An Efficient Hardware Implementation of LDPC Decoder

Monazzahalsadat Yasoubi

A Thesis
In the Department of
Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science (Electrical and Computer Engineering) at Concordia University
Montreal, Quebec, Canada

February 2020
© Monazzahalsadat Yasoubi, 2020

CONCORDIA UNIVERSITY SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared
By: Monazzahalsadat Yasoubi
Entitled: An Efficient Hardware Implementation of LDPS Decoder
and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science

Complies with the regulations of this University and meets the accepted standards with respect to originality and quality.

Signed by the final examining committee:

Dr. M. Medraj (MIAE)	Chair
Dr. M. Medraj (MIAE)	Examiner, External
To the Program	
Dr. Y. R. Shayan	Examiner
Dr. M. R. Soleymani	Co-Supervisor
Dr.	

Approved by: \qquad
Dr. Yousef R. Shayan, Chair
Department of Electrical and Computer Engineering
\qquad

Abstract
An Efficient Hardware Implementation of LDPC Decoder

Monazzahalsadat Yasoubi

Reliable communication over noisy channel is an old but still challenging issues for communication engineers. Low density parity check codes (LDPC) are linear block codes proposed by Robert G. Gallager in 1960. LDPC codes have lesser complexity compared to Turbo-codes. In most recent wireless communication standard, LDPC is used as one of the most popular forward error correction (FEC) codes due to their excellent error-correcting capability. In this thesis we focus on hardware implementation of the LDPC used in Digital Video Broadcasting - Satellite - Second Generation (DVB-S2) standard ratified in 2005. In architecture design of LDPC decoder, because of the structure of DVB-S2, a memory mapping scheme is used that allows 360 functional units implement simultaneously. The functional units are optimized to reduce hardware resource utilization on an FPGA. A novel design of Range addressable look up table (RALUT) for hyperbolic tangent function is proposed that simplifies the LDPC decoding algorithm while the performance remains the same. Commonly, RALUTs are uniformly distributed on input, however, in our proposed method, instead of representing the LUT input uniformly, we use a non-uniform scale assigning more values to those near zero. Zynq XC7Z030, a family of FPGA's, is used for Evaluation of the complexity of the proposed design. Synthesizes result show the speed increase due to use of LUT method, however, LUT demand more memory. Thus, we decrease the usage of resource by applying RALUT method.

Keyword: LDPC code, DVBS2 standard, Hardware implementation, Vivado HLS.

Acknowledgments

I would like to thank my advisors Prof. M. R Soleymani. I value our discussions on different research challenges as well as their insightful guidance. He has been extremely supportive mentors, both professionally and personally.

I could not have come this far without the love of my family. I am always grateful to my parents, my sisters, and my wonderful husband, Ali Mazaheri, for their endless love and support.

Table of Contents

List of Figures vi
List of Tables vii
List of Symbols ix
List of Acronyms x
Chapter 1 1
Introduction 1
1.1. Motivation 1
1.2. Related work 2
1.2.A. LDPC code and data compression 4
1.2.B. Reason for using high level synthesizing 6
1.2.C. Caching method 8
1.3. Thesis contributions 10
1.4. Thesis outline 10
Chapter 2 12
Background information 12
Summary 12
2.1. Low Density Parity Check (LDPC) code 12
2.2. LDPC code Representation 15
2.2. A. Bipartite graph representation 15
2.2.B. Matrix representation 16
2.2. C. Degree distribution polynomial representation of LDPC H matrix 18
2.3. Decoding Algorithm of LDPC code 20
2.3. A. Bit-Flip decoding algorithm (Hard Decoding) 20
2.3. B. Belief propagation decoding algorithm based on Log-likelihood 21
2.4. Slepian Wolf coding theorem 24
2.5. Wyner Ziv Coding 26
2.6. What is an FPGA? 26
2.7. Xilinx FPGA Architecture 28
2.8. Three main methods for designing Lookup table 34
2.8. A . Piecewise Linear (PWL) Approximation 35
2.8.B. Lookup Table (LUT) Approximation 35
2.8.c. Hybrid Methods 35
Chapter 3 37
Decoder Hardware Implementation and Slepian-Wolf compression using DVB-s2
LDPC code 37
Summary 37
3.1. LDPC Codes in DVB-S2 Standard. 38
3.2. The architecture of the hardware implementation of $D V B-S 2$ LDPC 42
3.3. Hyperbolic Tangent Function Implementation 44
3.4 Implementation of the Hyperbolic Tangent Function by Range Addressable Lookup Table 47
3.4 A. Applying Range addressable Lookup Table Approximation to update variable nodes in the LDPC decoder 49
3.4. B. Applying the Proposed Range addressable Lookup Table Approximation to update variable node of eLDPC decoder 50
3.5. Data compression with side information 55
3.6. Well-designed Caching by DVBS2 Standard 57
Chapter 4 61
Conclusion and future work 61
4.1. Conclusion summary. 61
4.2. Future direction 62
References 63
Appendix A 68
Appendix B 74
Appendix C 97

List of Figures

Chapter explanation Page
number
1 Figure (1.1). Block Diagram of a general data transmission or storage 4 System [40].Figure (2.1). Graphical representation of LDPC code19
2 Figure (2.2). Distributed source coding problem with two sources. 26
2 Figure (2.3). Basic FPGA Architecture [39]. 282 Figure (2.4): Illustration of a functional LUT as a collection of30memory cells.
2 Figure (2.5): Structure of a Flip-Flop. 31
2 Figure (2.6): Contemporary FPGA Architecture [39]. 32
2 Figure (2.7): A DSP48 Block structure [39]. 33
2 Figure (2.8). Structure of an Addressable Shift Register. 35
3 Figure (3.1). Inputs and Outputs of the LDPC decoder. 42
3 Figure (3.2). Finite state machine of LDPC decoder. 44
3 Figure (3.3). The Hyperbolic Tangent Function S shape curve. 47Figure (3.4) Lookup Table Approximation of $\tanh (x)$ which is48represented by Eight Points.
3 Figure (3.5). Piecewise Linear Approximation of $\tanh (x)$ by five 49
Segments.

A Figure (A.1). Source coding for simple Gray Wyner network [40].72

List of Tables

Chapter explanation Page number
3 Table (3.1). The values of p values in DVB-S2 LDPC code. 41
3 Table (3.2). Description of the Inputs and Outputs of the 43
Decoder
3 Table (3.3). Hardware implementation results for code rate half, 56$N=64800$, compared by [30].
C Table (C.1). RALUT approximation of $\tanh ^{-1} x$. 96

List of Symbols

u : Information sequence
v : Codeword
T : Wave form Duration
r : Received sequence
\widehat{u} : Estimated sequence
H(x): Entropy of the source x
C: Capacities of the channel

X: Source
$\widehat{\mathrm{X}}$: Reproduction of source X
$\mathrm{E}\{\mathrm{d}(\widehat{\mathrm{X}}, \widehat{\mathrm{X}})\}$: Average distortion between source X and the reproduction \widehat{X}

Y : Side information at the decoder
$\mathrm{H}(\mathrm{X} \mid \mathrm{Y})$: Entropy of the source x in presence of side information Y
G : Generator matrix
H : Parity check matrix
n : The length of the codeword
m : The number of the parity bits
R : Rate of the code is
$\lambda(x)$: Distribution polynomial for variable nodes
$\rho(x)$: Distribution polynomial for check nodes
d_{v} : Maximum degree of variable nodes
d_{c} : Maximum degree of check nodes
λ_{i} : The fraction of all edges incident to variable nodes with degree i.
ρ_{i} : The fraction of all edges incident to check nodes with degree j.
$L(x)$: Likelihood ratio of a binary random variable x
$L(x \mid y)$: Conditional likelihood ratio of random variable x given y m_{v} : The log likelihood of the message node v conditioned on its observed value $m_{v c}^{l}$: Message passes from message node v to the check node c at round l.
$m_{c v}^{l}$: Message passes from check node c to message node at round l.
V_{c} : The set of variable nodes incident to the check node c.
C_{v} : The set of check nodes incident to the variable node v.

A: Submatrix with dimensions $(N-K) \times K$
$a_{i j}$: The elements in the A submatrix
p_{I} : Parity bits
B: Staircase lower triangular matrix

List of Acronyms

AWGN: Additive White Gaussian Noise
CLB: Configurable logic block
DSP: Digital signal processing
DVB: Digital Video Broadcast
DVB-S2: Digital video Broadcast Second generation
FEC: Forward error correcting
FPGA: Field Programmable Gate Arrays
FF: Flip Flop
HDL: Hardware description language
IC: Integrated Circuit
IRA: Irregular repeat-accumulate codes
LDPC: Low Density Parity Check Code
LUT: Look-up Table
RTL: register-transfer level

Chapter 1

Introduction

1.1. Motivation

Reliable communication over a noisy channel is an old but still challenging issue for communication engineers. Low-density parity-check codes (LDPC) are linear block codes proposed by Robert G. Gallager in 1960. In most modern wireless communication standard, LDPC is used as one of the most popular forward error correction (FEC) code due to its excellent error-correcting capability. In this thesis, we focus on the hardware implementation of the LDPC used in Digital Video Broadcasting - Satellite - Second Generation (DVB-S2) standard ratified in 2005. The structure of the DVB-S2 standard allows a memory mapping scheme in which 360 units implement simultaneously.

Hyperbolic tangent is used in the LDPC decoder algorithm, which is expensive to compute and inexpensive for the cache. Therefore, optimizing hardware implementation of hyperbolic tangent function used in the LDPC decoder algorithm Look Up Tables (LUTs) is an excellent technique. Thus, a precomputing of a function throughout common input is evaluated to find a
proper LUT. Indeed, expensive runtime operations can be replaced with inexpensive table lookups [31]. Three main methods for designing Lookup table are used to implement and approximate the function in hardware are as follows:

- Lookup table (LUT) approximation [32],
- Piece-Wise Linear (PWL) approximation [33],
- Hybrid methods, which are essentially a combination of the former two [34].

Our approach is motivated by the fact that among the three aforementioned methods used for approximation of hyperbolic tangent, i.e., LUT, PWL, and hybrid method, LUT is the fastest approach but requires more resource that other two. Therefore, we have used RALUT to compensate for this. A novel design of Range addressable look-up table (RALUT) for the hyperbolic tangent function is proposed that simplifies the LDPC decoding algorithm while the performance remains the same. Commonly, RALUTs are uniformly distributed on input; however, in our proposed method, instead of representing the LUT input uniformly, we use a non-uniform scale assigning more values to those near zero. Zynq XC7Z030, a family of FPGA's, is used for Evaluation of the complexity of the proposed design.

1.2. Related work

The emergence of large scale and high-speed data networks for processing, storage, and exchange of digital information in the military, government, and private spheres resulted in demand for efficient and reliable data storage and transmission networks. It is necessary to control the errors so that reliable transmission could be possible [40]. According to Shannon's theorem, if the transmission rate is less than the channel capacity, there is always an error correction code that can make the probability of error arbitrarily small. Besides, the application
of error-correcting codes for data compression is investigated by Shannon due to the duality between source coding and channel coding. Indeed, a good channel code has the capability of being a good source code as a result of duality. The area of channel coding has achieved a state of the art where robust error-correcting codes have been designed, which can approach the capacity of different communication channels. Figure (1.1) shows a block diagram of a generic data transmission storage System. Each block is briefly described as follows [40];

Information source: It can be a person or a machine such as a computer. The output of the source can be a sequence of discrete symbols or a continuous waveform [40].

Source encoder: The source output is transformed into a sequence of binary digits called the information sequence u. It is important that the source output can be regenerated from the information sequence without any ambiguity [40].

Channel encoder: Discrete encoded sequence, called codeword v, is generated from information sequence. The goal of channel encoder is to overcome the noisy environment in which the code-word requires to be stored or transmitted [40].

Modulator: Since discrete symbols are not suitable for transmission over channel or recording on a storage device, modulator transforms each output symbol of channel encoder to a waveform of duration which is suitable for transmission [40].

Channel: The waveform generated by a modulator enters the channels or storage device and corrupts by a noisy environment.

Demodulator: Each received waveform of duration T is processed and produces an output that is discrete or continuous. The output of the demodulator is called received sequence r [40].

Channel decoder: The received sequence r is transformed into binary sequence \hat{u} called an estimated sequence. The goal in channel decoder is to minimize the probability of decoding
error. The difference between u and \hat{u} is considered as decoding error, which causes through the noisy environment of data storage or transmission [40].

Source decoder: The estimate sequence is delivered to the destination [40].
Destination: In a well-designed system, the estimation is an exact reproduction of the source output [40].

Figure (1.1). Block Diagram of a general data transmission or storage system.

1.2.A. LDPC code and data compression

LDPC is used as one of the error control techniques in different standards in digital communication, Digital Video Broadcasting, and satellite communications. Good error performance near Shannon capacity and also fast decoding are some advantages of LDPC codes. LDPC code was firstly introduced by Gallager in his Ph.D. thesis in the early 1960s [13]. The LDPC codes were rediscovered by MacKay and Neal [4] and Wiberg [5] independently from each other for different purposes. In 1997, Luby, Mitzenmacher, Shokrollahi, Spielman,
and, Stemann, proposed Cascade constructions for the more straightforward encoding of LDPC code [6-7]. Besides, for linear encoding, the lower triangular restriction on the shape of the parity-check matrix was suggested by MacKay, Wilson, and Davey in 1998 [8].

The duality of channel coding and source coding motivates the application of powerful channel codes in source coding applications, which is used to optimize the usage of limited storage space to save time and help optimize resources in the caching method. Two different types of source coding are lossless and lossy data compression [9]. Data compression by errorcorrecting code is especially good when the data is transmitted over the noisy channel. Since standard data compression techniques such as Huffman code are not designed for error correction, therefore, it is reasonable that one uses error-correcting code for both data compression and error correction purposes. Moreover, Data compression based on errorcorrecting code design could be based on a syndrome based approach or parity-based approach. Besides, according to the channel coding theory of Shannon, the source can be reconstructed with small error probability if the rate of the data sequence is less than the capacity of the transmission channel [12]. Consider the model with two independent channels operating in parallel, and the reliable transmission is possible if the entropy of the source is less than the sum of capacities of the two channels $\mathrm{H}(\mathrm{x}) \leq \mathrm{C}_{1}+\mathrm{C}_{2}$. However, if the source entropy is above $\mathrm{C}_{1}+\mathrm{C}_{2}$, the reliable transmission is not possible. If one of the channels has an uncoded version of the source as side information at the decoder, known as systematic communication, there are two approaches for error protection of noisy transmission. One is based on Slepian Wolf [13], and the other is based on Wyner Ziv [14].

Wyner Ziv examines the question of how many bits are needed to encode source X under the constraint that the average distortion between X and the reproduction $\widehat{\mathrm{X}}$ satisfies $\mathrm{E}\{\mathrm{d}(\widehat{\mathrm{X}}, \widehat{\mathrm{X}})\} \leq$ D. Slepian Wolf coding is actually a channel coding problem that considered the question of how many bits per source character are required for the two correlated encoded message sequences to be decoded accurately by the joint decoder [15]. In LDPC decoding of Slepian Wolf, when we have side information at the decoder (Y), instead of transmitting the whole length of the original message, only the syndrome or check nodes are transmitted $(\mathrm{H}(\mathrm{X} \mid \mathrm{Y}))$. The Slepian wolf decoding algorithm of LDPC code is almost the same as the channel decoding algorithm of LDPC code with some differences, which is explained more in Chapter two.

1.2.B. Reason for using high level synthesizing

High-level synthesis (HLS) is a designing algorithm that describes the desired behavior of the process results in hardware implementation. HLS is also referred to as C synthesis, electronic system-level (ESL) synthesis, algorithmic synthesis, or behavioral synthesis [23]. Synthesis begins with a high-level specification of the problem, where behavior is generally decoupled from, for example, clock-level timing. Although earlier introduced HLS accepted considerable variation for input specification languages, recent commercial applications and research generally prefer to accept synthesizable subsets of ANSI C, C++, SystemC, and MATLAB [24]. Generally, in HLS synthesis, first, the code is analyzed and architecturally constrained. Then, it is scheduled to trans-compile into a register-transfer level (RTL) design in a hardware description language (HDL). Finally, it is generally synthesized to the gate level by applying the logic synthesis tool.

