

An Efficient Hardware Implementation of LDPC Decoder

Monazzahalsadat Yasoubi

A Thesis

In the Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Electrical and Computer Engineering) at

Concordia University

Montreal, Quebec, Canada

February 2020

© Monazzahalsadat Yasoubi, 2020

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Monazzahalsadat Yasoubi

Entitled: An Efficient Hardware Implementation of LDPS Decoder

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science

Complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

 __ Chair

 Dr. M. Medraj (MIAE)

 __ Examiner, External

Dr. M. Medraj (MIAE) To the Program

 __ Examiner

 Dr. Y. R. Shayan

 __ Supervisor

Dr. M. R. Soleymani

__ Co-Supervisor

Dr.

Approved by: ___

 Dr. Yousef R. Shayan, Chair

 Department of Electrical and Computer Engineering

_______13/02/2020____ ___________________________________

 Dr. Amir Asif, Dean

Gina Cody School of Engineering and

Computer Science

iii

Abstract

An Efficient Hardware Implementation of LDPC Decoder

Monazzahalsadat Yasoubi

Reliable communication over noisy channel is an old but still challenging issues for

communication engineers. Low density parity check codes (LDPC) are linear block codes

proposed by Robert G. Gallager in 1960. LDPC codes have lesser complexity compared to

Turbo-codes. In most recent wireless communication standard, LDPC is used as one of the

most popular forward error correction (FEC) codes due to their excellent error-correcting

capability. In this thesis we focus on hardware implementation of the LDPC used in Digital

Video Broadcasting - Satellite - Second Generation (DVB-S2) standard ratified in 2005. In

architecture design of LDPC decoder, because of the structure of DVB-S2, a memory mapping

scheme is used that allows 360 functional units implement simultaneously. The functional units

are optimized to reduce hardware resource utilization on an FPGA. A novel design of Range

addressable look up table (RALUT) for hyperbolic tangent function is proposed that simplifies

the LDPC decoding algorithm while the performance remains the same. Commonly, RALUTs

are uniformly distributed on input, however, in our proposed method, instead of representing

the LUT input uniformly, we use a non-uniform scale assigning more values to those near zero.

Zynq XC7Z030, a family of FPGA’s, is used for Evaluation of the complexity of the proposed

design. Synthesizes result show the speed increase due to use of LUT method, however, LUT

demand more memory. Thus, we decrease the usage of resource by applying RALUT method.

Keyword: LDPC code, DVBS2 standard, Hardware implementation, Vivado HLS.

iv

Acknowledgments

I would like to thank my advisors Prof. M. R Soleymani. I value our discussions on different

research challenges as well as their insightful guidance. He has been extremely supportive

mentors, both professionally and personally.

I could not have come this far without the love of my family. I am always grateful to my

parents, my sisters, and my wonderful husband, Ali Mazaheri, for their endless love and

support.

v

Table of Contents

List of Figures .. vi

List of Tables .. vii

List of Symbols .. ix

List of Acronyms .. x

Chapter 1 .. 1

Introduction .. 1

1.1. Motivation ... 1

1.2. Related work .. 2

1.2.A. LDPC code and data compression .. 4

1.2.B. Reason for using high level synthesizing .. 6

1.2.C. Caching method .. 8

1.3. Thesis contributions ... 10

1.4. Thesis outline ... 10

Chapter 2 .. 12

Background information ... 12

Summary ... 12

2.1. Low Density Parity Check (LDPC) code .. 12

vi

2.2. LDPC code Representation ... 15

2.2. A. Bipartite graph representation .. 15

2.2.B. Matrix representation ... 16

2.2. C. Degree distribution polynomial representation of LDPC 𝐻 matrix 18

2.3. Decoding Algorithm of LDPC code .. 20

2.3. A. Bit-Flip decoding algorithm (Hard Decoding) .. 20

2.3. B. Belief propagation decoding algorithm based on Log-likelihood 21

2.4. Slepian Wolf coding theorem .. 24

2.5. Wyner Ziv Coding ... 26

2.6. What is an FPGA? .. 26

2.7. Xilinx FPGA Architecture ... 28

2.8. Three main methods for designing Lookup table .. 34

2.8. A . Piecewise Linear (PWL) Approximation .. 35

2.8.B. Lookup Table (LUT) Approximation .. 35

2.8.c. Hybrid Methods ... 35

Chapter 3 .. 37

Decoder Hardware Implementation and Slepian-Wolf compression using DVB-s2

LDPC code .. 37

Summary ... 37

3.1. LDPC Codes in DVB-S2 Standard .. 38

3.2. The architecture of the hardware implementation of DVB-S2 LDPC ... 42

3.3. Hyperbolic Tangent Function Implementation ... 44

3.4 Implementation of the Hyperbolic Tangent Function by Range Addressable Lookup Table 47

vii

3.4 A. Applying Range addressable Lookup Table Approximation to update variable nodes in the

LDPC decoder .. 49

3.4. B. Applying the Proposed Range addressable Lookup Table Approximation to update

variable node of eLDPC decoder .. 50

3.5. Data compression with side information .. 55

3.6. Well-designed Caching by DVBS2 Standard .. 57

Chapter 4 .. 61

Conclusion and future work ... 61

4.1. Conclusion summary ... 61

4.2. Future direction .. 62

References ... 63

Appendix A ... 68

Appendix B ... 74

Appendix C ... 97

viii

List of Figures

Chapter explanation Page

number

1 Figure (1.1). Block Diagram of a general data transmission or storage

System [40].

4

2 Figure (2.1). Graphical representation of LDPC code 19

2 Figure (2.2). Distributed source coding problem with two sources. 26

2 Figure (2.3). Basic FPGA Architecture [39]. 28

2 Figure (2.4): Illustration of a functional LUT as a collection of

memory cells.

30

2 Figure (2.5): Structure of a Flip-Flop. 31

2 Figure (2.6): Contemporary FPGA Architecture [39]. 32

2 Figure (2.7): A DSP48 Block structure [39]. 33

2 Figure (2.8). Structure of an Addressable Shift Register. 35

3 Figure (3.1). Inputs and Outputs of the LDPC decoder. 42

3 Figure (3.2). Finite state machine of LDPC decoder. 44

3 Figure (3.3). The Hyperbolic Tangent Function S shape curve. 47

3 Figure (3.4) Lookup Table Approximation of 𝑡𝑎𝑛ℎ(𝑥) which is

represented by Eight Points.

48

3 Figure (3.5). Piecewise Linear Approximation of 𝑡𝑎𝑛ℎ(𝑥) by five

Segments.

49

ix

3 Figure (3.6). Comparison between LUT and RALUT Addressing

methods.

50

3 Figure (3.7). RALUT Approximation of 𝑡𝑎𝑛ℎ(𝑥) with eight Points. 51

3 Figure (3.8). BER of LDPC code (Rate= 1/2) by Applying normal

RALUT approximation to update variable node of LDPC decoder.

52

3 Figure (3.9). BER of LDPC code (Rate= 1/2) by applying proposed

RALUT approximation to update variable node of LDPC decoder.

54

3 Figure (3.10). Maximum number of iteration for 30 packets for

different value of SNR.

55

3 Figure (3.11). Minimum number of iteration for 30 packets for

different value of SNR.

55

3 Figure (3.12). Achievable two-dimensional rate region. 57

3 Fig (3.13). Tradeoff between packet correlation and delivery rate. 60

A Figure (A.1). Source coding for simple Gray Wyner network [40]. 72

x

List of Tables

Chapter explanation Page number

3 Table (3.1). The values of p values in DVB-S2 LDPC code.

41

3 Table (3.2). Description of the Inputs and Outputs of the

Decoder.

43

3 Table (3.3). Hardware implementation results for code rate half,

𝑁 = 64800, compared by [30].

56

C Table (C.1). RALUT approximation of tanh−1 𝑥.

96

xi

List of Symbols

𝑢: Information sequence

𝑣: Codeword

𝑇: Wave form Duration

𝑟: Received sequence

�̂� : Estimated sequence

H(x): Entropy of the source x

C: Capacities of the channel

X: Source

X̂: Reproduction of source X

E{d(X̂, X̂)}: Average distortion between source X and the reproduction X̂

Y : Side information at the decoder

H(X|Y): Entropy of the source x in presence of side information Y

𝐺: Generator matrix

𝐻: Parity check matrix

𝑛: The length of the codeword

𝑚: The number of the parity bits

𝑅: Rate of the code is

𝜆(𝑥): Distribution polynomial for variable nodes

 𝜌(𝑥): Distribution polynomial for check nodes

𝑑𝑣: Maximum degree of variable nodes

𝑑𝑐: Maximum degree of check nodes

xii

𝜆𝑖 : The fraction of all edges incident to variable nodes with degree 𝑖.

𝜌𝑖: The fraction of all edges incident to check nodes with degree 𝑗.

𝐿(𝑥): Likelihood ratio of a binary random variable 𝑥

𝐿(𝑥|𝑦): Conditional likelihood ratio of random variable 𝑥 given 𝑦

𝑚𝑣: The log likelihood of the message node 𝑣 conditioned on its observed value

 𝑚𝑣𝑐
𝑙 : Message passes from message node 𝑣 to the check node 𝑐 at round 𝑙.

 𝑚𝑐𝑣
𝑙 : Message passes from check node 𝑐 to message node at round 𝑙.

𝑉𝑐: The set of variable nodes incident to the check node 𝑐.

𝐶𝑣: The set of check nodes incident to the variable node 𝑣.

𝐴: Submatrix with dimensions (𝑁 − 𝐾) × 𝐾

𝑎𝑖𝑗: The elements in the A submatrix

𝑝𝐼: Parity bits

B: Staircase lower triangular matrix

xiii

List of Acronyms

AWGN: Additive White Gaussian Noise

CLB: Configurable logic block

DSP: Digital signal processing

DVB: Digital Video Broadcast

DVB-S2: Digital video Broadcast Second generation

FEC: Forward error correcting

FPGA: Field Programmable Gate Arrays

FF: Flip Flop

HDL: Hardware description language

IC: Integrated Circuit

IRA: Irregular repeat-accumulate codes

LDPC: Low Density Parity Check Code

LUT: Look-up Table

RTL: register-transfer level

1

Chapter 1

Introduction

1.1. Motivation

Reliable communication over a noisy channel is an old but still challenging issue for

communication engineers. Low-density parity-check codes (LDPC) are linear block codes

proposed by Robert G. Gallager in 1960. In most modern wireless communication standard,

LDPC is used as one of the most popular forward error correction (FEC) code due to its

excellent error-correcting capability. In this thesis, we focus on the hardware implementation

of the LDPC used in Digital Video Broadcasting - Satellite - Second Generation (DVB-S2)

standard ratified in 2005. The structure of the DVB-S2 standard allows a memory mapping

scheme in which 360 units implement simultaneously.

Hyperbolic tangent is used in the LDPC decoder algorithm, which is expensive to compute and

inexpensive for the cache. Therefore, optimizing hardware implementation of hyperbolic

tangent function used in the LDPC decoder algorithm Look Up Tables (LUTs) is an excellent

technique. Thus, a precomputing of a function throughout common input is evaluated to find a

2

proper LUT. Indeed, expensive runtime operations can be replaced with inexpensive table

lookups [31]. Three main methods for designing Lookup table are used to implement and

approximate the function in hardware are as follows:

 Lookup table (LUT) approximation [32],

 Piece-Wise Linear (PWL) approximation [33],

 Hybrid methods, which are essentially a combination of the former two [34].

Our approach is motivated by the fact that among the three aforementioned methods used for

approximation of hyperbolic tangent, i.e., LUT, PWL, and hybrid method, LUT is the fastest

approach but requires more resource that other two. Therefore, we have used RALUT to

compensate for this. A novel design of Range addressable look-up table (RALUT) for the

hyperbolic tangent function is proposed that simplifies the LDPC decoding algorithm while the

performance remains the same. Commonly, RALUTs are uniformly distributed on input;

however, in our proposed method, instead of representing the LUT input uniformly, we use a

non-uniform scale assigning more values to those near zero. Zynq XC7Z030, a family of

FPGA's, is used for Evaluation of the complexity of the proposed design.

1.2. Related work

The emergence of large scale and high-speed data networks for processing, storage, and

exchange of digital information in the military, government, and private spheres resulted in

demand for efficient and reliable data storage and transmission networks. It is necessary to

control the errors so that reliable transmission could be possible [40]. According to Shannon's

theorem, if the transmission rate is less than the channel capacity, there is always an error

correction code that can make the probability of error arbitrarily small. Besides, the application

3

of error-correcting codes for data compression is investigated by Shannon due to the duality

between source coding and channel coding. Indeed, a good channel code has the capability of

being a good source code as a result of duality. The area of channel coding has achieved a state

of the art where robust error-correcting codes have been designed, which can approach the

capacity of different communication channels. Figure (1.1) shows a block diagram of a generic

data transmission storage System. Each block is briefly described as follows [40];

Information source: It can be a person or a machine such as a computer. The output of the

source can be a sequence of discrete symbols or a continuous waveform [40].

Source encoder: The source output is transformed into a sequence of binary digits called the

information sequence 𝑢. It is important that the source output can be regenerated from the

information sequence without any ambiguity [40].

Channel encoder: Discrete encoded sequence, called codeword 𝑣, is generated from

information sequence. The goal of channel encoder is to overcome the noisy environment in

which the code-word requires to be stored or transmitted [40].

Modulator: Since discrete symbols are not suitable for transmission over channel or recording

on a storage device, modulator transforms each output symbol of channel encoder to a

waveform of duration which is suitable for transmission [40].

Channel: The waveform generated by a modulator enters the channels or storage device and

corrupts by a noisy environment.

Demodulator: Each received waveform of duration 𝑇 is processed and produces an output that

is discrete or continuous. The output of the demodulator is called received sequence 𝑟 [40].

Channel decoder: The received sequence 𝑟 is transformed into binary sequence �̂� called an

estimated sequence. The goal in channel decoder is to minimize the probability of decoding

4

error. The difference between 𝑢 and �̂� is considered as decoding error, which causes through

the noisy environment of data storage or transmission [40].

Source decoder: The estimate sequence is delivered to the destination [40].

Destination: In a well-designed system, the estimation is an exact reproduction of the source

output [40].

Figure (1.1). Block Diagram of a general data transmission or storage system.

1.2.A. LDPC code and data compression

LDPC is used as one of the error control techniques in different standards in digital

communication, Digital Video Broadcasting, and satellite communications. Good error

performance near Shannon capacity and also fast decoding are some advantages of LDPC

codes. LDPC code was firstly introduced by Gallager in his Ph.D. thesis in the early 1960s [1-

3]. The LDPC codes were rediscovered by MacKay and Neal [4] and Wiberg [5] independently

from each other for different purposes. In 1997, Luby, Mitzenmacher, Shokrollahi, Spielman,

5

and, Stemann, proposed Cascade constructions for the more straightforward encoding of LDPC

code [6-7]. Besides, for linear encoding, the lower triangular restriction on the shape of the

parity-check matrix was suggested by MacKay, Wilson, and Davey in 1998 [8].

The duality of channel coding and source coding motivates the application of powerful channel

codes in source coding applications, which is used to optimize the usage of limited storage

space to save time and help optimize resources in the caching method. Two different types of

source coding are lossless and lossy data compression [9]. Data compression by error-

correcting code is especially good when the data is transmitted over the noisy channel. Since

standard data compression techniques such as Huffman code are not designed for error

correction, therefore, it is reasonable that one uses error-correcting code for both data

compression and error correction purposes. Moreover, Data compression based on error-

correcting code design could be based on a syndrome based approach or parity-based approach.

Besides, according to the channel coding theory of Shannon, the source can be reconstructed

with small error probability if the rate of the data sequence is less than the capacity of the

transmission channel [12]. Consider the model with two independent channels operating in

parallel, and the reliable transmission is possible if the entropy of the source is less than the

sum of capacities of the two channels H(x) ≤ C1 + C2. However, if the source entropy is above

C1 + C2, the reliable transmission is not possible. If one of the channels has an uncoded version

of the source as side information at the decoder, known as systematic communication, there

are two approaches for error protection of noisy transmission. One is based on Slepian Wolf

[13], and the other is based on Wyner Ziv [14].

6

Wyner Ziv examines the question of how many bits are needed to encode source X under the

constraint that the average distortion between X and the reproduction X̂ satisfies E{d(X̂, X̂)} ≤

D. Slepian Wolf coding is actually a channel coding problem that considered the question of

how many bits per source character are required for the two correlated encoded message

sequences to be decoded accurately by the joint decoder [15]. In LDPC decoding of Slepian

Wolf, when we have side information at the decoder (Y), instead of transmitting the whole

length of the original message, only the syndrome or check nodes are transmitted (H(X|Y)).

The Slepian wolf decoding algorithm of LDPC code is almost the same as the channel decoding

algorithm of LDPC code with some differences, which is explained more in Chapter two.

1.2.B. Reason for using high level synthesizing

High-level synthesis (HLS) is a designing algorithm that describes the desired behavior of the

process results in hardware implementation. HLS is also referred to as C synthesis, electronic

system-level (ESL) synthesis, algorithmic synthesis, or behavioral synthesis [23]. Synthesis

begins with a high-level specification of the problem, where behavior is generally decoupled

from, for example, clock-level timing. Although earlier introduced HLS accepted considerable

variation for input specification languages, recent commercial applications and research

generally prefer to accept synthesizable subsets of ANSI C, C++, SystemC, and MATLAB

[24]. Generally, in HLS synthesis, first, the code is analyzed and architecturally constrained.

Then, it is scheduled to trans-compile into a register-transfer level (RTL) design in a hardware

description language (HDL). Finally, it is generally synthesized to the gate level by applying

the logic synthesis tool.

7

The RTL tool implementation or reliable logic synthesis tool allows designers to describe their

designs at a high level of abstraction. The general usage of abstraction is gate level, register-

transfer level (RTL), and algorithmic level.

By using the tool implementation of the RTL, the designers have better control over the

optimization of their design architecture. The module functionality and the interconnect

protocol are usually developed by hardware designers. Thus, the actual goal of using HLS is to

permit hardware designers to efficiently build and verify hardware where the tool does the RTL

implementation.

The HLS tools create cycle-by-cycle detail for hardware implementation automatically [25].

They transform untimed or partially timed functional code into fully timed RTL

implementations. Finally, at the end of the synthesis process, it is essential to verify the RTL

implementation. Then, to create a gate-level implementation, the RTL implementations are

used directly in a conventional logic synthesis flow.

Following is a list of compilers that are currently available in the market for high-level

synthesis.

 Xilinx Vivado HLS

 Xilinx System Generator for DSP

 Intel HLS Compiler

 LabVIEW FPGA

 Mathworks HDL Coder

 Cadence Stratus

 Mentor Graphics Catapult

8

 Synopsys Synphony C Compiler

 Panda Bamboo

 LegUp

We have chosen to Vivado HLS because of the following features:

 Vivado HLS provides an easier way to implement DSP algorithms

 Less code = fewer bugs.

