
Automated Testing: Requirements Propagation via Model Transformation
in Embedded Software

 Nader Kesserwan

A Thesis
In

The Concordia Institute
For

Information System Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy (Information and Systems Engineering) at
Concordia University

Montreal, Quebec, Canada

March 2020

© Nader Kesserwan 2020

iii

ABSTRACT

Automated Testing: Requirements Propagation via Model Transformation in Embedded

Software

Nader Kesserwan, Ph.D.

Concordia University, 2020

Testing is the most common activity to validate software systems and plays a key role in

the software development process. In general, the software testing phase takes around 40-70% of

the effort, time and cost. This area has been well researched over a long period of time.

Unfortunately, while many researchers have found methods of reducing time and cost during the

testing process, there are still a number of important related issues such as generating test cases

from UCM scenarios and validate them need to be researched.

As a result, ensuring that an embedded software behaves correctly is non-trivial, especially when

testing with limited resources and seeking compliance with safety-critical software standard. It

thus becomes imperative to adopt an approach or methodology based on tools and best

engineering practices to improve the testing process. This research addresses the problem of

testing embedded software with limited resources by the following.

First, a reverse-engineering technique is exercised on legacy software tests aims to discover

feasible transformation from test layer to test requirement layer. The feasibility of transforming

the legacy test cases into an abstract model is shown, along with a forward engineering process

to regenerate the test cases in selected test language.

Second, a new model-driven testing technique based on different granularity level (MDTGL) to

generate test cases is introduced. The new approach uses models in order to manage the

iv

complexity of the system under test (SUT). Automatic model transformation is applied to

automate test case development which is a tedious, error-prone, and recurrent software

development task.

Third, the model transformations that automated the development of test cases in the MDTGL

methodology are validated in comparison with industrial testing process using embedded

software specification. To enable the validation, a set of timed and functional requirement is

introduced. Two case studies are run on an embedded system to generate test cases. The

effectiveness of two testing approaches are determined and contrasted according to the

generation of test cases and the correctness of the generated workflow. Compared to several

techniques, our new approach generated useful and effective test cases with much less resources

in terms of time and labor work.

Finally, to enhance the applicability of MDTGL, the methodology is extended with the creation

of a trace model that records traceability links among generated testing artifacts. The traceability

links, often mandated by software development standards, enable the support for visualizing

traceability, model-based coverage analysis and result evaluation.

v

Acknowledgments

Foremost, I would like to express my sincere gratitude to my supervisor Dr. Rachida Dssouli for

the continuous support, patience, motivation and advice. Her guidance helped me conducting this

study, communicating with academics and writing of the Thesis. I could not have imagined

having a better or friendlier supervisor.

It is also an honor for me to express my deep thanks to my co-supervisor Dr. Jamal Bentahar. His

valuable and immense comments and advices gave me more insight through the research area.

I would also like to thank my committee members, Dr. Ferhat Khendek, Dr. Roch Glitho, Dr.

Abdessamad Ben Hamza for serving as my committee members. I also want to thank you for

letting my defence be an enjoyable moment, and for your brilliant comments and suggestions,

thanks to you.

I am also grateful to Dr. Bernard Stepien in University of Ottawa, his help in offering me

technical advices in building tools is much counted and appreciated.

I wish to extend my warmest thanks to Pierre Labrèche manager at Esterline CMC Electronics

who have helped me with my research in offering me advices, lab access and providing me with

all needed documents. Wishing you all the best in your new retired life.

I owe my loving thanks to my wife Rima and my kids Rami, Sami and Nada. It would have been

impossible for me to finish this study without their continuous support, encouragement and

understanding.

vi

Table of Content

LIST OF TABLES ... IX

LIST OF FIGURES ... X

LIST OF ILLUSTRATIONS ... XII

ABBREVIATION ... XIII

CHAPTER 1 INTRODUCTION ... 1

1.1 RESEARCH MOTIVATION .. 1

1.2 NEW APPROACH: MDTGL .. 4

1.3 THESIS CONTRIBUTION .. 6

1.3.1 Contribution 1: Reverse-Engineering the Legacy Software Tests to Model-Driven Testing 7

1.3.2 Contribution 2: MTDGL Methodology .. 7

1.3.3 Contribution 3: Theories and Techniques Supporting .. 8

1.3.4 Contribution 4: Illustrative Experiments Validating MTDGL .. 9

1.3.5 Issues Not Addressed in this Thesis .. 9

1.4 THESIS OUTLINE ... 10

CHAPTER 2 LITERATURE REVIEW .. 12

2.1 TOPIC OVERVIEW ... 12

2.2 SOFTWARE TESTING .. 13

2.3 TESTING TYPES .. 13

2.4 MODEL-DRIVEN ARCHITECTURE (MDA) ... 15

2.5 MODEL-BASED TESTING (MBT) ... 16

2.6 MODEL TRANSFORMATION .. 17

2.6.1 Definition ... 18

2.6.2 Model Transformation Categories ... 19

2.6.3 Design Features for Model Transformation ... 21

2.6.4 Model Transformation from UCM ... 27

2.7 TEST CASE GENERATION .. 29

2.7.1 MBT Technique .. 30

2.7.2 Specification-Based Technique .. 32

2.7.3 NL Technique .. 33

2.8 TRACEABILITY .. 34

vii

2.8.1 Requirement Traceability ... 34

2.8.2 Traceability in MDD ... 35

2.8.3 Alignment of Requirements Traceability and Testing .. 35

2.8.4 Matrix Approach .. 36

2.8.5 MBT Approach ... 37

2.8.6 Formal Approach ... 38

2.8.7 Meta-Model Approach ... 39

2.8.8 Test Case Approach .. 39

2.9 SUMMARY OF LITERATURE REVIEW .. 40

CHAPTER 3 DOMAIN SPECIFIC LANGUAGES (DSLS) .. 41

3.1 USE CASE MAPS (UCM) ... 41

3.2 TEST DESCRIPTION LANGUAGE (TDL) ... 43

3.3 TESTING AND TEST CONTROL NOTATION (TTCN-3) .. 46

3.4 THE SPECIFICATION LEVEL OF THE THREE LANGUAGES .. 50

3.5 SUMMARY OF DOMAIN SPECIFIC LANGUAGE ... 51

CHAPTER 4 TOWARDS BUILDING A NEW TEST CASE GENERATION APPROACH .. 52

4.1 RESEARCH QUESTIONS .. 52

4.2 REENGINEERING LEGACY SOFTWARE TESTS TO MDT ... 53

4.2.1 Motivation ... 53

4.2.2 Reengineering Activities ... 54

4.2.3 Lesson Learned ... 60

4.2.4 Conclusion .. 60

CHAPTER 5 AN MDTGL APPROACH FOR TESTING EMBEDDED SYSTEMS ... 62

5.1 TOPIC OVERVIEW ... 62

5.2 THE RESEARCH METHODOLOGY .. 63

5.2.1 Conducted Research... 63

5.2.2 Collected Data .. 64

5.2.3 Facilities Used .. 64

5.3 THE METHODOLOGY MDTGL .. 65

5.3.1 Test Case Generation Approach ... 65

5.3.2 Traceability Links Framework .. 100

5.4. MDTGL APPROACH SUMMARY ... 109

CHAPTER 6 TCG APPROACH EVALUATION .. 111

viii

6.1. TOPIC OVERVIEW .. 111

6.2. THE CASE STUDY FMS ... 112

6.3. THE EXPERIMENTAL METHOD .. 112

6.4. REQUIREMENT COVERAGE AND GENERATING CORRECT ETCS .. 114

6.5. TRACEABILITY LINKS AND ALIGNMENT WITH ETCS RESULT ... 115

6.6. DISCUSSION OF TCG APPROACH .. 118

6.6.1 Generalization of the Approach ... 119

6.6.2 Lessons Learned ... 120

CHAPTER 7 CONCLUSIONS ... 121

7.1. TOPIC OVERVIEW .. 121

7.2. RESEARCH SUMMARY ... 121

7.3. MEETING THE RESEARCH OBJECTIVES .. 123

7.4. SUMMARY OF RESEARCH CONTRIBUTIONS .. 124

7.4.1 Towards Building Model-Driven Testing Methodology .. 124

7.4.2 Test Case Generation Approach ... 124

7.4.3 Requirement Traceability and Alignment with Testing .. 124

7.4.4 The Application of TCG Approach on an Industrial Case Study .. 125

7.5. RESEARCH LIMITATIONS AND FUTURE WORK .. 125

7.5.1 Case Studies ... 125

7.5.2 Automation of Recording Traceability Links .. 126

ix

List of Tables

Table 4-1: Transformation rules to convert Ant/XML to TTCN-3 languages along with

transformation rules

Table 4-2: Transformation rules from TTCN-3 to TDL based on the proposed concrete syntax

Table 5-1: Test Data for UCM scenario

Table 5-2: Transformation rules from TDL model to TTCN-3 constructs

Table 5-3: Test Data For “DeploymentSucceeded” Scenarion

Table 5-4: Traceability scheme

Table 5-5: Extended Test data for “DeploymentSucceeded” Scenario

Table 6-1: The executed TPs against the FMS

Table 6-2: The requirement coverage by the generated ATCs from UCM model

Table 6-3: The matching rate of the executed ETCs

x

List of Figures

Figure 1.1: MDTGL methodology

Figure 2.1: Testing types (Briones, 2007)

Figure 2.2: Model-driven architecture paradigm

Figure 2.3: MBT with relation to other testing types (Briones, 2007)

Figure 3.1: UCM core notation

Figure 3.2: Major parts of a TDL specification

Figure 3.3: TDL Test Configuration element

Figure 3.4: TDL Test Description element

Figure 3.5: Model component

Figure 3.6: Link between the three languages and model transformation

Figure 4.1: Modernization of legacy software tests

Figure 4.2: Language Translator Tool

Figure 5.1: TCG approach for testing embedded system

Figure 5.2: Data metamodel

Figure 5.3: ATC builder process

Figure 5.4: Scenario definition Metamodel

Figure 5.5: The development of TDL Test Configuration

Figure 5.6: The development of TDL Test Description

Figure 5.7: Post-processing of alternative behavior

xi

Figure 5.8: Derivation of ETC in TTCN-3

Figure 5.9: TDL Data Set transformation

Figure 5.10: TDL Test Configuration transformation

Figure 5.11: TDL interaction transformation

Figure 5.12: TDL Action transformation

Figure 5.13: UCM scenario models built from an Extending Sequence use case

Figure 5.14: Mapping abstract TDL Data Sets to concrete data in TTCN-3

Figure 5.15: Traceability approach overview

Figure 5.16: Traceability model

Figure 5.17: ATC model for “DeploymentSucceeded” scenario

Figure 5.18: Traceability links between “DeploymentSucceeded” scenario and Test

Configuration element.

Figure 5.19: Traceability links between “DeploymentSucceeded” scenario and Test Description

element

Figure 5.20: Traceability information between TDL and TTCN-3

Figure 5.21: The activities of MDTGL methodology

Figure 6.1: FMS Front Panel (photo Esterline CMC Electronics)

Figure 6.2: Requirement Traceability among testing models

xii

List of Illustrations

Listing 3-1: TTCN-3 test case

Listing 5-1: TDL Test Objective

Listing 5-2: TDL Data Sets elements

Listing 5-3: A snapshot of the exported “DeploymentSucceeded” scenario that shows the TDL

Test Configuration package

Listing 5-4: TDL Test Configuration element generated from a “DeploymentSucceeded”

scenario

Listing 5-5: A snapshot of the exported “DeploymentSucceeded” scenario that shows the TDL

Test Description package

Listing 5-6: TDL Test Description element generated from “DeploymentSucceeded” scenario

Listing 5-7: The resulting TDL specification model

Listing 5-8: TDL Map elements used to reference concrete TTCN-3 templates

Listing 5-9: Transformation of TDL Test Configuration to its corresponding TTCN-3

Listing 5-10: TDL action and interaction transformation

Listing 5-11: TTCN-3 Test Description module

Listing 5-12: TTCN-3 module to invoke the execution of the test case

Listing 6-1: ETC TTCN-3 generated from “DeploymentSucceded” scenario

xiii

Abbreviation

ATC Abstract Test Case

ATS Abstract Test Suites

DSL Domain Specific Language

EMF Eclipse Modeling Framework

ETC Executable Test Case

ES Embedded System

FMS Flight Management System

HLR High Level Requirement

LGS Landing Gear System

LHS Left-Hand Side

LLR Low Level Requirement

MBT Model-Based Testing

MDD Model-Driven Development

MDT Model-Driven Testing

MDTGL Model-Driven Testing on different Granularity Level

NL Natural Language

RHS Right Hand Side

RTCA Radio Technical Commission for Aeronautics

SUT System Under Test

SVP Software Verification Process

TC Test Case

TDL Test Description Language

TTCN-3 Testing and Test Control Notation

UCM Use Case Map

Research Motivation

1

Chapter 1 Introduction

1.1 Research Motivation

As software systems become increasingly complex, the demand for software verification

grows. Testing is a major cost factor during software development, sometimes consuming more

than 50% of the overall development effort [1], [2]. To address growing demand, many testing

approaches and strategies have been developed with the aim of minimizing cost and achieving

high fault detection capabilities. One of the most promising approaches is model-based testing

(MBT). This approach can reduce test costs due to its ability to capture and validate system

behaviour from an early stage of the software development cycle; it also promotes the use of

tools to automate the process of test case generation, execution, and evaluation [3]. The process

of MBT relies on building models to represent system requirements. These models, therefore,

form an efficient source for deriving test cases. According to a 2011 survey in the car industry

[4], “Model-based testing (i.e. the generation of test cases out of a test model) is currently not

used intensively. Only 35% of the participants use it right now, but almost 50% plan to use it in

the near future”.

Another promising technique is model-driven testing [5] (MDT), which is an automation of MBT

that uses model-transformation technology on formal models, their meta-models, and

transformation rules defined in terms of mappings between the elements of meta-models.

Automatic model transformations play a critical role in model-driven engineering (MDE) since

they automate complex, tedious, error-prone, and recurrent software development tasks [6], [7],

[8]. The key challenge of MDT is to transform higher-level models to platform-specific models

that tools can use to generate code. Examples of transformations are a refinement of a design

model by adding details pertaining to a particular target platform, refactoring a model by

changing its structure to enhance design quality, or reverse engineering code to obtain an abstract

model.

A good candidate of a higher-level model is a one expressed in the modeling notation called Use

Case Maps (UCM). This modeling language uses paths that causally link activities (called

responsibilities), which can be bound to underlying organizational structures [9], [10]. The UCM

Research Motivation

2

scenario meta-model can be used to model service requirements and high-level designs for

reactive and embedded systems (ESs). It is, therefore, a natural candidate for use in the process of

generating requirements-directed test suites. Goal models capture hierarchical representations of

stakeholder objectives, requirements, possible solutions, and their relationships to help

requirements engineers understand stakeholder goals and explore solutions based on their impact

on these goals [11]. Although, several approaches have been suggested to improve UCM-based

testing by deriving test goals [12], [13], [14], [15], [16] its abstraction level remains inappropriate

for the generation of implementation-level test cases. The UCM models emphasize behavior

rather than data, and also abstract from detailed communication mechanisms which make

deriving executable test cases (ETC) a difficult activity. The abstraction gap that resides between

the simple expression of a UCM test purpose and the complex coding of executable test scripts

needs to be filled by an intermediate representation that can be the starting point for test

automation. In [17], The traversal mechanism prototyped in jUCMNav’s tool [18] is used to

transform the test purposes into test specification packages represented as XML elements. The

exported representation did not handle the combinations of scenarios or alternative behavior nor

has been validated or transformed into scripting language. Our approach and its supporting

techniques have been validated against an industrial embedded system. The absence of an

alternative element in the UCM scenario metamodel has been resolved.

Another challenge besides transforming UCM scenario models to test cases in a scripting

language is the validation of the transformation, both in terms of technical correctness and

usefulness. The test case generation task is critical and thus the model transformations that

automate it must be validated. A fault in a transformation can introduce a fault in the transformed

model, which if undetected and not removed, can propagate to other models in successive

development steps. As a fault propagates across transformations, it becomes more difficult to

detect and isolate. Since model transformations are meant to be reused, faults present in them

may result in many faulty models.

The variety of different models produced in the transformation process discussed in the previous

section poses challenges to requirements traceability and assessment. This diversity of artifacts

results in an intricate relationship between requirements and the various models. The role played

by relationships among artifacts to support automation of testing activities had long been

Research Motivation

3

recognized; relationships from behavioral models to test cases and from test cases to test results

support coverage measurement, result evaluation, and selective regression testing. The creation

and maintenance of explicit relationships among test-related artifacts is, therefore, the main

challenge to the automated support of such activities. Over the past years, traceability—the

ability to describe and follow the life of software artifacts [19]— has gained in importance and

used as a quality attribute for software. Requirements traceability is often mandated by software

development standards. It is required to support activities such as result evaluation, regression

testing, and coverage analysis. In addition to test generation, challenges to MBT include creation

and maintenance of traceability information among test-related artifacts, time challenge and

system safety that is set very high by regulatory authorities such as radio technical commission

for Aeronautics (RTCA) [20].

As a result, there is an obvious need to generate executable test cases from UCM scenarios and to

validate the model transformation from requirement level to implementation level via an

intermediate level that bridges the gap between the two levels. Further research is also needed to

link the intricate relationships among test-related artifacts, obtained as a product of the

transformation, to support the automation of testing activities such as coverage measurement and

result evaluation.

In this context, the following issues should be addressed:

▪ Construction of a test development process composed of three phases where each phase

represents a different level of test abstraction expressed by an appropriate language.

— UCM notation to model the complexity of the SUT (test purposes) used as a base to

derive test specifications.

— Test definition notation to specify test description (test specifications) such as the test

description language (TDL) that can be used as a base to derive test cases.

— Scripting language to implement and execute a test case (test implementation)

▪ Development of model-driven testing methodology that generates test cases through a

model transformation based on the selected languages

— Determine and resolve the divergence that obstacles the transformations between the

three languages. These obstacles can be related to a lack of suitable abstraction for

specifying transformations. Consequently, transformations can be hard to write,

New Approach: MDTGL

4

comprehend, and maintain. For instance, develop a data model to address the lack of

data in the UCM scenario that is needed in a test case and resolve the differences

between UCM, TDL, and TTCN-3 (test configuration and alternative behavior). In

addition, performing a model transformation requires a clear understanding of the

abstract syntax and semantics of both the source and target.

— Demonstrate the feasibility of the transformation using industrial software tests.

▪ Automation of the model transformation and prototyping it into tools.

▪ Maintaining traceability links among generated test artifacts by developing a traceability

framework that automatically links the intricate relationships among test-related artifacts.

▪ Applying and validating the model transformation that generates the test cases to

industrial ESs both in terms of technical correctness and usefulness.

The aforementioned themes; (1) generate test cases in TTCN-3 from UCM models using model

transformation, (2) validate the model transformation in the avionic industry, and (3) maintain

traceability links among test-related artifacts play an important role in the thesis chapters and

contents. The next section discusses the new approach and the objectives for conducting this

study which leads to the set of stated contributions (Section 1.3).

1.2 New Approach: MDTGL

In this thesis, we present an innovative approach where we generate test cases in a language

called testing and test control notation (TTCN-3) [21] from test specifications described by TDL

[22]. The TDL test specifications in their turn are generated from test purposes enclosed in a

semiformal visual notation for causal scenarios called UCMs.

TTCN-3 is a test specification language designed for specifying test cases to be implemented and

executed against SUT. TTCN-3 is selected for its industrial strength and for its applicability to a

variety of application domains and levels of testing.

 TDL can be used as an intermediate representation to describe scenarios on a lesser abstraction

level than high-level test description but on a higher abstraction level than scripting languages.

We believe that using TDL in a scenario-oriented approach help close the abstraction gap that

resides between test purposes and test cases.

New Approach: MDTGL

5

We believe that using UCMs in a scenario-oriented approach represents a judicious choice for the

description of communicating and ESs. They fit well in the design approach proposed in this

thesis, the MDTGL methodology.

Considering the research motivation discussed in Section 1.1, the aim of this thesis is to provide

techniques to generate test cases in a better way where resources are limited, through model

transformation and refinement. It also intends to validate the generated artifacts in terms of

usefulness and effectiveness and create traceability links among the generated artifacts. It should

fill the gap between the stage where functional requirements are described abstractly and their

implementation details handled by test cases.

To fulfill this aim, a number of objectives are necessary:

Objective 1: To determine the differences and obstacles that reside among the three languages;

UCM, TDL, and TTCN-3.

Objective 2: To resolve the obstacles and differences that exist among the three languages and

demonstrate the approach feasibility.

Objective 3: To generate test cases in TTCN-3 from UCM models via TDL based on

requirement analysis, model transformation, and refinement process.

Objective 4: To align the traceability requirement with generated test artifacts and testing.

Objective 5: To validate the generated testing artifacts in terms of effectiveness and usefulness at

the specification and implementation level.

Objective 6: To develop and provide traceability evidence from requirements to tests for

compliance with DO-178C standards.

The thesis presents a methodology where the transformation of requirements to test cases is

different from the one used by the most popular techniques. The approach focuses on

transforming the highly abstract test goals into concrete test cases. A prime goal of this thesis is

hence to enable the generation of test cases and validate them in terms of correctness, usefulness,

and effectiveness.

Thesis Contribution

6

MDTGL aims to improve the maturity of test case generation processes based on model

transformation by introducing a model transformation technique among three languages

representing tests from high-level abstraction to low-level scripting language. Figure 1.1 presents

such an approach and introduces the main concepts behind the MDTGL. The key points of the

MDTGL methodology are: (1) natural language (NL) requirements are described in UCM

behavioral models; (2) These models are transformed to test goals, and then based on developed

rules, to abstract test cases (ATC) in TDL notation that are completed manually with test

objectives and data instances; and (3) the obtained ATCs are transformed, based on developed

rules, along with concrete test data to test cases (TC) in TTCN-3 language.

The approach can be seen as a process of successive refinements of specifications that involves

model transformation and the insertion of additional information.

Executable Test

Cases
Level of details

during development

The requirements are given
in natural language.

The requirements are modeled
to Cockburn use case
notation and mapped to UCM
scenario models

The behavioral models are
transformed to abstract test
scenarios and enriched with
abstract data.

Executable testcases are
generated from abstract test
scenarios and completed with
concrete data

Model

 Requirements

Generate

Executable

Tests

map

import

Transform

 Models

Extract Data

Requirement

Behavioral

Models

NL Requirements

Abstract Test

Scenarios

Data

Model

Manual

Automatic

Figure 1.1: MDTGL methodology

1.3 Thesis Contribution

This thesis offers four main contributions: (1) the reverse engineering work to help build the

MTDGL methodology from legacy software tests, (2) the development and the extension of the

Thesis Contribution

7

MTDGL methodology, (3) a set of techniques to support the MTDGL cycles, and (4) the

application of MTDGL to validate the generation of testing artifacts.

1.3.1 Contribution 1: Reverse-Engineering the Legacy Software Tests to
Model-Driven Testing

In order to support test automation and to reduce the effort involved in testing, our starting point

was to restructure legacy software tests developed manually to be driven from models. Our

reverse-engineering process achieved the following goals:

Help build the model-driven testing methodology: we automatically structured legacy software

tests to a model-driven testing methodology, based on formalized test cases. The legacy test cases

are initially translated to TTCN-3 code and then abstracted to TDL models. The goal here is to

study model-driven test case generation from TDL and to evaluate TDL as a formal language for

expressing test cases. Reaching this point, the feasibility of transforming TTCN-3 scripts into a

TDL model is shown, and a forward engineering process to regenerate the test cases can be

undertaken.

1.3.2 Contribution 2: MTDGL Methodology

We claim that MTDGL methodology has several benefits, difficult to find all at once in other

design and standardization processes:

— Reducing Test Effort and Start Testing Early: since software requirements are

described in UCM scenarios and transformed to test cases, the test development phase is

minimized. The TCs are no longer written by hand or manually corrected, but generated

using model transformation which reduces the number of iterations to get them correct.

We validated the MTDGL methodology against an industrial embedded system.

Furthermore, the test engineers don’t need to wait; they describe the requirements in the

scenario model and then push a button to generate the tests.

— Test Case Generation: scenarios guide the generation of test cases, hence allowing the

verification of the prototype against the UCMs and its validation against the informal

functional requirements. The test suite can itself be validated using structural coverage

criteria on the model. It can be reused as a basis for functional or regression test suite in

Thesis Contribution

8

the subsequent steps of the development process. The validation of the generated test

cases is covered in Chapter 6.

— Requirement Traceability: documentation can be generated from the model and is thus

consistent with the tests. Since TCs are derived from the UCM models where

requirements are described, any defect found during the execution of a TC can be traced

back to its requirement. The section Traceability Links Framework in Chapter 5 extends

the MDTGL methodology to create explicit relationships in a trace model among testing

artifacts.

— Systematic: with the help of the developed tools, repeated tests are enabled which ensures

the robustness of the test results. The result obtained from the Experimental Method

section in Chapter 6 demonstrates the robustness of the test results.

— Design Documentation and System Understandability: the documentation of

requirements and designs is done as we go along the development cycle. The generated

test specification in TDL can be used mainly for communication between stakeholders as

the basis for implementing concrete tests. It should also be understandable by non

technical people who do not have to know every technical detail described in the test

specifications. UCMs allow different specialists to become involved in discussions at

different levels while sharing a common language and, hopefully, understanding.

1.3.3 Contribution 3: Theories and Techniques Supporting

Different theories and techniques are involved in the support of the MDTGL cycles. The

developed techniques in this thesis are:

Construction of TDL Specifications from UCMs: in his work, Boulet provided a mapping

between UCM paths and TDL packages expressed as XML elements. This mapping is extended

in this thesis to build a valid test specification based on TDL metamodel, which better reflect the

test semantic, and to be used as a base to derive test cases.

Automated the Absence of Alternative Behavior: In our approach, we resolved the absence of

alternative elements in the UCM scenario metamodel. The metamodel of the UCM exported early

in the process doesn’t have an alternative element that normally a test case has to handle alternate

test behavior. We developed a technique to automate the post-processing of the interaction

Thesis Contribution

9

behavior. Our automated tool selects the common interaction behavior that represents different

responses to the tester and groups them in the alternative element.

Automated Development of Testing Artifacts: the thesis presents a new technique for

automatically generate test cases using model transformation between UCM, TDL, and TTCN-3.

The differences and the abstraction that exits among the three languages are resolved and

automated via transformation and refinement process.

1.3.4 Contribution 4: Illustrative Experiments Validating MTDGL

The MDTGL approach and its supporting techniques have been validated against an industrial

ES. Chapter 5 includes results and lessons learned from real case study experiment:

— Technical Feasibility: the technical feasibility of the MTDGL is demonstrated via a case

study from the avionics public domain for the generation of TCs from TDL specifications.

— Test Suite Validation: The evaluation of the MDTGL methodology is sampled with an

industrial product from the private domain to validate the various test suites generated

using the UCM scenarios. These experiments discuss the efficiency and performance of

the test suites in comparison with the industrial testing approach according to three

assessment criteria (requirement coverage, the correctness of generated workflow and its

cost). Most of these experiments were done in collaboration with industrial partners,

professors, and engineers. The MDTGL approach has been evaluated by our research

partner to replace its current testing process.

1.3.5 Issues Not Addressed in this Thesis

There are a couple of important issues that the MDTGL methodology do not address in this

thesis:

— The automated generation of test input needed in test cases from UCMs is not a goal of

this thesis.

— The testing used here is functional (black-box). It is targeted towards the user-system

level. Component or unit testing is not addressed in the thesis.

Thesis Outline

10

1.4 Thesis Outline

The rest of the Thesis is structured as follows.

Chapter 2 emphasizes the importance of testing ESs behaviour. The chapter defines testing and

presents an overview of testing types according to the three-dimension model. Manual testing

suffers from a high cost in terms of time, effort and resources due to the growing complexity of

ESs. This suggests the potential benefits of applying modeling and model transformation in a

testing context. MBT and MDT can thus be used to describe software specification in a

behavioral model to automatically derive test cases. The latter are completed when necessary to

be executed on the SUT with the aim to find any potential misbehavior.

As an important activity to cut down the cost of manual testing, this chapter discusses test case

generation techniques such as model-based, specification-based and natural language techniques.

The chapter discusses the use of traceability in the context of requirements engineering and

model-drive. Next, it highlights the importance of aligning the requirement traceability with

testing. A set of related work for each testing activity; (1) model transformation, (2) test case

generation, and (3) requirement traceability are presented and discussed to highlight the research

motivation of this thesis.

Chapter 3 introduces a background chapter where the three domain-specific languages used in

the model transformation approach are introduced. The construct of each language is described

extensively with examples.

Chapter 4 in this chapter, a reverse engineering process to help build the new testing

methodology is presented. The reverse engineering process started with a migration of legacy test

cases, written as Ant/XML files, into the TTCN-3 code and are reengineered with data to a higher

level of abstraction to obtain abstract test cases in TDL notation. Our overarching goal is to

support test automation and discover a path from TDL to TTCN-3.

Chapter 5 proposes a novel testing methodology to support the testing of ES by generating test

cases from a description of the abstract tests (derived from behavioral models), and maintaining

requirement traceability. The methodology called MDTGL and it is based on requirement

analysis and model transformation where the main goal is to automate the generation of test

Thesis Outline

11

artifacts. The new technique develops and validates tools for automating the generation of test

cases based on model transformation.

The chapter presents and discusses the new approach in great details, it also demonstrates its

feasibility by applying it to an avionic public case study.

Chapter 6 The evaluation of the MDTGL methodology is sampled with an industrial product

from the private domain to validate its efficiency and performance in comparison with the

industrial testing approach according to three assessment criteria (requirement coverage, the

correctness of generated workflow and its cost). As a result, the chapter presents an experiment

applied to the avionics case study for estimating the assessment criterion. A discussion with

generalization of the approach and set of lessons learned showing the difficulties encountered

especially for testing ES is then highlighted.

Chapter 7 summarizes the research contributions and findings. Finally, the chapter describes the

limitations of this study and opportunities for future work.

Topic Overview

12

Chapter 2 Literature Review

2.1 Topic Overview

The role of computing devices, embedded in everyday objects, has grown tremendously over

the last two decades. Our modern society is hugely dependent on ESs to monitor or control

different hardware infrastructures [23]. To give an example, a typical car produced at the

beginning of the 1990-ies was largely a mechanical unit. Today, a large part of the development

costs in a typical front-edge car manufacturing company are related to software development.

‘Embedded system’ is a generic term that refers to computerized systems interacting closely with

the real world through sensors, networks and actuators [24], [25]. Systems like mobile phones,

flight management systems, air traffic control systems, patient monitoring systems, and many

others can be considered as examples of ESs [26].

Software is one of the cores and most error-prone components of ESs. Any failures encountered

can range from a slight system aberration (e.g., coffee machine malfunction) to financial loss and

even loss of human life (e.g., in safety-critical systems) due to misbehavior. Thoroughly checking

the correctness of ES’s software before deployment using various validation activities (e.g.,

testing) therefore becomes necessary [27].

The rest of the chapter is organized as follows. Section 2.2 introduces the concept of software

testing. Section 2.3 highlights some of the testing categories according to the three-dimension

model. Section 2.4 presents the principles of MDA whereas Section 2.5 presents the principles of

MBT. Section 2.6 gives some definitions, presents model transformation categories along with

design features and surveys work done on the UCM model transformation. Section 2.7 presents

the various test case generation techniques that were used in the literature as a mechanism to

automate the development of tests to overcome some testing problems such as high cost and

labor-intensive. Section 2.8 discusses requirement traceability and its important role in coverage

analysis and result evaluation. Section 2.9 concludes the chapter.