The RTL tool implementation or reliable logic synthesis tool allows designers to describe their designs at a high level of abstraction. The general usage of abstraction is gate level, registertransfer level (RTL), and algorithmic level.

By using the tool implementation of the RTL, the designers have better control over the optimization of their design architecture. The module functionality and the interconnect protocol are usually developed by hardware designers. Thus, the actual goal of using HLS is to permit hardware designers to efficiently build and verify hardware where the tool does the RTL implementation.

The HLS tools create cycle-by-cycle detail for hardware implementation automatically [25]. They transform untimed or partially timed functional code into fully timed RTL implementations. Finally, at the end of the synthesis process, it is essential to verify the RTL implementation. Then, to create a gate-level implementation, the RTL implementations are used directly in a conventional logic synthesis flow.

Following is a list of compilers that are currently available in the market for high-level synthesis.

- Xilinx Vivado HLS
- Xilinx System Generator for DSP
- Intel HLS Compiler
- LabVIEW FPGA
- Mathworks HDL Coder
- Cadence Stratus
- Mentor Graphics Catapult
- Synopsys Synphony C Compiler
- Panda Bamboo
- LegUp

We have chosen to Vivado HLS because of the following features:

- Vivado HLS provides an easier way to implement DSP algorithms
- Less code $=$ fewer bugs.
- Code is more readable, wider audience
- Quality of Result is comparable with hand-coded logic
- Provides easy migration between different FPGA families
- Requires some knowledge of FPGA architecture
- Xilinx FPGAs are heavily used at DESY and on MicroTCA (MicroTCA is an open standard embedded computing specification) AMC boards.
- The created IP integrates nicely with the rest of the IPs in the Xilinx ecosystem.
- Vivado HLS is significantly cheaper than other HLS software suites; therefore, it is very likely that industrial partners will have access to it.

1.2.C. Caching method

In Chapter three, an example of the application of the Slepian Wolf decoding algorithm of LDPC code by DVBS2 standard in a caching scheme is presented [16]. Caching is a reliable solution for communication during busy periods by taking advantage of memory across the network, which leads to more smooth communication network systems [17-22]. The caching method has two phases. The first phase is called the placement phase, where the data is stored in the cache across the network. The main limitation of this phase is the size of the cache
memory. In the second phase, which is called the Delivery phase, the users' requests can be partially served through caches near the users. Examples of application of the caching method are streaming media and distributed database, which results in a decreasing delivery rate.

In media Streaming user requests time is most likely at night rather than early in the morning. During congestion periods, the bandwidth-hungry features of media result in more congestion, high latency, and a poor experience for users. Caching is an applicable solution during off-peak hour time. Some examples of the distributed database are meteorological conditions measurement information of the globe, information of traffic sensors spread across several countries, information of the shopping history of the customers, information on the mobility pattern of the mobile devices in cellular networks. Since the database is extensive, it might need several different network calls to load the requested data of the memory before the requested data can be transmitted to the users. These network calls cause latency or stalls the process. In the modern database, it is handled by storing the most common queries in fast memory. As an example of caching, consider that a user more probably demands the weather measurement of his hometown rather than of a remote area. Therefore, the information of weather measurement of the user hometown is cached in memory close to it. To the best of our knowledge, little attention was given to the source coding problem in the presence of caching; however, compressing information can highly ease the traffic. We proposed a general approach to decreases the delivery rate by applying source coding using LDPC code to the correlated binary source. In the delivery phase, we applied the DVBS2 standard which is adopted a several standards due to its powerful features such as transmission rate close to the theoretical Shannon limit [19]. The results show that there is a direct relation between correlated coefficient α and delivery rate.

1.3. Thesis contributions

In this thesis, a new hardware implementation of the LDPC code used in DVB-S2 is presented. We have used a Range addressable LUT scheme to approximate the Hyperbolic Tangent function. Our approach is motivated by the fact that among the three methods used for approximation of hyperbolic tangent, i.e., LUT, PWL, and hybrid method, LUT is the fastest approach but requires more resources than other two. Therefore, we have used RALUT in order to compensate for this.

In addition, in Chapter three, an example of the application of the Slepian Wolf decoding algorithm of LDPC code by DVBS2 standard in the caching method is presented [16]. The results show that there is a direct relationship between the delivery rate and correlated coefficient of the source and its side information available at the decoder. In the following, the thesis contribution is listed:

- Hardware implementation of LDPC code.
- Range addressable LUT scheme is used to approximate hyperbolic tangent function.
- Example of application of Slepian Wolf decoding algorithm of LDPC code by DVBS2 standard in caching method.

1.4. Thesis outline

Chapter two presents background information related to this thesis. First, Low-Density Parity Check (LDPC) code is described. After that, different methods of LDPC code representation, such as bipartite graph representation, matrix representation, and degree distribution polynomial representation of the LDPC H matrix are presented. Then, the Slepian Wolf coding theorem and Wyner Ziv theorem coding are presented used in the Well-designed Caching
example of Chapter three. Finally, some background information for hardware implementation of LDPC code is presented from Section 2.6 to the end of Chapter two, including FPGA, Xilinx FPGA architecture, and three primary methods for designing Lookup table.

In Chapter three, reliable communication over the noisy channel is considered to be implemented by the hardware of one standard of LDPC codes called DVB-S2 [16]. The design and architecture of FPGA implementation of an LDPC decoder are presented. Besides, the hardware implementation of the LDPC decoder is simplified using Range Addressable Look Up Tables. In Section 3.4, Range addressable Lookup Table approximation is applied to update variable nodes in the LDPC decoder. Because of undesired results, a new Range addressable Lookup Table approximation is proposed in order to update variable nodes in the LDPC decoder. Finally, in chapter three, data compression with side information at the decoder is used as a caching solution in a Well-designed Caching example. Chapter four presents conclusion and future direction for the thesis.

In appendix A, the basic measures of information theory proposed by Shannon are described [41]. In appendix B, the values from Annex B and C of the DVB-S2 standard [27] are reproduced. Appendix C shows the RALUT, which is used for calculation of $\tanh x$ for updating variable nodes messages of LDPC decoder [31-34].

Chapter 2

Background information

Summary

Chapter two presents background information related to this thesis. First, Low-Density Parity Check (LDPC) code is described. After that, different methods of LDPC code representation, such as bipartite graph representation, matrix representation, and degree distribution polynomial representation of the LDPC H matrix are presented. Then, the Slepian Wolf coding theorem and Wyner Ziv theorem coding are presented that are used in the Well-designed Caching example of Chapter three. Finally, some background information for hardware implementation of LDPC code is presented from Section 2.6 to the end of Chapter two, including FPGA, Xilinx FPGA architecture, and three main methods for designing Lookup table.

2.1. Low Density Parity Check (LDPC) code

In recent years, because of their near Shannon capacity performance and fast decoding, LDPC code has been approved by many standards as forward error correcting (FEC) technique, these include Digital Video Broadcasting for Satellite Second Generation and Long-Term Evolution
(LTE). Low Density Parity Check (LDPC) codes were first introduced by Gallager in his Ph.D. thesis in the early 1960s [1-3]. Gallegar's introduction of iterative decoding algorithms (or message-passing decoder) was the essential novelty of his discovery. His outstanding innovation was ignored for almost 20 years due to the complexity of encoding. Finally, LDPC codes were rediscovered by MacKay and Neal [4] and Wiberg [5] independently from each other for different purposes. The result of their research showed that long LDPC codes with iterative decoding have an error performance, which is only a fraction of decibel away from the Shannon limit, which made it practical in many communication and digital storage systems with high reliability. Besides, the low density of LDPC codes is a result of their sparse parity check matrix. The characteristic, as mentioned earlier, means that the parity check matrix contains only a few 1 's in comparison to the number of 0 's.

In data communication systems, the message bits are encoded at the encoder by adding redundancy to the message. However, in practical implementation, the encoding of LDPC codes is ambiguous; i.e., it has high complexity. Thus, several researchers proposed different solutions for reducing the LDPC encoding complexity. In 1997, Luby, Mitzenmacher, Shokrollahi, Spielman, and Stemann, proposed Cascade constructions [6-7] instead of a bipartite graph, the drawback of the case-cade method is a reduction in the performance compared to the standard LDPC codes. The lower triangular restriction on the shape of the parity-check matrix was suggested by MacKay, Wilson, and Davey in 1998, which guarantees linear encoding complexity [8].

After channel encoding, the codeword is transmitted to the receiver. The destination receives a noisy version of the codeword. The decoder corrects the errors resulted from noise in order to retrieve the original message. According to Shannon's theorem, if the transmission rate is less
than the capacity, there is always an error correction code that can make the probability of error arbitrarily small. In addition, the application of error-correcting codes in data compression is investigated by Shannon due to duality between source coding and channel coding [8]. Indeed, a channel code that provides high rate has the capability to provide high rate in source coding application as a result of this duality. The area of channel coding has achieved a state of maturity where powerful error-correcting codes have been designed, which can approach the capacity of different communication channels. For example, the rate of an appropriately designed low density parity check code reaches close to the capacity of additive white Gaussian noise (AWGN) channel. Thus, the duality of channel coding and source coding motivates the application of powerful channel coding schemes in source coding applications, which is used to optimize the usage of limited storage space to optimize resources. Two different types of source coding are lossless and lossy data compression. In Lossless data compression, the data after decompression is exactly the same as the original data. In fact, redundant data is removed in compression and added during decompression. Run-length, Huffman, Lampel Ziv are some examples of lossless data compression [9]. Lossless methods are used when we can't afford to lose any data, such as medical documents and computer programs and legal documents. Lossy data compression methods are used for compressing images and video files since our eyes cannot distinguish subtle changes; therefore, lossy data is acceptable. These methods are cheaper, which needs less time and space as well. MP3, for compressing audio, MPEG (video compression), and JPEG (pictures and graphics compression) are several methods using lossy data compression.

Standard data compression techniques such as Huffman code are not designed for error correction. When the data is transmitted over the noisy channel, it is reasonable to apply a code
which is useful for both compression and error correction purpose. Therefore, the errorcorrecting code can be used for both data compression and error correction purposes. Data compression based on error correcting code design could be based on a syndrome based approach or parity-based approach. For the syndrome based approach, the bins are indexed by syndrome bits. In parity based approach the containers are indexed by parity bits. The parity based approach can protect compressed data against noise while the syndrome based approach just only does data compression. However, the parity based approach has more calculation complexity than a syndrome based approach.

Considering that LDPC codes have an error performance only a fraction of decibel away from the Shannon limit, the features of LDPC codes, including representation, encoding, and decoding is explained in the following.

2.2. LDPC code Representation

There are different methods to represent LDPC codes; one is matrix representation, which is similar to other linear block codes. Furthermore, there are a polynomial representation and graphical representation through a bipartite graph. These representation helps to design and to analyze the code [10-11].

2.2. A. Bipartite graph representation

The graph representation of LDPC code was initially introduced by Tanner in [21]. The Tanner graph or bipartite graph is used to explain the iterative decoding algorithm for LDPC code. The bipartite graph has two sets of nodes, including a set of variable nodes and set of check nodes. When two nodes are connected, there is an edge between these two nodes, which is called an incident between two nodes. Besides, the number of edges that are incident to a node is the
degree of the node. The tanner graph can be derived from the parity check matrix. The graph can be induced by using the following rules:

1- The n columns of parity check matrix corresponding to the number of bits in a codeword represents by $v_{1}, v_{2}, \ldots, v_{n}$. Besides, the m rows of parity check matrix correspond to parity check constraint represents by $c_{1}, c_{2}, \ldots, c_{m}$. It means that in that the degree of a variable node (or check node) is equal to the corresponding column (or row) weight.

2- There exist an edge or incident between one variable node and one check node if and only if the corresponding entry in the parity check matrix is equal to one. It means that at most, there is one edge between any two nodes.

2.2.B. Matrix representation

Linear channel codes are usually expressed by generator matrix G and the parity check matrix H. The multiplication of these two matrixes, must be equal to zero.

$$
\begin{equation*}
G \cdot H^{T}=0 \tag{2.1}
\end{equation*}
$$

However, the LDPC code is just defined by parity check matrix H. The parity check matrix of LDPC codes is sparse. However, the generator matrix can have a lot of ones as its entries, which causes a high complexity of computation. Consider the dimension of the parity check matrix H is $\times n$. Where n is the length of the codeword, and m is the number of the parity bits. If the parity check matrix has n columns and m rows, the rate of the code is

$$
\begin{equation*}
R=\frac{n-m}{n} \tag{2.2}
\end{equation*}
$$

In this thesis, the field is a Galois field. Thus, the elements of the LDPC parity check matrix are either 0's or 1's. If the received message is the null space of the parity check matrix of a
linear code $\vec{v} H^{T}=0$, then it is an actual codeword of the aforementioned linear code. Where $\vec{v}=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ is an-tuplee codeword and $v_{i} \in\{0,1\}$. In every Galleger LDPC code, the parity check matrix H has the following structure:

1- Each row consists of ρ ones.
2- Each column consists of λ ones. Properties 1 and 2 determine the degree distribution of LDPC codes.

3- The number of ones in common between any two columns is no more than one, which guarantees the cycle free of the parity check matrix.

4- The length of LDPC codes is much larger than ρ and λ, ensuring the sparsity of the parity check matrix.

As an example, the Tanner graph of the following H matrix is shown in Figure (2.1) in which the variable nodes and the check nodes are shown by blue circles and green circles, respectively.

$$
H=\left[\begin{array}{llllllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \tag{2.3}\\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

The Tanner graph of the above example is a Galleger LDPC code. The number of ones in each row and column are four and two, respectively. So, the code is a regular LDPC code since the number of ones in each row and column is the same as other rows and columns. The code rate is half. Besides, in Figure (2.1), the four blue edges indicate a cycle. Indeed, the cycle is four, which is the shortest cycle. And so, the grith of the graph is four.

Figure (2.1). Graphical representation of LDPC code.

2.2. C. Degree distribution polynomial representation of LDPC H matrix

Based on a pair degree distribution polynomial and a given code length, we can calculate some parameters of the given LDPC code. Indeed, a pair degree distribution polynomial describes an ensemble of LDPC code but not a specific LDPC code. However, the parity check matrix and the tanner graph define a specific LDPC code. The degree distribution polynomial initially was introduced by Richardson to represent an ensemble of LDPC codes [31]. The degree distribution polynomial is used to specify the degree distribution of the variable nodes and check nodes in the Tanner bipartite graph or the parity check matrix. Equation (2.4) and Equation (2.5) represent the formulation of degree distribution polynomial for variable nodes and for check nodes, respectively.

$$
\begin{align*}
& \lambda(x)=\sum_{i=2}^{d_{v}} \lambda_{i} \cdot x^{i-1} \tag{2.4}\\
& \rho(x)=\sum_{i=2}^{d_{c}} \rho_{i} \cdot x^{i-1} \tag{2.5}
\end{align*}
$$

Where d_{v} and d_{c} are the maximum degree of variable nodes and check nodes, respectively. λ_{i} is the fraction of all edges incident to variable nodes with a degree i. Also, ρ_{i} is the fraction of all edges incident to check nodes with degree j.

