed a new model-driven testing methodology, work published in the 

Software & Systems Modeling Journal [131], supported by a chain of tools that generates test 

cases to address an open problem about reducing test effort without forgoing the quality level of 

the final software. 

Based on requirement propagation through model transformation, the new methodology aims to 

support the testing of embedded systems by generating TCs and maintaining requirement 

traceability. To do so, the approach relies on system models at different levels of abstraction. The 

primary contributions of this new testing methodology are: 

i. The proposal of a new model-driven technique to generate TCs from abstract UCM 

scenarios at an early phase that is independent of any particular implementation of the 

design. 

ii. The application of TCG approach during a feasibility study for the application of a 

functional testing process to industrial avionics applications. 

iii. The validation of the test case generation approach in comparison with the industrial 

testing process.  

iv. The proposal of a new framework to strongly link the activities of requirement traceability 

with generated test cases. 

To validate the efficiency of the new methodology in terms of generating TCs and correct 

workflow, we applied it to a real case study in the aviation industry. The validation and 

comparison process are based on analyzing the generated test artifacts by performing 

requirement-based test coverage and verdict analysis. We used a case study approach to address 

the raised questions. Two case studies from the avionics domain were used to build the new 

testing methodology, collect the data, demonstrate the feasibility, and assess the effectiveness. 
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The remainder of this chapter is organized as follows. The research methodology used to solve 

the problems is presented in Section 5.2. The proposal of a model-driven testing methodology is 

presented in Section 5.3. The first testing activity of the MTDGL is the generation of test cases 

which is explained and demonstrated in great detail in Section 5.3.1. Followed by the traceability 

links activity in Section 5.3.2. Section 5.4 concludes the chapter. 

5.2 The Research Methodology 

The research study was conducted at our research partner premises who is a world leader in the 

design and manufacture of high-technology electronics products for aviation. At Avionic industry 

labs, the testing process (non model-based) to measure the quality of its prime embedded system 

FMS is labor-intensive and error-prone.  

Our research study used a case study method to tackle the problems and build an automated new 

approach. We used industrial case studies for demonstrating the approach applicability and 

assessing its effectiveness.  

5.2.1 Conducted Research 

The conducted research covered the following:  

⎯ Reversed-engineer of legacy software tests that validate the FMS software to be driven 

from models. 

⎯ Built a test case generation approach that is composed of independent layers; 

i. Requirement layer (Abstractly formalized functional requirements) 

ii. Test design layer (Identified test components and their interactions) 

iii. Test scripting layer (Generated test cases) 

⎯ Enabled information transformation between the first three layers (i→ii→iii) by using 

concepts such as abstraction, model transformation, and successive refinement. 

⎯ Developed a traceability framework to record traceability links among the generated 

testing artifacts. 

⎯ Applied the new approach to safety-critical software such as LGS to assess its feasibility; 

layers (i, ii, and iii)  

⎯ Assessed the effectiveness of the approach by applying it to real case study FMS and 

compared the obtained workflow to the legacy one; all layers. 
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5.2.2 Collected Data  

⎯ Collected data (functional requirement) from LGS case study and use it as a running 

example to demonstrate the applicability of the proposed approach. The LGS is a public 

case study from the avionics domain. 

⎯ Collected data (functional requirements in NL, legacy executable software tests are 

written Ant/XML and test results that store the execution traces of the FMS with its 

various interfaces) from FMS case study and use it to analyze and assess the effectiveness 

of the proposed approach. The FMS is a real case study from the avionics domain 

developed at our research partner premises and used as legacy software to test the FMS 

implementation.  

5.2.3 Facilities Used 

The facilities used for the research are the following: 

Software:  

⎯ jUCMNav – A modeling tool: jUCMNav is a free, Eclipse-based graphical editor and 

an analysis and transformation tool for the User Requirements Notation (URN). 

⎯ TDL Editor – A test editor tool: TDL Editor is a private tool to edit, design, 

document, and represent formal test descriptions. The Editor defines the specific 

domain of the TDL language and is based on its meta-model. 

⎯ TTworkbench – A test script editor tool: TTworkbench is a full-featured integrated 

test development and execution environment (IDE). This tool allows testing of 

software products and services. The tool supports the TTCN-3 ETSI standard. (An 

academic license is obtained from Spirent Company). 

⎯ Xtext – A framework for the development of programming languages and DSL. 

⎯ Xtend – Is a general-purpose high-level programming language used for generating 

code.  

⎯ Eclipse – Eclipse is an integrated development environment (IDE) for developing Java 

applications 

⎯ Eclipse Modeling Framework (EMF) – The EMF project is a modeling framework 

and code generation facility for building tools and other applications based on a 

structured data model. 

https://en.wikipedia.org/wiki/General-purpose_programming_language
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⎯ Simulation of FMS Application – An FMS/PTT is a simulation of FMS product 

developed by our research partner (A copy of the application is obtained ) 

Hardware:  

⎯ A personal computer with Windows operating system. 

⎯ Dongle Key to run the FMS simulation. 

5.3 The Methodology MDTGL 

This section presents the new methodology MDTGL for testing embedded system, the 

methodology includes two major testing activities; (1) generating TCs and (2) maintaining 

traceability links among the generated testing artifacts. 

5.3.1 Test Case Generation Approach 

The test case generation (TCG) approach shown in Figure 5.1 starts when the test designer wants 

to describe the NL requirements into behavioral models. This activity answers the research 

question RQ2: “what are some of the design factors a model transformation should have to 

bridge the abstraction gaps between UCM and TTCN-3 models in order to enable the generation 

of test cases?” 



The Methodology MDTGL 

66 

 

Test Cases

Level of details

during TCG process

The requirements are given 
in natural language.

The requirements are modeled 
to Cockburn use case 
notation and mapped to UCM 
scenario models

The behavioral models are 
transformed to test goals 
then to abstract test cases 
in TDL to be enriched with 
abstract data from Data 
Model.

TTCN-3 Test Cases are 
generated from ATC and 
completed with concrete data  

Model 
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Test Cases

map

import

Generate 
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Extract Data 
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NL Requirements
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(Scenarios)

Data

Model

Manual

Automatic

 

Figure 5.1: TCG approach for testing an embedded system 

The key points of the TCG approach are: (1) NL requirements are described in behavioral 

models; (2) These models are exported to test goals and transformed, based on developed rules, 

to ATC that are completed manually with data instances; and (3) the obtained ATCs are 

transformed, based on developed rules, along with concrete test data to TCs.  

The approach can be seen as a process of successive refinements of specifications that involves 

model transformation and the insertion of additional information. The approach must ensure test 

effectiveness— all requirements are covered— while also aiming for test efficiency— the testing 

effort is reduced by decreasing the manual development while ensuring the discovery of 
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implementation errors in the SUT. The approach offers features that should be attractive to test 

designers, such as scenario coverage and a simple structure, where ease of use and 

understandability are key.  

In the following subsections, we explain how requirement propagation through model 

transformation and insertion of additional information are performed at each step in the process. 

A case study is conducted in Section 5.3.1.5 to demonstrate the feasibility of the approach. 

5.3.1.1 Formalizing SUT Requirements into Behavioral Model 

In order to facilitate the modeling of the NL requirements into UCM elements, the requirements 

are written in Cockburn use case notation [132]. With some basic knowledge of the jUCMNav 

tool, the modeled use case is mapped manually to UCM scenarios models.  

The scenario models represent the system from a functional execution sequence perspective, 

which is another form in which to represent the system and software requirements. Scenarios 

provide benefits for system comprehension, design, testing and maintenance. Scenarios can be 

grouped, related and decomposed for better management, reusability and analysis. Furthermore, 

scenarios can be used later in the verification process to drive the test specification and to direct 

the development of TCs.  

In our TCG approach, UCMs are an intermediate step towards deriving abstract test descriptions. 

5.3.1.2 Transform Behavioral Model into ATC 

A UCM scenario model conveys information to help develop some of the TDL specification 

elements, in particular, Test Objective, Test Configuration, and Test Description. 

Since UCM scenarios deal only with behaviour, the concept of data is yet to be supported. 

Therefore, we developed a data metamodel, see Figure 5.2, that is based on test data 

requirements to help identify UCM responsibilities that exchange messages, develop the TDL 

Data Sets, and detail the TTCN-3 data with concrete values. 
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Data Instance[*] {unique}

Data Instance[1] TTCN-3[1]

1 0..1

 

Figure 5.2: Data metamodel 

Next, we developed a process called ATC Builder as shown in Figure 5.3, to transform the UCM 

scenario model and data model (additional information) into an ATC expressed as a valid TDL 

test specification.  

- Develop Test Objective (m)

- Develop Data Set (m)

- Develop Test Configuration (a)

- Develop Test Description (a)
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X
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Figure 5.3: ATC builder process 

The ATC Builder process transforms the UCM scenario to four TDL elements. The development 

of each element is shown in the following: 
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I. Develop Data Set 

In general, the test inputs for the TCs are produced in the test analysis and design process. We 

assume that it is possible to select enough data from the analysis process to enable the 

development of test input for use in the TCs. 

A responsibility definition in UCM scenario represents an action or the steps to perform, either 

informally through its name or more formally with the help of its expression. Using this 

information, the responsibilities involved in a stimulus/response action is flagged as interaction 

messages and mapped into Data Instances in TDL. A data model based on data requirements 

composed of three levels of test data abstraction is developed: 

a) Stimulus/Response: a subset of test data requirements can be represented abstractly as I/O 

message in UCM responsibility objects; 

b) Test data scenario: the I/O messages in the Stimulus/Response level are developed into a 

TDL Data Sets. 

c) Test data procedure: The Data Sets are developed using templates. 

Table 5-1 shows four columns of test data: the test data requirements, the complete set of UCM 

responsibilities, and its corresponding TDL Data Instances and TTCN-3 Data Templates.  

Table 5-1: Test Data for UCM scenario 

Test data requirements  
UCM Responsibility 

(Stimulus/Response)  

TDL Data 

Instance  

TTCN-3 

Template 

Stimulus/Response to be 

exchanged 
Interaction 

Data 

Instance 

Data 

Template 

Each UCM responsibility in the second column (interaction) is either a stimulus to send or a 

response to receive. This interaction is represented as a TDL Data Instance in the third column 

and as a TTCN-3 Data Template in the last column. 

The Data Instances to be used in the Test Description are developed manually and grouped in 

Data Sets. They are an abstract representation of the corresponding data-related concepts in a 

concrete type system. 

II. Develop Test Configuration and Test Description 

A Test Configuration in TDL specifies the communication infrastructure necessary to build upon 

the Test Description. As such, it contains all the elements required for the exchange of 
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information, such as Component Instances and Connections. Each Component Instance specifies a 

functional entity of the test system. A Component Instance may either be a part of a Tester, or a 

part of an SUT. The Test Configuration element consists of: 

⎯ A Tester;  

⎯ SUT components;  

⎯ A Gate1; and  

⎯ Interconnections between Tester and SUT components via Gate instance. 

The metamodel of Test Configuration and Test Description are shown in Appendix B and 

Appendix C respectively. 

The Test Description element defines the expected behaviour, the actions and the interactions 

between system components. The Test Description is associated with exactly one Test 

Configuration, and may be associated with any number of data elements that represent the formal 

parameters. Any number of Test Objectives can be attached manually to the Test Description to 

help to specify its design.  

The Test Description in TDL defines the test behaviour based on ordered atomic or compound 

behaviour elements. A responsibility object in a UCM scenario model represents an action to be 

performed by its enclosing component. Its equivalence in TDL is mapped to Action Reference 

element, which is an atomic behaviour used to refer to an Action element to be executed. The 

dynamic and static stub objects that contain sub-maps are not mapped to any TDL element, but 

their enclosed responsibilities are. An Action Reference may have a Component Instance attribute 

identifying the component instance on which the action is to be performed. Any information 

exchanged via the gates is represented abstractly, and can be referenced by TDL Interaction 

elements. An interaction can represent a message sent from a source and received by a target. 

In our approach, we used the feature path traversal algorithm in the jUCMNav tool to export UCM 

scenario models in XMI format. We developed a java tool to parse the exported scenario and 

transform it automatically to TDL Test Configuration and Test Description elements. The 

exported scenarios are structured by a metamodel, see Figure 5.4, and as such can be handled by 

 

1
A Gate is a point of communication for exchanging information between components, it specifies also the data that can be exchanged 
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the model transformation. The exported scenarios have exhaustive coverage of the UCM model. 

The algorithm uses a depth-first traversal [133] of the scenario that captures the UCMs’ structure.  

 

Figure 5.4: Scenario definition Metamodel 

The algorithm traverses the path elements beginning at a start point until a stop point (AND-join, 

waiting place, or timer) is reached. Then, the algorithm backtracks to get the next available branch 

of an AND-fork (unvisited branches) or the next start points if any. The traversal is successful if 

all elements along the path are marked as visited. The algorithm can prevent infinite loops through 

a maximum number of visits. The exported scenario contains traversed UCM elements such as 

Packaged Element, Component Instance, Gate Instance, Action Reference, Interaction, etc. that 
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we use to develop the TDL Specification that can be compiled in the proposed TDL concrete 

syntax. 

The java tool parses the exported scenario using XMLStreamReader interface and automatically 

generates the two TDL elements Test Description and Test Configuration.  