Software Testing

13

2.2 Software Testing

Testing is a systematic process of finding software errors by running the software in a

controlled environment and analyzing its outcomes before its deployment. The process of

software testing involves the generation and execution of test cases on software [28]. The

generated test cases need to be executed on the SUT to collect the produced outputs. The

observed outputs are then analyzed and compared with those expected according to a derived test

oracle. A test oracle can be defined as the rules by which the expected and actual outputs are

compared to decide whether the SUT is correct or not [29].

One strategy which significantly reduces the test cost is to decrease human involvement and

automate the test process through the use of verified testing tools [30] To address growing

demand, several new technologies have emerged to help with the development and verification of

high-quality systems.

2.3 Testing Types

Moreover, different test types can concentrate on various SUT aspects and can be performed

at several levels to increase the overall confidence about its quality [31]. Figure 2.1 depicts

different types of testing categorized in three dimensions (i.e., testing level, testing accessibility

and testing aspects). Note that different types of testing can be performed together[32].

Level

Accessibility

Aspect

SUT

System

Integration

Component

Unit

White box Black box

Figure 2.1: Testing types (Briones, 2007)

Testing Types

14

With respect to which level of the SUT testing is applied, four types of testing can be identified:

unit, component, integration, and system-based testing. Unit testing checks the correctness of the

smallest unit of the SUT alone (e.g., a procedure, function or method). Component testing

concentrates on testing each subsystem individually. Integration testing checks the working order

for a set of correct components interacting with each other. To check if the system works

correctly as a whole, system testing is used.

In addition to identifying which abstract layer of the SUT needs to be tested, deciding which

aspects of the SUT are to be fully checked is equally important. Several testing types have been

proposed that cover different aspects of the SUT, such as stress, robustness, performance,

reliability, and conformance. Stress testing checks if the SUT has consistent behaviour under a

heavy load. Robustness testing involves investigating the reaction of the SUT under unexpected

circumstances such as inputs being out of range or hardware failure. Performance testing checks

the execution time of tasks performed by the SUT. Reliability testing ensures that the SUT is

almost fault-free before its deployment. Finally, conformance testing aims at testing the

functionality of the SUT to determine whether its behaviour conforms to that specified [29], [32].

The third axis in Figure 2.1 shows two types of testing (white box and black-box) used according

to the SUT visibility to the tester. White box testing is used to test the internal structure of the

SUT whose algorithms and code are visible to the tester. Test cases are then designed using the

information available about the SUT internal structure using different test selection methods.

White box testing is supported by a Control Flow Graph (CFG) which graphically represents the

code through its notations. As a result, test selection criteria can be complemented through the

use of CFG. The oracle problem of white box testing concentrates on checking the correctness of

SUT implemented behaviour at various levels such as unit-based or system-based. However,

white box testing fails to check SUT behaviour according to a reference specification [29], [32].

On the other hand, black-box testing involves testing the functionality of the SUT according to a

reference specification. The SUT internal structure (e.g., code) in black-box testing is not visible

to the tester. The specification forms the source from which test cases are generated. Test cases

are then sent to the SUT which emits output sequences. Several test selection strategies can be

used in the case of black box testing such as adequacy criteria (e.g., state or transition coverage).

Model-Driven Architecture (MDA)

15

In contrast to white box testing, black-box testing is effective in testing SUT behaviour according

to the specification but cannot guarantee whether SUT internal behaviour is correct [29], [32].

2.4 Model-Driven Architecture (MDA)

As software systems become increasingly complex, new paradigms are needed for their

construction. One of these new paradigms is model-driven architecture (MDA), which already

has a demonstrable impact in reducing time to market and improving product quality. This

particular paradigm concerned with the introduction of rigorous models throughout the

development process, enabling abstraction and automation.

The development of high-quality systems requires not only systematic development processes but

also systematic test processes. Therefore, MDT is inspired by the philosophy of MDA [33].

As shown in Figure 2.2, platform-independent system design models (PIM) can be transformed

into platform-specific system design models (PSM). While PIMs focus on describing the pure

functioning of a system independently from potential platforms that may be used to realize and

execute the system, the relating PSMs contain a lot of information on the underlying platform. In

another transformation step, system code may be derived from the PSM. Certainly, the

completeness of the code depends on the completeness of the system design model.

System Design Models

Platform Independent
(PIM)

Platform Specific
(PSM)

System Code

Transformation

Transformation

MDA approach

Test Design Models

Platform Independent
(PIT)

Platform Specific
(PST)

Test Code

Transformation

Transformation

MDT approach

Transformation

Transformation

refinement

refinement

Figure 2.2: Model-driven architecture paradigm

Model-Based Testing (MBT)

16

The same abstraction in terms of platform-independent, platform-specific modeling and system

code generation can be applied to test design models.

Furthermore, test design models might be transformed from system design models directly. This

enables the early integration of test development into the overall development process. Once the

system design model is defined at the PIM level, a platform-independent test design model (PIT)

can be derived. This model can be transformed either directly to test code or to a platform-

specific test design model (PST) [34]. The same transformation technology can be used for

deriving PSTs from the PSM. After each transformation step, the test design model can be

refined and enriched with test specific properties. Although the transformed test design model

may already contain static and dynamic aspects, the behavior has to be completed to cover

unexpected system behavior as well. Also, test issues such as e.g. test control and deployment

information have to be manually added to the test design model. At last, the test design model

can be finally transformed into executable test code from either PST or PIT.

2.5 Model-Based Testing (MBT)

MBT relates to a process of test generation from models of/related to a SUT by applying

several sophisticated methods. Several authors such as Utting [35] and Kamga, Hermann, and

Joshi [36] define MBT as testing in which test cases are derived in their entirety or in part from a

model that describes some aspects of the SUT based on selected criteria. In MBT which has the

highest focus, informal requirements of the system are the base for developing a test model which

is a behavioral model of the system. This test model is used to automatically generate test cases

[37]. One problem in this area is that the generated tests from the model cannot be executed

directly against SUT because they are at the same level of abstraction as the model. The

automation of an MBT approach depends on three key elements: (i) the model used for the

software behavior description, (ii) the test-generation algorithm (criteria), and (iii) tools that

generate supporting infrastructure for the tests. The authors in [38], [39] have worked on testing

including MBT and are investigating new MBT and automation solutions. Others in [40], [41],

and [42] describe MBT related surveys on test data generation techniques, supporting tools, and

test case generation approaches respectively. However, no formal survey on the analysis of MBT

approaches have been found. To our knowledge, this is the first scientific survey paper on MBT

approaches using a formal methodology – Systematic Review [43]. Other important

Model Transformation

17

characteristics are testing levels of MBT, automation levels, and complexity of non-automated

steps. The process of model-based testing can cover various testing activities at different

dimensions as depicted in Figure 2.3.

Level

Accessibility

Aspect

conformance

system

Black box

Figure 2.3: MBT with relation to other testing types (Briones, 2007)

MBT is considered as a form of black-box testing since test cases are generated from the

specification model without accessing the implementation. MBT can also be used at any software

level (e.g., component, integration or system). However, testing at the system level can be

considered the most common use for MBT. Moreover, using MBT for testing other software

aspects such as robustness is possible. The rationale for adopting MBT, however, is to examine

conformance between SUT functional behaviour and a reference specification model.

2.6 Model Transformation

Model composition approaches automate the composition between heterogeneous models by

relying on a matching and a merging operator [44]. Model-driven approaches move development

focus from third-generation programming language code to models. The objective is to increase

productivity and reduce time to market by enabling development and using concepts closer to the

problem domain at hand, rather than those offered by programming languages. Model-driven

development’s key challenge is to transform these higher-level models to platform-specific

models that tools can use to generate code[45]. We can use models not only horizontally to

describe different system aspects but also vertically, to be refined from higher to lower levels of

abstraction. At the lowest level, models use implementation technology concepts. Working with

Model Transformation

18

multiple, interrelated models requires significant effort to ensure their overall consistency. In

addition to vertical and horizontal model synchronization, we can significantly reduce the burden

of other activities, such as reverse engineering, view generation, application of patterns, or

refactoring, through automation. Many of these activities are performed as automated processes

that take one or more source models as input and produce one or more target models as output

while following a set of transformation rules. We refer to this process as model transformation.

Here, we give some model-driven engineering definitions, analyze current approaches to model

transformation, and present the different design features for model transformation that can be

used by modeling and design tools to automate tasks, thus significantly improving development

productivity and quality.

2.6.1 Definition

Before classifying model transformation techniques, one should understand some model-driven

engineering definitions [46], [47].

⎯ Definition 1 System Model: A system model is an abstract representation of certain

aspects of the SUT. A typical application of the system model in the MBT process

leverages its behavioral description for the derivation of tests.

⎯ Definition 2 Model Transformation: transformation is the automatic generation of a

target model from a source model, according to a transformation definition.

⎯ Definition 3 Transformation Rule: is a description of how one or more constructs in the

source language, left-hand side (LHS), can be transformed into one or more constructs in

the target language right-hand side (RHS).

⎯ Definition 4 Technical space: is a model management framework containing concepts,

tools, mechanisms, techniques, languages, and formalisms associated with a particular

technology.

⎯ Definition 5 Endogenous transformation: is the transformation between models

expressed in the same language.

⎯ Definition 6 Exogenous transformation: is transformation between models expressed

using different languages.

Model Transformation

19

⎯ Definition 7 Horizontal transformation: is a transformation where the source and target

models reside at the same abstraction level.

⎯ Definition 8 Vertical transformation: is a transformation where the source and target

models reside at different abstraction levels.

2.6.2 Model Transformation Categories

For the model-driven software development vision to become reality, tools must support this

automation [48]. Development tools should let users not only apply predefined model

transformations but also define their own. Performing a model transformation requires a clear

understanding of the abstract syntax and semantics of both the source and target. Metamodeling

is a common technique for defining the abstract syntax of models and the interrelationships

between model elements. For visual modeling languages, there are several advantages in basing a

tool’s implementation on the language’s metamodel. Such tools offer users three different

architectural approaches for defining transformations [48]:

⎯ Direct model manipulation: access to an internal model representation and the ability to

manipulate the representation using a set of procedural APIs.

One advantage of the direct-model manipulation approach is that the language used to access

and manipulate the exposed APIs is commonly a general-purpose language such as Visual

Basic or Java, so the developers need little or no extra training to write transformations.

Furthermore, developers are generally more comfortable with encoding complicated

(transformation) algorithms in procedural languages. Examples are Rational Rose, which

offers a version of VB with a set of APIs to manipulate models, and Rational XDE, which

exposes an extensive set of APIs to its model server that can be used from Java, VB, or C#. A

disadvantage is that the APIs usually restrict the kind of transformations that can be

performed. Also, because the programming languages are general-purpose, they lack suitable

high-level abstractions for specifying transformations. Consequently, transformations can be

hard to write, comprehend, and maintain. One proposal that promises to raise the level of

abstraction of operations on UML models is UML’s action language. This special-purpose

language has been proposed as a way to procedurally define UML transformations and

manipulate UML models. However, the language still suffers, although less chronically, from

Model Transformation

20

a lack of high-level abstractions for dealing with model transformations—for example,

transformation composition.

⎯ Intermediate representation: exporting of the model in a standard form, typically XML, so

an external tool can transform it.

For the intermediate-representation approach, many UML tools can export and import models to

and from XMI, which is an XML-based standard for the interchange of UML models. Because a

model is externalized into XML, it is possible to use existing XML tools, such as XSLT, to

perform model transformations. Even though XSLT was defined specifically for describing

transformations, it is nevertheless tightly coupled to the XML that it manipulates. Consequently,

it requires experience and considerable effort to define even simple model transformations in

XSLT. Another disadvantage of the approach is that transformations are performed in batch

mode, which has two important consequences. First, transformations are hard to perform in an

interactive dialogue with the user. Second, the tool still needs to reactively manage the

synchronization between models after changes. For example, a long and complex transformation

performed outside of the tools might be rejected because of the violation of cross model integrity

constraints.

⎯ Transformation language support: a language that provides a set of constructs for

explicitly expressing, composing, and applying transformations.

Transformation language support, as the name suggests, provides a specific language for

describing model transformations. It offers the most potential of the three approaches because the

language can be tailored for that purpose. In this context, you can use many languages to specify

and execute model transformations, some of which offer visual constructs. These languages are

either declarative, procedural, or a combination of both. For example, in [49] the author proposes

a graphical language for describing model transformations that are principally procedural but also

offers some declarative features. A tool that generates C++ code from the specification supports

the approach. One limitation is its underlying assumption that you can easily express your choice

of source model elements for the transformation in a general-purpose programming language,

that is, C++. The Rational XDE’s pattern mechanism is a commercial example of a specialized

transformation language. This mechanism is built on top of XDE’s model server API, so XDE

supports both the direct model manipulation and transformation language support classifications.

Model Transformation

21

XDE transformations are defined as model templates called patterns, which could contain

parameters and arbitrary procedural code written in Java, VB, or C#. You can invoke patterns

using a set of predefined callbacks; this effectively means you can make arbitrary “manual”

model changes. The key drawback of the XDE’s pattern engine is that it provides limited

capability to compose patterns. Another general approach is to treat UML models as graphs.

Applying graph rewriting rules help identify graph transformations. A rule consists of a graph to

match, commonly referred to as LHS, and a replacement graph, commonly referred to as RHS. If

a match is found for the LHS graph, then the rule is fired. Consequently, the RHS graph replaces

the matched subgraph of the graph under transformation. The author in [50] has also proposed the

use of rewriting rules for UML model transformation in the context of logic languages.

Beyond automating transformation execution, tools could suggest which model transformations a

user might appropriately apply in a given context. In the next section, we present different design

choices for model transformation.

2.6.3 Design Features for Model Transformation

In [47], the authors proposed a possible taxonomy for the classification of several existing and

proposed model transformation approaches. The taxonomy is described with a feature model

(Appendix E) that makes the different design choices for model transformations explicit. Each of

the following subsections elaborates on one major area of variation from a feature model by

describing the different choices and providing examples of approaches supporting a given

feature.

2.6.3.1 Transformation Rules

As mentioned in the definition, a transformation rule consists of two parts: an LHS and an RHS.

The LHS accesses the source model, whereas the RHS expands in the target model. Both LHS

and RHS can be represented using any mixture of the following:

Variables: Variables hold elements from the source and/or target models (or some intermediate

elements). They are sometimes referred to as metavariables to distinguish them from variables

that may be part of the transformed model (e.g., Java variables in transformed Java programs).

Model Transformation

22

Patterns: Patterns are model fragments with zero or more variables. We can have string, term,

and graph patterns. String patterns are used in textual templates. Model-to-model transformations

usually use term or graph patterns. Patterns can be represented using the abstract or concrete

syntax of the corresponding source or target model language, and the syntax can be textual and/or

graphical.

Logic: Logic expresses computations and constraints on model elements. Logic may be non-

executable or executable. Non-executable logic is used to specify a relationship between models.

Executable logic can take a declarative or imperative form. Examples of the declarative form

include object constraint language queries (OCL)-queries [51] to retrieve elements from the

source model (e.g., XDE) [52] and the implicit creation of target elements through constraints.

Imperative logic has often the form of programming language code calling repository APIs to

manipulate models directly. For instance, the Java Metadata Interface [53] provides a Java API to

access models in a MOF repository [54]. In the context of the QVT [55] standardization effort,

the UML Action Semantic [56] can be used to specify imperative logic in a form that can be

automatically mapped to different programming languages.

Both variables and patterns can be untyped, syntactically typed, or semantically typed. In the case

of syntactic typing, a variable is associated with a metamodel element whose instances it can

hold. Semantic typing allows for stronger properties to be asserted.

Four other aspects of transformation rules are:

i. Syntactic Separation: The RHS and LHS may or may not be syntactically separated. In

other words, the rule syntax may specifically mark RHS and LHS as such (as in classical

rewrite rules), or there might be no syntactic distinction (as in a transformation rule

implemented as a Java program.

ii. Bidirectionality: A rule may be executable in both directions.

iii. Rule parameterization: Transformation rules may have additional control parameters

allowing configuration and tuning.

iv. Intermediate structures: Some approaches e.g., VIsual Automated model

TRAnsformations (VIATRA) and Graph Rewriting and Transformation Language

Model Transformation

23

(GreAT) require the construction of intermediate model structures. This is particularly

relevant when the model transformation happens in-place within a model.

2.6.3.2 Rule Application Scoping

Rule application scoping allows a transformation to restrict the parts of a model that participate in

the transformation. Some approaches support flexible source model scoping using graphical

languages such as Rational XDE [52] and GReAt where a scope smaller than the entire source

model can be set. The latter can be important for performance reasons. The target scope is the

scope of the target model, in which the RHS will be expanded (e.g., XDE).

2.6.3.3 Relationship between Source and Target

Some approaches mandate the creation of a new target model that has to be separate from the

source (e.g., [57]). In some other approaches, source and target are always the same model, i.e.,

they only support in-place updates (e.g., VIsual Automated model TRAnsformations (VIATRA),

GreAT). Yet other approaches (e.g., XDE) allow the target model to be a new model or an

existing one, which could be the source model. The latter implies an in-place update.

Furthermore, an approach could allow a destructive update of the existing target or update by

extension only, i.e., where existing model elements cannot be removed. Approaches using non-

deterministic selection and fixpoint iteration scheduling may restrict in-place updates to extension

in order to ensure termination (e.g., VIATRA).

2.6.3.4 Rule Application Strategy

A rule needs to be applied to a specific location within its source scope. Since there may be more

than one match for a rule within a given source scope, we need an application strategy. The

strategy could be deterministic, non-deterministic or even interactive. For example, a

deterministic strategy could exploit some standard traversal strategy (such as depth-first) over the

containment hierarchy in the source.

Stratego [58] is an example of a term rewriting language with rich mechanisms to express

traversal in tree structures. Examples of non-deterministic strategies include one-point

application, where a rule is applied to one non-deterministically selected location, and concurrent

application, where one rule is applied concurrently to all OOPSLA’03 Workshop [47] on

Model Transformation

24

Generative Techniques in the Context of Model-Driven Architecture matching locations in the

source (e.g., VIATRA). Sometimes, rule application is determined interactively (e.g. XDE).

The target location for a rule is usually deterministic. In the case of an in-place update, the source

location becomes the target location (e.g. VIATRA or GreAT). In an approach with separate

source and target models, traceability links can be used to determine the target (e.g. [57]): A rule

may follow the traceability link to some target element that was created by some other rule and

use the element as its target.

2.6.3.5 Rule Scheduling

Scheduling mechanisms determine the order in which individual rules are applied. The

scheduling mechanism can vary in four main areas:

Form: The scheduling aspect can be expressed implicitly or explicitly. Implicit scheduling

implies that the user has no explicit control on the scheduling algorithm defined by the tool (e.g.,

BOTL and OptimalJ [59]). The only way a user can influence the system-defined scheduling

algorithm is by designing the patterns and logic of the rules to guarantee certain execution orders.

For example, a given rule could check for some information that only some other rule would

produce. Explicit scheduling has dedicated constructs to explicitly control the execution order.

Explicit scheduling could be internal or external. In external scheduling, there is a clear

separation between the rules and the scheduling logic (e.g., in VIATRA, rule scheduling is

provided by an external finite state machine). In contrast, internal scheduling would be a

mechanism allowing a transformation rule to directly invoke other rules.

Rule selection: Rules can be selected by an explicit condition (e.g. Jamda). Some approaches

allow non-deterministic choices (e.g. BOTL). Alternatively, a conflict resolution mechanism

based on priorities could be provided (although none of the investigated approaches implement

conflict resolution). Interactive rule selection is also possible (e.g. XDE).

Rule iteration: Rule iteration mechanisms include recursion, looping, and fixpoint iteration (i.e.,

repeated application until no changes detected).

Model Transformation

25

Phasing: The transformation process may be organized into several phases, where each phase

has a specific purpose and only certain rules can be invoked in a given phase. For example,

structure-oriented approaches such as Optimal have a separate phase to create the containment

hierarchy of the target model and a separate phase to set the attributes and references in the

target.

2.6.3.6 Rule Organization

Rule organization is concerned with composing and structuring multiple transformation rules. We

consider three areas of variation in this context:

Modularity mechanisms: Some approaches allow packaging rules into modules (e.g., [60] and

VIATRA). A module can import another module to access its content.

Reuse mechanisms: Reuse mechanisms offer a way to define a rule based on one or more other

rules. In general, scheduling mechanisms can be used to define composite transformation rules;

however, some approaches offer dedicated reuse mechanisms such as inheritance between rules

(e.g. rule inheritance in [60], derivation in [61], extension in [57], specialization in [62]),

inheritance between modules (e.g., unit inheritance in [60]), and logical composition (e.g. [62]).

Organizational structure: Rules may be organized according to the structure of the source

language (as in attribute grammars, where actions are attached to the elements of the source

language) or the target language, or they may have their independent organization. An example

of the organization according to the structure of the target is. In this approach, there is one rule

for each target element type and the rules are nested according to the containment hierarchy in

the target metamodel. For example, if the target language has a package construct in which

classes can be nested, the rule for creating packages will contain the rule for creating classes

(which will contain rules for creating attributes and methods, etc.).

2.6.3.7 Traceability Links

Transformations may record links between their source and target elements. These links can be

useful in performing impact analysis (i.e., analyzing how changing one model would affect other

related models), synchronization between models, model-based debugging (i.e., mapping the

stepwise execution of implementation back to its high-level model), and determining the target of

Model Transformation

26

a transformation. Some approaches provide dedicated support for traceability (e.g., [61]), while

others expect the user to encode traceability using the same mechanisms as for adding any other

kinds of links in models (e.g., VIATRA, GreAT). Some approaches with dedicated support for

traceability require developers to manually encode the creation of traceability links in the

transformation rules, while others create traceability links automatically (e.g., [61]). In the case of

automated support, the approach may still provide some control over how many traceability links

get created (to limit the amount of traceability data). Finally, there is the choice of location where

the links are stored, e.g., in the source and/or target, or separately. A preferable approach is to

store a unique identifier in each model element and store the traceability information separate

from the source and target.

2.6.3.8 Directionality

Transformations may be unidirectional or bidirectional. Unidirectional transformations can be

executed in one direction only, in which case a target model is computed (or updated) based on a

source model. Bidirectional transformations can be executed in both directions, which is useful in

the context of synchronization between models. Bidirectional transformations can be achieved

using bidirectional rules or by defining two separate complementary unidirectional rules, one for

each direction.

Transformation rules are usually designed to have a functional character: given some input in the

source model, they produce a concrete result in the target model. A declarative rule (i.e., one that

only uses declarative logic and/or patterns) can often be applied in the inverse direction, too.

However, since different inputs may lead to the same output, the inverse of a rule may not be a

function. In this case, the inversion could enumerate several possible solutions (this could

theoretically be infinite), or just establish part of the result concretely (because the part could be

the same for all solutions) and use variables, defaults, or values already present in the output for

the other parts. The invertibility of a transformation depends not only on the invertibility of the

transformation rules but also on the invertibility of the scheduling logic. Inverting a set of rules

may fail to produce any result due to non-termination. Most of the investigated approaches do not

provide for bidirectionality. Notable exceptions are [62], [63], [64]. The latter does not provide

for general bidirectionality. Instead, a transformation can be described at different levels of

abstraction, where one level is invertible and another is not.

Model Transformation

27

2.6.4 Model Transformation from UCM

UCM scenario notation can be used in the process of generating requirement-directed test suites.

There are challenges to generate test cases from UCM models as they emphasize behavior rather

than data, and they also abstract from detailed communication mechanisms. Therefore, UCM

models are inappropriate for the derivation of implementation-level test cases. However, deriving

test goals from UCM models can help improve UCM-based testing.

Several approaches for deriving test goals from UCM models exist in the literature. We

distinguish three main approaches based on: (1) testing patterns, (2) UCM scenario definitions,

and (3) transformations to formal specifications (e.g., in LOTOS).

1) Testing Based on UCM Testing Patterns:

In Amyot Thesis [65], testing patterns are developed that target the coverage of scenarios

described in terms of UCM. These patterns aim to cover functional scenarios at various levels of

completeness: The rationale is that covering UCM paths leads to the coverage of the associated

events and responsibilities (and of their relative ordering) forming the requirements scenarios.

This approach helps engineers make informed decisions about the level of coverage they want at

a given point in a UCM model. However, this process is entirely manual.

2) Testing Based on UCM Scenario Definitions

An instance of a UCM scenario can be extracted from a UCM model given a scenario definition,

see metamodel in Appendix D, and a path traversal algorithm allowing for the semi-automatic

generation of test goals. The first algorithm was proposed by Miga et al. and prototyped in

UCMNAV [66]. It was used to support the understanding of complex UCM models by

highlighting the paths traversed according to the scenario definition. It was then extended to

generate a Message Sequence Chart (MSC) representing the scenario linearly.

A new implementation of the traversal algorithm in UCMNAV was performed by Amyot [67]

which decouples the result of the traversal (output in XML) from specific representations such as

MSCs.

Model Transformation

28

Amyot et al. [68], [69] developed a tool (UCMEXPORTER) that takes the resulting XML

scenarios as input and converts them to MSCs (in Z.120 phrase representation [70]) or UML 1.5

sequence diagrams (in XMI format [71]), with various options offered to the user. A prototype

export filter that generates TTCN-3 test skeletons is also included.

Patrice et al. used the traversal mechanism in jUCMNav to generate test purposes in TDL. In

their transformation, they flattened the UCM scenario model to several scenario definitions where

each scenario element is mapped to TDL elements. The result is several independent instances of

TDL metamodel serialized in the XMI interchange format. The transformation plug-in is

packaged with jUCMNav version 5.5.0 and above. The resulting format suffers from the

following problems; (1) no support for alternative behaviour, (2) no concrete TDL syntax or

grammar, and (3) no TDL semantic, the TDL elements are displayed as partial-order trace.

Suitable scenario definitions still need to be provided manually, but then the generation of the test

goal is automated, which is a significant advantage when the UCM model evolves. Scenario

definitions have been used to explore various types of systems and to generate more detailed

scenarios, with design level artifacts such as inter-component messages. He et al. [72] used MSC

scenarios generated from a UCM model (via scenario definitions and UCMNAV) to explore the

automated synthesis of SDL executable specifications. Klocwork’s MSC2SDL, part of Telelogic

Tau 4.5, was used to synthesize the specification. However, the authors have not explored the use

of this specification to generate test cases in TTCN.

There is an obvious need to extend and validate the transformation much further, both in terms of

technical correctness and usefulness. There exists a difference between a scenario, which is a

(partial-order) trace in the UCM model, and a test case that can handle alternate test behavior,

e.g., combinations of scenarios.

3) Testing Based on UCM Transformations

The third approach automates the generation of test goals by transforming a UCM model to the

formal specification, e.g., in LOTOS.

Automated Generation of LOTOS Scenarios and TTCN Test Cases: To generate test goals,

Charfi uses an exhaustive path traversal algorithm, adapted from Miga’s original one, to traverse

a UCM model augmented with key annotations in LOTOS [73]. This approach, prototyped in the

Test Case Generation

29

UCM2LOTOSTEST tool, produces an exhaustive collection of test goals described as partially-

ordered sequences of LOTOS events. The tool does not consider the path data model, instead it

maps condition labels to LOTOS events. The generation of test goals is automated, but the size of

the resulting test suite grows very quickly as the UCM model becomes more complex. The test

goals can be used, in combination with the specification and the TGV toolkit [74], to generate

acceptance test cases in TTCN. Several minor modifications to the test goals were however

required to be compatible with the requirements of TGV.

Automated Generation of LOTOS Specifications and Scenarios: Guan’s thesis work [75] had

a different purpose, which was the generation of scenarios in the form of MSCs from UCM

models, in assistance to the process of producing precise and consistent documentation for

telecommunications standards. The author developed an automatic translator from a substantial

subset of the UCM notation to LOTOS. This work, prototyped in the UCM2LOTOSSPEC,

improves greatly upon the approach suggested by Charfi where the LOTOS specification is

produced manually because the specification can be re-generated each time the UCM model

changes.

A companion tool based on the same principles, UCM2LOTOSSCENARIOS, can extract

individual LOTOS scenarios or test goals from the UCM model. The generation of scenarios

follows the structure of the UCM, in the sense that all possible paths in the UCM are traversed

once. The generated test goals preserve the concurrency introduced in the UCM model (e.g., with

AND-forks) using the LOTOS parallel operator (|||). The tool supports the generation of test goals

from maps with loops and multiple start points. The LOTOS specification and the test goals so

generated can be used to verify and validate UCM models. The research focuses on the

translation algorithms and does not address the problems of scenario selection or elimination of

unfeasible scenarios. Therefore, for complex UCMs, this method will produce large numbers of

scenarios and many are likely to be unfeasible and will require a manual inspection to be

detected.

2.7 Test Case Generation

A difficult part of software testing entails the generation of test cases which is one of the most

intellectually demanding tasks and it is also of the most critical challenges since it can have a

Test Case Generation

30

strong impact on the effectiveness and efficiency of the whole testing process [76]; Test case

generation is an important activity to cut down the cost of manual testing. It is no surprise that a

great amount of research effort in the past few decades has been spent on automatic test case

generation. As a result, a considerable number of different techniques for test case generation

have been advanced and rigorously investigated.

In general, test cases are generated from several types of software artifacts. The types of artifacts

that have been used as the reference input to the generation of test cases include: the program

structure and/or source code; the software specifications and/or design models; information about

the input/output data space, and information dynamically obtained from program execution.

There are several techniques for test case generation [42] such as MBT techniques, random

approaches, specification-based techniques, source code-based techniques, NL, web application

and combined.

2.7.1 MBT Technique

MBT techniques are used to generate test cases from models like UML diagrams [77], [78], [79].

Many diagrams are used in generating a set of test cases, such as use case diagram, activity

diagram, and statechart diagram. The literature shows that UML diagrammatic technique is the

most widely used in the software design phase. Several approaches for generating test cases from

different UML diagrams are proposed.

▪ In [80], the authors proposed an approach that links the requirement process with the

testing process through a use case model. The approach creates system test cases based on

two types of models: (1) UML use case models that describe the system requirements

from test designers’ point of view; and (2) various forms of MBT. The approach requires

additional behavioral modeling such as activity diagram, sequence diagram, and class

diagram models. The approach focuses on data flows that require manual intervention by

test designers to annotate UML diagrams with additional test data such as coverage

requirements, constraints, and preconditions.

▪ In [81], a model-driven process is proposed to generate automatically both formal models

and test cases from the same UML model of the system under verification and validation

and model transformation. The approach is applied to a railway control system that

Test Case Generation

31

features all the characteristics of a complex ES. The approach is based on formal methods

to reduce the overall assessment effort and to support the validation against both

functional and non-functional requirements. However, the formal models are time-

consuming and expensive to generate and are difficult to be used as a communication

mechanism for non-technical personnel.

▪ The authors of [82] proposed an MDT approach for testing applications designed in a

model-driven development context (MDE). Their work focuses on the separation of

generating test cases and oracles, and the execution of these tests on different target

platforms. However, the work considers a specific issue and explicitly addresses the

problem of test generation in MDE context.

▪ In [83], the authors propose a methodology TOTEM for system testing to derive system

test requirements from early UML artifacts such as use case, class, and sequence

diagrams. The authors propose to express the sequential constraints of the use cases with

an extended activity diagram that are transformed into a weighted graph. The regular

expressions that correspond to use case sequences are extracted from the weighted graph.

The derivation of test artifacts from test requirements is delayed till the low-level design

becomes complete, and when detailed information becomes available regarding

application domain and solution domain classes.

▪ The authors of [84] propose to use restricted natural language for the specification of use

cases. The use cases are mapped to a formal model (FSM) and test scenarios are generated

by traversing the FSM based on coverage criteria. In this approach, there is a substantial

overhead for diagram creation and modification of the use case description to the

restricted natural language format.