There are two types of LDPC codes: one is regular, and the other is called irregular. The performance of irregular LDPC codes is usually better than that of a regular LDPC code. In the regular LDPC code, the degree of each row is constant and equal to ρ. Also, the degree of each variable node or column is constant and equal to λ. The total number of ones in the parity check matrix is equal to $\cdot \lambda=m . \rho \rightarrow m=n . \lambda / \rho$. Thus, by substituting $m=n . \lambda / \rho$ in $R=1-$ m / n, the code rate can be computed as $R=1-\lambda / \rho$, which is called the design rate. However, the actual rate is usually lower than the design rate due to the dependencies among rows of the parity check matrix. The ensemble of a regular LDPC code is (n, λ, ρ), where n is referred to the length of the LDPC code and λ, ρ is the column and row weight of the parity check matrix, respectively. In irregular LDPC code, the degree of check nodes and variable nodes are not constant. An ensemble of irregular LDPC code is defined by the degree distribution of its variable nodes $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d_{v}}\right\}$ and the degree distribution of its check nodes $\left\{\rho_{1}, \rho_{2}, \ldots, \rho_{d_{c}}\right\}$, where λ_{i} is the fraction of edges incident on variable nodes of degree i and ρ_{j} denotes the fraction of edges incident on check nodes of degree j. Consider E as the number of one's in the parity check matrix of LDPC code or the number of edges in Tanner graph, Similar to regular LDPC code we have

$$
\begin{equation*}
n=E \sum_{i} i \frac{\lambda_{i}}{i}=E \int_{0}^{1} \lambda(x) d x \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
m=E \sum_{i} i \frac{\rho_{i}}{i}=E \int_{0}^{1} \rho(x) d x \tag{2.7}
\end{equation*}
$$

Thus, the design rate of an irregular LDPC code is shown below

$$
\begin{equation*}
R=1-\frac{m}{n}=1-\frac{\int_{0}^{1} \lambda(x) d x}{\int_{0}^{1} \rho(x) d x} \tag{2.8}
\end{equation*}
$$

2.3. Decoding Algorithm of LDPC code

The decoding of LDPC codes is based on message-passing iterative decoding algorithms [3]. In message-passing iterative algorithms, messages are exchanged between the variable nodes and check nodes. There are two ways of decoding LDPC codes. The first one is hard decision decoding, such as Majority-logic decoding and bit-flipping (BF) decoding. The second one is soft decision decoding, such as weighted bit-flipping decoding and a posteriori probability (APP) decoding algorithms. In the following, the Bit-Flip decoding algorithm of the LDPC code and Belief propagation decoding algorithm based on Log-likelihood is covered in detail.

2.3. A. Bit-Flip decoding algorithm (Hard Decoding)

This method was devised by Gallager in the early 1960s [1-2]. The steps of the Bit-Flip algorithms are as follow:

Step 1: Compute syndrome by $r . H^{T}=s$ in which is the received bits. If all parity checksums are zero, stop the decoding algorithm.

Step 2: Find the number of failed parity check equations for each node. Determine the number of failed check node for each message node by $f_{i}, i=1,2, \ldots, n-1$

Step 3: Identify the set S of the variable node for which f_{i} is the largest.

Step 4: Flip bits in set S.

Step 5: Repeat steps 1 to 4 until the parity checksums are zero (decoding success) or a maximum number of iterations reaches (decoding failure).

If the syndrome or the value of the check nodes are all zero, it means that there is no error, but if detectable error pattern occurs there will be parity check failure in the syndrome $\left(s_{1}, s_{2}, \ldots, s_{j}\right)$, and some of the syndrome bits will be equal to 1 . In the above-mentioned decoding algorithm, the decoder continues computing the parity checksums, and the process is repeated until all the parity checksums become equal to zero or a present maximum number of iterations is reached (decoding failure).

2.3. B. Belief propagation decoding algorithm based on Log-likelihood

The algorithm originally presents in Gallager's work, which is an important subclass of message passing algorithms. In the Belief propagation algorithm, the messages passed through the edges are probabilities or beliefs. One important feature related to the belief propagation decoding algorithm of LDPC code is its running time. The algorithm moves from the variable nodes to the check nodes and vice versa. The sparse parity check matrix leading to a sparse graph resulted in a small number of movements. Furthermore, the algorithm itself is completely independent of the channel, but the messages passed through the algorithm are entirely dependent on the channel. Indeed, the messages sent from the variable nodes to a check node c is the probability which that node received from check nodes in the previous iteration except the one it wants to send the message to. The same is true for message passing from check node c to the variable node v. Likelihood ratio of a binary random variable x is represented in Equation (2.9). Also, the conditional likelihood ratio of random variable x given y is expressed
in Equation (2.10). Consider that x is an equiprobable random variable then $\mathrm{L}(x \mid y)=\mathrm{L}(y \mid x)$ By Bayes' rule.

$$
\begin{align*}
L(x) & =\frac{\mathrm{p}(x=0)}{\mathrm{p}(x=1)} \tag{2.9}\\
L(x \mid y) & =\frac{\mathrm{p}(x=0 \mid y)}{\mathrm{p}(x=1 \mid y)} \tag{2.10}
\end{align*}
$$

The inputs of the LDPC decoder $\left(l_{i}\right)$ are a log-likelihood ratio (LLR) values. Let the transmitted codeword be $\mathrm{v}=v_{0}, v_{1}, v_{2}, \ldots, v_{N-1}$ and the soft-decision received sequence be y, then λ_{i} for each code bit is given by

$$
\begin{equation*}
l_{i}=\log \left(\frac{P_{c}\left(m_{v}=0 \mid m_{y}\right)}{P_{c}\left(m_{v}=1 \mid m_{y}\right)}\right) \tag{Eq}
\end{equation*}
$$

Where m_{v} is the log-likelihood of the message node v conditioned on its observed value m_{y}, which is independent of check node $c . P_{c}$ is the cross over the probability of the BSC. It is obvious that if the observed node's value is zero ($m_{y}=0$), the message sends to all adjacent check node $\ln P_{c} / \ln \left(1-P_{c}\right)$ value. While, if the node value is one $\left(m_{y}=1\right)$, the message sends to all adjacent check node, the negative value of when the node's value is 0 $\left(\ln \left(1-P_{c}\right) / \ln P_{c}\right)$. Indeed, the LLR value indicates that the given received value is more probable to be zero or one. In the simulation of LDPC code, initially, a sequence of random bits of length K is generated. The K bits are considered as the message bits. Then, parity bits of length $N-K$ are produced by LDPC encoder based on the message bits. The codeword of length N is transmitted. Then, the output of the channel is the input to the decoder. According to [3] the belief propagation decoding algorithm of LDPC code has the following steps as follow:

Step1: Find the value of syndromes. If the value of syndrome bits are all zero, it means that the received bits are an actual codeword, and the channel does not cause any effect on the transmitted codeword during the transmitting process. If the syndrome or parity check bits are not zero, then go to step two.

Step 2:

Round 0: Find LLR.

Round 1: Update Variable nodes

In round one of step 2, find the messages which send from parity check node c to the adjacent message node v . The update equation of variable nodes is given in Equation (2.12).

$$
\begin{equation*}
m_{c v}^{l}=\frac{1+\prod_{\dot{v} \in V_{c} \backslash\{v\}} \tanh \left(m_{v c}^{l-1} / 2\right)}{1-\prod_{\dot{v} \in V_{c} \backslash\{v\}} \tanh \left(m_{v c}^{l-1} / 2\right)} \tag{Eq}
\end{equation*}
$$

Where $m_{v c}^{l}$ is a message which passed from message node v to the check node c at round l. Similarly, $m_{c v}^{l}$ is the message which passed from check node c to the message node at round l. Where V_{c} is the set of variable nodes incident to the check node c.

Round 2: Update Check nodes

In round two of step 2, find the messages which send from each message node v to the all adjacent parity check nodes c. The Equation (2.13) shows update check nodes equation.

$$
m_{v c}= \begin{cases}m_{v} & \text { if } l=1 \tag{2.13}\\ m_{v}+\sum_{\hat{c} \in C_{v} \backslash\{c\}} m_{c v}^{l-1} & \text { if } l \geq 1\end{cases}
$$

Where C_{v} is the set of check nodes incident to the variable node v.

Step 3: Hard decision making

If the value of the $m_{v c}$ is positive, the value of variable node v is considered as zero. Similarly, if the value of the $m_{v c}$ is negative the value of variable node v is considered as one.

Step 4: In this step, the value of check nodes are calculated by $\left(c_{0}, \ldots, c_{N-K}=\right.$ $\left(v_{0}, v_{1}, v_{2}, \ldots, v_{N-1}\right) H^{T}$.

Step 5: Stop conditions

Similar to the first step, if the value of all calculated check nodes is zero, it means it is an actual code-word. Therefore, the decoding process is finished. Besides, the other stop condition is when the number of iteration of the decoding algorithm reaches the max number of iteration. Otherwise, go to step 2 and repeat until the stop condition of the decoding algorithm reaches.

2.4. Slepian Wolf coding theorem

Slepian Wolf coding is a channel coding problem that considered the question of how many bits per source character are required for the two correlated encoded message sequences to be decoded accurately by the joint decoder. The two sources do not communicate with each other. However, they are correlated and decoded jointly while encoded separately [15]. Let (X_{1}, Y_{1}), $\left(X_{2}, Y_{2}\right), \ldots$ be an i.i.d sequence of jointly distributed random variables X and Y with joint distribution function $p(x, y)$. Assume that X^{n} and Y^{n} are encoded separately without knowledge of each other, and the compressed output is sent to a joint decoder for reconstruction. The explained problem is called Distributed Source Coding (DSC) problem. Indeed, compression of the outputs of two or more physically separated correlated sources while they do not communicate with each other is known as distributed source coding, which
could be lossless or lossy. These sources send their compressed outputs to a joint decoder for joint decoding. The final goal in communication is to minimize the energy required by the sources to achieve reliable communications. Figure (2.2) shows a distributed source coding problem.

Figure (2.2). Distributed source coding problem with two sources.

Slepian Wolf coding theorem: For the distributed source coding problem of the source (X, Y) the achievable rate region is given by

$$
\begin{gather*}
R_{X} \geq H(X \mid Y) \tag{Eq}\\
R_{Y} \geq H(Y \mid X) \\
R_{X}+R_{Y} \geq H(X, Y)
\end{gather*}
$$

According to the separation theorem in Slepian Wolf, where the user has access to the side information Y, the entropy of the source $H(X)$ is replaced by $H(X \mid Y) . H(x)=H(X \mid Y)+I(X ; Z)$, where $\mathrm{H}(\mathrm{X} \mid \mathrm{Y}) \leq \mathrm{C}_{1}[15]$. Cover proved that this theorem also holds for stationary and ergodic source if we replace entropies with entropy rates and conditional entropies with the conditional entropy rates [12].

2.5. Wyner Ziv Coding

Wyner Ziv examines the question of how many bits are needed to encode source X under the constraint that the average distortion between X and the reproduction $\widehat{\mathrm{X}}$ satisfies $\mathrm{E}\{\mathrm{d}(\widehat{\mathrm{X}}, \widehat{\mathrm{X}})\} \leq$ D. Two possible questions related to source coding with side information were proposed in Wyner Ziv approach. The first one is when both encoder and decoder have access to side information, and the second question is when just the decoder has access to side information. Let $\mathrm{R}_{\mathrm{X} \mid \mathrm{Y}}^{*}(\mathrm{D})$ as the smallest rate-distortion function of coding with side information Y available at the encoder (the former one) and $\mathrm{R}_{\mathrm{WZ}}^{*}$ as the achievable lower bound of the bit rate for an expected distortion D when just the decoder has access to side information (the latter one). In general, based on Wyner-Ziv $\mathrm{R}_{\mathrm{WZ}}^{*} \geq \mathrm{R}_{\mathrm{X} \mid \mathrm{Y}}^{*}(\mathrm{D})$ which means that allowable rate distortion function is decreased while both the encoder and decoder have access to side information. That is in contrast to the Slepian and Wolf situation that knowledge of the side information at the encoder does not have any rate reduction of accurate source reconstruction. One interesting case in Wyner Ziv is when sources are jointly Gaussian. In this case, $\mathrm{R}_{\mathrm{wZ}}^{*}=\mathrm{R}_{\mathrm{X} \mid \mathrm{Y}}^{*}(\mathrm{D})$ which is a similar case to the lossless data compression of Slepian-Wolf. Thus, the transmission rate of lossy compression of a Gaussian source with side information cannot be lowered even if the encoder has access to the side information.

2.6. What is an FPGA?

Field Programmable Gate Arrays (FPGAs) are semiconductor devices. FPGA consists of configurable logic blocks (CLBs). The interconnections between CLBs are programmable. Therefore, after manufacturing FPGAs can be reprogrammed to desired application or
functionality. All these elements together make the basic architecture of an FPGA which is represented in Figure (2.3).

Figure (2.3). Basic FPGA Architecture [39].

The traditional design flow of an FPGA is more similar to Integrated Circuit (IC) rather than a processor. However, the architecture of an FPGA is more cost efficient than an IC, while the efficiency of them are the same in most case. Another benefit of the FPGA in comparison to the IC is that FPGA has a dynamic reconfiguration ability. The dynamic reconfiguration ability of the FPGA is the same as loading a program in a processor that is convenient to implement any kind of algorithm. However, the dynamic reconfiguration affects the availability of the resource in the FPGA fabric partially or totally. Therefore, computational throughput, required resources, and achievable clock frequency affect the efficiency of the resulting implementation.

2.7. Xilinx FPGA Architecture

Xilinx FPGAs are heterogeneous compute platforms that include Block RAMs, DSP Slices, PCI Express support, and programmable fabric. They enable parallelism and pipelining of applications across the entire platform as all of these compute resources can be used simultaneously. SDAccel is the tool provided by Xilinx to object and assist these compute resources for OpenCL programs.

The basic structure of an FPGA is composed of the following elements:

- Look-up table (LUT) - LUT performs logic operations.
- Flip-Flop (FF) - This register element stores the result of the LUT.
- Wires - Wires connect elements.
- Input/Output (I/O) pads - These physical ports get data in and out of the FPGA.

The combination of the above-mentioned elements, including LUT, FF, wires, and I/O pads, results in the basic FPGA architecture. The mentioned elements, LUT and FF are described briefly in the following pages.

LUT

The Look-up table LUT is the basic building block of an FPGA. By using LUT, which is a small memory, we can implement any logic function of M Boolean variables. Essentially, LUT is a truth table. Therefore, in LUT, different arrangements of the inputs resulted in various functions, which is generated output values. M represents the number of inputs to the LUT, which is the limit on the size of the truth table. Indeed, the number of memory locations
accessed by the table for a LUT with N inputs is 2^{N}. This permits the table to implement $2^{\mathrm{N}^{\wedge} \mathrm{N}}$ functions. Note that a typical value for M in Xilinx FPGAs is 6 . Figure (2.4) shows the functional Representation of a LUT as a Collection of Memory Cells.

Here, we try to explain the hardware implementation of a LUT. It can be considered as a collection of memory cells that is linked to a set of multiplexers. The inputs to the LUT can be regarded as a selector bits on the multiplexer so that the outcome can be selected at a given point in time. This representation of LUT makes it easier to consider LUT as a compute engine function and a data storage element.

Figure (2.4). Illustration of a functional LUT as a collection of memory cells.

Flip Flop

The basic structure of a flip-flop is shown in Figure (2.5) which represents a data input (d_in), clock input (clk), clock enables (clk_en), reset, and data output (d_out). In each clock pulse, the input value.

Figure (2.5). Structure of a Flip-Flop.

During normal operation, any value at the data input port is latched and passed to the output on every pulse of the clock. The clock enables pin permits the flip-flop to hold specific value for more than one clock pulse. New data inputs are only latched and passed to the data output port when both clock and clock enable are equal to one.

Present FPGA architectures have the basic elements along with additional computational and data storage blocks. The extra elements added to contemporary FPGA is shown in Figure (3.4). These additional elements, which rise the computational density and efficiency of the device, are discussed in the following sections,

- Embedded memories for distributed data storage
- Phase-locked loops (PLLs) for driving the FPGA fabric at different clock rates
- High-speed serial transceivers
- Off-chip memory controllers
- Multiply-accumulate blocks

Figure (2.6) shows the combination of these elements on a recent FPGA architecture. This provides the FPGA with the flexibility to implement any software algorithm running on a processor. Note that all of these elements across the entire FPGA can be used concurrently.

Figure (2.6). Contemporary FPGA Architecture [39].

DSP48 Block

DSP48 block, which is shown below, is the most complex computational block available in a Xilinx FPGA.

The DSP48 block, which is embedded in the fabric of the FPGA, is an arithmetic logic unit. It is composed of a chain of three different blocks, including add/subtract unit, multiplier, and final add/subtract/accumulate engine.