The interface XMLStreamReader is used to iterate over the various events in the exported scenario 

to extract the information and convert it to TDL syntax. Once we are done with the current event, 

we move to the next one and continue till the end of the scenario. The events can be for example 

the start of an element, the end of element or attribute. Figure 5.5 and Figure 5.6 illustrates the 

development of the TDL Test Configuration and Test Description from UCM scenario. Our tool 

iterates over the TDL elements represented with abstract syntax in the exported scenario and 

transforms it to concrete syntax in TDL notation.  

componentinstance  name = 
CompName_1

component instance 
CompName_1

gate instance gCompName_1

connection gCompName_1 to 
gCompName_2 

componentinstance name = 
CompName_2

component instance 
CompName_2

gate instance gCompName_2

Connection name = 
CompName1_CompName2

packagedElements  type = 
tdl:TestConfiguration

Test Configuration 
TestConfiguration

gatetinstance  name = 
gCompName_1

gatetinstance  name = 
gCompName_2

Exported scenario TDL Test ConfigurationPilot LGCU

X

X X

X
X

X
X

X

X

X

XX

StartExtending
Handle-Down

Timer_0 Timer_1

EndExtending

RedON

Timer_6

Timer_5

Timer_4

Timer_3

Timer_2

OpenDoors

LookDoorsIn

OpenPos

ReleaseUp-

Lock

AmberON

Lock-Down

Gears

GreenON_

AmberOFF

CloseDoors

LookDoorsIn

ClosePos

ConfirmGearsDown

EndNormalMode

EndFailure

[Alt<2500ft & Speed <200 kt]

DeploymentFailed

NormalModeFailed
NormalModeFailed

DeploymentSucceeded

[timout]

[timout]

[timout]

[timout]

[timout]

[timout]
[timout]

Path Traversal
Algorithm

Figure 5.5: The development of TDL Test Configuration 
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behaviour  
type = ActionReference
name = ActionName_X
annotation = gCompName_X 

perform action ActionName_x on 
gCompName_X;

gCompName_X sends instance [Stimulus/
Response]_instance to gCompName_Y;

stop Time_X;

alternatively {
 
} 

start  Time_X for (time_unit);

packagedElements  
type = tdl:TestDescription
name = TestDescriptionName
testConfiguration = packagedElements

Test Description TestDescription { 
use configuration : TestConfiguration; 
}

behaviour  
type = Interaction
name = from CompName_X to CompName_Y
source = CompName_X
target = CompName_Y  

behaviour  
type = AlternativeBehaviour
name = BranchingName_X
annotation = gCompName_X 

behaviour  
type = TimerStart
name = Time_X
annotation =  gCompName_X 

behaviour  
type = TimerStop
name = Time_X
name =  gCompName_X 

Time_X times out;

behaviour  
type = TimeOut
name = Time_X
name =  gCompName_X 

Exported scenario TDL Test Description

Pilot LGCU

X

X X

X
X

X
X

X

X

X

XX

StartExtending
Handle-Down

Timer_0 Timer_1

EndExtending

RedON

Timer_6

Timer_5

Timer_4

Timer_3

Timer_2

OpenDoors

LookDoorsIn

OpenPos

ReleaseUp-

Lock

AmberON

Lock-Down

Gears

GreenON_

AmberOFF

CloseDoors

LookDoorsIn

ClosePos

ConfirmGearsDown

EndNormalMode

EndFailure

[Alt<2500ft & Speed <200 kt]

DeploymentFailed

NormalModeFailed
NormalModeFailed

DeploymentSucceeded

[timout]

[timout]

[timout]

[timout]

[timout]

[timout]
[timout]

Path Traversal
Algorithm

Transform exported scenario
To TDL test Description

Based on transformation rules

Figure 5.6: The development of TDL Test Description 

III. Develop Test Objective 

TDL Test Objectives are developed by analyzing the exported scenario definition. Test Objectives 

set guidelines to design the Test Description or to design a particular behaviour. Typical UCM 

objects include component, responsibility, comment, timer, and condition. The Test Objective can 

be enriched by adding additional information from the system requirements. 

IV. Post-Processing of Alternative Behavior 

The transformation algorithm from behavioral model to ATCs generates only linear scenarios or 

one alternative per scenario while a typical ATC in TDL has alternative responses. Therefore, it 

requires at UCM level either a different traversal mechanism with a different scenario 

metamodel, or post-processing of scenarios to merge those that constitute alternate test behaviors. 

In our approach, we automated the post-processing of alternative behavior. The technique 

developed selects the common interaction behavior that represents different responses to the 

tester and groups them in the alternative element as illustrated in Figure 5.7. 
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gCompName_X sends instance 
Response_instance_1 to 
gCompName_Y;

alternatively {

gCompName_X sends instance 
Response_instance_1 to 
gCompName_Y;

gCompName_X sends instance 
Response_instance_2 to 
gCompName_Y;

gCompName_X sends instance 
Response_instance_n to 

gCompName_Y;

 
} 

gCompName_X sends instance 
Response_instance_2 to 
gCompName_Y;

gCompName_X sends instance 
Response_instance_n to 
gCompName_Y;

gCompName_Z sends instance 
Response_instance_n to 
gCompName_Y;

TDL Interaction 

Behavior

TDL Alternative 

Behavior

 

Figure 5.7: Post-processing of alternative behavior 

Finally, the resulting elements are combined along with Test Objectives and Data Sets in one 

TDL Specification and used a TDL Editor2 to edit and validate the specification. The Editor 

defines the specific domain of the TDL language and is based on its metamodel. The DSL of the 

TDL is written in the Xtext language development framework [134].  

We made the java tool and TDL Editor available online3; interested readers can download the 

eclipse project to generate TDL Test Configuration and Test Description elements from UCM 

scenarios. The TDL Specification is based on the TDL meta-model and expressed in concrete 

syntax. It clearly separates the ATC from its associated TC by providing an abstraction level. As a 

result, the test designer can focus on describing an ATC that covers the given Test Objectives 

rather than fully implementing the script. It is the final implementation as a TC that will ensure the 

discovery of implementation errors in the SUT. 

 

2
Obtained from Philip Makedonski, University of Göttingen.  

3
https://users.encs.concordia.ca/~bentahar/Model_Transformation/ 

 

https://users.encs.concordia.ca/~bentahar/Model_Transformation/
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5.3.1.3 Transform ATCs into TCs 

The derivation of test specifications from a UCM scenario model is an abstraction of the expected 

behavior between components and cannot be used directly on the actual SUT. The ATCs thus 

described lack concrete details about the SUT and its environment. Therefore, TCs should be 

derived and sufficiently detailed with test data and interface requirements (additional 

information) to correctly communicate with the SUT. We propose to use TTCN-3 language to 

implement the ATCs defined by the TDL specification package. The document TTCN-3 Core 

Language [135] defines the syntax of TTCN-3 using extended BNF. 

One of the design objectives of TDL is to be less technical and thus user-friendly for non-

technical users and that it can serve as the basis for the implementation of executable tests that 

are by definition highly technical.  

Based on transformation rules that we developed between TDL source and TTCN-3 target, the 

ATCs are transformed into TCs. The technique that we applied in this model transformation is 

structural, e.g., a TDL element, shown in italics, is transformed into a TTCN-3 module. 

Therefore, we consider that an executable test suite in TTCN-3 is broken down into four types of 

modules: (1) a Test Configuration module that consists of a set of inter-connected test 

components with well-defined communication ports, (2) a Test Description module which 

usually contains behavioral program statements that specify the dynamic behavior of the test 

components over the communication ports, (3) a Test Oracle module that contains templates 

(expected result or responses) used to test whether a set of received values matches the template 

specifications, and (4) Test Input module that contains input data (stimulus) to be transmitted to 

the SUT. This modular approach of deriving the TCs supports the model transformation between 

source and target elements and promotes the reusability of the generated modules. Figure 5.8 

shows the derivation of the executable test suite in TTCN-3.  
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Test Description
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Transformation

Process

 

Figure 5.8: Derivation of ETC in TTCN-3 

The transformation rules that enable the transformation of TDL specification, listed in Table 5-2, 

are programmed and implemented in a tool based on model-to-text technology called Xtend. We 

made the tool available online4.  

Table 5-2: Transformation rules from TDL model to TTCN-3 constructs 

 TDL Meta-

model elements 

(abstract 

syntax) 

 Our TDL  

concrete syntax 

Equivalent 

TTCN-3 

statements 

Description 

Rule# 1 TestConfiguration Test Configuration <tc_name> module <tc_name> { } 
Map to a module statement with the name < 

td_name > 

Rule# 2 GateType 
Gate Type <gt_name> accepts 

dataOut, dataIn;  

type port <gt_name> message { 

 inout dataOut; 

 inout dataIn; 

} 

Map to a port-type statement (message-

based) that declares concrete data to be 

exchanged over the port.  

 

 

Rule# 3 

 

ComponentType 

Component Type <ct_name> { gate 

types : <gt_name> 

instantiate <comp_name1> as Tester 

of type <ct_name> having { gate 

<g_name1> of type <gt_name> ; } 

 

type component comp_name1{ 

 port <gt_name> <g_name1>; 

} 

Map to a component-type statement and 

associate a port to it. The port is not a 

system port. 

 

4
https://users.encs.concordia.ca/~bentahar/Model_Transformation/ 

https://users.encs.concordia.ca/~bentahar/Model_Transformation/
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Rule# 4 

ComponentType 

Component Type <ct_name> { gate 

types : <gt_name> 

instantiate <comp_name2> as SUT 

of type <ct_name> having { gate 

<g_name2> of type <gt_name> ; } 

 

type component comp_name2{ 

 port <gt_name> <g_name2>; 

} 

Map to a component-type statement and 

associate a port of the test system interface 

to it. 

Rule# 5 Connection connect <g_name1> to <g_name 2> 
map (mtc: <g_name1>, system: 

<g_name2>) 

Map to a map statement where a test 

component port is mapped to a test-system 

interface port 

Rule# 6 TestDescription 

Test Description(<dataproxy) 

<td_name> {  

 use configuration: <tc_name>; { } 

} 

module <td_name> { 

import from <dataproxy> all; 

import from <tc_name> all; 

 

testcase _TC() runs on 

comp_name1 {} 

} 

Map to a module statement with the name 

<td_name >. The TDL <DataProxy> 

element passed as a formal parameter 

(optional) is mapped to an import statement 

of the <DataProxy> to be used in the 

module. The TDL property test 

configuration associated with the 

'TestDescription' is mapped to an import 

statement of the Test Configuration module.  

A test case definition is added. 

Rule# 7 AlternativeBehaviour alternatively { } alt {} Map to an alt statement  

 

 

Rule# 8 

 

Interaction 

<comp_name1> sends instance 

<instance_outX> to <comp_name2> 

<comp_name1> 

.send(<instance_outX>) 

Map to a send statement that sends a 

stimulus message  

<comp_name2> sends instance 

<instance_Inx> to <comp_name2> 

<comp_name1> 

.receive(<instance_InX>) 

Map to a receive statement that receives a 

response when the sending source is an SUT 

component. 

Rule# 9 VerdictType Verdict <verdict_value> verdicttype 

<verdict_value> contains the following 

values: {inconclusive, pass, fail}. No 

mapping is necessary since these values 

exist in TTCN-3 

Rule# 10 TimeUnit Time Unit <time_unit> N/A 

<time_unit> contains the following values: 

{tick, nanosecond, microsecond, 

millisecond, second, minute, hour}. No 

mapping is necessary; a float value is used 

to represent the time in seconds 
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Rule# 11 VerdictAssignment set verdict to <verdict_value> setverdict (<verdict_value>) Map to a setverdict statement.  

Rule# 12 Action perform action <action_name> 

function <action_name>() runs on 

<g_name1>{ } 

<action_name (); > 

Map to a function signature and to a 

function call. The function body is refined 

later if applicable. 

Rule# 13 Stop stop stop 
Map to a stop statement within an alt 

statement. 

Rule# 14 Break break break 
Map to a break statement within an alt 

statement. 

Rule# 15 Timer 
timer <timer_name> 

 

timer<timer_name> 

 
Map to a timer definition statement. 

Rule# 16 TimerStart start <timer_name> for (time_unit) <timer_name>.start(time_unit); Map to a start statement. 

Rule# 17 TimerStop stop <timer_name> <timer_name>.stop; Map to a stop statemen.t 

Rule# 18 TimeOut <timer_name> times out <timer_name>.timeout; Map to a timeout statement. 

Rule# 19 
Quiescence/ 

Wait 

is quite for (time_unit) 

waits for (time_unit) 

timer <timer_name> 

<timer_name>.start(time_unit); 

<timer_name>.timeout 

Map to a timer definition statement, a start 

statement and to a timeout statement. 

Rule# 20 InterruptBehaviour interrupt stop Map to stop statement 

Rule# 21 
BoundedLoopBehavi

our 
repeat <number> times repeat 

Map to a repeat statement. The repeat is 

used as the last statement in the alt 

behaviour. It should be used once for each 

possible alternative.  

Rule# 22 DataSet Data Set <DataSet_name> { } 

type record <DataSet_nameType> 

{ }  

template <T_DataSet_nameType> 

:=  { } 

Map Data Set to record type and template 

using DataSet_name, T_ DataSet_name and 

prefixed with “Type” 

Rule# 23 DataInstance instance <instance_name>; 

 

[<instance_name_S>;] 

[<instance_name_R>;] 

 

Map instance to a variable, using 

instance_name and prefixed either with “_S” 

for stimulus or with “_R” for response  

In our approach, the TDL elements developed previously were used, based on transformation 

rules, to derive the corresponding modules in TTCN-3. Next, the derived Test Input and Test 

Oracle modules were enriched with concrete data from the data model to enable the execution of 

the TCs. The development of the TTCN-3 modules is discussed in the following: 

I. Generate the Input and Oracle Modules 

As mentioned earlier, TDL does not offer a complete data type system. Instead, it depends on 

Data Set elements— whose Data Instances are an abstract representation of the corresponding 

data-related concepts in a concrete-type system. Therefore, the Data Instances developed in the 

previous section can be used along with data requirement analysis to develop concrete data 

definition. In our approach, a TTCN-3 data module that contains test input and test oracle 

definitions based on Data Sets is developed. The language Xtend, part of the Eclipse Xtext 

project, is used to generate partial TTCN-3 code from TDL Data Set syntax. All Data Set 
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instances can be identified from the parsed TDL model and generate a record type and a template 

for each in TTCN-3 syntax, see Figure 5.9.  