▪ Another important approach to generate test cases from use cases is presented in [85]. The

approach generates test cases in two phases. In the first phase, the approach describes

system requirements via use case diagram, scenario, and contracts. Each use case is

enhanced with contracts that are expressed in first-order logical expression to specify the

preconditions and post-conditions. Next, the enhanced use cases are transformed to test

objectives using a transition system known as Use Case Transition System (UCTS) that

can represent all valid sequences of the use case. In the second phase, the test objectives

Test Case Generation

32

are transformed to test scenarios. Sequence diagrams are attached as additional artifacts to

obtain sequences of message calls on the SUT. The approach requires working with

various UML diagrams and formal methods.

▪ The authors of [86], have explored the automated generation of TDL Test Descriptions

from requirements expressed as UCM scenario models using the jUCMNav tool. This

transformation enables the exploration of model-based testing where the use of TDL

models simplifies the generation of tests in various languages such as TTCN-3. The

authors determined the basic differences between scenarios and test cases in the handling

of alternative paths that result from UCM alternatives. They concluded that the use of

scenarios for test case generation is feasible, but requires either a different traversal

mechanism with a different scenario metamodel or post-processing of scenarios to merge

those that constitute alternate test behaviors.

▪ In [87], the authors introduced an automatic test generation approach that provides more

natural and standardized ways of writing requirements using document templates. These

templates are extended to allow include and extension relations between use cases and to

include data elements as user-defined types, variables, and parameters. The approach uses

the use case templates that capture control flow, state, input and output as source for the

generation of formal models. Unfortunately, it only generates non-ETCs.

The major advantages of model-based are that shifting the testing activities to an earlier part of

the software development process and generating test cases that are independent of any particular

implementation of the design [88]. The following paragraphs describe existing specification-

based techniques that have been proposed since 2000.

2.7.2 Specification-Based Technique

Specification-based techniques are methods to generate a set of test cases from specification

documents such as a formal requirements specification (Cunning and Rozenblit, 1999; Tran,

2001; Rayadurgam and Heimdahl, 2001a; Nilsson et al., 2006; Tsai et al., 2005), Z-specification

(Huaikou and Ling, 2000; Jia and Liu, 2002; Jia et al., 2003) and Object Constraint Language

(OCL) specification (Antonio et al., 2006). The drawbacks of the specification-based technique

with formal methods are: (1) the difficulty of conducting formal analysis and the perceived or

Test Case Generation

33

actual payoff in the project budget and (2) there is greater manual effort or processes in

generating test cases, compared with techniques involving automatic generation processes. The

following describes existing specification-based techniques that have been proposed since 1997.

▪ Kancherla (1997) used a form of specification-based testing that employs the use of an

automated theorem prover to generate test cases. A similar approach was developed using

a model checker on state-intensive systems. The method applies to systems with

functional rather than state-based behaviors. The approach allows for the use of

incomplete specifications to aid in the generation of tests for potential failure cases. He

suggested a new method of testing software based on the formal specification. He used

the Prototype Verification System (PVS) and its in-built theorem prover to derive test

cases corresponding to the properties stated in the requirements.

▪ Cunning and Rozenblit (1999) were interested in the model-based co-design of real-time

ESs. It relies on system models at increasing levels of fidelity to explore design

alternatives and to evaluate the correctness of these designs. As a result, the tests that they

desire should cover all system requirements in order to determine if all requirements have

been implemented in the design. The set of generated tests is maintained and applied to

system models of increasing fidelity and to the system prototype to verify the consistency

between models and physical realizations. In the co-design method, test cases are used to

validate system models and prototypes against the requirements specification. In the

study, they presented continuing research toward automatic generation of test cases from

requirements specifications for event-oriented, real-time ESs. They used a heuristic

algorithm to the automatically generate test cases in their works. The heuristic algorithm

uses the greedy search method followed by a distance-based search if needed. The

algorithm with pseudo code is addressed (Cunning and Rozenblit, 1999).

2.7.3 NL Technique

Most of the software industry works with requirements expressed in NL. Several approaches are

proposed

▪ The approach in [78] presents a method (SCENT) to create scenarios from NL and

formalize them in state charts. An annotation technique is then used to enrich the

statecharts with helpful information. A path traversal algorithm is employed in the

Traceability

34

statecharts to determine concrete test cases. The test suite is further enhanced by

generating test cases from dependency charts that are modeled from dependencies

between scenarios. SCENT requires two different representations of the scenarios, which

makes it rather costly in terms of the testing effort.

▪ The approach in [89] generates test cases based on NL requirements’ specifications using

a tool. The tool models the NL requirements into UML activity diagrams to support

automated testing. This approach requires using a scenario language [90] that references

relevant words from the application with lexicon symbols.

In the conclusion, there are three major sources used to generate test cases, which are: (1)

requirements expressed in UML diagrams, (2) formal requirement specifications and (3)

requirements expressed in natural language.

2.8 Traceability

The largest part of traceability research so far has been done in the last two decades by the

requirements engineering community [91]. Over the past years, it has gained in importance, and

traceability topics have become subject to research in many other areas of software development.

One of these areas is model-driven development (MDD), an area where parts of the software

development process are executed automatically using model transformations [91], [92].

2.8.1 Requirement Traceability

In the domain of requirements engineering, the term traceability is usually defined as the ability

to follow the traces (or, in short, to trace) to and from requirements. Two common definitions of

requirements traceability are given by Pinheiro [93] as the ability to define, capture, and follow

the traces left by requirements on other elements of the software development environment and

the traces left by those elements on requirements. And by Gotel and Finkelstein [94] as the ability

to describe and follow the life of a requirement, in both a forwards and backward direction (i.e.,

from its origins, through its development and specification, to its subsequent deployment and use,

and periods of on-going refinement and iteration in any of these phases).

Traceability

35

2.8.2 Traceability in MDD

In the context of MDD, traces partially fulfill the same purpose as in requirements engineering

because in many tasks, MDD is simply an automation of software engineering. The special

characteristic of MDD is the usage of models and automated transformations. So, the artifacts

under study are mainly (intermediate) models. This context influences the definitions and

semantics of the terms known from requirements traceability and software engineering in general.

In addition, the “MDD way” to define terms is often to simply define models and metamodels in

which they occur. This is why most publications either do not refer to an explicit definition of

traceability at all or only refer to the general IEEE definition cited above. Also, since traceability

cannot be modeled intuitively, most definitions refer to traceability links. An example of a

model-like definition for the term traceability is the rather technical and narrow definition that is

given by the OMG [95]: A trace records a link between a group of objects from the input models

and a group of objects in the output models. This link is associated with an element from the

model transformation specification that relates the groups concerned. A commonality between

MBT and traceability is required to manage relationships among artifacts. Relationship

management should assist conception, persistence, preservation, and destruction of meaningful

relationships across software artifacts [96].

2.8.3 Alignment of Requirements Traceability and Testing

In a recent study [97], the authors highlight the importance of aligning the activities of

requirement traceability to testing to improve system quality and project cost. The study

concluded that organizations are becoming more interested in linking requirements and testing,

but often the link is not provided and there is a gap between them.

Several researches in the study were identified that focus on the alignment of requirements

specification and testing. In MBT-based approaches, the generated test data cannot be executed

directly on SUT because they are at the same level of abstraction as the model. In formal

approaches, representing requirements in a formal language is time-consuming and requires

expertise.

Traceability links can be visualized in a traceability matrix, as cross-references in the table-view

or in a model- or graph-like diagram. In order to support relationship management among

Traceability

36

requirements and test cases, several approaches use the traceability matrix and MBT to represent

the relationships that exist.

2.8.4 Matrix Approach

A traceability matrix is a two-dimensional grid that represents traceability links that exist

between two sets of artifacts, such as requirements, design elements, etc. The rows and columns

of the grid are associated with the artifacts, and marks at the intersections represent the existence

of a link.

While early forms of traceability matrices only provided support for a single type of mark

representing the existence or non-existence of a link between two artifacts, traceability matrices

today can be enhanced to include additional information about artifacts and links [93]. For

example, an artifact in the matrix is usually referenced using an identifier but modern user

interfaces can provide popup windows directly showing an artifact’s meta-information or content

if needed. Furthermore, link types or other information could be encoded using different colors or

symbols [98].

▪ One example of a semi-automatic solution [99] creates a traceability matrix from

requirements to test cases during the test generation process. The formal models are

annotated with requirements identifiers. When the test cases are generated from the

models, the identifiers are used to create the traceability matrix relating requirement

identifiers to test cases identifiers.

▪ Spanoudakis and Zisman [96] also provide a matrix containing pairs of artifacts and

traceability link classes. This matrix gives an overview of which traceability links can

connect with which artifacts according to the literature. A similar list has also been

created by Espinoza et al. [100].

▪ A hierarchical classification has been created by Dahlstedt and Persson [101]. They base

their classification on the first level of structural, constrain, and cost/value

interdependency types. According to their classification, structural types, such as refined-

to or similar- to denote structural cross-references.

Traceability

37

2.8.5 MBT Approach

Automated MBT approaches exploit two types of relationships; (1) implicit relationships that are

embedded in the tool’s algorithms and models, (2) explicit relationships that are either

automatically created and made explicit by the tool, or created by the users. Several approaches

[102], [103] use implicit relationships to support test generation, execution and evaluation; while

others [104] use implicit relationships to support regression testing. Further approaches use

explicit relationships to support test generation [105], test execution and evaluation [106], [107]

[108], or coverage analysis. In MDD, traceability links are often expressed as part of a model,

and even in the requirements domain, traceability schemes are usually described as metamodels.

▪ N aslavsky et al. [109] use one kind of behavioral UML model for test generation. A

control-flow representation is used along with domain analysis of the parameters of the

sequence diagram.

▪ Basanieri et al. [105] use a tool (COW_SUITE) that loads UML models to create explicit

relationships as edges in hierarchical trees among them.

▪ The authors in [110] adopt the tool (AGEDIS) that uses explicit relationships created by

the user to execute and evaluate the test scripts. The created relationships map abstract

stimuli to method invocations, and abstract observations to value checking. The tool also

expresses relationships between abstract test suites and test trace results during test

execution. Manual coverage analysis is supported via visualization of test traces and the

abstract test suite that generated them.

▪ In [107], the (AsmL) tool uses explicit relationships created by the user to execute and

evaluate the abstract test scripts. The use of relationships in AsmL tool supports the

parallel execution of the model and its implementation by relating them and comparing

their states.

▪ Abbors et al. [111] present an approach for requirements traceability across an MBT

process and the tools that are used for each phase. Some prior researches address

requirement-based testing to facilitate traceability between requirements and testing.

Traceability

38

▪ Arnold et al. propose a scenario-driven approach [112] that supports the traceability

between generated and executed test cases, and the executions of an IUT. Their approach

supports both FRs and NFRs.

▪ Goel et al. [113] propose a model-driven approach in which the strengths of both

scenarios-based and state-based modeling styles are combined. Their tool makes it

possible to trace from requirements to testing and vice versa in a round-trip engineering

approach.

▪ Pfaller et al. propose [114] using different levels of abstraction in the development

process to derive test cases and link them with the corresponding user requirements

▪ Boulanger and Dao propose an approach [115] in which RE is done in different phases of

the V-model to facilitate requirements validation and traceability.

▪ Felderer et al. focus on model–driven testing of service-oriented systems in a test–driven

manner [110]. They believe that Telling TestStories tool could support traceability

between all kinds of modeling and system artifacts.

▪ Marelly et al. extend sequence charts (LSCs) with symbolic instances and symbolic

variables [107] to reach linking requirements and testing.

2.8.6 Formal Approach

▪ Post et al. focus on translating requirements into scenario-based formal language which in

turn could be linked to software verification [116].

▪ Bouquet et al. use a subset of UML 2.0 diagrams and Object Constraint Language (OCL)

operators to formalize the expected system behavior [117]. The model is used for

automatically generating executable test scripts.

▪ Kelleher and Simonss propose a new requirement modeling approach [118] in which use

cases are replaced with use-case classes in UML 2.0. Use case classes are formal

templates for describing rules on modeling requirements with instances. This

replacement, together with utilizing explicit traceability links, facilitates bridging the gap

between requirements and testing.

Traceability

39

▪ Sabetta et al. discuss [119] that sometimes it might be needed to transform UML models

into different analysis models which could each be used to verify (in a formal way) one

kind of NFR. Some of these models are Petri nets, queueing networks, formal logic, etc.

For this purpose, their abstraction approach can transform UML models into different

kinds of analysis models in different formalisms.

▪ Hussain and Eschbach present a model-based safety analysis approach [120] that

automatically composes formal models of the system and produces a fault tree that can be

used to generate test cases for the software system. Therefore, test cases can be directly

bound to the safety requirements and assure traceability between testing activity and

safety requirements.

2.8.7 Meta-Model Approach

▪ Ibrahim et al. construct a meta-model with top-down and bottom-up traceability support

[121]. The authors developed an approach that gathers traceability relations from different

sources. Requirements and test cases are connected while analyzing system

documentation. Test cases and methods are linked via test execution, where methods and

classes are linked by static program analysis. The traceability approach provides some

leverage. However, the bottom-up traceability provides less accuracy and requires more

maintenance effort.

▪ Dubois et al. propose a meta-model called DARWIN4REQ which aims to keep the

traceability link between three phases of requirement elicitation, design, and V&V of

requirements [122]. The authors investigated strategies for requirements traceability based

on models but focusing on subdomains of embedded systems.

2.8.8 Test Case Approach

▪ Nebut et al. concentrate on a guideline for automatic test case generation on ESs that are

based on object-oriented concepts [85] The system requirements are described via use

cases, contracts, and scenarios. If any other information for the requirements is needed, it

is provided by different UML artifacts like sequence diagrams.

▪ Whalen et al. mention several problems of measuring the adequacy of black-box testing

using executable artifacts [123]. They also present coverage metrics based on formal

Summary of Literature Review

40

high-level software requirements. Conrad et al. presented a test case generation strategy

that has been in use in an automotive company [124].

▪ Siegl et al. are also interested in the automotive industry proposed Extended Automation

Method (EXAM) for automatic generation of test cases, and the Timed Usage Model

process for derivation of test cases from requirements [86].

▪ Riebisch and Hubner concentrate on the first step of test case generation [125]. In this

step, their proposed method uses a description of the natural language and transforms it

into an expression with formally defined syntax and semantics.

2.9 Summary of Literature Review

Testing embedded systems software has become a costly activity as these systems become

more complex to fulfill rising needs. Testing processes should be both effective and efficient. An

ideal testing process should begin with validated requirements and begin as early as possible so

that requirements defects can be fixed before they propagate and become more difficult to

address.

Among a range of testing activities, test case generation is one of the most intellectually

demanding tasks and it is also of the most critical challenges since it can have a strong impact on

the effectiveness and efficiency of the whole testing process.

Since traceability is mainly achieved by documenting different aspects of (usually manual)

transformations of software development artifacts, MDD seems to be able to leverage traceability

by automatically generating these documentations. However, traceability practices, in general,

are far from mature, benefits are to a large part not conceived in the industry, and we are still

standing at the beginning of an emerging discipline. A lot of research—both fundamental and

applied—has still to be done. This is a challenge, not only because of the difficult research

questions, but also because researchers in the field of traceability are usually part of very

different larger research communities (such as requirements engineering, modeling, or program

understanding), and there is only little communication between these communities.

Use Case Maps (UCM)

41

Chapter 3 Domain Specific Languages (DSLs)

In the last few years, domain-specific language (DSL) has been getting more and more attention

in the software industry. DSL is a small, usually declarative, language that offers expressive

power focused on a particular problem domain. One of the main goals of DSLs is to enable the

developer to define completely new languages that have more appropriate concepts for special

domains. Furthermore, developers get the advantages of development activities on a higher level

of abstraction. Languages are represented in different ways: by metamodels specified in some

data modeling technique or by formal grammars. Although many DSLs have been designed and

used over the years, the systematic study of DSLs has only started more recently.

In this Chapter, we introduce three DSLs that we used in our approach to (1) capture functional

requirements in terms of causal scenarios, (2) describe the software ATCs as scenarios and (3)

implement TCs and execute them against SUT.

3.1 Use Case Maps (UCM)

UCM: a visual notation for describing, in a high-level way, how the organizational structure of a

complex system and the emergent behaviour of that system are intertwined. UCM [8] as part of

the User Requirements Notation standard was suggested to represent the behaviour of a system as

a visual use case, i.e. a scenario model. UCM is a scenario-based notation enabling the

description and analysis of use cases and scenarios. It has been used to capture functional

requirements in terms of causal scenarios composed of responsibilities that can be attached to

underlying abstract components. UCM models have maps that contain any number of paths and

components. The core notation of UCM has the following fundamental elements. Paths express

causal sequences starting at start points and ending at endpoints, which respectively capture

triggering and resulting conditions/events. Along a path, responsibilities describe the required

activities to fulfill a scenario. Paths can be combined as alternatives with guarded OR-forks and

merged with OR-joins, while AND-forks and AND-joins depict concurrency. Loops can be

modeled implicitly with OR-joins and OR-forks. Joins and forks may be freely combined.

Waiting places and timers denote locations on the path where the scenario stops until a condition

is satisfied. UCM models can be decomposed using stubs (static or dynamic), that contain sub-

Use Case Maps (UCM)

42

maps. Components are used to specify the structural aspects of a system. Map elements that

reside inside a component are said to be bound to it. Components, which can be of different types

(not shown here), can also contain sub-components, recursively. UCM models can be edited,

analyzed and transformed with the jUCMNav tool [18]. One of its main features is a UCM

traversal mechanism that takes as input a model and a scenario definition (start points triggered,

and initial values assigned to the model variables used in OR-fork/timer/stub conditions) and

produces as output a scenario that contains the UCM elements traversed. Generated scenarios are

partial orders containing sequenced and concurrent responsibilities only; all conditions and

alternatives have been resolved during the traversal. A scenario can be used to highlight the paths

traversed on the visual model itself (e.g., in red or grey).

In Figure 3.1, we find a model with one map contains: a Causal path represented by a wiggly

line, two rectangular boxes that represent components (Tester and SUT) four responsibilities

bound to components along the path, and one highlighted scenario.

Figure 3.1: UCM core notation

The responsibilities elements in UCM are abstract and can represent actions or tasks to be

performed by the components. The components themselves are also abstract and can represent

software entities (objects, processes, network entities, etc.) as well as non-software entities (e.g.

users, actors, processors). The concrete metamodel of the UCM notation is shown in Appendix A

where the UCM quick reference guide is shown in Appendix F.

Responsibility4

X X

X
X

Responsibility3

Responsibility2Responsibility1

Tester SUT

Test Description Language (TDL)

43

3.2 Test Description Language (TDL)

TDL: TDL is a standardized scenario-based approach proposed by the European

Telecommunications Standards Institute (ETSI) to describe software test cases as scenarios. TDL

is a new language created for specifying “formally defined test descriptions used as the starting

point for test automation. It allows describing scenarios on a higher abstraction level than

programming or scripting languages. Furthermore, TDL can be used as an intermediate

representation of tests generated from other sources, e.g. simulators, test case generators, or logs

from previous test runs.” [126]. TDL is a general formal language for representing test

descriptions which are used mainly for communication between stakeholders as the basis for

implementing concrete tests. The TDL design is centered on three separate concepts: (1) The

metamodel principle that expresses its abstract syntax; (2) Concrete Syntax, which is user-defined

for different application domains; and (3) the TDL semantics that can be found in meta-model

elements. The main TDL structure elements expressed in italic are shown in Figure 3.2.

Figure 3.2: Major parts of a TDL specification

a) A Test Objective that states the reason for designing either a Test Description or a particular

behaviour of a Test Description. It can be written as a simple text in natural language.

b) A set of typed Data Sets used in the interactions between components in a Test Description;

Exchanged

in

TDL Specification

Test Objectives

Data Sets

Test Configurations

Test Descriptions

Guide

Used

by Accept

Test Description Language (TDL)

44

c) A Test Configuration consisting of at least one tester and at least one SUT component and

connections among them reflecting the test environment.

d) A set of Test Descriptions to describe one or more test scenarios based on the interactions of

data exchanged between the Tester and the SUTs. It also contains behavioral elements that

operate on time. The control flow of a Test Description is expressed in terms of the

composition of operations such as sequential, parallel, alternative, iterative, etc.

Using these major ingredients, a TDL specification is abstract in the following sense:

▪ Interactions between tester and SUT components of a test configuration are considered to

be atomic and not detailed further. For example, an interaction can represent a message

exchange, a remote function/procedure call, or a shared variable access.

▪ All behavioural elements within a test description are ordered unless it is specified

otherwise. That is, there is an implicit synchronization mechanism assumed to exist

between the components of a test configuration.

▪ The behaviour of a test description represents the expected, foreseen behaviour of a test

scenario assuming an implicit test verdict mechanism if it is not specified otherwise. If the

specified behaviour of a test description is executed, the 'pass' test verdict is assumed.

Any deviation from this expected behaviour is considered to be a failure of the SUT,

therefore the 'fail' verdict is assumed. There is a possibility for explicit verdict assignment

if in a certain case there is a need to override this implicit verdict setting mechanism (e.g.

to assign 'inconclusive' or any user-defined verdict values). However, there is no

assumption about verdict arbitration, which is implementation-specific.

▪ The data exchanged via interactions and used in parameters of test descriptions are

represented as name tuples without further details of their underlying semantics, which is

implementation-specific.

A TDL specification represents a closed system of tester and SUT components. That is, each

interaction of a test description refers to one source component and at least one target component

that is part of the underlying test configuration a test description runs on. The actions of the

actors (entities of the environment of the given test configuration) can be indicated informally.

Test Description Language (TDL)

45

Time in TDL is considered to be global and progresses in discrete quantities of arbitrary

granularity. Progress in time is expressed as a monotonically increasing function. Time starts

with the execution of an unreferenced ('base') test description. TDL can be extended with tool,

application, or framework-specific information by use of annotations.

The TDL elements are explained with an example based on the Internet’s Domain Name System

(DNS) that aims at verifying that a DNS server can properly resolve hostnames to their

corresponding IP addresses. The Test Configuration element that is composed of a set of two

interacting components is shown in Figure 3.3.

TestConfiguration: DomainNameServer

SUT

DNSServer:CompType

Tester

DNSClient:CompType

Figure 3.3: TDL Test Configuration element

The Test Description element represents the expected behaviour based on the Test Objective and

expresses the test in terms of Data Set instances exchanged as shown in Figure 3.4.

TestDescription:VerifyDNSServer

Tester

DNSClient:CompType

SUT

DNSServer:CompType

RequestResolveDNS(hostName)

DNSResolved(IPAddress)

TestObjective

Description Verify that a DNS server is able to properly resolve host names to

their corresponding IP addresses

Figure 3.4: TDL Test Description element

Appendix B and Appendix C show the metamodel of Test Configuration and Test Description.

Interested readers can refer to [126], [127] that discuss the application of TDL to several common

application scenarios.

Testing and Test Control Notation (TTCN-3)

46

3.3 Testing and Test Control Notation (TTCN-3)

TTCN-3: a standard language for test specification that is widespread and well-established. The

core language has to be transformed to a programming language such as Java, C, C++ or C#.

There are number of commercial and non-commercial tools that provide supports to the language

[128]. TTCN-3 is meant for specifying collections of test cases, Abstract Test Suites (ATS). To

be able to execute the test cases within an ATS, a tool (compiler, interpreter) is required to

transform the ATS into an executable test suite. In the following, TTCN-3 Core language is

explored.

Module: the TTCN-3 language element called module corresponds to a compilation unit in

traditional programming languages. It can be analyzed, compiled or interpreted, it may contain a

single or several test cases, and it can be used as a library by other modules. Each module is

divided into two parts, definitions part and control part, both of which are optional. The

definitions part contains top-level definitions, such as type definitions, data (template) and

constant definitions, port and component definitions, and function and test case definitions. The

control part can be seen as the "main function" of the module and its purpose is to call the test

cases defined in the part of the definitions. It contains the logic for executing the test cases in a

certain order, it can apply execution time restrictions to the test cases, and it can use the

definitions specified in the definitions part of the module to specify local variables. It is possible

to specify parameters for a module, meaning that when a test case or the control part of the

module is executed, it can read these parameters and behave according to them. The parameters

are like module global constants, whose values are set at the start of the execution.

Test case: a test case can be seen as the main function of a single case, and of any other

functionality executed in parallel with the test case. A test case is always executed within an

entity called component, and it can call normal functions and altsteps to extend its behavior. The

result of executing a test case is a verdict, which tells whether the system under test passed the

test. A test case can be both a message- and a procedure-based.

Message-based testing consists of sending messages to the SUT, receiving messages from it,

checking whether messages were not received in time, and checking whether the received

messages are in the right order and that they contain the right values. Procedure-based testing

Testing and Test Control Notation (TTCN-3)

47

consists of calling functions of the SUT, receiving return values and exceptions, receiving

function calls, and of passing function return values and raised exceptions to the SUT.

Components, Ports, and Test Configurations: the behavior of a single test case consists of

executing functionality (test cases and functions) in one or more components. A component is a

user-specified entity, which contains user-defined ports, via which the component can interact

with other components and the SUT with message and procedure operations. In addition to the

ports, the component may contain private variables and timers. The component itself does not

specify any kind of behavior but it provides an environment for it. This means that one can start

functionality in the component and this functionality can then use the ports, variables, and timers

of the component. The functionality that can be started in the component can be either a test case

or a function, see Figure 3.5.

Figure 3.5: Model component

Verdict: every component that exists during a test case has a local object called verdict, which it

can set (setverdict) based on how it experiences the behavior of the other components and the

SUT. Components can also read their current verdict value (getverdict). The possible verdict

values a component can set are none, pass, inconc, and fail. Once a component has set a value for

its verdict, it can only "worsen" the verdict value.

Function: a normal function can have input parameters, output parameters, input-output

parameters, and it can return a value. It is also possible to specify that the function can only be

called or started within a component of a certain type, which makes the internal definitions of the

component visible to the function (ports, timers, and variables).

Altstep: used for specifying action whose execution is triggered by some "receiving" event or

operation, such as a timeout or receipt of a message, it can be given access to the internal

definitions of the component.

Testing and Test Control Notation (TTCN-3)

48

Types and Values: TTCN-3 provides a set of basic and structured types, from which the user

can derive own sub-types by restricting their values.

Template: a template is a data structure, that can be "used to either transmit a set of distinct

values or to test whether a set of received values matches the template specification". When a

template is used in the receiving direction to match with received values, each template can

specify a set of values that it matches with.

Communication operations: TTCN-3 has both message- and procedure-based communication

operations with which components can interact with each other and with the SUT.

Alternative behavior: in a test case, it is not always known beforehand in which order certain

events occur. The SUT can have several legal actions it may perform, and it can behave

completely erroneously. The situations in which several alternative events are possible are

handled by TTCN-3 alt statement. The alt statement specifies a list of receiving operations

(alternatives) The receiving operations are receive, getcall, getreply, catch, trigger, and check

(explained in the previous section), with the addition of done and timeout. If the alternative

matches with an event, then the code block following the alternative is executed, after which the

execution continues after the alt statement, unless a repeat statement is encountered. If the

alternative does not match, then all the following alternatives are tried in the order in which they

are listed within the alt statement.

Altstep: altstep is a function like an element in TTCN-3 that can be used instead of the receiving

operations in the alt statement.

Timers: TTCN-3 provides at language level syntax for specifying both implicit and explicit

timers. The implicit timers are the timers whose values specify maximum execution time for test

cases and function calls. These timers cannot or need to be started, read, or stopped by the user.

Explicit timers are the user-created timers that can be started, read, and stopped, their timeout can

be waited for, and they can be given as parameters to functions and altsteps. In the previous

section, a timer was used in the context of the alt statement, to specify maximum time how long

the component waits for messages to be received from the specified ports until it continues its

execution.

Testing and Test Control Notation (TTCN-3)

49

Summary: TTCN-3 is a test specification language developed by ETSI that applies to a variety

of application domains and levels of testing. TTCN-3 [26] was selected for this research study for

its industrial strength to implement and execute TCs against SUT. It is designed for specifying

collections of test cases in ATS that are then used to test the SUT. The top-level unit of TTCN-3

is a module that corresponds to a compilation unit in traditional programming languages. The

module may contain a single case or several test cases that can be compiled or interpreted. A test

case can be seen as the main function of a single case; it is always executed within an entity

called a component to express its behaviour. The result of executing a test case is a verdict that

determines if the SUT has passed the test. Listing 3-1 shows a test case that implements the DNS

request introduced in the previous section.

Listing 3-1: TTCN-3 test case

A component should be defined (DNSClient) with a single port (clientPort) to communicate with

the DNS server (SUT). The clientPort sends a data instance (hostName) to the SUT (line 4).

Directly after, a timer is started (line 5) and set to run for 10 seconds. If the clientPort receives

(line 7) the expected data instance (IPAddress) within 10 seconds, the test case passes. If the

clientPort receives anything other than IPAddress (line 9) or the DNSTimer times out (line 11)

the test case fails.

1. testcase VerifyDNSServer() runs on DNSClient {

2. template String hostName := "MyHostName";

3. template String IPAddress:= "192.124.135.56";

4. clientPort.send(hostName);

5. DNSTimer.start(10.0);

6. alt {

7. [] clientPort.receive(IPAddress) {

8. setverdict (pass); }

9. [] clientPort.receive {

10. setverdict (fail); }

11. [] DNSTimer.timeout {

12. setverdict(fail) }

13. }

14. }

The Specification Level of the three Languages

50

3.4 The Specification Level of the three Languages

The UCM language is used to describe the SUT behavior on requirement level (test goals), the

resulting models abstract from detailed communication mechanisms and data which makes

deriving executable test cases a difficult activity. On the other hand, TTCN-3 language is meant

for specifying collections of test cases at the implementation level. The TTCN-3 test cases are

developed and executed on the SUT when data becomes more subdivided and specific. This gap

that exists between UCM models and TTCN-3 test cases can be filled by TDL language which

allows describing tests on a higher abstraction level than a scripting language. Therefore, the

TDL models can be used as an intermediate representation.

Each granular model of the three languages can be used to characterize a certain level of testing

details. In particular, UCM models are developed at the requirement layer to abstractly formalize

the functional requirement as test goals. The resulting test goals convey information to help

develop some of the test specifications where test components and their interactions can be

identified at the design layer. Finally, TTCN-3 test case implementation, developed at the test

scripting layer, can be generated based on the obtained test specification. We claim that vertical

transformation from the abstract test goals to a concrete test implementation can be achieved

using the three languages. Figure 3.6 shows the link between the three languages and the models

during model transformation activities.

UCM

TTCN-3

TDL

Modeling language to represent
SUT requirements (scenario)

Description language to represent
test specification (test configuration,
behavior, data instance and objectives)

Scripting language to represent
test implementation (data oracle)

Test goal

Test
specification

Test
implementation

Scenario
Refinement

Test data

Model TransformationDSL

Figure 3.6: Link between the three languages and model transformation

Summary of Domain Specific Language

51

3.5 Summary of Domain Specific Language

There are challenges in generating test cases from UCMs models as they reside at different

abstraction levels from test cases. At first, tests need to be re-targetable and readable by test

equipment, as supported by languages such as TTCN-3. Since UCM scenarios are abstract, there

is a need to transform them to an intermediate level that help bridge the gap with the test cases in

TTCN-3. In particular, the absence of elements such as alternative behavior and data in the UCM

scenario metamodel makes generating test cases difficult as these elements are required for

proper execution. Another challenge is the validation of generated test cases (TTCN-3) in terms

of technical correctness, effectiveness and usefulness.

As a result, research is needed to explore and resolve the basic differences between UCM models

and test cases in TTCN-3. Further research is also needed on when and how to introduce concrete

data in the generation of executable test cases in TTCN-3, and how to link the generated artifacts

among each other for traceability purposes.

Research Questions

52

Chapter 4 Towards Building a New Test Case Generation
Approach

4.1 Research Questions

The conducted research and development study tackled the following problems: (1) difficulties in

generating TTCN-3 test cases from abstract UCM models (2) delay in starting testing activities

(3) substantial number of generated test cases to be checked, (4) weak links between requirement

traceability with testing, and (5) high cost in achieving compliance with regulations and standard.