 Code is more readable, wider audience

 Quality of Result is comparable with hand-coded logic

 Provides easy migration between different FPGA families

 Requires some knowledge of FPGA architecture

 Xilinx FPGAs are heavily used at DESY and on MicroTCA (MicroTCA is an open standard

embedded computing specification) AMC boards.

 The created IP integrates nicely with the rest of the IPs in the Xilinx ecosystem.

 Vivado HLS is significantly cheaper than other HLS software suites; therefore, it is very

likely that industrial partners will have access to it.

1.2.C. Caching method

 In Chapter three, an example of the application of the Slepian Wolf decoding algorithm of

LDPC code by DVBS2 standard in a caching scheme is presented [16]. Caching is a reliable

solution for communication during busy periods by taking advantage of memory across the

network, which leads to more smooth communication network systems [17-22]. The caching

method has two phases. The first phase is called the placement phase, where the data is stored

in the cache across the network. The main limitation of this phase is the size of the cache

9

memory. In the second phase, which is called the Delivery phase, the users' requests can be

partially served through caches near the users. Examples of application of the caching method

are streaming media and distributed database, which results in a decreasing delivery rate.

In media Streaming user requests time is most likely at night rather than early in the morning.

During congestion periods, the bandwidth-hungry features of media result in more congestion,

high latency, and a poor experience for users. Caching is an applicable solution during off-peak

hour time. Some examples of the distributed database are meteorological conditions

measurement information of the globe, information of traffic sensors spread across several

countries, information of the shopping history of the customers, information on the mobility

pattern of the mobile devices in cellular networks. Since the database is extensive, it might

need several different network calls to load the requested data of the memory before the

requested data can be transmitted to the users. These network calls cause latency or stalls the

process. In the modern database, it is handled by storing the most common queries in fast

memory. As an example of caching, consider that a user more probably demands the weather

measurement of his hometown rather than of a remote area. Therefore, the information of

weather measurement of the user hometown is cached in memory close to it. To the best of our

knowledge, little attention was given to the source coding problem in the presence of caching;

however, compressing information can highly ease the traffic. We proposed a general approach

to decreases the delivery rate by applying source coding using LDPC code to the correlated

binary source. In the delivery phase, we applied the DVBS2 standard which is adopted a several

standards due to its powerful features such as transmission rate close to the theoretical Shannon

limit [19]. The results show that there is a direct relation between correlated coefficient 𝛼 and

delivery rate.

10

1.3. Thesis contributions

In this thesis, a new hardware implementation of the LDPC code used in DVB-S2 is presented.

We have used a Range addressable LUT scheme to approximate the Hyperbolic Tangent

function. Our approach is motivated by the fact that among the three methods used for

approximation of hyperbolic tangent, i.e., LUT, PWL, and hybrid method, LUT is the fastest

approach but requires more resources than other two. Therefore, we have used RALUT in order

to compensate for this.

In addition, in Chapter three, an example of the application of the Slepian Wolf decoding

algorithm of LDPC code by DVBS2 standard in the caching method is presented [16]. The

results show that there is a direct relationship between the delivery rate and correlated

coefficient of the source and its side information available at the decoder. In the following, the

thesis contribution is listed:

 Hardware implementation of LDPC code.

 Range addressable LUT scheme is used to approximate hyperbolic tangent function.

 Example of application of Slepian Wolf decoding algorithm of LDPC code by

DVBS2 standard in caching method.

1.4. Thesis outline

Chapter two presents background information related to this thesis. First, Low-Density Parity

Check (LDPC) code is described. After that, different methods of LDPC code representation,

such as bipartite graph representation, matrix representation, and degree distribution

polynomial representation of the LDPC 𝐻 matrix are presented. Then, the Slepian Wolf coding

theorem and Wyner Ziv theorem coding are presented used in the Well-designed Caching

11

example of Chapter three. Finally, some background information for hardware implementation

of LDPC code is presented from Section 2.6 to the end of Chapter two, including FPGA, Xilinx

FPGA architecture, and three primary methods for designing Lookup table.

In Chapter three, reliable communication over the noisy channel is considered to be

implemented by the hardware of one standard of LDPC codes called DVB-S2 [16]. The design

and architecture of FPGA implementation of an LDPC decoder are presented. Besides, the

hardware implementation of the LDPC decoder is simplified using Range Addressable Look

Up Tables. In Section 3.4, Range addressable Lookup Table approximation is applied to update

variable nodes in the LDPC decoder. Because of undesired results, a new Range addressable

Lookup Table approximation is proposed in order to update variable nodes in the LDPC

decoder. Finally, in chapter three, data compression with side information at the decoder is

used as a caching solution in a Well-designed Caching example. Chapter four presents

conclusion and future direction for the thesis.

In appendix A, the basic measures of information theory proposed by Shannon are described

[41]. In appendix B, the values from Annex B and C of the DVB-S2 standard [27] are

reproduced. Appendix C shows the RALUT, which is used for calculation of tanh 𝑥 for

updating variable nodes messages of LDPC decoder [31-34].

12

Chapter 2

Background information

Summary

Chapter two presents background information related to this thesis. First, Low-Density Parity

Check (LDPC) code is described. After that, different methods of LDPC code representation,

such as bipartite graph representation, matrix representation, and degree distribution

polynomial representation of the LDPC 𝐻 matrix are presented. Then, the Slepian Wolf coding

theorem and Wyner Ziv theorem coding are presented that are used in the Well-designed

Caching example of Chapter three. Finally, some background information for hardware

implementation of LDPC code is presented from Section 2.6 to the end of Chapter two,

including FPGA, Xilinx FPGA architecture, and three main methods for designing Lookup

table.

2.1. Low Density Parity Check (LDPC) code

In recent years, because of their near Shannon capacity performance and fast decoding, LDPC

code has been approved by many standards as forward error correcting (FEC) technique, these

include Digital Video Broadcasting for Satellite Second Generation and Long-Term Evolution

13

(LTE). Low Density Parity Check (LDPC) codes were first introduced by Gallager in his Ph.D.

thesis in the early 1960s [1-3]. Gallegar's introduction of iterative decoding algorithms (or

message-passing decoder) was the essential novelty of his discovery. His outstanding

innovation was ignored for almost 20 years due to the complexity of encoding. Finally, LDPC

codes were rediscovered by MacKay and Neal [4] and Wiberg [5] independently from each

other for different purposes. The result of their research showed that long LDPC codes with

iterative decoding have an error performance, which is only a fraction of decibel away from

the Shannon limit, which made it practical in many communication and digital storage systems

with high reliability. Besides, the low density of LDPC codes is a result of their sparse parity

check matrix. The characteristic, as mentioned earlier, means that the parity check matrix

contains only a few 1's in comparison to the number of 0's.

In data communication systems, the message bits are encoded at the encoder by adding

redundancy to the message. However, in practical implementation, the encoding of LDPC

codes is ambiguous; i.e., it has high complexity. Thus, several researchers proposed different

solutions for reducing the LDPC encoding complexity. In 1997, Luby, Mitzenmacher,

Shokrollahi, Spielman, and Stemann, proposed Cascade constructions [6-7] instead of a

bipartite graph, the drawback of the case-cade method is a reduction in the performance

compared to the standard LDPC codes. The lower triangular restriction on the shape of the

parity-check matrix was suggested by MacKay, Wilson, and Davey in 1998, which guarantees

linear encoding complexity [8].

After channel encoding, the codeword is transmitted to the receiver. The destination receives a

noisy version of the codeword. The decoder corrects the errors resulted from noise in order to

retrieve the original message. According to Shannon's theorem, if the transmission rate is less

14

than the capacity, there is always an error correction code that can make the probability of error

arbitrarily small. In addition, the application of error-correcting codes in data compression is

investigated by Shannon due to duality between source coding and channel coding [8]. Indeed,

a channel code that provides high rate has the capability to provide high rate in source coding

application as a result of this duality. The area of channel coding has achieved a state of

maturity where powerful error-correcting codes have been designed, which can approach the

capacity of different communication channels. For example, the rate of an appropriately

designed low density parity check code reaches close to the capacity of additive white Gaussian

noise (AWGN) channel. Thus, the duality of channel coding and source coding motivates the

application of powerful channel coding schemes in source coding applications, which is used

to optimize the usage of limited storage space to optimize resources. Two different types of

source coding are lossless and lossy data compression. In Lossless data compression, the data

after decompression is exactly the same as the original data. In fact, redundant data is removed

in compression and added during decompression. Run-length, Huffman, Lampel Ziv are some

examples of lossless data compression [9]. Lossless methods are used when we can't afford to

lose any data, such as medical documents and computer programs and legal documents. Lossy

data compression methods are used for compressing images and video files since our eyes

cannot distinguish subtle changes; therefore, lossy data is acceptable. These methods are

cheaper, which needs less time and space as well. MP3, for compressing audio, MPEG (video

compression), and JPEG (pictures and graphics compression) are several methods using lossy

data compression.

Standard data compression techniques such as Huffman code are not designed for error

correction. When the data is transmitted over the noisy channel, it is reasonable to apply a code

15

which is useful for both compression and error correction purpose. Therefore, the error-

correcting code can be used for both data compression and error correction purposes. Data

compression based on error correcting code design could be based on a syndrome based

approach or parity-based approach. For the syndrome based approach, the bins are indexed by

syndrome bits. In parity based approach the containers are indexed by parity bits. The parity

based approach can protect compressed data against noise while the syndrome based approach

just only does data compression. However, the parity based approach has more calculation

complexity than a syndrome based approach.

Considering that LDPC codes have an error performance only a fraction of decibel away from

the Shannon limit, the features of LDPC codes, including representation, encoding, and

decoding is explained in the following.

2.2. LDPC code Representation

There are different methods to represent LDPC codes; one is matrix representation, which is similar to

other linear block codes. Furthermore, there are a polynomial representation and graphical

representation through a bipartite graph. These representation helps to design and to analyze the code

[10 -11].

2.2. A. Bipartite graph representation

The graph representation of LDPC code was initially introduced by Tanner in [21]. The Tanner

graph or bipartite graph is used to explain the iterative decoding algorithm for LDPC code. The

bipartite graph has two sets of nodes, including a set of variable nodes and set of check nodes.

When two nodes are connected, there is an edge between these two nodes, which is called an

incident between two nodes. Besides, the number of edges that are incident to a node is the

16

degree of the node. The tanner graph can be derived from the parity check matrix. The graph

can be induced by using the following rules:

1- The 𝑛 columns of parity check matrix corresponding to the number of bits in a

codeword represents by 𝑣1, 𝑣2, … , 𝑣𝑛. Besides, the 𝑚 rows of parity check matrix

correspond to parity check constraint represents by 𝑐1, 𝑐2, … , 𝑐𝑚. It means that in that

the degree of a variable node (or check node) is equal to the corresponding column (or

row) weight.

2- There exist an edge or incident between one variable node and one check node if and

only if the corresponding entry in the parity check matrix is equal to one. It means that

at most, there is one edge between any two nodes.

2.2.B. Matrix representation

Linear channel codes are usually expressed by generator matrix 𝐺 and the parity check matrix

𝐻. The multiplication of these two matrixes, must be equal to zero.

𝐺.𝐻𝑇 = 0 Eq (2.1)

However, the LDPC code is just defined by parity check matrix 𝐻. The parity check matrix of

LDPC codes is sparse. However, the generator matrix can have a lot of ones as its entries,

which causes a high complexity of computation. Consider the dimension of the parity check

matrix 𝐻 is × 𝑛 . Where 𝑛 is the length of the codeword, and 𝑚 is the number of the parity bits.

If the parity check matrix has 𝑛 columns and 𝑚 rows, the rate of the code is

𝑅 =
𝑛 − 𝑚

𝑛

Eq(2.2)

In this thesis, the field is a Galois field. Thus, the elements of the LDPC parity check matrix

are either 0’s or 1's. If the received message is the null space of the parity check matrix of a

17

linear code �⃗�𝐻𝑇 = 0, then it is an actual codeword of the aforementioned linear code. Where

�⃗� = [𝑣1, 𝑣2, … , 𝑣𝑛] is an-tuplee codeword and 𝑣𝑖 ∈ {0, 1}. In every Galleger LDPC code, the

parity check matrix 𝐻 has the following structure:

1- Each row consists of 𝜌 ones.

2- Each column consists of 𝜆 ones. Properties 1 and 2 determine the degree distribution of

LDPC codes.

3- The number of ones in common between any two columns is no more than one, which

guarantees the cycle free of the parity check matrix.

4- The length of LDPC codes is much larger than 𝜌 and 𝜆, ensuring the sparsity of the

parity check matrix.

As an example, the Tanner graph of the following 𝐻 matrix is shown in Figure (2.1) in which

the variable nodes and the check nodes are shown by blue circles and green circles,

respectively.

𝐻 =

[

1 0 1 0 1 0 1 0 0 0
0 1 0 1 0 1 0 1 0 0
1 1 0
0 0 1
0 0 0

0 0 0
1 1 1
0 0 0

0 0 1 1
0 0 0 0
1 1 1 1]

Eq(2.3)

The Tanner graph of the above example is a Galleger LDPC code. The number of ones in each

row and column are four and two, respectively. So, the code is a regular LDPC code since the

number of ones in each row and column is the same as other rows and columns. The code rate

is half. Besides, in Figure (2.1), the four blue edges indicate a cycle. Indeed, the cycle is four,

which is the shortest cycle. And so, the grith of the graph is four.

18

Figure (2.1). Graphical representation of LDPC code.

2.2. C. Degree distribution polynomial representation of LDPC 𝐻 matrix

Based on a pair degree distribution polynomial and a given code length, we can calculate some

parameters of the given LDPC code. Indeed, a pair degree distribution polynomial describes

an ensemble of LDPC code but not a specific LDPC code. However, the parity check matrix

and the tanner graph define a specific LDPC code. The degree distribution polynomial initially

was introduced by Richardson to represent an ensemble of LDPC codes [31]. The degree

distribution polynomial is used to specify the degree distribution of the variable nodes and

check nodes in the Tanner bipartite graph or the parity check matrix. Equation (2.4) and

Equation (2.5) represent the formulation of degree distribution polynomial for variable nodes

and for check nodes, respectively.

𝜆(𝑥) = ∑𝜆𝑖. 𝑥
𝑖−1

𝑑𝑣

𝑖=2

Eq(2.4)

𝜌(𝑥) = ∑𝜌𝑖 . 𝑥
𝑖−1

𝑑𝑐

𝑖=2

Eq(2.5)

19

Where 𝑑𝑣 and 𝑑𝑐 are the maximum degree of variable nodes and check nodes, respectively. 𝜆𝑖

is the fraction of all edges incident to variable nodes with a degree 𝑖. Also, 𝜌𝑖 is the fraction of

all edges incident to check nodes with degree 𝑗.

There are two types of LDPC codes: one is regular, and the other is called irregular. The

performance of irregular LDPC codes is usually better than that of a regular LDPC code. In the

regular LDPC code, the degree of each row is constant and equal to 𝜌. Also, the degree of each

variable node or column is constant and equal to 𝜆. The total number of ones in the parity check

matrix is equal to . 𝜆 = 𝑚. 𝜌 → 𝑚 = 𝑛. 𝜆/𝜌. Thus, by substituting 𝑚 = 𝑛. 𝜆/𝜌 in 𝑅 = 1 −

𝑚/𝑛, the code rate can be computed as 𝑅 = 1 − 𝜆/𝜌, which is called the design rate. However,

the actual rate is usually lower than the design rate due to the dependencies among rows of the

parity check matrix. The ensemble of a regular LDPC code is (𝑛, 𝜆, 𝜌), where 𝑛 is referred to

the length of the LDPC code and 𝜆, 𝜌 is the column and row weight of the parity check matrix,

respectively. In irregular LDPC code, the degree of check nodes and variable nodes are not

constant. An ensemble of irregular LDPC code is defined by the degree distribution of its

variable nodes {𝜆1, 𝜆2, … , 𝜆𝑑𝑣
} and the degree distribution of its check nodes

{𝜌1, 𝜌2, … , 𝜌𝑑𝑐
}, where 𝜆𝑖 is the fraction of edges incident on variable nodes of degree 𝑖 and 𝜌𝑗

denotes the fraction of edges incident on check nodes of degree 𝑗. Consider 𝐸 as the number of

one’s in the parity check matrix of LDPC code or the number of edges in Tanner graph, Similar

to regular LDPC code we have

𝑛 = 𝐸 ∑𝑖
𝜆𝑖

𝑖
= 𝐸 ∫ 𝜆(𝑥)𝑑𝑥

1

0𝑖

Eq(2.6)

20

𝑚 = 𝐸 ∑𝑖
𝜌𝑖

𝑖
= 𝐸 ∫ 𝜌(𝑥)𝑑𝑥

1

0𝑖

Eq(2.7)

Thus, the design rate of an irregular LDPC code is shown below

𝑅 = 1 −
𝑚

𝑛
 = 1-

∫ 𝜆(𝑥)𝑑𝑥
1

0

∫ 𝜌(𝑥)𝑑𝑥
1

0

Eq(2.8)

2.3. Decoding Algorithm of LDPC code

The decoding of LDPC codes is based on message-passing iterative decoding algorithms [3].

In message-passing iterative algorithms, messages are exchanged between the variable nodes

and check nodes. There are two ways of decoding LDPC codes. The first one is hard decision

decoding, such as Majority-logic decoding and bit-flipping (BF) decoding. The second one is

soft decision decoding, such as weighted bit-flipping decoding and a posteriori probability

(APP) decoding algorithms. In the following, the Bit-Flip decoding algorithm of the LDPC

code and Belief propagation decoding algorithm based on Log-likelihood is covered in detail.

2.3. A. Bit-Flip decoding algorithm (Hard Decoding)

This method was devised by Gallager in the early 1960s [1-2]. The steps of the Bit-Flip

algorithms are as follow:

Step 1: Compute syndrome by 𝑟. 𝐻𝑇 = 𝑠 in which is the received bits. If all parity checksums

are zero, stop the decoding algorithm.

Step 2: Find the number of failed parity check equations for each node. Determine the number

of failed check node for each message node by 𝑓𝑖 , 𝑖 = 1, 2, … , 𝑛 − 1

Step 3: Identify the set 𝑆 of the variable node for which 𝑓𝑖 is the largest.

Step 4: Flip bits in set 𝑆.

21

Step 5: Repeat steps 1 to 4 until the parity checksums are zero (decoding success) or a

maximum number of iterations reaches (decoding failure).

If the syndrome or the value of the check nodes are all zero, it means that there is no error, but

if detectable error pattern occurs there will be parity check failure in the syndrome

(𝑠1, 𝑠2, … , 𝑠𝑗), and some of the syndrome bits will be equal to 1. In the above-mentioned

decoding algorithm, the decoder continues computing the parity checksums, and the process is

repeated until all the parity checksums become equal to zero or a present maximum number of

iterations is reached (decoding failure).