TTCN-3

Rule #22

TDL

type record Data_Set_Name {

………….   ;
}

Instance_Name_[S/R];

 Data Set Data_Set_Name {

 instance Instance_Name; 

}
………….   ;

Rule #23

template T_Data_Set_Name:= {

Instance_Name_[S/R]:= ″ ″

………….   ;

}

Figure 5.9: TDL Data Set transformation 

After the TTCN-3 data module is partially generated and test data becomes available, the module 

is completed with test oracle information and typed with concrete TTCN-3 types. 

II. Generate the Configuration Module 

When describing a Test Configuration in TDL, the main focus is usually on the test components 

and their communication, whereas an executable test requires a more detailed configuration. A 

Test Configuration in TDL consists of Tester and SUT components, gates, and their 

interconnections represented as the Connection. A TTCN-3 configuration should consist of a set 

of inter-connected test components with well-defined communication ports and an explicit test 

system interface which defines the boundary of the test system. Furthermore, the communication 

between components is achieved via well-defined port types such as message-based and 

procedure-based ports. The transformation rules in Table 5-2 are used to enable the 

transformation of an ATC to a concrete TCs. The TDL Test Configuration contains the necessary 

objects, test components and communication channels to build the TTCN-3 configuration 

module. The concrete details needed to communicate correctly with the SUT, such as the 

message type to be sent or received, are imported from the TTCN-3 data module where the test 

inputs and test oracle are defined. The TDL Test Configuration components such as gate, Tester, 
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and SUT are transformed to equivalent objects in TTCN-3 by applying Rule #2, #3 and #4 as 

shown in Figure 5.10. 

type component Comp_Name_T {
  port gate_Type gate_Name_T };

 Component Type comp_Type { gate types:
 gate_Type ; } instaniate
       comp_Name_[T/S] as [Tester/SUT]
 of type comp_Type having { gate
 gate_Name of type gate_Type ; } type component Comp_Name_S {

  port gate_Type gate_Name_S };

Rule #3

Rule #4

TTCN-3

Rule #2

TDL

type port gate_Type message { Gate Type gate_Type

accepts Data_Set_Name,

}

inout Data_Set_Name;

inout         

 

Figure 5.10: TDL Test Configuration transformation 

More specifically, these rules are implemented in our tool that iterates over the TDL model to 

collect all Gate Type elements and generates for each a message-based port statement in TTCN-3 

syntax. The instantiate elements are parsed to generate a component-type statement with an 

associated port. 

III. Generate the Description Module 

The TDL Test Description defines the ATC behavior, mainly composed of the actions and 

interactions exchanged between components over the communication gates. An action is used to 

specify a procedure (e.g. local computation, function call, physical setup, etc.) informally, 

whereas interactions refer to the data being exchanged between the components. In TTCN-3 

realization, our tool iterates over the TDL model elements to parse the behavior elements and 

generate equivalent statements for each in TTCN-3. Our tool parses the sends instance statements 

(interaction) and generates a TTCN-3 message statement (Rule #8) as shown in Figure 5.11. 
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Rule #8

TTCN-3TDL

gate_Name_S.send (instance_Name);

gate_Name_R.send (instance_Name);

comp_Name_[T/S] sends 
instance instance_Name to 
comp_Name_[T/S]

 

Figure 5.11: TDL interaction transformation 

The action statement is parsed to generate a function signature and a function call (Rule #12) as 

shown in Figure 5.12. 

Rule #12

TTCN-3TDL

function action_Name() runs on
  Comp_Name_[T/S] {
    
}
action_Name;

Perform action action_Name

 

Figure 5.12: TDL Action transformation 

The obtained function is refined at the TTCN-3 level when applicable. Other TDL behavioral 

statements are mapped to TTCN-3 constructs to be used in TCs or in functions by applying the 

corresponding rule.  

5.3.1.4 The Completeness and Soundness of the Model 
Transformations 

In general, model transformations are used between different domains for model evolution, 

code generation and analysis. The UCM models are adequate for describing the functional 

requirements of a system. Their automated transformation to TDL models bridged the gap 

with the TCs in TTCN-3. However, the metamodel of the exported scenario generated from 

UCM scenario, early in the process, doesn’t have an alternative element that normally a TC 

has to handle alternate test behavior. The absence of an alternative element in the scenario 
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metamodel required post-processing of the generated TDL interaction behavior to merge 

those that constitute alternate test behaviors. The transformation of TDL models allowed 

refining and generating TCs that can be performed on the SUT. The model transformations 

here link the various test artifacts and promise to reduce the required amount of manual work 

for test development. 

5.3.1.5 Test Case Generation Approach Feasibility 

The feasibility of the approach is demonstrated via a case study from the avionics public domain 

called landing gear system (LGS) [136].  

The LGS specifications are categorized into functional, safety and timing requirements. In the 

next sections, the behavior of the LGS is described from a Pilot’s perspective, formalized into a 

given use case notation and then mapped to UCM scenario models. The LGS supports an aircraft 

when it is on the ground, allowing it to take off, land and taxi. Most modern aircraft have a 

retractable undercarriage, which folds away during the flight to reduce air resistance or drag. A 

conventional hydraulic LGS has a tricycle configuration consisting of the nose and the main (left 

and right) landing gears. Each landing configuration contains a door, the landing gear, and the 

associated hydraulic cylinders. The LGS is representative of critical ESs. Failure to deploy it puts 

the life of passengers in danger and causes massive airframe damage upon landing. Prior to 

landing, the landing sequence of an aircraft is: open the landing gearbox doors, extend the 

landing gear and close the doors. After taking off, the Retraction Sequence is: open the landing 

gearbox doors, retract the landing gear and close the doors. The LGS is composed of: (a) 

mechanical part; (b) digital part; and (c) a Pilot interface part which is further detailed in the next 

paragraph in order to identify the requirements. For more information about parts (a) and (b), 

please refer to [136].  

The Pilot commands the retraction and extension of the gears by switching a handle up or down. 

When the handle is switched to “Up” the retracting landing gear sequence is executed, and when 

the handle is switched to “Down,” the landing gear extension sequence is executed. Additionally, 

the Pilot’s control panel has a set of lights indicating the current positions of the gears and doors, 

as well as the current health state of the system and its equipment. These lights and their 

indications are: 
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⎯ One green light: “gears are locked down”. 

⎯ One amber light: “gears are in transition”. 

⎯ One red light: “landing gear system failure”. 

⎯ No light is ON: “gears are locked up”. 

⎯ Doors locked opened sign is ON: “all doors of the landing gearboxes are locked in opened 

position”. 

⎯ Doors locked opened sign is OFF: “all doors are unlocked”. 

⎯ Doors locked closed sign is ON: “all doors of the landing gearboxes are locked in closed 

position”. 

⎯ Doors locked closed sign is OFF: “all doors are unlocked”. 

⎯ Normal Mode Fail sign is ON: “Normal Mode Fail”. 

⎯ Normal Mode Fail sign is OFF “Normal Mode Pass”. 

The expected behavior of the LGS is implemented by the control software whose aim is twofold: 

(1) control the hydraulic devices according to the Pilot’s orders and to the mechanical devices’ 

positions and (2) monitor the system and inform the Pilot in case of any malfunction. 

Before showing how the functional and timing requirements of the LGS can be captured by UCM 

scenario models, the LGS requirements are formalized as described next. 

I. Modeling LGS Requirements into Cockburn Use Case Notation 

The LGS requirements fall into two basic scenarios: the Extending Sequence and the Retraction 

Sequence. For clarification, the Extending Sequence scenario, as defined in the case study, is 

used as a running example. Next, consider that the Pilot wants to land the airplane and so 

switches the handle down when the aircraft has an indicated airspeed of less than 200 knots and 

an altitude less than 2500 feet. The Extending Sequence scenario is written as a use case follows: 
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USE CASE: Extending Sequence. 

Primary Actor: Pilot 

Secondary Actor: Landing Gear Control Unit (LGCU) 

Scope: LGS. 

Precondition: Airspeed is less than 200 knots and altitude is less than 2500 feet. 

Minimal guarantee: Landing gears are extended in emergency mode. 

Success guarantee: Landing gears are extended in normal mode. 

Trigger: Pilot switches handle down. 

Main success scenario: 

1. Pilot switches handle down and it stays down. 

2. LGCU activates doors opening. 

3. LGCU locks door in opened position. 

4. LGCU switches doors locked open sign to ON 

5. LGCU releases up-lock gears. 

6. LGCU switches amber light to ON. 

7. LGCU locks down gears when they reach the full-down position. 

8. LGCU switches green light to ON and amber light to OFF. 

9. LGCU activates doors closing. 

10. LGCU locks door in closed position. 

11. LGCU switches doors locked closed sign to ON 
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12. Pilot confirms the successful deployment of the landing gears. 

Extensions: (Failure mode) 

1.a  If the landing gear command handle has been DOWN for 15 seconds and the gears are 

not locked down after 15 s, then the LGCU switches red light to ON (failure in 

deployment). 

2.a If one of the three doors are still seen locked in the closed position more than 7 seconds 

after activating doors opening, then the LGCU fails Normal Mode. 

3.a If one of the three doors are not seen locked in the opened position more than 7 seconds 

after activating doors locking in opened position, then the LGCU fails Normal Mode. 

5.a  If one of the three gears are still seen locked in the up position more than 7 seconds after 

releasing the up-lock, then the LGCU fails Normal Mode. 

9.a  If one of the three gears are not seen locked in the down position more than 10 seconds 

after releasing the up-lock, then LGCU fails Normal Mode. If one of the three doors are 

still seen locked in the opened position more than 7 second after activating doors closing, 

then the LGCU fails Normal Mode. 

10.a  If one of the three doors are not seen locked in the closed position more than 7 seconds 

after activating doors locking, then LGCU fails Normal Mode. 

Next, we proceed with the mapping of the Extending Sequence use case to UCM scenario 

models. 

II. Mapping LGS Use Case to UCM Scenario Models 

UCM scenario models can be built by mapping the actors and the actions elements defined in the 

Extending Sequence use case. The mapping is straightforward, for example, the Primary Actor 

(Pilot) and the Secondary Actor (LGCU) are mapped manually to two UCM components: Pilot 

and LGCU. The actions to be performed by each component, such as Handle_Down and 

ReleaseUp_Lock are allocated to UCM responsibility elements. As a rule, each action in the use 
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case is mapped to one responsibility element in UCM. As a result, two lists of responsibility are 

extracted from the use case and bound to their corresponding components: 

⎯ Pilot: { Handle_Down and ConfirmGearsDown} 

⎯ LGCU: {OpenDoors, LockDoorsInOpenedPos, ReleaseUp_Lock, AmberON, 

Lock_DownGears, GreenON_AmberOFF, CloseDoors, LockDoorsInClosedPos, RedON, 

and NormalModeFailed}. 

With some basic knowledge of the jUCMNav tool, the two lists of responsibility; Pilot and 

LGCU, along with timed requirements in the use case can be modeled into UCM scenarios. 

Figure 5.13 shows a UCM map that is composed of two components with their bounded 

responsibilities. The time constraints and functional requirements are modeled as indicated by the 

Extending Sequence use case. The map in Figure 5.13 encloses eight possible scenario models 

representing the Extending Sequence requirements of the LGS. 
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[timeout]
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Figure 5.13: UCM scenario models built from an Extending Sequence use case 

These scenario models fall into three major groups: 

a) Successful Deployment Group: contains one scenario model, labeled 

“DeploymentSucceeded”. 

b) Gears Deployment Failed Group: contains one scenario model, labeled 

“DeploymentFailed”. 

c) Normal Mode Failed Group: contains six scenario models, all of them end in the path 

labeled “NormalModeFailed”.  
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The execution of any of the scenario models begins at the StartExtending point (filled circle) and 

terminates in one of the three End points (bars); EndExtending, EndNormalMode or EndFailure. 

The StartExtending point is triggered when its preconditions are met⎯ the airplane achieves 

airspeed of less than 200 knots and altitude below 2500 feet. The Pilot then switches the 

Handle_Down causing the LGCU to extend the landing gears scenario.  

In this exercise of creating UCM scenario models, the Extending Sequence requirements of the 

LGS are developed and allocated to software items.  

In the next section, we show how the “DeploymentSucceeded” scenario model is transformed into 

an ATC. 

III. Transform UCM Scenario Models and Data Model into ATC in TDL 

We explain in detail in the following subsections how each element in the TDL specification is 

developed in the ATC Builder process. 

⎯ Generate TDL Test Objective 

In our experimentation, the TDL Test Objectives shown in Listing 5-1 were developed manually 

by analyzing the sequence and role of UCM objects that reside on the “DeploymentSucceeded” 

scenario and enriched with test requirements.  