The conducted research explored a model-driven testing paradigm to build a new testing

methodology that covers two testing activities; (1) test case generation and (2) test case

traceability.

The conducted research raised several questions that are centered on generating test cases and

improving the testing process in terms of time and labor work:

Research Question 1: “how an existing legacy software tests can help in developing model

transformation?”

Research Question 2: “what are some of the design factors a model transformation should have

to bridge the abstraction gaps between UCM and TTCN-3 models to enable the generation of test

cases?”

Research Question 3: “how do we assess the correctness of a test case generation process and

how to evaluate its efficiency?”

Research Question 4: “how to align the activities of requirement traceability to testing to

improve project cost and comply with DO-178C standards?”

The remainder of this chapter is organized as follows. The motivation to reengineer legacy

software tests is first introduced in Section 4.2.1. The reengineering of legacy software tests

activities to model-driven testing is presented in 4.2.2. This Section has two activities; the

migration of legacy code to TTCN-3 code is presented in Section 4.2.2.1. Followed by code to

Reengineering Legacy Software Tests to MDT

53

model activity presented in Section 4.2.2.2. Lesson learned from the reengineering activities is

presented in Section 4.2.3. Section 4.2.4 concludes the chapter.

4.2 Reengineering Legacy Software Tests to MDT

The development of the test case generation process started by a modernization stage—

reengineering the legacy software tests to model-driven testing. In particular the reengineering of

the legacy test implementation to TTCN-3 and abstracting them to test specification in TDL

models.

4.2.1 Motivation

At our research partner premises, the testing process (non-model based) to measure the quality of

its prime product Flight Management System (FMS) is labor-intensive and error-prone. The FMS

is a dynamical system i.e., system that evolves with time, a characteristic of such systems is the

high dependency between events, the large amount of input and output data, making the test

phase particularly challenging without the use of automation. The software test to verify the

functionality of the FMS is developed manually from requirements. These requirements are

expressed in NL and are layered as high-level requirements (HLR) and low-level requirements

(LLR) in separate artifacts. The requirements are subsequently used as the basis, along with test

engineer knowledge (implicit), for writing abstract test cases in NL, and then manually

developing executable test cases using Eclipse Ant/XML software to test the SUT.

In this Chapter, we propose an approach, work published in a conference [129], that starts with

the code migration of these legacy test cases to the TTCN-3 language, which in turn will be

reverse-engineered into abstract TCs in TDL. Once the reengineering of the software tests is

completed, new TCs can be captured directly in TDL, and these abstract TCs can be used to

generate executable TCs in TTCN-3 or any other desired scripting language. Furthermore, when

new requirements emerge to demand the evolution of the software tests, this software evolution

can take place at the model level.

The ultimate goal in the reverse engineering process is to enable the automatic generation of the

executable TCs and to have them migrate to a more standard testing language to benefit from its

Reengineering Legacy Software Tests to MDT

54

important features. The next subsections explain the reengineering activities enclosed in the

reverse engineering process, code-to-code migration and code-to-model.

4.2.2 Reengineering Activities

The reengineering of legacy software tests aims to discover feasible transformation from the test

layer to test requirement layer, work presented in ETSI conference [130]. Furthermore, it is used

to help build the model transformation, generate TTCN-3 test cases from TDL models, and show

its feasibility. Then, after showing that TTCN-3 test cases can be derived from TDL models, the

approach is extended with the requirement layer which describes software specifications in UCM

scenarios where test objectives can be driven and transformed into TDL models. Reaching this

point, the feasibility of transforming TTCN-3 scripts into a TDL model is shown, and a forward

engineering process to regenerate the test cases can be undertaken.

Figure 4.1 shows two phases of the reverse-engineering process. The feasibility of transforming

the legacy test cases into an abstract model is shown, along with a forward engineering process to

regenerate the test cases in selected test language such as TTCN-3.

Modernization

Process

Legacy Process

(1) code-to-code

(2) code-to-model

ETC

(ant/XML)

ATC (NL)

Software

Requirements

(4)

Automatic

Generation

(3) extract test

objectives,

enhance & check

ETC

(TTCN-3)

ETC

(any)

ATC

(TDL)

Any: Ant,

TTCN-3

Manual

Auto

Figure 4.1: Modernization of legacy software tests

Reengineering Legacy Software Tests to MDT

55

4.2.2.1 Code-to-Code Migration:

We developed a language translator tool to migrate the ETCs automatically to three TTCN-3

modules. This code migration is performed only once to obtain equivalent semantic code in

TTCN-3. Figure 4.2 shows the architecture of the translator tool that generates three modules.

The resulting modules along with a fourth module (Type module) constitute an executable

TTCN-3 TC that is equivalent to the Ant/XML TC. The Type module is produced manually by

analyzing the SUT inputs and outputs and the legacy. The architecture of the translator tool

combines the following elements:

⎯ Transformation Rules: several defined rules before the transformation of each Ant/XML

construct to one or more equivalent constructs in TTCN-3. (one-to-many transformations

are possible)

⎯ Parser: reads legacy TC to generate syntactic element tokens encountered in the TP.

⎯ Converter: based on transformation rules, it transforms the syntactic element, returned by

the Parser, to functionally-equivalent code to the generator.

⎯ Generator: writes the generated TTCN-3 code, produced by the Converter, dispatched in

each of the corresponding modules.

Translator Tool

Parser

Converter

Generator

Analysis of

legacy code Transformation Rule #1

Transformation Rule #2

Transformation Rule #n

TTCN-3

Data

TTCN-3

Component

TTCN-3

Behavior

TTCN-3

Type

module

TC

(Ant/XML)

Figure 4.2: Language Translator Tool

Reengineering Legacy Software Tests to MDT

56

Table 4-1 shows the transformation rules. The third column describes how the legacy ETC

semantic is preserved using TTCN-3 syntax.

Table 4-1: Transformation rules to convert Ant/XML to TTCN-3 languages along with

transformation rules

Legacy code element Equivalent construct in TTCN-3 Transformation rules

<project name = “str”>

module <str_Template> { }

module <str_Behavior> { }
module <str_Configuration> { }

Rule # 1: project element is translated to three module constructs which

together compose a full TP in TTCN-3. The project name = str is used
as a prefix with “Template”, “Behavior” or “Configuration” to designate

each TTCN-3 module. If the project name contains special characters

such as dot or space, they are replaced by underscores.

<target name = “str”>

testcase <target_str> runs on
MTCType system SystemType

Rule # 2: target element is translated to a testcase construct, and the

target name is prefixed with the string target_

The testcase will contain the action and verify constructs (stimulus and

response)

<target name= “all”

depends = “str1, str2,

…, strn”/>

control {

 execute (target_str1());

 execute (target_str2());
 execute (target_strn());

}

Rule # 3: target name = all is translated to a control construct, and the

intermediate targets, str1, str2, … separated by commas, identified in

depends are translated to a sequence of execute statements such as

execute (target_str1()); in the control construct.

interface port = “name”

type port interface_name message {

 in sending_msg;
 out receiving_msg; }

type component interfaceType {

 port interface_x interface; }

Rule # 4: Every interface is mapped to a message-based port and

attached to a component.

The interface port = name is translated to a type port message-based

construct and attached to a type component construct.

<action key = “str1”,

“str2”, …, strn />

function action (name, command,

str1, …, strn) runs on

componentType {
….

portName.send(command, str1, …,

strn);
….

}

Rule # 5: action elements are translated to functions and function calls

constructs. The action parameters command, name, str1, …, strn are

passed as formal parameters to the function definition. The parameter
name represents the interface name where command represents the input

to send. Some actions take additional parameters to send the command,

they can be represented by str1, …, strn. The parameter portName
represents the port via which the input to SUT is sent. The action with

its arguments in the legacy TP represent a stimulus to send to the SUT

< verify query = “str1”

value= “str2” />

template component type verifyStep
:= {str1 := pattern str2 }

function matchResult(verify,

portName) runs on componentType
{

alt {

[] portName.receive(verify) {
 setverdict(pass); }

[] portName.receive {

 setverdict(fail); }
[] replyTimer.timeout {

 setverdict(inconc, "No response

from
 SUT") } }

Rule # 6: verification is translated to template construct named verify.
One template can host several verifications for a given step. Then, the

construct verify is translated to a function to handle the alternative

sequences. In the legacy TP, a comparison between the expected value

and returned one is performed: verify query = “str1” value= “str2”

The TTCN-3 TP migrates the expected values and store them in

templates w.r.t to REGEXP used in the legacy. Then, the returned

values are matched against the expected ones to issue a verdict.

< macrodef name =

“MacroN” />

action

<MacroN interface =
“interface_name, para1,

para2, …, paran” />

function MacroN (interface_name,

para1, para2, …, paran) runs on
componentType {

…}

MacroN(interface_name, para1,
para2, …, paran);

Rule # 7: macros elements are translated to functions and function

calls constructs. The macros parameters interface_name, para1, para2,
…, paran are passed as formal parameters to the function definition. A

macro may contain control statement such as looping, if, else. These

statements are mapped to their equivalent in TTCN-3

4.2.2.2 Code to Model

In the second phase of the reengineering process, we obtain the ATCs in TDL by reverse-

engineering the migrated ETCs in TTCN-3. In most industrial domains, a test can be conceived at

Reengineering Legacy Software Tests to MDT

57

two levels of abstraction: a test specification (or test case) and a test implementation (a test

script). Our goal is to abstract the latter to obtain the former. Here, the test implementation is the

migrated ETCs containing concrete information. It is often considered useful to express ETCs as

stimulus-response scenarios. This is the path that we explore here using TDL.

Let’s consider the modules of a ETC.

⎯ The Test Behavior module is composed of test events (stimuli and responses as

interactions) that express the test behavior.

⎯ The Test Data module contains information about the test input and the expected test

output.

⎯ The Test Component module consists of a set of inter-connected test components with

well-defined communication ports and an explicit test system interface.

An ATC should use abstract types and instances to refer to test data, and should describe the

system components and their actions and interactions with a minimum of details. In our study, to

raise the level of test specification, we choose the TDL notation. The TDL language was

designed on three central concepts: (1) a Meta-Modeling principle that expresses its abstract

syntax, (2) a user-defined Concrete Syntax for different application domains, and (3) the TDL

semantics that can be associated to the meta-model elements. Any minimal TDL specification

consists of the following major elements:

⎯ A set of Test Objectives that specify the reason for designing either a Test Description or

a particular behavior of a Test Description. It can be written as a simple text in NL and it

can be complemented with tables and diagrams;

⎯ A Test Configuration, which is a set of interacting components (tester and SUT) and their

interconnection;

⎯ A set of Data Instances used in the interactions between components in a test description.;

and

⎯ A set of Test Descriptions to describe one or more test scenarios based on the interactions

of data exchanged between tester and SUT.

To obtain the ATC (TDL specification) from the ETC (TTCN-3 modules), we developed

transformation rules to define ATC elements from the TTCN-3 ETCs’. These rules are meant for

human processing; they are based on the equivalence between elements of both languages. The

Reengineering Legacy Software Tests to MDT

58

rules aim to remodel the TTCN-3 modules into more abstract TDL elements. The language-

sensitive editor understands the concrete TDL syntax, based on the TDL meta-model.

Next, we show how each TDL element is derived from its corresponding TTCN-3 module by

applying these rules. However, extracting the TDL Test Objectives cannot be rule-based since the

TTCN-3 ETCs do not have a concrete representation of the Test Objective. Nevertheless, the test

objectives can be extracted from the legacy ATCs and copied in TDL corresponding elements.

I. Remodel Test Data Set

The concrete data definition, stored in the TTCN-3 Test Data module (TestData.ttcn3), is mapped

to TDL Data Instances using TDL elements that link the data aspects between TDL and TTCN-3.

These Data Instances are grouped in Data Sets and are considered as an abstract representation of

the corresponding concepts in a concrete type system.

II. Remodel Test Configuration

In a TDL specification, the Test Configuration element consists of a Tester, SUT components and

a Gate. The corresponding TTCN-3 Component module contains equivalent objects with many

more details. Specifically, it consists of a set of interconnected test components with well-defined

communication ports and an explicit test system interface. TDL does not have a receive

construct, instead it uses a send construct for the interaction between a Tester and the SUT.

Therefore, the mapping of TDL Tester and SUT components is validated with the TTCN-3

interaction.

III. Remodel Test Description

The Test Description element in the TDL specification language defines ATC behavior. The

enclosed scenario is mainly composed of actions and interactions between the Tester and the

SUT components.

In the TTCN-3 Test Behavior module, the action is a function implementation or physical setup.

The interaction is represented as a message being sent (from a source) or received (from the

target). We remodeled the interaction and the action to their equivalent in TDL by applying the

rules listed in Table 4-2. In the Test Behavior module, numerous sequences of events are

possible due to the reception and handling of communication timer events. The possible events

are expressed as a set of alternative behaviors and denoted by the TTCN-3 alt statement. Each

Reengineering Legacy Software Tests to MDT

59

TTCN-3 object in the Test Behavior is remodeled to an equivalent TDL construct by applying the

transformation rules. In our experimentation, we used a TDL Editor to edit and validate the

syntax of the TDL specifications.

Table 4-2: Transformation rules from TTCN-3 to TDL based on the proposed concrete

syntax

TDL Meta-model

elements

(abstract syntax)

TTCN-3 statements
 Our proposed TDL

concrete syntax

Description of transformation

from TTCN-3 to TDL

TestConfiguration module <tc_name> { } Test Configuration <tc_name>
Map to a Test Configuration statement with the

name < td_name >

GateType
type port <port_type> message

{

 }

Gate Type <port_type> accepts

<Data_Set_name>

Map to a Gate Type statement with the name

<port_type> that accepts Data Set elements

ComponentType

type component comp_type{

 port <port_type>

<port_name>;

}

Component Type <comp_type> { gate

types : <port_type> Map to a Component Type statement with the

name <comp_type> and associate a

<port_type> to it.
instantiate <comp_instance> as Tester of

type <comp_type> having { gate

<gate_name> of type <port_type> ; }

ComponentType

type component

system_comp_type{

 port <port_type>

<port_name>;

}

Component Type <comp_type> { gate

types : <port_type>
Map to a Component Type statement with the

name <system_comp_type> and associate a

<port_type> as a port of the test system

interface to it.

instantiate <system_comp_type> as SUT of

type <comp_type> having { gate

<gate_name> of type <port_type> ; }

Connection
map (mtc: <comp_type>,

system <system_comp_type>)

connect <comp_type> to

<system_comp_type >

Map to a connect statement where a test

component is connected to test system

component.

TestDescription

module <td_name> {

import from <dataproxy> all;

import from <tc_name> all;

}

Test Description(<dataproxy) <td_name> {

 use configuration: <tc_name>; { }

}

Map to a Test Description statement with the

name <td_name >. The <DataProxy> element

passed as formal parameters (optional) is

mapped from an import statement of the

<DataProxy> to be used in the module. The

import statement of the Test Configuration

<tc_name> is mapped to use configuration

property that is associated with the

'TestDescription'

Alternative

Behaviour
alt {} alternatively { } Map to alternatively statement

Interaction

<comp_name_source>.send(<c

oncreteData>)

<comp_name_source> sends instance <

data_name > to <comp_name_target>

Map to a sends instance statement with respect

to the sending component

<comp_name_source>.receive(

<concreteData>)

<system_comp_name_source> sends

instance < data_name > to

<comp_name_target>

Map to a sends instance statement when the

sending source is SUT component

VerdictType verdicttype <verdict_value> Verdict <verdict_value>

Map <verdict_value> that contains the values:

{inconclusive, pass, fail}to its corresponding

value

TimeUnit
time_unit {1E-9,1E-6, 1E-3,

1E0, 6E1, 36E2
Time Unit <time_unit>

<time_unit> contains the following values:

{tick,nanosecond,microsecond,miliisecond,sec

ond,minute,hour}

VerdictAssignment setverdict (<verdict_value>) set verdict to <verdict_value> Map to a set verdict to statement

Action function <action_name>() perform action <action_name> Map to perform action statement

Stop stop stop
Map to a stop statement within alternatively

statement

Break break break
Map to a break statement within alternatively

statement

TimerStart <timer_name>.start(time_unit); start <timer_name> for (time_unit) Map to a start statement

TimerStop <timer_name>.stop; stop <timer_name> Map to a stop statement

TimeOut <timer_name>.timeout; <timer_name> times out Map to a times out statement

Quiescence/Wait
timer <timer_name>

<timer_name>.start(time_unit);

<timer_name>.timeout

is quite for (time_unit)

waits for (time_unit)
Map to is quit for statement or to waits for

InterruptBehaviour stop interrupt Map to interrupt statement

Reengineering Legacy Software Tests to MDT

60

TDL Meta-model

elements

(abstract syntax)

TTCN-3 statements
 Our proposed TDL

concrete syntax

Description of transformation

from TTCN-3 to TDL

BoundedLoop

Behaviour
repeat repeat <number> times

Map to repeat statement. The repeat is used as

the last statement in the alternatively behavior.

DataInstance var type <data_name>
Data Set <the_set> {

 instance <data_name> }

Map any <variable> to an instance and group it

in Data Set element

This approach is suitable for automated ETCs as tests can be derived from the scenarios and

automated.

4.2.3 Lesson Learned

There are some difficulties with the legacy process deployed, the test engineer spends a lot of

time transforming LLR into executable test cases. There is a large gap in the abstraction level

between the LLR and the executable test cases. The legacy scripts can be very large, difficult to

maintain and hard to compose into complex scenarios involving parallelism. Their migration to

TTCN-3 enforced coding standards and offered a more readable, simple to modify and easy to

understand test code.

Formalizing LLR into TDL models for representing test descriptions allowed to validate easily

the test requirements. Furthermore, as the detail level is low in the LLR, but very high in the

scripts TDL models narrowed this gap by providing more formal details about the test interaction

and configuration. The cost maintaining the migrated software tests becomes lower and less

error-prone. In addition, TDL models are used both for communication between stakeholders and

as the basis for implementing concrete tests.

Migration to a standards-based and more efficient software testing environment is appealing to

organizations seeking to reduce costs, and to benefit from the continuing advancements in

technology.

4.2.4 Conclusion

The modernization of software tests to a new platform is often pressured by business

requirements to reduce the cost and effort of testing. In this study, we automatically restructured

legacy test implementation, written as Ant/XML files into the TTCN-3 language that provides

strong typing, structured constructs and modular code. Next, we reengineered the code and data

Reengineering Legacy Software Tests to MDT

61

to a higher level of abstraction to obtain (model-driven) test implementation. Our overarching

goal is to support test automation and to reduce the effort involved in testing.

The reverse engineering activities answered the research question RQ1: “how an existing legacy

software tests can help in developing model transformation?”

Topic Overview

62

Chapter 5 An MDTGL Approach for Testing Embedded
Systems

5.1 Topic Overview

In this chapter, we proposed a new model-driven testing methodology, work published in the

Software & Systems Modeling Journal [131], supported by a chain of tools that generates test

cases to address an open problem about reducing test effort without forgoing the quality level of

the final software.

Based on requirement propagation through model transformation, the new methodology aims to

support the testing of embedded systems by generating TCs and maintaining requirement

traceability. To do so, the approach relies on system models at different levels of abstraction. The

primary contributions of this new testing methodology are:

i. The proposal of a new model-driven technique to generate TCs from abstract UCM

scenarios at an early phase that is independent of any particular implementation of the

design.

ii. The application of TCG approach during a feasibility study for the application of a

functional testing process to industrial avionics applications.

iii. The validation of the test case generation approach in comparison with the industrial

testing process.

iv. The proposal of a new framework to strongly link the activities of requirement traceability

with generated test cases.

To validate the efficiency of the new methodology in terms of generating TCs and correct

workflow, we applied it to a real case study in the aviation industry. The validation and

comparison process are based on analyzing the generated test artifacts by performing

requirement-based test coverage and verdict analysis. We used a case study approach to address

the raised questions. Two case studies from the avionics domain were used to build the new

testing methodology, collect the data, demonstrate the feasibility, and assess the effectiveness.

The Research Methodology

63

The remainder of this chapter is organized as follows. The research methodology used to solve

the problems is presented in Section 5.2. The proposal of a model-driven testing methodology is

presented in Section 5.3. The first testing activity of the MTDGL is the generation of test cases

which is explained and demonstrated in great detail in Section 5.3.1. Followed by the traceability

links activity in Section 5.3.2. Section 5.4 concludes the chapter.

5.2 The Research Methodology

The research study was conducted at our research partner premises who is a world leader in the

design and manufacture of high-technology electronics products for aviation. At Avionic industry

labs, the testing process (non model-based) to measure the quality of its prime embedded system

FMS is labor-intensive and error-prone.

Our research study used a case study method to tackle the problems and build an automated new

approach. We used industrial case studies for demonstrating the approach applicability and

assessing its effectiveness.

5.2.1 Conducted Research

The conducted research covered the following:

⎯ Reversed-engineer of legacy software tests that validate the FMS software to be driven

from models.

⎯ Built a test case generation approach that is composed of independent layers;

i. Requirement layer (Abstractly formalized functional requirements)

ii. Test design layer (Identified test components and their interactions)

iii. Test scripting layer (Generated test cases)

⎯ Enabled information transformation between the first three layers (i→ii→iii) by using

concepts such as abstraction, model transformation, and successive refinement.

⎯ Developed a traceability framework to record traceability links among the generated

testing artifacts.

⎯ Applied the new approach to safety-critical software such as LGS to assess its feasibility;

layers (i, ii, and iii)

⎯ Assessed the effectiveness of the approach by applying it to real case study FMS and

compared the obtained workflow to the legacy one; all layers.

The Research Methodology

64

5.2.2 Collected Data

⎯ Collected data (functional requirement) from LGS case study and use it as a running

example to demonstrate the applicability of the proposed approach. The LGS is a public

case study from the avionics domain.

⎯ Collected data (functional requirements in NL, legacy executable software tests are

written Ant/XML and test results that store the execution traces of the FMS with its

various interfaces) from FMS case study and use it to analyze and assess the effectiveness

of the proposed approach. The FMS is a real case study from the avionics domain

developed at our research partner premises and used as legacy software to test the FMS

implementation.

5.2.3 Facilities Used

The facilities used for the research are the following:

Software:

⎯ jUCMNav – A modeling tool: jUCMNav is a free, Eclipse-based graphical editor and

an analysis and transformation tool for the User Requirements Notation (URN).

⎯ TDL Editor – A test editor tool: TDL Editor is a private tool to edit, design,

document, and represent formal test descriptions. The Editor defines the specific

domain of the TDL language and is based on its meta-model.

⎯ TTworkbench – A test script editor tool: TTworkbench is a full-featured integrated

test development and execution environment (IDE). This tool allows testing of

software products and services. The tool supports the TTCN-3 ETSI standard. (An

academic license is obtained from Spirent Company).

⎯ Xtext – A framework for the development of programming languages and DSL.

⎯ Xtend – Is a general-purpose high-level programming language used for generating

code.

⎯ Eclipse – Eclipse is an integrated development environment (IDE) for developing Java

applications

⎯ Eclipse Modeling Framework (EMF) – The EMF project is a modeling framework

and code generation facility for building tools and other applications based on a

structured data model.

https://en.wikipedia.org/wiki/General-purpose_programming_language

The Methodology MDTGL

65

⎯ Simulation of FMS Application – An FMS/PTT is a simulation of FMS product

developed by our research partner (A copy of the application is obtained)

Hardware:

⎯ A personal computer with Windows operating system.

⎯ Dongle Key to run the FMS simulation.

5.3 The Methodology MDTGL

This section presents the new methodology MDTGL for testing embedded system, the

methodology includes two major testing activities; (1) generating TCs and (2) maintaining

traceability links among the generated testing artifacts.

5.3.1 Test Case Generation Approach

The test case generation (TCG) approach shown in Figure 5.1 starts when the test designer wants

to describe the NL requirements into behavioral models. This activity answers the research

question RQ2: “what are some of the design factors a model transformation should have to

bridge the abstraction gaps between UCM and TTCN-3 models in order to enable the generation

of test cases?”

The Methodology MDTGL

66

Test Cases

Level of details

during TCG process

The requirements are given
in natural language.

The requirements are modeled
to Cockburn use case
notation and mapped to UCM
scenario models

The behavioral models are
transformed to test goals
then to abstract test cases
in TDL to be enriched with
abstract data from Data
Model.

TTCN-3 Test Cases are
generated from ATC and
completed with concrete data

Model

Requirements

in UCM

Generate

TTCN-3

Test Cases

map

import

Generate

ATC in TDL

Extract Data

Requirement

Behavioral

Models

NL Requirements

Abstract Test Cases

(Scenarios)

Data

Model

Manual

Automatic

Figure 5.1: TCG approach for testing an embedded system

The key points of the TCG approach are: (1) NL requirements are described in behavioral

models; (2) These models are exported to test goals and transformed, based on developed rules,

to ATC that are completed manually with data instances; and (3) the obtained ATCs are

transformed, based on developed rules, along with concrete test data to TCs.

The approach can be seen as a process of successive refinements of specifications that involves

model transformation and the insertion of additional information. The approach must ensure test

effectiveness— all requirements are covered— while also aiming for test efficiency— the testing

effort is reduced by decreasing the manual development while ensuring the discovery of

The Methodology MDTGL

67

implementation errors in the SUT. The approach offers features that should be attractive to test

designers, such as scenario coverage and a simple structure, where ease of use and

understandability are key.

In the following subsections, we explain how requirement propagation through model

transformation and insertion of additional information are performed at each step in the process.

A case study is conducted in Section 5.3.1.5 to demonstrate the feasibility of the approach.

5.3.1.1 Formalizing SUT Requirements into Behavioral Model

In order to facilitate the modeling of the NL requirements into UCM elements, the requirements

are written in Cockburn use case notation [132]. With some basic knowledge of the jUCMNav

tool, the modeled use case is mapped manually to UCM scenarios models.

The scenario models represent the system from a functional execution sequence perspective,

which is another form in which to represent the system and software requirements. Scenarios

provide benefits for system comprehension, design, testing and maintenance. Scenarios can be

grouped, related and decomposed for better management, reusability and analysis. Furthermore,

scenarios can be used later in the verification process to drive the test specification and to direct

the development of TCs.

In our TCG approach, UCMs are an intermediate step towards deriving abstract test descriptions.

5.3.1.2 Transform Behavioral Model into ATC

A UCM scenario model conveys information to help develop some of the TDL specification

elements, in particular, Test Objective, Test Configuration, and Test Description.

Since UCM scenarios deal only with behaviour, the concept of data is yet to be supported.

Therefore, we developed a data metamodel, see Figure 5.2, that is based on test data

requirements to help identify UCM responsibilities that exchange messages, develop the TDL

Data Sets, and detail the TTCN-3 data with concrete values.

The Methodology MDTGL

68

TestDataRequirement
Element

UCMResponsibility
Interaction

Metaclass
Data Set

Metaclass
Data Instance

Metaclass
TTCN-3 Variable

Interaction[1]

description: String

Description1

Data Set[1]

Data Instance[*] {unique}

Data Instance[1] TTCN-3[1]

1 0..1

Figure 5.2: Data metamodel

Next, we developed a process called ATC Builder as shown in Figure 5.3, to transform the UCM

scenario model and data model (additional information) into an ATC expressed as a valid TDL

test specification.

- Develop Test Objective (m)

- Develop Data Set (m)

- Develop Test Configuration (a)

- Develop Test Description (a)

Scenario Model

ATC Builder

Test Specification

(TDL)

(m) manual

(a) automatic

Data Model

Pilot LGCU

X

X X

X
X

X
X

X

X

X

XX

StartExtending
Handle-Down

Timer_0 Timer_1

EndExtending

RedON

Timer_6

Timer_5

Timer_4

Timer_3

Timer_2

OpenDoors

LookDoorsIn

OpenPos

ReleaseUp-

Lock

AmberON

Lock-Down

Gears

GreenON_

AmberOFF

CloseDoors

LookDoorsIn

ClosePos

ConfirmGearsDown

EndNormalMode

EndFailure

[Alt<2500ft & Speed <200 kt]

DeploymentFailed

NormalModeFailed
NormalModeFailed

DeploymentSucceeded

[timout]

[timout]

[timout]

[timout]

[timout]

[timout]
[timout]

Figure 5.3: ATC builder process

The ATC Builder process transforms the UCM scenario to four TDL elements. The development

of each element is shown in the following:

The Methodology MDTGL

69

I. Develop Data Set

In general, the test inputs for the TCs are produced in the test analysis and design process. We

assume that it is possible to select enough data from the analysis process to enable the

development of test input for use in the TCs.

A responsibility definition in UCM scenario represents an action or the steps to perform, either

informally through its name or more formally with the help of its expression. Using this

information, the responsibilities involved in a stimulus/response action is flagged as interaction

messages and mapped into Data Instances in TDL. A data model based on data requirements

composed of three levels of test data abstraction is developed:

a) Stimulus/Response: a subset of test data requirements can be represented abstractly as I/O

message in UCM responsibility objects;

b) Test data scenario: the I/O messages in the Stimulus/Response level are developed into a

TDL Data Sets.

c) Test data procedure: The Data Sets are developed using templates.

Table 5-1 shows four columns of test data: the test data requirements, the complete set of UCM

responsibilities, and its corresponding TDL Data Instances and TTCN-3 Data Templates.

Table 5-1: Test Data for UCM scenario

Test data requirements
UCM Responsibility

(Stimulus/Response)

TDL Data

Instance

TTCN-3

Template

Stimulus/Response to be

exchanged
Interaction

Data

Instance

Data

Template

Each UCM responsibility in the second column (interaction) is either a stimulus to send or a

response to receive. This interaction is represented as a TDL Data Instance in the third column

and as a TTCN-3 Data Template in the last column.

The Data Instances to be used in the Test Description are developed manually and grouped in

Data Sets. They are an abstract representation of the corresponding data-related concepts in a

concrete type system.

II. Develop Test Configuration and Test Description

A Test Configuration in TDL specifies the communication infrastructure necessary to build upon

the Test Description. As such, it contains all the elements required for the exchange of

The Methodology MDTGL

70

information, such as Component Instances and Connections. Each Component Instance specifies a

functional entity of the test system. A Component Instance may either be a part of a Tester, or a

part of an SUT. The Test Configuration element consists of:

⎯ A Tester;

⎯ SUT components;

⎯ A Gate1; and

⎯ Interconnections between Tester and SUT components via Gate instance.

The metamodel of Test Configuration and Test Description are shown in Appendix B and

Appendix C respectively.

The Test Description element defines the expected behaviour, the actions and the interactions

between system components. The Test Description is associated with exactly one Test

Configuration, and may be associated with any number of data elements that represent the formal

parameters. Any number of Test Objectives can be attached manually to the Test Description to

help to specify its design.

The Test Description in TDL defines the test behaviour based on ordered atomic or compound

behaviour elements. A responsibility object in a UCM scenario model represents an action to be

performed by its enclosing component. Its equivalence in TDL is mapped to Action Reference

element, which is an atomic behaviour used to refer to an Action element to be executed. The

dynamic and static stub objects that contain sub-maps are not mapped to any TDL element, but

their enclosed responsibilities are. An Action Reference may have a Component Instance attribute

identifying the component instance on which the action is to be performed. Any information

exchanged via the gates is represented abstractly, and can be referenced by TDL Interaction

elements. An interaction can represent a message sent from a source and received by a target.

In our approach, we used the feature path traversal algorithm in the jUCMNav tool to export UCM

scenario models in XMI format. We developed a java tool to parse the exported scenario and

transform it automatically to TDL Test Configuration and Test Description elements. The

exported scenarios are structured by a metamodel, see Figure 5.4, and as such can be handled by

1
A Gate is a point of communication for exchanging information between components, it specifies also the data that can be exchanged

The Methodology MDTGL

71

the model transformation. The exported scenarios have exhaustive coverage of the UCM model.

The algorithm uses a depth-first traversal [133] of the scenario that captures the UCMs’ structure.