2.3. B. Belief propagation decoding algorithm based on Log-likelihood

The algorithm originally presents in Gallager's work, which is an important subclass of

message passing algorithms. In the Belief propagation algorithm, the messages passed through

the edges are probabilities or beliefs. One important feature related to the belief propagation

decoding algorithm of LDPC code is its running time. The algorithm moves from the variable

nodes to the check nodes and vice versa. The sparse parity check matrix leading to a sparse

graph resulted in a small number of movements. Furthermore, the algorithm itself is completely

independent of the channel, but the messages passed through the algorithm are entirely

dependent on the channel. Indeed, the messages sent from the variable nodes to a check node

𝑐 is the probability which that node received from check nodes in the previous iteration except

the one it wants to send the message to. The same is true for message passing from check node

𝑐 to the variable node 𝑣. Likelihood ratio of a binary random variable 𝑥 is represented in

Equation (2.9). Also, the conditional likelihood ratio of random variable 𝑥 given 𝑦 is expressed

22

in Equation (2.10). Consider that 𝑥 is an equiprobable random variable then L(𝑥|𝑦) = L(𝑦|𝑥)

By Bayes' rule.

𝐿(𝑥) =
p(𝑥 = 0)

p(𝑥 = 1)

Eq(2.9)

𝐿(𝑥|𝑦) =
p(𝑥 = 0|𝑦)

p(𝑥 = 1|𝑦)

Eq(2.10)

The inputs of the LDPC decoder (𝑙𝑖) are a log-likelihood ratio (LLR) values. Let the transmitted

codeword be v = 𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑁−1 and the soft-decision received sequence be 𝑦, then 𝜆𝑖 for

each code bit is given by

𝑙𝑖 = log (
𝑃𝑐(𝑚𝑣 = 0|𝑚𝑦)

𝑃𝑐(𝑚𝑣 = 1|𝑚𝑦)
)

Eq(2.11)

Where 𝑚𝑣 is the log-likelihood of the message node 𝑣 conditioned on its observed value 𝑚𝑦,

which is independent of check node 𝑐. 𝑃𝑐 is the cross over the probability of the BSC. It is

obvious that if the observed node's value is zero (𝑚𝑦 = 0), the message sends to all adjacent

check node ln 𝑃𝑐 / ln(1 − 𝑃𝑐) value. While, if the node value is one (𝑚𝑦 = 1), the message

sends to all adjacent check node, the negative value of when the node's value is 0

(ln(1 − 𝑃𝑐) / ln 𝑃𝑐). Indeed, the LLR value indicates that the given received value is more

probable to be zero or one. In the simulation of LDPC code, initially, a sequence of random

bits of length 𝐾 is generated. The 𝐾 bits are considered as the message bits. Then, parity bits

of length 𝑁 − 𝐾 are produced by LDPC encoder based on the message bits. The codeword of

length 𝑁 is transmitted. Then, the output of the channel is the input to the decoder. According

to [3] the belief propagation decoding algorithm of LDPC code has the following steps as

follow:

23

Step1: Find the value of syndromes. If the value of syndrome bits are all zero, it means that

the received bits are an actual codeword, and the channel does not cause any effect on the

transmitted codeword during the transmitting process. If the syndrome or parity check bits are

not zero, then go to step two.

Step 2:

Round 0: Find LLR.

Round 1: Update Variable nodes

In round one of step 2, find the messages which send from parity check node 𝑐 to the adjacent

message node v. The update equation of variable nodes is given in Equation (2.12).

𝑚𝑐𝑣
𝑙 =

1 + ∏ tanh(𝑚𝑣𝑐
𝑙−1/2)�́�∈𝑉𝑐\{𝑣}

1 − ∏ tanh(𝑚𝑣𝑐
𝑙−1/2)�́�∈𝑉𝑐\{𝑣}

Eq(2.12)

Where 𝑚𝑣𝑐
𝑙 is a message which passed from message node 𝑣 to the check node 𝑐 at round 𝑙.

Similarly, 𝑚𝑐𝑣
𝑙 is the message which passed from check node 𝑐 to the message node at round

𝑙. Where 𝑉𝑐 is the set of variable nodes incident to the check node 𝑐.

Round 2: Update Check nodes

 In round two of step 2, find the messages which send from each message node 𝑣 to the all

adjacent parity check nodes 𝑐. The Equation (2.13) shows update check nodes equation.

𝑚𝑣𝑐 = {

𝑚𝑣 𝑖𝑓 𝑙 = 1

𝑚𝑣 + ∑ 𝑚�́�𝑣
𝑙−1

�́�∈𝐶𝑣\{𝑐}
𝑖𝑓 𝑙 ≥ 1

Eq(2.13)

Where 𝐶𝑣 is the set of check nodes incident to the variable node 𝑣.

24

Step 3: Hard decision making

If the value of the 𝑚𝑣𝑐 is positive, the value of variable node 𝑣 is considered as zero. Similarly,

if the value of the 𝑚𝑣𝑐 is negative the value of variable node 𝑣 is considered as one.

Step 4: In this step, the value of check nodes are calculated by (𝑐0, … , 𝑐𝑁−𝐾 =

(𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑁−1)𝐻𝑇.

Step 5: Stop conditions

Similar to the first step, if the value of all calculated check nodes is zero, it means it is an actual

code-word. Therefore, the decoding process is finished. Besides, the other stop condition is

when the number of iteration of the decoding algorithm reaches the max number of iteration.

Otherwise, go to step 2 and repeat until the stop condition of the decoding algorithm reaches.

2.4. Slepian Wolf coding theorem

Slepian Wolf coding is a channel coding problem that considered the question of how many

bits per source character are required for the two correlated encoded message sequences to be

decoded accurately by the joint decoder. The two sources do not communicate with each other.

However, they are correlated and decoded jointly while encoded separately [15]. Let (𝑋1, 𝑌1),

(𝑋2, 𝑌2), … be an i.i.d sequence of jointly distributed random variables 𝑋 and 𝑌 with joint

distribution function 𝑝(𝑥, 𝑦). Assume that 𝑋𝑛 and 𝑌𝑛 are encoded separately without

knowledge of each other, and the compressed output is sent to a joint decoder for

reconstruction. The explained problem is called Distributed Source Coding (DSC) problem.

Indeed, compression of the outputs of two or more physically separated correlated sources

while they do not communicate with each other is known as distributed source coding, which

25

could be lossless or lossy. These sources send their compressed outputs to a joint decoder for

joint decoding. The final goal in communication is to minimize the energy required by the

sources to achieve reliable communications. Figure (2.2) shows a distributed source coding

problem.

Figure (2.2). Distributed source coding problem with two sources.

Slepian Wolf coding theorem: For the distributed source coding problem of the source (𝑋, 𝑌)

the achievable rate region is given by

𝑅𝑋 ≥ 𝐻(𝑋|𝑌) Eq(2.14)

𝑅𝑌 ≥ 𝐻(𝑌|𝑋)

𝑅𝑋 + 𝑅𝑌 ≥ 𝐻(𝑋, 𝑌)

According to the separation theorem in Slepian Wolf, where the user has access to the side

information Y, the entropy of the source H(X) is replaced by H(X|Y). H(x) = H(X|Y) + I(X; Z),

where H(X|Y) ≤ C1 [15]. Cover proved that this theorem also holds for stationary and ergodic

source if we replace entropies with entropy rates and conditional entropies with the conditional

entropy rates [12].

26

2.5. Wyner Ziv Coding

Wyner Ziv examines the question of how many bits are needed to encode source X under the

constraint that the average distortion between X and the reproduction X̂ satisfies E{d(X̂, X̂)} ≤

D. Two possible questions related to source coding with side information were proposed in

Wyner Ziv approach. The first one is when both encoder and decoder have access to side

information, and the second question is when just the decoder has access to side information.

Let RX|Y
∗ (D) as the smallest rate-distortion function of coding with side information Y available

at the encoder (the former one) and Rwz
∗ as the achievable lower bound of the bit rate for an

expected distortion D when just the decoder has access to side information (the latter one). In

general, based on Wyner-Ziv Rwz
∗ ≥ RX|Y

∗ (D) which means that allowable rate distortion

function is decreased while both the encoder and decoder have access to side information. That

is in contrast to the Slepian and Wolf situation that knowledge of the side information at the

encoder does not have any rate reduction of accurate source reconstruction. One interesting

case in Wyner Ziv is when sources are jointly Gaussian. In this case, Rwz
∗ = RX|Y

∗ (D) which is

a similar case to the lossless data compression of Slepian-Wolf. Thus, the transmission rate of

lossy compression of a Gaussian source with side information cannot be lowered even if the

encoder has access to the side information.

2.6. What is an FPGA?

Field Programmable Gate Arrays (FPGAs) are semiconductor devices. FPGA consists of

configurable logic blocks (CLBs). The interconnections between CLBs are programmable.

Therefore, after manufacturing FPGAs can be reprogrammed to desired application or

27

functionality. All these elements together make the basic architecture of an FPGA which is

represented in Figure (2.3).

Figure (2.3). Basic FPGA Architecture [39].

The traditional design flow of an FPGA is more similar to Integrated Circuit (IC) rather than a

processor. However, the architecture of an FPGA is more cost efficient than an IC, while the

efficiency of them are the same in most case. Another benefit of the FPGA in comparison to

the IC is that FPGA has a dynamic reconfiguration ability. The dynamic reconfiguration ability

of the FPGA is the same as loading a program in a processor that is convenient to implement

any kind of algorithm. However, the dynamic reconfiguration affects the availability of the

resource in the FPGA fabric partially or totally. Therefore, computational throughput, required

resources, and achievable clock frequency affect the efficiency of the resulting implementation.

Low vs. High-Level Programming for FPGA), 2018-09-13 Page 9/42

28

2.7. Xilinx FPGA Architecture

Xilinx FPGAs are heterogeneous compute platforms that include Block RAMs, DSP Slices,

PCI Express support, and programmable fabric. They enable parallelism and pipelining of

applications across the entire platform as all of these compute resources can be used

simultaneously. SDAccel is the tool provided by Xilinx to object and assist these compute

resources for OpenCL programs.

The basic structure of an FPGA is composed of the following elements:

 Look-up table (LUT) – LUT performs logic operations.

 Flip-Flop (FF) – This register element stores the result of the LUT.

 Wires – Wires connect elements.

 Input/Output (I/O) pads – These physical ports get data in and out of the FPGA.

The combination of the above-mentioned elements, including LUT, FF, wires, and I/O pads,

results in the basic FPGA architecture. The mentioned elements, LUT and FF are described

briefly in the following pages.

LUT

The Look-up table LUT is the basic building block of an FPGA. By using LUT, which is a

small memory, we can implement any logic function of 𝑀 Boolean variables. Essentially, LUT

is a truth table. Therefore, in LUT, different arrangements of the inputs resulted in various

functions, which is generated output values. 𝑀 represents the number of inputs to the LUT,

which is the limit on the size of the truth table. Indeed, the number of memory locations

29

accessed by the table for a LUT with N inputs is 2N. This permits the table to implement

2N^Nfunctions. Note that a typical value for 𝑀 in Xilinx FPGAs is 6. Figure (2.4) shows the

functional Representation of a LUT as a Collection of Memory Cells.

Here, we try to explain the hardware implementation of a LUT. It can be considered as a

collection of memory cells that is linked to a set of multiplexers. The inputs to the LUT can be

regarded as a selector bits on the multiplexer so that the outcome can be selected at a given

point in time. This representation of LUT makes it easier to consider LUT as a compute engine

function and a data storage element.

Figure (2.4). Illustration of a functional LUT as a collection of memory cells.

Flip Flop

30

The basic structure of a flip-flop is shown in Figure (2.5) which represents a data input (d_in),

clock input (clk), clock enables (clk_en), reset, and data output (d_out). In each clock pulse,

the input value.

Figure (2.5). Structure of a Flip-Flop.

During normal operation, any value at the data input port is latched and passed to the output

on every pulse of the clock. The clock enables pin permits the flip-flop to hold specific value

for more than one clock pulse. New data inputs are only latched and passed to the data output

port when both clock and clock enable are equal to one.

Present FPGA architectures have the basic elements along with additional computational and

data storage blocks. The extra elements added to contemporary FPGA is shown in Figure (3.4).

These additional elements, which rise the computational density and efficiency of the device,

are discussed in the following sections,

 Embedded memories for distributed data storage

 Phase-locked loops (PLLs) for driving the FPGA fabric at different clock rates

 High-speed serial transceivers

𝑑_𝑜𝑢𝑡

𝐹𝐹

𝑑_𝑖𝑛

 𝑐𝑙𝑘_𝑒𝑛

𝑟𝑒𝑠𝑒𝑡

𝑐𝑙𝑘

𝑠𝑒𝑡

31

 Off-chip memory controllers

 Multiply-accumulate blocks

Figure (2.6) shows the combination of these elements on a recent FPGA architecture. This

provides the FPGA with the flexibility to implement any software algorithm running on a

processor. Note that all of these elements across the entire FPGA can be used concurrently.

Figure (2.6). Contemporary FPGA Architecture [39].

DSP48 Block

DSP48 block, which is shown below, is the most complex computational block available in a

Xilinx FPGA.

32

The DSP48 block, which is embedded in the fabric of the FPGA, is an arithmetic logic unit. It

is composed of a chain of three different blocks, including add/subtract unit, multiplier, and

final add/subtract/accumulate engine.

The computational chain in the DSP48 holds an add/subtract unit, which is linked to a

multiplier. The multiplier is linked to a final add/subtract/accumulate engine. This chain allows

a single DSP48 unit to implement functions of the form, which is represented in Figure (2.7):

𝑃 = 𝐵 × (𝐴 + 𝐷) + 𝐶 or 𝑃+= 𝐵 × (𝐴 + 𝐷)

Figure (2.7). A DSP48 Block structure [39].

BRAM and Other Memories

Embedded memory elements in FPGA fabric are random-access memory (RAM), read-only

memory (ROM), or shift registers. These elements are block RAMs (BRAMs), LUTs, and shift

registers.

33

The BRAM is a dual-port RAM module available on the FPGA fabric to provide on-chip

storage for a relatively large set of data (18k or 36k bits). Two types of BRAM memories that

can hold either 18k or 36k bits are based on device specific. The dual-port BRAM has parallel,

same-clock-cycle access to different locations.

In a RAM configuration, the data can be read and written at any time during the runtime of the

circuit. In contrast, in a ROM configuration, data can only be read during the runtime of the

circuit. The data of the ROM is written as part of the FPGA configuration and cannot be

modified in any way.

As discussed in the LUT section, the contents of a truth table of LUT are written during device

configuration. Due to the flexible structure of LUT in Xilinx FPGAs, these blocks can be used

as 64-bit memories. LUT is commonly referred to as distributed memories, which is the fastest

kind of memory available on the FPGA. Therefore, LUT can be used in any part of the fabric

in order to improve the performance of the implemented circuit.

The shift register is a chain of registers connected to each other. Figure (2.8) shows the structure

of an Addressable Shift Register. The purpose of this structure is to provide data to be reused

along a computational path, such as with a filter.

34

Figure (2.8). Structure of an Addressable Shift Register.

Clock cycle

The speed of a computer processor, is determined by the clock cycle. Clock cycle is the amount

of time between two pulses of an oscillator. the higher number of pulses per second, the faster

the computer processor can to process information. The clock speed is measured in Hz, often

either megahertz (MHz) or gigahertz (GHz). For example, a 3 GHz processor performs

3,000,000,000 clock cycles per second.

2.8. Three main methods for designing Lookup table

To simplify the hardware implementation of tanh x, which is used for variable node update in

LDPC decoder, we proposed to apply lookup table. In the literature review, hardware

implementations for the hyperbolic tangent function are performed based on the approximation

of the function rather than calculating it. Three main methods for designing Lookup table are

used to implement and approximate the hyperbolic tangent function in hardware are as follows:

 Lookup table (LUT) approximation [32],

 Piece Wise Linear (PWL) approximation [33],

35

 Hybrid methods, which are essentially a combination of the former two [34].

2.8. A . Piecewise Linear (PWL) Approximation

A series of linear segments is used in PWL method to approximate a function [32]. The goal

in PWL method is to minimize the error, processing time, and area depending on the number

and location of the segments. The PWL method which is usually requires multiplier take

several clock cycles. And also, multipliers are expensive in terms of resource usage, so, PWL

methods are expensive while taking several clock cycles.

2.8.B. Lookup Table (LUT) Approximation

In the Look Up Table method, the number of points, which is uniformly distributed over the

input period, is limited [33]. The number of points should be enough to minimize the

approximation error of the function since there is a direct relation between the number of bits

used to represent the address (input) and output.

2.8.c. Hybrid Methods

In Hybrid methods, look-up tables and other hardware are required to generate the goal function

[34]. In the hybrid method, typically, multipliers are not used. However, they take several clock

cycles to perform. The speed increases significantly since there is no usage of multipliers.

We choose the LUT method because, according to the literature between current hardware

synthesizers, LUTs need less area than PWL methods, and also LUT is faster than the other

two. In addition, in [35], it is shown that the range addressable lookup table method performs

significantly quicker with the same amount of error while using less area compared to LUT,

PWL, and Hybrid. Therefore, based on simulation results, range addressable lookup tables are

proposed as a solution that offers partially simplifying hardware implementation of LDPC

decoder in terms of speed and resource utilization.

36

In RALUT, limited number of points are used to approximate the function. The limited number

of points are uniformly distributed across the entire input range [33]. Indeed, the size of look

up table is diminished by addressing x in a bigger range. However, the answer is not desired.

Therefore, another RALUT is proposed in which the range of points are uniformly distributed

across the entire output range. The performance of the proposed method to update variable

node of LDPC decoder for the DVBS2 standard is the same as the standard while the proposed

method is faster and using fewer resources. Finally, Appendix C shows the RALUT, which is

used for calculation of tanh 𝑥 in update variable node messages of LDPC decoder.

37

Chapter 3

Decoder Hardware Implementation and

Slepian-Wolf compression using DVB-s2

LDPC code

Summary

In Chapter three, reliable communication over the noisy channel is considered to be

implemented by the hardware of one standard of LDPC codes called DVB-S2. The design and

architecture of FPGA implementation of an LDPC decoder are presented. Besides, the

hardware implementation of the LDPC decoder is simplified using Range Addressable Look

Up Tables. In Section 3.4, Range addressable Lookup Table approximation is applied to update

variable nodes in the LDPC decoder. Because of undesired results, a new Range addressable

Lookup Table approximation is proposed in order to update variable nodes in the LDPC

decoder. Finally, in chapter three, data compression with side information at the decoder is

used as a caching solution in a Well-designed Caching example. Chapter four presents the

conclusion and future direction for the thesis.

38

3.1. LDPC Codes in DVB-S2 Standard

One of the improvements of the DVB-S2 standard from the original DVB-S standard is that

instead of convolutional and Reed-Solomon codes, LDPC codes are concatenated with BCH

codes for forward error correcting encoding and decoding. However, in this thesis, our main

focus is only on the LDPC codes in the DVB-S2 standard. Therefore, the discussion of the

BCH codes of the DVBS-2 standard is beyond the scope of this thesis. In this section, an

overview of the LDPC codes in the DVB-S2 standard is presented. The LDPC codes in the

DVB-S2 standard have two block lengths. Normal frames have block length 𝑁 = 64800, and

short frames have 𝑁 = 16200. Eleven code rates are specified in the normal frames and ten

in short frames. Table (3.1) shows different code rates used in the normal frames and in short

frames.