 

Listing 5-1: TDL Test Objective 

1. Test Objective TestObj1 {  

2. description: "ensure that when Handle is switched down, a timer is started. If it times-out 15 seconds later  

3. and  gears are not locked, a red light is sent"; } 

4. Test Objective TestObj2 {  

5. description: "ensure that a 'door locked open light' is received after locking the doors in opened position"; }  

6. Test Objective TestObj3 {  

7. description: "ensure that an 'amber light' is received when gears are in transition.” ; }  

8. Test Objective TestObj4 {  

9. description: "ensure that a 'green light' is received when gears are locked down.” ; } 

10. Test Objective TestObj5 {  

11. description: "ensure that a 'door locked close light' is received after closing the door";  }                          
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⎯ Generate TDL Data Set 

In the “DeploymentSucceeded” scenario, the Pilot and LGCU components interact with each 

other through stimuli and responses. For example, the Pilot sends a stimulus to the LGCU when 

executing Handle_Down responsibility. The LGCU responds by performing internal actions (no 

interaction) when executing OpenDoors and ClosedDoors responsibilities and sending responses 

when stepping into LockDoorsInOpenedPos, AmberON, GreenON_AmberOFF, and 

LockDoorsInClosedPos responsibilities. Table 5-3 shows the test data for the UCM 

“DeploymentSucceeded” scenario. 

Table 5-3: Test Data For “DeploymentSucceeded” Scenarion 

Test Data  

Requirement 

UCM responsibility 

Stimulus/Response 

TDL Data Instances  

 

Stimulus to be sent when Pilot  

switches handle down 

 

Response to be received when 

LGCU locks doors in opened 

position 

 

Response to be received when 

LGCU activates Gear 

maneuvering 

 

Response to be received when 

LGCU locks Gears in a down 

position 

 

Response to be received when 

LGCU locks doors in closed 

position 

 

Handle_Down  

 

 

LockDoorsInOpenedPos 

 

 

 

AmberON 

 

 

 

GreenON_AmberOFF 

 

 

 

LockDoorsInClosedPos 

 

instance Handle_Down 

 

 

instance LockDoorsInOpenedPos 

 

 

 

instance AmberON 

 

 

 

instance GreenON_AmberOFF 

 

 

 

instance LockDoorsInClosedPos 

 

 

The developed TDL Data Instances are grouped in two Data Set elements in terms of Stimulus 

and Response: 

▪ GearDeployment: bounded to Pilot messages (Stimulus); and 

▪ Signal: bounded to LGCU messages (Response).  

Listing 5-2 shows compiled TDL Data Instances grouped in two Data Sets that are developed 

from test data in Table 5-3. 
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Listing 5-2: TDL Data Sets elements 

⎯ Generate TDL Test Configuration 

The UCM “DeploymentSucceeded” scenario in Figure 5.13 is exported, using the UCM traversal 

mechanism [133], to a scenario that contains traversed UCM elements. A snapshot of the 

exported scenario that highlights the Test Configuration is shown in Listing 5-3. In this 

exportation, the UCM components Pilot and LGCU are mapped to TDL Component Instance 

objects with a Gate Instance. A Connection instance is added to indicate that the two Component 

Instances should be connected. 

 

 

 

 

Listing 5-3: A snapshot of the exported “DeploymentSucceeded” scenario that shows the 

TDL Test Configuration package 

1. <?xml version="1.0" encoding="ISO-8859-1"?> 

2. <tdl:Package xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xmlns:tdl="http://www.etsi.org/spec/TDL/20130606" name="SuccessfulDeployment"> 

3. <comment name="Created" body="April 16, 2016 11:10:12 AM EDT"/> 

4. <comment name="Modified" body="April 16, 2016 11:10:12 AM EDT"/> 

5. <comment name="Author" body="nkesserw"/> 

6. <packagedElements xsi:type="tdl:TestConfiguration"> 

7. <componentInstance name="Pilot" type="//@packagedElements.18"> 

8. <gateInstance name="gPilot" type="//@packagedElements.6"/> 

9. </componentInstance> 

10. <componentInstance name="LGCU" type="//@packagedElements.19"> 

11. <gateInstance name="gLGCU" type="//@packagedElements.6"/> 

12. </componentInstance> 

13. <connection name="LGCU_Pilot" endPoint="//@packagedElements.0/@componentInstance.2/@gateInstance.0 

//@packagedElements.0/@componentInstance.1/@gateInstance.0"/> 

14. </packagedElements> 

1. Data Set GearDeployment { 

2.    instance Handle_Down;   

3. } 

4. Data Set Signal  { 

5.    instance LockDoorsInOpenedPos;  

6.    instance AmberON;  

7.    instance GreenON_AmberOFF;  

8.    instance LockDoorsInClosedPos;  

9.  } 
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Next, a compiled Test Configuration element is achieved by parsing the exported scenario to 

convert the packaged element tdl:TestConfiguration into concrete TDL syntax. The Component 

Instances are instantiated to either SUT or Tester, depending on their role. Each Component 

Instance has a gate type to specify the data that can be exchanged, i.e., the Data Sets developed 

earlier. Listing 5-4 shows the TDL Test Configuration generated automatically from the exported 

“DeploymentSucceeded” scenario depicted in Listing 5-3. The Data Sets GearDeployment and 

Signal are added manually to the TDL Test Configuration (line 1). The two components: Pilot 

and LGCU are typed (line 7 and line 10) and connected through newly-defined gates (line 13). 

 

Listing 5-4: TDL Test Configuration element generated from a “DeploymentSucceeded” 

scenario 

⎯ Generate TDL Test Description 

The TDL Data Instances shown in Listing 5-2 are used as Interaction objects between a Tester 

and an SUT. The UCM responsibility objects along the “DeploymentSucceeded” scenario is 

mapped to the Action Reference. UCM scenario Timer Set events are mapped to TimerStart 

objects in TDL. Listing 5-5 shows a snapshot of the exported “DeploymentSucceeded” scenario. 

1. Gate Type defaultGT accepts GearDeployment, Signal; 

2. Component Type defaultCompType {   

3.    gate types :defaultGT ;  

4. }  

5. Test Configuration TestConfiguration { 

6.      //Pilot component 

7.     instantiate Pilot as Tester of type defaultCompType having {  

8.     gate gPilot of type defaultGT ; } 

9.    //LGCU component 

10.     instantiate LGCU as SUT of type defaultCompType having {  

11.      gate gLGCU of type defaultGT ;  } 

12.    / /connect the two components through their gates 

13.    connect gPilot to gLGCU;  } 
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Listing 5-5: A snapshot of the exported “DeploymentSucceeded” scenario that shows the 

TDL Test Description package 

Developing a TDL Test Description is automated by parsing the exported 

“DeploymentSucceeded” scenario, extracting the components with their bounded responsibilities 

and mapping them to equivalent TDL objects. Listing 5-6 shows the TDL Test Description that is 

composed of actions, timers and interactions. As mentioned earlier, the absence of alternative 

elements in the scenario metamodel required post-processing of the generated Test Description to 

1. <packagedElements xsi:type="tdl:TestDescription" name="TestSuccessfulDeployment" 

testConfiguration="//@packagedElements.0"> 

2. <behaviour> 

3. <block> 

4. <behaviour xsi:type="tdl:ActionReference" name="Handle_Down" action="//@packagedElements.22"> 

5. <annotation value="gPilot" key="//@packagedElements.5"/> 

6. </behaviour> 

7. <behaviour xsi:type="tdl:Interaction" name="From Pilot to LGCU" 

source="//@packagedElements.0/@componentInstance.1/@gateInstance.0" 

target="//@packagedElements.0/@componentInstance.2/@gateInstance.0"> 

8. <annotation value="Timer_0" key="//@packagedElements.1"/> 

9. <annotation value="If we had a description for this Interaction we could put it here." 

key="//@packagedElements.2"/> 

10. </behaviour> 

11. <behaviour xsi:type="tdl:TimerStart" name="Timer_0 _Start" timer="//@packagedElements.19/@timer.0"> 

12. <annotation value="gLGCU" key="//@packagedElements.3"/> 

13. </behaviour> 

14. <behaviour xsi:type="tdl:TimerStop" name="Timer_0 _TimerStop" 

timer="//@packagedElements.19/@timer.0"> 

15. <annotation value="gLGCU" key="//@packagedElements.3"/> 

16. </behaviour> 

17. <behaviour xsi:type="tdl:AlternativeBehaviour" name="OrFork1291\nisGearsDown"> 

18. <annotation value="gLGCU" key="//@packagedElements.4"/> 

19. </behaviour> 

20. <behaviour xsi:type="tdl:ActionReference" name="OpenDoors" action="//@packagedElements.23"> 

21. <annotation value="gLGCU" key="//@packagedElements.5"/> 

22. </behaviour> 

23. </block> 

24. </behaviour> 
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merge the scenarios that constitute alternate test behaviour. The element repeat iterates over the 

different alternatives a number of times as determined by the 'numIteration' attribute. 

 

Listing 5-6: TDL Test Description element generated from “DeploymentSucceeded” 

scenario 

1. Test Description TestDescription {  //Test description definition 

2.   use configuration : TestConfiguration;  { 

3.   perform action Handle_Down on component Pilot with {  PRECONDITION ;  }; 

4.   gPilot sends instance Handle_Down to gLGCU with { test objectives :TestObj1;   };  

5.   perform action OpenDoors on component LGCU with {  PRECONDITION ;  }; 

6.   perform action LockDoorsInOpenedPos on component LGCU with {PRECONDITION ;} ; 

7.   repeat 4 times {  //Iterate over receiving responses, each one is consumed once 

8.      alternatively  { // LGCU sends response indicating Door is locked in open position 

9.         gLGCU sends instance LockDoorsInOpenedPos to gPilot with  

10.         { test objectives : TestObj2; };    

11.         set verdict to PASS ; } 

12.      or { gate gLGCU  is quiet for (7.0 SECOND); 

13.         set verdict to FAIL;  }     

14.         perform action ReleaseUp_Lock on component LGCU with {  PRECONDITION; };       

15.     alternatively  {  // LGCU sends response indicating Gears are in transition 

16.        gLGCU sends instance AmberON to gPilot with { test objectives : TestObj3; };    

17.        set verdict to PASS ;    }           

18.     or { gate gLGCU is quiet for (7.0 SECOND);  

19.        set verdict to FAIL;  } 

20.        perform action Lock_DownGears on component LGCU with { PRECONDITION ; };   

21.     alternatively  { // LGCU sends response indicating Gears are in locked down 

22.       gLGCU sends instance GreenON_AmberOFF to gPilot with { test objectives : TestObj4;  }; 

23.       set verdict to PASS ; }             

24.     or { gate gLGCU is quiet for (7.0 SECOND); 

25.       set verdict to FAIL;    } 

26.       perform action CloseDoors on component LGCU; 

27.       perform action LockDoorsInClosedPos on component LGCU with  {      

28.                                 PRECONDITION; };    

29.    alternatively  { // LGCU sends response indicating Door is locked in close position 

30.      gLGCU sends instance LockDoorsInClosedPos to gPilot with {test objectives :TestObj5; }; 

31.      set verdict to PASS ;     

32.      perform action ConfirmGearsDown on component Pilot with {PRECONDITION ;};} 

33.    or { gate gLGCU is quiet for (7.0 SECOND) ; 

34.       set verdict to FAIL;  }              

35.    or { gate gLGCU is quiet for (15.0 SECOND); 

36.       set verdict to FAIL;  }              

37.     }   

38.   } } 
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The interactions of the Test Description start when a Handle_Down command flows from the 

Pilot gate to the LGCU gate (line 4). Immediately afterward, a timer is started to satisfy the 

timing constraint of the landing gears’ deployment, followed by a second timer to time the action 

of the door opening. Shortly after locking the doors in the opened position, the LGCU gate sends 

the LockDoorsInOpenedPos sign (line 9) indicating all the doors are locked in the opened 

position. The LGCU releases the up-lock and an AmberON status is sent (line 16) indicating the 

gears are in transition to the full-down position. Another timer is started to time the action of 

locking the gears in the down position. Gears are locked once they reach the final position when a 

GreenON_AmberOFF status message is sent from the LGCU gate (line 22) indicating full 

deployment of the landing gears. If the GreenON_AmberOFF status message sign is received 

before any time expiration, a pass verdict is issued and the Pilot confirms gears are down and 

locked (line 32), otherwise the test fails.  

The elements obtained earlier— Test Objective, Data Set, precondition and Test Configuration— 

are used in the Test Description to help structure the TDL Specification. Listing 5-7 shows the 

developed TDL Test Specification. In the next section, we show how to script the obtained TDL 

specification into TCs in TTCN-3. 
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Listing 5-7: The resulting TDL specification model 

IV. Transform TDL Specifications to TTCN-3 Modules 

In the following subsections, we show how the TTCN-3 modules are developed from the TDL 

Specification. 