Figure 5.4: Scenario definition Metamodel

The algorithm traverses the path elements beginning at a start point until a stop point (AND-join,

waiting place, or timer) is reached. Then, the algorithm backtracks to get the next available branch

of an AND-fork (unvisited branches) or the next start points if any. The traversal is successful if

all elements along the path are marked as visited. The algorithm can prevent infinite loops through

a maximum number of visits. The exported scenario contains traversed UCM elements such as

Packaged Element, Component Instance, Gate Instance, Action Reference, Interaction, etc. that

The Methodology MDTGL

72

we use to develop the TDL Specification that can be compiled in the proposed TDL concrete

syntax.

The java tool parses the exported scenario using XMLStreamReader interface and automatically

generates the two TDL elements Test Description and Test Configuration.

The interface XMLStreamReader is used to iterate over the various events in the exported scenario

to extract the information and convert it to TDL syntax. Once we are done with the current event,

we move to the next one and continue till the end of the scenario. The events can be for example

the start of an element, the end of element or attribute. Figure 5.5 and Figure 5.6 illustrates the

development of the TDL Test Configuration and Test Description from UCM scenario. Our tool

iterates over the TDL elements represented with abstract syntax in the exported scenario and

transforms it to concrete syntax in TDL notation.

componentinstance name =
CompName_1

component instance
CompName_1

gate instance gCompName_1

connection gCompName_1 to
gCompName_2

componentinstance name =
CompName_2

component instance
CompName_2

gate instance gCompName_2

Connection name =
CompName1_CompName2

packagedElements type =
tdl:TestConfiguration

Test Configuration
TestConfiguration

gatetinstance name =
gCompName_1

gatetinstance name =
gCompName_2

Exported scenario TDL Test ConfigurationPilot LGCU

X

X X

X
X

X
X

X

X

X

XX

StartExtending
Handle-Down

Timer_0 Timer_1

EndExtending

RedON

Timer_6

Timer_5

Timer_4

Timer_3

Timer_2

OpenDoors

LookDoorsIn

OpenPos

ReleaseUp-

Lock

AmberON

Lock-Down

Gears

GreenON_

AmberOFF

CloseDoors

LookDoorsIn

ClosePos

ConfirmGearsDown

EndNormalMode

EndFailure

[Alt<2500ft & Speed <200 kt]

DeploymentFailed

NormalModeFailed
NormalModeFailed

DeploymentSucceeded

[timout]

[timout]

[timout]

[timout]

[timout]

[timout]
[timout]

Path Traversal
Algorithm

Figure 5.5: The development of TDL Test Configuration

The Methodology MDTGL

73

behaviour
type = ActionReference
name = ActionName_X
annotation = gCompName_X

perform action ActionName_x on
gCompName_X;

gCompName_X sends instance [Stimulus/
Response]_instance to gCompName_Y;

stop Time_X;

alternatively {

}

start Time_X for (time_unit);

packagedElements
type = tdl:TestDescription
name = TestDescriptionName
testConfiguration = packagedElements

Test Description TestDescription {
use configuration : TestConfiguration;
}

behaviour
type = Interaction
name = from CompName_X to CompName_Y
source = CompName_X
target = CompName_Y

behaviour
type = AlternativeBehaviour
name = BranchingName_X
annotation = gCompName_X

behaviour
type = TimerStart
name = Time_X
annotation = gCompName_X

behaviour
type = TimerStop
name = Time_X
name = gCompName_X

Time_X times out;

behaviour
type = TimeOut
name = Time_X
name = gCompName_X

Exported scenario TDL Test Description

Pilot LGCU

X

X X

X
X

X
X

X

X

X

XX

StartExtending
Handle-Down

Timer_0 Timer_1

EndExtending

RedON

Timer_6

Timer_5

Timer_4

Timer_3

Timer_2

OpenDoors

LookDoorsIn

OpenPos

ReleaseUp-

Lock

AmberON

Lock-Down

Gears

GreenON_

AmberOFF

CloseDoors

LookDoorsIn

ClosePos

ConfirmGearsDown

EndNormalMode

EndFailure

[Alt<2500ft & Speed <200 kt]

DeploymentFailed

NormalModeFailed
NormalModeFailed

DeploymentSucceeded

[timout]

[timout]

[timout]

[timout]

[timout]

[timout]
[timout]

Path Traversal
Algorithm

Transform exported scenario
To TDL test Description

Based on transformation rules

Figure 5.6: The development of TDL Test Description

III. Develop Test Objective

TDL Test Objectives are developed by analyzing the exported scenario definition. Test Objectives

set guidelines to design the Test Description or to design a particular behaviour. Typical UCM

objects include component, responsibility, comment, timer, and condition. The Test Objective can

be enriched by adding additional information from the system requirements.

IV. Post-Processing of Alternative Behavior

The transformation algorithm from behavioral model to ATCs generates only linear scenarios or

one alternative per scenario while a typical ATC in TDL has alternative responses. Therefore, it

requires at UCM level either a different traversal mechanism with a different scenario

metamodel, or post-processing of scenarios to merge those that constitute alternate test behaviors.

In our approach, we automated the post-processing of alternative behavior. The technique

developed selects the common interaction behavior that represents different responses to the

tester and groups them in the alternative element as illustrated in Figure 5.7.

The Methodology MDTGL

74

gCompName_X sends instance
Response_instance_1 to
gCompName_Y;

alternatively {

gCompName_X sends instance
Response_instance_1 to
gCompName_Y;

gCompName_X sends instance
Response_instance_2 to
gCompName_Y;

gCompName_X sends instance
Response_instance_n to

gCompName_Y;

}

gCompName_X sends instance
Response_instance_2 to
gCompName_Y;

gCompName_X sends instance
Response_instance_n to
gCompName_Y;

gCompName_Z sends instance
Response_instance_n to
gCompName_Y;

TDL Interaction

Behavior

TDL Alternative

Behavior

Figure 5.7: Post-processing of alternative behavior

Finally, the resulting elements are combined along with Test Objectives and Data Sets in one

TDL Specification and used a TDL Editor2 to edit and validate the specification. The Editor

defines the specific domain of the TDL language and is based on its metamodel. The DSL of the

TDL is written in the Xtext language development framework [134].

We made the java tool and TDL Editor available online3; interested readers can download the

eclipse project to generate TDL Test Configuration and Test Description elements from UCM

scenarios. The TDL Specification is based on the TDL meta-model and expressed in concrete

syntax. It clearly separates the ATC from its associated TC by providing an abstraction level. As a

result, the test designer can focus on describing an ATC that covers the given Test Objectives

rather than fully implementing the script. It is the final implementation as a TC that will ensure the

discovery of implementation errors in the SUT.

2
Obtained from Philip Makedonski, University of Göttingen.

3
https://users.encs.concordia.ca/~bentahar/Model_Transformation/

https://users.encs.concordia.ca/~bentahar/Model_Transformation/

The Methodology MDTGL

75

5.3.1.3 Transform ATCs into TCs

The derivation of test specifications from a UCM scenario model is an abstraction of the expected

behavior between components and cannot be used directly on the actual SUT. The ATCs thus

described lack concrete details about the SUT and its environment. Therefore, TCs should be

derived and sufficiently detailed with test data and interface requirements (additional

information) to correctly communicate with the SUT. We propose to use TTCN-3 language to

implement the ATCs defined by the TDL specification package. The document TTCN-3 Core

Language [135] defines the syntax of TTCN-3 using extended BNF.

One of the design objectives of TDL is to be less technical and thus user-friendly for non-

technical users and that it can serve as the basis for the implementation of executable tests that

are by definition highly technical.

Based on transformation rules that we developed between TDL source and TTCN-3 target, the

ATCs are transformed into TCs. The technique that we applied in this model transformation is

structural, e.g., a TDL element, shown in italics, is transformed into a TTCN-3 module.

Therefore, we consider that an executable test suite in TTCN-3 is broken down into four types of

modules: (1) a Test Configuration module that consists of a set of inter-connected test

components with well-defined communication ports, (2) a Test Description module which

usually contains behavioral program statements that specify the dynamic behavior of the test

components over the communication ports, (3) a Test Oracle module that contains templates

(expected result or responses) used to test whether a set of received values matches the template

specifications, and (4) Test Input module that contains input data (stimulus) to be transmitted to

the SUT. This modular approach of deriving the TCs supports the model transformation between

source and target elements and promotes the reusability of the generated modules. Figure 5.8

shows the derivation of the executable test suite in TTCN-3.

The Methodology MDTGL

76

Data Model

Abstract Test Case

(TDL)

Test Configuration

Test Description

Data Set

Test Objective

Executable Test Case

(TTCN-3)

Oracle Module

Input Module

Configuration Module

Description Module

Model

Transformation

Process

Figure 5.8: Derivation of ETC in TTCN-3

The transformation rules that enable the transformation of TDL specification, listed in Table 5-2,

are programmed and implemented in a tool based on model-to-text technology called Xtend. We

made the tool available online4.

Table 5-2: Transformation rules from TDL model to TTCN-3 constructs

 TDL Meta-

model elements

(abstract

syntax)

 Our TDL

concrete syntax

Equivalent

TTCN-3

statements

Description

Rule# 1 TestConfiguration Test Configuration <tc_name> module <tc_name> { }
Map to a module statement with the name <

td_name >

Rule# 2 GateType
Gate Type <gt_name> accepts

dataOut, dataIn;

type port <gt_name> message {

 inout dataOut;

 inout dataIn;

}

Map to a port-type statement (message-

based) that declares concrete data to be

exchanged over the port.

Rule# 3

ComponentType

Component Type <ct_name> { gate

types : <gt_name>

instantiate <comp_name1> as Tester

of type <ct_name> having { gate

<g_name1> of type <gt_name> ; }

type component comp_name1{

 port <gt_name> <g_name1>;

}

Map to a component-type statement and

associate a port to it. The port is not a

system port.

4
https://users.encs.concordia.ca/~bentahar/Model_Transformation/

https://users.encs.concordia.ca/~bentahar/Model_Transformation/

The Methodology MDTGL

77

Rule# 4

ComponentType

Component Type <ct_name> { gate

types : <gt_name>

instantiate <comp_name2> as SUT

of type <ct_name> having { gate

<g_name2> of type <gt_name> ; }

type component comp_name2{

 port <gt_name> <g_name2>;

}

Map to a component-type statement and

associate a port of the test system interface

to it.

Rule# 5 Connection connect <g_name1> to <g_name 2>
map (mtc: <g_name1>, system:

<g_name2>)

Map to a map statement where a test

component port is mapped to a test-system

interface port

Rule# 6 TestDescription

Test Description(<dataproxy)

<td_name> {

 use configuration: <tc_name>; { }

}

module <td_name> {

import from <dataproxy> all;

import from <tc_name> all;

testcase _TC() runs on

comp_name1 {}

}

Map to a module statement with the name

<td_name >. The TDL <DataProxy>

element passed as a formal parameter

(optional) is mapped to an import statement

of the <DataProxy> to be used in the

module. The TDL property test

configuration associated with the

'TestDescription' is mapped to an import

statement of the Test Configuration module.

A test case definition is added.

Rule# 7 AlternativeBehaviour alternatively { } alt {} Map to an alt statement

Rule# 8

Interaction

<comp_name1> sends instance

<instance_outX> to <comp_name2>

<comp_name1>

.send(<instance_outX>)

Map to a send statement that sends a

stimulus message

<comp_name2> sends instance

<instance_Inx> to <comp_name2>

<comp_name1>

.receive(<instance_InX>)

Map to a receive statement that receives a

response when the sending source is an SUT

component.

Rule# 9 VerdictType Verdict <verdict_value> verdicttype

<verdict_value> contains the following

values: {inconclusive, pass, fail}. No

mapping is necessary since these values

exist in TTCN-3

Rule# 10 TimeUnit Time Unit <time_unit> N/A

<time_unit> contains the following values:

{tick, nanosecond, microsecond,

millisecond, second, minute, hour}. No

mapping is necessary; a float value is used

to represent the time in seconds

The Methodology MDTGL

78

Rule# 11 VerdictAssignment set verdict to <verdict_value> setverdict (<verdict_value>) Map to a setverdict statement.

Rule# 12 Action perform action <action_name>

function <action_name>() runs on

<g_name1>{ }

<action_name (); >

Map to a function signature and to a

function call. The function body is refined

later if applicable.

Rule# 13 Stop stop stop
Map to a stop statement within an alt

statement.

Rule# 14 Break break break
Map to a break statement within an alt

statement.

Rule# 15 Timer
timer <timer_name>

timer<timer_name>

Map to a timer definition statement.

Rule# 16 TimerStart start <timer_name> for (time_unit) <timer_name>.start(time_unit); Map to a start statement.

Rule# 17 TimerStop stop <timer_name> <timer_name>.stop; Map to a stop statemen.t

Rule# 18 TimeOut <timer_name> times out <timer_name>.timeout; Map to a timeout statement.

Rule# 19
Quiescence/

Wait

is quite for (time_unit)

waits for (time_unit)

timer <timer_name>

<timer_name>.start(time_unit);

<timer_name>.timeout

Map to a timer definition statement, a start

statement and to a timeout statement.

Rule# 20 InterruptBehaviour interrupt stop Map to stop statement

Rule# 21
BoundedLoopBehavi

our
repeat <number> times repeat

Map to a repeat statement. The repeat is

used as the last statement in the alt

behaviour. It should be used once for each

possible alternative.

Rule# 22 DataSet Data Set <DataSet_name> { }

type record <DataSet_nameType>

{ }

template <T_DataSet_nameType>

:= { }

Map Data Set to record type and template

using DataSet_name, T_ DataSet_name and

prefixed with “Type”

Rule# 23 DataInstance instance <instance_name>;

[<instance_name_S>;]

[<instance_name_R>;]

Map instance to a variable, using

instance_name and prefixed either with “_S”

for stimulus or with “_R” for response

In our approach, the TDL elements developed previously were used, based on transformation

rules, to derive the corresponding modules in TTCN-3. Next, the derived Test Input and Test

Oracle modules were enriched with concrete data from the data model to enable the execution of

the TCs. The development of the TTCN-3 modules is discussed in the following:

I. Generate the Input and Oracle Modules

As mentioned earlier, TDL does not offer a complete data type system. Instead, it depends on

Data Set elements— whose Data Instances are an abstract representation of the corresponding

data-related concepts in a concrete-type system. Therefore, the Data Instances developed in the

previous section can be used along with data requirement analysis to develop concrete data

definition. In our approach, a TTCN-3 data module that contains test input and test oracle

definitions based on Data Sets is developed. The language Xtend, part of the Eclipse Xtext

project, is used to generate partial TTCN-3 code from TDL Data Set syntax. All Data Set

The Methodology MDTGL

79

instances can be identified from the parsed TDL model and generate a record type and a template

for each in TTCN-3 syntax, see Figure 5.9.

TTCN-3

Rule #22

TDL

type record Data_Set_Name {

…………. ;
}

Instance_Name_[S/R];

 Data Set Data_Set_Name {

 instance Instance_Name;

}
…………. ;

Rule #23

template T_Data_Set_Name:= {

Instance_Name_[S/R]:= ″ ″

…………. ;

}

Figure 5.9: TDL Data Set transformation

After the TTCN-3 data module is partially generated and test data becomes available, the module

is completed with test oracle information and typed with concrete TTCN-3 types.

II. Generate the Configuration Module

When describing a Test Configuration in TDL, the main focus is usually on the test components

and their communication, whereas an executable test requires a more detailed configuration. A

Test Configuration in TDL consists of Tester and SUT components, gates, and their

interconnections represented as the Connection. A TTCN-3 configuration should consist of a set

of inter-connected test components with well-defined communication ports and an explicit test

system interface which defines the boundary of the test system. Furthermore, the communication

between components is achieved via well-defined port types such as message-based and

procedure-based ports. The transformation rules in Table 5-2 are used to enable the

transformation of an ATC to a concrete TCs. The TDL Test Configuration contains the necessary

objects, test components and communication channels to build the TTCN-3 configuration

module. The concrete details needed to communicate correctly with the SUT, such as the

message type to be sent or received, are imported from the TTCN-3 data module where the test

inputs and test oracle are defined. The TDL Test Configuration components such as gate, Tester,

The Methodology MDTGL

80

and SUT are transformed to equivalent objects in TTCN-3 by applying Rule #2, #3 and #4 as

shown in Figure 5.10.

type component Comp_Name_T {
 port gate_Type gate_Name_T };

 Component Type comp_Type { gate types:
 gate_Type ; } instaniate
 comp_Name_[T/S] as [Tester/SUT]
 of type comp_Type having { gate
 gate_Name of type gate_Type ; } type component Comp_Name_S {

 port gate_Type gate_Name_S };

Rule #3

Rule #4

TTCN-3

Rule #2

TDL

type port gate_Type message { Gate Type gate_Type

accepts Data_Set_Name,

}

inout Data_Set_Name;

inout

Figure 5.10: TDL Test Configuration transformation

More specifically, these rules are implemented in our tool that iterates over the TDL model to

collect all Gate Type elements and generates for each a message-based port statement in TTCN-3

syntax. The instantiate elements are parsed to generate a component-type statement with an

associated port.

III. Generate the Description Module

The TDL Test Description defines the ATC behavior, mainly composed of the actions and

interactions exchanged between components over the communication gates. An action is used to

specify a procedure (e.g. local computation, function call, physical setup, etc.) informally,

whereas interactions refer to the data being exchanged between the components. In TTCN-3

realization, our tool iterates over the TDL model elements to parse the behavior elements and

generate equivalent statements for each in TTCN-3. Our tool parses the sends instance statements

(interaction) and generates a TTCN-3 message statement (Rule #8) as shown in Figure 5.11.

The Methodology MDTGL

81

Rule #8

TTCN-3TDL

gate_Name_S.send (instance_Name);

gate_Name_R.send (instance_Name);

comp_Name_[T/S] sends
instance instance_Name to
comp_Name_[T/S]

Figure 5.11: TDL interaction transformation

The action statement is parsed to generate a function signature and a function call (Rule #12) as

shown in Figure 5.12.

Rule #12

TTCN-3TDL

function action_Name() runs on
 Comp_Name_[T/S] {

}
action_Name;

Perform action action_Name

Figure 5.12: TDL Action transformation

The obtained function is refined at the TTCN-3 level when applicable. Other TDL behavioral

statements are mapped to TTCN-3 constructs to be used in TCs or in functions by applying the

corresponding rule.

5.3.1.4 The Completeness and Soundness of the Model
Transformations

In general, model transformations are used between different domains for model evolution,

code generation and analysis. The UCM models are adequate for describing the functional

requirements of a system. Their automated transformation to TDL models bridged the gap

with the TCs in TTCN-3. However, the metamodel of the exported scenario generated from

UCM scenario, early in the process, doesn’t have an alternative element that normally a TC

has to handle alternate test behavior. The absence of an alternative element in the scenario

The Methodology MDTGL

82

metamodel required post-processing of the generated TDL interaction behavior to merge

those that constitute alternate test behaviors. The transformation of TDL models allowed

refining and generating TCs that can be performed on the SUT. The model transformations

here link the various test artifacts and promise to reduce the required amount of manual work

for test development.

5.3.1.5 Test Case Generation Approach Feasibility

The feasibility of the approach is demonstrated via a case study from the avionics public domain

called landing gear system (LGS) [136].

The LGS specifications are categorized into functional, safety and timing requirements. In the

next sections, the behavior of the LGS is described from a Pilot’s perspective, formalized into a

given use case notation and then mapped to UCM scenario models. The LGS supports an aircraft

when it is on the ground, allowing it to take off, land and taxi. Most modern aircraft have a

retractable undercarriage, which folds away during the flight to reduce air resistance or drag. A

conventional hydraulic LGS has a tricycle configuration consisting of the nose and the main (left

and right) landing gears. Each landing configuration contains a door, the landing gear, and the

associated hydraulic cylinders. The LGS is representative of critical ESs. Failure to deploy it puts

the life of passengers in danger and causes massive airframe damage upon landing. Prior to

landing, the landing sequence of an aircraft is: open the landing gearbox doors, extend the

landing gear and close the doors. After taking off, the Retraction Sequence is: open the landing

gearbox doors, retract the landing gear and close the doors. The LGS is composed of: (a)

mechanical part; (b) digital part; and (c) a Pilot interface part which is further detailed in the next

paragraph in order to identify the requirements. For more information about parts (a) and (b),

please refer to [136].

The Pilot commands the retraction and extension of the gears by switching a handle up or down.

When the handle is switched to “Up” the retracting landing gear sequence is executed, and when

the handle is switched to “Down,” the landing gear extension sequence is executed. Additionally,

the Pilot’s control panel has a set of lights indicating the current positions of the gears and doors,

as well as the current health state of the system and its equipment. These lights and their

indications are:

The Methodology MDTGL

83

⎯ One green light: “gears are locked down”.

⎯ One amber light: “gears are in transition”.

⎯ One red light: “landing gear system failure”.

⎯ No light is ON: “gears are locked up”.

⎯ Doors locked opened sign is ON: “all doors of the landing gearboxes are locked in opened

position”.

⎯ Doors locked opened sign is OFF: “all doors are unlocked”.

⎯ Doors locked closed sign is ON: “all doors of the landing gearboxes are locked in closed

position”.

⎯ Doors locked closed sign is OFF: “all doors are unlocked”.

⎯ Normal Mode Fail sign is ON: “Normal Mode Fail”.

⎯ Normal Mode Fail sign is OFF “Normal Mode Pass”.

The expected behavior of the LGS is implemented by the control software whose aim is twofold:

(1) control the hydraulic devices according to the Pilot’s orders and to the mechanical devices’

positions and (2) monitor the system and inform the Pilot in case of any malfunction.

Before showing how the functional and timing requirements of the LGS can be captured by UCM

scenario models, the LGS requirements are formalized as described next.

I. Modeling LGS Requirements into Cockburn Use Case Notation

The LGS requirements fall into two basic scenarios: the Extending Sequence and the Retraction

Sequence. For clarification, the Extending Sequence scenario, as defined in the case study, is

used as a running example. Next, consider that the Pilot wants to land the airplane and so

switches the handle down when the aircraft has an indicated airspeed of less than 200 knots and

an altitude less than 2500 feet. The Extending Sequence scenario is written as a use case follows:

The Methodology MDTGL

84

USE CASE: Extending Sequence.

Primary Actor: Pilot

Secondary Actor: Landing Gear Control Unit (LGCU)

Scope: LGS.

Precondition: Airspeed is less than 200 knots and altitude is less than 2500 feet.

Minimal guarantee: Landing gears are extended in emergency mode.

Success guarantee: Landing gears are extended in normal mode.

Trigger: Pilot switches handle down.

Main success scenario:

1. Pilot switches handle down and it stays down.

2. LGCU activates doors opening.

3. LGCU locks door in opened position.

4. LGCU switches doors locked open sign to ON

5. LGCU releases up-lock gears.

6. LGCU switches amber light to ON.

7. LGCU locks down gears when they reach the full-down position.

8. LGCU switches green light to ON and amber light to OFF.

9. LGCU activates doors closing.

10. LGCU locks door in closed position.

11. LGCU switches doors locked closed sign to ON

The Methodology MDTGL

85

12. Pilot confirms the successful deployment of the landing gears.

Extensions: (Failure mode)

1.a If the landing gear command handle has been DOWN for 15 seconds and the gears are

not locked down after 15 s, then the LGCU switches red light to ON (failure in

deployment).

2.a If one of the three doors are still seen locked in the closed position more than 7 seconds

after activating doors opening, then the LGCU fails Normal Mode.

3.a If one of the three doors are not seen locked in the opened position more than 7 seconds

after activating doors locking in opened position, then the LGCU fails Normal Mode.

5.a If one of the three gears are still seen locked in the up position more than 7 seconds after

releasing the up-lock, then the LGCU fails Normal Mode.

9.a If one of the three gears are not seen locked in the down position more than 10 seconds

after releasing the up-lock, then LGCU fails Normal Mode. If one of the three doors are

still seen locked in the opened position more than 7 second after activating doors closing,

then the LGCU fails Normal Mode.

10.a If one of the three doors are not seen locked in the closed position more than 7 seconds

after activating doors locking, then LGCU fails Normal Mode.

Next, we proceed with the mapping of the Extending Sequence use case to UCM scenario

models.

II. Mapping LGS Use Case to UCM Scenario Models

UCM scenario models can be built by mapping the actors and the actions elements defined in the

Extending Sequence use case. The mapping is straightforward, for example, the Primary Actor

(Pilot) and the Secondary Actor (LGCU) are mapped manually to two UCM components: Pilot

and LGCU. The actions to be performed by each component, such as Handle_Down and

ReleaseUp_Lock are allocated to UCM responsibility elements. As a rule, each action in the use

The Methodology MDTGL

86

case is mapped to one responsibility element in UCM. As a result, two lists of responsibility are

extracted from the use case and bound to their corresponding components:

⎯ Pilot: { Handle_Down and ConfirmGearsDown}

⎯ LGCU: {OpenDoors, LockDoorsInOpenedPos, ReleaseUp_Lock, AmberON,

Lock_DownGears, GreenON_AmberOFF, CloseDoors, LockDoorsInClosedPos, RedON,

and NormalModeFailed}.

With some basic knowledge of the jUCMNav tool, the two lists of responsibility; Pilot and

LGCU, along with timed requirements in the use case can be modeled into UCM scenarios.

Figure 5.13 shows a UCM map that is composed of two components with their bounded

responsibilities. The time constraints and functional requirements are modeled as indicated by the

Extending Sequence use case. The map in Figure 5.13 encloses eight possible scenario models

representing the Extending Sequence requirements of the LGS.

The Methodology MDTGL

87

Pilot LGCU

X

X X

X
X

X
X

X

X

X

XX

StartExtending
Handle_Down

Timer_0 Timer_1

EndExtending

RedON

Timer_6

Timer_5

Timer_4

Timer_3

Timer_2

OpenDoors

LockDoorsIn

OpenedPos

ReleaseUp_

Lock

AmberON

Lock_Down

Gears

GreenON_

AmberOFF

CloseDoors

LockDoorsIn

ClosedPos

ConfirmGearsDown

EndNormalMode

EndFailure

[Alt<2500ft & Speed <200 kt]

DeploymentFailed

NormalModeFailed
NormalModeFailed

DeploymentSucceeded

[timeout]
[timeout]

[timeout]

[timeout]

[timeout]

[timeout]

[timeout]

Figure 5.13: UCM scenario models built from an Extending Sequence use case

These scenario models fall into three major groups:

a) Successful Deployment Group: contains one scenario model, labeled

“DeploymentSucceeded”.

b) Gears Deployment Failed Group: contains one scenario model, labeled

“DeploymentFailed”.

c) Normal Mode Failed Group: contains six scenario models, all of them end in the path

labeled “NormalModeFailed”.

The Methodology MDTGL

88

The execution of any of the scenario models begins at the StartExtending point (filled circle) and

terminates in one of the three End points (bars); EndExtending, EndNormalMode or EndFailure.

The StartExtending point is triggered when its preconditions are met⎯ the airplane achieves

airspeed of less than 200 knots and altitude below 2500 feet. The Pilot then switches the

Handle_Down causing the LGCU to extend the landing gears scenario.

In this exercise of creating UCM scenario models, the Extending Sequence requirements of the

LGS are developed and allocated to software items.

In the next section, we show how the “DeploymentSucceeded” scenario model is transformed into

an ATC.

III. Transform UCM Scenario Models and Data Model into ATC in TDL

We explain in detail in the following subsections how each element in the TDL specification is

developed in the ATC Builder process.

⎯ Generate TDL Test Objective

In our experimentation, the TDL Test Objectives shown in Listing 5-1 were developed manually

by analyzing the sequence and role of UCM objects that reside on the “DeploymentSucceeded”

scenario and enriched with test requirements.

Listing 5-1: TDL Test Objective

1. Test Objective TestObj1 {

2. description: "ensure that when Handle is switched down, a timer is started. If it times-out 15 seconds later

3. and gears are not locked, a red light is sent"; }

4. Test Objective TestObj2 {

5. description: "ensure that a 'door locked open light' is received after locking the doors in opened position"; }

6. Test Objective TestObj3 {

7. description: "ensure that an 'amber light' is received when gears are in transition.” ; }

8. Test Objective TestObj4 {

9. description: "ensure that a 'green light' is received when gears are locked down.” ; }

10. Test Objective TestObj5 {

11. description: "ensure that a 'door locked close light' is received after closing the door"; }

The Methodology MDTGL

89

⎯ Generate TDL Data Set

In the “DeploymentSucceeded” scenario, the Pilot and LGCU components interact with each

other through stimuli and responses. For example, the Pilot sends a stimulus to the LGCU when

executing Handle_Down responsibility. The LGCU responds by performing internal actions (no

interaction) when executing OpenDoors and ClosedDoors responsibilities and sending responses

when stepping into LockDoorsInOpenedPos, AmberON, GreenON_AmberOFF, and

LockDoorsInClosedPos responsibilities. Table 5-3 shows the test data for the UCM

“DeploymentSucceeded” scenario.

Table 5-3: Test Data For “DeploymentSucceeded” Scenarion

Test Data

Requirement

UCM responsibility

Stimulus/Response

TDL Data Instances

Stimulus to be sent when Pilot

switches handle down

Response to be received when

LGCU locks doors in opened

position

Response to be received when

LGCU activates Gear

maneuvering

Response to be received when

LGCU locks Gears in a down

position

Response to be received when

LGCU locks doors in closed

position

Handle_Down

LockDoorsInOpenedPos

AmberON

GreenON_AmberOFF

LockDoorsInClosedPos

instance Handle_Down

instance LockDoorsInOpenedPos

instance AmberON

instance GreenON_AmberOFF

instance LockDoorsInClosedPos

The developed TDL Data Instances are grouped in two Data Set elements in terms of Stimulus

and Response:

▪ GearDeployment: bounded to Pilot messages (Stimulus); and

▪ Signal: bounded to LGCU messages (Response).

Listing 5-2 shows compiled TDL Data Instances grouped in two Data Sets that are developed

from test data in Table 5-3.

The Methodology MDTGL

90

Listing 5-2: TDL Data Sets elements

⎯ Generate TDL Test Configuration

The UCM “DeploymentSucceeded” scenario in Figure 5.13 is exported, using the UCM traversal

mechanism [133], to a scenario that contains traversed UCM elements. A snapshot of the

exported scenario that highlights the Test Configuration is shown in Listing 5-3. In this

exportation, the UCM components Pilot and LGCU are mapped to TDL Component Instance

objects with a Gate Instance. A Connection instance is added to indicate that the two Component

Instances should be connected.

Listing 5-3: A snapshot of the exported “DeploymentSucceeded” scenario that shows the

TDL Test Configuration package

1. <?xml version="1.0" encoding="ISO-8859-1"?>

2. <tdl:Package xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xmlns:tdl="http://www.etsi.org/spec/TDL/20130606" name="SuccessfulDeployment">

3. <comment name="Created" body="April 16, 2016 11:10:12 AM EDT"/>

4. <comment name="Modified" body="April 16, 2016 11:10:12 AM EDT"/>

5. <comment name="Author" body="nkesserw"/>

6. <packagedElements xsi:type="tdl:TestConfiguration">

7. <componentInstance name="Pilot" type="//@packagedElements.18">

8. <gateInstance name="gPilot" type="//@packagedElements.6"/>

9. </componentInstance>

10. <componentInstance name="LGCU" type="//@packagedElements.19">

11. <gateInstance name="gLGCU" type="//@packagedElements.6"/>

12. </componentInstance>

13. <connection name="LGCU_Pilot" endPoint="//@packagedElements.0/@componentInstance.2/@gateInstance.0

//@packagedElements.0/@componentInstance.1/@gateInstance.0"/>

14. </packagedElements>

1. Data Set GearDeployment {

2. instance Handle_Down;

3. }

4. Data Set Signal {

5. instance LockDoorsInOpenedPos;

6. instance AmberON;

7. instance GreenON_AmberOFF;

8. instance LockDoorsInClosedPos;

9. }

The Methodology MDTGL

91

Next, a compiled Test Configuration element is achieved by parsing the exported scenario to

convert the packaged element tdl:TestConfiguration into concrete TDL syntax. The Component

Instances are instantiated to either SUT or Tester, depending on their role. Each Component

Instance has a gate type to specify the data that can be exchanged, i.e., the Data Sets developed

earlier. Listing 5-4 shows the TDL Test Configuration generated automatically from the exported

“DeploymentSucceeded” scenario depicted in Listing 5-3. The Data Sets GearDeployment and

Signal are added manually to the TDL Test Configuration (line 1). The two components: Pilot

and LGCU are typed (line 7 and line 10) and connected through newly-defined gates (line 13).