The computational chain in the DSP48 holds an add/subtract unit, which is linked to a multiplier. The multiplier is linked to a final add/subtract/accumulate engine. This chain allows a single DSP48 unit to implement functions of the form, which is represented in Figure (2.7):
$P=B \times(A+D)+C$ or $P+=B \times(A+D)$

Figure (2.7). A DSP48 Block structure [39].

BRAM and Other Memories

Embedded memory elements in FPGA fabric are random-access memory (RAM), read-only memory (ROM), or shift registers. These elements are block RAMs (BRAMs), LUTs, and shift registers.

The BRAM is a dual-port RAM module available on the FPGA fabric to provide on-chip storage for a relatively large set of data ($\mathbf{1 8 k} \mathbf{~ o r ~ 3 6 k ~ b i t s) . ~ T w o ~ t y p e s ~ o f ~ B R A M ~ m e m o r i e s ~ t h a t ~}$ can hold either 18 k or 36 k bits are based on device specific. The dual-port BRAM has parallel, same-clock-cycle access to different locations.

In a RAM configuration, the data can be read and written at any time during the runtime of the circuit. In contrast, in a ROM configuration, data can only be read during the runtime of the circuit. The data of the ROM is written as part of the FPGA configuration and cannot be modified in any way.

As discussed in the LUT section, the contents of a truth table of LUT are written during device configuration. Due to the flexible structure of LUT in Xilinx FPGAs, these blocks can be used as 64-bit memories. LUT is commonly referred to as distributed memories, which is the fastest kind of memory available on the FPGA. Therefore, LUT can be used in any part of the fabric in order to improve the performance of the implemented circuit.

The shift register is a chain of registers connected to each other. Figure (2.8) shows the structure of an Addressable Shift Register. The purpose of this structure is to provide data to be reused along a computational path, such as with a filter.

Figure (2.8). Structure of an Addressable Shift Register.

Clock cycle

The speed of a computer processor, is determined by the clock cycle. Clock cycle is the amount of time between two pulses of an oscillator. the higher number of pulses per second, the faster the computer processor can to process information. The clock speed is measured in Hz , often either megahertz (MHz) or gigahertz (GHz). For example, a 3 GHz processor performs $3,000,000,000$ clock cycles per second.

2.8. Three main methods for designing Lookup table

To simplify the hardware implementation of $\tanh \mathrm{x}$, which is used for variable node update in LDPC decoder, we proposed to apply lookup table. In the literature review, hardware implementations for the hyperbolic tangent function are performed based on the approximation of the function rather than calculating it. Three main methods for designing Lookup table are used to implement and approximate the hyperbolic tangent function in hardware are as follows:

- Lookup table (LUT) approximation [32],
- Piece Wise Linear (PWL) approximation [33],
- Hybrid methods, which are essentially a combination of the former two [34].

2.8. A . Piecewise Linear (PWL) Approximation

A series of linear segments is used in PWL method to approximate a function [32]. The goal in PWL method is to minimize the error, processing time, and area depending on the number and location of the segments. The PWL method which is usually requires multiplier take several clock cycles. And also, multipliers are expensive in terms of resource usage, so, PWL methods are expensive while taking several clock cycles.

2.8.B. Lookup Table (LUT) Approximation

In the Look Up Table method, the number of points, which is uniformly distributed over the input period, is limited [33]. The number of points should be enough to minimize the approximation error of the function since there is a direct relation between the number of bits used to represent the address (input) and output.

2.8.c. Hybrid Methods

In Hybrid methods, look-up tables and other hardware are required to generate the goal function [34]. In the hybrid method, typically, multipliers are not used. However, they take several clock cycles to perform. The speed increases significantly since there is no usage of multipliers.

We choose the LUT method because, according to the literature between current hardware synthesizers, LUTs need less area than PWL methods, and also LUT is faster than the other two. In addition, in [35], it is shown that the range addressable lookup table method performs significantly quicker with the same amount of error while using less area compared to LUT, PWL, and Hybrid. Therefore, based on simulation results, range addressable lookup tables are proposed as a solution that offers partially simplifying hardware implementation of LDPC decoder in terms of speed and resource utilization.

In RALUT, limited number of points are used to approximate the function. The limited number of points are uniformly distributed across the entire input range [33]. Indeed, the size of look up table is diminished by addressing x in a bigger range. However, the answer is not desired. Therefore, another RALUT is proposed in which the range of points are uniformly distributed across the entire output range. The performance of the proposed method to update variable node of LDPC decoder for the DVBS2 standard is the same as the standard while the proposed method is faster and using fewer resources. Finally, Appendix C shows the RALUT, which is used for calculation of $\tanh x$ in update variable node messages of LDPC decoder.

Chapter 3

Decoder Hardware Implementation and

Slepian-Wolf compression using DVB-s2

LDPC code

Summary

In Chapter three, reliable communication over the noisy channel is considered to be implemented by the hardware of one standard of LDPC codes called DVB-S2. The design and architecture of FPGA implementation of an LDPC decoder are presented. Besides, the hardware implementation of the LDPC decoder is simplified using Range Addressable Look Up Tables. In Section 3.4, Range addressable Lookup Table approximation is applied to update variable nodes in the LDPC decoder. Because of undesired results, a new Range addressable Lookup Table approximation is proposed in order to update variable nodes in the LDPC decoder. Finally, in chapter three, data compression with side information at the decoder is used as a caching solution in a Well-designed Caching example. Chapter four presents the conclusion and future direction for the thesis.

3.1. LDPC Codes in DVB-S2 Standard

One of the improvements of the DVB-S2 standard from the original DVB-S standard is that instead of convolutional and Reed-Solomon codes, LDPC codes are concatenated with BCH codes for forward error correcting encoding and decoding. However, in this thesis, our main focus is only on the LDPC codes in the DVB-S2 standard. Therefore, the discussion of the BCH codes of the DVBS-2 standard is beyond the scope of this thesis. In this section, an overview of the LDPC codes in the DVB-S2 standard is presented. The LDPC codes in the DVB-S2 standard have two block lengths. Normal frames have block length $N=64800$, and short frames have $N=16200$. Eleven code rates are specified in the normal frames and ten in short frames. Table (3.1) shows different code rates used in the normal frames and in short frames.

According to the standard, even though the parity check matrices, H, chosen by the standard are sparse, their corresponding generator matrices are not. Thus, the DVB-S2 standard adopts a special structure of the H matrix in order to reduce the memory requirement and the complexity of the encoder. The special structure of the LDPC code is called Irregular RepeatAccumulate (IRA) [26]. The H matrix consists of two matrices A and B are shown in Equation (3.1), as follows:

$$
\begin{equation*}
H_{(N-K) \times N}=\left[A_{(N-K) \times N} \mid B_{(N-K) \times N}\right] \tag{3.1}
\end{equation*}
$$

Where B is a staircase lower triangular matrix, as shown in Equation (3.2).

$$
B_{(N-K) \times N}=\left[\begin{array}{ccccccc}
1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \tag{3.2}\\
1 & 1 & 0 & \cdots & \cdots & \cdots & 0 \\
0 & 1 & 1 & 0 & \cdots & \cdots & 0 \\
0 & 0 & 1 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & 1 & 0 & 0 \\
0 & \cdots & \cdots & 0 & 1 & 1 & 0 \\
0 & \cdots & \cdots & \cdots & 0 & 1 & 1
\end{array}\right]
$$

Matrix A is a sparse matrix, where the locations of the non-zero elements are specified in Appendix C of the DVBS2 standard [27]. Furthermore, the standard also introduces a periodicity of $M=360$ to the submatrix A in order to reduce storage requirements. The periodicity condition divides the A matrix into groups of $M=360$ columns. For each group, the locations of the non-zero elements of the first column are given in Appendix B. Let the set of non-zero locations on first, or leftmost, column of a group be $c_{0}, c_{1}, c_{2}, \ldots, c_{d b-1}$ where $d b$ is the number of non-zero elements in that first column. For each of the $M-1=359$, other columns, the locations of the non-zero elements of the ith column of the group are given by $\left(c_{0}+(i-1) p\right) \bmod (N-K), \quad\left(c_{1}+(i-1) p\right) \bmod (N-K), \quad \ldots \quad, \quad\left(c_{l}+(i-\right.$ 1) $p) \bmod (N-K)$. Where $N-K$ is the number of parity-check bits and $p=\frac{N-K}{M}$ code dependent constant, as shown in Table (3.1), where the values are obtained from the user guidelines of the standard [28].

$N=64800$	Rate	$1 / 4$	$1 / 3$	$2 / 5$	$1 / 2$	$3 / 5$	$2 / 3$	$3 / 4$	$4 / 5$	$5 / 6$	$8 / 9$	$9 / 10$
	p	135	120	108	90	72	60	45	36	30	20	18
	Rate	$1 / 5$	$1 / 3$	$2 / 5$	$4 / 9$	$3 / 5$	$2 / 3$	$11 / 15$	$7 / 9$	$37 / 49$	$8 / 9$	-
	p	36	30	27	25	18	15	12	10	8	5	-

Table (3.1). The values of p values in DVB-S2 LDPC code.

Since the LDPC codes in the DVB-S2 standard are systematic, the encoding of message bits simply can be found by calculating the parity bits through the parity-check equations. Using the structure of the codes as mentioned above, the A submatrix with dimensions $(N-K) \times K$ can be generated. Let $a_{i j}$ denote the elements in the A submatrix, where $i=0,1, \ldots, N-K-$ 1and $j=0,1, \ldots, K-1$. In order to encode the message, $u=u_{0}, u_{1}, \ldots, u_{K-1}$, the parity bits are found using the following parity-check equations, as shown in Gomes et al. [29]:

$$
\begin{gathered}
p_{0}=a_{0,0} u_{0} \oplus a_{0,1} u_{1} \oplus \ldots \oplus a_{0, K-1} u_{K-1} \\
p_{1}=a_{1,0} u_{0} \oplus a_{1,1} u_{1} \oplus \ldots \oplus a_{1, K-1} u_{K-1} \\
p_{2}=a_{2,0} u_{0} \oplus a_{2,1} u_{1} \oplus \ldots \oplus a_{2, K-1} u_{K-1} \\
\vdots \\
p_{N-K-1}=a_{N-K-1,0} u_{0} \oplus a_{N-K-1,1} u_{1} \oplus \ldots \oplus a_{N-K-1, K-1} u_{K-1}
\end{gathered}
$$

The encoded codeword is the concatenation of the message bits and the parity bits. Thus, the resultant N -bit codeword has the following form:

$$
u_{0}, u_{1}, u_{2}, \ldots, u_{K-1}, p_{0}, p_{1}, \ldots, p_{N-K-1}
$$

Figure (3.1). Inputs and Outputs of the LDPC decoder.

Table (3.2). Description of the Inputs and Outputs of the Decoder.

Input/ Output	Bit width	Name	Description
Input	1	Clk	Clock
Input	1	reset	Reset
Input	8	Max_iter	Sets the maximum number of iterations the decoder will perform
Input	1	$n d$	New data indicates that input LLR values are incoming
Input	6	$l l r$	Serial 6-bit wide input LLR values
Input	1	Fd_in	First data input marks the beginning of an input frame
Input	1	cts	Clear to send informs the decoder as to whether or not to output the decoded message
output	1	$r f d$	Ready for data indicates that the decoder is ready for more LLR values
output	1	$r f f d$	Ready for first data indicates that the decoder is ready for a new frame
output	1	decmsg	Serial hard decoded message output
output	1	$e r r$	Indicates whether or not a decoding error has occurred
output	1	$r d y$	Ready indicates the output data is ready to stream out
Output	1	fd	out First data output marks the beginning of an output frame

3.2. The architecture of the hardware implementation of DVB-S2 LDPC

Here, the details of the architecture of the hardware implementation of the DVB-S2 LDPC decoder are presented. Figure (3.1) shows the inputs and outputs of the decoder. Table (3.2) describes each input and output of the decoder in more detail.

The finite state machine of the LDPC decoder

The finite state machine controls the data flow of the LDPC decoder. Therefore, the finite state machine has connections to all available components. The state transition diagram of the controller is shown in Figure (3.2).

When all data
is acquired

Figure (3.2). The finite state machine of LDPC decoder.

IDLE State: the IDLE state is the initial step of the decoder's control flow.

INIT State: When both inputs $n d$ and $f d$ in are active, the controller enters the INIT state. It remains in this state until all the 64800 LLR values input into the decoder. Then the controller moves to the next state.

IW AIT State: It is a transition state where the decoder is received all the 64800 LLR values, but some $L L R$ values are still being written into the RAM through the FUs. So it is not ready for calculation.
$\boldsymbol{V N U P}$ State: Once all the RAM values are ready, the controller goes into the $V N U P$ state where the Variable Node Update based on the message which is sent from the parity check node to the adjacent message variable node (Equation (2.12)).

CNUP State: Once the Variable Node Update step is complete; the controller goes into the CNUP state where the Check node value is updated based on Equation (2.13).

CHECK State: After all the Check Node Update calculations are performed, the controller enters the CHECK state. During the CHECK state, the parity-check equations are verified. If all parity check equations are satisfied, error $=0$, then the controller enters the IDLE state and waits for the next frame of LLR values while outputting the decoded message. Otherwise, error $=1$, and the controller returns to the VNUP state to repeat the VNUP, CNUP, and CHECK states. If the maximum number of iterations is reached during the CHECK state, the controller also moves to the IDLE state and outputs the decoded message with the output err set to 1 .

3.3. Hyperbolic Tangent Function Implementation

The citation that follows from Pharr and Fernando [31] describes the concept of using the Look up table briefly:

For optimizing a function that is expensive to compute and inexpensive for the cache using Look Up Tables (LUTs) is an excellent technique. So, a precomputing of a function over a range of common input is evaluated in order to find a proper LUT. Indeed, expensive runtime operations can be replaced with inexpensive table lookups. If the computation run time is much longer than the read time of Look up table, then the use of a lookup table will result in a significant performance gain. Besides, an interpolation algorithm by nearby averaging samples can be used for the data, which is between the data sample's so that the result will be reasonable approximations [31].

To simplify and increase the speed of the hardware implementation of $\tanh x$, which is used to update variable node in the LDPC decoder, we proposed to apply the Lookup table. Usage of Lookup table for the hyperbolic tangent function is essential for increasing the efficiency of designing and implementing the hardware. Indeed, expensive runtime operations of hyperbolic tangent function can be replaced by inexpensive table lookup. Therefore, if the computation run time is much slower than the computation by the Lookup table, then the usage of the lookup table will result in a significant performance gain. The hyperbolic tangent function graph is a sigmoid curve with the shape of S in which the variation of the hyperbolic tangent function is limited outside the period of $(-2,2)$.

Three main approaches are LUT, PWL, and Hybrid, which are used to approximate the hyperbolic tangent function in hardware. Figure (3.3) shows the hyperbolic tangent function S
shape curve. Figure (3.4) presents Lookup Table Approximation of the hyperbolic tangent function with Eight Points. Figure (3.5) shows $\tanh (x)$ approximation with piecewise linear approximation by five Segments.

Figure (3.3). The Hyperbolic Tangent Function S shape curve.

Figure (3.4) Lookup Table Approximation of $\tanh (x)$ which is represented by Eight Points.

Figure (3.5). Piecewise Linear Approximation of $\tanh (x)$ by five Segments.

3.4 Implementation of the Hyperbolic Tangent Function by Range Addressable

Lookup Table

Three main methods for designing a Lookup table are used to implement and approximate the hyperbolic tangent function in hardware, including LUT, PWL, and Hybrid approximation methods. According to the literature among the currently available hardware synthesizers, LUTs need less area than PWL methods, and also LUT is faster than the other two.