1. TDLan Specification DeployLandingGearTest {  
2.   Verdict PASS; Verdict FAIL;   
3.   Action Handle_Down: "when airspeed is less than 200 knots and altitude is less than 2500 feet, the pilot switches handle down and keep it down for 15  
4.                                         seconds, gears starts"; 
5.   Action OpenDoors: "when doors are locked in closed position, the corresponding cylinder are extended to unlock the doors";                      
6.   Action LockDoorsInOpenedPos: "lock the doors in opened position"; 
7.   Action ReleaseUp_Lock: "when gears are locked in up position, the gear cylinders receive hydraulic pressure in order to release the lock that holds the  
8.                                              gears";  
9.   Action Lock_DownGears: " lock gears when reach full down position"; 
10.   Action CloseDoors: "when doors are locked in opened position, the corresponding cylinder are extended to unlock the doors"; 
11.   Action LockDoorsInClosedPos: "lock the doors in closed position"; 
12.   Action ConfirmGearsDown: "Pilot confirms gears are down and locked"; 
13.   Annotation PRECONDITION ;   
14.   Time Unit SECOND;  
15.   Test Objective TestObj1 {  
16.   description: "ensure that when Handle is switched Down, a timer is started. If it times-out 15 seconds later and gears are not locked, a red light is sent";} 
17.   Test Objective TestObj2 {  
18.   description: "ensure that a 'door locked open light' is received after locking the doors in opened position.";} 
19.   Test Objective TestObj3 {  
20.   description: "ensure that an 'amber light' is received when gears are in transition.";} 
21.   Test Objective TestObj4 {  
22.   description: "ensure that a 'green light' is received when gears are locked down.";}  
23.   Test Objective TestObj5 {  
24.   description: "ensure that a 'door locked close light' is received after closing the door.";} 
25.   Data Set GearDeployment { 
26.   instance Handle_Down; }  
27.   Data Set Signal { instance LockDoorsInOpenedPos;  instance AmberON;  instance GreenON_AmberOFF;  instance LockDoorsInClosedPos; }  
28.   //Data Instance reference 
29.   Use "LandingGearData.ttcn3" as LGearData; 
30.   Map Handle_Down to " Handle_DownTemplate" in LGearData; 
31.   Map LockDoorsInOpenedPos to " LockDoorsInOpenedPosTemplate" in LGearData;  
32.   Map AmberON to " AmberONTemplate" in LGearData; 
33.   Map GreenON_AmberOFF to " GreenON_AmberOFFTemplate" in LGearData;  
34.   Map LockDoorsInClosedPos to " LockDoorsInClosedPosTemplate" in LGearData; 
35.   Gate Type defaultGT accepts GearDeployment, Signal; //Define the gate type and the exchanged data set  
36.   Component Type defaultCompType {  gate types :defaultGT ; }    
37.   Test Configuration TestConfiguration  { // Pilot and LGCU 
38.      instantiate Pilot as Tester of type defaultCompType having { gate gPilot of type defaultGT ;  }  
39.      instantiate LGCU as SUT of type  defaultCompType having{ gate gLGCU of type  defaultGT ;   }  
40.     connect gPilot to gLGCU;  }   //connect the two components through their gates 
41.   Test Description TestDescription {  //Test description definition 
42.      use configuration : TestConfiguration;  { 
43.      perform action Handle_Down on component Pilot with {  PRECONDITION ;  }; 
44.      gPilot sends instance Handle_Down to gLGCU with { test objectives :TestObj1;   };  
45.      perform action OpenDoors on component LGCU with {  PRECONDITION ;  }; 
46.      perform action LockDoorsInOpenedPos on component LGCU with {  PRECONDITION ;  }; 
47.      repeat 4 times {   //Iterate over receiving responses, each one is consumed once 
48.         alternatively  { // LGCU sends response indicating Door is locked in opened position 
49.             gLGCU sends instance LockDoorsInOpenedPos to gPilot with { test objectives : TestObj2; }; set verdict to PASS ; }                     
50.         or { gate gLGCU  is quiet for (7.0 SECOND); set verdict to FAIL;  }           
51.             perform action ReleaseUp_Lock on component LGCU with {  PRECONDITION ;  };       
52.         alternatively  { // LGCU sends response indicating Gears are in transition 
53.             gLGCU sends instance AmberON to gPilot with { test objectives : TestObj3; }; set verdict to PASS ;    }    
54.         or { gate gLGCU is quiet for (7.0 SECOND); set verdict to FAIL;  } 
55.             perform action Lock_DownGears on component LGCU with {  PRECONDITION ;  };   
56.         alternatively  { // LGCU sends response indicating Gears are locked down 
57.             gLGCU sends instance GreenON_AmberOFF to gPilot with { test objectives : TestObj4;  };  set verdict to PASS ; }            
58.         or { gate gLGCU is quiet for (7.0 SECOND); set verdict to FAIL;    } 
59.             perform action CloseDoors on component LGCU; 
60.             perform action LockDoorsInClosedPos on component LGCU with {  PRECONDITION ;  };    
61.         alternatively  {  // LGCU sends response indicating Door is locked in closed position 
62.            gLGCU sends instance LockDoorsInClosedPos to gPilot with { test objectives : TestObj5; }; set verdict to PASS ;     
63.            perform action ConfirmGearsDown on component Pilot with {  PRECONDITION ;  }; } 
64.         or { gate gLGCU is quiet for (7.0 SECOND) ; set verdict to FAIL;  }  
65.         or { gate gLGCU is quiet for (15.0 SECOND); 
66.             set verdict to FAIL;  }   
67.      } 
68.    } 
69.  } 
70. } 
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⎯ Generate TTCN-3 Test Data  

The two Data Sets; GearDeployment and Signal, defined previously in Listing 5-2, are parsed 

with their instances to generate records and record fields (variables) in TTCN-3 syntax based on 

Rule #22 and Rule #23. After the TTCN-3 data module is partially generated and test data 

becomes available, the module is completed with test oracle information and typed with concrete 

TTCN-3 types. Figure 5.14 shows the transformation (semi-automatic) between TDL Data Sets 

and TTCN-3 data module. 

module LandingGearData {

   type record GearDeploymentType {

      charstring Handle_Down_S

   }

   template GearDeploymentType   // Test input

    Handle_DownTemplate:={Handle_Down_S:= "Handle_Down"

   }

    type record SignalType { // Test Oracle

      boolean LockDoorsInOpenedPos_R,

      boolean AmberON_R,

      boolean GreenON_AmberOFF_R,

      boolean LockDoorsInClosedPos_R

    }

   template SignalType LockDoorsInOpenedPosTemplate:= {

      LockDoorsInOpenedPos_R:=  true,   AmberLight_R:=  false,  

      GreenON_AmberOFF_R:=  false,  LockDoorsInClosedPos_R:= 

      false

   }

   template signalType AmberONTemplate := {

      LockDoorsInOpenedPos_R:=  false,  AmberON_R:=  true,  

      GreenON_AmberOFF_R:=   false,  LockDoorsInClosedPos_R:= 

      false

   }

   template signalType GreenON_AmberOFFTemplate := {

      LockDoorsInOpenedPos_R:=   false,  AmberON_R:=   false,  

      GreenON_AmberOFF_R:=  true,  LockDoorsInClosedPos_R:= 

      false

   }

    template signalType LockDoorsInClosedPosTemplate:= {

      LockDoorsInOpenedPos_R:=  false,  AmberON_R:=   false,  

      GreenON_AmberOFF_R:=  false,  LockDoorsInClosedPos_R:=  

      true  }

}

LandingGearData.ttcn3

GearDeployment

• Handle_Down

Signal

• LockDoorsInOpenedPos

• AmberON

• GreenON_AmberOFF

• LockDoorsInClosedPos

TDL Data Set
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e
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u
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Figure 5.14: Mapping abstract TDL Data Sets to concrete data in TTCN-3 

The Data instances developed in the previous section are next mapped to the corresponding 

TTCN-3 templates through TDL data element mappings as shown in Listing 5-8.  
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Listing 5-8: TDL Map elements used to reference concrete TTCN-3 templates 

⎯ Generate TTCN-3 Test Configuration 

Based on the transformation rules; Rule #2, Rule #3, and Rule #4, the transformation of the 

obtained TDL Test Configuration into an equivalent one in TTCN-3 is performed. Listing 5-9 

shows the transformation of one TDL Test Configuration into an equivalent one in TTCN-3. 

1. Gate Type defaultGT accepts 

GearDeployment, Signal;

2. Component Type defaultCompType{

        gate types : defaultGT ;   } 

 

//Test configuration definition

3. Test Configuration TestConfiguration {

//Pilot component

4.   instantiate Pilot as Tester of type 

      defaultCompType having {

       gate gPilot of type defaultGT ;}

//Landing Gear component

5.   instantiate LGCU as SUT of type 

      defaultCompType having{

       gate gLGCU of type defaultGT ;  }

//connect the two components

6.    connect gPilot to gLGCU; }

module TestConfiguration 

{

 import from LandingGearData

 type GearDeploymentType,   

         SignalType;   

 type port defaultGT message {  

     inout GearDeploymentType; 

     inout SignalType; 

 }

 type component Pilot {

  port  defaultGT gPilot;

 }

 type component LGCU {

  port defaultGT gLGCU;   }

}

TDL TTCN-3

#2

#3

#3

#4

 

Listing 5-9: Transformation of TDL Test Configuration to its corresponding TTCN-3 

The obtained Test Configuration in TTCN-3 defines test component types and port types, 

denoted by the keyword’s component and port. The communication between the components is 

achieved via the message-based communication port gPilot and gLGCU, through which 

1. Use "LandingGearData.ttcn3" as LGearData; 

2. Map Handle_Down to " Handle_DownTemplate" in LGearData;  

3. Map LockDoorsInOpenedPos to " LockDoorsInOpenedPosTemplate" in LGearData;  

4. Map AmberON to " AmberONTemplate" in LGearData; 

5. Map GreenON_AmberOFF to " GreenON_AmberOFFTemplate" in LGearData;  

6. Map LockDoorsInClosedPos to " LockDoorsInClosedPosTemplate" in LGearData; 
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messages of type GearDeploymentType and signalType are sent and received. The connection 

between the two components is shown in the Test Description module (developed next) and is 

expressed with a map function. 

⎯ Generate TTCN-3 Test Behavior 

As mentioned previously, the developed tool maps the TDL elements to TTCN-3 statements. 

Listing 5-10 shows an example of transforming two major TDL elements: action and interaction. 

The tool parses the sends instance statements (interaction) and generates a TTCN-3 message 

statement. The action statement is parsed to generate a function signature and a function call. The 

obtained function is refined at the TTCN-3 level when applicable. 

gPilot sends instance Handle_Down to gLGCU

gPilot.send(Handle_DownTemplate)

Rule #8

perform action Handle_Down on component Pilot

function Handle_Down()runs on Pilot{
} 
Handle_Down();

Rule #12

TDL

TTCN-3

TDL

TTCN-3
 

Listing 5-10: TDL action and interaction transformation 

The transformation of TDL Test Objectives cannot be rule-based. However, their semantics can 

be interpreted manually and reflected in the TTCN-3 Test Description module. Listing 5-11 

shows TTCN-3 Test Description module transformed from the TDL Specification.  
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Listing 5-11: TTCN-3 Test Description module 

1. module TestDescription { 

2.    import from TestConfiguration all;   

3.    import from LandingGearData all;  

4.    testcase _TC () runs on Pilot { 

5.    map (mtc:gPilot, system:gLGCU); 

6.    timer deploymentTime; timer lockDoorOpenedTime;   timer gearsManeouvringTime;   

7.    timer gearLockedDownTime;  timer lockDoorClosedTime;       

8.    Handle_Down();  // function call  

9.    gPilot.send(Handle_DownTemplate); 

10.    deploymentTime.start(15.0); 

11.    OpenDoors();  // function call 

12.    LockDoorsInOpenedPos (); 

13.    lockDoorOpenedTime.start(7.0);  

14.    alt {                            

15.    [] gPilot.receive(LockDoorsInOpenedPosTemplate) { 

16.        lockDoorOpenedTime.stop; 

17.        setverdict(pass);   

18.       ReleaseUp_Lock();  // function call 

19.       gearsManeouvringTime.start(7.0);   

20.       repeat  } // restart the alt              

21.    [] lockDoorOpenedTime.timeout { 

22.       setverdict(fail) }  

23.    [] gPilot.receive(AmberONTemplate) { 

24.       gearsManeouvringTime.stop; 

25.       setverdict(pass); 

26.       Lock_DownGears();   // function call 

27.       gearLockedDownTime.start(7.0); 

28.       repeat    } // restart the alt             

29.    [] gearsManeouvringTime.timeout { 

30.       setverdict(fail) }  

31.    [] gPilot.receive(GreenON_AmberOFFTemplate) {        

32.       gearLockedDownTime.stop; 

33.       setverdict(pass); 

34.       CloseDoors();  // function call 

35.       LockDoorsInClosedPos();   

36.      lockDoorClosedTime.start(7.0); 

37.      repeat } // restart the alt       

38.    [] gearLockedDownTime.timeout { 

39.       setverdict(fail) }  

40.    [] gPilot.receive(LockDoorsInClosedPosTemplate) { 

41.       lockDoorClosedTime.stop; 

42.      deploymentTime.stop; 

43.      setverdict(pass);       

44.      ConfirmGearsDown(); } // function call    

45.    [] lockDoorClosedTime.timeout { 

46.       setverdict(fail) }            

47.    [] deploymentTime.timeout { 

48.       setverdict(fail) }   } 

49.    unmap (mtc:gPilot, system:gLGCU);  }   } 
50.    function Handle_Down () runs on Pilot {   } 

51.    function OpenDoors () runs on Pilot {   } 

52.    function LockDoorsInOpenedPos () runs on Pilot {    } 

53.    function ReleaseUp_Lock () runs on Pilot {   }   

54.    function Lock_DownGears () runs on Pilot {   } 

55.    function CloseDoors () runs on Pilot {     } 

56.    function LockDoorsInClosedPos () runs on Pilot {      }   

57.    function ConfirmGearsDown () runs on Pilot {     }    } 
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Now, the ETCs is completed by combining the derived modules represented by the three TTCN-

3 files: "LandingGearData.ttcn3", "TestConfiguration.ttcn3", and "TestDescription.ttcn3". Listing 

5-12 shows an additional module "DeployLandingGears.ttcn3" to invoke the TC execution. 

 

Listing 5-12: TTCN-3 module to invoke the execution of the test case 

5.3.2 Traceability Links Framework 

The variety of different models produced in the TCG process discussed in the previous section 

poses challenges to requirements traceability and assessment. This diversity of artifacts results in 

an intricate relationship between requirements and the various models. The role played by 

relationships among artifacts to support automation of testing activities had long been 

recognized; relationships from behavioral models to test cases and from test cases to test results 

support coverage measurement, result evaluation and selective regression testing. The creation 

and maintenance of explicit relationships among test-related artifacts is, therefore the main 

challenge to the automated support of such activities.  