Listing 5-4: TDL Test Configuration element generated from a “DeploymentSucceeded”

scenario

⎯ Generate TDL Test Description

The TDL Data Instances shown in Listing 5-2 are used as Interaction objects between a Tester

and an SUT. The UCM responsibility objects along the “DeploymentSucceeded” scenario is

mapped to the Action Reference. UCM scenario Timer Set events are mapped to TimerStart

objects in TDL. Listing 5-5 shows a snapshot of the exported “DeploymentSucceeded” scenario.

1. Gate Type defaultGT accepts GearDeployment, Signal;

2. Component Type defaultCompType {

3. gate types :defaultGT ;

4. }

5. Test Configuration TestConfiguration {

6. //Pilot component

7. instantiate Pilot as Tester of type defaultCompType having {

8. gate gPilot of type defaultGT ; }

9. //LGCU component

10. instantiate LGCU as SUT of type defaultCompType having {

11. gate gLGCU of type defaultGT ; }

12. / /connect the two components through their gates

13. connect gPilot to gLGCU; }

The Methodology MDTGL

92

Listing 5-5: A snapshot of the exported “DeploymentSucceeded” scenario that shows the

TDL Test Description package

Developing a TDL Test Description is automated by parsing the exported

“DeploymentSucceeded” scenario, extracting the components with their bounded responsibilities

and mapping them to equivalent TDL objects. Listing 5-6 shows the TDL Test Description that is

composed of actions, timers and interactions. As mentioned earlier, the absence of alternative

elements in the scenario metamodel required post-processing of the generated Test Description to

1. <packagedElements xsi:type="tdl:TestDescription" name="TestSuccessfulDeployment"

testConfiguration="//@packagedElements.0">

2. <behaviour>

3. <block>

4. <behaviour xsi:type="tdl:ActionReference" name="Handle_Down" action="//@packagedElements.22">

5. <annotation value="gPilot" key="//@packagedElements.5"/>

6. </behaviour>

7. <behaviour xsi:type="tdl:Interaction" name="From Pilot to LGCU"

source="//@packagedElements.0/@componentInstance.1/@gateInstance.0"

target="//@packagedElements.0/@componentInstance.2/@gateInstance.0">

8. <annotation value="Timer_0" key="//@packagedElements.1"/>

9. <annotation value="If we had a description for this Interaction we could put it here."

key="//@packagedElements.2"/>

10. </behaviour>

11. <behaviour xsi:type="tdl:TimerStart" name="Timer_0 _Start" timer="//@packagedElements.19/@timer.0">

12. <annotation value="gLGCU" key="//@packagedElements.3"/>

13. </behaviour>

14. <behaviour xsi:type="tdl:TimerStop" name="Timer_0 _TimerStop"

timer="//@packagedElements.19/@timer.0">

15. <annotation value="gLGCU" key="//@packagedElements.3"/>

16. </behaviour>

17. <behaviour xsi:type="tdl:AlternativeBehaviour" name="OrFork1291\nisGearsDown">

18. <annotation value="gLGCU" key="//@packagedElements.4"/>

19. </behaviour>

20. <behaviour xsi:type="tdl:ActionReference" name="OpenDoors" action="//@packagedElements.23">

21. <annotation value="gLGCU" key="//@packagedElements.5"/>

22. </behaviour>

23. </block>

24. </behaviour>

The Methodology MDTGL

93

merge the scenarios that constitute alternate test behaviour. The element repeat iterates over the

different alternatives a number of times as determined by the 'numIteration' attribute.

Listing 5-6: TDL Test Description element generated from “DeploymentSucceeded”

scenario

1. Test Description TestDescription { //Test description definition

2. use configuration : TestConfiguration; {

3. perform action Handle_Down on component Pilot with { PRECONDITION ; };

4. gPilot sends instance Handle_Down to gLGCU with { test objectives :TestObj1; };

5. perform action OpenDoors on component LGCU with { PRECONDITION ; };

6. perform action LockDoorsInOpenedPos on component LGCU with {PRECONDITION ;} ;

7. repeat 4 times { //Iterate over receiving responses, each one is consumed once

8. alternatively { // LGCU sends response indicating Door is locked in open position

9. gLGCU sends instance LockDoorsInOpenedPos to gPilot with

10. { test objectives : TestObj2; };

11. set verdict to PASS ; }

12. or { gate gLGCU is quiet for (7.0 SECOND);

13. set verdict to FAIL; }

14. perform action ReleaseUp_Lock on component LGCU with { PRECONDITION; };

15. alternatively { // LGCU sends response indicating Gears are in transition

16. gLGCU sends instance AmberON to gPilot with { test objectives : TestObj3; };

17. set verdict to PASS ; }

18. or { gate gLGCU is quiet for (7.0 SECOND);

19. set verdict to FAIL; }

20. perform action Lock_DownGears on component LGCU with { PRECONDITION ; };

21. alternatively { // LGCU sends response indicating Gears are in locked down

22. gLGCU sends instance GreenON_AmberOFF to gPilot with { test objectives : TestObj4; };

23. set verdict to PASS ; }

24. or { gate gLGCU is quiet for (7.0 SECOND);

25. set verdict to FAIL; }

26. perform action CloseDoors on component LGCU;

27. perform action LockDoorsInClosedPos on component LGCU with {

28. PRECONDITION; };

29. alternatively { // LGCU sends response indicating Door is locked in close position

30. gLGCU sends instance LockDoorsInClosedPos to gPilot with {test objectives :TestObj5; };

31. set verdict to PASS ;

32. perform action ConfirmGearsDown on component Pilot with {PRECONDITION ;};}

33. or { gate gLGCU is quiet for (7.0 SECOND) ;

34. set verdict to FAIL; }

35. or { gate gLGCU is quiet for (15.0 SECOND);

36. set verdict to FAIL; }

37. }

38. } }

The Methodology MDTGL

94

The interactions of the Test Description start when a Handle_Down command flows from the

Pilot gate to the LGCU gate (line 4). Immediately afterward, a timer is started to satisfy the

timing constraint of the landing gears’ deployment, followed by a second timer to time the action

of the door opening. Shortly after locking the doors in the opened position, the LGCU gate sends

the LockDoorsInOpenedPos sign (line 9) indicating all the doors are locked in the opened

position. The LGCU releases the up-lock and an AmberON status is sent (line 16) indicating the

gears are in transition to the full-down position. Another timer is started to time the action of

locking the gears in the down position. Gears are locked once they reach the final position when a

GreenON_AmberOFF status message is sent from the LGCU gate (line 22) indicating full

deployment of the landing gears. If the GreenON_AmberOFF status message sign is received

before any time expiration, a pass verdict is issued and the Pilot confirms gears are down and

locked (line 32), otherwise the test fails.

The elements obtained earlier— Test Objective, Data Set, precondition and Test Configuration—

are used in the Test Description to help structure the TDL Specification. Listing 5-7 shows the

developed TDL Test Specification. In the next section, we show how to script the obtained TDL

specification into TCs in TTCN-3.

The Methodology MDTGL

95

Listing 5-7: The resulting TDL specification model

IV. Transform TDL Specifications to TTCN-3 Modules

In the following subsections, we show how the TTCN-3 modules are developed from the TDL

Specification.

1. TDLan Specification DeployLandingGearTest {
2. Verdict PASS; Verdict FAIL;
3. Action Handle_Down: "when airspeed is less than 200 knots and altitude is less than 2500 feet, the pilot switches handle down and keep it down for 15
4. seconds, gears starts";
5. Action OpenDoors: "when doors are locked in closed position, the corresponding cylinder are extended to unlock the doors";
6. Action LockDoorsInOpenedPos: "lock the doors in opened position";
7. Action ReleaseUp_Lock: "when gears are locked in up position, the gear cylinders receive hydraulic pressure in order to release the lock that holds the
8. gears";
9. Action Lock_DownGears: " lock gears when reach full down position";
10. Action CloseDoors: "when doors are locked in opened position, the corresponding cylinder are extended to unlock the doors";
11. Action LockDoorsInClosedPos: "lock the doors in closed position";
12. Action ConfirmGearsDown: "Pilot confirms gears are down and locked";
13. Annotation PRECONDITION ;
14. Time Unit SECOND;
15. Test Objective TestObj1 {
16. description: "ensure that when Handle is switched Down, a timer is started. If it times-out 15 seconds later and gears are not locked, a red light is sent";}
17. Test Objective TestObj2 {
18. description: "ensure that a 'door locked open light' is received after locking the doors in opened position.";}
19. Test Objective TestObj3 {
20. description: "ensure that an 'amber light' is received when gears are in transition.";}
21. Test Objective TestObj4 {
22. description: "ensure that a 'green light' is received when gears are locked down.";}
23. Test Objective TestObj5 {
24. description: "ensure that a 'door locked close light' is received after closing the door.";}
25. Data Set GearDeployment {
26. instance Handle_Down; }
27. Data Set Signal { instance LockDoorsInOpenedPos; instance AmberON; instance GreenON_AmberOFF; instance LockDoorsInClosedPos; }
28. //Data Instance reference
29. Use "LandingGearData.ttcn3" as LGearData;
30. Map Handle_Down to " Handle_DownTemplate" in LGearData;
31. Map LockDoorsInOpenedPos to " LockDoorsInOpenedPosTemplate" in LGearData;
32. Map AmberON to " AmberONTemplate" in LGearData;
33. Map GreenON_AmberOFF to " GreenON_AmberOFFTemplate" in LGearData;
34. Map LockDoorsInClosedPos to " LockDoorsInClosedPosTemplate" in LGearData;
35. Gate Type defaultGT accepts GearDeployment, Signal; //Define the gate type and the exchanged data set
36. Component Type defaultCompType { gate types :defaultGT ; }
37. Test Configuration TestConfiguration { // Pilot and LGCU
38. instantiate Pilot as Tester of type defaultCompType having { gate gPilot of type defaultGT ; }
39. instantiate LGCU as SUT of type defaultCompType having{ gate gLGCU of type defaultGT ; }
40. connect gPilot to gLGCU; } //connect the two components through their gates
41. Test Description TestDescription { //Test description definition
42. use configuration : TestConfiguration; {
43. perform action Handle_Down on component Pilot with { PRECONDITION ; };
44. gPilot sends instance Handle_Down to gLGCU with { test objectives :TestObj1; };
45. perform action OpenDoors on component LGCU with { PRECONDITION ; };
46. perform action LockDoorsInOpenedPos on component LGCU with { PRECONDITION ; };
47. repeat 4 times { //Iterate over receiving responses, each one is consumed once
48. alternatively { // LGCU sends response indicating Door is locked in opened position
49. gLGCU sends instance LockDoorsInOpenedPos to gPilot with { test objectives : TestObj2; }; set verdict to PASS ; }
50. or { gate gLGCU is quiet for (7.0 SECOND); set verdict to FAIL; }
51. perform action ReleaseUp_Lock on component LGCU with { PRECONDITION ; };
52. alternatively { // LGCU sends response indicating Gears are in transition
53. gLGCU sends instance AmberON to gPilot with { test objectives : TestObj3; }; set verdict to PASS ; }
54. or { gate gLGCU is quiet for (7.0 SECOND); set verdict to FAIL; }
55. perform action Lock_DownGears on component LGCU with { PRECONDITION ; };
56. alternatively { // LGCU sends response indicating Gears are locked down
57. gLGCU sends instance GreenON_AmberOFF to gPilot with { test objectives : TestObj4; }; set verdict to PASS ; }
58. or { gate gLGCU is quiet for (7.0 SECOND); set verdict to FAIL; }
59. perform action CloseDoors on component LGCU;
60. perform action LockDoorsInClosedPos on component LGCU with { PRECONDITION ; };
61. alternatively { // LGCU sends response indicating Door is locked in closed position
62. gLGCU sends instance LockDoorsInClosedPos to gPilot with { test objectives : TestObj5; }; set verdict to PASS ;
63. perform action ConfirmGearsDown on component Pilot with { PRECONDITION ; }; }
64. or { gate gLGCU is quiet for (7.0 SECOND) ; set verdict to FAIL; }
65. or { gate gLGCU is quiet for (15.0 SECOND);
66. set verdict to FAIL; }
67. }
68. }
69. }
70. }

The Methodology MDTGL

96

⎯ Generate TTCN-3 Test Data

The two Data Sets; GearDeployment and Signal, defined previously in Listing 5-2, are parsed

with their instances to generate records and record fields (variables) in TTCN-3 syntax based on

Rule #22 and Rule #23. After the TTCN-3 data module is partially generated and test data

becomes available, the module is completed with test oracle information and typed with concrete

TTCN-3 types. Figure 5.14 shows the transformation (semi-automatic) between TDL Data Sets

and TTCN-3 data module.

module LandingGearData {

 type record GearDeploymentType {

 charstring Handle_Down_S

 }

 template GearDeploymentType // Test input

 Handle_DownTemplate:={Handle_Down_S:= "Handle_Down"

 }

 type record SignalType { // Test Oracle

 boolean LockDoorsInOpenedPos_R,

 boolean AmberON_R,

 boolean GreenON_AmberOFF_R,

 boolean LockDoorsInClosedPos_R

 }

 template SignalType LockDoorsInOpenedPosTemplate:= {

 LockDoorsInOpenedPos_R:= true, AmberLight_R:= false,

 GreenON_AmberOFF_R:= false, LockDoorsInClosedPos_R:=

 false

 }

 template signalType AmberONTemplate := {

 LockDoorsInOpenedPos_R:= false, AmberON_R:= true,

 GreenON_AmberOFF_R:= false, LockDoorsInClosedPos_R:=

 false

 }

 template signalType GreenON_AmberOFFTemplate := {

 LockDoorsInOpenedPos_R:= false, AmberON_R:= false,

 GreenON_AmberOFF_R:= true, LockDoorsInClosedPos_R:=

 false

 }

 template signalType LockDoorsInClosedPosTemplate:= {

 LockDoorsInOpenedPos_R:= false, AmberON_R:= false,

 GreenON_AmberOFF_R:= false, LockDoorsInClosedPos_R:=

 true }

}

LandingGearData.ttcn3

GearDeployment

• Handle_Down

Signal

• LockDoorsInOpenedPos

• AmberON

• GreenON_AmberOFF

• LockDoorsInClosedPos

TDL Data Set

S
e

m
i-a

u
to

m
a

tic

Figure 5.14: Mapping abstract TDL Data Sets to concrete data in TTCN-3

The Data instances developed in the previous section are next mapped to the corresponding

TTCN-3 templates through TDL data element mappings as shown in Listing 5-8.

The Methodology MDTGL

97

Listing 5-8: TDL Map elements used to reference concrete TTCN-3 templates

⎯ Generate TTCN-3 Test Configuration

Based on the transformation rules; Rule #2, Rule #3, and Rule #4, the transformation of the

obtained TDL Test Configuration into an equivalent one in TTCN-3 is performed. Listing 5-9

shows the transformation of one TDL Test Configuration into an equivalent one in TTCN-3.

1. Gate Type defaultGT accepts

GearDeployment, Signal;

2. Component Type defaultCompType{

 gate types : defaultGT ; }

//Test configuration definition

3. Test Configuration TestConfiguration {

//Pilot component

4. instantiate Pilot as Tester of type

 defaultCompType having {

 gate gPilot of type defaultGT ;}

//Landing Gear component

5. instantiate LGCU as SUT of type

 defaultCompType having{

 gate gLGCU of type defaultGT ; }

//connect the two components

6. connect gPilot to gLGCU; }

module TestConfiguration

{

 import from LandingGearData

 type GearDeploymentType,

 SignalType;

 type port defaultGT message {

 inout GearDeploymentType;

 inout SignalType;

 }

 type component Pilot {

 port defaultGT gPilot;

 }

 type component LGCU {

 port defaultGT gLGCU; }

}

TDL TTCN-3

#2

#3

#3

#4

Listing 5-9: Transformation of TDL Test Configuration to its corresponding TTCN-3

The obtained Test Configuration in TTCN-3 defines test component types and port types,

denoted by the keyword’s component and port. The communication between the components is

achieved via the message-based communication port gPilot and gLGCU, through which

1. Use "LandingGearData.ttcn3" as LGearData;

2. Map Handle_Down to " Handle_DownTemplate" in LGearData;

3. Map LockDoorsInOpenedPos to " LockDoorsInOpenedPosTemplate" in LGearData;

4. Map AmberON to " AmberONTemplate" in LGearData;

5. Map GreenON_AmberOFF to " GreenON_AmberOFFTemplate" in LGearData;

6. Map LockDoorsInClosedPos to " LockDoorsInClosedPosTemplate" in LGearData;

The Methodology MDTGL

98

messages of type GearDeploymentType and signalType are sent and received. The connection

between the two components is shown in the Test Description module (developed next) and is

expressed with a map function.

⎯ Generate TTCN-3 Test Behavior

As mentioned previously, the developed tool maps the TDL elements to TTCN-3 statements.

Listing 5-10 shows an example of transforming two major TDL elements: action and interaction.

The tool parses the sends instance statements (interaction) and generates a TTCN-3 message

statement. The action statement is parsed to generate a function signature and a function call. The

obtained function is refined at the TTCN-3 level when applicable.

gPilot sends instance Handle_Down to gLGCU

gPilot.send(Handle_DownTemplate)

Rule #8

perform action Handle_Down on component Pilot

function Handle_Down()runs on Pilot{
}
Handle_Down();

Rule #12

TDL

TTCN-3

TDL

TTCN-3

Listing 5-10: TDL action and interaction transformation

The transformation of TDL Test Objectives cannot be rule-based. However, their semantics can

be interpreted manually and reflected in the TTCN-3 Test Description module. Listing 5-11

shows TTCN-3 Test Description module transformed from the TDL Specification.

The Methodology MDTGL

99

Listing 5-11: TTCN-3 Test Description module

1. module TestDescription {

2. import from TestConfiguration all;

3. import from LandingGearData all;

4. testcase _TC () runs on Pilot {

5. map (mtc:gPilot, system:gLGCU);

6. timer deploymentTime; timer lockDoorOpenedTime; timer gearsManeouvringTime;

7. timer gearLockedDownTime; timer lockDoorClosedTime;

8. Handle_Down(); // function call

9. gPilot.send(Handle_DownTemplate);

10. deploymentTime.start(15.0);

11. OpenDoors(); // function call

12. LockDoorsInOpenedPos ();

13. lockDoorOpenedTime.start(7.0);

14. alt {

15. [] gPilot.receive(LockDoorsInOpenedPosTemplate) {

16. lockDoorOpenedTime.stop;

17. setverdict(pass);

18. ReleaseUp_Lock(); // function call

19. gearsManeouvringTime.start(7.0);

20. repeat } // restart the alt

21. [] lockDoorOpenedTime.timeout {

22. setverdict(fail) }

23. [] gPilot.receive(AmberONTemplate) {

24. gearsManeouvringTime.stop;

25. setverdict(pass);

26. Lock_DownGears(); // function call

27. gearLockedDownTime.start(7.0);

28. repeat } // restart the alt

29. [] gearsManeouvringTime.timeout {

30. setverdict(fail) }

31. [] gPilot.receive(GreenON_AmberOFFTemplate) {

32. gearLockedDownTime.stop;

33. setverdict(pass);

34. CloseDoors(); // function call

35. LockDoorsInClosedPos();

36. lockDoorClosedTime.start(7.0);

37. repeat } // restart the alt

38. [] gearLockedDownTime.timeout {

39. setverdict(fail) }

40. [] gPilot.receive(LockDoorsInClosedPosTemplate) {

41. lockDoorClosedTime.stop;

42. deploymentTime.stop;

43. setverdict(pass);

44. ConfirmGearsDown(); } // function call

45. [] lockDoorClosedTime.timeout {

46. setverdict(fail) }

47. [] deploymentTime.timeout {

48. setverdict(fail) } }

49. unmap (mtc:gPilot, system:gLGCU); } }
50. function Handle_Down () runs on Pilot { }

51. function OpenDoors () runs on Pilot { }

52. function LockDoorsInOpenedPos () runs on Pilot { }

53. function ReleaseUp_Lock () runs on Pilot { }

54. function Lock_DownGears () runs on Pilot { }

55. function CloseDoors () runs on Pilot { }

56. function LockDoorsInClosedPos () runs on Pilot { }

57. function ConfirmGearsDown () runs on Pilot { } }

The Methodology MDTGL

100

Now, the ETCs is completed by combining the derived modules represented by the three TTCN-

3 files: "LandingGearData.ttcn3", "TestConfiguration.ttcn3", and "TestDescription.ttcn3". Listing

5-12 shows an additional module "DeployLandingGears.ttcn3" to invoke the TC execution.

Listing 5-12: TTCN-3 module to invoke the execution of the test case

5.3.2 Traceability Links Framework

The variety of different models produced in the TCG process discussed in the previous section

poses challenges to requirements traceability and assessment. This diversity of artifacts results in

an intricate relationship between requirements and the various models. The role played by

relationships among artifacts to support automation of testing activities had long been

recognized; relationships from behavioral models to test cases and from test cases to test results

support coverage measurement, result evaluation and selective regression testing. The creation

and maintenance of explicit relationships among test-related artifacts is, therefore the main

challenge to the automated support of such activities.

In DO-178C, the software verification process defines activities for determining that the software

aspects of airborne systems comply with airworthiness requirements. One of the activities

defined in the process is to verify that the system requirements allocated to software have been

developed into HLR that satisfy those system requirements. Trace data should be generated to

support this verification. A relationship between each unique system-level requirement and its

embodiment in the software requirement should be created, allowing traceability between

software requirements and HLR. This relationship should allow for bidirectional traceability,

meaning that the traceability chains can be traced in both the forwards and backward directions.

The rest of this section is structured as follows. Section 5.3.2.1 presents the traceability approach.

A case study to demonstrate the approach realization is presented in Section 5.3.2.2.

1. module DeployLandingGears {

2. import from TestDescription testcase _TC;

3. control { execute(_TC()); }

4. }

The Methodology MDTGL

101

5.3.2.1 Traceability Approach

In this section, we answer the RQ4: “how to align the activities of requirement traceability to

testing to improve project cost and comply with DO-178C standards?” by presenting a

framework that aligns the activities of requirement traceability to testing to improve system

quality and project cost. The framework extends the MDTGL methodology to create explicit

relationships in a trace model among testing artifacts. Our contribution is to build a traceability

model to support the creation and persistence of relationships among these testing models.

Moreover, to enable the support for visualizing traceability, model-based coverage analysis, and

result evaluation. The approach relates UCM behavioral models to test cases via ATC models

during model transformation where n-ary links among models could be visualized. This is an

important factor in visualizing relationships among models because it is almost impossible to

represent more than one link in a two-dimensional traceability matrix in an understandable way.

Moreover, the number of relationships in traceability matrixes is high and fixed.

Figure 5.15 shows an overview of the approach. The first step in the approach from the

traceability perspective is to create the UCM scenario model (step 1 in the figure). Then, the

model is flattened to scenario definitions where each scenario is transformed to ATC in test

description language TDL (step 2 in the figure). During this transformation, the traceability

information is made explicit into a separate model. Then, (step 3 in the figure) TCG takes place;

it consists of using the ATC model and data model to generate the test cases. Again, during the

test cases generation, the traceability information, guided by a traceability scheme, is made

explicit and persistent.

The Methodology MDTGL

102

START

Resp. 1

END

Scenario 1

Scenario 2

Scenario 3

Resp. 2

Resp. 3

Resp. 4

Resp. 5

Resp. 6

Resp. 9

Resp. 7

Resp. 8

END

END

Test Configuration

 Scenario 1

Test Description

 Scenario 1

Test Configuration

 Scenario 3

Test Description

 Scenario 3

X

X
X

XX TC_Scenario 1

TC 1.1

TC 1.2

TC 1.n

Data

Model

 TC_Scenario 3

TC 3.1

TC 3.2

TC 3.n

Model

Transformation
TestCase

Generation

Step 1 model creation:

UCM behavioral model

Step 2 model

transformaiton:

Test Scenario model

tracemodel.ecore

recording Relationship

between Model 1 & Model 2

tracemodel.ecore

recording Relationship

between Model 2 & TestCases

Step 3 testcase

generation:

Testcases.ttcn-3

Data Set

 Scenario 1

Data Set

 Scenario 3

Figure 5.15: Traceability approach overview

During the execution of MDTGL methodology, the traceability information, recorded by our

developed tools, is made explicit into a separate model called “tracemodel.ecore”. The Ecore

trace model records a small number of relationships from model to a test case to enable the

support for model-based coverage analysis, visualizing traceability and result evaluation. Our

Ecore5 trace model is integrated into Eclipse Modeling Framework (EMF) and it is independent

of the models it connects.

Our approach currently uses a trace metamodel inspired by Jouault et al. [137] that supports

traceability. Our contribution is to externalize the relationships among the test-artifact models

(UCM scenario models, ATCs models and ETCs models) and recorded them in our trace model.

The relationships are created and recorded in the trace model to support activities such as result

5
Ecore is the meta metamodel of Eclipse Modeling Framework (EMF). http://www.eclipse.org/

modeling/emf/

The Methodology MDTGL

103

evaluation, regression testing, and coverage analysis. The traceability metamodel is shown in

Figure 5.16.

aTraceModel

aModelRef bModelRef

aSourceModel bTargetModel

aSourceElement bTargetElement

ref ref

abTraceLink

aTraceLinkEnd bTraceLinkEnd

SourceElements

aElementRef bElementRef
ref ref

TargetElements

Figure 5.16: Traceability model

In the context of MDD, traceability schemes are usually explicitly expressed in metamodels,

which are also usually linked to models specifying model transformations. Currently, there is no

single standardized traceability metamodel. The traces among testing artifacts can be produced

on-line, in which case traces are stored automatically by a tool as a by-product of the

development activity. Or it can be done off-line, which means that traces are recorded

automatically or manually after the actual development activity has been finished.

Using the modeling tool jUCMNav, the first step of the approach (model creation) is to create the

UCM model. The feature path traversal algorithm is capable of exporting scenario models that

conform to the EMF metamodel (Ecore) implementation of the UCM notations. The exported

scenarios have exhaustive coverage of the UCM model and used as input to the first

transformation. Implementation of the second step (model transformation) is based on the

“behavioral scenarios to ATCs scenarios” model transformation. The “ATC Builder process”

receives as input an exported scenario model (Source) and transforms it into TDL Test

Configuration and Test Description models (Target). To support traceability, we enhanced the

transformation tool to create traces that relate the model elements between Source and Target.

Guided by a traceability scheme defined in Table 5-4, we recorded the produced traces in the

The Methodology MDTGL

104

traceability model “tracemodel.ecore”. Implementation of the third step test case generation and

traceability information takes places when the transformed TDL specifications and the data

model developed earlier become ready. We again recorded the traces, obtained as a product of the

transformation, with the guidance of the traceability scheme in Table 5-4.

Table 5-4: Traceability scheme

Testing artifacts

What information

to record

Constraints Source

UCM Scenario

TDL Test Specification

TTCN-3 Test case

Component

Interaction

Action Reference

Test Configuration

Test Description
Gate

Interaction, Action Reference

Data Instance, Data Set

Port
Record, Record field

Send, Receive

Template,
Function

No duplication in Gate

No duplication in Data Set

No duplication in Port

Scenario Definition

Scenario Definition

Scenario Definition

Connected components

Set of Interaction & Action reference
Component

Interaction & Action reference

Data model

Gate

Data model, Data Set, Data Instance

Interaction
Data model

Action Reference

In the following section, we explain how relationships among the testing models are recorded by

our developed tools in the trace model during TCG process.

5.3.2.2 Approach Realization

The LGS case study, presented earlier, is used to demonstrate the realization of the traceability

approach.

I. Traceability Links Between Requirements and ATCs

During the execution of the TCG process, the UCM scenarios describing the LGS requirements

are created as step 1 of the traceability approach (Figure 5.15). The transformation of the UCM

scenarios into ATCs and the creation of traceability information take place in step 2 in the figure.

Followed by step 3; transforming the ATCs into ETCs and creating the corresponding traceability

information. Table 5-5 shows the test data extracted from the UCM “DeploymentSucceeded”

scenario depicted in Figure 5.13.

The Methodology MDTGL

105

Table 5-5: Extended Test data for “DeploymentSucceeded” Scenario

Test Data

Requirement

UCM responsibility

Stimulus/Response

TDL Data Instances TTCN-3 Template

Stimulus to be sent when Pilot

switches handle down

Response to be received when

LGCU locks doors in opened

position

Response to be received when

LGCU activates Gear

maneuvering

Response to be received when

LGCU locks Gears in down

position

Response to be received when

LGCU locks doors in closed

position

Handle_Down

LockDoorsInOpenedPos

AmberON

GreenON_AmberOFF

LockDoorsInClosedPos

instance Handle_Down

instance LockDoorsInOpenedPos

instance AmberON

instance GreenON_AmberOFF

instance LockDoorsInClosedPos

Template String Handle_Down_Type

Template String

LockDoorsInOpenedPos_Type

Template String AmberON_Type

Template String

GreenON_AmberOFF_Type

Template String

LockDoorsInClosedPos_Type

The transformed ATC model, composed of Test Configuration, Test Description and Data Set

elements is depicted in Figure 5.17.

<< Test Description >>

DeploymentSucceeded

<< Atomic Behavior >>

SD_Behaviour

<< ActionBehavior >>

Target = SUT

<< ActionBehavior >>

Target = Tester

<< Interaction >> [1]

Argument = Handle_Down
Source = Tester

Target = SUT

<< Interaction >> [3]

Argument = AmberON
Source = SUT

Target = Tester

<< Interaction >> [4]

Argument =
GreenON_AmberOFF

Source = SUT
Target = Tester

<< Action Reference >> [2]

action = Lock_DownGear
actualParameter =

<< Action Reference >> [1]

action = ReleaseUp_Lock
actualParameter =

<< Interaction >> [2]

Argument = LockDoorsInOpenPos
Source = SUT

Target = Tester

<< Interaction >> [5]

Argument =
LockDoorsInClosedPos

Source = SUT
Target = Tester

<< Test Configuration >>

DeploymentSucceeded

<< ComponentInstance
>>

role = Tester

<< ComponentInstance
>>

role = SUT

<< GateInstance >>

TesterGate

<< GateType >>

GType

<< GateInstance >>

SUTGate

<< Connection >>

<< ComponentType
>>CType

<< ComponentType
>>CType

Figure 5.17: ATC model for “DeploymentSucceeded” scenario

Traceability information for the test configuration is depicted in Figure 5.18. The traceability

model is named TraceUCMModel2TDLModel. It relates models UCMScenarioModel and

TDLTestScenarios. It has one trace link named DSScenarioTraceLink that relates the

UCMDSScenario in the UCMScenarioModel to the TDLDSTTestSpecification in the

TDLTestScenarios. DSSScenarioTraceLink has many children; Figure 5.18 shows the link

The Methodology MDTGL

106

DSTestConfigurationTraceLink, which relates the component Instances (Pilot and LGCU) in the

UCMDSScenario to the gate instances (Tester and SUT) in the TDLDSTestSpecification.