Furthermore, it is shown that the range addressable lookup table method performs significantly faster with the same amount of error while it uses less area compared to LUT. Range addressable LUT was originally proposed in [37] so that highly nonlinear, discontinuous functions are implemented. RALUT is similar to regular LUT in which the memory is only
readable. However, there are a few notable differences between LUT and RALUT. A lookup table uses a classic decoding scheme. However, a range addressable lookup table decoding scheme is designed in a way, decreasing the size of LUT. In LUTs, each output belongs to a unique input address, while RALUTs output belongs to a range of addresses, as shown in Figure (3.6). This difference between LUT and RALUT results in a large reduction in data points in the RALUT method, especially when the output is non-changeable over a significant period of input. In the hyperbolic tangent function, the output changes a little outside the period of $(-2,2)$. Therefore, the RALUT method is an efficient and optimized method for approximating $\tanh (x)$ function compared to LUT. This is due to the fact that in LUT, every individual input point is represented by an output while in RALUT, a range of input points are represented by an output. Figure (3.7) represents the RALUT approximation of $\tanh (x)$ with Eight Points [36].

a. Lookup Table Architecture

b. Range addressable Lookup Table Architecture

Figure (3.6). Comparison between LUT and RALUT Addressing methods.

Figure (3.7). RALUT Approximation of $\tanh (x)$ with eight points.
3.4 A. Applying Range addressable Lookup Table Approximation to update variable nodes in the LDPC decoder

In RALUT, the function is approximated with a limited number of points uniformly distributed across the entire input range [33]. Applying the RALUT results in an LDPC decoder, which will never reach zero BER. The results are shown in Figure (3.8), showing the BER of DVBS2 rate half for different values of SNR when $\tanh (x)$ is approximated by RALUT. Indeed, the size of the lookup table is diminished by addressing x in a wider range of input. The decoding result is not desired. Therefore, a novel design of RALUT for the hyperbolic tangent function is proposed that simplifies the LDPC decoding algorithm while the performance remains the same.

Figure (3.8). BER of LDPC code (Rate $=1 / 2$) by Applying rstaRALUT approximation to updandate variable node of LDPC decoder.

3.4. B. Applying the Proposed Range addressable Lookup Table Approximation to update variable node of eLDPC decoder

 In Normal RALUT, the function d is approximated with a limited number of points uniformly distributed across the entire input range. However, we proposed a RALUT where the function is approximated with a limited number of points where more values are assigned to the points near zero.Consider the output in a range of $y_{1} \leq y=\tanh x \leq y_{2}$ would be $\frac{y_{1}+y_{2}}{2}$, so that $y=\tanh x$, $y_{1}=\tanh x_{1}$, and $y_{2}=\tanh x_{2}$, the input range must be $\tanh ^{-1} y_{1} \leq x \leq \tanh ^{-1} y_{2}$. Besides, Appendix C shows the RALUT, which is used for updating the variable node messages of the LDPC decoder. The decoder presented in Chapter 2 is verified using a code which is coded in

MATLAB and $\mathrm{C}++$. The code begins by generating a random sequence of bits. Every frame of the sequence is encoded ad decoded by an LDPC encoder and decoder implemented by us, i.e., we have not used the LDPC decoder function of Matlab. Frames of N=64800 bits long subsequently modulated using the BPSK modulation scheme. The BCH outer encoding specified in the DVB-S2 standard is not used because only the performance of the LDPC decoder is evaluated. The DVB-S2 standard also uses quadrature phase-shift keying (QPSK), 8 phase-shift keying (8PSK), 16 amplitude and phase-shift keying (16APSK) and 32 amplitude and phase-shift keying (32APSK) modulation schemes, but for simplifying the simulation test bench uses BPSK modulation scheme to modulate the encoded sequence. Subsequently, the modulated signal passes through a transmission channel, which is simulated by adding AWGN. The receiving side of the test bench demodulates the transmitted signal and producing the initial LLR values. These LLR values are divided into frames of N values, and each frame is inputted into the LDPC decoder. Finally, after decoding the input of the channel, decoded codeword for each frame is compared to the frames of the original random sequence generated. If the two sequences are identical, then the decoding is correct. Otherwise, decoding error has failed for that particular frame. Here, because we want to test and evaluate the results, the decoded codeword for each frame is compared with the original random sequence; however, in reality, the original random sequence is not available at the receiver. Therefore, when the syndrome became zero or when the number of iteration reaches to maximum, the LDPC decoder stops.

The SNR is the characteristic of the AWGN channel in units of decibels (dB), which is defined by the power of the signal received divided by the power of the noise in the channel. For normal frames, 100 frames are used. The result of the proposed RALUT for the positive part of $\tanh x$
function is shown in Figure (3.9). The performance of the proposed method to update variable nodes of the LDPC decoder for the DVBS2 standard is the same as the standard.

Figure (3.9). BER of LDPC code (Rate $=1 / 2$) by applying proposed RALUT approximation to update the variable node of the LDPC decoder.

Figure (3.10). The maximum number of iteration for 30 packets for different values of SNR.

Figure (3.11). The minimum number of iteration for 30 packets for different values of SNR.

Figure (3.10) and Figure (3.11) represent the maximum and the minimum number of iteration for 30 packets for different values of SNR where the code rate is half, respectively. The number of maximum and the minimum number of iteration is precisely the same for a specific value of SNR when the thirty packets are produced randomly. There is a possibility to use this feature in hardware implementation to simplify and decrease the usage of resources. It means that for a specific value of SNR, the maximum number of iteration can be considered based on the maximum number of iteration of Figure (3.11). For example, for the value of SNR equal to two, the maximum number of iteration is 20 . Thus after 20 iterations, the algorithm will decide to finish the decoding process and use the resources for other out coming packets.

XC6VLX240T, a family of FPGAs, is used for evaluation of the complexity of the proposed design by [30]. The synthesis result shows the speed increase due to the use of the RALUT method. Finally, Table (3.3) shown the hardware implementation results compared to [30]. Besides, Since Vivado HLS synthesis is available for Zynq XC7Z030, therefore, the result is presented for evaluation.

Table (3.3). Hardware implementation results for code rate half, $N=64800$, compared by [30].

FPGA	BRAM	$\boldsymbol{F F}$	LUT	Clock cycle(MHz)
XC6VLX240T [30]	31%	17%	60%	214.5
XC6VLX240T	30.5%	19.5%	47%	225
ZINC XC7Z030	25%	18.5%	54%	238.5

Results show the speed increase due to the use of the LUT method. However, LUT demands more memory resources. Thus, we decrease the usage of memory resources by applying the RALUT method. Commonly, RALUTs are uniformly distributed on input; however, in our proposed method, instead of representing the LUT input uniformly, we use a non-uniform scale assigning more values to those near zero.

3.5. Data compression with side information

According to the channel coding theory of Shannon, the source can be reconstructed with small error probability if the rate of the data sequence is less than the capacity of the transmission channel, which means that the problem of channel coding can be isolated into source coding problem [12]. Consider the model with two independent channels operating in parallel. According to Shanon's coding theorem, if the input to both channels were allowed to be encoded, the reliable transmission is possible if the entropy of the source is below the sum of capacities of the two channels $H(x) \leq H(X \mid Y)+H(Y)$. However, if the source entropy is above $\mathrm{H}(\mathrm{X} \mid \mathrm{Y})+\mathrm{H}(\mathrm{Y})$ the reliable transmission is not possible. If one of the channels has an uncoded version of the source as side information at the decoder, known as systematic communication, there are two approaches for error protection of noisy transmission. One is based on Slepian Wolf [13], and the other is based on Wyner Ziv [14]. In this section, some basic concepts, including the Slepian Wolf Coding theorem, Wyner-Ziv Coding, Source channel with decoder side information, are presented.

Figure (3.12). Achievable two-dimensional rate region.

It is figured that if vector X and Y with length of n bits are compressed into sequence of length of $n R_{X}$ and $n R_{Y}$, respectively, where $R_{X} \geq H(X \mid Y), R_{Y} \geq H(Y \mid X)$, and $R_{X}+, R_{Y} \geq H(X, Y)$, then the joint decoder can have a highly reliable reconstruction of X and Y . The result is shown as an achievable two-dimensional rate region in Figure (3.12).

Slepian Wolf decoding algorithm of LDPC code

In LDPC decoding of Slepian Wolf, when we have side information at the decoder, instead of transmitting the whole length of the original message, only the syndrome or check nodes are transmitted $(\mathrm{H}(\mathrm{X} \mid \mathrm{Y}))$. The Slepian wolf decoding algorithm of LDPC code is almost the same with the channel decoding algorithm of LDPC code with some differences. In the following, the differences are explained.

Step 0: Instead of transmitting the complete message of length N, the check node bits value of the original message with a length of $N-K$ bits are transmitted. Besides, the correlated version
of original message X with the length of N bits, which is called side information Y is available at the Slepian Wolf decoder.

Step 3 (round 1): Not zero positions of check node bits are marked. So in round 1 of step 3 or in the update equation of variable nodes, an extra sign is applied for the marked position. It means that whenever the message, which is the ratio of the probabilities in the \log domain, passed from the marked check node to all adjacent variable nodes, an extra change of sign is applied. Therefore Equation (2.13) is changed to Equation (2.15)

$$
\begin{equation*}
m_{v c}= \tag{3.1}
\end{equation*}
$$

$$
\left\{\begin{array}{cc}
m_{v} & \text { if } l=1 \\
m_{v}+\sum_{\dot{c} \in C_{v} \backslash\{c\}} & \begin{array}{cc}
-m_{c v}^{l-1} \\
m_{c v}^{l-1} & \dot{c} \in \text { Set of marked check nodes }
\end{array} \\
\text { if } l \geq 1
\end{array}\right.
$$

Step 5 (Stop conditions): The first stop condition is when the value of check nodes is the same as the check nodes value of the original message. The other stop condition is when the number of iteration of the decoding algorithm reaches the max number of iteration.

3.6. Well-designed Caching by DVBS2 Standard

Here is an example of the application of the Slepian Wolf decoding algorithm of LDPC code by the DVBS2 standard in the caching method [16]. Caching is a reliable solution for communication during a busy period by taking advantage of memory across the network, which leads to more smooth communication network systems [17-22]. The caching method has twophase. The first phase is called the placement phase, where the data is stored in the cache across the network. The main limitation of this phase is the size of the cache memory. In the second
phase, which is called the Delivery phase, the user's request can be partially served through caches near the users. Examples of application of the caching method are streaming media and distributed databases, which results in decreasing the delivery rate.

Streaming media: User requests time is most likely at night rather than early in the morning. During congestion periods, the bandwidth-hungry features of media result in more congestion, high latency, and a poor experience for users. One applicable solution is caching during offpeak hour time.

Distributed database: Some examples of the distributed database are meteorological conditions measurement information of the globe, information of traffic sensors spread across several countries, information on the shopping history of the customers, information on the mobility pattern of the mobile devices in cellular networks. Since the database is extensive, it might need several different network calls to load the requested data of the memory before the requested data can be transmitted to the users. These network calls cause latency or stalls the process. In the modern database, it is handled by storing the most common queries in fast memory. For instant, consider that a user more probably demands the weather measurement of his hometown rather than of a remote area. Therefore, the information of weather measurement of the user hometown is cached in memory close to it. To our best knowledge, little attention was given to the source coding problem in the presence of caching; however, Compressing information can highly mitigate the traffic.

Fig (3.13). The tradeoff between packet correlation and delivery rate.

We proposed a general approach to - decreases the delivery rate by applying source coding of LDPC code to the correlated binary source. Consider that we have a source with correlated packets. The original packets are put in the cache in the placement phase. The rest of the packets that are correlated to the original packets with the coefficient of α will be sent during the delivery phase with rate $1-k / n$. For the delivery phase, we applied DVBS2 standard, which is adopted by many numbers of standards because of having powerful features such as transmission rate close to the theoretical Shannon limit [19]. For flexible configuration DVBS2 standard has several code rate including $R=1 / 4,1 / 3,2 / 5,3 / 5,2 / 3,3 / 4,4 / 5,5 / 6,8 / 9$, $9 / 10$. Code rates $1 / 4,1 / 3$, and $2 / 5$ have been introduced for exceptionally poor reception conditions. In this example, we focus on 64800 length bits of a codeword of rates $R=1 / 4$, $1 / 3,2 / 5,3 / 5,2 / 3,3 / 4,4 / 5,5 / 6,8 / 9,9 / 10$, which is logical for our source coding purposes. The LDPC codes, as defined in the DVB-S2 standard, have straight forward encoder realization since the DVBS2 standard has a lower triangular shape for its parity check matrix. Figure (3.13) shows the tradeoff between packet correlation and delivery rate. It is obvious that there is an inverse relation between correlated coefficient α and delivery rate. Thus, when the correlation between packets is high, the delivery rate is low.

Chapter 4

Conclusion and future work

In this Chapter conclusion and future direction for the thesis are presented.

4.1. Conclusion summary

The emergence of large scale and high-speed data networks for processing, storage, and exchange of digital information in military, government, and private spheres resulted in demand for efficient and reliable data storage and transmission network systems. According to Shannon's theorem, if the transmission rate is less than the capacity, there is always an error correction code that can make the probability of error arbitrarily small. Besides, the application of error-correcting codes of data compression is investigated by Shannon due to duality between source coding and channel coding. Indeed, a channel code that provides high rates has the capability to be a source code with high rates as a result of duality.

Caching is a reliable solution for communication during a busy period by taking advantage of memory across the network, which leads to more smooth communication network systems [17-

22]. A general approach is proposed to decreases the delivery rate by applying source coding of LDPC code to the correlated binary source. The results show that there is an inverse relation between correlated coefficient α and delivery rate.

In addition, we have presented a new hardware implementation of the LDPC code used in DVBS2. We have used a Range addressable LUT scheme to approximate the Tangent Hyperbolic function. Our approach is motivated by the fact that among the three methods used for approximation of Hyperbolic Tangent, i.e., LUT, PWL, and hybrid method, LUT is the fastest approach but requires more resources than other two. Therefore, we have used RALUT in order to compensate for this. Synthesis results on Xilinx, XC7Z030, family of FPGA's shows that our method is faster than another implementation [30].

4.2. Future direction

Some proposed work as a progress of this thesis are as follows;

- Apply hardware implementation on a new standard such as ATSC 3.
- Expand the idea of Range addressable lookup table for hardware implementation for other applications.