In DO-178C, the software verification process defines activities for determining that the software 

aspects of airborne systems comply with airworthiness requirements. One of the activities 

defined in the process is to verify that the system requirements allocated to software have been 

developed into HLR that satisfy those system requirements. Trace data should be generated to 

support this verification. A relationship between each unique system-level requirement and its 

embodiment in the software requirement should be created, allowing traceability between 

software requirements and HLR. This relationship should allow for bidirectional traceability, 

meaning that the traceability chains can be traced in both the forwards and backward directions. 

The rest of this section is structured as follows. Section 5.3.2.1 presents the traceability approach. 

A case study to demonstrate the approach realization is presented in Section 5.3.2.2. 

1. module DeployLandingGears { 

2.  import from TestDescription testcase _TC;     

3.  control { execute(_TC());  }  

4. } 
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5.3.2.1 Traceability Approach 

In this section, we answer the RQ4: “how to align the activities of requirement traceability to 

testing to improve project cost and comply with DO-178C standards?” by presenting a 

framework that aligns the activities of requirement traceability to testing to improve system 

quality and project cost. The framework extends the MDTGL methodology to create explicit 

relationships in a trace model among testing artifacts. Our contribution is to build a traceability 

model to support the creation and persistence of relationships among these testing models. 

Moreover, to enable the support for visualizing traceability, model-based coverage analysis, and 

result evaluation. The approach relates UCM behavioral models to test cases via ATC models 

during model transformation where n-ary links among models could be visualized. This is an 

important factor in visualizing relationships among models because it is almost impossible to 

represent more than one link in a two-dimensional traceability matrix in an understandable way. 

Moreover, the number of relationships in traceability matrixes is high and fixed. 

Figure 5.15 shows an overview of the approach. The first step in the approach from the 

traceability perspective is to create the UCM scenario model (step 1 in the figure). Then, the 

model is flattened to scenario definitions where each scenario is transformed to ATC in test 

description language TDL (step 2 in the figure). During this transformation, the traceability 

information is made explicit into a separate model. Then, (step 3 in the figure) TCG takes place; 

it consists of using the ATC model and data model to generate the test cases. Again, during the 

test cases generation, the traceability information, guided by a traceability scheme, is made 

explicit and persistent. 
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Figure 5.15: Traceability approach overview 

During the execution of MDTGL methodology, the traceability information, recorded by our 

developed tools, is made explicit into a separate model called “tracemodel.ecore”. The Ecore 

trace model records a small number of relationships from model to a test case to enable the 

support for model-based coverage analysis, visualizing traceability and result evaluation. Our 

Ecore5 trace model is integrated into Eclipse Modeling Framework (EMF) and it is independent 

of the models it connects.  

Our approach currently uses a trace metamodel inspired by Jouault et al. [137] that supports 

traceability. Our contribution is to externalize the relationships among the test-artifact models 

(UCM scenario models, ATCs models and ETCs models) and recorded them in our trace model. 

The relationships are created and recorded in the trace model to support activities such as result 

 

5
Ecore is the meta metamodel of Eclipse Modeling Framework (EMF). http://www.eclipse.org/ 

modeling/emf/ 



The Methodology MDTGL 

103 

 

evaluation, regression testing, and coverage analysis. The traceability metamodel is shown in 

Figure 5.16. 

aTraceModel

aModelRef bModelRef

aSourceModel bTargetModel

aSourceElement bTargetElement

ref ref

abTraceLink

aTraceLinkEnd bTraceLinkEnd

SourceElements

aElementRef bElementRef
ref ref

TargetElements

 

Figure 5.16: Traceability model 

In the context of MDD, traceability schemes are usually explicitly expressed in metamodels, 

which are also usually linked to models specifying model transformations. Currently, there is no 

single standardized traceability metamodel. The traces among testing artifacts can be produced 

on-line, in which case traces are stored automatically by a tool as a by-product of the 

development activity. Or it can be done off-line, which means that traces are recorded 

automatically or manually after the actual development activity has been finished. 

Using the modeling tool jUCMNav, the first step of the approach (model creation) is to create the 

UCM model. The feature path traversal algorithm is capable of exporting scenario models that 

conform to the EMF metamodel (Ecore) implementation of the UCM notations. The exported 

scenarios have exhaustive coverage of the UCM model and used as input to the first 

transformation. Implementation of the second step (model transformation) is based on the 

“behavioral scenarios to ATCs scenarios” model transformation. The “ATC Builder process” 

receives as input an exported scenario model (Source) and transforms it into TDL Test 

Configuration and Test Description models (Target). To support traceability, we enhanced the 

transformation tool to create traces that relate the model elements between Source and Target. 

Guided by a traceability scheme defined in Table 5-4, we recorded the produced traces in the 
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traceability model “tracemodel.ecore”. Implementation of the third step test case generation and 

traceability information takes places when the transformed TDL specifications and the data 

model developed earlier become ready. We again recorded the traces, obtained as a product of the 

transformation, with the guidance of the traceability scheme in Table 5-4. 

Table 5-4: Traceability scheme 

Testing artifacts 

 

What information 

to record 

Constraints Source 

 

UCM Scenario 

 
 

 

 
TDL Test Specification 

 

 
 

 
 

TTCN-3 Test case 

Component  

Interaction 

Action Reference 
 

Test Configuration 

Test Description 
Gate 

Interaction, Action Reference 

Data Instance, Data Set 
 

Port 
Record, Record field 

Send, Receive 

Template,  
Function 

 

 

 

 
 

 

 
No duplication in Gate 

 

No duplication in Data Set 
 

No duplication in Port 
 

 

 

Scenario Definition 

Scenario Definition 

Scenario Definition 
 

Connected components 

Set of Interaction & Action reference 
Component 

Interaction & Action reference 

Data model  
 

 
Gate  

Data model, Data Set, Data Instance  

Interaction 
Data model 

Action Reference 

In the following section, we explain how relationships among the testing models are recorded by 

our developed tools in the trace model during TCG process. 

5.3.2.2 Approach Realization 

The LGS case study, presented earlier, is used to demonstrate the realization of the traceability 

approach.  

I. Traceability Links Between Requirements and ATCs 

During the execution of the TCG process, the UCM scenarios describing the LGS requirements 

are created as step 1 of the traceability approach (Figure 5.15). The transformation of the UCM 

scenarios into ATCs and the creation of traceability information take place in step 2 in the figure. 

Followed by step 3; transforming the ATCs into ETCs and creating the corresponding traceability 

information. Table 5-5 shows the test data extracted from the UCM “DeploymentSucceeded” 

scenario depicted in Figure 5.13.  
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Table 5-5: Extended Test data for “DeploymentSucceeded” Scenario 

Test Data  

Requirement 

UCM responsibility 

Stimulus/Response 

TDL Data Instances TTCN-3 Template  

 

Stimulus to be sent when Pilot  

switches handle down 

 

Response to be received when 

LGCU locks doors in opened 

position 

 

Response to be received when 

LGCU activates Gear 

maneuvering 

 

Response to be received when 

LGCU locks Gears in down 

position 

 

Response to be received when 

LGCU locks doors in closed 

position 

 

Handle_Down  

 

 

LockDoorsInOpenedPos 

 

 

 

AmberON 

 

 

 

GreenON_AmberOFF 

 

 

 

LockDoorsInClosedPos 

 

instance Handle_Down 

 

 

instance LockDoorsInOpenedPos 

 

 

 

instance AmberON 

 

 

 

instance GreenON_AmberOFF 

 

 

 

instance LockDoorsInClosedPos 

 

 

Template String Handle_Down_Type 

  

 

Template String 

LockDoorsInOpenedPos_Type 

 

 

Template String AmberON_Type 

 

 

Template String 

GreenON_AmberOFF_Type 

 

 

Template String 

LockDoorsInClosedPos_Type  

 

The transformed ATC model, composed of Test Configuration, Test Description and Data Set 

elements is depicted in Figure 5.17.  

<< Test Description >>

DeploymentSucceeded

<< Atomic Behavior >>

SD_Behaviour

<< ActionBehavior >>

Target = SUT

<< ActionBehavior >>

Target = Tester

<< Interaction >> [1]

Argument = Handle_Down
Source = Tester

Target = SUT

<< Interaction >> [3]

Argument = AmberON
Source = SUT

Target = Tester

<< Interaction >> [4]

Argument = 
GreenON_AmberOFF

Source = SUT
Target = Tester

<< Action Reference >> [2]

action = Lock_DownGear
actualParameter =   

<< Action Reference >> [1]

action = ReleaseUp_Lock
actualParameter =   

<< Interaction >> [2]

Argument = LockDoorsInOpenPos
Source = SUT

Target = Tester

<< Interaction >> [5]

Argument = 
LockDoorsInClosedPos

Source = SUT
Target = Tester

<< Test Configuration >>

DeploymentSucceeded

<< ComponentInstance 
>>

role = Tester

<< ComponentInstance 
>>

role = SUT

<< GateInstance >>

TesterGate

<< GateType >>

GType

<< GateInstance >>

SUTGate

<< Connection >>

<< ComponentType 
>>CType

<< ComponentType 
>>CType

 

Figure 5.17: ATC model for “DeploymentSucceeded” scenario 

Traceability information for the test configuration is depicted in Figure 5.18. The traceability 

model is named TraceUCMModel2TDLModel. It relates models UCMScenarioModel and 

TDLTestScenarios. It has one trace link named DSScenarioTraceLink that relates the 

UCMDSScenario in the UCMScenarioModel to the TDLDSTTestSpecification in the 

TDLTestScenarios. DSSScenarioTraceLink has many children; Figure 5.18 shows the link 
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DSTestConfigurationTraceLink, which relates the component Instances (Pilot and LGCU) in the 

UCMDSScenario to the gate instances (Tester and SUT) in the TDLDSTestSpecification. 

TraceUCMModel2TDLModel

aModelRef bModelRef

UCMScenarioModel TDLTestScenarios

UCMDSScenario TDLDSTestSpecification

ref ref

DSScenarioTraceLink

TraceModel

aTraceLinkEnd bTraceLinkEnd

SourceElements

ComponentInstance
Pilot

GateInstance
Tester

ref ref

TargetElements

ComponentInstance
LGCU

GateInstance
SUT

aElementRef bElementRef

DSTestConfigurationTrace
Link

Child

a1TraceLinkEnd

a1ElementRef

b1TraceLinkEnd

b1ElementRef

SourceElements
TargetElements

ref

ref

a2TraceLinkEnd

a2ElementRef

b2TraceLinkEnd

b2ElementRef

SourceElements

TargetElements
ref ref

 

Figure 5.18: Traceability links between “DeploymentSucceeded” scenario and Test 

Configuration element. 

Part of the traceability information for the test description is depicted in Figure 5.19. The trace 

link DSSScenarioTraceLink has another child DSTestDescriptionTraceLink, which relates the 

interactions and action references in the UCMDSScenario to the interactions and action 

references in the TDLDSTestSpecification. The figure shows one “Interaction” and one “Action 

Reference”. 
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TraceUCMModel2TDLModel

aModelRef bModelRef

UCMScenarioModel TDLTestScenarios

UCMDSScenario TDLDSTestSpecification

ref ref

DSScenarioTraceLink

TraceModel

aTraceLinkEnd bTraceLinkEnd

SourceElements

Interaction
Handle_Down

Interaction
Handle_Down

ref ref

TargetElements

ActionReference
ReleaseUp_Lock

Action Reference
ReleaseUp_Lock

aElementRef bElementRef

DSTestDescrptionTraceLink
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a3TraceLinkEnd
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b3TraceLinkEnd
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SourceElements TargetElements
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a4TraceLinkEnd

a4ElementRef

b4TraceLinkEnd
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Figure 5.19: Traceability links between “DeploymentSucceeded” scenario and Test 

Description element 

II. Traceability Links Between ATCs and ETCs 

The last step in the approach (step 3 in Figure 5.15) is the generation of test cases and the 

creation of the traceability information among TDL test model and the generated test cases. 

Information from the data model in Table 5-5, from the TraceModel in Figure 5.16 and from test 

specification model in Figure 5.18 is used to complete the step. The data model is developed 

from the testing requirement and represents the input space for the scenario model 

“DeploymentSucceeded” under transformation. The instances in the data model are grouped into 

two sets; stimulus (Tester) and response (SUT) to build the TDL Data Sets element. Each Data 

Set is mapped to records and record fields (variables) in TTCN-3 syntax based on transformation 

rules. In Figure 5.20, the trace link DSSScenarioTraceLink has a child 

DSTestDataModuleTraceLink, which relates the Data Set, Data Instance and Interaction in the 

TDLDSTestSpecification to the Record, Record field and Send in the TC_DS_[seq]. The figure 

shows one “Data Set” one “Instance” and one Interaction. 
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Figure 5.20: Traceability information between TDL and TTCN-3 

The TDL test scenario “DeploymentSucceeded” is transformed into a test case in TTCN-3 by 

applying the structural transformation, e.g., a TDL element is transformed into a TTCN-3 

module. Therefore, the resulting test case is composed of three types of modules: (1) a Test 

Configuration module, (2) a Test Description module, (3) and a Data module. After the TTCN-3 

Data module is partially generated and test data becomes available, the module is completed with 

test inputs and oracle information. A new test case is added “TC_DS_01” to the test suite “TTCN-

3_DC_TestSuite” for each new pair of test input and expected output found in Data model in 

Table 5-3. 