TraceUCMModel2TDLModel

aModelRef bModelRef

UCMScenarioModel TDLTestScenarios

UCMDSScenario TDLDSTestSpecification

ref ref

DSScenarioTraceLink

TraceModel

aTraceLinkEnd bTraceLinkEnd

SourceElements

ComponentInstance
Pilot

GateInstance
Tester

ref ref

TargetElements

ComponentInstance
LGCU

GateInstance
SUT

aElementRef bElementRef

DSTestConfigurationTrace
Link

Child

a1TraceLinkEnd

a1ElementRef

b1TraceLinkEnd

b1ElementRef

SourceElements
TargetElements

ref

ref

a2TraceLinkEnd

a2ElementRef

b2TraceLinkEnd

b2ElementRef

SourceElements

TargetElements
ref ref

Figure 5.18: Traceability links between “DeploymentSucceeded” scenario and Test

Configuration element.

Part of the traceability information for the test description is depicted in Figure 5.19. The trace

link DSSScenarioTraceLink has another child DSTestDescriptionTraceLink, which relates the

interactions and action references in the UCMDSScenario to the interactions and action

references in the TDLDSTestSpecification. The figure shows one “Interaction” and one “Action

Reference”.

The Methodology MDTGL

107

TraceUCMModel2TDLModel

aModelRef bModelRef

UCMScenarioModel TDLTestScenarios

UCMDSScenario TDLDSTestSpecification

ref ref

DSScenarioTraceLink

TraceModel

aTraceLinkEnd bTraceLinkEnd

SourceElements

Interaction
Handle_Down

Interaction
Handle_Down

ref ref

TargetElements

ActionReference
ReleaseUp_Lock

Action Reference
ReleaseUp_Lock

aElementRef bElementRef

DSTestDescrptionTraceLink

child

a3TraceLinkEnd

a3ElementRef

b3TraceLinkEnd

b3ElementRef

SourceElements TargetElements

ref ref

a4TraceLinkEnd

a4ElementRef

b4TraceLinkEnd

b4ElementRef

sourceElements TargetElements

ref ref

Figure 5.19: Traceability links between “DeploymentSucceeded” scenario and Test

Description element

II. Traceability Links Between ATCs and ETCs

The last step in the approach (step 3 in Figure 5.15) is the generation of test cases and the

creation of the traceability information among TDL test model and the generated test cases.

Information from the data model in Table 5-5, from the TraceModel in Figure 5.16 and from test

specification model in Figure 5.18 is used to complete the step. The data model is developed

from the testing requirement and represents the input space for the scenario model

“DeploymentSucceeded” under transformation. The instances in the data model are grouped into

two sets; stimulus (Tester) and response (SUT) to build the TDL Data Sets element. Each Data

Set is mapped to records and record fields (variables) in TTCN-3 syntax based on transformation

rules. In Figure 5.20, the trace link DSSScenarioTraceLink has a child

DSTestDataModuleTraceLink, which relates the Data Set, Data Instance and Interaction in the

TDLDSTestSpecification to the Record, Record field and Send in the TC_DS_[seq]. The figure

shows one “Data Set” one “Instance” and one Interaction.

The Methodology MDTGL

108

TraceTDLModel2TestcasesModel

aModelRef

bModelRef

TDLTestScenarios

TTCN-3_DS_TestSuite

TDLDSTestSpecification

TC_DS_[01]

ref

ref

DSScenarioTraceLink

TraceModel

aTraceLinkEnd
bTraceLinkEnd

SourceElements

Instance
AmberON

Record Field
AmberON

ref

ref

TargetElements

Data Set
SUT

Record
SUT

aElementRef

bElementRef

DSTestDataModuleTraceLink

child

a1TraceLinkEnd

a1ElementRef

b1TraceLinkEnd

b1ElementRef

SourceElements

TargetElements

ref

ref

a2TraceLinkEnd

a2ElementRef

b2TraceLinkEnd

b2ElementRef

sourceElements TargetElements
ref ref

a3TraceLinkEnd

a3ElementRef

sourceElements

b3TraceLinkEnd

b3ElementRef

targetElements

Interaction
Handle_Down

ref

Send
Handle_Down

ref

Figure 5.20: Traceability information between TDL and TTCN-3

The TDL test scenario “DeploymentSucceeded” is transformed into a test case in TTCN-3 by

applying the structural transformation, e.g., a TDL element is transformed into a TTCN-3

module. Therefore, the resulting test case is composed of three types of modules: (1) a Test

Configuration module, (2) a Test Description module, (3) and a Data module. After the TTCN-3

Data module is partially generated and test data becomes available, the module is completed with

test inputs and oracle information. A new test case is added “TC_DS_01” to the test suite “TTCN-

3_DC_TestSuite” for each new pair of test input and expected output found in Data model in

Table 5-3.

III. Compliance with DO-178C Standards

In our trace model, we have trace data that shows the HLR described as TDL elements are

traceable to software requirements (UCM elements) and that the LLR are traceable to HLR. The

test scenarios are traced indirectly (via UCMs) to the HLRs and LLRs. The executable TCs are

traced to the abstract test scenarios in TDL. Therefore, compliance with DO-178C standard is

achieved for the traceability objective. LLRs are developed from HLRs, and as defined by DO-

178C, an association between a requirement and its related items is necessary. The TDL can be

produced from UCMs developed from HLRs or LLRs: the methodology is applicable to HLR- or

LLR-based testing.

MDTGL Approach Summary

109

5.4. MDTGL Approach Summary

This chapter proposed a new testing methodology that automates with limited resources two

major testing activities for testing ES based on modeling and model transformation. First, the

chapter presented an approach for generating executable test cases from system requirements

modeled with UCM notation. The TCG approach used test description language to transform the

abstraction of a test description to an executable test case. The automatic development of TCs by

the TCG approach has produced different models at different levels of abstraction. Next, the

chapter presented a framework that aligns the activities of requirement traceability to testing to

improve system quality and project cost. The traceability framework automatically links the

intricate relationships among test-related artifacts, obtained as a product of the transformation, to

support the automation of testing activities such as coverage measurement, result evaluation and

selective regression testing. Figure 5.21 shows the two testing activities.

Test
result

Tr
ac

ea
b

ili
ty

 li
n

ks

Tr
ac

ea
b

ili
ty

 li
n

ks

SUT

Cerate traceability
links among models

Generate TCs based
on model

transformation

Figure 5.21: The activities of MDTGL methodology

MDTGL Approach Summary

110

In terms of validating the proposed testing methodology and demonstrates if it is technically

feasible, the LGS case study from the avionics public domain was applied. The experiments

showed that the testing artifacts are generated at the reasonable effort.

Topic Overview

111

Chapter 6 TCG Approach Evaluation

6.1. Topic Overview

The evaluation of the approach is sampled with an industrial product from the private domain, an

FMS, see Figure 6.1.

This activity answers the research question RQ3: “how do we assess the correctness of a test case

generation process and how to evaluate its efficiency?”

Figure 6.1: FMS Front Panel (photo Esterline CMC Electronics)

The FMS test stimuli are key presses and the test oracles are screen dumps. Since the FMS

functionality was tested using software tests developed manually and determined correctly the

FMS behaviour, we wanted to evaluate our approach using the same case study to assess the

efficiency of our approach. We present an empirical evaluation of the approach, based on the

results obtained with 3 FMS use cases. We studied the approach efficiency in terms of generating

ETCs and we evaluated the correctness of the generated workflow in two steps:

▪ Perform requirement-based test coverage analysis: we analyzed the trace model

tracemodel.ecore, obtained as a product of the transformation, along with the generated ATCs

The Case Study FMS

112

and ETCs to confirm that there is at least one ATC for each requirement and all ETCs and

ATCs are traceable to requirements (UCM models).

▪ Perform verdict analysis: we used a set of legacy ETCs to assess the correctness of the

generated ETCs. Since the execution of the legacy ETCs against SUT reported correctly its

behaviour and verified that the implementation satisfies the requirements, we used them as an

oracle version. We compared our ETCs verdicts against the ones emitted by the legacy ETCs.

The pass verdict indicates correct implementation where the fail verdict indicates an error has

been detected.

The remainder of this chapter is organized as follows. Section 6.2 presents the FMS as the case

study followed by the experiment method that we used in Section 6.3. The efficiency of the

approach is presented in Section 6.4. The traceability links and their alignment with testing are

presented in Section 6.5. A discussion with generalization of the approach and set of lessons

learned showing the difficulties encountered are presented in Section 6.6.

6.2. The Case Study FMS

An FMS is typically comprised of the following interrelated functions: navigation, flight

planning, trajectory prediction, performance computations, and guidance. It provides the primary

navigation, flight planning, optimized route determination and en-route guidance for an aircraft.

To accomplish these functions, the flight management system must interface with several other

avionics systems. A short description of three key functions performed by the FMS and used in

the evaluation is given below:

▪ Flight Planning: the flight planning function allows the creation of a flight plan based on the

data combinations from a company’s route, defined waypoints, navigation database, etc.

▪ Lateral Guidance: This function allows waypoint management via its control display unit

interface when an aircraft is configured as a rotor.

▪ Navigation: This function determines the accuracy variable based on the present position,

ground speed, and wind speed/wind direction.

6.3. The Experimental Method

We analyzed the efficiency of the approach by running an experiment aiming to determine

whether the approach is efficient to generate ATCs that cover the requirements and can be

The Experimental Method

113

transformed to correct ETCs. We consider an ETC is correct, after being executed on the FMS if

it reports correctly the behaviour of the SUT. Our first step was to select from the legacy software

tests a number of ETCs that cover the three FMS key functions reported in the previous section.

Five legacy ETCs that were manually developed, performed on the FMS and reported correctly

its behaviour covered those functions and therefore were selected. Next, we identified the

corresponding requirements of these legacy ETCs and grouped them into 3 use cases. The

description of each use case is given as follows:

⎯ Automatic Leg Transitions: contains 8 functional requirements that specify the automatic

leg change using fly-by (turn anticipation) or fly-over (turn over the waypoint).

⎯ Provide Guidance for a Manual Direct-to Intercept: contains 7 requirements that specify

the operations of the “discontinuity ahead” alter message on the modified route.

⎯ Predict the Expected Time of Arrival (ETA) with different configurations: contains 9

requirements that specify the computations to be performed by the FMS for an aircraft to

arrive at a certain place.

For each use case, the experimental method we applied consists of:

▪ Requirement stage: the requirements in the use case were formalized into Cockburn notation

and manually mapped to UCM models. We validated the scenario models and checked if they

describe correctly all the requirements.

▪ Test scenario stage: for each possible path in the scenario model, its definition was created

and stored as an XML file. Using our java-based tool, we transformed the scenario path

expressed in XMI format into scenario test expressed in TDL notation. We completed the

obtained ATC with Test Objectives and Data Instances elements which are taken mainly from

the requirements.

▪ Test generation stage: based on the transformation tool that we implemented with the Xtext

and Xtend framework, we transformed each ATC into an executable ETC.

▪ Test execution stage: the resulting ETCs that correspond to the selected legacy ETCs were

executed on the FMS and their test results were recorded.

As a result, 26 ATCs and ETCs were generated from the 3 use cases. Five ETCs were performed

on the FMS and their test results were recorded. The selected ETCs stimulate the FMS

functionality and reflect largely the use cases. Table 6-1 shows the details about the executed

Requirement Coverage and Generating Correct ETCs

114

ETCs where the description of each ETC is given in column 1. Columns 2 and 3 show the

number of exchanged messages with the FMS and their verdict respectively. A total of 803

exchanged messages and 338 test verdicts are performed as shown in the total row.

Table 6-1: The executed TPs against the FMS

TP performed on FMS

of input/output exchanged

with FMS

of verdict per TP

Fly-by procedure
32 10

Fly-over procedure
26 11

Fly-over procedure via

DES+SAR

236 129

Manual Direct-to Intercept 116 20

ETA Computation
393 168

Total 803 338

6.4. Requirement Coverage and Generating Correct ETCs

We analyzed the generated ATCs to check if they cover the requirements. Table 6-2 shows that

the approach covered all paths in the scenario models effectively. In fact, the approach generated

one ATC for each scenario path in the scenario model. The total number of the generated ATCs

successfully covers all possible paths in the UCM model and achieves therefore full scenario and

requirement coverage.

Table 6-2: The requirement coverage by the generated ATCs from UCM model

Use case modeled as scenario

of Scenario Path
of

ATCs

Requirement

Coverage Rate

Main Secondary

Automatic leg transitions 3 9 12 100 %

Provide Guidance for a Manual

Direct-to Intercept
1 7 8 100 %

Expected Time Arrival

Computation
1 5 6 100 %

Traceability Links and Alignment with ETCs Result

115

The generated ETCs were assessed for their correctness by comparing their test results against

the legacy ETCs. The objective is to have the ETCs behaviour matches the legacy tests. As

mentioned, the legacy tests are used as a golden version to assess the correctness of the generated

TPs. Table 6-3 shows the result of the verdict comparison for each pair of ETC. The scenario

models that describe the requirements are shown in the first column. Followed by ETC

description in the second column. The rate of matching verdict with the corresponding legacy test

is presented in the third column.

Table 6-3: The matching rate of the executed ETCs

Use case modeled as scenario Executed ETC
Verdict matching rate with

legacy

Automatic Leg Transmission

Fly-by procedure 100 %

Fly-over procedure 100 %

Fly-over procedure via DES+SAR 98 %

Provide Guidance for a Manual

Direct-to Intercept
Manual Direct-to Intercept 97 %

Expected Time Arrival

Computation
ETA Computation 98 %

All the verdicts in the Fly-by-procedure and Fly-over-procedure ETCs matched the

corresponding verdicts of the legacy tests. In the remaining ETCs, Fly-over-procedure via

DES+SAR, Manual Direct to-Intercept and ETA computation, very few numbers of verdicts did

not match with the corresponding legacy tests. The result in the third column determined with a

high rate of success the SUT behaviour— emitting pass verdict when it is expected and fail

verdict in the presence of errors.

6.5. Traceability Links and Alignment with ETCs Result

The result of the test case generation process in the previous section is the trace model

“tracemodel.ecore” which relates UCM scenario models to TTCN-3 test cases grouped in test

suites. Each test case, generated within a unique identifier, is a sequence of actions and

Traceability Links and Alignment with ETCs Result

116

interactions with defined input parameter values and output parameter values. The execution of

the test case results in the assignment of a test verdict; pass or fail. In the “tracemodel.ecore”, the

links between requirements and ETCs may have several possible cardinalities:

• One-to-one: one requirement is tested exactly by one ETC and this test case tests only this

requirement.

• One-to-many: one requirement is tested by several ETCs and these ETCs participate to

test only this requirement.

• Many-to-many: one requirement is tested by several ETCs, which are used to test several

requirements.

Figure 6.2 shows the relationships between the testing artifacts for the “DeploymentSucceeded”

scenario. The traceability link DSScenarioTraceLink[1] relates the model UCMDSScenario to

the model TDLDSTestSpecification which is related to several test cases via the traceability link

DSScenarioTraceLink[2]. The generated test cases are children of the test suite TTCN-

3_DS_TestSuite.

Source Target

UCMDSScenario TDLDSTestSpecification

DSScenarioTraceLink [1] DSScenarioTraceLink [2]
Source Target

TC_DS_01

TC_DS_n

TTCN-3_DS_TestSuite

Req.1

Req.2

Req.n

Dev. Req.1

Dev. Req.2

Dev. Req.n

Figure 6.2: Requirement Traceability among testing models

The trace model takes a significant importance in the TCG process. On one hand, it provides a

clear meaning for each generated ETC: the tested requirement(s) gives the purpose of the

associated test case(s). It is a kind of rationale for the generated test suite. On the other hand, the

trace model exhibits clearly which requirements are actually tested (and how), and which

requirements are not tested. For the not tested requirements, this suggests completing the test

Traceability Links and Alignment with ETCs Result

117

suite to obtain full functional coverage. During the test execution of the ETC in Listing 6-1, the

traceability links in the trace model help to identify the related requirements when it fails.

Similarly, when the test case passes, they certify that the related requirements were implemented

and tested.

Listing 6-1: ETC TTCN-3 generated from “DeploymentSucceded” scenario

1. module TestDescription {

2. import from TestConfiguration all; import from TestData all;

3. testcase TC_DS_01 () runs on Pilot {

4. map (mtc:gPilot, system:gLGCU);

5. timer deploymentTime; timer lockDoorOpenedTime;

6. timer gearsManeouvringTime; timer gearLockedDownTime;

7. timer lockDoorClosedTime;

8. Handle_Down(); // function call

9. gPilot.send(GearDownTemplate);

10. deploymentTime.start(15.0);

11. OpenDoors(); // function call

12. LockDoorsInOpenedPos ();

13. lockDoorOpenedTime.start(7.0);

14. alt {

15. [] gPilot.receive(LockOpenedDoorTemplate) { setverdict(pass);

16. ReleaseUp_Lock();

17. gearsManeouvringTime.start(7.0);}

18. [] lockDoorOpenedTime.timeout { setverdict(fail) }

19. [] gPilot.receive(AmberLightTemplate) { setverdict(pass);

20. Lock_DownGears();

21. gearLockedDownTime.start(7.0); }

22. [] gearsManeouvringTime.timeout { setverdict(fail) }

23. [] gPilot.receive(GreenLightTemplate) { setverdict(pass);

24. CloseDoors();

25. LockDoorsInClosedPos();

26. lockDoorClosedTime.start(7.0);

27. [] gearLockedDownTime.timeout { setverdict(fail) }

28. [] gPilot.receive(LockClosedDoorTemplate) { setverdict(pass);

29. ConfirmGearsDown(); }

30. [] lockDoorClosedTime.timeout { setverdict(fail) }

31. [] deploymentTime.timeout { setverdict(fail) } }

32. unmap (mtc:gPilot, system:gLGCU); } } }

Discussion of TCG Approach

118

6.6. Discussion of TCG Approach

We applied our approach to industrial case study FMS at the Avionic industry. The validation has

been achieved by comparing the behaviour of the legacy and the generated tests. If they are

behaviour equivalent, the same sequence of test events and verdicts, we can consider them

comparable. The verdict of almost all oracle steps in the generated ETC matched their

corresponding ones in the legacy. In other words, the generated ETCs passed and failed in the

same steps as the legacy ETCs did except a small number of failures in the generated tests. These

failures were mostly due to timing issues. The generated tests in TTCN-3 execution have a

considerably better performance as the legacy system and the SUT is relatively slow. These cases

could be easily detected using the state of the SUT. If the state was the same as for the preceding

test event, this indicates that the SUT has not updated its state yet. Here, the responses are not

coming spontaneously but instead, the test system must query the SUT to obtain the response.

Also, some of the failures could indicate that there are alternative behaviour in the SUT,

something that the legacy test system could not handle because it was based on linear sequences

of test events.

In conclusion, this study reveals that our approach generated ATCs that cover all the described

requirements in the scenario models achieving full requirement coverage.

Compared to the legacy testing system, the new approach improves the testing in practice and

offers several advantages to the test engineers. We found the following benefits from our new

testing practice:

⎯ Increased test system understanding: using a model enables to get an overview of the

behaviour of a system compared to scattered bits and pieces of information.

⎯ Early Testing: The test engineers don’t need to wait; they describe the requirements in a

model and then push a button to generate the tests.

⎯ Reduced test effort: in our model-driven testing, the number of iterations to get correct ETCs

is reduced. The test development phase is eliminated. The ETCs are no longer written by

hand or manually corrected, but generated.

⎯ Traceability: Traceability links among testing artifacts are generated during model

transformation. Since ETCs are derived from the UCM models where requirements are

Discussion of TCG Approach

119

described, any defect found during the execution of an ETC can be traced back to its

requirement.

⎯ Systematic and automation: with the help of the developed tools, repeated tests are enabled

which ensures the robustness of the test results.

⎯ Reduced human errors: The fact that the tests are generated from the model and thus

consistent with requirements reduces, by definition, the possibility of error in the test suite.

6.6.1 Generalization of the Approach

The approach focuses on functional aspects of software and has been applied to two realistic case

studies from the avionics domain. Additionally, the methodology can apply to safety-critical

software as it covers timing requirements and provides traceability evidence from requirements to

tests. The approach relies on two major elements to improve the testing process:

Modeling: the system requirements (functional) and design are described by high-level visual

models and DSL abstracting away technological implementation detail.

Model transformation: the automated model transformations are used to generate tests to reduce

the manual work, to provide traceability evidence and to simulate high-level models to validate

the suitability of the modeled system behaviour in an early development phase.

Today, the practical realisation of model-driven testing benefits from a variety of tools and

technologies. Some requirements may not be describable with the UCM notation such as

robustness requirements. Such requirements have to be specified through other notations or

languages. The model transformations are (partially) automated and require little human

intervention. The process converts the informal requirements into a formal UCM model. We have

used the tool described in [17] that generates individual test traces, called test scenarios in TDL

but as already mentioned, test traces are not always test cases. A good test case comprises

alternative behaviour both in TDL and in TTCN-3. This part is post-processed with a tool to

resolve the absence of alternatives in the scenario metamodels targeted by jUCMNav’s traversal

mechanism. The hints found in [17] have been tried out and were successful. However, the

translation from TDL to TTCN-3 is relatively straightforward since there is mostly a one to one

mapping from TDL to TTCN-3. Only, things such as describing test purposes are not covered

and thus have to be translated manually usually as TTCN-3 comments. Overall, our achievement

was to show that it is an advantage to build a formal UCM model because everything else down

Discussion of TCG Approach

120

the path can be automatically generated and is either all the way right or all the way wrong. Test

automation has the advantage to be systematic when it comes to errors as opposed to manual

processes where errors are introduced randomly and are difficult to trace. This automation

reduces the required amount of manual work for test development, such that the testing process is

supposed to become less error-prone and more efficient.

6.6.2 Lessons Learned

We distill some of the important lessons we have learned in developing and deploying the testing

methodology.

The users of the testing methodology should not need to have the functional requirements

expressed with use case notation to model them as scenarios. However, requirements presented as

a use case facilitated the mapping to UCM models. The model transformation to TDL domain is

not fully automatic and requires human intervention to obtain the data elements and to construct

the alternatives. The TDL models were a key component of model-driven testing as they have

been used as input and output in the model transformation process. The decision to use the TDL

notation in the development of tests was successful. TDL narrowed the gap between the

described requirements and tests and served as a way of communication with non-technical

people and as a base to generate concrete tests.

Topic Overview

121

Chapter 7 Conclusions

7.1. Topic Overview

ESs have increasing importance in modern society due to the close interaction with their

environment. Ensuring high-quality software that is of crucial importance today is often costly.

Quality assurance efforts, especially testing efforts, often consume more than 50 % of the overall

development efforts [138], [139]. Therefore, testing an ES implementation with limited resources

to ensure that it is fault-free before its deployment is necessary. Several new technologies have

emerged to address the growing demand for ES software verification. One of those techniques is

MDT which is an automation of MBT that uses model-transformation technology on formal

models, their meta-models, and transformation rules defined in terms of mappings between the

elements of meta-models.

While many researchers have found methods of improving UCM-based testing by deriving test

goals, its abstraction level remains inappropriate for the generation of implementation-level test

cases. Moreover, UCM models abstract from detailed communication mechanisms, and

emphasize behavior rather than data which makes deriving executable test cases a difficult

activity. There are a number of important related issues that need to be researched such as

generating test cases from UCM scenarios with limited resources. Furthermore, there is little

research done on linking the activities of requirement traceability with testing. As a result, it is

important to develop a valid and flexible approach that can handle these issues.

In this chapter, Section 7.2 summarises the research findings of each chapter. Section 7.3

explains how research objectives are achieved. A summary of the Thesis contributions is then

presented in Section 7.4. Finally, Section 7.5 identifies the research limitations and points to

future research ideas.

7.2. Research Summary

The aim of the research presented in this Thesis was to develop, validate and automate a flexible

model-driven testing approach based on modeling and model transformation for testing ESs.

Research Summary

122

Chapter 1 gave an overview of the area under research and highlighted the motivation of this

research. That emphasized the need for developing a valid model-driven testing approach capable

of testing ESs with limited resources. A set of research objectives were identified to fulfill the

research aim followed by Thesis contributions.

Chapter 2 reviewed the related literature that addressed testing ESs. The concept of testing was

defined and explained by addressing some topics related to testing types. Several studies were

reviewed in this chapter that covers three testing activities; (1) model transformation, (2) test case

generation, and (3) requirement traceability and alignment with testing.

Chapter 3 introduced the three domain-specific languages UCM, TDL and TTCN-3 where their

metamodels are used in requirement propagation and model transformation. The construct of

each language is described extensively with example.

Chapter 4 presented a reverse engineering process aiming to discover a path from TDL to

TTCN-3. The process reversed engineer a legacy software test by migrating test cases written as

Ant/xml files into the TTCN-3 code. The obtained executable test cases are re-engineered to a

higher level of abstraction to obtain abstract test cases in TDL notation.

Chapter 5 developed the MDTGL methodology based on modeling and model transformation

that automated the generation of test cases, the traceability requirement among testing artifact,

and the checking result of interaction behavior. Several tools have been developed that target the

automatic testing of ESs. The validity of the MDTGL was empirically demonstrated by running it

on a public case study.

Chapter 6 assessed and evaluated the new testing approach based on assessment factors which

considered requirement coverage, the correctness of generated workflow and labor cost with

respect to the length of generated test cases. The chapter presents an experiment applied to the

avionics case study for estimating the assessment criterion. A discussion with generalization of

the approach and set of lessons learned showing the difficulties encountered especially for testing

ES is then highlighted.

Meeting the Research Objectives

123

7.3. Meeting the Research Objectives

The main aim of the Thesis was to provide software engineering community with a sound, valid

and flexible testing approach for testing ESs with limited resources. This section shows how this

research successfully achieved its objectives.

Objective 1: “To determine the differences and obstacles that reside among the three languages;

UCM, TDL and TTCN-3”. The first objective was achieved in Chapter 2 and 3 by studying the

constructs of each language and its metamodel.

Objective 2: “To resolve the obstacles and differences that exist among the three languages and

demonstrate the approach feasibility”. The second objective was achieved in Chapter 4 and 5 by

developing transformation rules between the three languages and discovering a path from UCM

scenarios to TTCN-3 test cases via TDL.

Objective 3: “To generate test cases in TTCN-3 from UCM models via TDL based on

requirement analysis, model transformation and refinement process”. The third objective was

achieved in Chapter 5 by developing a test case generation approach based on model-driven

technique to derive testing artifacts. Next, by developing a TCG process for generating

executable test cases. The technique can be seen as a process of successive refinements of

specifications that involves model transformation and the insertion of additional information.

Objective 4: “To align traceability requirement with generated test artifacts and testing”. This

objective was achieved in Chapter 5 by extending the MDTGL tool to create explicit

relationships in a trace model among generated testing artifacts.

Objective 5: “To validate the generated testing artifacts in terms of effectiveness and usefulness

at the specification and implementation level”. This objective was achieved in Chapter 6 by

sampling the new approach with an industrial ES and compared it to the testing approach.

Objective 6: “To develop and provide traceability evidence from requirements to tests for

compliance with DO-178C standards”. This objective was achieved in Chapter 4 by developing a

framework that creates traceability links in recorded them in a trace model.

Summary of Research Contributions

124

7.4. Summary of Research Contributions

The main research contributions are summarized in the following subsections.

7.4.1 Towards Building Model-Driven Testing Methodology

 The reengineering of legacy software tests aims to discover feasible transformation from the test

layer to test requirement. Furthermore, it is used to help build the model transformation, generate

TTCN-3 test cases from TDL models, and show its feasibility. Then, after showing that TTCN-3

test cases can be derived from TDL models, the approach is extended with the requirement layer

which describes software specifications in UCM scenarios where test objectives can be driven

and transformed into TDL models. Reaching this point, the feasibility of transforming TTCN-3

scripts into a TDL model is shown, and a forward engineering process to regenerate the test cases

can be undertaken.

7.4.2 Test Case Generation Approach

Several model-based testing approaches have been proposed to improve UCM-based testing by

deriving test goals. However, most of these approaches stopped at the generation of abstract test

cases. Another challenge besides transforming UCM scenario models to test cases in a scripting

language is the validation of the transformation, both in terms of technical correctness and

usefulness.

Other research assumed that there are unlimited resources to generate the testing artifacts. It is

thus essential to consider an approach that generates with limited resources executable test cases

and validating them in the industrial case study. The lack of a mature test case generation process

based on UCM models directed our research to develop one.

The concept of test case generation was proposed to support the testing of ES with limited

resources. As a result, we focused on generating test cases. We developed models to describe the

system requirements and rules to transform them up to test cases.

7.4.3 Requirement Traceability and Alignment with Testing

The alignment research area model-based development has attracted a lot of attention. The idea

behind MBT is the derivation of executable test code from test models by analogy to MDA [140].

Research Limitations and Future Work

125

One challenge in using MBT approach for aligning requirements and testing is to make test cases

executable, as the tests are not at the same level of detail as the implementation code [141]. This

technique is becoming of more interest in industry because it provides automatic deriving of test

cases from the behavioral model of the system called the test model. Our traceability model,

obtained as a product of model transformation during the TCG process, helped determine what

requirement has been covered by which test and how the generated ETCs cover these

requirements. Another important reason for traceability is improving change management by

helping to find out how a change in the requirement is reflected in the ETCs. It also helped trace

from tests back to requirements which is helpful to find the root of a failed test. Furthermore,

compliance with DO-178C standard is achieved for the traceability objective.

7.4.4 The Application of TCG Approach on an Industrial Case Study

Some proposed approaches in the literature lack automation tool support. Using such approaches

requires a deep understanding of their mechanism and significant manual effort in generating and

executing test cases. Others were partially automated. Their tools were responsible for only

automating the generation of test input which requires other sets of tools to make the test cases

executable.

To our knowledge, there has yet to be a study that compares the efficiency of similar approaches

on real applications. This research used an industrial ES with well-identified assessment criteria

by which the efficiency of testing approaches can be compared were also presented. In summary,

we aimed to develop a testing approach capable of detecting as many faults as possible with

limited resources. The study at the implementation level confirmed results obtained at the

specification level. Our TCG approach reduced the test effort and allowed to start testing early.

7.5. Research Limitations and Future Work

This section identifies a set of research limitations encountered and suggests a set of

complementary future work to address them.

7.5.1 Case Studies

This research succeeded in comparing the efficiency of MDTGL with industrial testing approach

based on specification case studies. However, the relatively small size of case studies used can be

Research Limitations and Future Work

126

considered a limitation. Choosing small specification models for the approach application was

justified due to the limited access imposed by our research partner.

For future research, we may use more industrial case studies by which more functional faults can

be found and categorized. Moreover, comparing the results with MDTGL.

7.5.2 Automation of Recording Traceability Links

The goal of creating traceability relations among testing artifacts during the development of TCG

process is achieved. However, the recording of these traceability links in our trace model is not

automated. Therefore, there is an automation direction for future work to automate the process of

recording traceability links in the trace model to ensure the benefits of maintaining traceability

relations over time as the software system evolves.

127

References

[1] M. Zhang, T. Yue, S. Ali, H. Zhang, and J. Wu. A systematic approach to automatically derive test

cases from use cases specified in restricted natural languages. In Proceedings of the 8th International

Conference on System Analysis and Modeling: Models and Reusability (SAM'14), 2014.

[2] Elberzhager, F., Rosbach, A., Münch, J., & Eschbach, R. (2012). Reducing test effort: A systematic

mapping study on existing approaches. Information and Software Technology, 54(10), 1092-1106.

[3] Grieskamp, W., Kicillof, N., Stobie, K. and Braberman, V. (2011) Model-based quality assurance of

protocol documentation: tools and methodology. Software Testing, Verification and Reliability, 21

(1), pp. 55-71

[4] What is the Benefit of a Model-Based Design of Embedded Software Systems in the Car Industry?

Manfred Broy (Technical University Munich, Germany), Sascha Kirstan (Altran Technologies,

Germany), Helmut Krcmar (Technical University Munich, Germany) and Bernhard Schätz (Technical

University Munich, Germany) DOI: 10.4018/978-1-61350-438-3.ch013.