References

[1]. R. G. Gallager,"Low density parity check codes," IRE Trans. Inform. Theory, IT-8: 21-28, January 1962.
[2]. R. G. Gallager, Low density parity check codes, MIT press, Cambridge, 1963.
[3] A. Shokrollahi, ,"LDPC codes: An Introduction," April, 2003.
[4] D. J. C. MacKay and R. M. Neal, "Near Shannon limit performance of low density parity check codes," Electron. Lett., vol. 32, pp. 1645-1646, Aug. 1996.
[5] N. Wiberg,"Codes and decoding on general graphs," Dissertation no. 440, Dept. Elect. Eng. Linkping Univ., Linkping, Sweden, 1996.
[6] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann,"Practical lossresilient codes," in Proc. 29th Annual ACM Symp. Theory of Computing, 1997, pp. 150-159.
[7] M. Sipser and D. Spielman, "Expander codes," IEEE Trans. Inform.Theory, vol. 42, pp. 1710-1722, Nov. 1996.
[8] D. J. C. MacKay, S. T. Wilson, and M. C. Davey, "Comparison of constructions of irregular Gallager codes," in Proc. 36th Allerton Conf. Communication, Control, and Computing, Sept. 1998.
[9]. El-Sherbini, Ahmed M. "Method and apparatus for differential run-length coding." U.S. Patent No. 4,631,521. 23 Dec. 1986.
[10].S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications, 2nd Edition, Prentice-Hall, 2005. Chapter 17.
[11]. T. J. Richardson and R. L. Urbanke, "Efficient encoding of low density parity check codes," IEEE Trans. Inform. Theory, February 2001.
[12] Cover, Thomas M., and Joy A. Thomas. Elements of information theory. John Wiley \& Sons, 2012.
[13] Slepian, David, and Jack Wolf. "Noiseless coding of correlated information sources." IEEE Transactions on information Theory 19.4 (1973): 471-480.
[14] Wyner, Aaron, and Jacob Ziv. "The rate-distortion function for source coding with side information at the decoder." IEEE Transactions on information theory 22.1 (1976): 1-10.
[15] Shamai, Shlomo, and Sergio Verdú. "Capacity of channels with uncoded side information." European Transactions on Telecommunications 6.5 (1995): 587-600.
[16] European Telecommunications Standards Institude (ETSI). Digital Video Broadcasting (DVB) Second generation framing structure for broadband satellite applications; EN 302307 V1.1.1. www.dvb.org
[17]. Maddah-Ali, Mohammad Ali, and Urs Niesen. "Fundamental limits of caching." IEEE Transactions on Information Theory60.5 (2014): 2856-2867.
[18]. Niesen, Urs, and Mohammad Ali Maddah-Ali. "Coded caching with non-uniform demands." IEEE Transactions on Information Theory 63.2 (2017): 1146-1158.
[19]. M. A. Maddah-Ali and U. Niesen, "Decentralized coded caching attains order-optimal memory-rate tradeoff," arXiv:1301.5848 [cs.IT], Jan. 2013.
[20]. Pedarsani, Ramtin, Mohammad Ali Maddah-Ali, and Urs Niesen. "Online coded caching." IEEE/ACM Transactions on Networking (TON) 24.2 (2016): 836-845.
[21]. Timo, Roy, et al. "A rate-distortion approach to caching." IEEE transactions on information theory 64.3 (2018): 1957-1976.
[22] C.-Y. Wang, S. H. Lim, and M. Gastpar, "Information-theoretic caching: Sequential coding for computing," IEEE Trans. Inf. Theory, vol. 62, no. 11, pp. 6393-6406, Nov. 2016. [23]. Martin, Grant, and Gary Smith. "High-level synthesis: Past, present, and future." IEEE Design \& Test of Computers 26.4 (2009): 18-25.
[24]. Casseau, Emmanuel, et al. "C-based rapid prototyping for digital signal processing." 2005 13th European Signal Processing Conference. IEEE, 2005.
[25]. Lai, Yung-Te, Massoud Pedram, and Sarma BK Vrudhula. "BDD based decomposition of logic functions with application to FPGA synthesis." 30th ACM/IEEE Design Automation Conference. IEEE, 1993.
[26]. H. Jin, A. Khandekar, and R. McEliece, "Irregular repeat-accumulate codes," in $2^{\text {nd }}$ International Symposium on Turbo Codes and Related Topics, September 2000.
[27]. ETSI, Digital Video Broadcasting (DVB): Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications (DVB-S2), EN 302307 V 1.2.1." August 2009.
[28]. ETSI, Digital Video Broadcasting (DVB): User guidelines for the second generation system for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications (DVB-S2), TR 102376 V 1.1.1." February 2005.
[29]. M. Gomes, G. Falcao, A. Sengo, V. Ferreira, V. Silva, and M. Falcao, High throughput encoder architecture for DVB-S2 LDPC-IRA codes," in International Conference on Microelectronics, 2007. ICM 2007, December 2007, pp. 271 \{274.
[30]. Loi, Kung Chi Cinnati. Field-programmable Gate-array (FPGA) Implementation of Lowdensity Parity-check (LDPC) Decoder in Digital Video Broadcasting-Second Generation Satellite (DVB-S2). Diss. University of Saskatchewan, 2010.
[31] Matt Pharr and Randima Fernando. GPU Gems 2: Programming Techniques for HighPerformance Graphics and General-Purpose Computation. Addison-Wesley Professional, Boston, MA, USA, 2005.
[32] K. Basterretxea, J. Tarela, and I. D. Campo. Approximation of sigmoid function and the derivative for hardware implementation of arti_cial neurons. IEE Proceedings - Circuits, Devices and Systems, 151(1):18.24, February 2004.
[33] F. Piazza, A. Uncini, and M. Zenobi. Neural networks with digital lut activation functions. IEE Proceedings - Circuits, Devices and Systems, 151(1):18.24, February 2004.
[34] S. Vassiliadis, M. Zhang, and J. Delgado-Frias. Elementary function generators for neuralnetwork emulators. IEEE Transactions on Neural Networks, 11(6):1438.1449, November 2000.
[35]. Leboeuf, Karl, et al. "High speed VLSI implementation of the hyperbolic tangent sigmoid function." 2008 Third International Conference on Convergence and Hybrid Information Technology. Vol. 1. IEEE, 2008.
[36]. Leboeuf, Karl, et al. "High speed VLSI implementation of the hyperbolic tangent sigmoid function." 2008 Third International Conference on Convergence and Hybrid Information Technology. Vol. 1. IEEE, 2008.
[37]. R. Muscedere, V. Dimitrov, G. Jullien, and W. Miller. Efficient techniques for binary-to multi digit multi-dimensional logarithmic number system conversion using range addressable look-up tables. IEEE Transactions on Computers, 54(3):257.271, March 2005.
[38] S. Lin and D. J. C. Jr., Error Control Coding, 2nd ed. Upper Saddle River, NJ, USA: Pearson Prentice Hall, 2004.
[39] https://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf
[40]. Viterbi, Andrew J., and Jim K. Omura. Principles of digital communication and coding. Courier Corporation, 2013.
[41] R. Gray and A. Wyner, "Source coding for a simple network," Bell Systems Technical Journal, vol. 53, no. 9, pp. 1681-1721, 1974

Appendix A

Basic measures of information proposed by

Shannon

In Appendix A, the primary measures of information proposed by Shannon are presented. In Appendix A, the logarithm is considered as base two otherwise specified [41].

Definition 1: The entropy of a random variable X with discrete alphabet χ and probability distribution $p(x)=\operatorname{Pr}(X=x)$ is given by

$$
H(X)=-\sum_{x \in \chi} p(x) \log p(x)
$$

Definition 2: Let X, Y be two discrete random variables with joint probability distribution $p(x, y)$, then the joint entropy of X given Y is given by

$$
H(X, Y)=-\sum_{x \in \chi} \sum_{y \in Y} p(x, y) \log p(x, y)
$$

Definition 3: Let X, Y be two discrete random variables with joint probability distribution $p(x, y)$, then the conditional entropy of X given Y is given by

$$
H(X \mid Y)=-\sum_{x \in \chi} \sum_{y \in Y} p(x, y) \log p(x \mid y)
$$

Definition 4: The mutual information between random variables X and Y defined over alphabet χ and Υ, respectively, is defined by

$$
I(X ; Y)=-\sum_{x \in X} \sum_{y \in Y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)}
$$

The concept can be expended to random process.

Definition 5: The entropy rate of the random process $\left\{X_{i}\right\}_{i=1}^{\infty}$ is given by

$$
H(X)=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

The entropy rate may not exist for all random processes, but for a stationary source $\left\{X_{i}\right\}_{i=1}^{\infty}$, its entropy rate $H(X)$ and is equal to $\mathrm{H}\left(X_{n} \mid X_{n-1}, X_{n-2}, \ldots, X_{1}\right)$

Definition 6: A $\left(2^{n R_{1}}, 2^{n R_{2}}, n\right)$ distributed source code for the joint source (X, Y) consists of two encoder maps,

$$
\begin{aligned}
& f_{1}: \chi^{n} \rightarrow\left\{1,2, \ldots, 2^{n R_{1}}\right\} \\
& f_{2}: \mathcal{Y}^{n} \rightarrow\left\{1,2, \ldots, 2^{n R_{2}}\right\}
\end{aligned}
$$

And a decoder map

$$
g:\left\{1,2, \ldots, 2^{n R_{1}}\right\} \times\left\{1,2, \ldots, 2^{n R_{2}}\right\} \rightarrow \chi^{n} \times \mathcal{Y}^{n}
$$

Where (R_{1}, R_{2}) is called the rate pair of the code.

Definition 7: The probability of error for a distributed source code is defined as

$$
P_{e}^{(n)}=P\left(g\left(f_{1}\left(X^{n}\right), f_{2}\left(Y^{n}\right)\right) \neq\left(X^{n}, Y^{n}\right)\right)
$$

Definition 8: A rate pair $\left(R_{1}, R_{2}\right)$ is said to be achievable for a source pair $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{\infty}$ if there exists a sequence of $\left(2^{n R_{1}}, 2^{n R_{2}}, n\right)$ distributed source code with $P_{e}^{(n)} \rightarrow 0$. The achievable region is closer to the set of achievable rates.

Source coding of Gray Wyner network

The problem of source coding subject to fidelity criterion for a simple network connecting a single source with two receivers via a common channel and two private channels. The region of available rates is formulated as an information-theoretic minimization. Let consider $\left\{X_{k}, Y_{k}\right\}_{k=1}^{\infty}$ be a sequence of independent drawing of a pair of random variables $(X, Y), X \in x$, $Y \epsilon x \mathcal{Y} . x$ and \mathcal{Y} are finite sets and $\operatorname{Pr}\{X=x, Y=y\}=Q(x, y), x \in x, y \in x \mathcal{Y}$. The marginal distributions are $Q_{X}(x)=\sum_{y \in x} Q(x, y)$, and $Q_{Y}(y)=\sum_{x \in x} Q(x, y)$. When the random variables are clear from the context, we write $Q_{X}(x)$ as $Q(x)$, etc. Define for $m=1,2, \ldots, m-$ 1, the set $I_{m=}\{0,1,2, \ldots, m-1\}$

An encoder (n, M_{0}, M_{1}, M_{2}) with parameters is mapping

$$
f_{E}: x^{n} \times y^{n} \rightarrow I_{M_{0}} \times I_{M_{1}} \times I_{M_{2}}
$$

Given an encoder, the decoder is a pair of mappings

$$
\begin{aligned}
& f_{D}^{(X)}: I_{M_{0}} \times I_{M_{1}} \rightarrow x^{n} \\
& f_{D}^{(Y)}: I_{M_{0}} \times I_{M_{2}} \rightarrow y^{n}
\end{aligned}
$$

An encoder with parameters (n, M_{0}, M_{1}, M_{2}) is applied as follows. Let $f_{E}(X, Y)=\left(S_{0}, S_{1}, S_{2}\right)$ where $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ and $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$. Then let $\hat{X}=f_{D}^{(X)}\left(S_{0}, S_{1}\right)$ and $\hat{Y}=$
$f_{D}^{(Y)}\left(S_{0}, S_{2}\right)$. The resulting error rate is $\Delta=\max \left(\Delta_{x}, \Delta_{y}\right)$ where $\Delta_{x}=E \frac{1}{n} \sum_{k=1}^{n} \mathrm{~d}_{H}\left(X_{K}, \hat{X}_{K}\right)$ and $\Delta_{y}=E \frac{1}{n} \sum_{k=1}^{n} \mathrm{~d}_{H}\left(Y_{K}, \hat{Y}_{K}\right) . \mathrm{D}_{H}(\ldots)$ is defined as follows.

$$
\mathrm{D}_{H}(u, \hat{u})= \begin{cases}0 & u=\hat{u} \\ 1 & u \neq \hat{u}\end{cases}
$$

The Hamming distance $D_{H}(u, v)$ between the n-vectors u and v is the number of positions in which u and v differ. Thus, $\Delta_{x}=E\left(\frac{1}{n}\right) D_{H}(X, \hat{X})$ and $\Delta_{y}=E\left(\frac{1}{n}\right) D_{H}(Y, \hat{Y})$. The communication system of the correspondence defined encoder and decoder is shown in Figure (B.1).

Figure (B.1). Source coding for a simple Gray Wyner network [40].

The capacity of the channels must be at least $c_{i}=(1 / n) \log _{2} M_{i}(i=0,1,2)$. The achievable rate region is \mathcal{R} in which a triple of $\left(R_{0}, R_{1}, R_{2}\right)$ exit. $\left(R_{0}, R_{1}, R_{2}\right)$ is achievable if, for arbitrary $\epsilon>0$, there exists a code with parameters $\left(n, M_{0}, M_{1}, M_{2}\right)$ with $M_{i} \leq 2^{n\left(R_{i}+\epsilon\right)}, i=0,1,2$, and error rate $\Delta<\epsilon$.

The property of $\left(R_{0}, R_{1}, R_{2}\right) \in \mathcal{R} \rightarrow\left(R_{0}+\epsilon_{0}, R_{1}+\epsilon_{1}, R_{2}+\epsilon_{2}\right) \in \mathcal{R}$ causes by the fact that \mathcal{R} is a closed subset of Euclidean three-space. Therefore, the lower boundary of the \mathcal{R} region is defined as follow;

$$
\overline{\mathcal{R}} \triangleq\left\{\left(R_{0}, R_{1}, R_{2}\right) \in \mathcal{R}:\left(\hat{R}_{0}, \hat{R}_{1}, \hat{R}_{2}\right) \in \mathcal{R}, \hat{R}_{i} \leq R_{i}(i=0,1,2) \rightarrow \hat{R}_{i}=R_{i}(i=0,1,2)\right\}
$$

Because of the convexity of \mathcal{R}, we can define $T\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)=\min _{\left(R_{0}, R_{1}, R_{2}\right) \in \mathcal{R}}\left(R_{0} \alpha_{0}+R_{1} \alpha_{1}+\right.$ $R_{2} \alpha_{2}$). Indeed, the lower boundary $\overline{\mathcal{R}}$ is the upper envelope of the family of planes $T\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)=\sum_{0}^{2} \alpha_{i} R_{i} . T\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)$ as the minimum cost of transmitting, using a code with rate-triple (R_{0}, R_{1}, R_{2}) over the network of Figure (B.1), when the cost of transmitting a bit per second over the common channel is α_{0} and the costs of transmitting a bit per second over the private channels to receivers 1 and 2 are α_{1} and α_{2}, respectively. Now, since information sent over the common channel can also alternatively be sent over both private channels, it is never necessary to consider the case where the sum of the costs of a bit per second on the private channels $\alpha_{1}+\alpha_{2}<\alpha_{0}$ the cost of a bit per second on the common channel. Similarly, we need never consider the cases where $\alpha_{1}>\alpha_{0}$, or $\alpha_{2}>\alpha_{0}$, since information transmitted over a private channel can alternatively be sent over the common channel. Since we can normalize α_{0} as unity, the following theorem should be plausible. Thus, for $R=\left(R_{0}, R_{1}, R_{2}\right)$ satisfying $R_{i} \geq 0$ and $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ arbitrary, let the cost defined by

$$
\begin{gathered}
\mathrm{c}(\alpha, \mathrm{R})=\mathrm{R}_{0}+\mathrm{R}_{1} \alpha_{1}+\mathrm{R}_{2} \alpha_{2} \\
T(\alpha)=\min _{R \in \mathcal{R}}(\alpha, R) .
\end{gathered}
$$

The following theorem[], give the lower bound to the region \mathcal{R}.

Theorem: If $\left(R_{0}, R_{1}, R_{2}\right) \in \mathcal{R}$ then, the lower bound to the region \mathcal{R} is as follow
a) $R_{0}+R_{1}+R_{2} \geq H(X, Y)$
b) $R_{0}+R_{1} \geq H(X)$
c) $R_{0}+R_{2} \geq H(Y)$

Appendix B

Values from Annex B and C of the DVB-S2

Standard

According to the standard, even though the parity check matrices, H, chosen by the standard are sparse, their corresponding generator matrices are not. Thus, the DVB-S2 standard adopts a special structure of the H matrix in order to reduce the memory requirement and the complexity of the encoder. In this Appendix, the values from Annex B and C of the DVB-S2 standard [27] are reproduced.

The standard introduces a periodicity of $M=360$ to the submatrix A in order to further reduce storage requirements. The periodicity condition divides the A matrix into groups of $M=360$ columns. For each group, the locations of the non-zero elements of the first column are given in the following. Let the set of non-zero locations on first, or leftmost, column of a group be $c_{0}, c_{1}, c_{2}, \ldots, c_{d b-1}$ where $d b$ is the number of non-zero elements in that first column. For each of the , $M-1=359$, other columns, the locations of the non-zero elements of the $i t h$ column of the group are given by $\left(c_{0}+(i-1) p\right) \bmod (N-K),\left(c_{1}+(i-1) p\right) \bmod (N-K), \ldots$, $\left(c_{l}+(i-1) p\right) \bmod (N-K)$. Where $N-K$ is the number of parity-check bits and $p=\frac{N-K}{M}$ code dependent constant.

The values for the normal frames are shown first, followed by the values for short frames.