According to the standard, even though the parity check matrices, 𝐻, chosen by the standard

are sparse, their corresponding generator matrices are not. Thus, the DVB-S2 standard adopts

a special structure of the H matrix in order to reduce the memory requirement and the

complexity of the encoder. The special structure of the LDPC code is called Irregular Repeat-

Accumulate (IRA) [26]. The H matrix consists of two matrices A and B are shown in Equation

(3.1), as follows:

𝐻(𝑁−𝐾)×𝑁 = [𝐴(𝑁−𝐾)×𝑁|𝐵(𝑁−𝐾)×𝑁] (3.1)

Where B is a staircase lower triangular matrix, as shown in Equation (3.2).

39

𝐵(𝑁−𝐾)×𝑁 =

[

1
1
0
0
⋮
0
0
0

0
1
1
0
⋱
⋯
⋯
⋯

⋯
0
1
1
⋱
0
⋯
⋯

⋯
⋯
0
1
⋱
1
0
⋯

⋯
⋯
⋯
0
⋱
1
1
0

⋯
⋯
⋯
⋯
⋱
0
1
1

0
0
0
0
⋮
0
0
1

]

(3.2)

Matrix A is a sparse matrix, where the locations of the non-zero elements are specified in

Appendix C of the DVBS2 standard [27]. Furthermore, the standard also introduces a

periodicity of 𝑀 = 360 to the submatrix A in order to reduce storage requirements. The

periodicity condition divides the A matrix into groups of 𝑀 = 360 columns. For each group,

the locations of the non-zero elements of the first column are given in Appendix B. Let the set

of non-zero locations on first, or leftmost, column of a group be 𝑐0, 𝑐1, 𝑐2, … , 𝑐𝑑𝑏−1 where 𝑑𝑏

is the number of non-zero elements in that first column. For each of the 𝑀 − 1 = 359, other

columns, the locations of the non-zero elements of the 𝑖𝑡ℎ column of the group are given

by (𝑐0 + (𝑖 − 1)𝑝)𝑚𝑜𝑑(𝑁 − 𝐾), (𝑐1 + (𝑖 − 1)𝑝)𝑚𝑜𝑑(𝑁 − 𝐾), … , (𝑐𝑙 + (𝑖 −

1)𝑝)𝑚𝑜𝑑(𝑁 − 𝐾). Where 𝑁 − 𝐾 is the number of parity-check bits and 𝑝 =
𝑁−𝐾

𝑀
 code

dependent constant, as shown in Table (3.1), where the values are obtained from the user

guidelines of the standard [28].

 Rate 1
4⁄ 1

3⁄ 2
5⁄ 1

2⁄ 3
5⁄ 2

3⁄ 3
4⁄ 4

5⁄ 5
6⁄ 8

9⁄ 9
10⁄

𝑁 = 64800 𝑝 135 120 108 90 72 60 45 36 30 20 18

 Rate 1
5⁄ 1

3⁄ 2
5⁄ 4

9⁄ 3
5⁄ 2

3⁄ 11
15⁄ 7

9⁄ 37
49⁄ 8

9⁄ -

𝑁 = 16200 𝑝 36 30 27 25 18 15 12 10 8 5 -

Table (3.1). The values of p values in DVB-S2 LDPC code.

40

Since the LDPC codes in the DVB-S2 standard are systematic, the encoding of message bits

simply can be found by calculating the parity bits through the parity-check equations. Using

the structure of the codes as mentioned above, the 𝐴 submatrix with dimensions (𝑁 − 𝐾) × 𝐾

can be generated. Let 𝑎𝑖𝑗 denote the elements in the A submatrix, where 𝑖 = 0, 1, … ,𝑁 − 𝐾 −

1and 𝑗 = 0, 1, … , 𝐾 − 1. In order to encode the message, 𝑢 = 𝑢0, 𝑢1, … , 𝑢𝐾−1, the parity bits

are found using the following parity-check equations, as shown in Gomes et al. [29]:

𝑝0 = 𝑎0,0𝑢0 ⊕ 𝑎0,1𝑢1 ⊕ … ⊕ 𝑎0,𝐾−1𝑢𝐾−1

𝑝1 = 𝑎1,0𝑢0 ⊕ 𝑎1,1𝑢1 ⊕ … ⊕ 𝑎1,𝐾−1𝑢𝐾−1

𝑝2 = 𝑎2,0𝑢0 ⊕ 𝑎2,1𝑢1 ⊕ … ⊕ 𝑎2,𝐾−1𝑢𝐾−1

⋮

𝑝𝑁−𝐾−1 = 𝑎𝑁−𝐾−1,0𝑢0 ⊕ 𝑎𝑁−𝐾−1,1𝑢1 ⊕ … ⊕ 𝑎𝑁−𝐾−1,𝐾−1𝑢𝐾−1

The encoded codeword is the concatenation of the message bits and the parity bits. Thus, the

resultant N-bit codeword has the following form:

𝑢0, 𝑢1, 𝑢2, … , 𝑢𝐾−1, 𝑝0, 𝑝1, … , 𝑝𝑁−𝐾−1

Figure (3.1). Inputs and Outputs of the LDPC decoder.

 𝑐𝑙𝑘

 𝑟𝑒𝑠𝑒𝑡

 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟

 𝐹𝑑_𝑖𝑛

𝐷𝑒𝑐_𝑚𝑠𝑔 𝑁𝑒𝑤_𝑑𝑎𝑡𝑎

𝐸𝑟𝑟 𝐿𝐿𝑅

𝑟𝑑𝑦

𝐹𝑑_𝑜𝑢𝑡

 𝑟𝑓𝑑

𝑐𝑡𝑠 𝑟𝑓𝑓𝑑

41

Table (3.2). Description of the Inputs and Outputs of the Decoder.

Input/

Output

Bit

width

Name Description

Input 1 𝐶𝑙𝑘 Clock

Input 1 𝑟𝑒𝑠𝑒𝑡 Reset

Input 8 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟 Sets the maximum number of iterations the decoder will

perform

Input 1 𝑛𝑑 New data indicates that input LLR values are incoming

Input 6 𝑙𝑙𝑟 Serial 6-bit wide input LLR values

Input 1 𝐹𝑑_𝑖𝑛 First data input marks the beginning of an input frame

Input 1 𝑐𝑡𝑠 Clear to send informs the decoder as to whether or not to

output the decoded message

output 1 𝑟𝑓𝑑 Ready for data indicates that the decoder is ready for more

LLR values

output 1 𝑟𝑓𝑓𝑑 Ready for first data indicates that the decoder is ready for

a new frame

output 1 𝑑𝑒𝑐𝑚𝑠𝑔 Serial hard decoded message output

output 1 𝑒𝑟𝑟 Indicates whether or not a decoding error has occurred

output 1 𝑟𝑑𝑦 Ready indicates the output data is ready to stream out

Output 1 𝑓𝑑 out First data output marks the beginning of an output

frame

42

3.2. The architecture of the hardware implementation of DVB-S2 LDPC

Here, the details of the architecture of the hardware implementation of the DVB-S2 LDPC

decoder are presented. Figure (3.1) shows the inputs and outputs of the decoder. Table (3.2)

describes each input and output of the decoder in more detail.

The finite state machine of the LDPC decoder

The finite state machine controls the data flow of the LDPC decoder. Therefore, the finite state

machine has connections to all available components. The state transition diagram of the

controller is shown in Figure (3.2).

Figure (3.2). The finite state machine of LDPC decoder.

43

𝑰𝑫𝑳𝑬 State: 𝑡ℎ𝑒 𝐼𝐷𝐿𝐸 state is the initial step of the decoder's control flow.

𝑰𝑵𝑰𝑻 State: When both inputs 𝑛𝑑 and 𝑓𝑑 in are active, the controller enters the 𝐼𝑁𝐼𝑇 state. It

remains in this state until all the 64800 LLR values input into the decoder. Then the controller

moves to the next state.

𝑰𝑾𝑨𝑰𝑻 State: It is a transition state where the decoder is received all the 64800 LLR values,

but some 𝐿𝐿𝑅 values are still being written into the RAM through the FUs. So it is not ready

for calculation.

𝑽𝑵𝑼𝑷 State: Once all the RAM values are ready, the controller goes into the 𝑉𝑁𝑈𝑃 state

where the Variable Node Update based on the message which is sent from the parity check

node to the adjacent message variable node (Equation (2.12)).

𝑪𝑵𝑼𝑷 State: Once the Variable Node Update step is complete; the controller goes into the

𝐶𝑁𝑈𝑃 state where the Check node value is updated based on Equation (2.13).

CHECK State: After all the Check Node Update calculations are performed, the controller

enters the CHECK state. During the CHECK state, the parity-check equations are verified. If

all parity check equations are satisfied, error = 0, then the controller enters the IDLE state and

waits for the next frame of LLR values while outputting the decoded message. Otherwise, error

=1, and the controller returns to the VNUP state to repeat the VNUP, CNUP, and CHECK

states. If the maximum number of iterations is reached during the CHECK state, the controller

also moves to the IDLE state and outputs the decoded message with the output err set to 1.

44

3.3. Hyperbolic Tangent Function Implementation

The citation that follows from Pharr and Fernando [31] describes the concept of using the Look

up table briefly:

For optimizing a function that is expensive to compute and inexpensive for the cache using

Look Up Tables (LUTs) is an excellent technique. So, a precomputing of a function over a

range of common input is evaluated in order to find a proper LUT. Indeed, expensive runtime

operations can be replaced with inexpensive table lookups. If the computation run time is much

longer than the read time of Look up table, then the use of a lookup table will result in a

significant performance gain. Besides, an interpolation algorithm by nearby averaging samples

can be used for the data, which is between the data sample's so that the result will be reasonable

approximations [31].

To simplify and increase the speed of the hardware implementation of tanh x, which is used to

update variable node in the LDPC decoder, we proposed to apply the Lookup table. Usage of

Lookup table for the hyperbolic tangent function is essential for increasing the efficiency of

designing and implementing the hardware. Indeed, expensive runtime operations of hyperbolic

tangent function can be replaced by inexpensive table lookup. Therefore, if the computation

run time is much slower than the computation by the Lookup table, then the usage of the lookup

table will result in a significant performance gain. The hyperbolic tangent function graph is a

sigmoid curve with the shape of S in which the variation of the hyperbolic tangent function is

limited outside the period of (-2, 2).

Three main approaches are LUT, PWL, and Hybrid, which are used to approximate the

hyperbolic tangent function in hardware. Figure (3.3) shows the hyperbolic tangent function S

45

shape curve. Figure (3.4) presents Lookup Table Approximation of the hyperbolic tangent

function with Eight Points. Figure (3.5) shows 𝑡𝑎𝑛ℎ(𝑥) approximation with piecewise linear

approximation by five Segments.

Figure (3.3). The Hyperbolic Tangent Function S shape curve.

46

Figure (3.4) Lookup Table Approximation of 𝑡𝑎𝑛ℎ(𝑥) which is represented by Eight Points.

47

Figure (3.5). Piecewise Linear Approximation of 𝑡𝑎𝑛ℎ(𝑥) by five Segments.

3.4 Implementation of the Hyperbolic Tangent Function by Range Addressable

Lookup Table

Three main methods for designing a Lookup table are used to implement and approximate the

hyperbolic tangent function in hardware, including LUT, PWL, and Hybrid approximation

methods. According to the literature among the currently available hardware synthesizers,

LUTs need less area than PWL methods, and also LUT is faster than the other two.

 Furthermore, it is shown that the range addressable lookup table method performs significantly

faster with the same amount of error while it uses less area compared to LUT. Range

addressable LUT was originally proposed in [37] so that highly nonlinear, discontinuous

functions are implemented. RALUT is similar to regular LUT in which the memory is only

48

readable. However, there are a few notable differences between LUT and RALUT. A lookup

table uses a classic decoding scheme. However, a range addressable lookup table decoding

scheme is designed in a way, decreasing the size of LUT. In LUTs, each output belongs to a

unique input address, while RALUTs output belongs to a range of addresses, as shown in

Figure (3.6). This difference between LUT and RALUT results in a large reduction in data

points in the RALUT method, especially when the output is non-changeable over a significant

period of input. In the hyperbolic tangent function, the output changes a little outside the period

of (−2, 2). Therefore, the RALUT method is an efficient and optimized method for

approximating 𝑡𝑎𝑛ℎ(𝑥) function compared to LUT. This is due to the fact that in LUT, every

individual input point is represented by an output while in RALUT, a range of input points are

represented by an output. Figure (3.7) represents the RALUT approximation of 𝑡𝑎𝑛ℎ(𝑥) with

Eight Points [36].

a. Lookup Table Architecture

b. Range addressable Lookup Table Architecture

Figure (3.6). Comparison between LUT and RALUT Addressing methods.

49

Figure (3.7). RALUT Approximation of 𝑡𝑎𝑛ℎ(𝑥) with eight points.

3.4 A. Applying Range addressable Lookup Table Approximation to update variable nodes in

the LDPC decoder

In RALUT, the function is approximated with a limited number of points uniformly distributed

across the entire input range [33]. Applying the RALUT results in an LDPC decoder, which

will never reach zero BER. The results are shown in Figure (3.8), showing the BER of DVBS2

rate half for different values of SNR when 𝑡𝑎𝑛ℎ(𝑥) is approximated by RALUT. Indeed, the

size of the lookup table is diminished by addressing x in a wider range of input. The decoding

result is not desired. Therefore, a novel design of RALUT for the hyperbolic tangent function

is proposed that simplifies the LDPC decoding algorithm while the performance remains the

same.

50

Figure (3.8). BER of LDPC code (Rate= 1/2) by Applying rstaRALUT approximation to

updandate variable node of LDPC decoder.

3.4. B. Applying the Proposed Range addressable Lookup Table Approximation to update

variable node of eLDPC decoder

In Normal RALUT, the function d is approximated with a limited number of points uniformly

distributed across the entire input range. However, we proposed a RALUT where the function

is approximated with a limited number of points where more values are assigned to the points

near zero.

Consider the output in a range of 𝑦1 ≤ 𝑦 = tanh𝑥 ≤ 𝑦2 would be
𝑦1+𝑦2

2
, so that 𝑦 = tanh 𝑥,

𝑦1 = tanh𝑥1, and 𝑦2 = tanh 𝑥2, the input range must be tanh−1 𝑦1 ≤ 𝑥 ≤ tanh−1 𝑦2. Besides,

Appendix C shows the RALUT, which is used for updating the variable node messages of the

LDPC decoder. The decoder presented in Chapter 2 is verified using a code which is coded in

51

MATLAB and C++. The code begins by generating a random sequence of bits. Every frame of

the sequence is encoded ad decoded by an LDPC encoder and decoder implemented by us, i.e.,

we have not used the LDPC decoder function of Matlab. Frames of N=64800 bits long

subsequently modulated using the BPSK modulation scheme. The BCH outer encoding

specified in the DVB-S2 standard is not used because only the performance of the LDPC

decoder is evaluated. The DVB-S2 standard also uses quadrature phase-shift keying (QPSK),

8 phase-shift keying (8PSK), 16 amplitude and phase-shift keying (16APSK) and 32 amplitude

and phase-shift keying (32APSK) modulation schemes, but for simplifying the simulation test

bench uses BPSK modulation scheme to modulate the encoded sequence. Subsequently, the

modulated signal passes through a transmission channel, which is simulated by adding AWGN.

The receiving side of the test bench demodulates the transmitted signal and producing the initial

LLR values. These LLR values are divided into frames of N values, and each frame is inputted

into the LDPC decoder. Finally, after decoding the input of the channel, decoded codeword for

each frame is compared to the frames of the original random sequence generated. If the two

sequences are identical, then the decoding is correct. Otherwise, decoding error has failed for

that particular frame. Here, because we want to test and evaluate the results, the decoded

codeword for each frame is compared with the original random sequence; however, in reality,

the original random sequence is not available at the receiver. Therefore, when the syndrome

became zero or when the number of iteration reaches to maximum, the LDPC decoder stops.

 The SNR is the characteristic of the AWGN channel in units of decibels (dB), which is defined

by the power of the signal received divided by the power of the noise in the channel. For normal

frames, 100 frames are used. The result of the proposed RALUT for the positive part of tanh 𝑥

52

function is shown in Figure (3.9). The performance of the proposed method to update variable

nodes of the LDPC decoder for the DVBS2 standard is the same as the standard.

Figure (3.9). BER of LDPC code (Rate= 1/2) by applying proposed RALUT approximation

to update the variable node of the LDPC decoder.

53

Figure (3.10). The maximum number of iteration for 30 packets for different values of SNR.

Figure (3.11). The minimum number of iteration for 30 packets for different values of SNR.

54

Figure (3.10) and Figure (3.11) represent the maximum and the minimum number of iteration

for 30 packets for different values of SNR where the code rate is half, respectively. The number

of maximum and the minimum number of iteration is precisely the same for a specific value of

SNR when the thirty packets are produced randomly. There is a possibility to use this feature

in hardware implementation to simplify and decrease the usage of resources. It means that for

a specific value of SNR, the maximum number of iteration can be considered based on the

maximum number of iteration of Figure (3.11). For example, for the value of SNR equal to

two, the maximum number of iteration is 20. Thus after 20 iterations, the algorithm will decide

to finish the decoding process and use the resources for other out coming packets.

XC6VLX240T, a family of FPGAs, is used for evaluation of the complexity of the proposed

design by [30]. The synthesis result shows the speed increase due to the use of the RALUT

method. Finally, Table (3.3) shown the hardware implementation results compared to [30].

Besides, Since Vivado HLS synthesis is available for Zynq XC7Z030, therefore, the result is

presented for evaluation.

Table (3.3). Hardware implementation results for code rate half, 𝑁 = 64800, compared by

[30].

FPGA BRAM FF LUT Clock cycle(MHz)

XC6VLX240T [30] 31% 17% 60% 214.5

XC6VLX240T 30.5% 19.5% 47% 225

ZINC XC7Z030 25% 18.5% 54% 238.5

55

Results show the speed increase due to the use of the LUT method. However, LUT demands

more memory resources. Thus, we decrease the usage of memory resources by applying the

RALUT method. Commonly, RALUTs are uniformly distributed on input; however, in our

proposed method, instead of representing the LUT input uniformly, we use a non-uniform

scale assigning more values to those near zero.

3.5. Data compression with side information

According to the channel coding theory of Shannon, the source can be reconstructed with small error

probability if the rate of the data sequence is less than the capacity of the transmission channel, which

means that the problem of channel coding can be isolated into source coding problem [12]. Consider

the model with two independent channels operating in parallel. According to Shanon's coding theorem,

if the input to both channels were allowed to be encoded, the reliable transmission is possible if the

entropy of the source is below the sum of capacities of the two channels H(x) ≤ H(X|Y) + H(Y).