[5] Baker, P., Dai, Z. R., Grabowski, J., Schieferdecker, I., & Williams, C. (2007). Model-driven testing:

Using the UML testing profile. Springer Science & Business Media. ISBN 9783540725626.

[6] Baudry, Benoit, et al. "Barriers to systematic model transformation testing." Communications of the

ACM 53.6 (2010): 139-143.

[7] Boucher, Mathieu, and Gunter Mussbacher. "Transforming workflow models into automated end-to-

end acceptance test cases." 2017 IEEE/ACM 9th International Workshop on Modelling in Software

Engineering (MiSE). IEEE, 2017.Bruel, Jean-Michel, et al. "Model Transformation Reuse Across

Metamodels." International Conference on Theory and Practice of Model Transformations. Springer,

Cham, 2018.

[8] He, C., & Mussbacher, G. (2016, September). Model-driven engineering and elicitation techniques: a

systematic literature review. In 2016 IEEE 24th International Requirements Engineering Conference

Workshops (REW) (pp. 180-189). IEEE.

[9] Buhr, Raymond JA. "Use case maps as architectural entities for complex systems."Software

Engineering, IEEE Transactions on 24.12 (1998): 1131-1155.

[10] ITU-T Z.151: http://www.itu.int/rec/T-REC-Z.151/en.

[11] Duran, M.B. and Mussbacher, G., 2019. Reusability in goal modeling: A systematic literature review.

Information and Software Technology.

[12] Amyot, D., Echihabi, A., and He, Y. (2004), UCMEXPORTER: Supporting Scenario Transformations

from Use Case Maps. Proc. of NOTERE’04, Saïdia, Morocco, June.

[13] ITU-T – International Telecommunications Union (2002), Recommendation Z.100 (08/02):

Specification and description language (SDL). Geneva, Switzerland.

[14] ITU-T – International Telecommunications Union (2003), Recommendation Z. 140 (04/03): Testing

and Test Control Notation version 3 (TTCN-3): Core language. Geneva, Switzerland.

[15] OMG – Object Management Group (2003), Unified Modeling Language Specification, Version 1.5.

http://www.omg.org/uml/

[16] Telelogic AB (2004), Tau SDL Suite, http://www.telelogic.com/products/tau/sdl/index.cfm

128

[17] Boulet, P., Amyot, D., Stepien, B.: Towards the generation of tests in the test description language

from use case map models. In: SDL 2015: Model-Driven Engineering for Smart Cities, pp. 193–201.

Springer (2015)

[18] http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/WebHome.

[19] Lago, P., Muccini, H., van Vliet, H.: A scoped approach to traceability management. J. Syst. Softw.

82(1), 168–182 (2009)

[20] DO-178C, available from RTCA at www.rtca.org.

[21] http://www.ttcn-3.org/index.php/downloads/standards.

[22] http://www.etsi.org/deliver/etsi_es/203100_203199/20311901/01.03.01_60/es_20311901v010301p.pd

f.

[23] En-Nouaary, A., Dssouli, R., Khendek, F. and Elqortobi, A. (1998) Timed test cases generation based

on state characterization technique. Proceedings of the 19th IEEE Real-Time Systems Symposium,

Madrid, pp. 220-229.

[24] Broekman, B. and Notenboom, E. (2003) Testing Embedded Software. London, UK: Addison-

Wesley.

[25] Hessel, A., Larsen, K. G., Mikucionis, M., Nielsen, B., Pettersson, P. and Skou, A. (2008) Testing

Real-Time Systems Using UPPAAL. Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST.

LNCS, Berlin Heidelberg, pp. 77–117.

[26] Rollet, A. (2003) Testing robustness of real-time embedded systems. In Proceedings of Workshop On

Testing Real-Time and Embedded Systems (WTRTES), Satellite Workshop of FM 2003 Symposium,

Pisa, Italy.

[27] Mandrioli, D., Morasca, S. and Morzenti, A. (1995) Generating test cases for real-time systems from

logic specifications. ACM Transactions on Computer Systems, 13 (4), pp. 365-398.

[28] En-Nouaary, A. (2008) A scalable method for testing real-time systems. Software Quality Control, 16

(1), pp. 3-22.

[29] Utting, M. and Legeard, B. (2007) Practical model-based testing: a tools approach San Francisco:

Elsevier.

[30] Sugeta, T., Maldonado, J. and Wong, W. (2004) Mutation Testing Applied to Validate SDL

Specifications. Springer Berlin / Heidelberg.

[31] Abou Trab, Mohammad. Software engineering: Testing real-time embedded systems using timed

automata-based approaches. Diss. Brunel University, School of Information Systems, Computing and

Mathematics, 2012.

[32] Briones, L. B. (2007) Theories for model-based testing: real-time and coverage. Thesis, Centre for

Telematics and Information Technology

[33] Gross, H.: Testing and the uml – a perfect fit. Technical report, Fraunhofer IESE Report 110.03E

(2003)

[34] Schieferdecker, I., Din, G.: A meta-model for ttcn-3. 1st International Workshop on Integration of

Testing Methodologies (ITM 2004) (2004)

[35] Utting, M. (2005). Model-Based Testing. In Proceedings of the Workshop on Verified Software:

Theory, Tools, and Experiments VSTTE 2005.

129

[36] Kamga, J., Herrmann, J., and Joshi, P. Deliverable (2007). D-MINT automotive case study-Daimler,

Deliverable 1.1, Deployment of model-based technologies to industrial testing, ITEA2 Project,

Germany.

[37] S. Dalal et al. (1999), “Model-based testing in practice”, In: ICSE’99, May, pp. 285—294

[38] G.M. Lima, G.H. Travassos (2005), “A Strategy for Object Oriented Software Integration Testing”.

In: LATW’2005.

[39] M. Vieira, J. Leduc, B. Hasling, R. Subramanyan and J. Kazmeier (2006), “Automation of GUI testing

using a model driven approach”, In: AST'06, ACM Press

[40] J. Edvardsson (1999), “A survey on automatic test data generation”. In: 2nd ECSEL, pages 21--28.

October.

[41] A. Hartman (2002), “Model Based Test Generation Survey”, Technical Report, available on 11/2006

at http://www.agedis.de/downloads.shtml.

[42] M. Prasanna et al. (2005), “Survey on Automatic Test Case Generation”, Academic Open Internet

Journal, available at http://www.acadjournal.com/2005/v15/part6/p4/.

[43] B. Kitchenham (2004), “Procedures for Performing Systematic Review”, Joint Technical Report

Software Engineering Group, Department of Computer Science Keele University, UK, and Empirical

Software Engineering, National ICT Australia Ltd.

[44] Kienzle, Jörg, et al. "A unifying framework for homogeneous model composition." Software &

Systems Modeling 18.5 (2019): 3005-3023.

[45] Jamda: The Java Model Driven Architecture 0.2, May 2003, http://sourceforge.net/projects/jamda/

[46] Mens, Tom, and Pieter Van Gorp. "A taxonomy of model transformation." Electronic Notes in

Theoretical Computer Science 152 (2006): 125-142.

[47] Czarnecki, Krzysztof, and Simon Helsen. "Classification of model transformation approaches."

Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the Context of the Model

Driven Architecture. Vol. 45. No. 3. 2003.

[48] Sendall, Shane, and Wojtek Kozaczynski. "Model transformation: The heart and soul of model-driven

software development." IEEE software 20.5 (2003): 42-45.

[49] D. Milicev, “Domain Mapping Using Extended UML Object Diagrams,” IEEE Software, vol. 19, no.

2, Mar./Apr. 2002, pp. 90–97.

[50] J. Whittle, “Transformations and Software Modeling Language: Automating Transformations in

UML,” Proc. UML 2002, LNCS 2,460, Springer-Verlag, 2002, pp. 227–242.

[51] OMG, The Object Constraint Language Specification 2.0, OMG Document: ad/03-01-07

[52] Rational XDE, http://www.rational.com/products/xde.

[53] Java Metadata Interface 1.0, July 2002, http://java.sun.com/products/jmi.

[54] OMG, Meta Object Facility 1.4, OMG Document: formal/02-04-03.

[55] Object Management Group, MOF 2.0 Query / Views / Transformations RFP, OMG Document:

ad/2002-04-10, revised on April 24, 2002.

[56] Object Management Group. Action Semantics for the UML, 2001. ad/2001-08-04.

[57] CBOP, DSTC, and IBM. MOF Query/Views/Transformations, Revised Submission. OMG Document:

ad/03-08-03.

130

[58] Strategies for Program Transformation, http://www.stratego-language.org.

[59] OptimalJ 3.0, User's Guide, http://www.compuware.com/products/optimalj

[60] Alcatel, Softeam, Thales, TNI-Valiosys, Codagen Corporation, et al. MOF

Query/Views/Transformations, Revised Submission. OMG Document: ad/03-08-05.

[61] Interactive Objects and Project Technology, MOFQuery/Views/Transformations, Revised

Submission. OMG Document: ad/03-08-11, ad/03-08-12, ad/03-08-13

[62] QVT-Partners. MOF Query/Views/Transformations, Revised Submission. OMG Document: ad/2003-

08-08

[63] D. H. Akehurst, S.Kent. A Relational Approach to Defining Transformations in a Metamodel. In J.-M.

Jézéquel, H. Hussmann, S. Cook (Eds.): UML 2002 - The Unified Modeling Language 5th

International Conference, Dresden, Germany, September 30 - October 4, 2002. Proceedings, LNCS

2460, 243-258, 2002.

[64] Compuware Corporation and Sun Microsystems, MOF Query/Views/Transformations, Revised

Submission. OMG Document: ad/03-08-07.

[65] Amyot, D. (2001), Specification and Validation of Telecommunications Systems with Use Case Maps

and LOTOS. Ph.D. thesis, SITE, University of Ottawa, Canada, September.

http://www.usecasemaps.org/pub/da_phd.pdf.

[66] Miga, A., Amyot, D., Bordeleau, F., Cameron, C. and Woodside, M. (2001), Deriving Message

Sequence Charts from Use Case Maps Scenario Specifications. Tenth SDL Forum (SDL'01),

Copenhagen, Denmark, June. LNCS 2078, Springer, 268-287

[67] Amyot, D., Cho, D.Y., He, X., and He, Y. (2003), Generating Scenarios from Use Case Map

Specifications. Third International Conference on Quality Software (QSIC'03), Dallas, USA,

November. http://www.usecasemaps.org/pub/QSIC03.pdf.

[68] Amyot, D., Echihabi, A., and He, Y. (2004), UCMEXPORTER: Supporting Scenario Transformations

from Use Case Maps. Proc. of NOTERE’04, Saïdia, Morocco, June.

[69] UCM User Group (2003), UCMEXPORTER, http://ucmexporter.sourceforge.net/

[70] ITU-T – International Telecommunications Union (2004), Recommendation Z.120 (04/04): Message

sequence chart (MSC). Geneva, Switzerland

[71] OMG – Object Management Group (2003), Unified Modeling Language Specification, Version 1.5.

http://www.omg.org/uml/

[72] He, Y., Amyot, D., and Williams, A. (2003), Synthesizing SDL from Use Case Maps: An Experiment.

11th SDL Forum (SDL'03), Stuttgart, Germany, July. LNCS 2708, Springer, 117-136.

http://www.usecasemaps.org/pub/SDL03-UCM-SDL.pdf.

[73] Charfi, L. (2001), Formal Modeling and Test Generation Automation with Use Case Maps and

LOTOS. M.Sc. thesis, SITE, University of Ottawa, Canada, February 2001.

http://www.usecasemaps.org/pub/lc_msc.pdf.

[74] Fernandez, J-C., Jard, C., Jéron, T., and Viho, C. (1996) Using On-the-fly Verification Techniques for

the Generation of Test Suites. Computer Aided Verification (CAV’96), New Jersey, USA.

[75] Guan, R. (2002) From Requirements to Scenarios through Specifications: A translation Procedure

from Use Case Maps to LOTOS. Master thesis, SITE, University of Ottawa, Canada.

http://lotos.csi.uottawa.ca/ftp/pub/Lotos/Theses/rg_msc.doc.

http://www.usecasemaps.org/pub/QSIC03.pdf

131

[76] Bertolino, Antonia. "Software testing research: Achievements, challenges, dreams." 2007 Future of

Software Engineering. IEEE Computer Society, 2007.

[77] Heumann, Jim. "Generating test cases from use cases." The rational edge 6.01 (2001).

[78] Ryser, J. and M. Glinz, 2000. SCENT: A method employing scenarios to systematically derive test

cases for system test. Technical Report http://portal.acm.org/citation.cfm?id=901553.

[79] Nilawar, M. and S. Dascalu, 2003. A UML-based approach for testing web applications. M.Sc.

Thesis, University of Nevada, Reno

[80] Hasling, B., Goetz, H., Beetz, K.: Model based testing of system requirements using UML use case

models. In: 2008 1st International Conference on Software Testing, Verification, and Validation, pp.

367–376. IEEE (2008, April)

[81] Marrone, S., Flammini, F., Mazzocca, N., Nardone, R., Vittorini, V.: Towards model-driven V&V

assessment of railway control systems. Int. J. Softw. Tools Technol. Transf. 16(6), 669–683 (2014)

[82] Heckel, R., Lohmann, M.: Towards model-driven testing. Electron. Notes Theor. Comput. Sci. 82(6),

33–43 (2003). ISBN 1571-0661

[83] Briand, L., Labiche, Y.: A UML-based approach to system testing. Softw. Syst. Model. 1(1), 10–42

(2002)

[84] Somé, S. S., Cheng, X.: An approach for supporting system-level test scenarios generation from

textual use cases. In: Proceedings of the 2008 ACM Symposium on Applied computing, pp. 724–729.

ACM (2008, March)

[85] C. Nebut, F. Fleurey, Y. Le Traon, et al., "Automatic test generation: a use case driven approach,"

IEEE Transactions on Software Engineering, vol. 32, pp. 140-55, 2006.

[86] Sebastian Siegl, Kai-Steffen Hielscher, and Reinhard German, "Model Based Requirements Analysis

and Testing of Automotive Systems with Timed Usage Models," in 18th IEEE International

Requirements Engineering Conference, Sydney, New South Wales Australia, 2010.

[87] Nogueira, S., Sampaio, A., Mota, A.: Test generation from state-based use case models. Formal Asp.

Comput. 26(3), 441–490 (2014)

[88] Javed, A.Z., P.A. Strooper and G.N. Watson, 2007. Automated generation of test cases using model-

driven architecture. Proceeding of the Second International Workshop on Automation of Software

Test, May 20 - 26, Minneapolis, USA, 150-151.

[89] Sarmiento, E., Sampaio do Prado Leite, J. C., Almentero, E.: C&L: generating model-based test cases

from natural language requirements descriptions. In: 2014 IEEE 1st International Workshop on

Requirements Engineering and Testing (RET), pp. 32–38. IEEE (2014, August)

[90] Leite, J.C.S.P., Hadad, G., Doorn, J., Kaplan, G.: A scenario construction process. Requir. Eng. J.

5(1), 38–61 (2000)

[91] Tanvir Hussain and Robert Eschbach, "Automated Fault Tree Generation and Risk-Based Testing of

Networked Automation Systems," in Proceedings of 15th IEEE Conference on Emerging

Technologies and Factory Automation (ETFA 10) Bilbao, Spain, 2010.

[92] Winkler, Stefan, and Jens von Pilgrim. "A survey of traceability in requirements engineering and

model-driven development." Software & Systems Modeling 9.4 (2010): 529-565.

[93] Pinheiro, F.A.C.: Requirements traceability. In: Sampaio do Prado Leite, J.C., Doorn, J.H. (eds.)

Perspectives on Software Requirements, pp. 93–113. Springer, Berlin (2003)

132

[94] Gotel, O.C.Z., Finkelstein, A.C.W.: An analysis of the requirements traceability problem. In: 1st IEEE

International Requirements Engineering Conference (RE’94) Proceedings, pp. 94–101. IEEE

Computer Society, New York (1994)

[95] Object Management Group: A Proposal for an MDA Foundation Model. Object Management Group,

Needham, ormsc/05-04-01 ed. (2005)

[96] G. Spanoudakis, Zisman, A., Software Traceability: A Roadmap, Advances in Software Engineering

and Knowledge Engineering, World Scientific Publishing, 2005.

[97] BARMI, Zeinab Alizadeh, EBRAHIMI, Amir Hossein, et FELDT, Robert. Alignment of requirements

specification and testing: A systematic mapping study. In: 2011 IEEE Fourth International Conference

on Software Testing, Verification and Validation Workshops. IEEE, 2011. p. 476-485.

[98] Duan, C., Cleland-Huang, J.: Visualization and analysis in automated trace retrieval. In: 1st

International Workshop on Requirements Engineering Visualization (REV’06). IEEE Computer

Society, New York (2006)

[99] F. Bouquet, Jaffuel, E., Legeard, B., Peureux, F., Utting, M., Requirements Traceability in Automated

Test Generation - Application to Smart Card Software Validation, ICSE Int. Workshop on Advances

in Model-Based Software Testing (A-MOST'05), ACM Press, St. Louis, USA, 2005

[100] Espinoza, A., Alarcon, P.P., Garbajosa, J.: Analyzing and systematizing current traceability

schemas. In: Proceedings of the 30th Annual IEEE/NASA Software Engineering Workshop, pp. 21–

32. IEEE Computer Society, New York (2006)

[101] Dahlstedt, Å.G., Persson, A.: Requirements interdependencies: state of the art and future

challenges. In: Engineering and Managing Software Requirements, pp. 95–116. Springer, Berlin

(2005). ISBN 978-3-540-25043-2

[102] F. Fraikin, Leonhardt, T., SeDiTeC — Testing Based on Sequence Diagrams, 17th IEEE

International Conference on Automated Software Engineering, 2002, pp. 261 - 266.

[103] J. Wittevrongel, Maurer, F., SCENTOR: Scenario-Based Testing of E-Business Applications,

Tenth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative

Enterprises, 2001, pp. 41 - 46.

[104] L. C. Briand, Labiche, Y., A UML-Based Approach to System Testing, 4th International

Conference on the Unified Modeling Language (UML), Toronto, Canada, 2001, pp. 194-208.

[105] F. Basanieri, Bertolino, A., Marchetti, E., The Cow_Suite Approach to Planning and Deriving

Test Suites in UML Projects, Proceedings of the 5th International Conference on The Unified

Modeling Language, Springer-Verlag, 2002, pp. 383-397.

[106] A. Hartman, Nagin, K., The AGEDIS tools for model-based testing, 2004 ACM SIGSOFT

international symposium on Software testing and analysis, ACM Press, Boston, Massachusetts, USA,

2004, pp. 129-132.

[107] R. Marelly, D. Harel, and H. Kugler, "Multiple instances and symbolic variables in executable

sequence charts," in 17th International Conference on Object-Oriented Programming, Systems,

Languages and Applications (OOPSLA 2002), USA, 2002, pp. 83-100.

[108] W. Grieskamp, Nachmanson, L., Tillmann, N., Veanes, M., Test Case Generation from AsmL

Specifications - Tool Overview, 10th International Workshop on Abstract State Machines, Taormina,

Italy, 2003.

133

[109] Naslavsky, Leila, Hadar Ziv, and Debra J. Richardson. "Towards traceability of model-based

testing artifacts." Proceedings of the 3rd international workshop on Advances in model-based testing.

ACM, 2007

[110] M. Felderer, P. Zech, F. Fiedler, et al., "A Tool based Methodology for System Testing of

Service-oriented Systems," in Second International Conference on Advances in System Testing and

Validation Lifecycle (VALID), Los Alamitos, CA, USA, 2010, pp. 108-13.

[111] F. Abbors, D. Truscan, and J. Lilius, "Tracing requirements in a model-based testing approach," in

2009 First International Conference on Advances in System Testing and Validation Lifecycle

(VALID), Piscataway, NJ, USA, 2009, pp. 123-8.

[112] D. Arnold, J. P. Corriveau, and Shi Wei, "Modeling and validating requirements using executable

contracts and scenarios," in 8th ACIS International Conference on Software Engineering Research,

Management and Applications (SERA), CA, USA, 2010, pp. 311-20.

[113] A. Goel, B. Sengupta, and A. Roychoudhury, "Footprinter: Round-trip engineering via scenario

and state-based models," in 31st International Conference on Software Engineering - Companion

Volume - ICSE-Companion, Piscataway, NJ, USA, 2009, pp. 419-420.

[114] C. Pfaller, A. Fleischmann, J. Hartmann, et al., "On the integration of design and test: A model-

based approach for embedded systems," in Proceedings of the 2006 international workshop on

Automation of software test (AST) 2006, pp. 15-21.

[115] J. L. Boulanger and V. Q. Dao, "Requirements engineering in a model-based methodology for

embedded automotive software," in IEEE International Conference on Research, Innovation and

Vision for the Future in Computing 484 & Communication Technologies(RIVF), Ho Chi Minh City,

Vietnam, 2008, pp. 263-268.

[116] H. Post, C. Sinz, F. Merz, et al., "Linking functional requirements and software verification," in

17th IEEE International Requirements Engineering Conference (RE), Piscataway, NJ, USA, 2009, pp.

295-302.

[117] F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux, N. Vacelet, and M. Utting. A subset of

precise UML for model-based testing. In Proceedings of the 3rd International Workshop on Advances

in Model-Based Testing, A-MOST ’07, pages 95–104, New York, NY, USA, 2007. ACM.

[118] J. Kelleher and M. Simonsson, "Utilizing use case classes for requirement and traceability

modeling," in Proceedings of the 17th IASTED International Conference on Modelling and

Simulation, Anaheim, CA, USA, 2006, pp. 617-25.

[119] A. Sabetta, D. C. Petriu, V. Grassi, et al., "Abstraction-raising transformation for generating

analysis models," in Satellite Events at the MoDELS 2005 Conference. MoDELS 2005 International

Workshops. Berlin, Germany, 2005, pp. 217-26.

[120] Tanvir Hussain and Robert Eschbach, "Automated Fault Tree Generation and Risk-Based Testing

of Networked Automation Systems," in Proceedings of 15th IEEE Conference on Emerging

Technologies and Factory Automation (ETFA 10) Bilbao, Spain, 2010.

[121] S. Ibrahim, M. Munro, A. Deraman, et al., "A software traceability validation for change impact

analysis of object-oriented software," in Proceedings of the International Conference on Software

Engineering Research and Practice and Conference on Programming Languages and Compilers

SERP'06, USA, 2006, pp. 453-9.

[122] Hubert Dubois, Marie-Agnès Peraldi-Frati, and Fadoi Lakhal, "A model for requirements

traceability in an heterogeneous model-based design process. Application to automotive embedded

134

systems," in 15th IEEE International Conference on Engineering of Complex Computer Systems

(ICECCS), Oxford, UK, 2010, pp. 233-242.

[123] M. W. Whalen, M. P. E. Heimdahl, A. Rajan, et al., "Coverage metrics for requirements-based

testing," in Proceedings of the international symposium on Software testing and analysis (ISSTA)

2006, pp. 25-35.

[124] M. Conrad, I. Fey, and S. Sadeghipour, "Systematic Model-Based Testing of Embedded

Automotive Software," Proceedings of the Workshop on Model Based Testing (MBT), Electronic

Notes in Theoretical Computer Science, vol. 111, pp. 13-26, 2005.

[125] M. Riebisch and M. Hubner, "Traceability-driven model refinement for test case generation," in

Proceedings. 12th IEEE International Conference and Workshops on the Engineering of Computer-

Based Systems, CA, USA, 2005, pp. 113-20.

[126] Ulrich, A., Jell, S., Votintseva, A., & Kull, A. (2014, January). The ETSI Test Description

Language TDL and its application. In Model-Driven Engineering and Software Development

(MODELSWARD), 2014 2nd International Conference on (pp. 601-608). IEEE.

[127] Philip Makedonski, Gusztav Adamis, Martti Käärik, Andreas Ulrich, Marc-Florian Wendland,

Anthony Wiles. “Bringing TDL to users: A Hands-on Tutorial” User Conference on Advanced

Automated Testing (UCAAT 2014), Munich.

[128] TTCN http://www.ttcn-3.org/index.php/tools

[129] Kesserwan, Nader, Rachida Dssouli, and Jamal Bentahar. "Modernization of Legacy Software

Tests to Model-Driven Testing." International Conference on Emerging Technologies for Developing

Countries. Springer, Cham, 2017.

[130] https://ucaat.etsi.org/2015/presentations/ESTERLINE_KESSERWAN.pdf

[131] Kesserwan, N., Dssouli, R., Bentahar, J., Stepien, B., & Labrèche, P. (2019). From use case maps

to executable test procedures: a scenario-based approach. Software & Systems Modeling, 18(2), 1543-

1570.

[132] Adolph, S., Cockburn, A., & Bramble, P. (2002). Patterns for effective use cases. Addison-Wesley

Longman Publishing Co., Inc

[133] Kealey, J., Amyot, D.: Enhanced use case map traversal semantics. In: Gaudin, E., Najm, E.,

Reed, R. (eds.) SDL 2007. LNCS, vol. 4745, pp. 133–149. Springer, Heidelberg (2007)

[134] http://xtext.com/.

[135] http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.08.01_60/es_20187301v040801

p.pdf.

[136] Boniol, F., Wiels, V.: The landing gear system case study. In: ABZ 2014: The Landing Gear Case

Study, pp. 1–18. Springer (2014).

[137] Jouault, Frédéric, et al. "ATL: A model transformation tool." Science of computer programming

72.1-2 (2008): 31-39.

[138] D.J. Richardson, S.L. Aha, T.O. O’Malley, Specification-based test oracles for reactive systems,

in: Proceedings of the 14th International Conference on Software Engineering, ICSE ’92, 1992, pp.

105–118.

[139] M. Didonet Del Fabro, Bézivin, J., Valduriez, P., Weaving Models with the Eclipse AMW plugin,

Eclipse Modeling Symposium, Eclipse Summit Europe 2006, Esslingen, Germany, 2006.

http://www.ttcn-3.org/index.php/tools

135

[140] Health, Social, and Economic Research, The economic impacts of inadequate infrastructure for

software testing, National Institute of Standards and Technology, 2002.

[141] D. Jackson, M. Thomas, and L.I. Millett, Editors. Software for dependable systems: sufficient

evidence? Committee on Certifiably Dependable Software Systems, National Research Council,

National Academy of Sciences, 2007.

136

Appendices

Appendix A: UCM Metamodel

This Appendix presents the concrete metamodel of the UCM notation.

137

Appendix B: Test Configuration Metamodel

138

Appendix C: Test Description Metamodel

139

Appendix D: Scenario Definition Metamodel

140

Appendix E: Feature Model for Model Transformation

141

Appendix F: UCM Quick Reference Guide

142

	List of Tables
	List of Figures
	List of Illustrations
	Abbreviation
	Chapter 1 Introduction
	1.1 Research Motivation
	1.2 New Approach: MDTGL
	1.3 Thesis Contribution
	1.3.1 Contribution 1: Reverse-Engineering the Legacy Software Tests to Model-Driven Testing
	1.3.2 Contribution 2: MTDGL Methodology
	1.3.3 Contribution 3: Theories and Techniques Supporting
	1.3.4 Contribution 4: Illustrative Experiments Validating MTDGL
	1.3.5 Issues Not Addressed in this Thesis

	1.4 Thesis Outline

	Chapter 2 Literature Review
	2.1 Topic Overview
	2.2 Software Testing
	2.3 Testing Types
	2.4 Model-Driven Architecture (MDA)
	2.5 Model-Based Testing (MBT)
	2.6 Model Transformation
	2.6.1 Definition
	2.6.2 Model Transformation Categories
	2.6.3 Design Features for Model Transformation
	2.6.3.1 Transformation Rules
	2.6.3.2 Rule Application Scoping
	2.6.3.3 Relationship between Source and Target
	2.6.3.4 Rule Application Strategy
	2.6.3.5 Rule Scheduling
	2.6.3.6 Rule Organization
	2.6.3.7 Traceability Links
	2.6.3.8 Directionality

	2.6.4 Model Transformation from UCM

	2.7 Test Case Generation
	2.7.1 MBT Technique
	2.7.2 Specification-Based Technique
	2.7.3 NL Technique

	2.8 Traceability
	2.8.1 Requirement Traceability
	2.8.2 Traceability in MDD
	2.8.3 Alignment of Requirements Traceability and Testing
	2.8.4 Matrix Approach
	2.8.5 MBT Approach
	2.8.6 Formal Approach
	2.8.7 Meta-Model Approach
	2.8.8 Test Case Approach

	2.9 Summary of Literature Review

	Chapter 3 Domain Specific Languages (DSLs)
	3.1 Use Case Maps (UCM)
	3.2 Test Description Language (TDL)
	3.3 Testing and Test Control Notation (TTCN-3)
	3.4 The Specification Level of the three Languages
	3.5 Summary of Domain Specific Language

	Chapter 4 Towards Building a New Test Case Generation Approach
	4.1 Research Questions
	4.2 Reengineering Legacy Software Tests to MDT
	4.2.1 Motivation
	4.2.2 Reengineering Activities
	4.2.2.1 Code-to-Code Migration:
	4.2.2.2 Code to Model
	I. Remodel Test Data Set
	II. Remodel Test Configuration
	III. Remodel Test Description

	4.2.3 Lesson Learned
	4.2.4 Conclusion

	Chapter 5 An MDTGL Approach for Testing Embedded Systems
	5.1 Topic Overview
	5.2 The Research Methodology
	5.2.1 Conducted Research
	5.2.2 Collected Data
	5.2.3 Facilities Used

	5.3 The Methodology MDTGL
	5.3.1 Test Case Generation Approach
	5.3.1.1 Formalizing SUT Requirements into Behavioral Model
	5.3.1.2 Transform Behavioral Model into ATC
	I. Develop Data Set
	II. Develop Test Configuration and Test Description
	III. Develop Test Objective
	IV. Post-Processing of Alternative Behavior

	5.3.1.3 Transform ATCs into TCs
	I. Generate the Input and Oracle Modules
	II. Generate the Configuration Module
	III. Generate the Description Module

	5.3.1.4 The Completeness and Soundness of the Model Transformations
	5.3.1.5 Test Case Generation Approach Feasibility
	I. Modeling LGS Requirements into Cockburn Use Case Notation
	II. Mapping LGS Use Case to UCM Scenario Models
	III. Transform UCM Scenario Models and Data Model into ATC in TDL
	 Generate TDL Test Objective
	 Generate TDL Data Set
	 Generate TDL Test Configuration
	 Generate TDL Test Description

	IV. Transform TDL Specifications to TTCN-3 Modules
	 Generate TTCN-3 Test Data
	 Generate TTCN-3 Test Configuration
	 Generate TTCN-3 Test Behavior

	5.3.2 Traceability Links Framework
	5.3.2.1 Traceability Approach
	5.3.2.2 Approach Realization
	I. Traceability Links Between Requirements and ATCs
	II. Traceability Links Between ATCs and ETCs
	III. Compliance with DO-178C Standards

	5.4. MDTGL Approach Summary

	Chapter 6 TCG Approach Evaluation
	6.1. Topic Overview
	6.2. The Case Study FMS
	6.3. The Experimental Method
	6.4. Requirement Coverage and Generating Correct ETCs
	6.5. Traceability Links and Alignment with ETCs Result
	6.6. Discussion of TCG Approach
	6.6.1 Generalization of the Approach
	6.6.2 Lessons Learned

	Chapter 7 Conclusions
	7.1. Topic Overview
	7.2. Research Summary
	7.3. Meeting the Research Objectives
	7.4. Summary of Research Contributions
	7.4.1 Towards Building Model-Driven Testing Methodology
	7.4.2 Test Case Generation Approach
	7.4.3 Requirement Traceability and Alignment with Testing
	7.4.4 The Application of TCG Approach on an Industrial Case Study

	7.5. Research Limitations and Future Work
	7.5.1 Case Studies
	7.5.2 Automation of Recording Traceability Links