Table B.1: $\mathrm{N}=64800$, Code Rate $=1 / 4$

23606360981140288591814818510622654042014	360463291411836
208792380247088	73043978233721
164192492816609172487693249974258716858	169052996212980
34921210423702420692	111712370922460
187440094187041447414004115191310628826	34541993744500
38669223633025531105	14035473168815
222544056422645225326134917639998238928937	150574548224461
156081685431009	3051836877879
803740401135501952641902287821330432796	75831336424332
24679271404598010021	448270564682
4054044498139112243532701184053992925521	120833137821670
1249798513922334823	1159180312221
1523345333504144979457104215019416189223121	17028387159350
15860883210308	173432453029574
104684429636111480375813225413817688332892	461283103932818
402584653811940	203733696718345
67052163428150437578956547209702891430117	466852062232806
257364173411392220025739272102782834192	
37992109156998382442130449435739	
8515119113642309502594312673167263426131828	
3340874739225	
1897917058431304246479344030194542951147929	
151742433319354	
1669483812964246516322242634494051829212437	
273163546641992	
15642587146489267232339672578974315637420	
448233542313541	
4285832008412823877326570270227260469741469	
208872742638553	
22152242618297	
19347997827802	
34991635433561	
297823087529523	
92784851214349	
38061416543878	
85483317234410	
225352881123950	
20439402724186	
38618818730947	
355384388021459	
70914561615063	
5505931521908	

Table B.2: $\mathrm{N}=64800$, Code Rate $=1 / 3$

3490320927320931052256111609316454552050637399	29094535719224
1851821120	95622443628637
11636145942215814763153336838222223785614985	40177232613504
310411870432910	68342158342516
17449166535639166241286712449102411165025622	406514281025709
343721987826894	315573213838142
29235197803605620129200295457815735554212377943	186244186739296
1387314980	375601429516245
9912714335911120431736037253255881182729152	68212167931570
219362412540870	253392508322081
407013603539556123661994629072163653549522686	804769735268
11106875634863	98841707319995
19165157021353640238446540034405903754017162	26848352458390
17122057714138	186581613414807
3133819342930139375321113163340928670122826118	12201329445035
2923635787	25236121638986
11504305061955851002418824738303973377596996215	42994247828681
339737451	28321493234249
3468923126757110581212727518230641126514867	41072938232124
30451282892966	22157262414468
1166015334168671516038343377842653913917293	
262294260413486	
31497136514828745326350413462864323421835416255	
1105524279	
1568712467139065215413282375520800644779702803	
3326239843	
5363224693809128457366963447123619240424229	
41754129718563	
3673390701448030279374837580295193051939831	
202521813220010	
3438672522752612950687543020315663906918985	
155414002016715	
17213733239953174303213429162104901297128581	
29331648935383	
736702242349878367671187121675103251154825978	
43124085	
19251060228585121701515634404835113273202085800	
1536721764	
16279378323479221250341927406414881834629227	
26127254937048	
39948282292489938788270817936	
17408142743899343682614810578	

```
    38774159682845925353412239751
    414042724927425
    41229608243114
    13957497940654
    3093343834992
    34082617228760
    4 2 2 1 0 3 4 1 4 1 4 1 0 2 1
    147051778310134
    417553988422773
    14615155931642
    291113706139860
    957933552633
    129512113739608
    382442736129417
    29391017236479
Table B.3: N = 64800, Code Rate = 2/5
\begin{tabular}{|c|c|c|}
\hline 3141318834288849472305014484148094968455 & 2579631795 & 2822931684 \\
\hline 336591666619008 & 1215212184 & 30160 \\
\hline 131721993913354137196132200863404013442 & 3508831226 & 152938483 \\
\hline 27958168132961916553 & 3826333386 & 28002 \\
\hline 14993207514962115781120492171048523062 & 24892 & 1488013334 \\
\hline 30936178922420424885 & 2311437995 & 12584 \\
\hline 324901808618007495772853207319038715212486 & 29796 & 286462558 \\
\hline 134832480821759 & 3433610551 & 19687 \\
\hline 3232110839156203352123030106462623619744 & 36245 & 62594499 \\
\hline 2171336784801612869 & 35407175 & 26336 \\
\hline 3559711129179482616014729319432041610000 & 7203 & 1195228386 \\
\hline 7882313802785833356 & 1465438201 & 8405 \\
\hline 141251213136199405835992365943369815475 & 22605 & 10609961 \\
\hline 156618498127257067 & 284046595 & 7582 \\
\hline 17406837235437288811843006825802110565507 & 1018 & 1042313191 \\
\hline 263133220537232 & 199323524 & 26818 \\
\hline 15254536517308225193500971852401677823131 & 29305 & 1592236654 \\
\hline 240922058733385 & 3174920247 & 21450 \\
\hline 274551760245902176722266273573040087325596 & 8128 & 104921532 \\
\hline 3060337033596 & 1802636357 & 1205 \\
\hline 688287310997247382077010067133792740925463 & 26735 & 3055136482 \\
\hline 2673699831378 & 754329767 & 22153 \\
\hline 15181136453450133933840352271556223615 & 13588 & 515611330 \\
\hline 38342121391947115483 & 1333325965 & 34243 \\
\hline 13350670723709372042577821082751114588 & 8463 & 2861635369 \\
\hline 10010218542837533591 & 1450436796 & 13322 \\
\hline 12514469537190213791872358027182252929936 & 19710 & 89621485 \\
\hline 358602833810835 & 452825299 & 21186 \\
\hline & 7318 & \\
\hline
\end{tabular}
```

342832561033026310172125921652180737578 1175167102193930841
272923373068362647627539357841824516394 17939230941921617432
116556183387082840835157170891399836029
1505216617563836464
15693289232624594321167525720264055838 3185126898809037037
244182758379593556237771177841138211156 3785570732168534515
10977136333096975161194318199523113825 19589236611115035602
191243077466703734416510263172351822957
634834069884520175
34985144412566841163019210493730824551
24727201042485012114
38187285271310813985142521477308078613
26241333683591332477
590334390246412655623007273053824726219122
328062155418685
172872729219033

35091255502354117445
$14798 \quad 35561$
782421512483313311593
30848536219895
$17291 \quad 339177863$
289323024933651
27073130622006328331
21031620610702
$712932062 \quad 1319521107$
19612
951221936 38833
3584933754 23450
1870528656
18111
21859
436431137
4804
55852037
4830
3067216927
14800

2274927456 32187

Table B.4: $\mathrm{N}=64800$, Code Rate $=1 / 2$
5493181439227561269091021925348597
55726346352530281303033238303651
562473123583260361729957507929169
575811261541865311551154471368516264
58126101134728768279231742937112997
59167891601821449616521202158503186
60310162144917618621312166833418212
612283614213113275896718117279308
6220912494129966236349013155875444
632220739831690428534214152752425912
64256874501221931466514798161585491
65452017094233974264223701694121526
6610490618232370959730841259542762
6722120228652987015147136681495519235
6866891840818346991825746544320645
692998212529138584746303701002324828
70126228032298881306324033219517863
7165942964231451148319509933531552
72135864541663320354245986245265
731952929518011308013364803215323
7411981151079602146291291137025741

403005130426
41133515424
42686517742
433177912489
443212021001
45145086996
4697925024
47455421896
48798921777
49497220661
5066122730
51127424418
5229194595
531926720113

75927629656454330699206462192128050 761597525634552031119137152194919605 771868846083175530165131031070629224 7821514231171224526035316562563130699 799674249663128529908170422458831857
802185627777299192700014897114097122
8129773233102634877286222054522092
82156055651218643967144192275715896
83301451759101392922326086105565098
841881516575293624457267386030505
853032622298275622013126390624724791
86928292462124612400153113230918608
8720314602526689163022296324419613
886237119432285115642238571511220947
89264032516819038183848882127197093
01456724965
13908100
210279240
324102764
4123834173
51386115918
6213271046
7528814579
8281588069
91658311098
101668128363
111398024725
123216917989
13109072767
14215573818
152667612422
1676768754
171490520232
181571924646
19319428589
201997827197
212706015071
22607126649
231039311176
24959713370
25708117677
26143319513
27269259014
28192028900
291815230647
30208031737

311180425221
323168317783
33296949345
341228026611
35652626122
362616511241
37766626962
38162908480
391177410120

Table B.5: $\mathrm{N}=64800$, Code Rate $=3 / 5$

```
22422102821162619997111612922312299562517064 8270179 256393 3725
25087162181701582820041256564186116292259917305 2659719968
225156463
11049228532570614388550019245 873221771355511346
1 7 2 6 5 3 0 6 9
16581222251256319717235771155525496 6853254035218
1592521766
165291448776431071517442111195679141552421321000
111615620
5340 86361669314345635651694822018910661501325361
14243
1850622236209128952542115691612621595500600413059
6802
8433469455241421636851972125420 993723813904725651
16826
21500248146344173827064139294004165521281887205286
2206
2251724291906529212161118737507566123006 2312820543
19777
17704636209001493192471234011008129664471273116445
7 9 1
66351455618865224212212412697980325485774418254
113139004
199822396318912720612500 4382200676177 21007119523547
24837
75611158146462053436471772811676118431293744028261
22944
9306240091001211081374624325806019826 84288362898
5019
7575745525244473614400229815543800624203130531120
5128
348292701305915825745323747365624585165421750722462
14670
2757438084
28}6770954
29428517542
301356822599
3117864617
322323811648
33196272030
341360113458
351374017328
362501213944
37225136687
38493412587
39211975133
40227056938
41753424633
4224400 12797
4 3 2 1 9 1 1 2 5 7 1 2
44120391140
4 5 2 4 3 0 6 1 0 2 1
4 6 1 4 0 1 2 2 0 7 4 7
4 7 1 1 2 6 5 1 5 2 1 9
48467015531
49941714359
5024156504
512496424690
52144438816
5369261291
54620920806
55139154079
5624410 13196
57135056117
```

15627152904198227485842133952391816985149293726 2535024157
248961636516423134611661581072474136042590487169604 20365
37291724518448986220831253262051724618132825099 141838804
164551764615376181942552817776066218551437212517
448817490
14008135233752087984764084129362553622309165826402 24360
2511923586128476110443225368607975225446150531856 4040
377211601347454511717059381025611972242101783322047 16108
130759648245461315023867730919798298816858482523950 15125
205263553115252336624521762619265201721806024593 132551552
188392113220119152141470570961017456631865119700 1252414033
41272971174991628722368214637943188805567804723363 6797
106512447114325408172584949704410787972291020474 4318
213741323122985505638212371814178997819030235948895 25358
619922056774913310399923697164452263652252243724153
9442
797812177289320778317586451186324623103112576717057
3691
20473112949914228152574843936995431248402190816088 18244
820857551905985412492464541123410492164061083111436 9649
16264112752495323471266719190725771742481929382522
11749
362759691386215382317663532855177202472742857315036
01853918661612067124913
1105023002622455820591
293681076163124023702
31229978286483141357
41504813362652007114616
5184442464066170143688
620775191756719837946
71897010971681519512136
853291998269775822808

5898698220
5915706044
602578017387

```
911296 1865570 35642925
10150462065971 34347769
11730022140
122202914477
1311129742
141325413813
151923413273
16607921122
17227825828
18197754247
19166019413
204403 3649
211337125851
222277021784
231075714131
241607121617
```

Table B.6: $\mathrm{N}=64800$, Code Rate $=2 / 3$

```
0 104911604350612826 8065 8226276724018673927910579 4 9161 15642
20928 5 1071410153
1 17819 83136433622451205824128121718799401344713825 6 115859078
18483 753599418
2 1795760248681 1862812794591514576109701206420437 890249515
44557151 9 120616354
319777618399721453681821774911341555643791743415477 10149941102
18532 11937520796
4465119689160865916707143356143 3058146181789420684 12159646027
5306 13147896452
59778255212096123691519816890485131091700187251997 14800218591
15882 151474214089
6486611113743115375591743315227141451483 388717431 16253 3045
12430
720647143111173441808110552512141 1576118661 18441
105698192
837911475915264199181013290621001012786106759682
192465454
919525948577771999983789209316320232669016518716
7 3 5 3
1045886709202021090591543171107313576164333683508
21171
111407240331995912608631194941416082491022321504
123954322
1213800 14161
1329489647
```

51071410153
6115859078
753599418
890249515
9120616354
10149941102 11937520796 12159646027 13147896452 14800218591 151474214089 162533045 17127419286 18147772044 19139209900 204527374
21182069921
2261315414
23100779726
24120455479
2543227990
26156165550
271556110661
28207187387
29251818804

141469316027
3089842600
152050611082
1611439020
17135014014
1815482190
191221621556
20209519897
2141897958
221594010048
2351512614
2485018450
251759516784
2659138495
271639410423
2874096981
29667815939
302034412987
31251014588
32179186655
33670319451
344964217
3572905766
36105218925
372037911905
3840905838
391908217040
402023312352
411936519546
42624919030
431103719193

31651617909
321114898
33205593704
3475101569
351600011692
36914710303
3716650191
381557718685
391716720917
4042563391
412009217219
4292185056
43184298472
441209320753
451634512748
461602311095
47504817595
48189954817
49164833536
50143916148
5136613039
521901018121
53896811793
541342718003
5553033083
5653116668
5747716722
5856957960
59358914630

441976011772
45196447428
46160763521
471177921062
48130629682
4989345217
50110873319
51188924356
5278943898
5359634360
54734611726
5551825609
56241217295
57984520494
5866871864
59205645216

01822617207
193808266
270733065
31825213437

Table B.7: $\mathrm{N}=64800$, Code Rate $=3 / 4$
$06385790114611133891120032525243250427228217374 \quad 24265514957$
$111359269835713824127727244675215310852200111417 \quad 2555656332$
27862797763211361212197144491513713860170863991344426430312631
$315601180469751329236463812877273065795143277866 \quad 271165312236$
$4762611407145999689162821131080992831230152414870 \quad 28160257632$
$5161056991587694461251514006303541114181139257358 \quad 29465514128$
$640598836340578537992153365970103681027896754651 \quad 30958413123$
$74441396391532109126837459120301222162915212406 \quad 31139879597$
860078411577134975431420287591866235139083563
932326625479554697812071731233997250493212652
321540912110
1088201008811090706965851313410158718348874559238
11190310818119215755811046106151154514784796115619
33875415490

1236558736491715874512921341594414768715026921469
34741615325
35290915549
3629958257
1383163820505892367578067957421615589132442622
3794064791
141446348521573330411119312860136738152655115108 8758

38111114854
3928128521
15314911981
40847614717
16134166906
41782015360
171309813352
4211797939
18200914460
4323578678
1972074314
4477036216
2033123945
2144186248
034777067
22266913975
2375719023
24141722967
2572717138
26613513670
1393113845
2767512899

27749014559
2886572466
29859912834
3034703152
31139174365
32602413730
331097314182
34246413167
317548187
477851400
592135891
624947703
725767902
8482115682
91042611935
101810904
11113329264
12113123570

35528115049
13149162650
1476797842
3611031849

3720581069	1785094648
3896546095	18122048917
39143117667	19574912443
40156178146	20126134431
41458811218	2113444014
42136606243	22848813850
4385787874	23173014896
44117412686	24149427126
010221264	25149838863
1126049965	2665788564
282172707	274947396
3315611793	2829712805
43541514	29138786692
5697814058	301185711186
6792216079	311439511493
71508712138	321614512251
850536470	33134627428
91268714932	341452613119
10154581763	35253511243
1181211721	36646512690
1212431549	3768729334
1341297091	381537114023
1414268415	39810110187
1597837604	40119634848
16629511329	41151256119
17140912061	42805114465
1880659087	43111395167
1929188438	44288314521
20129314115	
21392213851	
2238514000	
2358651768	

Table B.8: $\mathrm{N}=64800$, Code Rate $=4 / 5$

0149112125575636012559810885054081002612828
152374901067749983869373430923509770310305
287425553282070851211610485564779529722157
3269943048350712284132504731101055177516
41206713511199212191112675161537616642462363
5682871072127372457431104010756407310113422
61125912169526146610816940374428151150611573
74549115071118127411751520778541280340476484
88430411594404134455226279151240285797052
369705447
432175638
58972669
6561812472
714571280
888683883
988661224
1083715972
112664405
1237063244