However, if the source entropy is above H(X|Y) + H(Y) the reliable transmission is not possible. If

one of the channels has an uncoded version of the source as side information at the decoder, known as

systematic communication, there are two approaches for error protection of noisy transmission. One is

based on Slepian Wolf [13], and the other is based on Wyner Ziv [14]. In this section, some basic

concepts, including the Slepian Wolf Coding theorem, Wyner-Ziv Coding, Source channel with decoder

side information, are presented.

56

Figure (3.12). Achievable two-dimensional rate region.

It is figured that if vector X and Y with length of 𝑛 bits are compressed into sequence of length

of nRX and nRY , respectively, where RX ≥ H(X|Y) , RY ≥ H(Y|X), and RX+,RY ≥ H(X, Y),

then the joint decoder can have a highly reliable reconstruction of X and Y. The result is shown

as an achievable two-dimensional rate region in Figure (3.12).

Slepian Wolf decoding algorithm of LDPC code

In LDPC decoding of Slepian Wolf, when we have side information at the decoder, instead of

transmitting the whole length of the original message, only the syndrome or check nodes are

transmitted (H(X|Y)). The Slepian wolf decoding algorithm of LDPC code is almost the same

with the channel decoding algorithm of LDPC code with some differences. In the following,

the differences are explained.

Step 0: Instead of transmitting the complete message of length 𝑁, the check node bits value of

the original message with a length of 𝑁 − 𝐾 bits are transmitted. Besides, the correlated version

57

of original message 𝑋 with the length of 𝑁 bits, which is called side information 𝑌 is available

at the Slepian Wolf decoder.

Step 3 (round 1): Not zero positions of check node bits are marked. So in round 1 of step 3

or in the update equation of variable nodes, an extra sign is applied for the marked position.

It means that whenever the message, which is the ratio of the probabilities in the log domain,

passed from the marked check node to all adjacent variable nodes, an extra change of sign is

applied. Therefore Equation (2.13) is changed to Equation (2.15)

𝑚𝑣𝑐 =

{

𝑚𝑣 𝑖𝑓 𝑙 = 1

𝑚𝑣 + ∑ {
−𝑚�́�𝑣

𝑙−1 �́� ∈ 𝑆𝑒𝑡 𝑜𝑓 𝑚𝑎𝑟𝑘𝑒𝑑 𝑐ℎ𝑒𝑐𝑘 𝑛𝑜𝑑𝑒𝑠

 𝑚�́�𝑣
𝑙−1 𝑒𝑙𝑠𝑒�́�∈𝐶𝑣\{𝑐}

 𝑖𝑓 𝑙 ≥ 1

(3.1)

Step 5 (Stop conditions): The first stop condition is when the value of check nodes is the same

as the check nodes value of the original message. The other stop condition is when the number

of iteration of the decoding algorithm reaches the max number of iteration.

3.6. Well-designed Caching by DVBS2 Standard

Here is an example of the application of the Slepian Wolf decoding algorithm of LDPC code

by the DVBS2 standard in the caching method [16]. Caching is a reliable solution for

communication during a busy period by taking advantage of memory across the network, which

leads to more smooth communication network systems [17-22]. The caching method has two-

phase. The first phase is called the placement phase, where the data is stored in the cache across

the network. The main limitation of this phase is the size of the cache memory. In the second

58

phase, which is called the Delivery phase, the user's request can be partially served through

caches near the users. Examples of application of the caching method are streaming media and

distributed databases, which results in decreasing the delivery rate.

Streaming media: User requests time is most likely at night rather than early in the morning.

During congestion periods, the bandwidth-hungry features of media result in more congestion,

high latency, and a poor experience for users. One applicable solution is caching during off-

peak hour time.

Distributed database: Some examples of the distributed database are meteorological

conditions measurement information of the globe, information of traffic sensors spread across

several countries, information on the shopping history of the customers, information on the

mobility pattern of the mobile devices in cellular networks. Since the database is extensive, it

might need several different network calls to load the requested data of the memory before the

requested data can be transmitted to the users. These network calls cause latency or stalls the

process. In the modern database, it is handled by storing the most common queries in fast

memory. For instant, consider that a user more probably demands the weather measurement of

his hometown rather than of a remote area. Therefore, the information of weather measurement

of the user hometown is cached in memory close to it. To our best knowledge, little attention

was given to the source coding problem in the presence of caching; however, Compressing

information can highly mitigate the traffic.

59

Fig (3.13). The tradeoff between packet correlation and delivery rate.

0

0.01

0.02

0.03

0.04

0.05

0.06

 4/9 5/9 2/3 3/4 6/7 1

P
ac

ke
ts

 c
o

rr
o

la
ti

o
n

 c
o

e
ff

ic
ie

n
t

Delivery rate

60

We proposed a general approach to –decreases the delivery rate by applying source coding of

LDPC code to the correlated binary source. Consider that we have a source with correlated

packets. The original packets are put in the cache in the placement phase. The rest of the packets

that are correlated to the original packets with the coefficient of 𝛼 will be sent during the

delivery phase with rate 1−𝑘/𝑛. For the delivery phase, we applied DVBS2 standard, which is

adopted by many numbers of standards because of having powerful features such as

transmission rate close to the theoretical Shannon limit [19]. For flexible configuration DVBS2

standard has several code rate including 𝑅 = 1 4 ⁄ , 1 3 ⁄ , 2 5 ⁄ , 3 5⁄ , 2 3⁄ , 3 4⁄ , 4 5⁄ , 5 6⁄ , 8 9⁄ ,

9 10⁄ . Code rates 1 4⁄ , 1 3,⁄ and 2 5 ⁄ have been introduced for exceptionally poor reception

conditions. In this example, we focus on 64800 length bits of a codeword of rates 𝑅 = 1 4 ⁄ ,

1 3 ⁄ , 2 5 ⁄ , 3 5⁄ , 2 3⁄ , 3 4⁄ , 4 5⁄ , 5 6⁄ , 8 9⁄ , 9 10⁄ , which is logical for our source coding

purposes. The LDPC codes, as defined in the DVB-S2 standard, have straight forward encoder

realization since the DVBS2 standard has a lower triangular shape for its parity check matrix.

Figure (3.13) shows the tradeoff between packet correlation and delivery rate. It is obvious that

there is an inverse relation between correlated coefficient 𝛼 and delivery rate. Thus, when the

correlation between packets is high, the delivery rate is low.

61

Chapter 4

Conclusion and future work

In this Chapter conclusion and future direction for the thesis are presented.

4.1. Conclusion summary

The emergence of large scale and high-speed data networks for processing, storage, and

exchange of digital information in military, government, and private spheres resulted in

demand for efficient and reliable data storage and transmission network systems. According to

Shannon's theorem, if the transmission rate is less than the capacity, there is always an error

correction code that can make the probability of error arbitrarily small. Besides, the application

of error-correcting codes of data compression is investigated by Shannon due to duality

between source coding and channel coding. Indeed, a channel code that provides high rates has

the capability to be a source code with high rates as a result of duality.

Caching is a reliable solution for communication during a busy period by taking advantage of

memory across the network, which leads to more smooth communication network systems [17-

62

22]. A general approach is proposed to decreases the delivery rate by applying source coding

of LDPC code to the correlated binary source. The results show that there is an inverse relation

between correlated coefficient 𝛼 and delivery rate.

In addition, we have presented a new hardware implementation of the LDPC code used in DVB-

S2. We have used a Range addressable LUT scheme to approximate the Tangent Hyperbolic

function. Our approach is motivated by the fact that among the three methods used for

approximation of Hyperbolic Tangent, i.e., LUT, PWL, and hybrid method, LUT is the fastest

approach but requires more resources than other two. Therefore, we have used RALUT in order

to compensate for this. Synthesis results on Xilinx, XC7Z030, family of FPGA's shows that our

method is faster than another implementation [30].

4.2. Future direction

Some proposed work as a progress of this thesis are as follows;

 Apply hardware implementation on a new standard such as ATSC 3.

 Expand the idea of Range addressable lookup table for hardware implementation for other

applications.

63

References

[1]. R. G. Gallager,“Low density parity check codes,” IRE Trans. Inform. Theory, IT-8: 21-28,

January 1962.

[2]. R. G. Gallager, Low density parity check codes, MIT press, Cambridge, 1963.

[3] A. Shokrollahi, ,“LDPC codes: An Introduction,“ April, 2003.

[4] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity

check codes,” Electron. Lett., vol. 32, pp. 1645–1646, Aug. 1996.

[5] N. Wiberg,“Codes and decoding on general graphs,” Dissertation no. 440, Dept. Elect. Eng.

Linkping Univ., Linkping , Sweden, 1996.

[6] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann,“Practical loss-

resilient codes,” in Proc. 29th Annual ACM Symp. Theory of Computing, 1997, pp. 150–159.

[7] M. Sipser and D. Spielman, “Expander codes,” IEEE Trans. Inform.Theory, vol. 42, pp.

1710–1722, Nov. 1996.

[8] D. J. C. MacKay, S. T. Wilson, and M. C. Davey, “Comparison of constructions of irregular

Gallager codes,” in Proc. 36th Allerton Conf. Communication, Control, and Computing, Sept.

1998.

[9]. El-Sherbini, Ahmed M. "Method and apparatus for differential run-length coding." U.S.

Patent No. 4,631,521. 23 Dec. 1986.

64

[10].S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications, 2nd

Edition, Prentice-Hall, 2005. Chapter 17.

[11]. T. J. Richardson and R. L. Urbanke, “Efficient encoding of low density parity check

codes,” IEEE Trans. Inform. Theory, February 2001.

[12] Cover, Thomas M., and Joy A. Thomas. Elements of information theory. John Wiley &

Sons, 2012.

[13] Slepian, David, and Jack Wolf. "Noiseless coding of correlated information

sources." IEEE Transactions on information Theory 19.4 (1973): 471-480.

[14] Wyner, Aaron, and Jacob Ziv. "The rate-distortion function for source coding with side

information at the decoder." IEEE Transactions on information theory 22.1 (1976): 1-10.

[15] Shamai, Shlomo, and Sergio Verdú. "Capacity of channels with uncoded side

information." European Transactions on Telecommunications 6.5 (1995): 587-600.

[16] European Telecommunications Standards Institude (ETSI). Digital Video Broadcasting

(DVB) Second generation framing structure for broadband satellite applications; EN 302 307

V1.1.1. www.dvb.org

[17]. Maddah-Ali, Mohammad Ali, and Urs Niesen. "Fundamental limits of caching." IEEE

Transactions on Information Theory60.5 (2014): 2856-2867.

[18]. Niesen, Urs, and Mohammad Ali Maddah-Ali. "Coded caching with non-uniform

demands." IEEE Transactions on Information Theory 63.2 (2017): 1146-1158.

65

[19]. M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching attains order-optimal

memory-rate tradeoff,” arXiv:1301.5848 [cs.IT], Jan. 2013.

[20]. Pedarsani, Ramtin, Mohammad Ali Maddah-Ali, and Urs Niesen. "Online coded

caching." IEEE/ACM Transactions on Networking (TON) 24.2 (2016): 836-845.

[21]. Timo, Roy, et al. "A rate-distortion approach to caching." IEEE transactions on

information theory 64.3 (2018): 1957-1976.

[22] C.-Y. Wang, S. H. Lim, and M. Gastpar, “Information-theoretic caching: Sequential

coding for computing,” IEEE Trans. Inf. Theory, vol. 62, no. 11, pp. 6393–6406, Nov. 2016.

[23]. Martin, Grant, and Gary Smith. "High-level synthesis: Past, present, and future." IEEE

Design & Test of Computers 26.4 (2009): 18-25.

[24]. Casseau, Emmanuel, et al. "C-based rapid prototyping for digital signal processing." 2005

13th European Signal Processing Conference. IEEE, 2005.

[25]. Lai, Yung-Te, Massoud Pedram, and Sarma BK Vrudhula. "BDD based decomposition

of logic functions with application to FPGA synthesis." 30th ACM/IEEE Design Automation

Conference. IEEE, 1993.

[26]. H. Jin, A. Khandekar, and R. McEliece, "Irregular repeat-accumulate codes," in 2nd

International Symposium on Turbo Codes and Related Topics, September 2000.

[27]. ETSI, Digital Video Broadcasting (DVB): Second generation framing structure, channel

coding and modulation systems for Broadcasting, Interactive Services, News Gathering and

other broadband satellite applications (DVB-S2), EN 302 307 V 1.2.1." August 2009.

66

[28]. ETSI, Digital Video Broadcasting (DVB): User guidelines for the second generation

system for Broadcasting, Interactive Services, News Gathering and other broadband satellite

applications (DVB-S2), TR 102 376 V 1.1.1." February 2005.

[29]. M. Gomes, G. Falcao, A. Sengo, V. Ferreira, V. Silva, and M. Falcao, High throughput

encoder architecture for DVB-S2 LDPC-IRA codes," in International Conference on

Microelectronics, 2007. ICM 2007, December 2007, pp. 271{274.

[30]. Loi, Kung Chi Cinnati. Field-programmable Gate-array (FPGA) Implementation of Low-

density Parity-check (LDPC) Decoder in Digital Video Broadcasting-Second Generation

Satellite (DVB-S2). Diss. University of Saskatchewan, 2010.

[31] Matt Pharr and Randima Fernando. GPU Gems 2: Programming Techniques for High-

Performance Graphics and General-Purpose Computation. Addison-Wesley Professional,

Boston, MA, USA, 2005.

[32] K. Basterretxea, J. Tarela, and I. D. Campo. Approximation of sigmoid function and the

derivative for hardware implementation of arti_cial neurons. IEE Proceedings - Circuits,

Devices and Systems, 151(1):18.24, February 2004.

[33] F. Piazza, A. Uncini, and M. Zenobi. Neural networks with digital lut activation functions.

IEE Proceedings - Circuits, Devices and Systems, 151(1):18.24, February 2004.

[34] S. Vassiliadis, M. Zhang, and J. Delgado-Frias. Elementary function generators for neural-

network emulators. IEEE Transactions on Neural Networks, 11(6):1438.1449, November

2000.

67

[35]. Leboeuf, Karl, et al. "High speed VLSI implementation of the hyperbolic tangent sigmoid

function." 2008 Third International Conference on Convergence and Hybrid Information

Technology. Vol. 1. IEEE, 2008.

[36]. Leboeuf, Karl, et al. "High speed VLSI implementation of the hyperbolic tangent sigmoid

function." 2008 Third International Conference on Convergence and Hybrid Information

Technology. Vol. 1. IEEE, 2008.

[37]. R. Muscedere, V. Dimitrov, G. Jullien, and W. Miller. Efficient techniques for binary-to

multi digit multi-dimensional logarithmic number system conversion using range addressable

look-up tables. IEEE Transactions on Computers, 54(3):257.271, March 2005.

[38] S. Lin and D. J. C. Jr., Error Control Coding, 2nd ed. Upper Saddle River, NJ, USA:

Pearson Prentice Hall, 2004.

[39] https://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-

design-hls.pdf

[40]. Viterbi, Andrew J., and Jim K. Omura. Principles of digital communication and coding.

Courier Corporation, 2013.

[41] R. Gray and A. Wyner, “Source coding for a simple network,” Bell Systems Technical

Journal, vol. 53, no. 9, pp. 1681 – 1721, 1974

68

Appendix A

Basic measures of information proposed by

Shannon

In Appendix A, the primary measures of information proposed by Shannon are presented. In

Appendix A, the logarithm is considered as base two otherwise specified [41].

Definition 1: The entropy of a random variable 𝑋 with discrete alphabet 𝜒 and probability

distribution 𝑝(𝑥) = Pr (𝑋 = 𝑥) is given by

𝐻(𝑋) = −∑𝑝(𝑥) log 𝑝(𝑥)

𝑥𝜖𝜒

Definition 2: Let 𝑋, 𝑌 be two discrete random variables with joint probability distribution

𝑝(𝑥, 𝑦), then the joint entropy of 𝑋 given 𝑌 is given by

𝐻(𝑋, 𝑌) = −∑∑𝑝(𝑥, 𝑦) log 𝑝(𝑥, 𝑦)

𝑦ϵΥ𝑥𝜖𝜒

Definition 3: Let 𝑋, 𝑌 be two discrete random variables with joint probability distribution

𝑝(𝑥, 𝑦), then the conditional entropy of 𝑋 given 𝑌 is given by

69

𝐻(𝑋| 𝑌) = −∑∑𝑝(𝑥, 𝑦) log 𝑝(𝑥| 𝑦)

𝑦ϵΥ𝑥𝜖𝜒

Definition 4: The mutual information between random variables 𝑋 and 𝑌 defined over alphabet

𝜒 and Υ, respectively, is defined by

𝐼(𝑋 ; 𝑌) = −∑∑𝑝(𝑥, 𝑦) log
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑦ϵΥ𝑥𝜖𝜒

The concept can be expended to random process.

Definition 5: The entropy rate of the random process {𝑋𝑖}𝑖=1
∞ is given by

𝐻(𝑋) = lim
𝑛→∞

1

𝑛
𝐻(𝑋1, 𝑋2, … , 𝑋𝑛)

The entropy rate may not exist for all random processes, but for a stationary source {𝑋𝑖}𝑖=1
∞ , its

entropy rate 𝐻(𝑋) and is equal to H(𝑋𝑛| 𝑋𝑛−1, 𝑋𝑛−2, … , 𝑋1)

Definition 6: A (2𝑛𝑅1 , 2𝑛𝑅2 , 𝑛) distributed source code for the joint source (𝑋, 𝑌) consists of

two encoder maps,

𝑓1: 𝜒
𝑛 → {1, 2, … , 2𝑛𝑅1}

𝑓2: 𝒴
𝑛 → {1, 2, … , 2𝑛𝑅2}

And a decoder map

𝑔 ∶ {1, 2, … , 2𝑛𝑅1} × {1, 2, … , 2𝑛𝑅2} → 𝜒𝑛 × 𝒴𝑛

Where (𝑅1, 𝑅2) is called the rate pair of the code.

Definition 7: The probability of error for a distributed source code is defined as

𝑃𝑒
(𝑛)

= 𝑃(𝑔(𝑓1(𝑋
𝑛), 𝑓2(𝑌

𝑛)) ≠ (𝑋𝑛, 𝑌𝑛))

70

Definition 8: A rate pair (𝑅1, 𝑅2) is said to be achievable for a source pair {(𝑋𝑖, 𝑌𝑖)}𝑖=1
∞ if there

exists a sequence of (2𝑛𝑅1 , 2𝑛𝑅2 , 𝑛) distributed source code with 𝑃𝑒
(𝑛)

→ 0. The achievable

region is closer to the set of achievable rates.