III. Compliance with DO-178C Standards 

In our trace model, we have trace data that shows the HLR described as TDL elements are 

traceable to software requirements (UCM elements) and that the LLR are traceable to HLR. The 

test scenarios are traced indirectly (via UCMs) to the HLRs and LLRs. The executable TCs are 

traced to the abstract test scenarios in TDL. Therefore, compliance with DO-178C standard is 

achieved for the traceability objective. LLRs are developed from HLRs, and as defined by DO-

178C, an association between a requirement and its related items is necessary. The TDL can be 

produced from UCMs developed from HLRs or LLRs: the methodology is applicable to HLR- or 

LLR-based testing. 
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5.4. MDTGL Approach Summary 

This chapter proposed a new testing methodology that automates with limited resources two 

major testing activities for testing ES based on modeling and model transformation. First, the 

chapter presented an approach for generating executable test cases from system requirements 

modeled with UCM notation. The TCG approach used test description language to transform the 

abstraction of a test description to an executable test case. The automatic development of TCs by 

the TCG approach has produced different models at different levels of abstraction. Next, the 

chapter presented a framework that aligns the activities of requirement traceability to testing to 

improve system quality and project cost. The traceability framework automatically links the 

intricate relationships among test-related artifacts, obtained as a product of the transformation, to 

support the automation of testing activities such as coverage measurement, result evaluation and 

selective regression testing. Figure 5.21 shows the two testing activities. 
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Figure 5.21: The activities of MDTGL methodology 
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In terms of validating the proposed testing methodology and demonstrates if it is technically 

feasible, the LGS case study from the avionics public domain was applied. The experiments 

showed that the testing artifacts are generated at the reasonable effort.  
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Chapter 6 TCG Approach Evaluation 

6.1. Topic Overview 

The evaluation of the approach is sampled with an industrial product from the private domain, an 

FMS, see Figure 6.1. 

This activity answers the research question RQ3: “how do we assess the correctness of a test case 

generation process and how to evaluate its efficiency?” 

 

Figure 6.1: FMS Front Panel (photo Esterline CMC Electronics) 

The FMS test stimuli are key presses and the test oracles are screen dumps. Since the FMS 

functionality was tested using software tests developed manually and determined correctly the 

FMS behaviour, we wanted to evaluate our approach using the same case study to assess the 

efficiency of our approach. We present an empirical evaluation of the approach, based on the 

results obtained with 3 FMS use cases. We studied the approach efficiency in terms of generating 

ETCs and we evaluated the correctness of the generated workflow in two steps:  

▪ Perform requirement-based test coverage analysis: we analyzed the trace model 

tracemodel.ecore, obtained as a product of the transformation, along with the generated ATCs 
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and ETCs to confirm that there is at least one ATC for each requirement and all ETCs and 

ATCs are traceable to requirements (UCM models). 

▪ Perform verdict analysis: we used a set of legacy ETCs to assess the correctness of the 

generated ETCs. Since the execution of the legacy ETCs against SUT reported correctly its 

behaviour and verified that the implementation satisfies the requirements, we used them as an 

oracle version. We compared our ETCs verdicts against the ones emitted by the legacy ETCs. 

The pass verdict indicates correct implementation where the fail verdict indicates an error has 

been detected. 

The remainder of this chapter is organized as follows. Section 6.2 presents the FMS as the case 

study followed by the experiment method that we used in Section 6.3. The efficiency of the 

approach is presented in Section 6.4. The traceability links and their alignment with testing are 

presented in Section 6.5. A discussion with generalization of the approach and set of lessons 

learned showing the difficulties encountered are presented in Section 6.6. 

6.2. The Case Study FMS 

An FMS is typically comprised of the following interrelated functions: navigation, flight 

planning, trajectory prediction, performance computations, and guidance. It provides the primary 

navigation, flight planning, optimized route determination and en-route guidance for an aircraft. 

To accomplish these functions, the flight management system must interface with several other 

avionics systems. A short description of three key functions performed by the FMS and used in 

the evaluation is given below: 

▪ Flight Planning: the flight planning function allows the creation of a flight plan based on the 

data combinations from a company’s route, defined waypoints, navigation database, etc. 

▪ Lateral Guidance: This function allows waypoint management via its control display unit 

interface when an aircraft is configured as a rotor. 

▪ Navigation: This function determines the accuracy variable based on the present position, 

ground speed, and wind speed/wind direction. 

6.3. The Experimental Method 

We analyzed the efficiency of the approach by running an experiment aiming to determine 

whether the approach is efficient to generate ATCs that cover the requirements and can be 
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transformed to correct ETCs. We consider an ETC is correct, after being executed on the FMS if 

it reports correctly the behaviour of the SUT. Our first step was to select from the legacy software 

tests a number of ETCs that cover the three FMS key functions reported in the previous section. 

Five legacy ETCs that were manually developed, performed on the FMS and reported correctly 

its behaviour covered those functions and therefore were selected. Next, we identified the 

corresponding requirements of these legacy ETCs and grouped them into 3 use cases. The 

description of each use case is given as follows: 

⎯ Automatic Leg Transitions: contains 8 functional requirements that specify the automatic 

leg change using fly-by (turn anticipation) or fly-over (turn over the waypoint).  

⎯ Provide Guidance for a Manual Direct-to Intercept: contains 7 requirements that specify 

the operations of the “discontinuity ahead” alter message on the modified route. 

⎯ Predict the Expected Time of Arrival (ETA) with different configurations: contains 9 

requirements that specify the computations to be performed by the FMS for an aircraft to 

arrive at a certain place. 

For each use case, the experimental method we applied consists of: 

▪ Requirement stage: the requirements in the use case were formalized into Cockburn notation 

and manually mapped to UCM models. We validated the scenario models and checked if they 

describe correctly all the requirements. 

▪ Test scenario stage: for each possible path in the scenario model, its definition was created 

and stored as an XML file. Using our java-based tool, we transformed the scenario path 

expressed in XMI format into scenario test expressed in TDL notation. We completed the 

obtained ATC with Test Objectives and Data Instances elements which are taken mainly from 

the requirements.  

▪ Test generation stage: based on the transformation tool that we implemented with the Xtext 

and Xtend framework, we transformed each ATC into an executable ETC.  

▪ Test execution stage: the resulting ETCs that correspond to the selected legacy ETCs were 

executed on the FMS and their test results were recorded. 

As a result, 26 ATCs and ETCs were generated from the 3 use cases. Five ETCs were performed 

on the FMS and their test results were recorded. The selected ETCs stimulate the FMS 

functionality and reflect largely the use cases. Table 6-1 shows the details about the executed 
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ETCs where the description of each ETC is given in column 1. Columns 2 and 3 show the 

number of exchanged messages with the FMS and their verdict respectively. A total of 803 

exchanged messages and 338 test verdicts are performed as shown in the total row. 

Table 6-1: The executed TPs against the FMS 

 

TP performed on FMS 

 

# of input/output exchanged 

with FMS 

 

# of verdict per TP 

Fly-by procedure 
32 10 

Fly-over procedure 
26 11 

Fly-over procedure via 

DES+SAR 

236 129 

Manual Direct-to Intercept 116 20 

ETA Computation 
393 168 

Total 803 338 

6.4. Requirement Coverage and Generating Correct ETCs 

We analyzed the generated ATCs to check if they cover the requirements. Table 6-2 shows that 

the approach covered all paths in the scenario models effectively. In fact, the approach generated 

one ATC for each scenario path in the scenario model. The total number of the generated ATCs 

successfully covers all possible paths in the UCM model and achieves therefore full scenario and 

requirement coverage. 

Table 6-2: The requirement coverage by the generated ATCs from UCM model 

Use case modeled as scenario  

# of Scenario Path 
# of 

ATCs 

Requirement 

Coverage Rate 

Main Secondary 

Automatic leg transitions 3 9 12 100 % 

Provide Guidance for a Manual 

Direct-to Intercept 
1 7 8 100 % 

Expected Time Arrival 

Computation 
1 5 6 100 % 
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The generated ETCs were assessed for their correctness by comparing their test results against 

the legacy ETCs. The objective is to have the ETCs behaviour matches the legacy tests. As 

mentioned, the legacy tests are used as a golden version to assess the correctness of the generated 

TPs. Table 6-3 shows the result of the verdict comparison for each pair of ETC. The scenario 

models that describe the requirements are shown in the first column. Followed by ETC 

description in the second column. The rate of matching verdict with the corresponding legacy test 

is presented in the third column. 

Table 6-3: The matching rate of the executed ETCs 

Use case modeled as scenario Executed ETC 
Verdict matching rate with 

legacy 

Automatic Leg Transmission 

Fly-by procedure 100 % 

Fly-over procedure 100 % 

Fly-over procedure via DES+SAR 98 % 

Provide Guidance for a Manual 

Direct-to Intercept 
Manual Direct-to Intercept 97 % 

Expected Time Arrival 

Computation 
ETA Computation 98 % 

All the verdicts in the Fly-by-procedure and Fly-over-procedure ETCs matched the 

corresponding verdicts of the legacy tests. In the remaining ETCs, Fly-over-procedure via 

DES+SAR, Manual Direct to-Intercept and ETA computation, very few numbers of verdicts did 

not match with the corresponding legacy tests. The result in the third column determined with a 

high rate of success the SUT behaviour— emitting pass verdict when it is expected and fail 

verdict in the presence of errors. 

6.5. Traceability Links and Alignment with ETCs Result 

The result of the test case generation process in the previous section is the trace model 

“tracemodel.ecore” which relates UCM scenario models to TTCN-3 test cases grouped in test 

suites. Each test case, generated within a unique identifier, is a sequence of actions and 
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interactions with defined input parameter values and output parameter values. The execution of 

the test case results in the assignment of a test verdict; pass or fail. In the “tracemodel.ecore”, the 

links between requirements and ETCs may have several possible cardinalities: 

• One-to-one: one requirement is tested exactly by one ETC and this test case tests only this 

requirement. 

• One-to-many: one requirement is tested by several ETCs and these ETCs participate to 

test only this requirement. 

• Many-to-many: one requirement is tested by several ETCs, which are used to test several 

requirements. 

Figure 6.2 shows the relationships between the testing artifacts for the “DeploymentSucceeded” 

scenario. The traceability link DSScenarioTraceLink[1] relates the model UCMDSScenario to 

the model TDLDSTestSpecification which is related to several test cases via the traceability link 

DSScenarioTraceLink[2]. The generated test cases are children of the test suite TTCN-

3_DS_TestSuite. 

Source Target

UCMDSScenario TDLDSTestSpecification

DSScenarioTraceLink  [1] DSScenarioTraceLink [2]
Source Target

TC_DS_01

TC_DS_n

      

TTCN-3_DS_TestSuite

Req.1

Req.2

Req.n

Dev. Req.1

Dev. Req.2

Dev. Req.n

 

Figure 6.2: Requirement Traceability among testing models 

The trace model takes a significant importance in the TCG process. On one hand, it provides a 

clear meaning for each generated ETC: the tested requirement(s) gives the purpose of the 

associated test case(s). It is a kind of rationale for the generated test suite. On the other hand, the 

trace model exhibits clearly which requirements are actually tested (and how), and which 

requirements are not tested. For the not tested requirements, this suggests completing the test 
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suite to obtain full functional coverage. During the test execution of the ETC in Listing 6-1, the 

traceability links in the trace model help to identify the related requirements when it fails. 

Similarly, when the test case passes, they certify that the related requirements were implemented 

and tested.  

 

Listing 6-1: ETC TTCN-3 generated from “DeploymentSucceded” scenario 

1.   module TestDescription { 

2.     import from TestConfiguration all; import from TestData all;  

3.     testcase TC_DS_01 () runs on Pilot { 

4.       map (mtc:gPilot, system:gLGCU); 

5.       timer deploymentTime; timer lockDoorOpenedTime;    

6.       timer gearsManeouvringTime;  timer gearLockedDownTime;   

7.       timer lockDoorClosedTime;       

8.       Handle_Down();  // function call  

9.       gPilot.send(GearDownTemplate); 

10.       deploymentTime.start(15.0); 

11.       OpenDoors();  // function call 

12.       LockDoorsInOpenedPos (); 

13.       lockDoorOpenedTime.start(7.0);  

14.       alt {                            

15.         [] gPilot.receive(LockOpenedDoorTemplate) { setverdict(pass);    

16.            ReleaseUp_Lock();  

17.            gearsManeouvringTime.start(7.0);}   

18.         [] lockDoorOpenedTime.timeout { setverdict(fail) }   

19.         [] gPilot.receive(AmberLightTemplate) { setverdict(pass);             

20.            Lock_DownGears();   

21.            gearLockedDownTime.start(7.0); } 

22.         [] gearsManeouvringTime.timeout { setverdict(fail) }   

23.         [] gPilot.receive(GreenLightTemplate) { setverdict(pass);            

24.            CloseDoors();    

25.            LockDoorsInClosedPos();    

26.            lockDoorClosedTime.start(7.0);  

27.         [] gearLockedDownTime.timeout {  setverdict(fail) }  

28.         [] gPilot.receive(LockClosedDoorTemplate) { setverdict(pass);  

29.            ConfirmGearsDown(); }   

30.         [] lockDoorClosedTime.timeout { setverdict(fail) }            

31.         [] deploymentTime.timeout { setverdict(fail) } } 

32.       unmap (mtc:gPilot, system:gLGCU); }  }  } 
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6.6. Discussion of TCG Approach 

We applied our approach to industrial case study FMS at the Avionic industry. The validation has 

been achieved by comparing the behaviour of the legacy and the generated tests. If they are 

behaviour equivalent, the same sequence of test events and verdicts, we can consider them 

comparable. The verdict of almost all oracle steps in the generated ETC matched their 

corresponding ones in the legacy. In other words, the generated ETCs passed and failed in the 

same steps as the legacy ETCs did except a small number of failures in the generated tests. These 

failures were mostly due to timing issues. The generated tests in TTCN-3 execution have a 

considerably better performance as the legacy system and the SUT is relatively slow. These cases 

could be easily detected using the state of the SUT. If the state was the same as for the preceding 

test event, this indicates that the SUT has not updated its state yet. Here, the responses are not 

coming spontaneously but instead, the test system must query the SUT to obtain the response. 