101704893667758639817979548234785088838713
111171643449087112642274883291471193060545455
127323397010329217082623854208712899949711700
1344181467249058418171145353311217119625251
141541452579763457953677253788298263075997
1511484273940231210765165512572662881509852
16607017614627653479133730118661813123068249
171244154898748783776602102113412936671211977
18101554210
19101010483
20890010250
211024312278
2270704397
23122713887
24119806836
2595144356
26713710281
27118812526
28196911477
29304410921
3022368724
3191046340
3273428582
331167510405
34646712775
35318612198
0962111445
174865611
243194879
32196344
475276650
5106932440
667552706
751445998
8110438033
948464435
1041579228
11122706562
12119547592
1374202592
1488109636
156895430
169201304
17125311934
1895596016
193127589

1360395844
1472003283
15150211282
16123182202
174523965
1895877011
1925522051
201204510306
21110705104
2266276906
2398892121
248299701
2522011819
26668912925
2721398757
28120045948
2987043191
30817110933
3162977116
326167146
3351429761
34103778138
3576165811
072859863
1776410867
2123439019
344148331
43464642
569602039
67863021
77102086
874235601
981204885
101238511990
11973910034
1242410162
1313477597
141450112
1579658478
1689457397
1765908316
1868389011
1961749410
20255113
2161975835
22129023844

2044394197
2343773505
2140029555
22122327779
2314948782
2454788672
2544532132
24107493969
2543683479
2663165342
2724553493
28121577405
29659811495
30118054455
3196252090
3247312321
3335782608
3485041849
3540271151
056474935
142191870
2109688054

Table B.9: $\mathrm{N}=64800$, Code Rate $=5 / 6$

043624168909415632163112256029126405859349696723	1470678878
12479178689783011433993136397295772885484603110217	1590273415
21017590099889309149857267409288745671277721898716	1616903866
39052479539243370100581128999610165936042974345138	1728548469
42379783448352327984380432983537167307015287311	186206630
5343578713483693187665851034071445870208440522780	193635453
6391731113476130410331593951991611199169983169960	2041257008
76883323717171075278919764474538881000941764614	2116126702
1567	2290699226
8105872195168929685420258028836496111602310244449	2357674060
9378685932074332150571450384054446572309498921512	2437439237
10854818481037245857313653663791766946224565606	2570185572
9975	2688924536
11820410593793536363882394596885612395728992679978	278536064
127795741633954268677352641775681062372525319115	2880695893
13715124824260500310105741992036691879820928263	2920512885
3755	0106913153
14360057045272009718677119958902544676811036520	136024055
1563047621	23281717
1664989209	322199299
1772936786	419397898
1859501708	5617206
1985211793	685441374

2061747854
2197731190
22951710268
2321819349
2419495560
251556555
2686003827
2750721057
2879283542
2932263762
070452420
196452641
227742452
353312031
494007503
518502338
6104569774
716929276
8100374038
93964338
1026405087
118583473
1255825683
139523916
1441071559
1545063491
1681914182
17101926157
1856683305
1934491540
2047662697
2140696675
2211171016
2356193085
2484838400
258255394
2663385042
2761745119
2872031989
2917815174
014643559
133764214
2723867
3105958831
412216513
553004652

7106763240
866729489
931707457
1078685731
11612110732
1248439132
135809591
1462679290
1530092268
161952419
1780161557
1815169195
1980629064
2020958968
217537326
2262913833
2326147844
242303646
252075611
264687362
2786849940
2848302065
2970381363
017697837
138011689
2100702359
336679918
419146920
542445669
6102457821
776483944
833105488
963469666
1070886122
1112917827
12105928945
1336097120
1491689112
1562038052
1633302895
17426410563
18105566496
1988077645
2019994530
2192026818
2234031734

614299749	2321069023
778785131	2468813883
8443510284	2538952171
963315507	2640626424
1066624941	2737559536
11961410238	
1284008025	
1391565630	

Table B.10: $\mathrm{N}=64800$, Code Rate $=8 / 9$

062352848	1319693869	658214932	1957361399	1226445073
3222	1435712420	763564756	09702572	1342125088
158003492	4632981	83930418	120626599	1434633889
5348	1632154163	92113094	245974870	155306478
2275792790	179733117	1010074928	312286913	1643206121
15	1838026198	1135841235	441591037	1739611125
369614516	1937943948	1269822869	529162362	1856991195
4739	031966126	1316121013	63951226	196511792
411723237	15731909	149534964	769114548	039342778
6264	28504034	1545554410	846182241	132386587
519272425	356221601	1649254842	941204280	211116596
3683	46005524	175778600	105825474	314576226
637146309	552515783	1865092417	1121545558	414463885
2495	61722032	1912604903	1237935471	539074043
730706342	718752475	033693031	1357071595	668392873
7154	84971291	135573224	141403325	717335615
82428613	925663430	23028583	1566015183	852024269
3761	101249740	33258440	1663694569	930244722
92906264	1129441948	462266655	174846896	1054456372
5927	1265282899	548951094	1870926184	113701828
1017161950	1322433616	614816847	1967647127	1246951600
4273	14863733	744331932	063581951	136802074
1146136179	1513744702	821071649	131176960	1418016690
3491	1646982285	921192065	227107062	1526691377
1248653286	1747603917	1040036388	311333604	1624631681
6005	1818594058	1167203622	43694657	1759725171
1313435923	1961413527	1236944521	51355110	1857284284
3529	021485066	1311647050	633296736	1916961459
1445894035	11306145	1419653613	725053407	
2132	22319871	15433166	824624806	
1515793920	334631061	1629701796	94216214	
673	455546647	1746523218	1053485619	
1616441191	55837339	1817624777	1166276243	
5998				

1714822381
4620
1867916014
6596
1927385918
3786
051566166
115044356
21301904
360273187
46718759
562402870
623431311
710395465
866172513
915885222
106561535
1147652054
1259666892

Table B.11: $\mathrm{N}=64800$, Code Rate $=9 / 10$

056112563	1732162178	1662962583	151263293	
2900	04165884	171457903	1659494665	143267649
152203143	128963744	08554475	1745486380	156236593
4813	28742801	140973970	031714690	166462948
2248183481	334235579	244334361	152042114	1742131442
362654064	434043552	35198541	263845565	057791596
4265	528765515	411464426	357221757	124031237
410552914	65161719	532022902	428056264	222171514
5638	77653631	62724525	512022616	35609716
517342182	850591441	710834124	610183244	451553858
3315	95629598	823266003	740185289	515171312
633425678	105405473	956055990	822573067	625543158
2246	1147245210	1043761579	924833073	752802643
72185552	121551832	114407984	1011965329	849901353
3385	1316892229	1213326163	116493918	956481170
82615236	144491164	1353593975	1237914581	1011524366
5334	1523083088	1419071854	1350283803	1135615368
915461755	161122669	1536015748	1431193506	1235811411
3846	1722685758	1660563266	154779431	1356474661
1041545561	058782609	1733224085	1638885510	1415425401
3142	17823359	017683244	1743874084	1550782687
1143822957	212314231	12149144	058361692	163161755
5400	342252052	215894291	151261078	1733921991

1212095329	442863517	351541252	257216165
3179	555313184	418555939	335402499
1314213528	619354560	548202706	422256348
6063	71174131	614753360	510441484
1414801072	83115956	74266693	663234042
5398	931291088	841562018	713135603
1538431777	1052384440	92103752	813033496
4369	1157224280	1037103853	935163639
1613342145	123540375	115123931	1051612293
4163	131912782	1261463323	1146823845
1723685055	149064432	1319395002	123045643
260	1532251111	1451401437	1328182616
061185405			
129944370			
234051669			
346405550			
413543921			
51171713			
654252866			
76047683			
856162582			
921081179			
10934921			
1159532261			
1214304699			
135905480			
1442891846			
1553746208			

Table B.12: $\mathrm{N}=16200$, Code Rate $=1 / 5$
629596263047695483949361660144112035567634712557 106914988385937343071349476871031359648069829611090 107743613520811177767635498746658372391226526744292 1186937085981871849081065068053334262710461928511120 7844307910773
3385108545747
13601201012202
618942412343
9840127264977

Table B.13: $\mathrm{N}=16200$, Code Rate $=1 / 3$
41689094156321631122560291264058593496967236912

8978301143399312639629577288548560311021822263575 33831005911141000810147938442904345139353619652291 27973693761570777431941871662153840514045825420 6110855115157404487949465383183134419569104724306 150556827778
717268306623
728139413505
102708669914
362275639388
993050584554
484496092707
688332371714
4768387810017
1012733348267

Table B.14: $\mathrm{N}=16200$, Code Rate $=2 / 5$
565041438750583672080716351767134469227386658
5696168532074157019502356082605857691517708016
3992771219072588970779218021866613788418861931
410837817577681093228226539658674428882777662254
424788843678821966032458644774227788964058963
9693500252022271811933019285140403048248063134
165281711435
336665433745
928685094645
739757908972
659744221799
927640413847
868373784946
534819939186
672490155646
450244398474
510773429442
138789102660

Table B.15: $\mathrm{N}=16200$, Code Rate $=4 / 9$
$20712238663544061106250455158 \quad 1189354996$
212543574848222348308963285876
2292657012693693243831903507
232802452035775324109146674449
123028764

245140200312634742649711856202

040466934
1285566
26694212
334391158
438504422
55924290
614674049
778202242
846063080
946337877
1038846868

Table B.16: $\mathrm{N}=16200$, Code Rate $=3 / 5$

27655713642635961374481121825443394	517336028	
28404310771	637861936	
49512112208723124629283985739265	74292956	
56015993261521047305777309642826238	856923417	
493911196463529863204016	92664878	
41672063475731575664395660455634284	1049133247	
244134126334	1147633937	
42012428447459172173629974283807	1235902903	
151347326195267030815139373619995889	1325664215	
436238064534540963845809	1452084707	
5516162229063285125757973816817875	1539403388	
231135431205	1651094556	
42442184541517055642488623332871848	1749084177	
112135956022214228304069565412952951		
3919135688417863964738		
021612653		
113801461		
225023707		
339711057		
459856062		

Table B.17: $\mathrm{N}=16200$, Code Rate $=2 / 3$
$020841613154812861460319642972481 \quad 125831180$

3369345146202622

11221516344828801407184737993529373	344181005
97143583108	452125117
22593399929650864399638331075287	521552922
1643125235033423529	63472696
441982147	72264296
518804836	81560487
63864491072431542	939261640
830111436	101492928
921672512	112364563
1046061003	12635688
112835705	132311684
1234262365	1411293894
1338482474	
1413601743	
01632536	

Table B.18: $\mathrm{N}=16200$, Code Rate $=11 / 15$

3319847842071481100926161924	810151945
34375546831801	91948412
426812135	109952238
531074027	1141411907
626373373	024803079
738303449	130211088
841292060	27131379
941842742	39973903
1039461070	423233361
112239984	51110986
014583031	62532142
130031328	716902405
211371716	812981881
31323725	9615174
41817638	1016483112
517743447	1114152808
636321257	
75423694	

Table B.19: $\mathrm{N}=16200$, Code Rate $=7 / 9$

58961565	79512068	921161855
62493184	831083542	07221584
72123210	93071421	127671881
87271339	022721197	227011610
93428612	118003280	332831732
026631947	23312308	41681099
12302695	34652552	53074243
220252794	410382479	63460945
33039283	51383343	720491746
48622889	694236	85661427
53762110	72619121	935451168
620342286	81497277	

Table B.20: $\mathrm{N}=16200$, Code Rate $=37 / 49$

3240949914819085597161270333	64972228
2508226417022805	723261579
424471926	02482256
54141224	111171261
62114842	212571658
7212573	314781225
023832112	42511980
122862348	523202675
2545819	64351278
31264143	7228503
417012258	018852369
5964166	157483
61142413	28381050
7224381	312311990
012451581	4173868
1775169	52392951
216961104	6163645
319142831	726441704
45321450	

Table B.21: $\mathrm{N}=16200$, Code Rate $=8 / 9$

01558712805	41496502	35441190
114508731337	010061701	414721246
2174111291184	1115597	0508630
32948061566	26571403	14211704
4482605923	31453624	2284898
09261578	44291495	3392577
17771374	0809385	4155556
2608151	1367151	06311000
31195210	21323202	17321368
41484692	3960318	21328329
0427488	414511039	31515506
18281124	010981722	411041172
28741366	110151428	
31500835	212611564	

Appendix C

Table (D.1). RALUT approximation of $\tanh ^{-1} x$.

Input range which uniformly distributed across the output	Input range	Output
$y_{1} \leq y=\tanh x \leq y_{2}$	$\tanh ^{-1} y_{1} \leq x<\tanh ^{-1} y_{2}$	$y=\frac{y_{1}+y_{2}}{2}$
$y=\tanh x=0$	$x=0$	$y=0$
$0 \leq y=\tanh x \leq 0.05$	$\tanh ^{-1} 0 \leq x<\tanh ^{-1} 0.05$	$y=0.025$
$0.05 \leq y=\tanh x \leq 0.1$	$\tanh ^{-1} 0.05 \leq x<\tanh ^{-1} 0.1$	$y=0.075$
$0.01 \leq y=\tanh x \leq 0.15$	$\tanh ^{-1} 0.1 \leq x<\tanh ^{-1} 0.15$	$y=0.125$
$0.15 \leq y=\tanh x \leq 0.2$	$\tanh ^{-1} 0.15 \leq x<\tanh ^{-1} 0.2$	$y=0.175$
$0.2 \leq y=\tanh x \leq 0.25$	$\tanh ^{-1} 0.2 \leq x<\tanh ^{-1} 0.25$	$y=0.225$
$0.25 \leq y=\tanh x \leq 0.3$	$\tanh ^{-1} 0.25 \leq x<\tanh ^{-1} 0.3$	$y=0.275$
$0.3 \leq y=\tanh x \leq 0.35$	$\tanh ^{-1} 0.3 \leq x<\tanh ^{-1} 0.35$	$y=0.325$
$0.35 \leq y=\tanh x \leq 0.4$	$\tanh ^{-1} 0.35 \leq x<\tanh ^{-1} 0.4$	$y=0.375$
$0.4 \leq y=\tanh x \leq 0.45$	$\tanh ^{-1} 0.4 \leq x<\tanh ^{-1} 0.45$	$y=0.425$
$0.45 \leq y=\tanh x \leq 0.5$	$\tanh ^{-1} 0.45 \leq x<\tanh ^{-1} 0.5$	$y=0.475$
$0.5 \leq y=\tanh x \leq 0.55$	$\tanh ^{-1} 0.5 \leq x<\tanh ^{-1} 0.55$	$y=0.525$
$0.55 \leq y=\tanh x \leq 0.6$	$\tanh ^{-1} 0.55 \leq x<\tanh ^{-1} 0.6$	$y=0.575$
$0.6 \leq y=\tanh x \leq 0.65$	$\tanh ^{-1} 0.6 \leq x<\tanh ^{-1} 0.65$	$y=0.625$
$0.65 \leq y=\tanh x \leq 0.7$	$\tanh ^{-1} 0.65 \leq x<\tanh ^{-1} 0.7$	$y=0.675$
$0.7 \leq y=\tanh x \leq 0.75$	$\tanh ^{-1} 0.7 \leq x<\tanh ^{-1} 0.75$	$y=0.725$
$0.75 \leq y=\tanh x \leq 0.8$	$\tanh ^{-1} 0.75 \leq x<\tanh ^{-1} 0.8$	$y=0.775$
$0.8 \leq y=\tanh x \leq 0.85$	$\tanh ^{-1} 0.8 \leq x<\tanh ^{-1} 0.85$	$y=0.825$
$0.85 \leq y=\tanh x \leq 0.9$	$\tanh ^{-1} 0.85 \leq x<\tanh ^{-1} 0.9$	$y=0.875$
$0.9 \leq y=\tanh x \leq 0.95$	$\tanh ^{-1} 0.9 \leq x<\tanh ^{-1} 0.95$	$y=0.925$
$0.95 \leq y=\tanh x \leq 0.99$	$\tanh ^{-1} 0.95 \leq x<\tanh ^{-1} 0.99$	$y=0.975$
$0.99 \leq y=\tanh x$	$\operatorname{lan}^{2} x \leq \tanh ^{-1} 0.99$	$y=1$