Source coding of Gray Wyner network

The problem of source coding subject to fidelity criterion for a simple network connecting a

single source with two receivers via a common channel and two private channels. The region

of available rates is formulated as an information-theoretic minimization. Let consider

{𝑋𝑘, 𝑌𝑘}𝑘=1
∞ be a sequence of independent drawing of a pair of random variables (𝑋, 𝑌), 𝑋𝜖𝓍,

𝑌𝜖𝑥𝒴. 𝓍 and 𝒴 are finite sets and 𝑃𝑟{𝑋 = 𝑥, 𝑌 = 𝑦} = 𝑄(𝑥, 𝑦), 𝑥𝜖𝓍, 𝑦𝜖𝑥𝒴. The marginal

distributions are 𝑄𝑋(𝑥) = ∑ 𝑄(𝑥, 𝑦)𝑦𝜖𝑥𝒴 , and 𝑄𝑌(𝑦) = ∑ 𝑄(𝑥, 𝑦)𝑥𝜖𝓍 . When the random

variables are clear from the context, we write 𝑄𝑋(𝑥) as 𝑄(𝑥), etc. Define for 𝑚 = 1,2,… ,𝑚 −

1, the set 𝐼𝑚={0,1,2, … ,𝑚 − 1}

An encoder (𝑛,𝑀0, 𝑀1, 𝑀2)with parameters is mapping

𝑓𝐸: 𝓍𝑛 × 𝓎𝑛 → 𝐼𝑀0
× 𝐼𝑀1

× 𝐼𝑀2

Given an encoder, the decoder is a pair of mappings

𝑓𝐷
(𝑋)

: 𝐼𝑀0
× 𝐼𝑀1

→ 𝓍𝑛

𝑓𝐷
(𝑌)

: 𝐼𝑀0
× 𝐼𝑀2

→ 𝓎𝑛

An encoder with parameters (𝑛,𝑀0, 𝑀1, 𝑀2) is applied as follows. Let 𝑓𝐸(𝑋, 𝑌) = (𝑆0, 𝑆1, 𝑆2)

where 𝑋 = (𝑋1 , 𝑋2 , … , 𝑋𝑛) and 𝑌 = (𝑌1 , 𝑌2 , … , 𝑌𝑛). Then let �̂� = 𝑓𝐷
(𝑋)(𝑆0, 𝑆1) and �̂� =

71

𝑓𝐷
(𝑌)(𝑆0, 𝑆2). The resulting error rate is Δ = max (Δ𝑥 , Δ𝑦) where Δ𝑥 = 𝐸

1

𝑛
∑ d𝐻(𝑋𝐾, �̂�𝐾)𝑛

𝑘=1

and Δ𝑦 = 𝐸
1

𝑛
∑ d𝐻(𝑌𝐾, �̂�𝐾)𝑛

𝑘=1 . D𝐻(. , .) is defined as follows.

D𝐻(𝑢, �̂�) = {
0 𝑢 = �̂�
1 𝑢 ≠ �̂�

The Hamming distance 𝐷𝐻(𝑢, 𝑣) between the 𝑛 −vectors 𝑢 and 𝑣 is the number of positions in

which 𝑢 and 𝑣 differ. Thus, Δ𝑥 = 𝐸(
1

𝑛
)𝐷𝐻(𝑋, �̂�) and Δ𝑦 = 𝐸(

1

𝑛
)𝐷𝐻(𝑌, �̂�) . The communication

system of the correspondence defined encoder and decoder is shown in Figure (B.1).

Figure (B.1). Source coding for a simple Gray Wyner network [40].

The capacity of the channels must be at least 𝑐𝑖 = (1/𝑛) log2 𝑀𝑖 (𝑖 = 0,1,2). The achievable

rate region is ℛ in which a triple of (𝑅0, 𝑅1, 𝑅2) exit. (𝑅0, 𝑅1, 𝑅2) is achievable if, for arbitrary

𝜖 > 0, there exists a code with parameters (𝑛,𝑀0, 𝑀1, 𝑀2) with 𝑀𝑖 ≤ 2𝑛(𝑅𝑖+𝜖), 𝑖 = 0,1,2, and

error rate ∆< 𝜖.

72

The property of (𝑅0, 𝑅1, 𝑅2) ∈ ℛ → (𝑅0 + 𝜖0, 𝑅1 + 𝜖1, 𝑅2 + 𝜖2) ∈ ℛ causes by the fact that

ℛ is a closed subset of Euclidean three-space. Therefore, the lower boundary of the ℛ region

is defined as follow;

ℛ̅ ≜ {(𝑅0, 𝑅1, 𝑅2) ∈ ℛ ∶ (�̂�0, �̂�1, �̂�2) ∈ ℛ , �̂�𝑖 ≤ 𝑅𝑖(𝑖 = 0,1,2) → �̂�𝑖 = 𝑅𝑖(𝑖 = 0,1,2)}

Because of the convexity of ℛ, we can define 𝑇(𝛼0, 𝛼1, 𝛼2) = min
(𝑅0,𝑅1,𝑅2) ∈ℛ

(𝑅0𝛼0 + 𝑅1𝛼1 +

𝑅2𝛼2). Indeed, the lower boundary ℛ̅ is the upper envelope of the family of planes

𝑇(𝛼0, 𝛼1, 𝛼2) = ∑ 𝛼𝑖
2
0 𝑅𝑖. 𝑇(𝛼0, 𝛼1, 𝛼2) as the minimum cost of transmitting, using a code with

rate-triple (𝑅0, 𝑅1, 𝑅2) over the network of Figure (B.1), when the cost of transmitting a bit

per second over the common channel is 𝛼0 and the costs of transmitting a bit per second over

the private channels to receivers 1 and 2 are 𝛼1 and 𝛼2, respectively. Now, since information

sent over the common channel can also alternatively be sent over both private channels, it is

never necessary to consider the case where the sum of the costs of a bit per second on the

private channels 𝛼1 + 𝛼2 < 𝛼0 the cost of a bit per second on the common channel. Similarly,

we need never consider the cases where 𝛼1 > 𝛼0, or 𝛼2 > 𝛼0, since information transmitted

over a private channel can alternatively be sent over the common channel. Since we can

normalize 𝛼0 as unity, the following theorem should be plausible. Thus, for 𝑅 = (𝑅0, 𝑅1, 𝑅2)

satisfying 𝑅𝑖 ≥ 0 and 𝛼 = (𝛼1, 𝛼2) arbitrary, let the cost defined by

c(α, R) = R0 + R1α1 + R2α2

𝑇(𝛼)= min
𝑅 ∈ℛ

(𝛼, 𝑅).

The following theorem[], give the lower bound to the region ℛ.

73

Theorem: If (𝑅0, 𝑅1, 𝑅2) ∈ ℛ then, the lower bound to the region ℛ is as follow

a) 𝑅0 +𝑅1 + 𝑅2 ≥ 𝐻(𝑋, 𝑌)

b) 𝑅0 +𝑅1 ≥ 𝐻(𝑋)

c) 𝑅0 + 𝑅2 ≥ 𝐻(𝑌)

74

Appendix B

Values from Annex B and C of the DVB-S2

Standard

According to the standard, even though the parity check matrices, 𝐻, chosen by the standard

are sparse, their corresponding generator matrices are not. Thus, the DVB-S2 standard adopts

a special structure of the H matrix in order to reduce the memory requirement and the

complexity of the encoder. In this Appendix, the values from Annex B and C of the DVB-S2

standard [27] are reproduced.

The standard introduces a periodicity of 𝑀 = 360 to the submatrix A in order to further reduce

storage requirements. The periodicity condition divides the A matrix into groups of 𝑀 = 360

columns. For each group, the locations of the non-zero elements of the first column are given

in the following. Let the set of non-zero locations on first, or leftmost, column of a group be

𝑐0, 𝑐1, 𝑐2, … , 𝑐𝑑𝑏−1 where 𝑑𝑏 is the number of non-zero elements in that first column. For each

of the , 𝑀 − 1 = 359, other columns, the locations of the non-zero elements of the 𝑖𝑡ℎ column

of the group are given by (𝑐0 + (𝑖 − 1)𝑝)𝑚𝑜𝑑(𝑁 − 𝐾), (𝑐1 + (𝑖 − 1)𝑝)𝑚𝑜𝑑(𝑁 − 𝐾), … ,

(𝑐𝑙 + (𝑖 − 1)𝑝)𝑚𝑜𝑑(𝑁 − 𝐾). Where 𝑁 − 𝐾 is the number of parity-check bits and 𝑝 =
𝑁−𝐾

𝑀

code dependent constant.

The values for the normal frames are shown first, followed by the values for short frames.