Also, some of the failures could indicate that there are alternative behaviour in the SUT, 

something that the legacy test system could not handle because it was based on linear sequences 

of test events. 

In conclusion, this study reveals that our approach generated ATCs that cover all the described 

requirements in the scenario models achieving full requirement coverage. 

Compared to the legacy testing system, the new approach improves the testing in practice and 

offers several advantages to the test engineers. We found the following benefits from our new 

testing practice: 

⎯ Increased test system understanding: using a model enables to get an overview of the 

behaviour of a system compared to scattered bits and pieces of information. 

⎯ Early Testing: The test engineers don’t need to wait; they describe the requirements in a 

model and then push a button to generate the tests.  

⎯ Reduced test effort: in our model-driven testing, the number of iterations to get correct ETCs 

is reduced. The test development phase is eliminated. The ETCs are no longer written by 

hand or manually corrected, but generated. 

⎯ Traceability: Traceability links among testing artifacts are generated during model 

transformation. Since ETCs are derived from the UCM models where requirements are 
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described, any defect found during the execution of an ETC can be traced back to its 

requirement. 

⎯ Systematic and automation: with the help of the developed tools, repeated tests are enabled 

which ensures the robustness of the test results. 

⎯ Reduced human errors: The fact that the tests are generated from the model and thus 

consistent with requirements reduces, by definition, the possibility of error in the test suite. 

6.6.1 Generalization of the Approach 

The approach focuses on functional aspects of software and has been applied to two realistic case 

studies from the avionics domain. Additionally, the methodology can apply to safety-critical 

software as it covers timing requirements and provides traceability evidence from requirements to 

tests. The approach relies on two major elements to improve the testing process:  

Modeling: the system requirements (functional) and design are described by high-level visual 

models and DSL abstracting away technological implementation detail.  

Model transformation: the automated model transformations are used to generate tests to reduce 

the manual work, to provide traceability evidence and to simulate high-level models to validate 

the suitability of the modeled system behaviour in an early development phase. 

Today, the practical realisation of model-driven testing benefits from a variety of tools and 

technologies. Some requirements may not be describable with the UCM notation such as 

robustness requirements. Such requirements have to be specified through other notations or 

languages. The model transformations are (partially) automated and require little human 

intervention. The process converts the informal requirements into a formal UCM model. We have 

used the tool described in [17] that generates individual test traces, called test scenarios in TDL 

but as already mentioned, test traces are not always test cases. A good test case comprises 

alternative behaviour both in TDL and in TTCN-3. This part is post-processed with a tool to 

resolve the absence of alternatives in the scenario metamodels targeted by jUCMNav’s traversal 

mechanism. The hints found in [17] have been tried out and were successful. However, the 

translation from TDL to TTCN-3 is relatively straightforward since there is mostly a one to one 

mapping from TDL to TTCN-3. Only, things such as describing test purposes are not covered 

and thus have to be translated manually usually as TTCN-3 comments. Overall, our achievement 

was to show that it is an advantage to build a formal UCM model because everything else down 
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the path can be automatically generated and is either all the way right or all the way wrong. Test 

automation has the advantage to be systematic when it comes to errors as opposed to manual 

processes where errors are introduced randomly and are difficult to trace. This automation 

reduces the required amount of manual work for test development, such that the testing process is 

supposed to become less error-prone and more efficient. 

6.6.2 Lessons Learned 

We distill some of the important lessons we have learned in developing and deploying the testing 

methodology.  

The users of the testing methodology should not need to have the functional requirements 

expressed with use case notation to model them as scenarios. However, requirements presented as 

a use case facilitated the mapping to UCM models. The model transformation to TDL domain is 

not fully automatic and requires human intervention to obtain the data elements and to construct 

the alternatives. The TDL models were a key component of model-driven testing as they have 

been used as input and output in the model transformation process. The decision to use the TDL 

notation in the development of tests was successful. TDL narrowed the gap between the 

described requirements and tests and served as a way of communication with non-technical 

people and as a base to generate concrete tests. 
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Chapter 7 Conclusions 

7.1. Topic Overview 

ESs have increasing importance in modern society due to the close interaction with their 

environment. Ensuring high-quality software that is of crucial importance today is often costly. 

Quality assurance efforts, especially testing efforts, often consume more than 50 % of the overall 

development efforts [138], [139]. Therefore, testing an ES implementation with limited resources 

to ensure that it is fault-free before its deployment is necessary. Several new technologies have 

emerged to address the growing demand for ES software verification. One of those techniques is 

MDT which is an automation of MBT that uses model-transformation technology on formal 

models, their meta-models, and transformation rules defined in terms of mappings between the 

elements of meta-models. 

While many researchers have found methods of improving UCM-based testing by deriving test 

goals, its abstraction level remains inappropriate for the generation of implementation-level test 

cases. Moreover, UCM models abstract from detailed communication mechanisms, and 

emphasize behavior rather than data which makes deriving executable test cases a difficult 

activity. There are a number of important related issues that need to be researched such as 

generating test cases from UCM scenarios with limited resources. Furthermore, there is little 

research done on linking the activities of requirement traceability with testing. As a result, it is 

important to develop a valid and flexible approach that can handle these issues. 

In this chapter, Section 7.2 summarises the research findings of each chapter. Section 7.3 

explains how research objectives are achieved. A summary of the Thesis contributions is then 

presented in Section 7.4. Finally, Section 7.5 identifies the research limitations and points to 

future research ideas. 

7.2. Research Summary 

The aim of the research presented in this Thesis was to develop, validate and automate a flexible 

model-driven testing approach based on modeling and model transformation for testing ESs.  
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Chapter 1 gave an overview of the area under research and highlighted the motivation of this 

research. That emphasized the need for developing a valid model-driven testing approach capable 

of testing ESs with limited resources. A set of research objectives were identified to fulfill the 

research aim followed by Thesis contributions. 

Chapter 2 reviewed the related literature that addressed testing ESs. The concept of testing was 

defined and explained by addressing some topics related to testing types. Several studies were 

reviewed in this chapter that covers three testing activities; (1) model transformation, (2) test case 

generation, and (3) requirement traceability and alignment with testing. 

Chapter 3 introduced the three domain-specific languages UCM, TDL and TTCN-3 where their 

metamodels are used in requirement propagation and model transformation. The construct of 

each language is described extensively with example. 

Chapter 4 presented a reverse engineering process aiming to discover a path from TDL to 

TTCN-3. The process reversed engineer a legacy software test by migrating test cases written as 

Ant/xml files into the TTCN-3 code. The obtained executable test cases are re-engineered to a 

higher level of abstraction to obtain abstract test cases in TDL notation. 

Chapter 5 developed the MDTGL methodology based on modeling and model transformation 

that automated the generation of test cases, the traceability requirement among testing artifact, 

and the checking result of interaction behavior. Several tools have been developed that target the 

automatic testing of ESs. The validity of the MDTGL was empirically demonstrated by running it 

on a public case study.  

Chapter 6 assessed and evaluated the new testing approach based on assessment factors which 

considered requirement coverage, the correctness of generated workflow and labor cost with 

respect to the length of generated test cases. The chapter presents an experiment applied to the 

avionics case study for estimating the assessment criterion. A discussion with generalization of 

the approach and set of lessons learned showing the difficulties encountered especially for testing 

ES is then highlighted. 
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7.3. Meeting the Research Objectives 

The main aim of the Thesis was to provide software engineering community with a sound, valid 

and flexible testing approach for testing ESs with limited resources. This section shows how this 

research successfully achieved its objectives. 

Objective 1: “To determine the differences and obstacles that reside among the three languages; 

UCM, TDL and TTCN-3”. The first objective was achieved in Chapter 2 and 3 by studying the 

constructs of each language and its metamodel. 

Objective 2: “To resolve the obstacles and differences that exist among the three languages and 

demonstrate the approach feasibility”. The second objective was achieved in Chapter 4 and 5 by 

developing transformation rules between the three languages and discovering a path from UCM 

scenarios to TTCN-3 test cases via TDL. 

Objective 3: “To generate test cases in TTCN-3 from UCM models via TDL based on 

requirement analysis, model transformation and refinement process”. The third objective was 

achieved in Chapter 5 by developing a test case generation approach based on model-driven 

technique to derive testing artifacts. Next, by developing a TCG process for generating 

executable test cases. The technique can be seen as a process of successive refinements of 

specifications that involves model transformation and the insertion of additional information. 

Objective 4: “To align traceability requirement with generated test artifacts and testing”. This 

objective was achieved in Chapter 5 by extending the MDTGL tool to create explicit 

relationships in a trace model among generated testing artifacts. 

Objective 5: “To validate the generated testing artifacts in terms of effectiveness and usefulness 

at the specification and implementation level”. This objective was achieved in Chapter 6 by 

sampling the new approach with an industrial ES and compared it to the testing approach. 

Objective 6: “To develop and provide traceability evidence from requirements to tests for 

compliance with DO-178C standards”. This objective was achieved in Chapter 4 by developing a 

framework that creates traceability links in recorded them in a trace model. 
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7.4. Summary of Research Contributions 

The main research contributions are summarized in the following subsections. 

7.4.1 Towards Building Model-Driven Testing Methodology 

 The reengineering of legacy software tests aims to discover feasible transformation from the test 

layer to test requirement. Furthermore, it is used to help build the model transformation, generate 

TTCN-3 test cases from TDL models, and show its feasibility. Then, after showing that TTCN-3 

test cases can be derived from TDL models, the approach is extended with the requirement layer 

which describes software specifications in UCM scenarios where test objectives can be driven 

and transformed into TDL models. Reaching this point, the feasibility of transforming TTCN-3 

scripts into a TDL model is shown, and a forward engineering process to regenerate the test cases 

can be undertaken. 

7.4.2 Test Case Generation Approach  

Several model-based testing approaches have been proposed to improve UCM-based testing by 

deriving test goals. However, most of these approaches stopped at the generation of abstract test 

cases. Another challenge besides transforming UCM scenario models to test cases in a scripting 

language is the validation of the transformation, both in terms of technical correctness and 

usefulness.  

Other research assumed that there are unlimited resources to generate the testing artifacts. It is 

thus essential to consider an approach that generates with limited resources executable test cases 

and validating them in the industrial case study. The lack of a mature test case generation process 

based on UCM models directed our research to develop one. 

The concept of test case generation was proposed to support the testing of ES with limited 

resources. As a result, we focused on generating test cases. We developed models to describe the 

system requirements and rules to transform them up to test cases. 

7.4.3 Requirement Traceability and Alignment with Testing 

The alignment research area model-based development has attracted a lot of attention. The idea 

behind MBT is the derivation of executable test code from test models by analogy to MDA [140]. 
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One challenge in using MBT approach for aligning requirements and testing is to make test cases 

executable, as the tests are not at the same level of detail as the implementation code [141]. This 

technique is becoming of more interest in industry because it provides automatic deriving of test 

cases from the behavioral model of the system called the test model. Our traceability model, 

obtained as a product of model transformation during the TCG process, helped determine what 

requirement has been covered by which test and how the generated ETCs cover these 

requirements. Another important reason for traceability is improving change management by 

helping to find out how a change in the requirement is reflected in the ETCs. It also helped trace 

from tests back to requirements which is helpful to find the root of a failed test. Furthermore, 

compliance with DO-178C standard is achieved for the traceability objective.  

7.4.4 The Application of TCG Approach on an Industrial Case Study 

Some proposed approaches in the literature lack automation tool support. Using such approaches 

requires a deep understanding of their mechanism and significant manual effort in generating and 

executing test cases. Others were partially automated. Their tools were responsible for only 

automating the generation of test input which requires other sets of tools to make the test cases 

executable. 

To our knowledge, there has yet to be a study that compares the efficiency of similar approaches 

on real applications. This research used an industrial ES with well-identified assessment criteria 

by which the efficiency of testing approaches can be compared were also presented. In summary, 

we aimed to develop a testing approach capable of detecting as many faults as possible with 

limited resources. The study at the implementation level confirmed results obtained at the 

specification level. Our TCG approach reduced the test effort and allowed to start testing early. 

7.5. Research Limitations and Future Work 

This section identifies a set of research limitations encountered and suggests a set of 

complementary future work to address them. 

7.5.1 Case Studies 

This research succeeded in comparing the efficiency of MDTGL with industrial testing approach 

based on specification case studies. However, the relatively small size of case studies used can be 
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considered a limitation. Choosing small specification models for the approach application was 

justified due to the limited access imposed by our research partner. 

For future research, we may use more industrial case studies by which more functional faults can 

be found and categorized. Moreover, comparing the results with MDTGL. 

7.5.2 Automation of Recording Traceability Links 

The goal of creating traceability relations among testing artifacts during the development of TCG 

process is achieved. However, the recording of these traceability links in our trace model is not 

automated. Therefore, there is an automation direction for future work to automate the process of 

recording traceability links in the trace model to ensure the benefits of maintaining traceability 

relations over time as the software system evolves.
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Appendices 

 

Appendix A: UCM Metamodel 

This Appendix presents the concrete metamodel of the UCM notation. 
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