75

Table B.1: N = 64800, Code Rate = ¼

23606 36098 1140 28859 18148 18510 6226 540 42014

20879 23802 47088

16419 24928 16609 17248 7693 24997 42587 16858

34921 21042 37024 20692

1874 40094 18704 14474 14004 11519 13106 28826

38669 22363 30255 31105

22254 40564 22645 22532 6134 9176 39998 23892 8937

15608 16854 31009

8037 40401 13550 19526 41902 28782 13304 32796

24679 27140 45980 10021

40540 44498 13911 22435 32701 18405 39929 25521

12497 9851 39223 34823

15233 45333 5041 44979 45710 42150 19416 1892 23121

15860 8832 10308

10468 44296 3611 1480 37581 32254 13817 6883 32892

40258 46538 11940

6705 21634 28150 43757 895 6547 20970 28914 30117

25736 41734 11392 22002 5739 27210 27828 34192

37992 10915 6998 3824 42130 4494 35739

8515 1191 13642 30950 25943 12673 16726 34261 31828

3340 8747 39225

18979 17058 43130 4246 4793 44030 19454 29511 47929

15174 24333 19354

16694 8381 29642 46516 32224 26344 9405 18292 12437

27316 35466 41992

15642 5871 46489 26723 23396 7257 8974 3156 37420

44823 35423 13541

42858 32008 41282 38773 26570 2702 27260 46974 1469

20887 27426 38553

22152 24261 8297

19347 9978 27802

34991 6354 33561

29782 30875 29523

9278 48512 14349

38061 4165 43878

8548 33172 34410

22535 28811 23950

20439 4027 24186

38618 8187 30947

35538 43880 21459

7091 45616 15063

5505 9315 21908

36046 32914 11836

7304 39782 33721

16905 29962 12980

11171 23709 22460

34541 9937 44500

14035 47316 8815

15057 45482 24461

30518 36877 879

7583 13364 24332

448 27056 4682

12083 31378 21670

1159 18031 2221

17028 38715 9350

17343 24530 29574

46128 31039 32818

20373 36967 18345

46685 20622 32806

76

Table B.2: N = 64800, Code Rate = 1/3

34903 20927 32093 1052 25611 16093 16454 5520 506 37399

18518 21120

11636 14594 22158 14763 15333 6838 22222 37856 14985

31041 18704 32910

17449 1665 35639 16624 12867 12449 10241 11650 25622

34372 19878 26894

29235 19780 36056 20129 20029 5457 8157 35554 21237 7943

13873 14980

9912 7143 35911 12043 17360 37253 25588 11827 29152

21936 24125 40870

40701 36035 39556 12366 19946 29072 16365 35495 22686

11106 8756 34863

19165 15702 13536 40238 4465 40034 40590 37540 17162

1712 20577 14138

31338 19342 9301 39375 3211 1316 33409 28670 12282 6118

29236 35787

11504 30506 19558 5100 24188 24738 30397 33775 9699 6215

3397 37451

34689 23126 7571 1058 12127 27518 23064 11265 14867

30451 28289 2966

11660 15334 16867 15160 38343 3778 4265 39139 17293

26229 42604 13486

31497 1365 14828 7453 26350 41346 28643 23421 8354 16255

11055 24279

15687 12467 13906 5215 41328 23755 20800 6447 7970 2803

33262 39843

5363 22469 38091 28457 36696 34471 23619 2404 24229

41754 1297 18563

3673 39070 14480 30279 37483 7580 29519 30519 39831

20252 18132 20010

34386 7252 27526 12950 6875 43020 31566 39069 18985

15541 40020 16715

1721 37332 39953 17430 32134 29162 10490 12971 28581

29331 6489 35383

736 7022 42349 8783 6767 11871 21675 10325 11548 25978

431 24085

1925 10602 28585 12170 15156 34404 8351 13273 20208 5800

15367 21764

16279 37832 34792 21250 34192 7406 41488 18346 29227

26127 25493 7048

39948 28229 24899 38788 27081 7936

17408 14274 38993 4368 26148 10578

29094 5357 19224

9562 24436 28637

40177 2326 13504

6834 21583 42516

40651 42810 25709

31557 32138 38142

18624 41867 39296

37560 14295 16245

6821 21679 31570

25339 25083 22081

8047 697 35268

9884 17073 19995

26848 35245 8390

18658 16134 14807

12201 32944 5035

25236 1216 38986

42994 24782 8681

28321 4932 34249

4107 29382 32124

22157 2624 14468

77

38774 15968 28459 25353 4122 39751

41404 27249 27425

41229 6082 43114

13957 4979 40654

3093 3438 34992

34082 6172 28760

42210 34141 41021

14705 17783 10134

41755 39884 22773

14615 15593 1642

29111 37061 39860

9579 33552 633

12951 21137 39608

38244 27361 29417

2939 10172 36479

Table B.3: N = 64800, Code Rate = 2/5

31413 18834 28884 947 23050 14484 14809 4968 455

33659 16666 19008

13172 19939 13354 13719 6132 20086 34040 13442

27958 16813 29619 16553

1499 32075 14962 11578 11204 9217 10485 23062

30936 17892 24204 24885

32490 18086 18007 4957 7285 32073 19038 7152 12486

13483 24808 21759

32321 10839 15620 33521 23030 10646 26236 19744

21713 36784 8016 12869

35597 11129 17948 26160 14729 31943 20416 10000

7882 31380 27858 33356

14125 12131 36199 4058 35992 36594 33698 15475

1566 18498 12725 7067

17406 8372 35437 2888 1184 30068 25802 11056 5507

26313 32205 37232

15254 5365 17308 22519 35009 718 5240 16778 23131

24092 20587 33385

27455 17602 4590 21767 22266 27357 30400 8732 5596

3060 33703 3596

6882 873 10997 24738 20770 10067 13379 27409 25463

2673 6998 31378

15181 13645 34501 3393 3840 35227 15562 23615

38342 12139 19471 15483

13350 6707 23709 37204 25778 21082 7511 14588

10010 21854 28375 33591

12514 4695 37190 21379 18723 5802 7182 2529 29936

35860 28338 10835

25796 31795

12152 12184

35088 31226

38263 33386

24892

23114 37995

29796

34336 10551

36245

35407 175

7203

14654 38201

22605

28404 6595

1018

19932 3524

29305

31749 20247

8128

18026 36357

26735

7543 29767

13588

13333 25965

8463

14504 36796

19710

4528 25299

7318

28229 31684

30160

15293 8483

28002

14880 13334

12584

28646 2558

19687

6259 4499

26336

11952 28386

8405

10609 961

7582

10423 13191

26818

15922 36654

21450

10492 1532

1205

30551 36482

22153

5156 11330

34243

28616 35369

13322

8962 1485

21186

78

34283 25610 33026 31017 21259 2165 21807 37578

1175 16710 21939 30841

27292 33730 6836 26476 27539 35784 18245 16394

17939 23094 19216 17432

11655 6183 38708 28408 35157 17089 13998 36029

15052 16617 5638 36464

15693 28923 26245 9432 11675 25720 26405 5838

31851 26898 8090 37037

24418 27583 7959 35562 37771 17784 11382 11156

37855 7073 21685 34515

10977 13633 30969 7516 11943 18199 5231 13825

19589 23661 11150 35602

19124 30774 6670 37344 16510 26317 23518 22957

6348 34069 8845 20175

34985 14441 25668 4116 3019 21049 37308 24551

24727 20104 24850 12114

38187 28527 13108 13985 1425 21477 30807 8613

26241 33368 35913 32477

5903 34390 24641 26556 23007 27305 38247 2621 9122

32806 21554 18685

17287 27292 19033

35091 25550

14798

7824 215 1248

30848 5362

17291

28932 30249

27073 13062

2103 16206

7129 32062

19612

9512 21936

38833

35849 33754

23450

18705 28656

18111

22749 27456

32187

23541 17445

35561

33133 11593

19895

33917 7863

33651

20063 28331

10702

13195 21107

21859

4364 31137

4804

5585 2037

4830

30672 16927

14800

Table B.4: N = 64800, Code Rate = ½

54 9318 14392 27561 26909 10219 2534 8597

55 7263 4635 2530 28130 3033 23830 3651

56 24731 23583 26036 17299 5750 792 9169

57 5811 26154 18653 11551 15447 13685 16264

58 12610 11347 28768 2792 3174 29371 12997

59 16789 16018 21449 6165 21202 15850 3186

60 31016 21449 17618 6213 12166 8334 18212

61 22836 14213 11327 5896 718 11727 9308

62 2091 24941 29966 23634 9013 15587 5444

63 22207 3983 16904 28534 21415 27524 25912

64 25687 4501 22193 14665 14798 16158 5491

65 4520 17094 23397 4264 22370 16941 21526

66 10490 6182 32370 9597 30841 25954 2762

67 22120 22865 29870 15147 13668 14955 19235

68 6689 18408 18346 9918 25746 5443 20645

69 29982 12529 13858 4746 30370 10023 24828

70 1262 28032 29888 13063 24033 21951 7863

71 6594 29642 31451 14831 9509 9335 31552

72 1358 6454 16633 20354 24598 624 5265

73 19529 295 18011 3080 13364 8032 15323

74 11981 1510 7960 21462 9129 11370 25741

40 30051 30426

41 1335 15424

42 6865 17742

43 31779 12489

44 32120 21001

45 14508 6996

46 979 25024

47 4554 21896

48 7989 21777

49 4972 20661

50 6612 2730

51 12742 4418

52 29194 595

53 19267 20113

79

75 9276 29656 4543 30699 20646 21921 28050

76 15975 25634 5520 31119 13715 21949 19605

77 18688 4608 31755 30165 13103 10706 29224

78 21514 23117 12245 26035 31656 25631 30699

79 9674 24966 31285 29908 17042 24588 31857

80 21856 27777 29919 27000 14897 11409 7122

81 29773 23310 263 4877 28622 20545 22092

82 15605 5651 21864 3967 14419 22757 15896

83 30145 1759 10139 29223 26086 10556 5098

84 18815 16575 2936 24457 26738 6030 505

85 30326 22298 27562 20131 26390 6247 24791

86 928 29246 21246 12400 15311 32309 18608

87 20314 6025 26689 16302 2296 3244 19613

88 6237 11943 22851 15642 23857 15112 20947

89 26403 25168 19038 18384 8882 12719 7093

0 14567 24965

1 3908 100

2 10279 240

3 24102 764

4 12383 4173

5 13861 15918

6 21327 1046

7 5288 14579

8 28158 8069

9 16583 11098

10 16681 28363

11 13980 24725

12 32169 17989

13 10907 2767

14 21557 3818

15 26676 12422

16 7676 8754

17 14905 20232

18 15719 24646

19 31942 8589

20 19978 27197

21 27060 15071

22 6071 26649

23 10393 11176

24 9597 13370

25 7081 17677

26 1433 19513

27 26925 9014

28 19202 8900

29 18152 30647

30 20803 1737

80

31 11804 25221

32 31683 17783

33 29694 9345

34 12280 26611

35 6526 26122

36 26165 11241

37 7666 26962

38 16290 8480

39 11774 10120

Table B.5: N = 64800, Code Rate = 3/5

22422 10282 11626 19997 11161 2922 3122 99 5625 17064 8270 179

25087 16218 17015 828 20041 25656 4186 11629 22599 17305

22515 6463

11049 22853 25706 14388 5500 19245 8732 2177 13555 11346

17265 3069

16581 22225 12563 19717 23577 11555 25496 6853 25403 5218

15925 21766

16529 14487 7643 10715 17442 11119 5679 14155 24213 21000

1116 15620

5340 8636 16693 1434 5635 6516 9482 20189 1066 15013 25361

14243

18506 22236 20912 8952 5421 15691 6126 21595 500 6904 13059

6802

8433 4694 5524 14216 3685 19721 25420 9937 23813 9047 25651

16826

21500 24814 6344 17382 7064 13929 4004 16552 12818 8720 5286

2206

22517 2429 19065 2921 21611 1873 7507 5661 23006 23128 20543

19777

1770 4636 20900 14931 9247 12340 11008 12966 4471 2731 16445

791

6635 14556 18865 22421 22124 12697 9803 25485 7744 18254

11313 9004

19982 23963 18912 7206 12500 4382 20067 6177 21007 1195 23547

24837

756 11158 14646 20534 3647 17728 11676 11843 12937 4402 8261

22944

9306 24009 10012 11081 3746 24325 8060 19826 842 8836 2898

5019

7575 7455 25244 4736 14400 22981 5543 8006 24203 13053 1120

5128

3482 9270 13059 15825 7453 23747 3656 24585 16542 17507 22462

14670

25 6393 3725

26 597 19968

27 5743 8084

28 6770 9548

29 4285 17542

30 13568 22599

31 1786 4617

32 23238 11648

33 19627 2030

34 13601 13458

35 13740 17328

36 25012 13944

37 22513 6687

38 4934 12587

39 21197 5133

40 22705 6938

41 7534 24633

42 24400 12797

43 21911 25712

44 12039 1140

45 24306 1021

46 14012 20747

47 11265 15219

48 4670 15531

49 9417 14359

50 2415 6504

51 24964 24690

52 14443 8816

53 6926 1291

54 6209 20806

55 13915 4079

56 24410 13196

57 13505 6117

81

15627 15290 4198 22748 5842 13395 23918 16985 14929 3726

25350 24157

24896 16365 16423 13461 16615 8107 24741 3604 25904 8716 9604

20365

3729 17245 18448 9862 20831 25326 20517 24618 13282 5099

14183 8804

16455 17646 15376 18194 25528 1777 6066 21855 14372 12517

4488 17490

1400 8135 23375 20879 8476 4084 12936 25536 22309 16582 6402

24360

25119 23586 128 4761 10443 22536 8607 9752 25446 15053 1856

4040

377 21160 13474 5451 17170 5938 10256 11972 24210 17833 22047

16108

13075 9648 24546 13150 23867 7309 19798 2988 16858 4825 23950

15125

20526 3553 11525 23366 2452 17626 19265 20172 18060 24593

13255 1552

18839 21132 20119 15214 14705 7096 10174 5663 18651 19700

12524 14033

4127 2971 17499 16287 22368 21463 7943 18880 5567 8047 23363

6797

10651 24471 14325 4081 7258 4949 7044 1078 797 22910 20474

4318

21374 13231 22985 5056 3821 23718 14178 9978 19030 23594 8895

25358

6199 22056 7749 13310 3999 23697 16445 22636 5225 22437 24153

9442

7978 12177 2893 20778 3175 8645 11863 24623 10311 25767 17057

3691

20473 11294 9914 22815 2574 8439 3699 5431 24840 21908 16088

18244

8208 5755 19059 8541 24924 6454 11234 10492 16406 10831 11436

9649

16264 11275 24953 2347 12667 19190 7257 7174 24819 2938 2522

11749

3627 5969 13862 1538 23176 6353 2855 17720 2472 7428 573 15036

0 18539 18661 61 20671 24913

1 10502 3002 62 24558 20591

2 9368 10761 63 12402 3702

3 12299 7828 64 8314 1357

4 15048 13362 65 20071 14616

5 18444 24640 66 17014 3688

6 20775 19175 67 19837 946

7 18970 10971 68 15195 12136

8 5329 19982 69 7758 22808

58 9869 8220

59 1570 6044

60 25780 17387

82

9 11296 18655 70 3564 2925

10 15046 20659 71 3434 7769

11 7300 22140

12 22029 14477

13 11129 742

14 13254 13813

15 19234 13273

16 6079 21122

17 22782 5828

18 19775 4247

19 1660 19413

20 4403 3649

21 13371 25851

22 22770 21784

23 10757 14131

24 16071 21617

Table B.6: N = 64800, Code Rate = 2/3

0 10491 16043 506 12826 8065 8226 2767 240 18673 9279 10579

20928

1 17819 8313 6433 6224 5120 5824 12812 17187 9940 13447 13825

18483

2 17957 6024 8681 18628 12794 5915 14576 10970 12064 20437

4455 7151

3 19777 6183 9972 14536 8182 17749 11341 5556 4379 17434 15477

18532

4 4651 19689 1608 659 16707 14335 6143 3058 14618 17894 20684

5306

5 9778 2552 12096 12369 15198 16890 4851 3109 1700 18725 1997

15882

6 486 6111 13743 11537 5591 7433 15227 14145 1483 3887 17431

12430

7 20647 14311 11734 4180 8110 5525 12141 15761 18661 18441

10569 8192

8 3791 14759 15264 19918 10132 9062 10010 12786 10675 9682

19246 5454

9 19525 9485 7777 19999 8378 9209 3163 20232 6690 16518 716

7353

10 4588 6709 20202 10905 915 4317 11073 13576 16433 368 3508

21171

11 14072 4033 19959 12608 631 19494 14160 8249 10223 21504

12395 4322

12 13800 14161

13 2948 9647

4 9161 15642

5 10714 10153

6 11585 9078

7 5359 9418

8 9024 9515

9 1206 16354

10 14994 1102

11 9375 20796

12 15964 6027

13 14789 6452

14 8002 18591

15 14742 14089

16 253 3045

17 1274 19286

18 14777 2044

19 13920 9900

20 452 7374

21 18206 9921

22 6131 5414

23 10077 9726

24 12045 5479

25 4322 7990

26 15616 5550

27 15561 10661

28 20718 7387

29 2518 18804

83

14 14693 16027

15 20506 11082

16 1143 9020

17 13501 4014

18 1548 2190

19 12216 21556

20 2095 19897

21 4189 7958

22 15940 10048

23 515 12614

24 8501 8450

25 17595 16784

26 5913 8495

27 16394 10423

28 7409 6981

29 6678 15939

30 20344 12987

31 2510 14588

32 17918 6655

33 6703 19451

34 496 4217

35 7290 5766

36 10521 8925

37 20379 11905

38 4090 5838

39 19082 17040

40 20233 12352

41 19365 19546

42 6249 19030

43 11037 19193

44 19760 11772

45 19644 7428

46 16076 3521

47 11779 21062

48 13062 9682

49 8934 5217

50 11087 3319

51 18892 4356

52 7894 3898

53 5963 4360

54 7346 11726

55 5182 5609

56 2412 17295

57 9845 20494

58 6687 1864

59 20564 5216

30 8984 2600

31 6516 17909

32 11148 98

33 20559 3704

34 7510 1569

35 16000 11692

36 9147 10303

37 16650 191

38 15577 18685

39 17167 20917

40 4256 3391

41 20092 17219

42 9218 5056

43 18429 8472

44 12093 20753

45 16345 12748

46 16023 11095

47 5048 17595

48 18995 4817

49 16483 3536

50 1439 16148

51 3661 3039

52 19010 18121

53 8968 11793

54 13427 18003

55 5303 3083

56 531 16668

57 4771 6722

58 5695 7960

59 3589 14630

84

0 18226 17207

1 9380 8266

2 7073 3065

3 18252 13437

Table B.7: N = 64800, Code Rate = ¾

0 6385 7901 14611 13389 11200 3252 5243 2504 2722 821 7374

1 11359 2698 357 13824 12772 7244 6752 15310 852 2001 11417

2 7862 7977 6321 13612 12197 14449 15137 13860 1708 6399 13444

3 1560 11804 6975 13292 3646 3812 8772 7306 5795 14327 7866

4 7626 11407 14599 9689 1628 2113 10809 9283 1230 15241 4870

5 1610 5699 15876 9446 12515 1400 6303 5411 14181 13925 7358

6 4059 8836 3405 7853 7992 15336 5970 10368 10278 9675 4651

7 4441 3963 9153 2109 12683 7459 12030 12221 629 15212 406

8 6007 8411 5771 3497 543 14202 875 9186 6235 13908 3563

9 3232 6625 4795 546 9781 2071 7312 3399 7250 4932 12652

10 8820 10088 11090 7069 6585 13134 10158 7183 488 7455 9238

11 1903 10818 119 215 7558 11046 10615 11545 14784 7961 15619

12 3655 8736 4917 15874 5129 2134 15944 14768 7150 2692 1469

13 8316 3820 505 8923 6757 806 7957 4216 15589 13244 2622

14 14463 4852 15733 3041 11193 12860 13673 8152 6551 15108

8758

15 3149 11981

16 13416 6906

17 13098 13352

18 2009 14460

19 7207 4314

20 3312 3945

21 4418 6248

22 2669 13975

23 7571 9023

24 14172 2967

25 7271 7138

26 6135 13670

27 7490 14559

28 8657 2466

29 8599 12834

30 3470 3152

31 13917 4365

32 6024 13730

33 10973 14182

34 2464 13167

35 5281 15049

36 1103 1849

24 2655 14957

25 5565 6332

26 4303 12631

27 11653 12236

28 16025 7632

29 4655 14128

30 9584 13123

31 13987 9597

32 15409 12110

33 8754 15490

34 7416 15325

35 2909 15549

36 2995 8257

37 9406 4791

38 11111 4854

39 2812 8521

40 8476 14717

41 7820 15360

42 1179 7939

43 2357 8678

44 7703 6216

0 3477 7067

1 3931 13845

2 7675 12899

3 1754 8187

4 7785 1400

5 9213 5891

6 2494 7703

7 2576 7902

8 4821 15682

9 10426 11935

10 1810 904

11 11332 9264

12 11312 3570

13 14916 2650

14 7679 7842

15 6089 13084

16 3938 2751

85

37 2058 1069

38 9654 6095

39 14311 7667

40 15617 8146

41 4588 11218

42 13660 6243

43 8578 7874

44 11741 2686

0 1022 1264

1 12604 9965

2 8217 2707

3 3156 11793

4 354 1514

5 6978 14058

6 7922 16079

7 15087 12138

8 5053 6470

9 12687 14932

10 15458 1763

11 8121 1721

12 12431 549

13 4129 7091

14 1426 8415

15 9783 7604

16 6295 11329

17 1409 12061

18 8065 9087

19 2918 8438

20 1293 14115

21 3922 13851

22 3851 4000

23 5865 1768

17 8509 4648

18 12204 8917

19 5749 12443

20 12613 4431

21 1344 4014

22 8488 13850

23 1730 14896

24 14942 7126

25 14983 8863

26 6578 8564

27 4947 396

28 297 12805

29 13878 6692

30 11857 11186

31 14395 11493

32 16145 12251

33 13462 7428

34 14526 13119

35 2535 11243

36 6465 12690

37 6872 9334

38 15371 14023

39 8101 10187

40 11963 4848

41 15125 6119

42 8051 14465

43 11139 5167

44 2883 14521

Table B.8: N = 64800, Code Rate = 4/5

0 149 11212 5575 6360 12559 8108 8505 408 10026 12828

1 5237 490 10677 4998 3869 3734 3092 3509 7703 10305

2 8742 5553 2820 7085 12116 10485 564 7795 2972 2157

3 2699 4304 8350 712 2841 3250 4731 10105 517 7516

4 12067 1351 11992 12191 11267 5161 537 6166 4246 2363

5 6828 7107 2127 3724 5743 11040 10756 4073 1011 3422

6 11259 1216 9526 1466 10816 940 3744 2815 11506 11573

7 4549 11507 1118 1274 11751 5207 7854 12803 4047 6484

8 8430 4115 9440 413 4455 2262 7915 12402 8579 7052

9 3885 9126 5665 4505 2343 253 4707 3742 4166 1556

3 6970 5447

4 3217 5638

5 8972 669

6 5618 12472

7 1457 1280

8 8868 3883

9 8866 1224

10 8371 5972

11 266 4405

12 3706 3244

86

10 1704 8936 6775 8639 8179 7954 8234 7850 8883 8713

11 11716 4344 9087 11264 2274 8832 9147 11930 6054 5455

12 7323 3970 10329 2170 8262 3854 2087 12899 9497 11700

13 4418 1467 2490 5841 817 11453 533 11217 11962 5251

14 1541 4525 7976 3457 9536 7725 3788 2982 6307 5997

15 11484 2739 4023 12107 6516 551 2572 6628 8150 9852

16 6070 1761 4627 6534 7913 3730 11866 1813 12306 8249

17 12441 5489 8748 7837 7660 2102 11341 2936 6712 11977

18 10155 4210

19 1010 10483

20 8900 10250

21 10243 12278

22 7070 4397

23 12271 3887

24 11980 6836

25 9514 4356

26 7137 10281

27 11881 2526

28 1969 11477

29 3044 10921

30 2236 8724

31 9104 6340

32 7342 8582

33 11675 10405

34 6467 12775

35 3186 12198

0 9621 11445

1 7486 5611

2 4319 4879

3 2196 344

4 7527 6650

5 10693 2440

6 6755 2706

7 5144 5998

8 11043 8033

9 4846 4435

10 4157 9228

11 12270 6562

12 11954 7592

13 7420 2592

14 8810 9636

15 689 5430

16 920 1304

17 1253 11934

18 9559 6016

19 312 7589

13 6039 5844

14 7200 3283

15 1502 11282

16 12318 2202

17 4523 965

18 9587 7011

19 2552 2051

20 12045 10306

21 11070 5104

22 6627 6906

23 9889 2121

24 829 9701

25 2201 1819

26 6689 12925

27 2139 8757

28 12004 5948

29 8704 3191

30 8171 10933

31 6297 7116

32 616 7146

33 5142 9761

34 10377 8138

35 7616 5811

0 7285 9863

1 7764 10867

2 12343 9019

3 4414 8331

4 3464 642

5 6960 2039

6 786 3021

7 710 2086

8 7423 5601

9 8120 4885

10 12385 11990

11 9739 10034

12 424 10162

13 1347 7597

14 1450 112

15 7965 8478

16 8945 7397

17 6590 8316

18 6838 9011

19 6174 9410

20 255 113

21 6197 5835

22 12902 3844

87

20 4439 4197

21 4002 9555

22 12232 7779

23 1494 8782

24 10749 3969

25 4368 3479

26 6316 5342

27 2455 3493

28 12157 7405

29 6598 11495

30 11805 4455

31 9625 2090

32 4731 2321

33 3578 2608

34 8504 1849

35 4027 1151

0 5647 4935

1 4219 1870

2 10968 8054

23 4377 3505

24 5478 8672

25 4453 2132

26 9724 1380

27 12131 11526

28 12323 9511

29 8231 1752

30 497 9022

31 9288 3080

32 2481 7515

33 2696 268

34 4023 12341

35 7108 5553

Table B.9: N = 64800, Code Rate = 5/6

0 4362 416 8909 4156 3216 3112 2560 2912 6405 8593 4969 6723

1 2479 1786 8978 3011 4339 9313 6397 2957 7288 5484 6031 10217

2 10175 9009 9889 3091 4985 7267 4092 8874 5671 2777 2189 8716

3 9052 4795 3924 3370 10058 1128 9996 1016 5 9360 4297 434 5138

4 2379 7834 4835 2327 9843 804 329 8353 7167 3070 1528 7311

5 3435 7871 348 3693 1876 6585 10340 7144 5870 2084 4052 2780

6 3917 3111 3476 1304 10331 5939 5199 1611 1991 699 8316 9960

7 6883 3237 1717 10752 7891 9764 4745 3888 10009 4176 4614

1567

8 10587 2195 1689 2968 5420 2580 2883 6496 111 6023 1024 4449

9 3786 8593 2074 3321 5057 1450 3840 5444 6572 3094 9892 1512

10 8548 1848 10372 4585 7313 6536 6379 1766 9462 2456 5606

9975

11 8204 10593 7935 3636 3882 394 5968 8561 2395 7289 9267 9978

12 7795 74 1633 9542 6867 7352 6417 7568 10623 725 2531 9115

13 7151 2482 4260 5003 10105 7419 9203 6691 8798 2092 8263

3755

14 3600 570 4527 200 9718 6771 1995 8902 5446 768 1103 6520

15 6304 7621

16 6498 9209

17 7293 6786

18 5950 1708

19 8521 1793

14 7067 8878

15 9027 3415

16 1690 3866

17 2854 8469

18 6206 630

19 363 5453

20 4125 7008

21 1612 6702

22 9069 9226

23 5767 4060

24 3743 9237

25 7018 5572

26 8892 4536

27 853 6064

28 8069 5893

29 2051 2885

0 10691 3153

1 3602 4055

2 328 1717

3 2219 9299

4 1939 7898

5 617 206

6 8544 1374

88

20 6174 7854

21 9773 1190

22 9517 10268

23 2181 9349

24 1949 5560

25 1556 555

26 8600 3827

27 5072 1057

28 7928 3542

29 3226 3762

0 7045 2420

1 9645 2641

2 2774 2452

3 5331 2031

4 9400 7503

5 1850 2338

6 10456 9774

7 1692 9276

8 10037 4038

9 3964 338

10 2640 5087

11 858 3473

12 5582 5683

13 9523 916

14 4107 1559

15 4506 3491

16 8191 4182

17 10192 6157

18 5668 3305

19 3449 1540

20 4766 2697

21 4069 6675

22 1117 1016

23 5619 3085

24 8483 8400

25 8255 394

26 6338 5042

27 6174 5119

28 7203 1989

29 1781 5174

0 1464 3559

1 3376 4214

2 7238 67

3 10595 8831

4 1221 6513

5 5300 4652

7 10676 3240

8 6672 9489

9 3170 7457

10 7868 5731

11 6121 10732

12 4843 9132

13 580 9591

14 6267 9290

15 3009 2268

16 195 2419

17 8016 1557

18 1516 9195

19 8062 9064

20 2095 8968

21 753 7326

22 6291 3833

23 2614 7844

24 2303 646

25 2075 611

26 4687 362

27 8684 9940

28 4830 2065

29 7038 1363

0 1769 7837

1 3801 1689

2 10070 2359

3 3667 9918

4 1914 6920

5 4244 5669

6 10245 7821

7 7648 3944

8 3310 5488

9 6346 9666

10 7088 6122

11 1291 7827

12 10592 8945

13 3609 7120

14 9168 9112

15 6203 8052

16 3330 2895

17 4264 10563

18 10556 6496

19 8807 7645

20 1999 4530

21 9202 6818

22 3403 1734

89

6 1429 9749

7 7878 5131

8 4435 10284

9 6331 5507

10 6662 4941

11 9614 10238

12 8400 8025

13 9156 5630

23 2106 9023

24 6881 3883

25 3895 2171

26 4062 6424

27 3755 9536

Table B.10: N = 64800, Code Rate = 8/9

0 6235 2848

3222

1 5800 3492

5348

2 2757 927 90

15

3 6961 4516

4739

4 1172 3237

6264

5 1927 2425

3683

6 3714 6309

2495

7 3070 6342

7154

8 2428 613

3761

9 2906 264

5927

10 1716 1950

4273

11 4613 6179

3491

12 4865 3286

6005

13 1343 5923

3529

14 4589 4035

2132

15 1579 3920

6737

16 1644 1191

5998

13 1969 3869

14 3571 2420

4632 981

16 3215 4163

17 973 3117

18 3802 6198

19 3794 3948

0 3196 6126

1 573 1909

2 850 4034

 3 5622 1601

4 6005 524

5 5251 5783

6 172 2032

7 1875 2475

8 497 1291

9 2566 3430

10 1249 740

11 2944 1948

12 6528 2899

 13 2243 3616

14 867 3733

15 1374 4702

16 4698 2285

17 4760 3917

18 1859 4058

19 6141 3527

0 2148 5066

1 1306 145

2 2319 871

3 3463 1061

4 5554 6647

5 5837 339

6 5821 4932

7 6356 4756

8 3930 418

9 211 3094

10 1007 4928

11 3584 1235

12 6982 2869

13 1612 1013

14 953 4964

15 4555 4410

16 4925 4842

17 5778 600

18 6509 2417

19 1260 4903

0 3369 3031

1 3557 3224

2 3028 583

3 3258 440

4 6226 6655

5 4895 1094

6 1481 6847

 7 4433 1932

8 2107 1649

9 2119 2065

10 4003 6388

11 6720 3622

12 3694 4521

13 1164 7050

14 1965 3613

15 4331 66

16 2970 1796

17 4652 3218

18 1762 4777

19 5736 1399

0 970 2572

 1 2062 6599

2 4597 4870

3 1228 6913

4 4159 1037

5 2916 2362

6 395 1226

7 6911 4548

8 4618 2241

9 4120 4280

10 5825 474

11 2154 5558

12 3793 5471

13 5707 1595

14 1403 325

15 6601 5183

16 6369 4569

17 4846 896

18 7092 6184

19 6764 7127

0 6358 1951

1 3117 6960

2 2710 7062

3 1133 3604

4 3694 657

5 1355 110

6 3329 6736

7 2505 3407

8 2462 4806

9 4216 214

10 5348 5619

11 6627 6243

12 2644 5073

13 4212 5088

14 3463 3889

15 5306 478

16 4320 6121

17 3961 1125

18 5699 1195

19 6511 792

0 3934 2778

1 3238 6587

2 1111 6596

3 1457 6226

4 1446 3885

5 3907 4043

6 6839 2873

7 1733 5615

8 5202 4269

9 3024 4722

10 5445 6372

11 370 1828

12 4695 1600

13 680 2074

14 1801 6690

15 2669 1377

16 2463 1681

17 5972 5171

18 5728 4284

19 1696 1459

90

17 1482 2381

4620

18 6791 6014

6596

19 2738 5918

3786

0 5156 6166

1 1504 4356

2 130 1904

3 6027 3187

4 6718 759

5 6240 2870

6 2343 1311

7 1039 5465

8 6617 2513

9 1588 5222

10 6561 535

11 4765 2054

12 5966 6892

Table B.11: N = 64800, Code Rate = 9/10

0 5611 2563

2900

1 5220 3143

4813

2 2481 834 81

3 6265 4064

4265

4 1055 2914

5638

5 1734 2182

3315

6 3342 5678

2246

7 2185 552

3385

8 2615 236

5334

9 1546 1755

3846

10 4154 5561

3142

11 4382 2957

5400

17 3216 2178

0 4165 884

1 2896 3744

2 874 2801

3 3423 5579

4 3404 3552

5 2876 5515

6 516 1719

7 765 3631

8 5059 1441

9 5629 598

10 5405 473

11 4724 5210

12 155 1832

13 1689 2229

14 449 1164

15 2308 3088

16 1122 669

17 2268 5758

0 5878 2609

1 782 3359

2 1231 4231

3 4225 2052

16 6296 2583

17 1457 903

0 855 4475

1 4097 3970

2 4433 4361

3 5198 541

4 1146 4426

5 3202 2902

6 2724 525

7 1083 4124

8 2326 6003

9 5605 5990

 10 4376 1579

11 4407 984

12 1332 6163

13 5359 3975

14 1907 1854

15 3601 5748

16 6056 3266

17 3322 4085

0 1768 3244

1 2149 144

2 1589 4291

15 1263 293

 16 5949 4665

17 4548 6380

0 3171 4690

1 5204 2114

2 6384 5565

3 5722 1757

4 2805 6264

5 1202 2616

6 1018 3244

7 4018 5289

8 2257 3067

9 2483 3073

10 1196 5329

11 649 3918

12 3791 4581

13 5028 3803

14 3119 3506

15 4779 431

16 3888 5510

17 4387 4084

0 5836 1692

1 5126 1078

14 3267 649

15 6236 593

16 646 2948

17 4213 1442

0 5779 1596

1 2403 1237

2 2217 1514

3 5609 716

4 5155 3858

5 1517 1312

6 2554 3158

7 5280 2643

8 4990 1353

9 5648 1170

10 1152 4366

11 3561 5368

12 3581 1411

13 5647 4661

14 1542 5401

15 5078 2687

16 316 1755

17 3392 1991

91

12 1209 5329

3179

13 1421 3528

6063

14 1480 1072

5398

15 3843 1777

4369

16 1334 2145

4163

17 2368 5055

260

0 6118 5405

1 2994 4370

2 3405 1669

3 4640 5550

4 1354 3921

5 117 1713

6 5425 2866

7 6047 683

8 5616 2582

9 2108 1179

10 933 4921

11 5953 2261

12 1430 4699

13 5905 480

14 4289 1846

15 5374 6208

16 1775 3476

4 4286 3517

5 5531 3184

6 1935 4560

7 1174 131

8 3115 956

9 3129 1088

10 5238 4440

11 5722 4280

12 3540 375

13 191 2782

14 906 4432

15 3225 1111

3 5154 1252

4 1855 5939

5 4820 2706

6 1475 3360

7 4266 693

8 4156 2018

9 2103 752

10 3710 3853

11 5123 931

12 6146 3323

13 1939 5002

14 5140 1437

2 5721 6165

3 3540 2499

4 2225 6348

5 1044 1484

6 6323 4042

7 1313 5603

8 1303 3496

9 3516 3639

10 5161 2293

11 4682 3845

12 3045 643

13 2818 2616

Table B.12: N = 16200, Code Rate = 1/5

6295 9626 304 7695 4839 4936 1660 144 11203 5567 6347 12557

10691 4988 3859 3734 3071 3494 7687 10313 5964 8069 8296 11090

10774 3613 5208 11177 7676 3549 8746 6583 7239 12265 2674 4292

11869 3708 5981 8718 4908 10650 6805 3334 2627 10461 9285 11120

7844 3079 10773

3385 10854 5747

1360 12010 12202

6189 4241 2343

9840 12726 4977

Table B.13: N = 16200, Code Rate = 1/3

416 8909 4156 3216 3112 2560 2912 6405 8593 4969 6723 6912

92

8978 3011 4339 9312 6396 2957 7288 5485 6031 10218 2226 3575

3383 10059 1114 10008 10147 9384 4290 434 5139 3536 1965 2291

2797 3693 7615 7077 743 1941 8716 6215 3840 5140 4582 5420

6110 8551 1515 7404 4879 4946 5383 1831 3441 9569 10472 4306

1505 5682 7778

7172 6830 6623

7281 3941 3505

10270 8669 914

3622 7563 9388

9930 5058 4554

4844 9609 2707

6883 3237 1714

4768 3878 10017

10127 3334 8267

Table B.14: N = 16200, Code Rate = 2/5

5650 4143 8750 583 6720 8071 635 1767 1344 6922 738 6658

5696 1685 3207 415 7019 5023 5608 2605 857 6915 1770 8016

3992 771 2190 7258 8970 7792 1802 1866 6137 8841 886 1931

4108 3781 7577 6810 9322 8226 5396 5867 4428 8827 7766 2254

4247 888 4367 8821 9660 324 5864 4774 227 7889 6405 8963

9693 500 2520 2227 1811 9330 1928 5140 4030 4824 806 3134

1652 8171 1435

3366 6543 3745

9286 8509 4645

7397 5790 8972

6597 4422 1799

9276 4041 3847

8683 7378 4946

5348 1993 9186

6724 9015 5646

4502 4439 8474

5107 7342 9442

1387 8910 2660

Table B.15: N = 16200, Code Rate = 4/9

20 712 2386 6354 4061 1062 5045 5158

21 2543 5748 4822 2348 3089 6328 5876

22 926 5701 269 3693 2438 3190 3507

23 2802 4520 3577 5324 1091 4667 4449

24 5140 2003 1263 4742 6497 1185 6202

11 8935 4996

12 3028 764

13 5988 1057

14 7411 3450

93

0 4046 6934

1 2855 66

2 6694 212

3 3439 1158

4 3850 4422

5 5924 290

6 1467 4049

7 7820 2242

8 4606 3080

9 4633 7877

10 3884 6868

Table B.16: N = 16200, Code Rate = 3/5

2765 5713 6426 3596 1374 4811 2182 544 3394

2840 4310 771

4951 211 2208 723 1246 2928 398 5739 265

5601 5993 2615 210 4730 5777 3096 4282 6238

4939 1119 6463 5298 6320 4016

4167 2063 4757 3157 5664 3956 6045 563 4284

2441 3412 6334

4201 2428 4474 59 1721 736 2997 428 3807

1513 4732 6195 2670 3081 5139 3736 1999 5889

4362 3806 4534 5409 6384 5809

5516 1622 2906 3285 1257 5797 3816 817 875

2311 3543 1205

4244 2184 5415 1705 5642 4886 2333 287 1848

1121 3595 6022 2142 2830 4069 5654 1295 2951

3919 1356 884 1786 396 4738

0 2161 2653

1 1380 1461

2 2502 3707

3 3971 1057

4 5985 6062

5 1733 6028

6 3786 1936

7 4292 956

8 5692 3417

9 266 4878

10 4913 3247

11 4763 3937

12 3590 2903

13 2566 4215

14 5208 4707

15 3940 3388

16 5109 4556

17 4908 4177

Table B.17: N = 16200, Code Rate = 2/3

0 2084 1613 1548 1286 1460 3196 4297 2481

3369 3451 4620 2622

1 2583 1180

2 1542 509

94

1 122 1516 3448 2880 1407 1847 3799 3529 373

971 4358 3108

2 259 3399 929 2650 864 3996 3833 107 5287

164 3125 2350 3 342 3529

4 4198 2147

5 1880 4836

6 3864 4910 7 243 1542

8 3011 1436

9 2167 2512

10 4606 1003

11 2835 705

12 3426 2365

13 3848 2474

14 1360 1743

0 163 2536

3 4418 1005

4 5212 5117

5 2155 2922

6 347 2696

7 226 4296

8 1560 487

9 3926 1640

10 149 2928

11 2364 563

12 635 688

13 231 1684

14 1129 3894

Table B.18: N = 16200, Code Rate = 11/15

3 3198 478 4207 1481 1009 2616 1924

3437 554 683 1801

4 2681 2135

5 3107 4027

6 2637 3373

7 3830 3449

8 4129 2060

9 4184 2742

10 3946 1070

11 2239 984

0 1458 3031

1 3003 1328

2 1137 1716

3 132 3725

4 1817 638

5 1774 3447

6 3632 1257

7 542 3694

8 1015 1945

9 1948 412

10 995 2238

11 4141 1907

0 2480 3079

1 3021 1088

2 713 1379

3 997 3903

4 2323 3361

5 1110 986

6 2532 142

7 1690 2405

8 1298 1881

9 615 174

10 1648 3112

11 1415 2808

95

Table B.19: N = 16200, Code Rate = 7/9

5 896 1565

6 2493 184

7 212 3210

8 727 1339

9 3428 612

0 2663 1947

1 230 2695

2 2025 2794

3 3039 283

4 862 2889

5 376 2110

6 2034 2286

7 951 2068

8 3108 3542

9 307 1421

0 2272 1197

1 1800 3280

2 331 2308

3 465 2552

4 1038 2479

5 1383 343

6 94 236

7 2619 121

8 1497 277

9 2116 1855

0 722 1584

1 2767 1881

2 2701 1610

3 3283 1732

4 168 1099

5 3074 243

6 3460 945

7 2049 1746

8 566 1427

9 3545 1168

Table B.20: N = 16200, Code Rate = 37/49

3 2409 499 1481 908 559 716 1270 333

2508 2264 1702 2805

4 2447 1926

5 414 1224

6 2114 842

7 212 573

0 2383 2112

1 2286 2348

2 545 819

3 1264 143

4 1701 2258

5 964 166

6 114 2413

7 2243 81

0 1245 1581

1 775 169

2 1696 1104

3 1914 2831

4 532 1450

5 91 974

6 497 2228

7 2326 1579

0 2482 256

1 1117 1261

2 1257 1658

3 1478 1225

4 2511 980

5 2320 2675

6 435 1278

7 228 503

0 1885 2369

1 57 483

2 838 1050

3 1231 1990

4 1738 68

5 2392 951

6 163 645

7 2644 1704

96

Table B.21: N = 16200, Code Rate = 8/9

0 1558 712 805

1 1450 873 1337

2 1741 1129 1184

3 294 806 1566

4 482 605 923

0 926 1578

1 777 1374

2 608 151

3 1195 210

4 1484 692

0 427 488

1 828 1124

2 874 1366

3 1500 835

4 1496 502

0 1006 1701

1 1155 97

2 657 1403

3 1453 624

4 429 1495

0 809 385

1 367 151

2 1323 202

3 960 318

4 1451 1039

0 1098 1722

1 1015 1428

2 1261 1564

3 544 1190

4 1472 1246

0 508 630

1 421 1704

2 284 898

3 392 577

4 1155 556

0 631 1000

1 732 1368

2 1328 329

3 1515 506

4 1104 1172

97

Appendix C

Table (D.1). RALUT approximation of tanh−1 𝑥.

Input range which uniformly

distributed across the output

Input range Output

𝑦1 ≤ 𝑦 = tanh𝑥 ≤ 𝑦2 tanh−1 𝑦1 ≤ 𝑥 < tanh−1 𝑦2
𝑦 =

𝑦1 + 𝑦2

2

𝑦 = tanh𝑥 = 0 𝑥 = 0 𝑦 = 0

0 ≤ 𝑦 = tanh𝑥 ≤ 0.05 tanh−1 0 ≤ 𝑥 < tanh−1 0.05 𝑦 = 0.025

0.05 ≤ 𝑦 = tanh 𝑥 ≤ 0.1 tanh−1 0.05 ≤ 𝑥 < tanh−1 0.1 𝑦 = 0.075

0.01 ≤ 𝑦 = tanh𝑥 ≤ 0.15 tanh−1 0.1 ≤ 𝑥 < tanh−1 0.15 𝑦 = 0.125

0.15 ≤ 𝑦 = tanh 𝑥 ≤ 0.2 tanh−1 0.15 ≤ 𝑥 < tanh−1 0.2 𝑦 = 0.175

0.2 ≤ 𝑦 = tanh𝑥 ≤ 0.25 tanh−1 0.2 ≤ 𝑥 < tanh−1 0.25 𝑦 = 0.225

0.25 ≤ 𝑦 = tanh 𝑥 ≤ 0.3 tanh−1 0 . 25 ≤ 𝑥 < tanh−1 0.3 𝑦 = 0.275

0.3 ≤ 𝑦 = tanh𝑥 ≤ 0.35 tanh−1 0.3 ≤ 𝑥 < tanh−1 0.35 𝑦 = 0.325

0.35 ≤ 𝑦 = tanh 𝑥 ≤ 0.4 tanh−1 0.35 ≤ 𝑥 < tanh−1 0.4 𝑦 = 0.375

0.4 ≤ 𝑦 = tanh𝑥 ≤ 0.45 tanh−1 0.4 ≤ 𝑥 < tanh−1 0.45 𝑦 = 0.425

0.45 ≤ 𝑦 = tanh 𝑥 ≤ 0.5 tanh−1 0.45 ≤ 𝑥 < tanh−1 0.5 𝑦 = 0.475

0.5 ≤ 𝑦 = tanh𝑥 ≤ 0.55 tanh−1 0.5 ≤ 𝑥 < tanh−1 0.55 𝑦 = 0.525

0.55 ≤ 𝑦 = tanh 𝑥 ≤ 0.6 tanh−1 0.55 ≤ 𝑥 < tanh−1 0.6 𝑦 = 0.575

0.6 ≤ 𝑦 = tanh𝑥 ≤ 0.65 tanh−1 0.6 ≤ 𝑥 < tanh−1 0.65 𝑦 = 0.625

0.65 ≤ 𝑦 = tanh 𝑥 ≤ 0.7 tanh−1 0.65 ≤ 𝑥 < tanh−1 0.7 𝑦 = 0.675

0.7 ≤ 𝑦 = tanh𝑥 ≤ 0.75 tanh−1 0.7 ≤ 𝑥 < tanh−1 0.75 𝑦 = 0.725

0.75 ≤ 𝑦 = tanh 𝑥 ≤ 0.8 tanh−1 0.75 ≤ 𝑥 < tanh−1 0.8 𝑦 = 0.775

0.8 ≤ 𝑦 = tanh𝑥 ≤ 0.85 tanh−1 0.8 ≤ 𝑥 < tanh−1 0.85 𝑦 = 0.825

0.85 ≤ 𝑦 = tanh 𝑥 ≤ 0.9 tanh−1 0.85 ≤ 𝑥 < tanh−1 0.9 𝑦 = 0.875

0.9 ≤ 𝑦 = tanh𝑥 ≤ 0.95 tanh−1 0.9 ≤ 𝑥 < tanh−1 0.95 𝑦 = 0.925

0.95 ≤ 𝑦 = tanh𝑥 ≤ 0.99 tanh−1 0.95 ≤ 𝑥 < tanh−1 0.99 𝑦 = 0.975

0.99 ≤ 𝑦 = tanh 𝑥 𝑥 ≤ tanh−1 0.99 𝑦 = 1

